
Veritas Storage
Foundation™ Cluster File
System High Availability
6.0.1 Administrator's Guide
- Linux

December 2017

Veritas Storage Foundation™ Cluster File System
High Availability Administrator's Guide

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Product version: 6.0.1

Document version: 6.0.1 Rev 4

Legal Notice
Copyright © 2015 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, the Checkmark Logo, Veritas, Veritas Storage Foundation,
CommandCentral, NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Symantec
Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software and Documentation by the U.S.
Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support
Symantec Technical Support maintains support centers globally. Technical Support’s
primary role is to respond to specific queries about product features and functionality.
The Technical Support group also creates content for our online Knowledge Base.
The Technical Support group works collaboratively with the other functional areas
within Symantec to answer your questions in a timely fashion. For example, the
Technical Support group works with Product Engineering and Symantec Security
Response to provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

■ A range of support options that give you the flexibility to select the right amount
of service for any size organization

■ Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers software upgrades

■ Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

■ Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our website at
the following URL:

www.symantec.com/business/support/index.jsp

All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be at
the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

■ Hardware information

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/contact_techsupp_static.jsp

■ Available memory, disk space, and NIC information

■ Operating system

■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Symantec

■ Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and support contracts

■ Information about the Symantec Buying Programs

■ Advice about Symantec's technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs or manuals

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

Support agreement resources
If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

customercare_apac@symantec.comAsia-Pacific and Japan

semea@symantec.comEurope, Middle-East, and Africa

supportsolutions@symantec.comNorth America and Latin America

Documentation
Product guides are available on the media in PDF format. Make sure that you are
using the current version of the documentation. The document version appears on
page 2 of each guide. The latest product documentation is available on the Symantec
website.

https://sort.symantec.com/documents

Your feedback on product documentation is important to us. Send suggestions for
improvements and reports on errors or omissions. Include the title and document
version (located on the second page), and chapter and section titles of the text on
which you are reporting. Send feedback to:

doc_feedback@symantec.com

For information regarding the latest HOWTO articles, documentation updates, or
to ask a question regarding product documentation, visit the Storage and Clustering
Documentation forum on Symantec Connect.

https://www-secure.symantec.com/connect/storage-management/
forums/storage-and-clustering-documentation

About Symantec Connect
Symantec Connect is the peer-to-peer technical community site for Symantec’s
enterprise customers. Participants can connect and share information with other
product users, including creating forum posts, articles, videos, downloads, blogs
and suggesting ideas, as well as interact with Symantec product teams and
Technical Support. Content is rated by the community, and members receive reward
points for their contributions.

http://www.symantec.com/connect/storage-management

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
https://sort.symantec.com/documents
mailto:doc_feedback@symantec.com
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
http://www.symantec.com/connect/storage-management

Technical Support ... 4

Section 1 Introducing Storage Foundation Cluster
File System High Availability 32

Chapter 1 Overview of Storage Foundation Cluster File
System High Availability .. 33

About Veritas Storage Foundation Cluster File System High Availability
... 33

About Veritas File System .. 34
About the Veritas File System intent log 34
About extents .. 35
About file system disk layouts ... 36

About Veritas Volume Manager ... 36
About Veritas Dynamic Multi-Pathing (DMP) 37
About Veritas Operations Manager ... 37
About Storage Foundation Cluster File System High Availability

solutions ... 38
About Veritas Replicator .. 39

What is VFR? .. 39
Features of VFR ... 39

Chapter 2 How Storage Foundation Cluster File System
High Availability works ... 41

How Storage Foundation Cluster File System High Availability works
... 42

When to use Storage Foundation Cluster File System High Availability
... 43

About Storage Foundation Cluster File System High Availability
architecture ... 44
About the symmetric architecture ... 44
About Storage Foundation Cluster File System High Availability

primary/secondary failover ... 45

Contents

About single-host file system semantics using Group Lock
Manager ... 45

About Veritas File System features supported in cluster file systems
... 45
Veritas File System features in cluster file systems 46
Veritas File System features not in cluster file systems 48

About Veritas Cluster Server architecture .. 48
About the Storage Foundation Cluster File System High Availability

namespace ... 50
About asymmetric mounts .. 50
About primary and secondary cluster nodes 51
Determining or moving primaryship .. 51
About synchronizing time on Cluster File Systems 52
About file system tunables .. 52
About setting the number of parallel fsck threads 52
Storage Checkpoints ... 53
About Storage Foundation Cluster File System High Availability backup

strategies .. 53
About parallel I/O ... 54
About the I/O error handling policy for Cluster Volume Manager 55
About recovering from I/O failures .. 55
About single network link and reliability ... 56

Configuring a low-priority link .. 56
Split-brain and jeopardy handling ... 57
About I/O fencing ... 58

About I/O fencing for SFCFSHA in virtual machines that do not
support SCSI-3 PR ... 59

About preventing data corruption with I/O fencing 59
About I/O fencing components .. 61
About I/O fencing configuration files ... 64
How I/O fencing works in different event scenarios 67
About server-based I/O fencing ... 71
About secure communication between the SFCFSHA cluster and

CP server ... 75
Storage Foundation Cluster File System High Availability and Veritas

Volume Manager cluster functionality agents 79
Veritas Volume Manager cluster functionality 80

Chapter 3 How Veritas File System works 81

Veritas File System features ... 81
Veritas File System performance enhancements 88

Enhanced I/O performance ... 89

8Contents

Delayed allocation for extending writes 90
Using Veritas File System .. 91

Online system administration .. 91
Application program interface .. 92

Chapter 4 How Veritas Volume Manager works 94

How Veritas Volume Manager works with the operating system 94
How data is stored .. 95

How Veritas Volume Manager handles storage management 96
Physical objects ... 96
Virtual objects .. 98
About the configuration daemon in Veritas Volume Manager 105
Multiple paths to disk arrays .. 106

Volume layouts in Veritas Volume Manager 106
Non-layered volumes .. 107
Layered volumes .. 107
Layout methods ... 107
Concatenation, spanning, and carving 108
Striping (RAID-0) .. 110
Mirroring (RAID-1) .. 113
Striping plus mirroring (mirrored-stripe or RAID-0+1) 114
Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)

.. 115
RAID-5 (striping with parity) .. 116

Online relayout ... 123
How online relayout works .. 123
Limitations of online relayout ... 126
Transformation characteristics ... 127
Transformations and volume length .. 127

Volume resynchronization .. 128
Dirty flags .. 128
Resynchronization process ... 128

Hot-relocation .. 129
Dirty region logging ... 129

Log subdisks and plexes .. 130
Sequential DRL .. 130
SmartSync recovery accelerator .. 130

Volume snapshots .. 132
Comparison of snapshot features ... 133

FastResync ... 134
How FastResync works .. 135
How non-persistent FastResync works with snapshots 136

9Contents

How persistent FastResync works with snapshots 137
DCO volume versioning .. 140
Effect of growing a volume on the FastResync map 142
FastResync limitations ... 143

Volume sets ... 144

Chapter 5 How Cluster Volume Manager works 145

About the cluster functionality of VxVM .. 145
Overview of clustering ... 146

Overview of cluster volume management 147
About private and shared disk groups 149
Activation modes of shared disk groups 150
Limitations of shared disk groups ... 152

Cluster Volume Manager (CVM) tolerance to storage connectivity
failures .. 153
Availability of shared disk group configuration copies 156
About redirection of application I/Os with CVM I/O shipping 156
Storage disconnectivity and CVM disk detach policies 157
Availability of cluster nodes and shared disk groups 166

CVM initialization and configuration .. 167
Cluster reconfiguration ... 168
Volume reconfiguration .. 170
Node shutdown .. 173
Cluster shutdown .. 174

Dirty region logging in cluster environments 174
How DRL works in a cluster environment 175

Multiple host failover configurations .. 176
Import lock .. 176
Failover .. 176
Corruption of disk group configuration 177

Chapter 6 How Veritas Dynamic Multi-Pathing works 179

How DMP works ... 179
Device discovery .. 183
How DMP monitors I/O on paths .. 185
Load balancing .. 187
DMP in a clustered environment .. 188

Veritas Volume Manager co-existence with Oracle Automatic Storage
Management disks .. 189

10Contents

Section 2 Provisioning storage .. 192

Chapter 7 Provisioning new storage .. 193

Provisioning new storage ... 193
Growing the existing storage by adding a new LUN 194
Growing the existing storage by growing the LUN 195
Displaying SFCFSHA information with vxlist 195

Chapter 8 Advanced allocation methods for configuring
storage .. 196

Customizing allocation behavior .. 196
Setting default values for vxassist .. 198
Using rules to make volume allocation more efficient 199
Understanding persistent attributes .. 202
Customizing disk classes for allocation 205
Specifying allocation constraints for vxassist operations with the

use clause and the require clause 207
Management of the use and require type of persistent attributes

.. 215
Creating volumes of a specific layout .. 219

Types of volume layouts ... 220
Creating a mirrored volume ... 221
Creating a striped volume ... 223
Creating a RAID-5 volume .. 224

Creating a volume on specific disks .. 226
Creating volumes on specific media types .. 227
Specifying ordered allocation of storage to volumes 228
Site-based allocation ... 231
Changing the read policy for mirrored volumes 231

Chapter 9 Creating and mounting VxFS file systems 234

Creating a VxFS file system .. 234
Block size ... 236
Intent log size .. 236
Example of creating a file system ... 236

Converting a file system to VxFS ... 237
Example of converting a file system .. 238

Mounting a VxFS file system ... 238
log mount option ... 240
delaylog mount option ... 240

11Contents

tmplog mount option .. 241
logiosize mount option ... 242
nodatainlog mount option ... 242
blkclear mount option .. 242
mincache mount option .. 242
convosync mount option .. 244
ioerror mount option .. 245
largefiles and nolargefiles mount options 246
cio mount option ... 248
mntlock mount option .. 248
ckptautomnt mount option .. 248
Combining mount command options .. 248
Example of mounting a file system ... 249

Unmounting a file system ... 249
Example of unmounting a file system .. 250

Resizing a file system .. 250
Extending a file system using fsadm ... 250
Shrinking a file system ... 251
Reorganizing a file system .. 252

Displaying information on mounted file systems 253
Example of displaying information on mounted file systems 254

Identifying file system types .. 254
Example of determining a file system's type 254

Monitoring free space .. 255
Monitoring fragmentation .. 256

Chapter 10 Extent attributes ... 258

About extent attributes ... 258
Reservation: preallocating space to a file 259
Fixed extent size .. 259
How the fixed extent size works with the shared extents 260
Other extent attribute controls ... 260

Commands related to extent attributes ... 262
Example of setting an extent attribute 262
Example of getting an extent attribute 263
Failure to preserve extent attributes .. 263

12Contents

Section 3 Administering multi-pathing with DMP
.. 265

Chapter 11 Administering Dynamic Multi-Pathing 266

Discovering and configuring newly added disk devices 266
Partial device discovery ... 267
Discovering disks and dynamically adding disk arrays 268
Third-party driver coexistence ... 270
How to administer the Device Discovery Layer 272

Making devices invisible to VxVM ... 284
Making devices visible to VxVM ... 286
About enabling and disabling I/O for controllers and storage processors

.. 286
About displaying DMP database information 287
Displaying the paths to a disk .. 287
Administering DMP using vxdmpadm .. 290

Retrieving information about a DMP node 292
Displaying consolidated information about the DMP nodes 293
Displaying the members of a LUN group 294
Displaying paths controlled by a DMP node, controller, enclosure,

or array port ... 294
Displaying information about controllers 297
Displaying information about enclosures 298
Displaying information about array ports 299
Displaying information about TPD-controlled devices 299
Displaying extended device attributes 300
Suppressing or including devices from VxVM control 302
Gathering and displaying I/O statistics 303
Setting the attributes of the paths to an enclosure 308
Displaying the redundancy level of a device or enclosure 310
Specifying the minimum number of active paths 311
Displaying the I/O policy ... 311
Specifying the I/O policy ... 312
Disabling I/O for paths, controllers, array ports, or DMP nodes

.. 318
Enabling I/O for paths, controllers, array ports, or DMP nodes

.. 319
Renaming an enclosure ... 320
Configuring the response to I/O failures 321
Configuring the I/O throttling mechanism 322
Configuring Low Impact Path Probing 323

13Contents

Configuring Subpaths Failover Groups (SFG) 324
Displaying recovery option values .. 324
Configuring DMP path restoration policies 325
Stopping the DMP path restoration thread 327
Displaying the status of the DMP path restoration thread 327
Configuring array policy modules ... 327

Chapter 12 Dynamic Reconfiguration of devices 329

About online Dynamic Reconfiguration ... 329
Reconfiguring a LUN online that is under DMP control 330

Removing LUNs dynamically from an existing target ID 330
Adding new LUNs dynamically to a new target ID 332
Replacing LUNs dynamically from an existing target ID 333
Dynamic LUN expansion .. 334
Changing the characteristics of a LUN from the array side 336

Replacing a host bus adapter online ... 337
Upgrading the array controller firmware online 338

Chapter 13 Managing devices .. 339

Displaying disk information ... 339
Displaying disk information with vxdiskadm 340

Changing the disk device naming scheme 341
Displaying the disk-naming scheme .. 342
Setting customized names for DMP nodes 343
Regenerating persistent device names 344
Changing device naming for TPD-controlled enclosures 344
About the Array Volume Identifier (AVID) attribute 346

About disk installation and formatting .. 348
Adding and removing disks ... 348

Adding a disk to VxVM ... 348
Removing disks .. 358

Renaming a disk .. 361

Chapter 14 Event monitoring .. 363

About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
.. 363

Fabric Monitoring and proactive error detection 364
Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre

Channel topology ... 365
DMP event logging .. 365

14Contents

Starting and stopping the Dynamic Multi-Pathing (DMP) event source
daemon .. 366

Section 4 Administering Storage Foundation
Cluster File System High Availability
and its components .. 367

Chapter 15 Administering Storage Foundation Cluster File
System High Availability and its components
.. 368

About Storage Foundation Cluster File System High Availability
administration .. 368

Administering CFS .. 369
Adding CFS file systems to a VCS configuration 369
Using cfsmount to mount CFS file systems 369
Resizing CFS file systems .. 370
Verifying the status of CFS file system nodes and their mount

points ... 370
Verifying the state of the CFS port .. 371
CFS agents and AMF support ... 371
CFS agent log files .. 371
CFS commands ... 371
About the mount, fsclustadm, and fsadm commands 372
Synchronizing system clocks on all nodes 373
Growing a CFS file system ... 373
About the /etc/fstab file .. 374
When the CFS primary node fails ... 374
Storage Checkpoints on SFCFSHA .. 375
About Snapshots on Storage Foundation Cluster File System High

Availability ... 375
Administering VCS .. 377

Configuring VCS to start Oracle with a specified Pfile 378
Verifying VCS configuration .. 378
Starting and stopping VCS .. 378
Configuring destination-based load balancing for LLT 378

Administering CVM ... 379
Listing all the CVM shared disks .. 379
Establishing CVM cluster membership manually 379
Methods to control CVM master selection 379
About setting cluster node preferences for master failover 380

15Contents

About changing the CVM master manually 385
Importing a shared disk group manually 389
Deporting a shared disk group manually 389
Starting shared volumes manually .. 389
Evaluating the state of CVM ports .. 389
Verifying if CVM is running in an SFCFSHA cluster 390
Verifying CVM membership state ... 390
Verifying the state of CVM shared disk groups 391
Verifying the activation mode ... 391
CVM log files ... 391
Requesting node status and discovering the master node 392
Determining if a LUN is in a shareable disk group 393
Listing shared disk groups .. 393
Creating a shared disk group .. 394
Importing disk groups as shared .. 395
Converting a disk group from shared to private 396
Moving objects between shared disk groups 396
Splitting shared disk groups .. 397
Joining shared disk groups ... 397
Changing the activation mode on a shared disk group 397
Enabling I/O shipping for shared disk groups 398
Setting the detach policy for shared disk groups 398
Controlling the CVM tolerance to storage disconnectivity 398
Handling cloned disks in a shared disk group 399
Creating volumes with exclusive open access by a node 399
Setting exclusive open access to a volume by a node 400
Displaying the cluster protocol version 400
Displaying the supported cluster protocol version range 401
Recovering volumes in shared disk groups 401
Obtaining cluster performance statistics 402
Administering CVM from the slave node 402

Administering ODM ... 404
Verifying the ODM port ... 404
Starting ODM ... 404

Administering I/O fencing ... 405
About administering I/O fencing ... 405
About the vxfentsthdw utility .. 405
About the vxfenadm utility ... 413
About the vxfenclearpre utility .. 418
About the vxfenswap utility ... 421
About administering the coordination point server 435
About migrating between disk-based and server-based fencing

configurations .. 454

16Contents

Enabling or disabling the preferred fencing policy 471
Administering SFCFSHA global clusters .. 473

About setting up a disaster recovery fire drill 474
About configuring the fire drill service group using the Fire Drill

Setup wizard .. 475
Verifying a successful fire drill .. 476
Scheduling a fire drill ... 477

Chapter 16 Using Clustered NFS .. 478

About Clustered NFS ... 478
Sample use cases .. 478
Requirements for Clustered NFS ... 479
Understanding how Clustered NFS works .. 479

Basic design .. 479
Internal Clustered NFS functionality .. 479

cfsshare manual page ... 481
Configure and unconfigure Clustered NFS 481

Configure Clustered NFS ... 482
Unconfiguring Clustered NFS .. 484

Administering Clustered NFS .. 484
Displaying the NFS shared CFS file systems 485
Sharing a CFS file system previously added to VCS 485
Unsharing the previous shared CFS file system 486
Adding an NFS shared CFS file system to VCS 486
Deleting the NFS shared CFS file system from VCS 487
Adding a virtual IP address to VCS ... 487
Deleting a virtual IP address from VCS 487
Adding an IPv6 virtual IP address to VCS 488
Deleting an IPv6 virtual IP address from VCS 488
Changing the share options associated with an NFS share 488
Sharing a file system checkpoint .. 489
Samples for configuring a Clustered NFS 489
Sample main.cf file .. 493

How to mount an NFS-exported file system on the NFS clients 499
Debugging Clustered NFS .. 499

Chapter 17 Using Common Internet File System 500

About CIFS ... 500
Requirements for CIFS .. 501
Understanding how Samba works .. 501
Configuring Clustered NFS and CIFS on CFS 501
cfsshare manual page ... 501

17Contents

Configuring CIFS in user mode .. 501
Configuring CIFS in domain mode .. 503
Configuring CIFS in ads mode ... 505
Administering CIFS ... 507

Sharing a CFS file system previously added to VCS 509
Unsharing the previous shared CFS file system 510
Sample main.cf file for CIFS .. 510

Debugging CIFS ... 516

Chapter 18 Administering sites and remote mirrors 517

About sites and remote mirrors .. 517
About site-based allocation ... 520
About site consistency ... 521
About site tags ... 522
About the site read policy ... 522
About disk detach policies for campus clusters 523

Making an existing disk group site consistent 525
Configuring a new disk group as a Remote Mirror configuration 526
Fire drill — testing the configuration .. 527

Simulating site failure .. 528
Verifying the secondary site .. 528
Recovery from simulated site failure ... 528

Changing the site name ... 528
Resetting the site name for a host .. 529

Administering the Remote Mirror configuration 529
Configuring site tagging for disks or enclosures 529
Configuring automatic site tagging for a disk group 530
Configuring site consistency on a volume 531

Examples of storage allocation by specifying sites 531
Displaying site information .. 533
Failure and recovery scenarios .. 534

Recovering from a loss of site connectivity 535
Recovering from host failure ... 536
Recovering from storage failure ... 536
Recovering from site failure .. 536
Recovering from disruption of connectivity to storage at the remote

sites from hosts on all sites ... 537
Recovering from disruption to connectivity to storage at all sites

from the hosts at a site ... 537
Automatic site reattachment .. 537

18Contents

Section 5 Optimizing I/O performance 539

Chapter 19 Veritas File System I/O .. 540

About Veritas File System I/O .. 540
Buffered and Direct I/O .. 541

Direct I/O .. 541
Unbuffered I/O ... 542
Data synchronous I/O .. 542

Concurrent I/O ... 543
Cache advisories .. 544
Freezing and thawing a file system ... 544
Getting the I/O size .. 545
About Storage Foundation and High Availability Solutions products

database accelerators ... 545

Chapter 20 Veritas Volume Manager I/O .. 547

Veritas Volume Manager throttling of administrative I/O 547

Section 6 Veritas Extension for Oracle Disk
Manager ... 549

Chapter 21 Using Veritas Extension for Oracle Disk Manager
.. 550

About Oracle Disk Manager .. 550
How Oracle Disk Manager improves database performance 552

About Oracle Disk Manager and Veritas Storage Foundation Cluster
File System High Availability ... 553

About Oracle Disk Manager and Oracle Managed Files 554
How Oracle Disk Manager works with Oracle Managed Files 554

Setting up Veritas Extension for Oracle Disk Manager 556
Configuring Veritas Extension for Oracle Disk Manager 557
Preparing existing database storage for Oracle Disk Manager 558
Verifying that Oracle Disk Manager is configured 558
Disabling the Oracle Disk Manager feature 560
Using Cached ODM .. 561

Enabling Cached ODM for file systems 561
Modifying Cached ODM settings for individual files 562
Adding Cached ODM settings via the cachemap 563
Making the caching settings persistent across mounts 563

19Contents

Section 7 Using Point-in-time copies 564

Chapter 22 Understanding point-in-time copy methods 565

About point-in-time copies .. 565
When to use point-in-time copies ... 566

Implementing point-in time copy solutions on a primary host 567
Implementing off-host point-in-time copy solutions 569

About Storage Foundation point-in-time copy technologies 575
Comparison of Point-in-time copy solutions 576

Volume-level snapshots ... 577
Persistent FastResync of volume snapshots 577
Data integrity in volume snapshots ... 577
Third-mirror break-off snapshots .. 578
Space-optimized instant volume snapshots 579
Choices for snapshot resynchronization 580
Disk group split/join ... 580

Storage Checkpoints ... 581
How Storage Checkpoints differ from snapshots 582
How a Storage Checkpoint works ... 582
Types of Storage Checkpoints ... 586

About FileSnaps ... 589
Properties of FileSnaps .. 589
Concurrent I/O to FileSnaps .. 590
Copy-on-write and FileSnaps .. 590
Reading from FileSnaps ... 591
Block map fragmentation and FileSnaps 591
Backup and FileSnaps ... 591

About snapshot file systems .. 592
How a snapshot file system works .. 592

Chapter 23 Administering volume snapshots 594

About volume snapshots .. 594
How traditional third-mirror break-off snapshots work 595
How full-sized instant snapshots work ... 596
Linked break-off snapshot volumes .. 598
Cascaded snapshots ... 599

Creating a snapshot of a snapshot ... 600
Creating multiple snapshots .. 602
Restoring the original volume from a snapshot 603
Creating instant snapshots ... 604

Adding an instant snap DCO and DCO volume 605

20Contents

Creating and managing space-optimized instant snapshots 611
Creating and managing full-sized instant snapshots 614
Creating and managing third-mirror break-off snapshots 616
Creating and managing linked break-off snapshot volumes 619
Creating multiple instant snapshots .. 621
Creating instant snapshots of volume sets 622
Adding snapshot mirrors to a volume .. 624
Removing a snapshot mirror ... 625
Removing a linked break-off snapshot volume 625
Adding a snapshot to a cascaded snapshot hierarchy 625
Refreshing an instant space-optimized snapshot 626
Reattaching an instant full-sized or plex break-off snapshot 626
Reattaching a linked break-off snapshot volume 627
Restoring a volume from an instant space-optimized snapshot

.. 628
Dissociating an instant snapshot .. 628
Removing an instant snapshot .. 629
Splitting an instant snapshot hierarchy 629
Displaying instant snapshot information 630
Controlling instant snapshot synchronization 632
Listing the snapshots created on a cache 633
Tuning the autogrow attributes of a cache 634
Monitoring and displaying cache usage 635
Growing and shrinking a cache .. 635
Removing a cache .. 636

Creating traditional third-mirror break-off snapshots 636
Converting a plex into a snapshot plex 640
Creating multiple snapshots with the vxassist command 641
Reattaching a snapshot volume ... 642
Adding plexes to a snapshot volume ... 643
Dissociating a snapshot volume ... 643
Displaying snapshot information .. 644

Adding a version 0 DCO and DCO volume 645
Specifying storage for version 0 DCO plexes 646
Removing a version 0 DCO and DCO volume 648
Reattaching a version 0 DCO and DCO volume 648

Chapter 24 Administering Storage Checkpoints 650

About Storage Checkpoints .. 650
Storage Checkpoint administration ... 651

Creating a Storage Checkpoint .. 652
Removing a Storage Checkpoint .. 653

21Contents

Accessing a Storage Checkpoint .. 653
Converting a data Storage Checkpoint to a nodata Storage

Checkpoint .. 655
Enabling and disabling Storage Checkpoint visibility 662

Storage Checkpoint space management considerations 663
Restoring from a Storage Checkpoint .. 663

Examples of restoring a file from a Storage Checkpoint 664
Storage Checkpoint quotas ... 669

Chapter 25 Administering FileSnaps .. 670

FileSnap creation .. 670
FileSnap creation over Network File System 670

Using FileSnaps ... 671
Using FileSnaps to create point-in-time copies of files 672

Using FileSnaps to provision virtual desktops 672
Using FileSnaps to optimize write intensive applications for virtual

machines .. 673
Using FileSnaps to create multiple copies of data instantly 673

Comparison of the logical size output of the fsadm -S shared, du, and
df commands ... 674

Chapter 26 Administering snapshot file systems 676

Snapshot file system backups ... 676
Snapshot file system performance .. 677
About snapshot file system disk structure .. 677
Differences between snapshots and Storage Checkpoints 678
Creating a snapshot file system ... 679
Examples of creating snapshot file systems 680

Section 8 Optimizing storage with Storage
Foundation Cluster File System High
Availability ... 681

Chapter 27 Understanding storage optimization solutions in
Storage Foundation Cluster File System High
Availability .. 682

About thin provisioning ... 682
About thin optimization solutions in Storage Foundation Cluster File

System High Availability .. 683

22Contents

About SmartMove ... 684
SmartMove for thin provisioning ... 685

About the Thin Reclamation feature .. 685
About reclaiming space on Solid State Devices (SSDs) with the TRIM

operation .. 686
Determining when to reclaim space on a thin reclamation LUN 687
How automatic reclamation works .. 688

Chapter 28 Migrating data from thick storage to thin storage
.. 689

About using SmartMove to migrate to Thin Storage 689
Migrating to thin provisioning ... 689

Chapter 29 Maintaining Thin Storage with Thin Reclamation
.. 693

Reclamation of storage on thin reclamation arrays 693
About Thin Reclamation of a disk, a disk group, or an enclosure

.. 694
About Thin Reclamation of a file system 695

Identifying thin and thin reclamation LUNs 695
Displaying VxFS file system usage on thin reclamation LUNs 696
Reclaiming space on a file system .. 699
Reclaiming space on a disk, disk group, or enclosure 701
About the reclamation log file .. 703
Monitoring Thin Reclamation using the vxtask command 704
Configuring automatic reclamation ... 705

Section 9 Maximizing storage utilization 707

Chapter 30 Understanding storage tiering with SmartTier
.. 708

About SmartTier ... 708
About VxFS multi-volume file systems 710
About VxVM volume sets ... 711
About volume tags .. 711
SmartTier file management ... 711
SmartTier sub-file object management 712

How the SmartTier policy works with the shared extents 712
SmartTier in a High Availability (HA) environment 713

23Contents

Chapter 31 Creating and administering volume sets 714

About volume sets .. 714
Creating a volume set .. 715
Adding a volume to a volume set ... 716
Removing a volume from a volume set .. 716
Listing details of volume sets ... 716
Stopping and starting volume sets .. 717
Managing raw device nodes of component volumes 718

Enabling raw device access when creating a volume set 719
Displaying the raw device access settings for a volume set 720
Controlling raw device access for an existing volume set 720

Chapter 32 Multi-volume file systems .. 722

About multi-volume file systems ... 722
About volume types ... 723
Features implemented using multi-volume support 723

Volume availability .. 724
Creating multi-volume file systems ... 725

Example of creating a multi-volume file system 725
Converting a single volume file system to a multi-volume file system

.. 726
Adding a volume to and removing a volume from a multi-volume file

system ... 728
Adding a volume to a multi-volume file system 728
Removing a volume from a multi-volume file system 728
Forcibly removing a volume in a multi-volume file system 728
Moving volume 0 in a multi-volume file system 729

Volume encapsulation ... 729
Encapsulating a volume ... 729
Deencapsulating a volume ... 731

Reporting file extents ... 731
Examples of reporting file extents ... 732

Load balancing .. 733
Defining and assigning a load balancing allocation policy 734
Rebalancing extents .. 734

Converting a multi-volume file system to a single volume file system
.. 735

Chapter 33 Administering SmartTier .. 737

About SmartTier ... 737
About compressing files with SmartTier 739

24Contents

Supported SmartTier document type definitions 739
Placement classes .. 740

Tagging volumes as placement classes 741
Listing placement classes ... 741

Administering placement policies ... 742
Assigning a placement policy .. 742
Unassigning a placement policy ... 743
Analyzing the space impact of enforcing a placement policy 743
Querying which files will be affected by enforcing a placement

policy ... 743
Enforcing a placement policy ... 743
Validating a placement policy .. 745

File placement policy grammar .. 745
File placement policy rules .. 746

SELECT statement ... 746
CREATE statement ... 749
RELOCATE statement ... 751
DELETE statement ... 766
COMPRESS statement .. 768
UNCOMPRESS statement ... 778

Calculating I/O temperature and access temperature 787
Multiple criteria in file placement policy rule statements 791

Multiple file selection criteria in SELECT statement clauses 792
Multiple placement classes in <ON> clauses of CREATE

statements and in <TO> clauses of RELOCATE statements
.. 793

Multiple placement classes in <FROM> clauses of RELOCATE
and DELETE statements ... 794

Multiple conditions in <WHEN> clauses of RELOCATE and
DELETE statements ... 794

File placement policy rule and statement ordering 794
File placement policies and extending files 797
Using SmartTier with solid state disks ... 797

Fine grain temperatures with solid state disks 798
Prefer mechanism with solid state disks 798
Average I/O activity with solid state disks 799
Frequent SmartTier scans with solid state disks 799
Quick identification of cold files with solid state disks 800
Example placement policy when using solid state disks 801

Sub-file relocation ... 805
Moving sub-file data of files to specific target tiers 805

25Contents

Chapter 34 Administering hot-relocation ... 806

About hot-relocation .. 806
How hot-relocation works ... 807

Partial disk failure mail messages .. 810
Complete disk failure mail messages .. 811
How space is chosen for relocation .. 812

Configuring a system for hot-relocation ... 813
Displaying spare disk information ... 813
Marking a disk as a hot-relocation spare .. 814
Removing a disk from use as a hot-relocation spare 815
Excluding a disk from hot-relocation use .. 816
Making a disk available for hot-relocation use 817
Configuring hot-relocation to use only spare disks 817
Moving relocated subdisks ... 818

Moving relocated subdisks using vxunreloc 818
Restarting vxunreloc after errors .. 821

Modifying the behavior of hot-relocation .. 821

Chapter 35 Deduplicating data ... 823

About deduplicating data .. 823
About deduplication chunk size ... 824
Deduplication and file system performance 825
About the deduplication scheduler .. 825

Deduplicating data .. 826
Enabling and disabling deduplication on a file system 827
Scheduling deduplication of a file system 827
Performing a deduplication dry run ... 828
Querying the deduplication status of a file system 829
Starting and stopping the deduplication scheduler daemon 829
Example of deduplicating a file system 830

Deduplication results ... 832
Deduplication supportability .. 832
Deduplication use cases .. 832
Deduplication limitations ... 833

Chapter 36 Compressing files .. 835

About compressing files ... 835
About the compressed file format ... 836
About the file compression attributes .. 836
About the file compression block size .. 837

Compressing files with the vxcompress command 837

26Contents

Examples of using the vxcompress command 838
Interaction of compressed files and other commands 839
Interaction of compressed files and other features 840
Interaction of compressed files and applications 841
Use cases for compressing files ... 842

Compressed files and databases ... 842
Compressing all files that meet the specified criteria 846

Section 10 Administering storage ... 847

Chapter 37 Managing volumes and disk groups 848

Rules for determining the default disk group 848
Displaying the system-wide boot disk group 849
Displaying and specifying the system-wide default disk group

.. 849
Moving volumes or disks .. 850

Moving volumes from a VM disk .. 850
Moving disks between disk groups ... 851
Reorganizing the contents of disk groups 852

Monitoring and controlling tasks ... 865
Specifying task tags .. 865
Managing tasks with vxtask .. 866

Using vxnotify to monitor configuration changes 868
Performing online relayout .. 869

Permitted relayout transformations ... 870
Specifying a non-default layout .. 873
Specifying a plex for relayout .. 873
Tagging a relayout operation ... 874
Viewing the status of a relayout ... 874
Controlling the progress of a relayout .. 874

Adding a mirror to a volume ... 876
Mirroring all volumes .. 876
Mirroring volumes on a VM disk .. 876

Configuring SmartMove ... 877
Removing a mirror ... 878
Setting tags on volumes ... 879
Managing disk groups ... 880

Disk group versions ... 880
Displaying disk group information ... 886
Creating a disk group .. 888
Removing a disk from a disk group ... 889
Deporting a disk group ... 890

27Contents

Importing a disk group ... 891
Handling of minor number conflicts ... 893
Moving disk groups between systems 894
Handling cloned disks with duplicated identifiers 900
Renaming a disk group .. 909
Handling conflicting configuration copies 911
Disabling a disk group ... 918
Destroying a disk group ... 918
Backing up and restoring disk group configuration data 919
Working with existing ISP disk groups 919

Managing plexes and subdisks .. 921
Reattaching plexes ... 921
Plex synchronization ... 924

Decommissioning storage .. 925
Removing a volume .. 925
Removing a disk from VxVM control ... 926
About shredding data .. 926
Shredding a VxVM disk ... 927
Failed disk shred operation results in a disk with no label 930
Removing and replacing disks ... 930

Chapter 38 Rootability .. 936

Encapsulating a disk ... 936
Failure of disk encapsulation ... 940
Using nopriv disks for encapsulation ... 941

Rootability ... 942
Restrictions on using rootability with Linux 943
Sample supported root disk layouts for encapsulation 945
Booting root volumes ... 952
Boot-time volume restrictions .. 952
Creating redundancy for the root disk 953
Creating an archived back-up root disk for disaster recovery 953
Encapsulating and mirroring the root disk 953
Upgrading the kernel on a root encapsulated system 959

Administering an encapsulated boot disk ... 961
Creating a snapshot of an encapsulated boot disk 962

Unencapsulating the root disk ... 962

Chapter 39 Quotas ... 964

About quota limits ... 964
About quota files on Veritas File System .. 965
About quota commands ... 966

28Contents

About quota checking with Veritas File System 967
Using quotas ... 967

Turning on quotas ... 968
Turning on quotas at mount time .. 968
Editing user and group quotas ... 969
Modifying time limits .. 969
Viewing disk quotas and usage .. 970
Displaying blocks owned by users or groups 970
Turning off quotas ... 970

Chapter 40 File Change Log ... 972

About File Change Log .. 972
About the File Change Log file ... 973
File Change Log administrative interface ... 973
File Change Log programmatic interface ... 976
Summary of API functions .. 978

Section 11 Reference .. 979

Chapter 41 Reverse path name lookup ... 980

About reverse path name lookup ... 980

Appendix A Tunable parameters .. 982

About tuning Veritas Storage Foundation Cluster File System High
Availability ... 982

Tuning the VxFS file system .. 983
Tuning inode table size ... 983
Tuning performance optimization of inode allocation 983
Tuning file system parallel direct I/O ... 984
Partitioned directories .. 984
Veritas Volume Manager maximum I/O size 985
Native asynchronous I/O with cloned processes 985

DMP tunable parameters .. 985
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

.. 993
Changing the values of DMP parameters with the vxdmpadm

settune command line .. 993
About tuning Veritas Dynamic Multi-Pathing (DMP) with templates

.. 993
Tunable parameters for VxVM ... 1001

Tunable parameters for core VxVM ... 1001

29Contents

Tunable parameters for FlashSnap (FMR) 1007
Tunable parameters for CVM ... 1012
Tunable parameters for VVR ... 1012
Points to note when changing the values of the VVR tunables

.. 1013
Methods to change Veritas Volume Manager tunable parameters

.. 1014
Changing the values of the Veritas Volume Manager tunable

parameters using the vxtune command line 1014
Changing the value of the Veritas Volume Manager tunable

parameters using templates .. 1017
About LLT tunable parameters ... 1018

About LLT timer tunable parameters 1018
About LLT flow control tunable parameters 1022
Setting LLT timer tunable parameters 1025

About GAB tunable parameters .. 1025
About GAB load-time or static tunable parameters 1026
About GAB run-time or dynamic tunable parameters 1028

About VXFEN tunable parameters .. 1032
Configuring the VXFEN module parameters 1034

About AMF tunable parameters .. 1035

Appendix B Veritas File System disk layout 1037

About Veritas File System disk layouts .. 1037
VxFS Version 7 disk layout .. 1039
VxFS Version 8 disk layout .. 1039
VxFS Version 9 disk layout .. 1040

Appendix C Command reference ... 1041

Command completion for Veritas commands 1041
Veritas Volume Manager command reference 1043
CVM commands supported for executing on the slave node 1064
Veritas Volume Manager manual pages ... 1071

Section 1M — administrative commands 1072
Section 4 — file formats ... 1075

Veritas File System command summary .. 1075
Veritas File System manual pages .. 1078

30Contents

Appendix D Creating a starter database .. 1084

Creating a database for Oracle 11gr2 .. 1084
Creating database tablespace on shared raw VxVM volumes

.. 1084

Index .. 1087

31Contents

Introducing Storage
Foundation Cluster File
System High Availability

■ Chapter 1. Overview of Storage Foundation Cluster File System High Availability

■ Chapter 2. How Storage Foundation Cluster File System High Availability works

■ Chapter 3. How Veritas File System works

■ Chapter 4. How Veritas Volume Manager works

■ Chapter 5. How Cluster Volume Manager works

■ Chapter 6. How Veritas Dynamic Multi-Pathing works

1Section

Overview of Storage
Foundation Cluster File
System High Availability

This chapter includes the following topics:

■ About Veritas Storage Foundation Cluster File System High Availability

■ About Veritas File System

■ About Veritas Volume Manager

■ About Veritas Dynamic Multi-Pathing (DMP)

■ About Veritas Operations Manager

■ About Storage Foundation Cluster File System High Availability solutions

■ About Veritas Replicator

About Veritas Storage Foundation Cluster File
System High Availability

Veritas Storage Foundation Cluster File System High Availability by Symantec
extends Veritas Storage Foundation to support shared data in a storage area
network (SAN) environment. Using Storage Foundation Cluster File System High
Availability, multiple servers can concurrently access shared storage and files
transparently to applications.

Veritas Storage Foundation Cluster File System High Availability also provides
increased automation and intelligent management of availability and performance.

1Chapter

Veritas Storage Foundation Cluster File System High Availability includes Veritas
Cluster Server, which adds high availability functionality to the product.

The Veritas File Replicator feature can also be licensed with this product.

See “About Veritas Replicator” on page 39.

Before you install the product, read the Veritas Storage Foundation Cluster File
System High Availability Release Notes.

To install the product, follow the instructions in the Veritas Storage Foundation
Cluster File System High Availability Installation Guide.

For information on high availability environments, read the Veritas Cluster Server
documentation.

About Veritas File System
A file system is simply a method for storing and organizing computer files and the
data they contain to make it easy to find and access them. More formally, a file
system is a set of abstract data types (such as metadata) that are implemented for
the storage, hierarchical organization, manipulation, navigation, access, and retrieval
of data.

Veritas File System (VxFS) was the first commercial journaling file system. With
journaling, metadata changes are first written to a log (or journal) then to disk. Since
changes do not need to be written in multiple places, throughput is much faster as
the metadata is written asynchronously.

VxFS is also an extent-based, intent logging file system. VxFS is designed for use
in operating environments that require high performance and availability and deal
with large amounts of data.

VxFS major components include:

About the Veritas File System intent logFile system logging

About extentsExtents

About file system disk layoutsFile system disk layouts

About the Veritas File System intent log
Most file systems rely on full structural verification by the fsck utility as the only
means to recover from a system failure. For large disk configurations, this involves
a time-consuming process of checking the entire structure, verifying that the file
system is intact, and correcting any inconsistencies. VxFS provides fast recovery
with the VxFS intent log and VxFS intent log resizing features.

34Overview of Storage Foundation Cluster File System High Availability
About Veritas File System

VxFS reduces system failure recovery times by tracking file system activity in the
VxFS intent log. This feature records pending changes to the file system structure
in a circular intent log. The intent log recovery feature is not readily apparent to
users or a system administrator except during a system failure. By default, VxFS
file systems log file transactions before they are committed to disk, reducing time
spent recovering file systems after the system is halted unexpectedly.

During system failure recovery, the VxFS fsck utility performs an intent log replay,
which scans the intent log and nullifies or completes file system operations that
were active when the system failed. The file system can then be mounted without
requiring a full structural check of the entire file system. Replaying the intent log
might not completely recover the damaged file system structure if there was a disk
hardware failure; hardware problems might require a complete system check using
the fsck utility provided with VxFS.

The mount command automatically runs the VxFS fsck command to perform an
intent log replay if the mount command detects a dirty log in the file system. This
functionality is only supported on a file system mounted on a Veritas Volume
Manager (VxVM) volume, and is supported on cluster file systems.

See the fsck_vxfs(1M) manual page and mount_vxfs(1M) manual page.

The VxFS intent log is allocated when the file system is first created. The size of
the intent log is based on the size of the file system—the larger the file system, the
larger the intent log. You can resize the intent log at a later time by using the fsadm

commnad.

See the fsadm_vxfs(1M) manual page.

The maximum default intent log size for disk layout Version 7 or later is 256
megabytes.

Note: Inappropriate sizing of the intent log can have a negative impact on system
performance.

See “Intent log size” on page 236.

About extents
An extent is a contiguous area of storage in a computer file system, reserved for a
file. When starting to write to a file, a whole extent is allocated. When writing to the
file again, the data continues where the previous write left off. This reduces or
eliminates file fragmentation. An extent is presented as an address-length pair,
which identifies the starting block address and the length of the extent (in file system
or logical blocks). Since Veritas File System (VxFS) is an extent-based file system,

35Overview of Storage Foundation Cluster File System High Availability
About Veritas File System

addressing is done through extents (which can consist of multiple blocks) rather
than in single-block segments. Extents can therefore enhance file system throughput.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated
in contiguous blocks. For sequential I/O, multiple block operations are considerably
faster than block-at-a-time operations; almost all disk drives accept I/O operations
on multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the
inode structure compared to block-based inodes. A VxFS inode references 10 direct
extents, each of which are pairs of starting block addresses and lengths in blocks.

Disk space is allocated in 512-byte sectors to form logical blocks. VxFS supports
logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is
1 KB for file system sizes of up to 1 TB, and 8 KB for file system sizes 1 TB or
larger.

About file system disk layouts
The disk layout is the way file system information is stored on disk. On Veritas File
System (VxFS), several disk layout versions, numbered 1 through 9, were created
to support various new features and specific UNIX environments.

Currently, only the Version 7, 8, and 9 disk layouts can be created and mounted.
The Version 6 disk layout can be mounted, but only for upgrading to a supported
version. No other versions can be created or mounted.

About Veritas Volume Manager
VeritasTM Volume Manager (VxVM) by Symantec is a storage management
subsystem that allows you to manage physical disks and logical unit numbers
(LUNs) as logical devices called volumes. A VxVM volume appears to applications
and the operating system as a physical device on which file systems, databases,
and other managed data objects can be configured.

VxVM provides easy-to-use online disk storage management for computing
environments and Storage Area Network (SAN) environments. By supporting the
Redundant Array of Independent Disks (RAID) model, VxVM can be configured to
protect against disk and hardware failure, and to increase I/O throughput.
Additionally, VxVM provides features that enhance fault tolerance and fast recovery
from disk failure or storage array failure.

VxVM overcomes restrictions imposed by hardware disk devices and by LUNs by
providing a logical volume management layer. This allows volumes to span multiple
disks and LUNs.

36Overview of Storage Foundation Cluster File System High Availability
About Veritas Volume Manager

VxVM provides the tools to improve performance and ensure data availability and
integrity. You can also use VxVM to dynamically configure storage while the system
is active.

About Veritas Dynamic Multi-Pathing (DMP)
Veritas Dynamic Multi-Pathing (DMP) provides multi-pathing functionality for the
operating system native devices configured on the system. DMP creates DMP
metadevices (also known as DMP nodes) to represent all the device paths to the
same physical LUN.

DMP is available as a component of Veritas Storage Foundation Cluster File System
High Availability. DMP supports Veritas Volume Manager (VxVM) volumes on DMP
metadevices, and Veritas File System (VxFS) file systems on those volumes.

DMP is also available as a stand-alone product, which extends DMP metadevices
to support the OS native logical volume manager (LVM). You can create LVM
volumes and volume groups on DMP metadevices.

Veritas Dynamic Multi-Pathing can be licensed separately from Storage Foundation
products. Veritas Volume Manager and Veritas File System functionality is not
provided with a DMP license.

DMP functionality is available with a Storage Foundation (SF) Enterprise license,
a SF HA Enterprise license, and a Storage Foundation Standard license.

Veritas Volume Manager (VxVM) volumes and disk groups can co-exist with LVM
volumes and volume groups, but each device can only support one of the types. If
a disk has a VxVM label, then the disk is not available to LVM. Similarly, if a disk
is in use by LVM, then the disk is not available to VxVM.

About Veritas Operations Manager
Veritas Operations Manager provides a centralized management console for Veritas
Storage Foundation and High Availability products. You can use Veritas Operations
Manager to monitor, visualize, and manage storage resources and generate reports.

Symantec recommends using Veritas Operations Manager (VOM) to manage
Storage Foundation and Cluster Server environments.

You can download Veritas Operations Manager at no charge at
http://go.symantec.com/vom.

Refer to the Veritas Operations Manager documentation for installation, upgrade,
and configuration instructions.

37Overview of Storage Foundation Cluster File System High Availability
About Veritas Dynamic Multi-Pathing (DMP)

http://go.symantec.com/vom

The Veritas Enterprise Administrator (VEA) console is no longer packaged with
Storage Foundation products. If you want to continue using VEA, a software version
is available for download from
http://www.symantec.com/operations-manager/support. Veritas Storage Foundation
Management Server is deprecated.

If you want to manage a single cluster using Cluster Manager (Java Console), a
version is available for download from
https://www4.symantec.com/Vrt/offer?a_id=89446. You cannot manage the new
features of this release using the Java Console. Veritas Cluster Server Management
Console is deprecated.

About Storage Foundation Cluster File System
High Availability solutions

Storage Foundation Cluster File System High Availability components and features
can be used individually and together to improve performance, resilience, and ease
of management for your storage and applications. Storage Foundation Cluster File
System High Availability features can be used for:

■ Improving database performance: you can use Storage Foundation Cluster File
System High Availability database accelerators to improve I/O performance.
SFHA Solutions database accelerators achieve the speed of raw disk while
retaining the management features and convenience of a file system.

■ Optimizing thin array usage: you can use Storage Foundation Cluster File System
High Availability thin provisioning and thin reclamation solutions to set up and
maintain thin storage.

■ Backing up and recovering data: you can use Storage Foundation Cluster File
System High Availability Flashsnap, Storage Checkpoints, and NetBackup
point-in-time copy methods to back up and recover your data.

■ Processing data off-host: you can avoid performance loss to your production
hosts by using Storage Foundation Cluster File System High Availability volume
snapshots.

■ Optimizing test and development environments: you can optimize copies of your
production database for test, decision modeling, and development purposes
using Storage Foundation Cluster File System High Availability point-in-time
copy methods.

■ Optimizing virtual desktop environments: you can use Storage Foundation
Cluster File System High Availability FileSnap to optimize your virtual desktop
environment.

38Overview of Storage Foundation Cluster File System High Availability
About Storage Foundation Cluster File System High Availability solutions

http://www.symantec.com/operations-manager/support
https://www4.symantec.com/Vrt/offer?a_id=89446

■ Maximizing storage utilization: you can use Storage Foundation Cluster File
System High Availability SmartTier to move data to storage tiers based on age,
priority, and access rate criteria.

■ Migrating your data: you can use Storage Foundation Cluster File System High
Availability Portable Data Containers to easily and reliably migrate data from
one environment to another.

For a supplemental guide that documents Storage Foundation Cluster File System
High Availability use case solutions using example scenarios: See the Veritas
Storage FoundationTM and High Availability Solutions Guide.

About Veritas Replicator
Veritas Replicator from Symantec provides organizations with a comprehensive
solution for heterogeneous data replication. As an option to Veritas Storage
Foundation, Veritas Replicator enables cost-effective replication of data over IP
networks, giving organizations an extremely flexible, storage hardware independent
alternative to traditional array-based replication architectures. Veritas Replicator
provides the flexibility of block-based continuous replication with Veritas Volume
Replicator (VVR) and file-based periodic replication with Veritas File Replicator
(VFR).

What is VFR?
Veritas File Replicator (VFR) enables cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexible storage independent data
availability solution for disaster recovery and off-host processing. With flexibility of
scheduling the replication intervals to match the business requirements, Veritas
File Replicator tracks all updates to the File System and replicates these updates
at the end of the configured time interval. VFR leverages data deduplication provided
by Veritas File System (VxFS) to reduce the impact that replication can have on
scarce network resources. VFR is included, by default, with Symantec Virtual Store
6.0 on Linux and is available as an option with Veritas Storage Foundation and
associated products on Linux.

Features of VFR
Veritas File Replicator (VFR) includes the following features:

■ Supports periodic replication of a subset of a file system ranging from a single
file to an entire file system.

■ Supports reversible data transfer. The target of replication may become the
source at runtime, with the former source system becoming a target.

39Overview of Storage Foundation Cluster File System High Availability
About Veritas Replicator

■ Provides efficiency of data transfer when transferring shared extents, so that
the data is not sent multiple times over the network.

■ Supports automatic recovery from the last good successfully replicated point in
time image.

■ Periodically replicates changes. The interval is configurable by the user.

■ Supports deduplication to increase storage efficiency on the target system.

■ Supports protection of the target file system from accidental writes.

See the Veritas Storage Foundation and High Availability Solutions Replication
Administrator’s Guide for more information.

40Overview of Storage Foundation Cluster File System High Availability
About Veritas Replicator

How Storage Foundation
Cluster File System High
Availability works

This chapter includes the following topics:

■ How Storage Foundation Cluster File System High Availability works

■ When to use Storage Foundation Cluster File System High Availability

■ About Storage Foundation Cluster File System High Availability architecture

■ About Veritas File System features supported in cluster file systems

■ About Veritas Cluster Server architecture

■ About the Storage Foundation Cluster File System High Availability namespace

■ About asymmetric mounts

■ About primary and secondary cluster nodes

■ Determining or moving primaryship

■ About synchronizing time on Cluster File Systems

■ About file system tunables

■ About setting the number of parallel fsck threads

■ Storage Checkpoints

■ About Storage Foundation Cluster File System High Availability backup strategies

■ About parallel I/O

2Chapter

■ About the I/O error handling policy for Cluster Volume Manager

■ About recovering from I/O failures

■ About single network link and reliability

■ Split-brain and jeopardy handling

■ About I/O fencing

■ Storage Foundation Cluster File System High Availability and Veritas Volume
Manager cluster functionality agents

■ Veritas Volume Manager cluster functionality

HowStorage FoundationCluster File SystemHigh
Availability works

Storage Foundation Cluster File System High Availability (SFCFSHA) simplifies or
eliminates system administration tasks that result from the following:

■ The SFCFSHA single file system image administrative model simplifies
administration by enabling the execution of all file system management
commands from any node.

■ Because all servers in a cluster have access to SFCFSHA cluster-shareable
file systems, keeping data consistent across multiple servers is automatic. All
cluster nodes have access to the same data, and all data is accessible by all
servers using single server file system semantics.

■ Because all files can be accessed by all servers, applications can be allocated
to servers to balance load or meet other operational requirements. Similarly,
failover becomes more flexible because it is not constrained by data accessibility.

■ Because each SFCFSHA file system can be on any node in the cluster, the file
system recovery portion of failover time in an n-node cluster can be reduced by
a factor of n by distributing the file systems uniformly across cluster nodes.

■ Enterprise RAID subsystems can be used more effectively because all of their
capacity can be mounted by all servers, and allocated by using administrative
operations instead of hardware reconfigurations.

■ Larger volumes with wider striping improve application I/O load balancing. Not
only is the I/O load of each server spread across storage resources, but with
SFCFSHA shared file systems, the loads of all servers are balanced against
each other.

42How Storage Foundation Cluster File System High Availability works
How Storage Foundation Cluster File System High Availability works

■ Extending clusters by adding servers is easier because each new server’s
storage configuration does not need to be set up—new servers simply adopt
the cluster-wide volume and file system configuration.

■ The clusterized Oracle Disk Manager (ODM) feature that makes file-based
databases perform as well as raw partition-based databases is available to
applications running in a cluster.

When to use Storage Foundation Cluster File
System High Availability

You should use SFCFSHA for any application that requires the sharing of files,
such as for home directories and boot server files, Web pages, and cluster-ready
applications. SFCFSHA is also applicable when you want highly available standby
data, in predominantly read-only environments where you just need to access data,
or when you do not want to rely on NFS for file sharing.

Almost all applications can benefit from SFCFSHA. For example, applications that
are not “cluster-aware,” can still operate on and access data from anywhere in a
cluster. If multiple cluster applications running on different servers are accessing
data in a cluster file system, overall system I/O performance improves due to the
load balancing effect of having one cluster file system on a separate underlying
volume. This is automatic; no tuning or other administrative action is required.

Many applications consist of multiple concurrent threads of execution that could
run on different servers if they had a way to coordinate their data accesses.
SFCFSHA provides this coordination. Such applications can be made cluster-aware
allowing their instances to cooperate to balance client and data access load, and
thereby scale beyond the capacity of any single server. In such applications,
SFCFSHA provides shared data access, enabling application-level load balancing
across cluster nodes.

SFCFSHA provides the following features:

■ For single-host applications that must be continuously available, SFCFSHA can
reduce application failover time because it provides an already-running file
system environment in which an application can restart after a server failure.

■ For parallel applications, such as distributed database management systems
and Web servers, SFCFSHA provides shared data to all application instances
concurrently. SFCFSHA also allows these applications to grow by the addition
of servers, and improves their availability by enabling them to redistribute load
in the event of server failure simply by reassigning network addresses.

43How Storage Foundation Cluster File System High Availability works
When to use Storage Foundation Cluster File System High Availability

■ For workflow applications, such as video production, in which very large files
are passed from station to station, SFCFSHA eliminates time consuming and
error prone data copying by making files available at all stations.

■ For backup, SFCFSHA can reduce the impact on operations by running on a
separate server, accessing data in cluster-shareable file systems.

The following are examples of applications and how they might work with SFCFSHA:

■ Using Storage Foundation Cluster File System High Availability on file servers
Two or more servers connected in a cluster configuration (that is, connected to
the same clients and the same storage) serve separate file systems. If one of
the servers fails, the other recognizes the failure, recovers, assumes the
primaryship, and begins responding to clients using the failed server’s IP
addresses.

■ Using Storage Foundation Cluster File System High Availability on Web servers
Web servers are particularly suitable to shared clustering because their
application is typically read-only. Moreover, with a client load balancing front
end, a Web server cluster’s capacity can be expanded by adding a server and
another copy of the site. A SFCFSHA-based cluster greatly simplifies scaling
and administration for this type of application.

About Storage Foundation Cluster File System
High Availability architecture

Veritas Storage Foundation Cluster File System High Availability (SFCFSHA) allows
clustered servers to mount and use a file system simultaneously as if all applications
using the file system were running on the same server. The Veritas Volume Manager
cluster functionality (CVM) makes logical volumes and raw device applications
accessible throughout a cluster.

This section includes the following topics:

■ About the symmetric architecture

■ About SFCFSHA primary/secondary failover

■ About single-host file system semantics using Group Lock Manager

About the symmetric architecture
SFCFSHA uses a symmetric architecture in which all nodes in the cluster can
simultaneously function as metadata servers. SFCFSHA still has some remnants
of the old master/slave or primary/secondary concept. The first server to mount
each cluster file system becomes its primary; all other nodes in the cluster become

44How Storage Foundation Cluster File System High Availability works
About Storage Foundation Cluster File System High Availability architecture

secondaries. Applications access the user data in files directly from the server on
which they are running. Each SFCFSHA node has its own intent log. File system
operations, such as allocating or deleting files, can originate from any node in the
cluster.

See “About the Veritas File System intent log” on page 34.

About Storage Foundation Cluster File System High Availability
primary/secondary failover

If the server on which the SFCFSHA primary is running fails, the remaining cluster
nodes elect a new primary. The new primary reads the intent log of the old primary
and completes any metadata updates that were in process at the time of the failure.

If a server on which an SFCFSHA secondary is running fails, the primary reads the
intent log of the failed secondary and completes any metadata updates that were
in process at the time of the failure.

See “When the CFS primary node fails” on page 374.

About single-host file system semantics using Group Lock Manager
SFCFSHA uses the Veritas Group Lock Manager (GLM) to reproduce UNIX
single-host file system semantics in clusters. This is most important in write behavior.
UNIX file systems make writes appear to be atomic. This means that when an
application writes a stream of data to a file, any subsequent application that reads
from the same area of the file retrieves the new data, even if it has been cached
by the file system and not yet written to disk. Applications can never retrieve stale
data, or partial results from a previous write.

To reproduce single-host write semantics, system caches must be kept coherent
and each must instantly reflect any updates to cached data, regardless of the cluster
node from which they originate. GLM locks a file so that no other node in the cluster
can update it simultaneously, or read it before the update is complete.

About Veritas File System features supported in
cluster file systems

Storage Foundation Cluster File System High Availability is based on Veritas File
System (VxFS).

Most of the major features of VxFS local file systems are available on cluster file
systems, including the following features:

■ Extent-based space management that maps files up to one terabyte in size

45How Storage Foundation Cluster File System High Availability works
About Veritas File System features supported in cluster file systems

■ Fast recovery from system crashes using the intent log to track recent file system
metadata updates

■ Online administration that allows file systems to be extended and defragmented
while they are in use

Every VxFS manual page has a section on "Storage Foundation Cluster File System
High Availability Issues" with information on whether the command functions on a
cluster-mounted file system and indicates any difference in behavior from local
mounted file systems.

Veritas File System features in cluster file systems
Table 2-1 describes the Veritas File System (VxFS) supported features and
commands for SFCFSHA.

Table 2-1 Veritas File System features in cluster file systems

DescriptionFeatures

Compressing files reduces the space used by those files. Compressed
files are fully accessible, since the compression is transparent to
applications.

See “About compressing files” on page 835.

Compression

You can perform post-process periodic deduplication in a file system
to eliminate duplicate data without any continuous cost.

See “About deduplicating data” on page 823.

Deduplication

You can perform defragmentation to remove unused space from
directories, make all small files contiguous, and consolidate free blocks
for file system use.

See “Defragmentation” on page 91.

Defragmentation

SFCFSHA supports only disk layout Version 7, 8, and 9.

Use the fstyp -v special_device command to display the disk
layout version of a VxFS file system.

Use the vxupgrade command to upgrade a mounted file system to
disk layout Version 7 or later. Use the vxfsconvert command to
upgrade an unmounted file system from disk layout Version 4 to disk
layout Version 7 or later.

Disk layout
versions

VxFS provides fast recovery of a file system from system failure by
tracking file system activity in the VxFS intent log.

See “About the Veritas File System intent log” on page 34.

Fast file system
recovery

46How Storage Foundation Cluster File System High Availability works
About Veritas File System features supported in cluster file systems

Table 2-1 Veritas File System features in cluster file systems (continued)

DescriptionFeatures

You can perform cost-effective periodic replication of data over IP
networks, giving organizations an extremely flexibile storage
independent data availability solution for disaster recovery and off-host
processing.

See the Veritas Storage Foundation and High Availability Solutions
Replication Administrator's Guide.

File replication

A FileSnap is a space-optimized copy of a file in the same name space,
stored in the same file system.

See “About FileSnaps” on page 589.

FileSnap

Synchronizing operations, which require freezing and thawing file
systems, are done on a cluster-wide basis.

See “Freezing and thawing a file system” on page 544.

Freeze and thaw

Advisory file and record locking are supported on SFCFSHA. For the
F_GETLK command, if there is a process holding a conflicting lock, the
l_pid field returns the process ID of the process holding the conflicting
lock. The nodeid-to-node name translation can be done by examining
the /etc/llthosts file or with the fsclustadm command. Mandatory
locking, and deadlock detection supported by traditional fcntl locks,
are not supported on SFCFSHA.

See the fcntl(2) manual page.

Locking

Shared memory mapping established by the mmap() function is
supported on SFCFSHA.

See the mmap(2) manual page.

Memory mapping

You export the NFS file systems from the cluster. You can NFS export
CFS file systems in a distributed highly available way.

NFS mounts

You can use a directory on a cluster mounted file system as a mount
point for a local file system or another cluster file system.

Nested Mounts

Quotas are supported on cluster file systems.Quotas

Snapshots are supported on cluster file systems.Snapshots

Storage Checkpoints are supported on cluster file systems, but are
licensed only with other Veritas products.

Storage
Checkpoints

47How Storage Foundation Cluster File System High Availability works
About Veritas File System features supported in cluster file systems

Veritas File System features not in cluster file systems
Table 2-2 lists functionality that is not supported in a cluster file system. You can
attempt to use the listed functionality, but there is no guarantee that the functionality
will operate as intended.

It is not advisable to use unsupported functionality on SFCFSHA, or to alternate
mounting file systems with these options as local and cluster mounts.

Table 2-2 Veritas File System features not supported in cluster file systems

CommentsUnsupported
features

Quick log is not supported.qlog

Swap files are not supported on cluster-mounted file systems.Swap files

The mknod command cannot be used to create devices on a cluster
mounted file system.

mknod

Cache advisories are set with the mount command on individual file
systems, but are not propagated to other nodes of a cluster.

Cache advisories

File access times may appear different across nodes because the
atime file attribute is not closely synchronized in a cluster file system.
So utilities that depend on checking access times may not function
reliably.

Commands that
depend on file
access times

About Veritas Cluster Server architecture
The Group Membership and Atomic Broadcast (GAB) and Low Latency Transport
(LLT) are Veritas Cluster Server (VCS)-specific protocols implemented directly on
Ethernet data link. They run on redundant data links that connect the nodes in a
cluster. VCS requires redundant cluster communication links to avoid single points
of failure.

GAB provides membership and messaging for the cluster and its applications. GAB
membership also provides orderly startup and shutdown of a cluster. The
/etc/gabtab file is used to configure GAB. This file contains the gabconfig

command run by GAB on startup. For example, the -n <number> option of the
command specifies the number of nodes in the cluster. GAB is configured
automatically when you run the SFCFSHA installation script, but you may have to
reconfigure GAB when adding nodes to a cluster.

See the gabconfig(1M) manual page.

48How Storage Foundation Cluster File System High Availability works
About Veritas Cluster Server architecture

LLT provides kernel-to-kernel communications and monitors network
communications. The LLT/etc/llthosts and /etc/llttab files are configured to
set system IDs within a cluster, set cluster IDs for multiple clusters, and tune network
parameters such as heartbeat frequency. LLT is implemented so that cluster
membership changes are reflected quickly, which in turn enables fast responses.

As with GAB, LLT is configured automatically when you run the VCS installation
script. The /etc/llttab and /etc/llthosts files contain information you provide
during installation. You may also have to reconfigure LLT when adding nodes to a
cluster.

See the llttab(4) and the llthosts(4) manual pages.

See the Veritas Cluster Server Administrator’s Guide.

Each component in SFCFSHA registers with a GAB membership port. The port
membership identifies nodes that have formed a cluster for the individual
components.

Table 2-3 describes the port memberships.

Table 2-3 Port memberships

DescriptionPort

GAB heartbeat membershipport a

I/O fencing membershipport b

Oracle Disk Manager (ODM) membershipport d

Cluster file system membershipport f

Veritas Cluster Server communication between GAB and High
Availability Daemon (HAD)

port h

Cluster Volume Manager (CVM) port for redirecting commands from
CVM slaves to CVM master

port u

Cluster Volume Manager membershipport v

Cluster Volume Manager (CVM) port for I/O shippingport y

Cluster Volume Manager daemons on different nodes communicate
with one another using this port, but receive cluster membership
information through GAB (port v)

port w

49How Storage Foundation Cluster File System High Availability works
About Veritas Cluster Server architecture

About the Storage FoundationCluster File System
High Availability namespace

The mount point name must remain the same for all nodes mounting the same
cluster file system. This is required for the CFSMount agent (online, offline, and
monitoring) to work correctly.

About asymmetric mounts
A Veritas File System (VxFS) file system mounted with the mount -o cluster

option is a cluster, or a shared mount, as opposed to a non-shared or a local mount.
A file system mounted in shared mode must be on a VxVM shared volume in a
cluster environment. A local mount cannot be remounted in shared mode, and a
shared mount cannot be remounted in local mode when you use the mount -o

remount option. A single clustered file system can be mounted with different
read/write options on different nodes. These are called asymmetric mounts.

Asymmetric mounts allow shared file systems to be mounted with different read/write
capabilities. For example, one node in the cluster can mount read-write, while other
nodes mount read-only.

When a primary mounts "ro", this means that neither this node nor any other node
is allowed to write to the file system. Secondaries can only mount "ro", if the primary
mounts "ro". Otherwise, the primary mounts either "rw" or "ro,crw", and the
secondaries have the same choice.

You can specify the cluster read-write (crw) option when you first mount the file
system, or the options can be altered when doing a remount (mount -o remount).

Figure 2-1 describes the first column showing the mode in which the primary is
mounted:

50How Storage Foundation Cluster File System High Availability works
About the Storage Foundation Cluster File System High Availability namespace

Figure 2-1 Primary and secondary mounts

The check marks indicate the mode secondary mounts can use for a given mode
of the primary.

Mounting the primary with only the -o cluster,ro option prevents the secondaries
from mounting in a different mode; that is, read-write.

See the mount_vxfs(1M) manual page for more information.

About primary and secondary cluster nodes
A file system cluster consists of one primary, and up to 63 secondaries. The
primary-secondary terminology applies to one file system, not to a specific node
(or hardware platform). You can have the same cluster node be primary for one
shared file system, while at the same time it is secondary for another shared file
system. Such distribution of file system primaryship to balance the load on a cluster
is a recommended administrative policy.

See “About distributing the workload on a cluster” on page 375.

For CVM, a single cluster node is the master for all shared disk groups and shared
volumes in the cluster.

Determining or moving primaryship
The first node of a cluster file system to mount is called the primary node. Other
nodes are called secondary nodes. If a primary node fails, an internal election
process determines which of the secondaries becomes the primary file system.

To determine primaryship

51How Storage Foundation Cluster File System High Availability works
About primary and secondary cluster nodes

■ To determine primaryship, type the following command:

fsclustadm -v showprimary mount_point

To make a node the primary node

■ To make a node the primary node, type the following command on the node:

fsclustadm -v setprimary mount_point

About synchronizing time onCluster File Systems
SFCFSHA requires that the system clocks on all nodes are synchronized using
some external component such as the Network Time Protocol (NTP) daemon. If
the nodes are not in sync, timestamps for inode (ctime) and data modification
(mtime) may not be consistent with the sequence in which operations actually
happened.

About file system tunables
Using the /etc/vx/tunefstab file updates the tunable parameters at the time of
mounting a file system. The file system /etc/vx/tunefstab parameters are set to
be identical on all nodes by propagating the parameters to each cluster node. When
the file system is mounted on the node, the /etc/vx/tunefstab parameters of the
primary node are used. Symantec recommends that this file be identical on each
node.

See the tunefstab(4) and vxtunefs(1M) manual pages for more information.

About setting the number of parallel fsck threads
This section describes how to set the number of parallel fsck threads.

The number of parallel fsck threads that could be active during recovery was set
to 4. For example, if a node failed over 12 file systems, log replay for the 12 file
systems will not complete at the same time. The number was set to 4 since parallel
replay of a large number of file systems would put memory pressure on systems
with less memory. However, on larger systems the restriction of 4 parallel processes
replaying is not necessary.

This value gets tuned in accordance with available physical memory in the system.

52How Storage Foundation Cluster File System High Availability works
About synchronizing time on Cluster File Systems

To set the number of parallel fsck threads

◆ On all nodes in the cluster, edit the
/opt/VRTSvcs/bin/CFSfsckd/CFSfsckd.env file and set FSCKD_OPTS="-n
N".

where N is the number of parallel fsck threads desired and value of N has to
be between 4 and 128.

Storage Checkpoints
Veritas Storage Foundation Cluster File System High Availability (SFCFSHA)
provides a Storage Checkpoint feature that quickly creates a persistent image of a
file sytem at an exact point in time.

See “About Storage Checkpoints” on page 650.

About Storage Foundation Cluster File System
High Availability backup strategies

The same backup strategies used for standard Veritas File System (VxFS) can be
used with Storage Foundation Cluster File System High Availability (SFCFSHA)
because the APIs and commands for accessing the namespace are the same. File
system checkpoints provide an on-disk, point-in-time copy of the file system.
Because performance characteristics of a checkpointed file system are better in
certain I/O patterns, they are recommended over file system snapshots (described
below) for obtaining a frozen image of the cluster file system.

File system snapshots are another method of a file system on-disk frozen image.
The frozen image is non-persistent, in contrast to the checkpoint feature. A snapshot
can be accessed as a read-only mounted file system to perform efficient online
backups of the file system. Snapshots implement “copy-on-write” semantics that
incrementally copy data blocks when they are overwritten on the snapshot file
system. Snapshots for cluster file systems extend the same copy-on-write
mechanism for the I/O originating from any cluster node.

Mounting a snapshot file system for backups increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the primary
server. Overhead from remote snapshots is small when compared to overall
snapshot overhead. Therefore, running a backup application by mounting a snapshot
from a relatively less loaded node is beneficial to overall cluster performance.

The following are several characteristics of a cluster snapshot:

53How Storage Foundation Cluster File System High Availability works
Storage Checkpoints

■ A snapshot for a cluster mounted file system can be mounted on any node in a
cluster. The file system can be a primary, secondary, or secondary-only. A stable
image of the file system is provided for writes from any node.
See the mount_vxfs manual page for more information on secondary-only
(seconly) file systems is a CFS mount option.

■ Multiple snapshots of a cluster file system can be mounted on the same or
different cluster nodes.

■ A snapshot is accessible only on the node mounting the snapshot. The snapshot
device cannot be mounted on two nodes simultaneously.

■ The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable from
other nodes as long as the snapshot is mounted on that device.

■ On the node mounting a snapshot, the snapped file system cannot be unmounted
while the snapshot is mounted.

■ A SFCFSHA snapshot ceases to exist if it is unmounted or the node mounting
the snapshot fails. However, a snapshot is not affected if another node leaves
or joins the cluster.

■ A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount a snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

In addition to frozen images of file systems, there are volume-level alternatives
available for shared volumes using mirror split and rejoin. Features such as Fast
Mirror Resync and Space Optimized snapshot are also available.

About parallel I/O
Some distributed applications read and write to the same file concurrently from one
or more nodes in the cluster; for example, any distributed application where one
thread appends to a file and there are one or more threads reading from various
regions in the file. Several high-performance compute (HPC) applications can also
benefit from this feature, where concurrent I/O is performed on the same file.
Applications do not require any changes to use parallel I/O.

Traditionally, the entire file is locked to perform I/O to a small region. To support
parallel I/O, SFCFSHA locks ranges in a file that correspond to I/O requests. The
granularity of the locked range is a page.Two I/O requests conflict if at least one is
a write request, and the I/O range of the request overlaps the I/O range of the other.

54How Storage Foundation Cluster File System High Availability works
About parallel I/O

The parallel I/O feature enables I/O to a file by multiple threads concurrently, as
long as the requests do not conflict. Threads issuing concurrent I/O requests could
be executing on the same node, or on different nodes in the cluster.

An I/O request that requires allocation is not executed concurrently with other I/O
requests. Note that when a writer is extending the file and readers are lagging
behind, block allocation is not necessarily done for each extending write.

Predetermine the file size and preallocate the file to avoid block allocations during
I/O. This improves the concurrency of applications performing parallel I/O to the
file. Parallel I/O also avoids unnecessary page cache flushes and invalidations
using range locking, without compromising the cache coherency across the cluster.

For applications that update the same file from multiple nodes, the -nomtime mount
option provides further concurrency. Modification and change times of the file are
not synchronized across the cluster, which eliminates the overhead of increased
I/O and locking. The timestamp seen for these files from a node may not have the
time updates that happened in the last 60 seconds.

About the I/O error handling policy for Cluster
Volume Manager

I/O errors can occur for several reasons, including failures of Fibre Channel links,
host-bus adapters, and disks. SFCFSHA disables the file system on the node
encountering I/O errors. The file system remains available from other nodes.

After the hardware error is fixed (for example, the Fibre Channel link is
reestablished), the file system can be force unmounted from all the active nodes
in the cluster, and the mount resource can be brought online from the disabled node
to reinstate the file system.

About recovering from I/O failures
The disabled file system can be restored by a force unmount and the resource will
be brought online without rebooting, which also brings the shared disk group
resource online.

Note: If the jeopardy condition is not fixed, the nodes are susceptible to leaving the
cluster again on subsequent node failure.

See the Veritas Cluster Server Administrator's Guide.

55How Storage Foundation Cluster File System High Availability works
About the I/O error handling policy for Cluster Volume Manager

About single network link and reliability
Certain environments may prefer using a single private link or a public network for
connecting nodes in a cluster, despite the loss of redundancy for dealing with
network failures. The benefits of this approach include simpler hardware topology
and lower costs; however, there is obviously a tradeoff with high availability.

For the above environments, SFCFSHA provides the option of a single private link,
or using the public network as the private link if I/O fencing is present. I/O fencing
is used to handle split-brain scenarios. The option for single network is given during
installation.

See “About preventing data corruption with I/O fencing” on page 59.

Configuring a low-priority link
Low-priority link (LLT) can be configured to use a low-priority network link as a
backup to normal heartbeat channels. Low-priority links are typically configured on
a public or an administrative network. This typically results in a completely different
network infrastructure than the cluster private interconnect, and reduces the chance
of a single point of failure bringing down all links. The low-priority link is not used
for cluster membership traffic until it is the only remaining link. In normal operation,
the low-priority link carries only heartbeat traffic for cluster membership and link
state maintenance. The frequency of heartbeats drops 50 percent to reduce network
overhead. When the low-priority link is the only remaining network link, LLT also
switches over all cluster status traffic. Following repair of any configured private
link, LLT returns cluster status traffic to the high-priority link.

LLT links can be added or removed while clients are connected. Shutting down
GAB or the high-availability daemon, (had), is not required.

To add a link

■ To add a link, type the following command:

lltconfig -d device -t device_tag

where device_tag is a tag to identify a particular link in subsequent commands,
and is displayed by lltstat(1M).

To remove a link

■ To remove a link, type the following command:

lltconfig -u device_tag

See the lltconfig(1M) manual page.

56How Storage Foundation Cluster File System High Availability works
About single network link and reliability

Changes take effect immediately and are lost on the next reboot. For changes to
span reboots, you must also update the /etc/llttab file.

Note: LLT clients will not know the cluster status until you only have one LLT link
left and GAB declares jeopardy.

Split-brain and jeopardy handling
A split-brain occurs when the cluster membership view differs among the cluster
nodes, increasing the chance of data corruption. With I/O fencing, the potential for
data corruption is eliminated. I/O fencing requires disks that support SCSI-3 PR.

You can also configure I/O fencing using coordination point servers (CP servers).
In virtual environments that do not support SCSI-3, you can configure non-SCSI-3
server-based fencing.

See “About server-based I/O fencing” on page 71.

See “About I/O fencing for SFCFSHA in virtual machines that do not support SCSI-3
PR” on page 59.

In the absence of I/O fencing, SFCFSHA installation requires two
heartbeat links. When a node is down to a single heartbeat connection,
SFCFSHA can no longer discriminate between loss of a system and
loss of the final network connection. This state is defined as jeopardy.

SFCFSHA detects jeopardy and responds to it in ways that prevent
data corruption in some split-brain situations. However, data corruption
can still occur in other situations:

■ All links go down simultaneously.
■ A node hangs and is unable to respond to heartbeat messages.

To eliminate the chance of data corruption in these scenarios, I/O
fencing is required. With I/O fencing, the jeopardy state does not require
special handling by the SFCFSHA stack.

Jeopardy state

For installations that do not have I/O fencing configured, jeopardy
handling prevents some potential split-brain conditions. If any cluster
node fails following a jeopardy state notification, all cluster file systems
that were mounted on the failed node or nodes are disabled on all
remaining nodes. If a leave reconfiguration happens after a jeopardy
state notification, then the nodes that have received the jeopardy state
notification leave the cluster.

Jeopardy handling

57How Storage Foundation Cluster File System High Availability works
Split-brain and jeopardy handling

About I/O fencing
I/O fencing protects the data on shared disks when nodes in a cluster detect a
change in the cluster membership that indicates a split-brain condition.

The fencing operation determines the following:

■ The nodes that must retain access to the shared storage

■ The nodes that must be ejected from the cluster

This decision prevents possible data corruption. When you install SFCFSHA, the
installer installs the VRTSvxfen RPM, which includes the I/O fencing driver. To
protect data on shared disks, you must configure I/O fencing after you install and
configure SFCFSHA.

I/O fencing technology uses coordination points for arbitration in the event of a
network partition.

I/O fencing coordination points can be coordinator disks or coordination point servers
(CP servers) or both. You can configure disk-based or server-based I/O fencing:

I/O fencing that uses coordinator disks is referred
to as disk-based I/O fencing.

Disk-based I/O fencing ensures data integrity in a
single cluster.

Disk-based I/O fencing

I/O fencing that uses at least one CP server system
is referred to as server-based I/O fencing.
Server-based fencing can include only CP servers,
or a mix of CP servers and coordinator disks.

Server-based I/O fencing ensures data integrity in
clusters.

In virtualized environments that do not support
SCSI-3 PR, SFCFSHA supports non-SCSI-3
server-based I/O fencing.

See “About I/O fencing for SFCFSHA in virtual
machines that do not support SCSI-3 PR”
on page 59.

Server-based I/O fencing

See “About preventing data corruption with I/O fencing” on page 59.

58How Storage Foundation Cluster File System High Availability works
About I/O fencing

Note:Symantec recommends that you use I/O fencing to protect your cluster against
split-brain situations.

See the Veritas Storage Foundation Cluster File System High Availability Installation
Guide.

About I/O fencing for SFCFSHA in virtual machines that do not
support SCSI-3 PR

In a traditional I/O fencing implementation, where the coordination points are
coordination point servers (CP servers) or coordinator disks, Veritas Clustered
Volume Manager and Veritas I/O fencing modules provide SCSI-3 persistent
reservation (SCSI-3 PR) based protection on the data disks. This SCSI-3 PR
protection ensures that the I/O operations from the losing node cannot reach a disk
that the surviving sub-cluster has already taken over.

In virtualized environments that do not support SCSI-3 PR, SFCFSHA attempts to
provide reasonable safety for the data disks. SFCFSHA requires you to configure
non-SCSI-3 server-based I/O fencing in such environments. Non-SCSI-3 fencing
uses CP servers as coordination points with some additional configuration changes
to support I/O fencing in such environments.

About preventing data corruption with I/O fencing
I/O fencing is a feature that prevents data corruption in the event of a communication
breakdown in a cluster.

To provide high availability, the cluster must be capable of taking corrective action
when a node fails. In this situation, SFCFSHA configures its components to reflect
the altered membership.

Problems arise when the mechanism that detects the failure breaks down because
symptoms appear identical to those of a failed node. For example, if a system in a
two-node cluster fails, the system stops sending heartbeats over the private
interconnects. The remaining node then takes corrective action. The failure of the
private interconnects, instead of the actual nodes, presents identical symptoms and
causes each node to determine its peer has departed. This situation typically results
in data corruption because both nodes try to take control of data storage in an
uncoordinated manner.

In addition to a broken set of private networks, other scenarios can generate this
situation. If a system is so busy that it appears to stop responding or "hang," the
other nodes could declare it as dead. This declaration may also occur for the nodes
that use the hardware that supports a "break" and "resume" function. When a node

59How Storage Foundation Cluster File System High Availability works
About I/O fencing

drops to PROM level with a break and subsequently resumes operations, the other
nodes may declare the system dead. They can declare it dead even if the system
later returns and begins write operations.

SFCFSHA uses I/O fencing to remove the risk that is associated with split-brain.
I/O fencing allows write access for members of the active cluster. It blocks access
to storage from non-members.

About SCSI-3 Persistent Reservations
SCSI-3 Persistent Reservations (SCSI-3 PR) are required for I/O fencing and resolve
the issues of using SCSI reservations in a clustered SAN environment. SCSI-3 PR
enables access for multiple nodes to a device and simultaneously blocks access
for other nodes.

SCSI-3 reservations are persistent across SCSI bus resets and support multiple
paths from a host to a disk. In contrast, only one host can use SCSI-2 reservations
with one path. If the need arises to block access to a device because of data integrity
concerns, only one host and one path remain active. The requirements for larger
clusters, with multiple nodes reading and writing to storage in a controlled manner,
make SCSI-2 reservations obsolete.

SCSI-3 PR uses a concept of registration and reservation. Each system registers
its own "key" with a SCSI-3 device. Multiple systems registering keys form a
membership and establish a reservation, typically set to "Write Exclusive Registrants
Only (WERO)." The WERO setting enables only registered systems to perform
write operations. For a given disk, only one reservation can exist amidst numerous
registrations.

With SCSI-3 PR technology, blocking write access is as easy as removing a
registration from a device. Only registered members can "eject" the registration of
another member. A member wishing to eject another member issues a "preempt
and abort" command. Ejecting a node is final and atomic; an ejected node cannot
eject another node. In SFCFSHA, a node registers the same key for all paths to
the device. A single preempt and abort command ejects a node from all paths to
the storage device.

About I/O fencing operations
I/O fencing, provided by the kernel-based fencing module (vxfen), performs
identically on node failures and communications failures. When the fencing module
on a node is informed of a change in cluster membership by the GAB module, it
immediately begins the fencing operation. The node tries to eject the key for departed
nodes from the coordinator disks using the preempt and abort command. When
the node successfully ejects the departed nodes from the coordinator disks, it also
ejects the departed nodes from the data disks. In a split-brain scenario, both sides

60How Storage Foundation Cluster File System High Availability works
About I/O fencing

of the split would race for control of the coordinator disks. The side winning the
majority of the coordinator disks wins the race and fences the loser. The loser then
panics and restarts the system.

See “About I/O fencing components” on page 61.

See “About I/O fencing configuration files” on page 64.

See “How I/O fencing works in different event scenarios” on page 67.

About I/O fencing components
The shared storage for SFCFSHA must support SCSI-3 persistent reservations to
enable I/O fencing. SFCFSHA involves two types of shared storage:

■ Data disks—Store shared data
See “About data disks” on page 61.

■ Coordination points—Act as a global lock during membership changes
See “About coordination points” on page 61.

About data disks
Data disks are standard disk devices for data storage and are either physical disks
or RAID Logical Units (LUNs).

These disks must support SCSI-3 PR and must be part of standard VxVM or CVM
disk groups. CVM is responsible for fencing data disks on a disk group basis. Disks
that are added to a disk group and new paths that are discovered for a device are
automatically fenced.

About coordination points
Coordination points provide a lock mechanism to determine which nodes get to
fence off data drives from other nodes. A node must eject a peer from the
coordination points before it can fence the peer from the data drives. SFCFSHA
prevents split-brain when vxfen races for control of the coordination points and the
winner partition fences the ejected nodes from accessing the data disks.

Note: Typically, a fencing configuration for a cluster must have three coordination
points. Symantec also supports server-based fencing with a single CP server as
its only coordination point with a caveat that this CP server becomes a single point
of failure.

The coordination points can either be disks or servers or both.

■ Coordinator disks

61How Storage Foundation Cluster File System High Availability works
About I/O fencing

Disks that act as coordination points are called coordinator disks. Coordinator
disks are three standard disks or LUNs set aside for I/O fencing during cluster
reconfiguration. Coordinator disks do not serve any other storage purpose in
the SFCFSHA configuration.
You can configure coordinator disks to use Veritas Volume Manager Dynamic
Multi-pathing (DMP) feature. Dynamic Multi-pathing (DMP) allows coordinator
disks to take advantage of the path failover and the dynamic adding and removal
capabilities of DMP. So, you can configure I/O fencing to use either DMP devices
or the underlying raw character devices. I/O fencing uses SCSI-3 disk policy
that is either raw or dmp based on the disk device that you use. The disk policy
is dmp by default.
See the Veritas Storage Foundation Administrator’s Guide.

■ Coordination point servers

The coordination point server (CP server) is a software solution which runs on
a remote system or cluster. CP server provides arbitration functionality by
allowing the SFCFSHA cluster nodes to perform the following tasks:

■ Self-register to become a member of an active SFCFSHA cluster (registered
with CP server) with access to the data drives

■ Check which other nodes are registered as members of this active SFCFSHA
cluster

■ Self-unregister from this active SFCFSHA cluster

■ Forcefully unregister other nodes (preempt) as members of this active
SFCFSHA cluster

In short, the CP server functions as another arbitration mechanism that integrates
within the existing I/O fencing module.

Note: With the CP server, the fencing arbitration logic still remains on the
SFCFSHA cluster.

Multiple SFCFSHA clusters running different operating systems can
simultaneously access the CP server. TCP/IP based communication is used
between the CP server and the SFCFSHA clusters.

About preferred fencing
The I/O fencing driver uses coordination points to prevent split-brain in a VCS
cluster. By default, the fencing driver favors the subcluster with maximum number
of nodes during the race for coordination points. With the preferred fencing feature,
you can specify how the fencing driver must determine the surviving subcluster.

62How Storage Foundation Cluster File System High Availability works
About I/O fencing

You can configure the preferred fencing policy using the cluster-level attribute
PreferredFencingPolicy for the following:

■ Enable system-based preferred fencing policy to give preference to high capacity
systems.

■ Enable group-based preferred fencing policy to give preference to service groups
for high priority applications.

■ Disable preferred fencing policy to use the default node count-based race policy.

See “How preferred fencing works” on page 63.

See “Enabling or disabling the preferred fencing policy” on page 471.

How preferred fencing works
The I/O fencing driver uses coordination points to prevent split-brain in a VCS
cluster. At the time of a network partition, the fencing driver in each subcluster races
for the coordination points. The subcluster that grabs the majority of coordination
points survives whereas the fencing driver causes a system panic on nodes from
all other subclusters. By default, the fencing driver favors the subcluster with the
maximum number of nodes during the race for coordination points.

This default racing preference does not take into account the application groups
that are online on any nodes or the system capacity in any subcluster. For example,
consider a two-node cluster where you configured an application on one node and
the other node is a standby-node. If there is a network partition and the standby-node
wins the race, the node where the application runs panics and VCS has to bring
the application online on the standby-node. This behavior causes disruption and
takes time for the application to fail over to the surviving node and then to start up
again.

The preferred fencing feature lets you specify how the fencing driver must determine
the surviving subcluster. The preferred fencing solution makes use of a fencing
parameter called node weight. VCS calculates the node weight based on online
applications and system capacity details that you provide using specific VCS
attributes, and passes to the fencing driver to influence the result of race for
coordination points. At the time of a race, the racer node adds up the weights for
all nodes in the local subcluster and in the leaving subcluster. If the leaving
subcluster has a higher sum (of node weights) then the racer for this subcluster
delays the race for the coordination points. Thus, the subcluster that has critical
systems or critical applications wins the race.

63How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-4 The preferred fencing feature uses the cluster-level attribute
PreferredFencingPolicy that takes the following race policy
values:

DescriptionRace policy value

When the PreferredFencingPolicy attribute value is set as
Disabled, VCS sets the count based race policy and resets the
value of node weight as 0.

Disabled (default): Preferred
fencing is disabled.

If one system is more powerful than others in terms of
architecture, number of CPUs, or memory, this system is given
preference in the fencing race.

When the PreferredFencingPolicy attribute value is set as
System, VCS calculates node weight based on the system-level
attribute FencingWeight.

System: Based on the
capacity of the systems in a
subcluster.

The fencing driver takes into account the service groups that
are online on the nodes in any subcluster. In the event of a
network partition, the node with higher priority service groups
is given preference in the fencing race.

When the PreferredFencingPolicy attribute value is set as
Group, VCS calculates node weight based on the group-level
attribute Priority for those service groups that are active.

Group: Based on the higher
priority applications in a
subcluster.

See the Veritas Cluster Server Administrator's Guide for more information on the
VCS attributes.

See “Enabling or disabling the preferred fencing policy” on page 471.

About I/O fencing configuration files
Table 2-5 lists the I/O fencing configuration files.

64How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-5 I/O fencing configuration files

DescriptionFile

This file stores the start and stop environment variables for I/O fencing:

■ VXFEN_START—Defines the startup behavior for the I/O fencing module after a system
reboot. Valid values include:
1—Indicates that I/O fencing is enabled to start up.
0—Indicates that I/O fencing is disabled to start up.

■ VXFEN_STOP—Defines the shutdown behavior for the I/O fencing module during a system
shutdown. Valid values include:
1—Indicates that I/O fencing is enabled to shut down.
0—Indicates that I/O fencing is disabled to shut down.

The installer sets the value of these variables to 1 at the end of SFCFSHA configuration.

/etc/sysconfig/vxfen

This file includes the coordinator disk group information.

This file is not applicable for server-based fencing.

/etc/vxfendg

65How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-5 I/O fencing configuration files (continued)

DescriptionFile

This file contains the following parameters:

■ vxfen_mode

■ scsi3—For disk-based fencing
■ customized—For server-based fencing
■ disabled—To run the I/O fencing driver but not do any fencing operations.

■ vxfen_mechanism
This parameter is applicable only for server-based fencing. Set the value as cps.

■ scsi3_disk_policy
■ dmp—Configure the vxfen module to use DMP devices

The disk policy is dmp by default. If you use iSCSI devices, you must set the disk policy
as dmp.

■ raw—Configure the vxfen module to use the underlying raw character devices

Note: You must use the same SCSI-3 disk policy on all the nodes.

■ security
This parameter is applicable only for server-based fencing.
1—Indicates that communication with the CP server is in secure mode. This setting is the
default.
0—Indicates that communication with the CP server is in non-secure mode.

■ List of coordination points
This list is required only for server-based fencing configuration.
Coordination points in server-based fencing can include coordinator disks, CP servers, or
both. If you use coordinator disks, you must create a coordinator disk group containing the
individual coordinator disks.
Refer to the sample file /etc/vxfen.d/vxfenmode_cps for more information on how to specify
the coordination points and multiple IP addresses for each CP server.

■ single_cp
This parameter is applicable for server-based fencing which uses a single highly available
CP server as its coordination point. Also applicable for when you use a coordinator disk
group with single disk.

■ autoseed_gab_timeout
This parameter enables GAB automatic seeding of the cluster even when some cluster
nodes are unavailable. This feature requires that I/O fencing is enabled.
0—Turns the GAB auto-seed feature on. Any value greater than 0 indicates the number of
seconds that GAB must delay before it automatically seeds the cluster.
-1—Turns the GAB auto-seed feature off. This setting is the default.

/etc/vxfenmode

66How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-5 I/O fencing configuration files (continued)

DescriptionFile

When I/O fencing starts, the vxfen startup script creates this /etc/vxfentab file on each
node. The startup script uses the contents of the /etc/vxfendg and /etc/vxfenmode files. Any
time a system is rebooted, the fencing driver reinitializes the vxfentab file with the current list
of all the coordinator points.

Note: The /etc/vxfentab file is a generated file; do not modify this file.

For disk-based I/O fencing, the /etc/vxfentab file on each node contains a list of all paths to
each coordinator disk along with its unique disk identifier. A space separates the path and the
unique disk identifier. An example of the /etc/vxfentab file in a disk-based fencing configuration
on one node resembles as follows:

■ Raw disk:

/dev/sdx HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006804E795D075
/dev/sdy HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006814E795D076
/dev/sdz HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006824E795D077

■ DMP disk:

/dev/vx/rdmp/sdx3 HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006804E795D0A3
/dev/vx/rdmp/sdy3 HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006814E795D0B3
/dev/vx/rdmp/sdz3 HITACHI%5F1724-100%20%20FAStT%5FDISKS%5F6
00A0B8000215A5D000006824E795D0C3

For server-based fencing, the /etc/vxfentab file also includes the security settings information.

For server-based fencing with single CP server, the /etc/vxfentab file also includes the single_cp
settings information.

/etc/vxfentab

How I/O fencing works in different event scenarios
Table 2-6 describes how I/O fencing works to prevent data corruption in different
failure event scenarios. For each event, review the corrective operator actions.

67How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-6 I/O fencing scenarios

Operator actionNode B: What
happens?

Node A: What
happens?

Event

When Node B is
ejected from cluster,
repair the private
networks before
attempting to bring
Node B back.

Node B races for
majority of
coordination points.

If Node B loses the
race for the
coordination points,
Node B panics and
removes itself from
the cluster.

Node A races for
majority of
coordination points.

If Node A wins race
for coordination
points, Node A ejects
Node B from the
shared disks and
continues.

Both private networks
fail.

Restart Node B after
private networks are
restored.

Node B has crashed.
It cannot start the
database since it is
unable to write to the
data disks.

Node A continues to
work.

Both private networks
function again after
event above.

Repair private
network. After
network is repaired,
both nodes
automatically use it.

Node B prints
message about an
IOFENCE on the
console but
continues.

Node A prints
message about an
IOFENCE on the
console but
continues.

One private network
fails.

Repair or debug the
node that hangs and
reboot the node to
rejoin the cluster.

Node B loses
heartbeats with Node
A, and races for a
majority of
coordination points.

Node B wins race for
coordination points
and ejects Node A
from shared data
disks.

Node A is extremely
busy for some reason
or is in the kernel
debugger.

When Node A is no
longer hung or in the
kernel debugger, any
queued writes to the
data disks fail
because Node A is
ejected. When Node
A receives message
from GAB about
being ejected, it
panics and removes
itself from the cluster.

Node A hangs.

68How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-6 I/O fencing scenarios (continued)

Operator actionNode B: What
happens?

Node A: What
happens?

Event

Resolve preexisting
split-brain condition.

Node B restarts and
I/O fencing driver
(vxfen) detects Node
A is registered with
coordination points.
The driver does not
see Node A listed as
member of cluster
because private
networks are down.
This causes the I/O
fencing device driver
to prevent Node B
from joining the
cluster. Node B
console displays:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required
to clear
preexisting
split brain.

Node A restarts and
I/O fencing driver
(vxfen) detects Node
B is registered with
coordination points.
The driver does not
see Node B listed as
member of cluster
because private
networks are down.
This causes the I/O
fencing device driver
to prevent Node A
from joining the
cluster. Node A
console displays:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required
to clear
preexisting
split brain.

Nodes A and B and
private networks lose
power. Coordination
points and data disks
retain power.

Power returns to
nodes and they
restart, but private
networks still have no
power.

69How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-6 I/O fencing scenarios (continued)

Operator actionNode B: What
happens?

Node A: What
happens?

Event

Resolve preexisting
split-brain condition.

Node B restarts and
detects Node A is
registered with the
coordination points.
The driver does not
see Node A listed as
member of the
cluster. The I/O
fencing device driver
prints message on
console:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required
to clear
preexisting
split brain.

Node A is crashed.Node A crashes while
Node B is down.
Node B comes up
and Node A is still
down.

Power on the failed
disk array so that
subsequent network
partition does not
cause cluster
shutdown, or replace
coordination points.

See “Replacing I/O
fencing coordinator
disks when the cluster
is online” on page 422.

Node B continues to
operate as long as no
nodes leave the
cluster.

Node A continues to
operate as long as no
nodes leave the
cluster.

The disk array
containing two of the
three coordination
points is powered off.

No node leaves the
cluster membership

70How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-6 I/O fencing scenarios (continued)

Operator actionNode B: What
happens?

Node A: What
happens?

Event

Power on the failed
disk array so that
subsequent network
partition does not
cause cluster
shutdown, or replace
coordination points.

See “Replacing I/O
fencing coordinator
disks when the cluster
is online” on page 422.

Node B has left the
cluster.

Node A continues to
operate in the cluster.

The disk array
containing two of the
three coordination
points is powered off.

Node B gracefully
leaves the cluster and
the disk array is still
powered off. Leaving
gracefully implies a
clean shutdown so
that vxfen is properly
unconfigured.

Power on the failed
disk array and restart
I/O fencing driver to
enable Node A to
register with all
coordination points,
or replace
coordination points.

Node B has left
cluster due to crash
or network partition.

Node A races for a
majority of
coordination points.
Node A fails because
only one of the three
coordination points is
available. Node A
panics and removes
itself from the cluster.

The disk array
containing two of the
three coordination
points is powered off.

Node B abruptly
crashes or a network
partition occurs
between node A and
node B, and the disk
array is still powered
off.

About server-based I/O fencing
In a disk-based I/O fencing implementation, the vxfen driver handles various SCSI-3
PR based arbitration operations completely within the driver. I/O fencing also
provides a framework referred to as customized fencing wherein arbitration
operations are implemented in custom scripts. The vxfen driver invokes the custom
scripts.

The CP server-based coordination point uses a customized fencing framework.
Note that SCSI-3 PR based fencing arbitration can also be enabled using customized
fencing framework. This allows the user to specify a combination of SCSI-3 LUNs
and CP servers as coordination points using customized fencing. Customized
fencing can be enabled by specifying vxfen_mode=customized and
vxfen_mechanism=cps in the /etc/vxfenmode file.

71How Storage Foundation Cluster File System High Availability works
About I/O fencing

Moreover, both /etc/vxfenmode and /etc/vxfentab files contain additional
security parameters, which indicates if communication between CP server and
SFCFSHA cluster nodes is secure.

Figure 2-2 displays a schematic of the customized fencing options.

Figure 2-2 Customized fencing

C
lie

nt
cl

us
te

rn
od

e

CP serverSCSI-3 LUN

Customized
Scripts

LLT

User space

Kernel space

cpsadm
vxfenadm

vxfend

VXFEN

GAB

A user level daemon vxfend interacts with the vxfen driver, which in turn interacts
with GAB to get the node membership update. Upon receiving membership updates,
vxfend invokes various scripts to race for the coordination point and fence off data
disks. The vxfend daemon manages various fencing agents. The customized fencing
scripts are located in the /opt/VRTSvcs/vxfen/bin/customized/cps directory.

72How Storage Foundation Cluster File System High Availability works
About I/O fencing

Table 2-7 The scripts that are involved include the following:

DescriptionScript name

Retrieves the SCSI ID’s of the coordinator
disks and/or UUID ID's of the CP servers

CP server uses the UUID stored in
/etc/VRTScps/db/current/cps_uuid.

For information about the UUID (Universally
Unique Identifier), see the Veritas Cluster
Server Administrator's Guide.

generate_snapshot.sh

Registers the keys with the coordinator disks
or CP servers.

join_local_node.sh

Races to determine a winner after cluster
reconfiguration.

race_for_coordination_point.sh:

Removes the keys that are registered in
join_local_node.sh.

unjoin_local_node.sh

Fences the data disks from access by the
losing nodes.

fence_data_disks.sh

Lists local node’s configuration parameters
and coordination points, which are used by
the vxfen driver.

local_info.sh:

I/O fencing enhancements provided by CP server
CP server configurations enhance disk-based I/O fencing by providing the following
new capabilities:

■ CP server configurations are scalable, and a configuration with three CP servers
can provide I/O fencing for multiple SFCFSHA clusters. Since a single CP server
configuration can serve a large number of SFCFSHA clusters, the cost of multiple
SFCFSHA cluster deployments can be significantly reduced.

■ Appropriately situated CP servers can eliminate any coordinator disk location
bias in the I/O fencing process. For example, this location bias may occur where,
due to logistical restrictions, two of the three coordinator disks are located at a
single site, and the cost of setting up a third coordinator disk location is
prohibitive.
See Figure 2-3 on page 74.
In such a configuration, if the site with two coordinator disks is inaccessible, the
other site does not survive due to a lack of a majority of coordination points. I/O

73How Storage Foundation Cluster File System High Availability works
About I/O fencing

fencing would require extension of the SAN to the third site which may not be
a suitable solution. An alternative is to place a CP server at a remote site as the
third coordination point.

Note: The CP server provides an alternative arbitration mechanism without having
to depend on SCSI-3 compliant coordinator disks. Data disk fencing in Cluster
Volume Manager (CVM) will still require SCSI-3 I/O fencing.

Figure 2-3 Skewed placement of coordinator disks at Site 1

Coordinator disk #1

Coordinator disk #2

Coordinator disk #3

Site 1 Site 2

Node 1 Node 2

Public
Network

SAN

About the CP server database
CP server requires a database for storing the registration keys of the SFCFSHA
cluster nodes. CP server uses a SQLite database for its operations. By default, the
database is located at /etc/VRTScps/db.

For a single node VCS cluster hosting a CP server, the database can be placed on
a local file system. For an SFHA cluster hosting a CP server, the database must
be placed on a shared file system. The file system must be shared among all nodes
that are part of the SFHA cluster.

In an SFHA cluster hosting the CP server, the shared database is protected by
setting up SCSI-3 PR based I/O fencing. SCSI-3 PR based I/O fencing protects
against split-brain scenarios.

Warning: The CP server database must not be edited directly and should only be
accessed using cpsadm(1M). Manipulating the database manually may lead to
undesirable results including system panics.

74How Storage Foundation Cluster File System High Availability works
About I/O fencing

About the CP server user types and privileges
The CP server supports the following user types, each with a different access level
privilege:

■ CP server administrator (admin)

■ CP server operator

Different access level privileges permit the user to issue different commands. If a
user is neither a CP server admin nor a CP server operator user, then the user has
guest status and can issue limited commands.

The user types and their access level privileges are assigned to individual users
during SFCFSHA cluster configuration for fencing. During the installation process,
you are prompted for a user name, password, and access level privilege (CP server
admin or CP server operator).

To administer and operate a CP server, there must be at least one CP server admin.

A root user on a CP server is given all the administrator privileges, and these
administrator privileges can be used to perform all the CP server specific operations.

About secure communication between the SFCFSHA cluster and
CP server

In a data center, TCP/IP communication between the SFCFSHA cluster (application
cluster) and CP server must be made secure. The security of the communication
channel involves encryption, authentication, and authorization.

The CP server node or cluster needs to confirm the authenticity of the SFCFSHA
cluster nodes that communicate with it as a coordination point and only accept
requests from known SFCFSHA cluster nodes. Requests from unknown clients are
rejected as non-authenticated. Similarly, the fencing framework in SFCFSHA cluster
must confirm that authentic users are conducting fencing operations with the CP
server.

Entities on behalf of which authentication is done, are referred to as principals. On
the SFCFSHA cluster nodes, the current VCS installer creates the Authentication
Server credentials on each node in the cluster. It also creates vcsauthserver which
authenticates the credentials. The installer then proceeds to start VCS in secure
mode.

Typically, in an existing VCS cluster with security configured, vcsauthserver runs
on each cluster node.

75How Storage Foundation Cluster File System High Availability works
About I/O fencing

How secure communication between the CP servers and
the SFCFSHA clusters work
CP server and SFCFSHA cluster (application cluster) node communication involve
the following entities:

■ vxcpserv for the CP server

■ cpsadm for the SFCFSHA cluster node

Figure 2-4 displays a schematic of the end-to-end communication flow with security
enabled on CP server and SFCFSHA clusters (application clusters).

Figure 2-4 End-To-end communication flow with security enabled on CP
server and SFCFSHA clusters

Client cluster nodes

vcsauthserver
CP server
(vxcpserv)

vcsauthserver
CP client
(cpsadm)

Communication flow between CP server and SFCFSHA cluster nodes with security
configured on them is as follows:

■ Initial setup:
Identities of CP server and SFCFSHA cluster nodes are configured on respective
nodes by the VCS installer.

Note: At the time of fencing configuration, the installer establishes trust between
the CP server and the application cluster so that vxcpserv process can
authenticate requests from the application cluster nodes. If you manually
configured I/O fencing, then you must set up trust between the CP server and
the application cluster.

76How Storage Foundation Cluster File System High Availability works
About I/O fencing

The cpsadm command gets the user name, domain type from the environment
variables CPS_USERNAME, CPS_DOMAINTYPE. The user is expected to
export these variables before running the cpsadm command manually. The
customized fencing framework exports these environment variables internally
before running the cpsadm commands.
The CP server process (vxcpserv) uses its own user (CPSERVER) which is
added to the local vcsauthserver.

■ Getting credentials from authentication broker:
The cpsadm command tries to get the existing credentials that are present on
the local node. The installer generates these credentials during fencing
configuration.
The vxcpserv process tries to get the existing credentials that are present on
the local node. The installer generates these credentials when it enables security.

■ Communication between CP server and SFCFSHA cluster nodes:
After the CP server establishes its credential and is up, it becomes ready to
receive data from the clients. After the cpsadm command obtains its credentials
and authenticates CP server credentials, cpsadm connects to the CP server.
Data is passed over to the CP server.

■ Validation:
On receiving data from a particular SFCFSHA cluster node, vxcpserv validates
its credentials. If validation fails, then the connection request data is rejected.

Security configuration details on CP server and SFCFSHA
cluster
This section discusses the security configuration details for the CP server and
SFCFSHA cluster (application cluster).

Settings in secure mode
The following are the settings for secure communication between the CP server
and SFCFSHA cluster:

■ CP server settings:
Installer creates a user with the following values:

■ username: CPSERVER

■ domainname: VCS_SERVICES@cluster_uuid

■ domaintype: vx
Run the following commands on the CP server to verify the settings:

export EAT_DATA_DIR=/var/VRTSvcs/vcsauth/data/CPSERVER

77How Storage Foundation Cluster File System High Availability works
About I/O fencing

/opt/VRTScps/bin/cpsat showcred

Note: The CP server configuration file (/etc/vxcps.conf) must not contain a
line specifying security=0. If there is no line specifying security parameter or
if there is a line specifying security=1, CP server with security is enabled (which
is the default).

■ SFCFSHA cluster node(s) settings:

On SFCFSHA cluster, the installer creates a user for cpsadm during fencing
configuration with the following values:

■ username: CPSADM

■ domainname: VCS_SERVICES@cluster_uuid

■ domaintype: vx
Run the following commands on the SFCFSHA cluster node(s) to verify the
security settings:

export EAT_DATA_DIR=/var/VRTSvcs/vcsauth/data/CPSADM

/opt/VRTScps/bin/cpsat showcred

The users described above are used only for authentication for the communication
between the CP server and the SFCFSHA cluster nodes.

For CP server's authorization, customized fencing framework on the SFCFSHA
cluster uses the following user if security is configured:

CPSADM@VCS_SERVICES@cluster_uuid

where cluster_uuid is the application cluster's universal unique identifier.

For each SFCFSHA cluster node, this user must be registered on the CP server
database before fencing starts on the SFCFSHA cluster node(s). This can be verified
by issuing the following command:

cpsadm -s cp_server -a list_users

The following is an example of the command output:

Username/Domain Type

CPSADM@VCS_SERVICES@77a2549c-1dd2-11b2-88d6-00306e4b2e0b/vx

Cluster Name / UUID Role

cluster1/{77a2549c-1dd2-11b2-88d6-00306e4b2e0b} Operator

78How Storage Foundation Cluster File System High Availability works
About I/O fencing

Note: The configuration file (/etc/vxfenmode) on each client node must not contain
a line specifying security=0. If there is no line specifying security parameter or
if there is a line specifying security=1, client node starts with security enabled
(which is the default).

Settings in non-secure mode
In non-secure mode, only authorization is provided on the CP server. Passwords
are not requested. Authentication and encryption are not provided. User credentials
of “cpsclient@hostname” of “vx” domaintype are used by the customized fencing
framework for communication between CP server or SFCFSHA cluster node(s).

For each SFCFSHA cluster node, this user must be added on the CP server
database before fencing starts on the SFCFSHA cluster node(s). The user can be
verified by issuing the following command:

cpsadm -s cpserver -a list_users

The following is an example of the command output:

Username/Domain Type Cluster Name / UUID Role

cpsclient@galaxy/vx cluster1 / {f0735332-e3709c1c73b9} Operator

Note: In non-secure mode, CP server configuration file (/etc/vxcps.conf) should
contain a line specifying security=0. Similarly, on each SFCFSHA cluster node the
configuration file (/etc/vxfenmode) should contain a line specifying security=0.

Storage Foundation Cluster File System High
Availability and Veritas Volume Manager cluster
functionality agents

Agents are VCS processes that manage predefined resource types. SFCFSHA and
CVM require agents to interact with VCS. Agents bring resources online, take
resources offline, monitor resources, and report any state changes to VCS. VCS
bundled agents are part of VCS and are installed when VCS is installed. The
SFCFSHA and CVM agents are add-on resources to VCS specifically for the Veritas
File System and Veritas Volume Manager.

See the Veritas Storage Foundation Cluster File System High Availability Installation
Guide.

79How Storage Foundation Cluster File System High Availability works
Storage Foundation Cluster File System High Availability and Veritas Volume Manager cluster functionality

agents

Veritas Volume Manager cluster functionality
The Veritas Volume Manager cluster functionality (CVM) makes logical volumes
accessible throughout a cluster. CVM enables multiple hosts to concurrently access
the logical volumes under its control. A VxVM cluster comprises nodes sharing a
set of devices. The nodes are connected across a network. If one node fails, other
nodes can access the devices. The VxVM cluster feature presents the same logical
view of the device configurations, including changes, on all nodes. You configure
CVM shared storage after VCS sets up a cluster configuration.

80How Storage Foundation Cluster File System High Availability works
Veritas Volume Manager cluster functionality

How Veritas File System
works

This chapter includes the following topics:

■ Veritas File System features

■ Veritas File System performance enhancements

■ Using Veritas File System

Veritas File System features
Table 3-1 lists the Veritas File System (VxFS) features.

Table 3-1 Veritas File System features

DescriptionFeature

An extent is a contiguous area of storage in a computer file
system, reserved for a file. When starting to write to a file, a
whole extent is allocated. When writing to the file again, the
data continues where the previous write left off. This reduces
or eliminates file fragmentation. An extent is presented as an
address-length pair, which identifies the starting block address
and the length of the extent (in file system or logical blocks).
Since Veritas File System (VxFS) is an extent-based file system,
addressing is done through extents (which can consist of
multiple blocks) rather than in single-block segments. Extents
can therefore enhance file system throughput.

See “About extents” on page 35.

Extent-based allocation

3Chapter

Table 3-1 Veritas File System features (continued)

DescriptionFeature

Veritas File System (VxFS) allocates disk space to files in groups
of one or more adjacent blocks called extents. VxFS defines an
application interface that allows programs to control various
aspects of the extent allocation for a given file. The extent
allocation policies associated with a file are referred to as extent
attributes.

See “About extent attributes” on page 258.

Extent attributes

Most file systems rely on full structural verification by the fsck
utility as the only means to recover from a system failure. For
large disk configurations, this involves a time-consuming process
of checking the entire structure, verifying that the file system is
intact, and correcting any inconsistencies. VxFS provides fast
recovery with the VxFS intent log and VxFS intent log resizing
features.

See “About the Veritas File System intent log” on page 34.

Fast file system recovery

The VxFS file system provides the following enhancements to
the mount command:

■ Enhanced data integrity modes
■ Enhanced performance mode
■ Temporary file system mode
■ Improved synchronous writes
■ Support for large file sizes

See “Mounting a VxFS file system” on page 238.

Extended mount options

VxFS has the following mount command options to enable the
enhanced data integrity modes:

■ blkclear

See “blkclear mount option” on page 242.
■ closesync

See “mincache mount option” on page 242.
■ log

See “log mount option” on page 240.

Enhanced data integrity
modes

82How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

The default VxFS logging mode, mount -o delaylog,
increases performance by delaying the logging of some
structural changes. However, delaylog does not provide the
equivalent data integrity as the enhanced data integrity modes
because recent changes may be lost during a system failure.
This option provides at least the same level of data accuracy
that traditional UNIX file systems provide for system failures,
along with fast file system recovery.

See the mount_vxfs(1M) manual page.

See “delaylog mount option” on page 240.

Enhanced performance
mode

On most UNIX systems, temporary file system directories, such
as /tmp and /usr/tmp, often hold files that do not need to be
retained when the system reboots. The underlying file system
does not need to maintain a high degree of structural integrity
for these temporary directories. VxFS provides the mount -o
tmplog option, which allows the user to achieve higher
performance on temporary file systems by delaying the logging
of most operations.

See the mount_vxfs(1M) manual page.

See “tmplog mount option” on page 241.

Temporary file system
mode

VxFS provides superior performance for synchronous write
applications. The mount -o datainlog option greatly
improves the performance of small synchronous writes.

The mount -o convosync=dsync option improves the
performance of applications that require synchronous data writes
but not synchronous inode time updates.

See the mount_vxfs(1M) manual page.

Warning: The use of the -o convosync=dsync option
violates POSIX semantics.

See “convosync mount option” on page 244.

Improved synchronous
writes

VxFS supports files larger than two gigabytes and large file
systems up to 256 terabytes.

Warning: Some applications and utilities might not work on
large files.

See “largefiles and nolargefiles mount options” on page 246.

Support for large files and
large file systems

83How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

An Access Control List (ACL) stores a series of entries that
identify specific users or groups and their access privileges for
a directory or file. A file may have its own ACL or may share an
ACL with other files. ACLs have the advantage of specifying
detailed access permissions for multiple users and groups.

On Linux, ACLs are supported on cluster file systems.

See the getfacl(1) and setfacl(1) manual pages.

Access Control Lists

To increase availability, recoverability, and performance, Veritas
File System (VxFS) offers on-disk and online backup and restore
capabilities that facilitate frequent and efficient backup
strategies. Backup and restore applications can leverage a
Storage Checkpoint, a disk- and I/O-efficient copying technology
for creating periodic frozen images of a file system. Storage
Checkpoints present a view of a file system at a point in time,
and subsequently identifies and maintains copies of the original
file system blocks. Instead of using a disk-based mirroring
method, Storage Checkpoints save disk space and significantly
reduce I/O overhead by using the free space pool available to
a file system.

Storage Checkpoint functionality is separately licensed.

See “About Storage Checkpoints” on page 650.

Storage Checkpoints

A FileSnap is a space-optimized copy of a file in the same name
space, stored in the same file system. VxFS supports FileSnaps
on file systems with disk layout Version 8 or later.

See “About FileSnaps” on page 589.

FileSnaps

84How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

VxFS provides online data backup using the snapshot feature.
An image of a mounted file system instantly becomes an exact
read-only copy of the file system at a specific point in time. The
original file system is called the snapped file system, the copy
is called the snapshot.

When changes are made to the snapped file system, the old
data is copied to the snapshot. When the snapshot is read, data
that has not changed is read from the snapped file system,
changed data is read from the snapshot.

Backups require one of the following methods:

■ Copying selected files from the snapshot file system (using
find and cpio)

■ Backing up the entire file system (using fscat)
■ Initiating a full or incremental backup (using vxdump)

See “About snapshot file systems” on page 592.

Online backup

VxFS supports quotas, which allocate per-user and per-group
quotas and limit the use of two principal resources: files and
data blocks. You can assign quotas for each of these resources.
Each quota consists of two limits for each resource: hard limit
and soft limit.

The hard limit represents an absolute limit on data blocks or
files. A user can never exceed the hard limit under any
circumstances.

The soft limit is lower than the hard limit and can be exceeded
for a limited amount of time. This allows users to exceed limits
temporarily as long as they fall under those limits before the
allotted time expires.

See “About quota limits” on page 964.

Quotas

Cross-platform data sharing (CDS) allows data to be serially
shared among heterogeneous systems where each system has
direct access to the physical devices that hold the data. This
feature can be used only in conjunction with Veritas Volume
Manager (VxVM).

See the Veritas Storage Foundation and High Availability
Solutions Solutions Guide.

Cross-platform data
sharing

85How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

The VxFS File Change Log (FCL) tracks changes to files and
directories in a file system. The File Change Log can be used
by applications such as backup products, webcrawlers, search
and indexing engines, and replication software that typically
scan an entire file system searching for modifications since a
previous scan. FCL functionality is a separately licensed feature.

See “About File Change Log” on page 972.

File Change Log

The reverse path name lookup feature obtains the full path
name of a file or directory from the inode number of that file or
directory. The reverse path name lookup feature can be useful
for a variety of applications, such as for clients of the VxFS File
Change Log feature, in backup and restore utilities, and for
replication products. Typically, these applications store
information by inode numbers because a path name for a file
or directory can be very long, thus the need for an easy method
of obtaining a path name.

See “About reverse path name lookup” on page 980.

Reverse path name lookup

The multi-volume file system (MVFS) feature allows several
volumes to be represented by a single logical object. All I/O to
and from an underlying logical volume is directed by way of
volume sets. You can create a single VxFS file system on this
multi-volume set. This feature can be used only in conjunction
with VxVM. MVFS functionality is a separately licensed feature.

See “About multi-volume file systems” on page 722.

Multi-volume file systems

The SmartTier option is built on multi-volume support
technology. Using SmartTier, you can map more than one
volume to a single file system. You can then configure policies
that automatically relocate files from one volume to another, or
relocate files by running file relocation commands. Having
multiple volumes lets you determine where files are located,
which can improve performance for applications that access
specific types of files. SmartTier functionality is a separately
licensed feature.

Note: In the previous VxFS 5.x releases, SmartTier was known
as Dynamic Storage Tiering.

See “About SmartTier” on page 737.

SmartTier

86How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

The Thin Reclamation feature allows you to release free data
blocks of a VxFS file system to the free storage pool of a Thin
Storage LUN. This feature is only supported on file systems
created on a VxVM volume.

See “About Thin Reclamation of a file system” on page 695.

Thin Reclamation

Normally, a large volume of parallel threads performing access
and updates on a directory that commonly exist in an file system
suffers from exponentially longer wait times for the threads. This
feature creates partitioned directories to improve the directory
performance of file systems. When any directory crosses the
tunable threshold, this feature takes an exclusive lock on the
directory inode and redistributes the entries into various
respective hash directories. These hash directories are not
visible in the name-space view of the user or operating system.
For every new create, delete, or lookup thread, this feature
performs a lookup for the respective hashed directory
(depending on the target name) and performs the operation in
that directory. This leaves the parent directory inode and its
other hash directories unobstructed for access, which vastly
improves file system performance.

This feature operates only on disk layout Version 8 or later file
systems.

See the vxtunefs(1M) and fsadm_vxfs(1M) manual pages.

Partitioned directories

You can perform post-process periodic deduplication in a file
system to eliminate duplicate data without any continuous cost.
You can verify whether data is duplicated on demand, and then
efficiently and securely eliminate the duplicates. This feature
requires an Enterprise license.

See “About deduplicating data” on page 823.

Data deduplication

Compressing files reduces the space used by files, while
retaining the accessibility of the files and being transparent to
applications. Compressed files look and behave almost exactly
like uncompressed files: the compressed files have the same
name, and can be read and written as with uncompressed files.
Reads cause data to be uncompressed in memory, only; the
on-disk copy of the file remains compressed. In contrast, after
a write, the new data is uncompressed on disk.

See “About compressing files” on page 835.

File compression

87How Veritas File System works
Veritas File System features

Table 3-1 Veritas File System features (continued)

DescriptionFeature

You can perform cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexibile storage
independent data availability solution for disaster recovery and
off-host processing.

See the Veritas Storage Foundation and High Availability
Solutions Replication Administrator's Guide.

File replication

Veritas File System performance enhancements
Traditional file systems employ block-based allocation schemes that provide
adequate random access and latency for small files, but which limit throughput for
larger files. As a result, they are less than optimal for commercial environments.

Veritas File System (VxFS) addresses this file system performance issue through
an alternative allocation method and increased user control over allocation, I/O,
and caching policies.

See “Using Veritas File System” on page 91.

VxFS provides the following performance enhancements:

■ Data synchronous I/O
See “Data synchronous I/O” on page 542.

■ Direct I/O and discovered direct I/O
See “Direct I/O” on page 541.
See “Discovered Direct I/O” on page 542.

■ Delayed allocation for extending writes
See “Delayed allocation for extending writes” on page 90.

■ Enhanced I/O performance
See “Enhanced I/O performance” on page 89.

■ Caching advisories
See “Cache advisories” on page 544.

■ Enhanced directory features

■ Explicit file alignment, extent size, and preallocation controls

■ Tunable I/O parameters

■ Integration with Veritas Volume Manager (VxVM)
See “About Veritas Volume Manager” on page 36.

88How Veritas File System works
Veritas File System performance enhancements

■ Support for large directories

Note: VxFS reduces the file lookup time in directories with an extremely large
number of files.

■ Partitioned directories
See the vxtunefs(1M) and fsadm_vxfs(1M) manual pages.

Enhanced I/O performance
Veritas File System (VxFS) provides enhanced I/O performance by applying an
aggressive I/O clustering policy, integrating with Veritas Volume Manager (VxVM),
and allowing application-specific parameters to be set on a per-file system basis.

See “Enhanced I/O clustering” on page 89.

See “Veritas Volume Manager integration with Veritas File System for enhanced
I/O performance” on page 89.

See “Application-specific parameters for enhanced I/O performance” on page 90.

Enhanced I/O clustering
I/O clustering is a technique of grouping multiple I/O operations together for improved
performance. Veritas File System (VxFS) I/O policies provide more aggressive
clustering processes than other file systems and offer higher I/O throughput when
using large files. The resulting performance is comparable to that provided by raw
disk.

Veritas Volume Manager integration with Veritas File
System for enhanced I/O performance
Veritas File System (VxFS) interfaces with Veritas Volume Manager (VxVM) to
determine the I/O characteristics of the underlying volume and perform I/O
accordingly. VxFS also uses this information when using mkfs to perform proper
allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to achieve
better I/O performance. This interface can enhance performance for different volume
configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes
are important in a RAID-5 volume for strong I/O performance. VxFS uses these
parameters to issue appropriate I/O requests to VxVM.

89How Veritas File System works
Veritas File System performance enhancements

Application-specific parameters for enhanced I/O
performance
You can set application specific parameters on a per-file system basis to improve
I/O performance.

■ Discovered Direct I/O
All sizes above this value would be performed as direct I/O.

■ Maximum Direct I/O Size
This value defines the maximum size of a single direct I/O.

See the vxtunefs(1M) and tunefstab(4) manual pages.

Delayed allocation for extending writes
Delayed allocation skips the allocations for extending writes and completes the
allocations in a background thread. With this approach, Veritas File System (VxFS)
performs a smaller number of large allocations instead of performing a large number
of small allocations, which reduces the file system’s fragmentation. Fast-moving
temporary files do not have blocks allocated and thus do not add to the file system’s
fragmentation.

When a file is appended, the allocation to the file is skipped and the file is added
to the delayed allocation list. The range for which the allocation is skipped is recorded
in the inode. The write() system call returns immediately after the user pages are
copied to the page cache. The actual allocations to the file occur when the scheduler
thread picks the file for allocation. If the file is truncated or removed, allocations are
not required.

Delayed allocation is turned on by default for extending writes. Delayed allocation
is not dependent on the file system disk layout version. This feature does not require
any mount options. You can turn off and turn on this feature by using the vxtunefs

command. You can display the delayed allocation range in the file by using the
fsmap command.

See the vxtunefs(1M) and fsmap(1M) manual pages.

For instances where the file data must be written to the disk immediately, delayed
allocation is disabled on the file. The following are the examples of such instances:
direct I/O, concurrent I/O, FDD/ODM access, and synchronous I/O. Delayed
allocation is not supported on memory-mapped files, BSD quotas, and shared mount
points in a Cluster File System (CFS). When BSD quotas are enabled on a file
system, delayed allocation is turned off automatically for that file system.

90How Veritas File System works
Veritas File System performance enhancements

Using Veritas File System
The following list contains the main methods to use, manage, modify, and tune
VxFS:

■ Online system administration

■ Application program interface

Online system administration
Veritas File System (VxFS) provides command line interface (CLI) operations that
are described throughout this guide and in manual pages.

VxFS allows you to run a number of administration tasks while the file system is
online. Two of the more important tasks include:

■ Defragmentation

■ File system resizing

Defragmentation
Free resources are initially aligned and allocated to files in an order that provides
optimal performance. On an active file system, the original order of free resources
is lost over time as files are created, removed, and resized. The file system is spread
farther along the disk, leaving unused gaps or fragments between areas that are
in use. This process is known as fragmentation and leads to degraded performance
because the file system has fewer options when assigning a free extent to a file (a
group of contiguous data blocks).

VxFS provides the online administration utility fsadm to resolve the problem of
fragmentation.

The fsadm utility defragments a mounted file system by performing the following
actions:

■ Removing unused space from directories

■ Making all small files contiguous

■ Consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron job.

See the fsadm_vxfs(1M) manual page.

91How Veritas File System works
Using Veritas File System

File system resizing
A file system is assigned a specific size as soon as it is created; the file system
may become too small or too large as changes in file system usage take place over
time.

VxFS is capable of increasing or decreasing the file system size while in use. Many
competing file systems can not do this. The VxFS utility fsadm can expand or shrink
a file system without unmounting the file system or interrupting user productivity.
However, to expand a file system, the underlying device on which it is mounted
must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while
in use. The VxFS and VxVM components complement each other to provide online
expansion capability. Use the vxresize command when resizing both the volume
and the file system. The vxresize command guarantees that the file system shrinks
or grows along with the volume. You can also use the the vxassist command
combined with the fsadm_vxfs command for this purpose; however, Symantec
recommends that you use the vxresize command instead.

See the vxresize(1M) manual page.

See “Growing the existing storage by adding a new LUN” on page 194.

Application program interface
Veritas File System Developer's Kit (SDK) provides developers with the information
necessary to use the application programming interfaces (APIs) to modify and tune
various features and components of Veritas File System (VxFS).

See the Veritas File System Programmer's Reference Guide.

VxFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems can take
advantage of VxFS enhancements.

Expanded application facilities
Veritas File System (VxFS) provides API functions frequently associated with
commercial applications that make it possible to perform the following actions:

■ Preallocate space for a file

■ Specify a fixed extent size for a file

■ Bypass the system buffer cache for file I/O

■ Specify the expected access pattern for a file

92How Veritas File System works
Using Veritas File System

Because these functions are provided using VxFS-specific IOCTL system calls,
most existing UNIX system applications do not use them. For portability reasons,
these applications must check which file system type they are using before using
these functions.

93How Veritas File System works
Using Veritas File System

How Veritas Volume
Manager works

This chapter includes the following topics:

■ How Veritas Volume Manager works with the operating system

■ How Veritas Volume Manager handles storage management

■ Volume layouts in Veritas Volume Manager

■ Online relayout

■ Volume resynchronization

■ Hot-relocation

■ Dirty region logging

■ Volume snapshots

■ FastResync

■ Volume sets

How Veritas Volume Manager works with the
operating system

Veritas Volume Manager (VxVM) operates as a subsystem between your operating
system and your data management systems, such as file systems and database
management systems. VxVM is tightly coupled with the operating system. Before
a disk or LUN can be brought under VxVM control, the disk must be accessible
through the operating system device interface. VxVM is layered on top of the

4Chapter

operating system interface services, and is dependent upon how the operating
system accesses physical disks.

VxVM is dependent upon the operating system for the following functionality:

■ operating system (disk) devices

■ device handles

■ VxVM Dynamic Multi-Pathing (DMP) metadevice

VxVM relies on the following constantly-running daemons and kernel threads for
its operation:

The VxVM configuration daemon maintains disk and group
configurations and communicates configuration changes
to the kernel, and modifies configuration information stored
on disks.

See the vxconfigd(1m) manual page.

vxconfigd

VxVM I/O kernel threads provide extended I/O operations
without blocking calling processes. By default, 16 I/O
threads are started at boot time, and at least one I/O thread
must continue to run at all times.

See the vxiod(1m) manual page.

vxiod

The hot-relocation daemon monitors VxVM for events that
affect redundancy, and performs hot-relocation to restore
redundancy. If thin provision disks are configured in the
system, then the storage space of a deleted volume is
reclaimed by this daemon as configured by the policy.

See the vxrelocd(1m) manual page.

vxrelocd

How data is stored
Several methods are used to store data on physical disks. These methods organize
data on the disk so the data can be stored and retrieved efficiently. The basic method
of disk organization is called formatting. Formatting prepares the hard disk so that
files can be written to and retrieved from the disk by using a prearranged storage
pattern.

Two methods are used to store information on formatted hard disks: physical-storage
layout and logical-storage layout. VxVM uses the logical-storage layout method.

See “How Veritas Volume Manager handles storage management” on page 96.

95How Veritas Volume Manager works
How Veritas Volume Manager works with the operating system

How Veritas Volume Manager handles storage
management

Veritas Volume Manager (VxVM) uses the following types of objects to handle
storage management:

Physical disks, LUNs (virtual disks implemented in hardware), or
other hardware with block and raw operating system device
interfaces that are used to store data.

See “Physical objects” on page 96.

Physical objects

When one or more physical disks are brought under the control of
VxVM, it creates virtual objects called volumes on those physical
disks. Each volume records and retrieves data from one or more
physical disks. Volumes are accessed by file systems, databases,
or other applications in the same way that physical disks are
accessed. Volumes are also composed of other virtual objects
(plexes and subdisks) that are used in changing the volume
configuration. Volumes and their virtual components are called
virtual objects or VxVM objects.

See “Virtual objects” on page 98.

Virtual objects

Physical objects
A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name to locate
the disk. The physical disk device name varies with the computer system you use.
Not all parameters are used on all systems.

Typical device names are of the form sda or hdb, where sda references the first (a)
SCSI disk, and hdb references the second (b) EIDE disk.

Figure 4-1 shows how a physical disk and device name (devname) are illustrated
in this document.

Figure 4-1 Physical disk example

devname

96How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

VxVM writes identification information on physical disks under VxVM control (VM
disks). VxVM disks can be identified even after physical disk disconnection or
system outages. VxVM can then re-form disk groups and logical objects to provide
failure detection and to speed system recovery.

About disk partitions
Figure 4-2 shows how a physical disk can be divided into one or more partitions.

Figure 4-2 Partition example

Physical disk with several partitions Partition

devname1
devname2

devname

devname1

The partition number is added at the end of the devname.

Disk arrays
Performing I/O to disks is a relatively slow process because disks are physical
devices that require time to move the heads to the correct position on the disk
before reading or writing. If all of the read or write operations are done to individual
disks, one at a time, the read-write time can become unmanageable. Performing
these operations on multiple disks can help to reduce this problem.

A disk array is a collection of physical disks that VxVM can represent to the operating
system as one or more virtual disks or volumes. The volumes created by VxVM
look and act to the operating system like physical disks. Applications that interact
with volumes should work in the same way as with physical disks.

Figure 4-3 shows how VxVM represents the disks in a disk array as several volumes
to the operating system.

97How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Figure 4-3 How VxVM presents the disks in a disk array as volumes to the
operating system

Veritas Volume Manager

Physical disks

Operating system

Volumes

Disk 1 Disk 2 Disk 3 Disk 4

Data can be spread across several disks within an array, or across disks spanning
multiple arrays, to distribute or balance I/O operations across the disks. Using
parallel I/O across multiple disks in this way improves I/O performance by increasing
data transfer speed and overall throughput for the array.

Virtual objects
VxVM uses multiple virtualization layers to provide distinct functionality and reduce
physical limitations.

Virtual objects in VxVM include the following:

■ Disk groups
See “Disk groups” on page 100.

■ VM disks
See “VM disks” on page 101.

■ Subdisks
See “Subdisks” on page 102.

■ Plexes
See “Plexes” on page 103.

■ Volumes
See “Volumes” on page 104.

98How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

The connection between physical objects and VxVM objects is made when you
place a physical disk under VxVM control.

After installing VxVM on a host system, you must bring the contents of physical
disks under VxVM control by collecting the VM disks into disk groups and allocating
the disk group space to create logical volumes.

Bringing the contents of physical disks under VxVM control is accomplished only
if VxVM takes control of the physical disks and the disk is not under control of
another storage manager such as LVM.

For more information on how LVM and VM disks co-exist or how to convert LVM
disks to VM disks, see the Veritas Storage Foundation and High Availability Solutions
Solutions Guide.

VxVM creates virtual objects and makes logical connections between the objects.
The virtual objects are then used by VxVM to do storage management tasks.

The vxprint command displays detailed information about the VxVM objects that
exist on a system.

See the vxprint(1M) manual page.

Combining virtual objects in Veritas Volume Manager
Veritas Volume Manager (VxVM) virtual objects are combined to build volumes.
The virtual objects contained in volumes are VM disks, disk groups, subdisks, and
plexes. VxVM virtual objects are organized in the following ways:

■ VM disks are grouped into disk groups

■ Subdisks (each representing a specific region of a disk) are combined to form
plexes

■ Volumes are composed of one or more plexes

Figure 4-4 shows the connections between VxVM virtual objects and how they
relate to physical disks.

99How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Figure 4-4 Connection between objects in VxVM

vol01

vol01-01 vol02-01 vol02-02

vol02

Disk group

Volumes

vol01-01 vol02-01 vol02-02

disk01 disk02 disk03

Plexes

Subdisks

VM disks

Physical
disks

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

devname1 devname2 devname3

disk01-01 disk02-01 disk03-01

The disk group contains three VM disks which are used to create two volumes.
Volume vol01 is simple and has a single plex. Volume vol02 is a mirrored volume
with two plexes.

The various types of virtual objects (disk groups, VM disks, subdisks, plexes, and
volumes) are described in the following sections. Other types of objects exist in
Veritas Volume Manager, such as data change objects (DCOs), and volume sets,
to provide extended functionality.

Disk groups
A disk group is a collection of disks that share a common configuration and which
are managed by VxVM. A disk group configuration is a set of records with detailed
information about related VxVM objects, their attributes, and their connections. A
disk group name can be up to 31 characters long. Disk group names must not
contain periods (.).

100How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

See “VM disks” on page 101.

In releases before VxVM 4.0, the default disk group was rootdg (the root disk
group). For VxVM to function, the rootdg disk group had to exist and it had to
contain at least one disk. This requirement no longer exists. VxVM can work without
any disk groups configured (although you must set up at least one disk group before
you can create any volumes of other VxVM objects).

You can create additional disk groups when you need them. Disk groups allow you
to group disks into logical collections. A disk group and its components can be
moved as a unit from one host machine to another.

See “Reorganizing the contents of disk groups” on page 852.

Volumes are created within a disk group. A given volume and its plexes and subdisks
must be configured from disks in the same disk group.

VM disks
When you place a physical disk under VxVM control, a VM disk is assigned to the
physical disk. A VM disk is under VxVM control and is usually in a disk group. Each
VM disk corresponds to at least one physical disk or disk partition. VxVM allocates
storage from a contiguous area of VxVM disk space.

A VM disk typically includes a public region (allocated storage) and a small private
region where VxVM internal configuration information is stored.

Each VM disk has a unique disk media name (a virtual disk name). You can either
define a disk name of up to 31 characters, or allow VxVM to assign a default name
that takes the form diskgroup##, where diskgroup is the name of the disk group
to which the disk belongs.

See “Disk groups” on page 100.

Figure 4-5 shows a VM disk with a media name of disk01 that is assigned to the
physical disk, devname.

101How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Figure 4-5 VM disk example

disk01 VM disk

Physical disk
devname

Subdisks
A subdisk is a set of contiguous disk blocks. A block is a unit of space on the disk.
VxVM allocates disk space using subdisks. A VM disk can be divided into one or
more subdisks. Each subdisk represents a specific portion of a VM disk, which is
mapped to a specific region of a physical disk.

The default name for a VM disk is diskgroup## and the default name for a subdisk
is diskgroup##-##, where diskgroup is the name of the disk group to which the
disk belongs.

See “Disk groups” on page 100.

Figure 4-6 shows disk01-01 is the name of the first subdisk on the VM disk named
disk01.

Figure 4-6 Subdisk example

Subdisk

VM disk with one subdisk
disk01

disk01-01

disk01-01

A VM disk can contain multiple subdisks, but subdisks cannot overlap or share the
same portions of a VM disk. To ensure integrity, VxVM rejects any commands that
try to create overlapping subdisks.

Figure 4-7 shows a VM disk with three subdisks, which are assigned from one
physical disk.

102How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Figure 4-7 Example of three subdisks assigned to one VM Disk

Subdisks

VM disk with three subdisks

disk01

disk01-01
disk01-02
disk01-03

disk01-02 disk01-03disk01-01

Any VM disk space that is not part of a subdisk is free space. You can use free
space to create new subdisks.

Plexes
Veritas Volume Manager (VxVM) uses subdisks to build virtual objects called plexes.
A plex consists of one or more subdisks located on one or more physical disks.

Figure 4-8 shows an example of a plex with two subdisks.

Figure 4-8 Example of a plex with two subdisks

Plex with two subdisks

Subdisks

vol01-01

disk01-01 disk01-02

disk01-01 disk01-02

You can organize data on subdisks to form a plex by using the following methods:

■ concatenation

■ striping (RAID-0)

■ mirroring (RAID-1)

■ striping with parity (RAID-5)

Concatenation, striping (RAID-0), mirroring (RAID-1), and RAID-5 are types of
volume layouts.

See “Volume layouts in Veritas Volume Manager” on page 106.

103How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Volumes
A volume is a virtual disk device that appears to applications, databases, and file
systems like a physical disk device, but does not have the physical limitations of a
physical disk device. A volume consists of one or more plexes, each holding a copy
of the selected data in the volume. Due to its virtual nature, a volume is not restricted
to a particular disk or a specific area of a disk. The configuration of a volume can
be changed by using VxVM user interfaces. Configuration changes can be
accomplished without causing disruption to applications or file systems that are
using the volume. For example, a volume can be mirrored on separate disks or
moved to use different disk storage.

VxVM uses the default naming conventions of vol## for volumes and vol##-##

for plexes in a volume. For ease of administration, you can choose to select more
meaningful names for the volumes that you create.

A volume may be created under the following constraints:

■ Its name can contain up to 31 characters.

■ It can consist of up to 32 plexes, each of which contains one or more subdisks.

■ It must have at least one associated plex that has a complete copy of the data
in the volume with at least one associated subdisk.

■ All subdisks within a volume must belong to the same disk group.

Figure 4-9 shows a volume vol01 with a single plex.

Figure 4-9 Example of a volume with one plex

Volume with one plex

Plex with one subdisk

vol01

vol01-01

vol01-01

disk01-01

The volume vol01 has the following characteristics:

■ It contains one plex named vol01-01.

■ The plex contains one subdisk named disk01-01.

■ The subdisk disk01-01 is allocated from VM disk disk01.

Figure 4-10 shows a mirrored volume vol06 with two data plexes.

104How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

Figure 4-10 Example of a volume with two plexes

Volume with two plexes

Plexes

vol06-01 vol06-02

vol06

vol06-01 vol06-02

disk01-01 disk02-01

Each plex of the mirror contains a complete copy of the volume data.

The volume vol06 has the following characteristics:

■ It contains two plexes named vol06-01 and vol06-02.

■ Each plex contains one subdisk.

■ Each subdisk is allocated from a different VM disk (disk01 and disk02).

See “Mirroring (RAID-1)” on page 113.

VxVM supports the concept of layered volumes in which subdisks can contain
volumes.

See “About layered volumes” on page 121.

About the configuration daemon in Veritas Volume Manager
The Veritas Volume Manager (VxVM) configuration daemon (vxconfigd) provides
the interface between VxVM commands and the kernel device drivers. vxconfigd
handles configuration change requests from VxVM utilities, communicates the
change requests to the VxVM kernel, and modifies configuration information stored
on disk. vxconfigd also initializes VxVM when the system is booted.

The vxdctl command is the command-line interface to the vxconfigd daemon.

You can use vxdctl to:

■ Control the operation of the vxconfigd daemon.

■ Change the system-wide definition of the default disk group.

In VxVM 4.0 and later releases, disk access records are no longer stored in the
/etc/vx/volboot file. Non-persistent disk access records are created by scanning
the disks at system startup. Persistent disk access records for simple and nopriv

disks are permanently stored in the /etc/vx/darecs file in the root file system.

105How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

The vxconfigd daemon reads the contents of this file to locate the disks and the
configuration databases for their disk groups.

The /etc/vx/darecs file is also used to store definitions of foreign devices that
are not autoconfigurable. Such entries may be added by using the vxddladm

addforeign command.

See the vxddladm(1M) manual page.

If your system is configured to use Dynamic Multi-Pathing (DMP), you can also use
vxdctl to:

■ Reconfigure the DMP database to include disk devices newly attached to, or
removed from the system.

■ Create DMP device nodes in the /dev/vx/dmp and /dev/vx/rdmp directories.

■ Update the DMP database with changes in path type for active/passive disk
arrays. Use the utilities provided by the disk-array vendor to change the path
type between primary and secondary.

See the vxdctl(1M) manual page.

Multiple paths to disk arrays
Some disk arrays provide multiple ports to access their disk devices. These ports,
coupled with the host bus adaptor (HBA) controller and any data bus or I/O processor
local to the array, make up multiple hardware paths to access the disk devices.
Such disk arrays are called multipathed disk arrays. This type of disk array can be
connected to host systems in many different configurations, (such as multiple ports
connected to different controllers on a single host, chaining of the ports through a
single controller on a host, or ports connected to different hosts simultaneously).

See “How DMP works” on page 179.

Volume layouts in Veritas Volume Manager
A Veritas Volume Manager (VxVM) virtual device is defined by a volume. A volume
has a layout defined by the association of a volume to one or more plexes, each
of which map to one or more subdisks. The volume presents a virtual device interface
that is exposed to other applications for data access. These logical building blocks
re-map the volume address space through which I/O is re-directed at run-time.

Different volume layouts provide different levels of availability and performance. A
volume layout can be configured and changed to provide the desired level of service.

106How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Non-layered volumes
In a non-layered volume, a subdisk maps directly to a VM disk. This allows the
subdisk to define a contiguous extent of storage space backed by the public region
of a VM disk. When active, the VM disk is directly associated with an underlying
physical disk. The combination of a volume layout and the physical disks therefore
determines the storage service available from a given virtual device.

Layered volumes
A layered volume is constructed by mapping its subdisks to underlying volumes.
The subdisks in the underlying volumes must map to VM disks, and hence to
attached physical storage.

Layered volumes allow for more combinations of logical compositions, some of
which may be desirable for configuring a virtual device. For example, layered
volumes allow for high availability when using striping. Because permitting free use
of layered volumes throughout the command level would have resulted in unwieldy
administration, some ready-made layered volume configurations are designed into
VxVM.

See “About layered volumes” on page 121.

These ready-made configurations operate with built-in rules to automatically match
desired levels of service within specified constraints. The automatic configuration
is done on a “best-effort” basis for the current command invocation working against
the current configuration.

To achieve the desired storage service from a set of virtual devices, it may be
necessary to include an appropriate set of VM disks into a disk group and to execute
multiple configuration commands.

To the extent that it can, VxVM handles initial configuration and on-line
re-configuration with its set of layouts and administration interface to make this job
easier and more deterministic.

Layout methods
Data in virtual objects is organized to create volumes by using the following layout
methods:

■ Concatenation, spanning, and carving
See “Concatenation, spanning, and carving” on page 108.

■ Striping (RAID-0)
See “Striping (RAID-0)” on page 110.

■ Mirroring (RAID-1)

107How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

See “Mirroring (RAID-1)” on page 113.

■ Striping plus mirroring (mirrored-stripe or RAID-0+1)
See “Striping plus mirroring (mirrored-stripe or RAID-0+1)” on page 114.

■ Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)
See “Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)” on page 115.

■ RAID-5 (striping with parity)
See “RAID-5 (striping with parity)” on page 116.

Concatenation, spanning, and carving
Concatenation maps data in a linear manner onto one or more subdisks in a plex.
To access all of the data in a concatenated plex sequentially, data is first accessed
in the first subdisk from the beginning to the end. Data is then accessed in the
remaining subdisks sequentially from the beginning to the end of each subdisk,
until the end of the last subdisk.

The subdisks in a concatenated plex do not have to be physically contiguous and
can belong to more than one VM disk. Concatenation using subdisks that reside
on more than one VM disk is called spanning.

Figure 4-11 shows the concatenation of two subdisks from the same VM disk.

If a single LUN or disk is split into multiple subdisks, and each subdisk belongs to
a unique volume, it is called carving.

108How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-11 Example of concatenation

Plex with concatenated subdisks

Data blocks

Subdisks

VM disk

Physical disk

disk01-01

Data in
disk01-01

Data in
disk01-03

disk01-03

disk01-02disk01-01 disk01-03

devname

disk01-01 disk01-03

disk01

n n+1 n+2 n+3

n n+1 n+2 n+3

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks on the same
physical disk.

The remaining free space in the subdisk disk01-02 on VM disk disk01 can be put
to other uses.

You can use concatenation with multiple subdisks when there is insufficient
contiguous space for the plex on any one disk. This form of concatenation can be
used for load balancing between disks, and for head movement optimization on a
particular disk.

Figure 4-12 shows data spread over two subdisks in a spanned plex.

109How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-12 Example of spanning

Plex with concatenated subdisks

Data blocks

Subdisks

VM disks

Physical disks

disk01-01

Data in
disk01-01

Data in
disk02-01

disk02-01

disk01-01 disk02-01

disk01

n n+1 n+2 n+3

devname1

n n+1 n+2

devname2

disk01-01
disk02

disk02-02disk02-01

n+3

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks from two distinct
physical disks.

The remaining free space in the subdisk disk02-02 on VM disk disk02 can be put
to other uses.

Warning: Spanning a plex across multiple disks increases the chance that a disk
failure results in failure of the assigned volume. Use mirroring or RAID-5 to reduce
the risk that a single disk failure results in a volume failure.

Striping (RAID-0)
Striping (RAID-0) is useful if you need large amounts of data written to or read from
physical disks, and performance is important. Striping is also helpful in balancing
the I/O load from multi-user applications across multiple disks. By using parallel
data transfer to and from multiple disks, striping significantly improves data-access
performance.

Striping maps data so that the data is interleaved among two or more physical disks.
A striped plex contains two or more subdisks, spread out over two or more physical
disks. Data is allocated alternately and evenly to the subdisks of a striped plex.

110How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

The subdisks are grouped into “columns,” with each physical disk limited to one
column. Each column contains one or more subdisks and can be derived from one
or more physical disks. The number and sizes of subdisks per column can vary.
Additional subdisks can be added to columns, as necessary.

Warning: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure will result in failure of that volume.

If five volumes are striped across the same five disks, then failure of any one of the
five disks will require that all five volumes be restored from a backup. If each volume
is on a separate disk, only one volume has to be restored. (As an alternative to or
in conjunction with striping, use mirroring or RAID-5 to substantially reduce the
chance that a single disk failure results in failure of a large number of volumes.)

Data is allocated in equal-sized stripe units that are interleaved between the columns.
Each stripe unit is a set of contiguous blocks on a disk. The default stripe unit size
is 64 kilobytes.

Figure 4-13 shows an example with three columns in a striped plex, six stripe units,
and data striped over the three columns.

Figure 4-13 Striping across three columns

Stripe 1

Plex

Column 0 Column 1

stripe unit
2

stripe unit
1

Column 2

Subdisk
1

Subdisk
2

Subdisk
3

stripe unit
3

stripe unit
5

stripe unit
4

stripe unit
6Stripe 2

111How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

A stripe consists of the set of stripe units at the same positions across all columns.
In the figure, stripe units 1, 2, and 3 constitute a single stripe.

Viewed in sequence, the first stripe consists of:

■ stripe unit 1 in column 0

■ stripe unit 2 in column 1

■ stripe unit 3 in column 2

The second stripe consists of:

■ stripe unit 4 in column 0

■ stripe unit 5 in column 1

■ stripe unit 6 in column 2

Striping continues for the length of the columns (if all columns are the same length),
or until the end of the shortest column is reached. Any space remaining at the end
of subdisks in longer columns becomes unused space.

Figure 4-14 shows a striped plex with three equal sized, single-subdisk columns.

Figure 4-14 Example of a striped plex with one subdisk per column

Subdisks

Striped plex

Stripe units

VM disks
disk01-01 disk02-01 disk03-01

Column 0

Physical disk
devname1

su1 su2 su3 su4

su1 su4

devname2

su2 su5

devname3

su3 su6

su5 su6

disk01-01

Column 1

disk02 disk03disk01

disk02-01

Column 2

disk03-01

disk01-01 disk02-01 disk03-01

There is one column per physical disk. This example shows three subdisks that
occupy all of the space on the VM disks. It is also possible for each subdisk in a

112How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

striped plex to occupy only a portion of the VM disk, which leaves free space for
other disk management tasks.

Figure 4-15 shows a striped plex with three columns containing subdisks of different
sizes.

Figure 4-15 Example of a striped plex with concatenated subdisks per column

Subdisks

Striped plex

Stripe units

VM disks

Column 0

Physical disks
devname1

su1 su2 su3 su4

su1 su4

devname2

su2 su5

devname3

su3 su6

su5 su6

disk01-01

Column 1

disk02 disk03disk01

disk02-01

disk02-02

Column 2

disk03-01

disk03-02

disk03-03

disk01-01
disk02-01

disk02-02

disk03-01

disk03-02

disk03-03

disk01-01
disk02-01

disk02-02

disk03-01

disk03-02

disk03-03

Each column contains a different number of subdisks. There is one column per
physical disk. Striped plexes can be created by using a single subdisk from each
of the VM disks being striped across. It is also possible to allocate space from
different regions of the same disk or from another disk (for example, if the size of
the plex is increased). Columns can also contain subdisks from different VM disks.

See “Creating a striped volume” on page 223.

Mirroring (RAID-1)
Mirroring uses multiple mirrors (plexes) to duplicate the information contained in a
volume. In the event of a physical disk failure, the plex on the failed disk becomes

113How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

unavailable, but the system continues to operate using the unaffected mirrors.
Similarly, mirroring two LUNs from two separate controllers lets the system operate
if there is a controller failure.

Although a volume can have a single plex, at least two plexes are required to provide
redundancy of data. Each of these plexes must contain disk space from different
disks to achieve redundancy.

When striping or spanning across a large number of disks, failure of any one of
those disks can make the entire plex unusable. Because the likelihood of one out
of several disks failing is reasonably high, you should consider mirroring to improve
the reliability (and availability) of a striped or spanned volume.

See “Creating a mirrored volume” on page 221.

Striping plus mirroring (mirrored-stripe or RAID-0+1)
VxVM supports the combination of mirroring above striping. The combined layout
is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual benefits
of striping to spread data across multiple disks, while mirroring provides redundancy
of data.

For mirroring above striping to be effective, the striped plex and its mirrors must be
allocated from separate disks.

Figure 4-16 shows an example where two plexes, each striped across three disks,
are attached as mirrors to the same volume to create a mirrored-stripe volume.

Figure 4-16 Mirrored-stripe volume laid out on six disks

Striped
plex

Mirror

column 0 column 1 column 2

column 0 column 1 column 2

Mirrored-stripe
volume

Striped
plex

See “Creating a mirrored-stripe volume” on page 223.

The layout type of the data plexes in a mirror can be concatenated or striped. Even
if only one is striped, the volume is still termed a mirrored-stripe volume. If they are
all concatenated, the volume is termed a mirrored-concatenated volume.

114How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)
Veritas Volume Manager (VxVM) supports the combination of striping above
mirroring. This combined layout is called a striped-mirror layout. Putting mirroring
below striping mirrors each column of the stripe. If there are multiple subdisks per
column, each subdisk can be mirrored individually instead of each column.

A striped-mirror volume is an example of a layered volume.

See “About layered volumes” on page 121.

As for a mirrored-stripe volume, a striped-mirror volume offers the dual benefits of
striping to spread data across multiple disks, while mirroring provides redundancy
of data. In addition, it enhances redundancy, and reduces recovery time after disk
failure.

Figure 4-17 shows an example where a striped-mirror volume is created by using
each of three existing 2-disk mirrored volumes to form a separate column within a
striped plex.

Figure 4-17 Striped-mirror volume laid out on six disks

Striped plex

Mirror

column 0 column 1

column 0 column 1

Striped-mirror
volume

Underlying mirrored volumes

column 2

column 2

See “Creating a striped-mirror volume” on page 224.

Figure 4-18 shows that the failure of a disk in a mirrored-stripe layout detaches an
entire data plex, thereby losing redundancy on the entire volume.

115How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-18 How the failure of a single disk affects mirrored-stripe and
striped-mirror volumes

Striped plex

Failure of disk detaches plex

Detached
striped plex

Mirror

Mirrored-stripe volume
with no

redundancy

Striped plex

Mirror

Striped-mirror volume
with partial
redundancy

Failure of disk removes redundancy from a mirror

When the disk is replaced, the entire plex must be brought up to date. Recovering
the entire plex can take a substantial amount of time. If a disk fails in a striped-mirror
layout, only the failing subdisk must be detached, and only that portion of the volume
loses redundancy. When the disk is replaced, only a portion of the volume needs
to be recovered. Additionally, a mirrored-stripe volume is more vulnerable to being
put out of use altogether should a second disk fail before the first failed disk has
been replaced, either manually or by hot-relocation.

Compared to mirrored-stripe volumes, striped-mirror volumes are more tolerant of
disk failure, and recovery time is shorter.

If the layered volume concatenates instead of striping the underlying mirrored
volumes, the volume is termed a concatenated-mirror volume.

RAID-5 (striping with parity)
Although both mirroring (RAID-1) and RAID-5 provide redundancy of data, they
use different methods. Mirroring provides data redundancy by maintaining multiple
complete copies of the data in a volume. Data being written to a mirrored volume

116How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

is reflected in all copies. If a portion of a mirrored volume fails, the system continues
to use the other copies of the data.

RAID-5 provides data redundancy by using parity. Parity is a calculated value used
to reconstruct data after a failure. While data is being written to a RAID-5 volume,
parity is calculated by doing an exclusive OR (XOR) procedure on the data. The
resulting parity is then written to the volume. The data and calculated parity are
contained in a plex that is “striped” across multiple disks. If a portion of a RAID-5
volume fails, the data that was on that portion of the failed volume can be recreated
from the remaining data and parity information. It is also possible to mix
concatenation and striping in the layout.

Figure 4-19 shows parity locations in a RAID-5 array configuration.

Figure 4-19 Parity locations in a RAID-5 model

Data

Data
Parity

DataStripe 1

Parity
Data
Data

Data
Data
Parity

Data
Data

Stripe 2
Stripe 3
Stripe 4

Parity

Every stripe has a column containing a parity stripe unit and columns containing
data. The parity is spread over all of the disks in the array, reducing the write time
for large independent writes because the writes do not have to wait until a single
parity disk can accept the data.

RAID-5 volumes can additionally perform logging to minimize recovery time. RAID-5
volumes use RAID-5 logs to keep a copy of the data and parity currently being
written. RAID-5 logging is optional and can be created along with RAID-5 volumes
or added later.

See “Veritas Volume Manager RAID-5 arrays” on page 118.

Note: Veritas Volume Manager (VxVM) supports RAID-5 for private disk groups,
but not for shareable disk groups in a Cluster Volume Manager (CVM) environment.
In addition, VxVM does not support the mirroring of RAID-5 volumes that are
configured using VxVM software. RAID-5 LUNs hardware may be mirrored.

Traditional RAID-5 arrays
A traditional RAID-5 array is several disks organized in rows and columns. A column
is a number of disks located in the same ordinal position in the array. A row is the
minimal number of disks necessary to support the full width of a parity stripe.

117How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-20 shows the row and column arrangement of a traditional RAID-5 array.

Figure 4-20 Traditional RAID-5 array

Row 0

Row 1

Column 0 Column 1 Column 2 Column 3

Stripe 1
Stripe3

Stripe 2

This traditional array structure supports growth by adding more rows per column.
Striping is accomplished by applying the first stripe across the disks in Row 0, then
the second stripe across the disks in Row 1, then the third stripe across the Row
0 disks, and so on. This type of array requires all disks columns and rows to be of
equal size.

Veritas Volume Manager RAID-5 arrays
The RAID-5 array structure in Veritas Volume Manager (VxVM) differs from the
traditional structure. Due to the virtual nature of its disks and other objects, VxVM
does not use rows.

Figure 4-21 shows how VxVM uses columns consisting of variable length subdisks,
where each subdisk represents a specific area of a disk.

118How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-21 Veritas Volume Manager RAID-5 array

Stripe 1
Stripe 2

Column 0 Column 1 Column 2 Column 3

SD

SD

SD

SD

SD

SD

SD SD = subdiskSD

VxVM allows each column of a RAID-5 plex to consist of a different number of
subdisks. The subdisks in a given column can be derived from different physical
disks. Additional subdisks can be added to the columns as necessary. Striping is
implemented by applying the first stripe across each subdisk at the top of each
column, then applying another stripe below that, and so on for the length of the
columns. Equal-sized stripe units are used for each column. For RAID-5, the default
stripe unit size is 16 kilobytes.

See “Striping (RAID-0)” on page 110.

Note: Mirroring of RAID-5 volumes is not supported.

See “Creating a RAID-5 volume” on page 224.

Left-symmetric layout
There are several layouts for data and parity that can be used in the setup of a
RAID-5 array. The implementation of RAID-5 in VxVM uses a left-symmetric layout.
This provides optimal performance for both random I/O operations and large
sequential I/O operations. However, the layout selection is not as critical for
performance as are the number of columns and the stripe unit size.

Left-symmetric layout stripes both data and parity across columns, placing the parity
in a different column for every stripe of data. The first parity stripe unit is located in
the rightmost column of the first stripe. Each successive parity stripe unit is located

119How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

in the next stripe, shifted left one column from the previous parity stripe unit location.
If there are more stripes than columns, the parity stripe unit placement begins in
the rightmost column again.

Figure 4-22 shows a left-symmetric parity layout with five disks (one per column).

Figure 4-22 Left-symmetric layout

Data stripe unit

Parity stripe unit
Column

Stripe

0

5

10

15

P4

1

6

11

P3

16

2

7

P2

12

17

3

P1

8

13

18

P0

4

9

14

19

For each stripe, data is organized starting to the right of the parity stripe unit. In the
figure, data organization for the first stripe begins at P0 and continues to stripe units
0-3. Data organization for the second stripe begins at P1, then continues to stripe
unit 4, and on to stripe units 5-7. Data organization proceeds in this manner for the
remaining stripes.

Each parity stripe unit contains the result of an exclusive OR (XOR) operation
performed on the data in the data stripe units within the same stripe. If one column’s
data is inaccessible due to hardware or software failure, the data for each stripe
can be restored by XORing the contents of the remaining columns data stripe units
against their respective parity stripe units.

For example, if a disk corresponding to the whole or part of the far left column fails,
the volume is placed in a degraded mode. While in degraded mode, the data from
the failed column can be recreated by XORing stripe units 1-3 against parity stripe
unit P0 to recreate stripe unit 0, then XORing stripe units 4, 6, and 7 against parity
stripe unit P1 to recreate stripe unit 5, and so on.

Failure of more than one column in a RAID-5 plex detaches the volume. The volume
is no longer allowed to satisfy read or write requests. Once the failed columns have
been recovered, it may be necessary to recover user data from backups.

120How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

RAID-5 logging
Logging is used to prevent corruption of data during recovery by immediately
recording changes to data and parity to a log area on a persistent device such as
a volume on disk or in non-volatile RAM. The new data and parity are then written
to the disks.

Without logging, it is possible for data not involved in any active writes to be lost or
silently corrupted if both a disk in a RAID-5 volume and the system fail. If this
double-failure occurs, there is no way of knowing if the data being written to the
data portions of the disks or the parity being written to the parity portions have
actually been written. Therefore, the recovery of the corrupted disk may be corrupted
itself.

Figure 4-23 shows a RAID-5 volume configured across three disks (A, B, and C).

Figure 4-23 Incomplete write to a RAID-5 volume

Disk A

Completed
data write

Corrupted data Incomplete
parity write

Disk B Disk C

In this volume, recovery of disk B’s corrupted data depends on disk A’s data and
disk C’s parity both being complete. However, only the data write to disk A is
complete. The parity write to disk C is incomplete, which would cause the data on
disk B to be reconstructed incorrectly.

This failure can be avoided by logging all data and parity writes before committing
them to the array. In this way, the log can be replayed, causing the data and parity
updates to be completed before the reconstruction of the failed drive takes place.

Logs are associated with a RAID-5 volume by being attached as log plexes. More
than one log plex can exist for each RAID-5 volume, in which case the log areas
are mirrored.

About layered volumes
A layered volume is a virtual Veritas Volume Manager (VxVM) object that is built
on top of other volumes. The layered volume structure tolerates failure better and
has greater redundancy than the standard volume structure. For example, in a
striped-mirror layered volume, each mirror (plex) covers a smaller area of storage
space, so recovery is quicker than with a standard mirrored volume.

121How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 4-24 shows a typical striped-mirror layered volume where each column is
represented by a subdisk that is built from an underlying mirrored volume.

Figure 4-24 Example of a striped-mirror layered volume

Concatenated
plexes

Underlying
mirrored
volumes

Subdisks

Striped plex

Striped mirror
volume

Managed
by user

Managed
by VxVM

Subdisks on
VM disksdisk04-01 disk05-01 disk06-01 disk07-01

disk04-01 disk05-01 disk06-01 disk07-01

vop01 vop02

vop02vop01

vol01-01

Column 1Column 0

vol01

vol01-01

The volume and striped plex in the “Managed by user” area allow you to perform
normal tasks in VxVM. User tasks can be performed only on the top-level volume
of a layered volume.

Underlying volumes in the “Managed by VxVM” area are used exclusively by VxVM
and are not designed for user manipulation. You cannot detach a layered volume
or perform any other operation on the underlying volumes by manipulating the
internal structure. You can perform all necessary operations in the “Managed by
user” area that includes the top-level volume and striped plex (for example, resizing
the volume, changing the column width, or adding a column).

System administrators can manipulate the layered volume structure for
troubleshooting or other operations (for example, to place data on specific disks).
Layered volumes are used by VxVM to perform the following tasks and operations:

122How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

See “Creating a striped-mirror volume” on page 224.

See the vxassist(1M) manual page.

Creating striped-mirrors

See “Creating a concatenated-mirror volume”
on page 222.

See the vxassist(1M) manual page.

Creating concatenated-mirrors

See “Online relayout” on page 123.

See the vxassist(1M) manual page.

See the vxrelayout(1M) manual page.

Online Relayout

See the vxsd(1M) manual page.Moving RAID-5 subdisks

See “Volume snapshots” on page 132.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Creating Snapshots

Online relayout
Online relayout allows you to convert between storage layouts in VxVM, with
uninterrupted data access. Typically, you would do this to change the redundancy
or performance characteristics of a volume. VxVM adds redundancy to storage
either by duplicating the data (mirroring) or by adding parity (RAID-5). Performance
characteristics of storage in VxVM can be changed by changing the striping
parameters, which are the number of columns and the stripe width.

See “Performing online relayout” on page 869.

How online relayout works
Online relayout allows you to change the storage layouts that you have already
created in place without disturbing data access. You can change the performance
characteristics of a particular layout to suit your changed requirements. You can
transform one layout to another by invoking a single command.

For example, if a striped layout with a 128KB stripe unit size is not providing optimal
performance, you can use relayout to change the stripe unit size.

File systems mounted on the volumes do not need to be unmounted to achieve this
transformation provided that the file system (such as Veritas File System) supports
online shrink and grow operations.

Online relayout reuses the existing storage space and has space allocation policies
to address the needs of the new layout. The layout transformation process converts

123How Veritas Volume Manager works
Online relayout

a given volume to the destination layout by using minimal temporary space that is
available in the disk group.

The transformation is done by moving one portion of data at a time in the source
layout to the destination layout. Data is copied from the source volume to the
temporary area, and data is removed from the source volume storage area in
portions. The source volume storage area is then transformed to the new layout,
and the data saved in the temporary area is written back to the new layout. This
operation is repeated until all the storage and data in the source volume has been
transformed to the new layout.

The default size of the temporary area used during the relayout depends on the
size of the volume and the type of relayout. For volumes larger than 50MB, the
amount of temporary space that is required is usually 10% of the size of the volume,
from a minimum of 50MB up to a maximum of 1GB. For volumes smaller than 50MB,
the temporary space required is the same as the size of the volume.

The following error message displays the number of blocks required if there is
insufficient free space available in the disk group for the temporary area:

tmpsize too small to perform this relayout (nblks minimum required)

You can override the default size used for the temporary area by using the tmpsize

attribute to vxassist.

See the vxassist(1M) manual page.

As well as the temporary area, space is required for a temporary intermediate
volume when increasing the column length of a striped volume. The amount of
space required is the difference between the column lengths of the target and source
volumes. For example, 20GB of temporary additional space is required to relayout
a 150GB striped volume with 5 columns of length 30GB as 3 columns of length
50GB. In some cases, the amount of temporary space that is required is relatively
large. For example, a relayout of a 150GB striped volume with 5 columns as a
concatenated volume (with effectively one column) requires 120GB of space for
the intermediate volume.

Additional permanent disk space may be required for the destination volumes,
depending on the type of relayout that you are performing. This may happen, for
example, if you change the number of columns in a striped volume.

Figure 4-25 shows how decreasing the number of columns can require disks to be
added to a volume.

124How Veritas Volume Manager works
Online relayout

Figure 4-25 Example of decreasing the number of columns in a volume

Three columns of length 5L/3Five columns of length L

Note that the size of the volume remains the same but an extra disk is needed to
extend one of the columns.

The following are examples of operations that you can perform using online relayout:

■ Remove parity from a RAID-5 volume to change it to a concatenated, striped,
or layered volume.
Figure 4-26 shows an example of applying relayout a RAID-5 volume.

Figure 4-26 Example of relayout of a RAID-5 volume to a striped volume

RAID-5 volume Striped volume

Note that removing parity decreases the overall storage space that the volume
requires.

■ Add parity to a volume to change it to a RAID-5 volume.
Figure 4-27 shows an example.

Figure 4-27 Example of relayout of a concatenated volume to a RAID-5
volume

RAID-5 volume

Concatenated
volume

Note that adding parity increases the overall storage space that the volume requires.

125How Veritas Volume Manager works
Online relayout

■ Change the number of columns in a volume.
Figure 4-28 shows an example of changing the number of columns.

Figure 4-28 Example of increasing the number of columns in a volume

Two columns Three columns

Note that the length of the columns is reduced to conserve the size of the volume.

■ Change the column stripe width in a volume.
Figure 4-29 shows an example of changing the column stripe width.

Figure 4-29 Example of increasing the stripe width for the columns in a volume

See “Performing online relayout” on page 869.

See “Permitted relayout transformations” on page 870.

Limitations of online relayout
Note the following limitations of online relayout:

■ Log plexes cannot be transformed.

■ Volume snapshots cannot be taken when there is an online relayout operation
running on the volume.

■ Online relayout cannot create a non-layered mirrored volume in a single step.
It always creates a layered mirrored volume even if you specify a non-layered
mirrored layout, such as mirror-stripe or mirror-concat. Use the vxassist

convert command to turn the layered mirrored volume that results from a
relayout into a non-layered volume.

126How Veritas Volume Manager works
Online relayout

■ The usual restrictions apply for the minimum number of physical disks that are
required to create the destination layout. For example, mirrored volumes require
at least as many disks as mirrors, striped and RAID-5 volumes require at least
as many disks as columns, and striped-mirror volumes require at least as many
disks as columns multiplied by mirrors.

■ To be eligible for layout transformation, the plexes in a mirrored volume must
have identical stripe widths and numbers of columns. Relayout is not possible
unless you make the layouts of the individual plexes identical.

■ Online relayout cannot transform sparse plexes, nor can it make any plex sparse.
(A sparse plex is a plex that is not the same size as the volume, or that has
regions that are not mapped to any subdisk.)

■ The number of mirrors in a mirrored volume cannot be changed using relayout.
Instead, use alternative commands, such as the vxassist mirror command.

■ Only one relayout may be applied to a volume at a time.

Transformation characteristics
Transformation of data from one layout to another involves rearrangement of data
in the existing layout to the new layout. During the transformation, online relayout
retains data redundancy by mirroring any temporary space used. Read and write
access to data is not interrupted during the transformation.

Data is not corrupted if the system fails during a transformation. The transformation
continues after the system is restored and both read and write access are
maintained.

You can reverse the layout transformation process at any time, but the data may
not be returned to the exact previous storage location. Before you reverse a
transformation that is in process, you must stop it.

You can determine the transformation direction by using the vxrelayout status

volume command.

These transformations are protected against I/O failures if there is sufficient
redundancy and space to move the data.

Transformations and volume length
Some layout transformations can cause the volume length to increase or decrease.
If either of these conditions occurs, online relayout uses the vxresize command
to shrink or grow a file system.

127How Veritas Volume Manager works
Online relayout

Volume resynchronization
When storing data redundantly and using mirrored or RAID-5 volumes, VxVM
ensures that all copies of the data match exactly. However, under certain conditions
(usually due to complete system failures), some redundant data on a volume can
become inconsistent or unsynchronized. The mirrored data is not exactly the same
as the original data. Except for normal configuration changes (such as detaching
and reattaching a plex), this can only occur when a system crashes while data is
being written to a volume.

Data is written to the mirrors of a volume in parallel, as is the data and parity in a
RAID-5 volume. If a system crash occurs before all the individual writes complete,
it is possible for some writes to complete while others do not. This can result in the
data becoming unsynchronized. For mirrored volumes, it can cause two reads from
the same region of the volume to return different results, if different mirrors are used
to satisfy the read request. In the case of RAID-5 volumes, it can lead to parity
corruption and incorrect data reconstruction.

VxVM ensures that all mirrors contain exactly the same data and that the data and
parity in RAID-5 volumes agree. This process is called volume resynchronization.
For volumes that are part of the disk group that is automatically imported at boot
time (usually aliased as the reserved system-wide disk group, bootdg),
resynchronization takes place when the system reboots.

Not all volumes require resynchronization after a system failure. Volumes that were
never written or that were quiescent (that is, had no active I/O) when the system
failure occurred could not have had outstanding writes and do not require
resynchronization.

Dirty flags
VxVM records when a volume is first written to and marks it as dirty. When a volume
is closed by all processes or stopped cleanly by the administrator, and all writes
have been completed, VxVM removes the dirty flag for the volume. Only volumes
that are marked dirty require resynchronization.

Resynchronization process
The process of resynchronization depends on the type of volume. For mirrored
volumes, resynchronization is done by placing the volume in recovery mode (also
called read-writeback recovery mode). Resynchronization of data in the volume is
done in the background. This allows the volume to be available for use while
recovery is taking place. RAID-5 volumes that contain RAID-5 logs can “replay”
those logs. If no logs are available, the volume is placed in reconstruct-recovery
mode and all parity is regenerated.

128How Veritas Volume Manager works
Volume resynchronization

Resynchronization can impact system performance. The recovery process reduces
some of this impact by spreading the recoveries to avoid stressing a specific disk
or controller.

For large volumes or for a large number of volumes, the resynchronization process
can take time. These effects can be minimized by using dirty region logging (DRL)
and FastResync (fast mirror resynchronization) for mirrored volumes, or by using
RAID-5 logs for RAID-5 volumes.

See “Dirty region logging” on page 129.

For mirrored volumes used by Oracle, you can use the SmartSync feature, which
further improves performance.

See “SmartSync recovery accelerator” on page 130.

Hot-relocation
Hot-relocation is a feature that allows a system to react automatically to I/O failures
on redundant objects (mirrored or RAID-5 volumes) in VxVM and restore redundancy
and access to those objects. VxVM detects I/O failures on objects and relocates
the affected subdisks. The subdisks are relocated to disks designated as spare
disks or to free space within the disk group. VxVM then reconstructs the objects
that existed before the failure and makes them accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks on
a disk), redundant data on the failed portion of the disk is relocated. Existing volumes
on the unaffected portions of the disk remain accessible.

See “How hot-relocation works” on page 807.

Dirty region logging
Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes after
a system crash. DRL tracks the regions that have changed due to I/O writes to a
mirrored volume. DRL uses this information to recover only those portions of the
volume.

If DRL is not used and a system failure occurs, all mirrors of the volumes must be
restored to a consistent state. Restoration is done by copying the full contents of
the volume between its mirrors. This process can be lengthy and I/O intensive.

Note:DRL adds a small I/O overhead for most write access patterns. This overhead
is reduced by using SmartSync.

129How Veritas Volume Manager works
Hot-relocation

If an instant snap DCO volume is associated with a volume, a portion of the DCO
volume can be used to store the DRL log. There is no need to create a separate
DRL log for a volume which has an instant snap DCO volume.

Log subdisks and plexes
DRL log subdisks store the dirty region log of a mirrored volume that has DRL
enabled. A volume with DRL has at least one log subdisk; multiple log subdisks
can be used to mirror the dirty region log. Each log subdisk is associated with one
plex of the volume. Only one log subdisk can exist per plex. If the plex contains
only a log subdisk and no data subdisks, that plex is referred to as a log plex.

The log subdisk can also be associated with a regular plex that contains data
subdisks. In that case, the log subdisk risks becoming unavailable if the plex must
be detached due to the failure of one of its data subdisks.

If the vxassist command is used to create a dirty region log, it creates a log plex
containing a single log subdisk by default. A dirty region log can also be set up
manually by creating a log subdisk and associating it with a plex. The plex then
contains both a log and data subdisks.

Sequential DRL
Some volumes, such as those that are used for database replay logs, are written
sequentially and do not benefit from delayed cleaning of the DRL bits. For these
volumes, sequential DRL can be used to limit the number of dirty regions. This
allows for faster recovery. However, if applied to volumes that are written to
randomly, sequential DRL can be a performance bottleneck as it limits the number
of parallel writes that can be carried out.

The maximum number of dirty regions allowed for sequential DRL is controlled by
a tunable as detailed in the description of voldrl_max_seq_dirty.

SmartSync recovery accelerator
The SmartSync feature of Veritas Volume Manager increases the availability of
mirrored volumes by only resynchronizing changed data. (The process of
resynchronizing mirrored databases is also sometimes referred to as resilvering.)
SmartSync reduces the time required to restore consistency, freeing more I/O
bandwidth for business-critical applications. SmartSync uses an extended interface
between VxVM volumes, VxFS file systems, and the Oracle database to avoid
unnecessary work during mirror resynchronization and to reduce the I/O overhead
of the DRL. For example, Oracle® automatically takes advantage of SmartSync to
perform database resynchronization when it is available.

130How Veritas Volume Manager works
Dirty region logging

Note: To use SmartSync with volumes that contain file systems, see the discussion
of the Oracle Resilvering feature of Veritas File System (VxFS).

The following section describes how to configure VxVM raw volumes and SmartSync.
The database uses the following types of volumes:

■ Data volumes are the volumes used by the database (control files and tablespace
files).

■ Redo log volumes contain redo logs of the database.

SmartSync works with these two types of volumes differently, so they must be
configured as described in the following sections.

Data volume configuration
The recovery takes place when the database software is started, not at system
startup. This reduces the overall impact of recovery when the system reboots.
Because the recovery is controlled by the database, the recovery time for the volume
is the resilvering time for the database (that is, the time required to replay the redo
logs).

Because the database keeps its own logs, it is not necessary for VxVM to do logging.
Data volumes should be configured as mirrored volumes without dirty region logs.
In addition to improving recovery time, this avoids any run-time I/O overhead due
to DRL, and improves normal database write access.

Redo log volume configuration
A redo log is a log of changes to the database data. Because the database does
not maintain changes to the redo logs, it cannot provide information about which
sections require resilvering. Redo logs are also written sequentially, and since
traditional dirty region logs are most useful with randomly-written data, they are of
minimal use for reducing recovery time for redo logs. However, VxVM can reduce
the number of dirty regions by modifying the behavior of its dirty region logging
feature to take advantage of sequential access patterns. Sequential DRL decreases
the amount of data needing recovery and reduces recovery time impact on the
system.

The enhanced interfaces for redo logs allow the database software to inform VxVM
when a volume is to be used as a redo log. This allows VxVM to modify the DRL
behavior of the volume to take advantage of the access patterns. Since the improved
recovery time depends on dirty region logs, redo log volumes should be configured
as mirrored volumes with sequential DRL.

See “Sequential DRL” on page 130.

131How Veritas Volume Manager works
Dirty region logging

Volume snapshots
Veritas Volume Manager provides the capability for taking an image of a volume
at a given point in time. Such an image is referred to as a volume snapshot. Such
snapshots should not be confused with file system snapshots, which are point-in-time
images of a Veritas File System.

Figure 4-30 shows how a snapshot volume represents a copy of an original volume
at a given point in time.

Figure 4-30 Volume snapshot as a point-in-time image of a volume

Snapshot volume is created
at time T2

Snapshot volume retains
image taken at time T2

Snapshot volume is updated
at time T4

Resynchronize snapshot volume
from the original volume

T1

T2

Original volume

Original volume Snapshot volume

Original volume Snapshot volume

Original volume Snapshot volumeT4

T3

Time

Even though the contents of the original volume can change, the snapshot volume
preserves the contents of the original volume as they existed at an earlier time.

The snapshot volume provides a stable and independent base for making backups
of the contents of the original volume, or for other applications such as decision
support. In the figure, the contents of the snapshot volume are eventually
resynchronized with the original volume at a later point in time.

Another possibility is to use the snapshot volume to restore the contents of the
original volume. This may be useful if the contents of the original volume have
become corrupted in some way.

Warning: If you write to the snapshot volume, it may no longer be suitable for use
in restoring the contents of the original volume.

132How Veritas Volume Manager works
Volume snapshots

One type of volume snapshot in VxVM is the third-mirror break-off type. This name
comes from its implementation where a snapshot plex (or third mirror) is added to
a mirrored volume. The contents of the snapshot plex are then synchronized from
the original plexes of the volume. When this synchronization is complete, the
snapshot plex can be detached as a snapshot volume for use in backup or decision
support applications. At a later time, the snapshot plex can be reattached to the
original volume, requiring a full resynchronization of the snapshot plex’s contents.

The FastResync feature was introduced to track writes to the original volume. This
tracking means that only a partial, and therefore much faster, resynchronization is
required on reattaching the snapshot plex. In later releases, the snapshot model
was enhanced to allow snapshot volumes to contain more than a single plex,
reattachment of a subset of a snapshot volume’s plexes, and persistence of
FastResync across system reboots or cluster restarts.

Release 4.0 of VxVM introduced full-sized instant snapshots and space-optimized
instant snapshots, which offer advantages over traditional third-mirror snapshots
such as immediate availability and easier configuration and administration. You
can also use the third-mirror break-off usage model with full-sized snapshots, where
this is necessary for write-intensive applications.

For information about how and when to use volume snapshots, see the Veritas
Storage Foundation and High Availability Solutions Solutions Guide.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Comparison of snapshot features
Table 4-1 compares the features of the various types of snapshots that are supported
in VxVM.

Table 4-1 Comparison of snapshot features for supported snapshot types

Break-off
(vxassist or
vxsnap)

Space-optimized
instant (vxsnap)

Full-sized
instant (vxsnap)

Snapshot feature

NoYesYesImmediately available for use
on creation

NoYesNoRequires less storage space
than original volume

YesNoYesCan be reattached to original
volume

133How Veritas Volume Manager works
Volume snapshots

Table 4-1 Comparison of snapshot features for supported snapshot types
(continued)

Break-off
(vxassist or
vxsnap)

Space-optimized
instant (vxsnap)

Full-sized
instant (vxsnap)

Snapshot feature

YesYesYesCan be used to restore
contents of original volume

NoYesYesCan quickly be refreshed
without being reattached

NoNoYesSnapshot hierarchy can be
split

YesNoYesCan be moved into separate
disk group from original
volume

YesNoYesCan be turned into an
independent volume

YesYesYesFastResync ability persists
across system reboots or
cluster restarts

NoNoYesSynchronization can be
controlled

YesNoYesCan be moved off-host

Full-sized instant snapshots are easier to configure and offer more flexibility of use
than do traditional third-mirror break-off snapshots. For preference, new volumes
should be configured to use snapshots that have been created using the vxsnap

command rather than using the vxassist command. Legacy volumes can also be
reconfigured to use vxsnap snapshots, but this requires rewriting of administration
scripts that assume the vxassist snapshot model.

FastResync

Note: Only certain Storage Foundation and High Availability Solutions products
have a license to use this feature.

134How Veritas Volume Manager works
FastResync

The FastResync feature (previously called Fast Mirror Resynchronization or FMR)
performs quick and efficient resynchronization of stale mirrors (a mirror that is not
synchronized). This feature increases the efficiency of the Veritas Volume Manager
(VxVM) snapshot mechanism, and improves the performance of operations such
as backup and decision support applications. Typically, these operations require
that the volume is quiescent, and that they are not impeded by updates to the
volume by other activities on the system. To achieve these goals, the snapshot
mechanism in VxVM creates an exact copy of a primary volume at an instant in
time. After a snapshot is taken, it can be accessed independently of the volume
from which it was taken.

In a Cluster Volume Manager (CVM) environment with shared access to storage,
it is possible to eliminate the resource contention and performance overhead of
using a snapshot simply by accessing it from a different node.

How FastResync works
FastResync provides the following enhancements to VxVM:

FastResync optimizes mirror resynchronization by keeping
track of updates to stored data that have been missed by
a mirror. (A mirror may be unavailable because it has been
detached from its volume, either automatically by VxVM
as the result of an error, or directly by an administrator
using a utility such as vxplex or vxassist. A returning
mirror is a mirror that was previously detached and is in
the process of being re-attached to its original volume as
the result of the vxrecover or vxplex att operation.)
When a mirror returns to service, only the updates that it
has missed need to be re-applied to resynchronize it. This
requires much less effort than the traditional method of
copying all the stored data to the returning mirror.

Once FastResync has been enabled on a volume, it does
not alter how you administer mirrors. The only visible effect
is that repair operations conclude more quickly.

Faster mirror resynchronization

FastResync allows you to refresh and re-use snapshots
rather than discard them. You can quickly re-associate
(snap back) snapshot plexes with their original volumes.
This reduces the system overhead required to perform
cyclical operations such as backups that rely on the volume
snapshots.

Re-use of snapshots

FastResync can be implemented in one of two ways:

135How Veritas Volume Manager works
FastResync

Non-persistent FastResync allocates its change maps in
memory. The maps do not reside on disk nor in persistent
store.

See “How non-persistent FastResync works with
snapshots” on page 136.

Non-persistent FastResync

Persistent FastResync keeps the FastResync maps on
disk so that they can survive system reboots, system
crashes and cluster crashes.

See “How persistent FastResync works with snapshots”
on page 137.

Persistent FastResync

How non-persistent FastResync works with snapshots
If FastResync is enabled on a volume before a snapshot is taken, the snapshot
feature of VxVM uses FastResync change tracking to record updates to the original
volume after a snapshot plex is created. When the snapback option is used to
reattach the snapshot plex, the changes that FastResync recorded are used to
resynchronize the volume during the snapback. This behavior considerably reduces
the time needed to resynchronize the volume.

Non-persistent FastResync uses a map in memory to implement change tracking.
The map does not exist on disk or in persistent store. The advantage of
non-persistent FastResync is that updates to the FastResync map have little impact
on I/O performance, because no disk updates are performed. However, FastResync
must remain enabled until the snapshot is reattached, and the system cannot be
rebooted. If FastResync is disabled or the system is rebooted, the information in
the map is lost and a full resynchronization is required on snapback.

This limitation can be overcome for volumes in cluster-shareable disk groups,
provided that at least one of the nodes in the cluster remained running to preserve
the FastResync map in its memory. However, a node crash in a High Availability
(HA) environment requires the full resynchronization of a mirror when it is reattached
to its parent volume.

Each bit in the FastResync map represents a contiguous number of blocks in a
volume’s address space. The default size of the map is 4 blocks. The kernel tunable
vol_fmr_logsz can be used to limit the maximum size in blocks of the map

For information about tuning VxVM, see the Veritas Storage Foundation and High
Availability Tuning Guide.

136How Veritas Volume Manager works
FastResync

How persistent FastResync works with snapshots
Persistent FastResync keeps the FastResync maps on disk so that they can survive
system reboots, system crashes, and cluster crashes. Persistent FastResync uses
a map in a data change object (DCO) volume on disk to implement change tracking.
Each bit in the map represents a contiguous number of blocks in a volume’s address
space.

Persistent FastResync can also track the association between volumes and their
snapshot volumes after they are moved into different disk groups. When the disk
groups are rejoined, this allows the snapshot plexes to be quickly resynchronized.
This ability is not supported by non-persistent FastResync.

See “Reorganizing the contents of disk groups” on page 852.

When persistent FastResync is enabled on a volume or on a snapshot volume, a
data change object (DCO) and a DCO volume are associated with the volume.

See “DCO volume versioning ” on page 140.

Figure 4-31 shows an example of a mirrored volume with two plexes on which
persistent FastResync is enabled.

Figure 4-31 Mirrored volume with persistent FastResync enabled

Data plex Data plex

Mirrored volume

DCO plex DCO plex

DCO volume

Data change object

Associated with the volume are a DCO object and a DCO volume with two plexes.

Create an instant snapshot by using the vxsnap make command, or create a
traditional third-mirror snapshot by using the vxassist snapstart command.

Figure 4-32 shows how a snapshot plex is set up in the volume, and how a disabled
DCO plex is associated with it.

137How Veritas Volume Manager works
FastResync

Figure 4-32 Mirrored volume after completion of a snapstart operation

Data plex Data plex Data plex

Disabled
DCO plex

Mirrored volume

DCO plex DCO plex

DCO volume

Data change object

Multiple snapshot plexes and associated DCO plexes may be created in the volume
by re-running the vxassist snapstart command for traditional snapshots, or the
vxsnap make command for space-optimized snapshots. You can create up to a
total of 32 plexes (data and log) in a volume.

A traditional snapshot volume is created from a snapshot plex by running the
vxassist snapshot operation on the volume. For instant snapshots, however, the
vxsnap make command makes an instant snapshot volume immediately available
for use. There is no need to run an additional command.

Figure 4-33 shows how the creation of the snapshot volume also sets up a DCO
object and a DCO volume for the snapshot volume.

138How Veritas Volume Manager works
FastResync

Figure 4-33 Mirrored volume and snapshot volume after completion of a
snapshot operation

Data plex Data plex

Data plex

Mirrored volume

DCO
log plex

DCO volume

Data change object Snap object

DCO volume

Snapshot volume

Data change object Snap object

DCO
log plex

DCO
log plex

The DCO volume contains the single DCO plex that was associated with the
snapshot plex. If two snapshot plexes were taken to form the snapshot volume, the
DCO volume would contain two plexes. For space-optimized instant snapshots,
the DCO object and DCO volume are associated with a snapshot volume that is
created on a cache object and not on a VM disk.

Associated with both the original volume and the snapshot volume are snap objects.
The snap object for the original volume points to the snapshot volume, and the
snap object for the snapshot volume points to the original volume. This allows VxVM
to track the relationship between volumes and their snapshots even if they are
moved into different disk groups.

The snap objects in the original volume and snapshot volume are automatically
deleted in the following circumstances:

■ For traditional snapshots, the vxassist snapback operation is run to return all
of the plexes of the snapshot volume to the original volume.

■ For traditional snapshots, the vxassist snapclear operation is run on a volume
to break the association between the original volume and the snapshot volume.

139How Veritas Volume Manager works
FastResync

If the volumes are in different disk groups, the command must be run separately
on each volume.

■ For full-sized instant snapshots, the vxsnap reattach operation is run to return
all of the plexes of the snapshot volume to the original volume.

■ For full-sized instant snapshots, the vxsnap dis or vxsnap split operations
are run on a volume to break the association between the original volume and
the snapshot volume. If the volumes are in different disk groups, the command
must be run separately on each volume.

Note: The vxsnap reattach, dis and split operations are not supported for
space-optimized instant snapshots.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

DCO volume versioning
Persistent FastResync uses a data change object (DCO) and a DCO volume to
hold the FastResync maps.

This release of Veritas Volume Manager (VxVM) supports the following DCO volume
versions:

Previously known as Version 20 DCO volume layout, this version of
the DCO layout supports instant snapshots of volumes.

This type of DCO manages the FastResync maps, and also manages
DRL recovery maps and special maps called copymaps that allow
instant snapshot operations to resume correctly following a system
crash.

Instant snap DCO
volume layout

This version of the DCO volume layout only supports legacy snapshots
(vxassist snapshots). The DCO object manages information about the
FastResync maps. These maps track writes to the original volume and
to each of up to 32 snapshot volumes since the last snapshot
operation. Each plex of the DCO volume on disk holds 33 maps, each
of which is 4 blocks in size by default.

VxVM software continues to support the version 0 (zero) layout for
legacy volumes.

Version 0 DCO
volume layout

140How Veritas Volume Manager works
FastResync

Instant snap (version 20) DCO volume layout
The instant snap data change object (DCO) supports full-sized and space-optimized
instant snapshots. Traditional third-mirror volume snapshots that are administered
using the vxassist command are not supported with this DCO layout.

Introduced in Veritas Volume Manager (VxVM) 4.0, the instant snap DCO volume
layout is also known as a version 20 DCO volume layout. This type of DCO is used
not only to manage the FastResync maps, but also to manage DRL recovery maps
and special maps called copymaps that allow instant snapshot operations to resume
correctly following a system crash.

See “Dirty region logging” on page 129.

Each bit in a map represents a region (a contiguous number of blocks) in a volume’s
address space. A region represents the smallest portion of a volume for which
changes are recorded in a map. A write to a single byte of storage anywhere within
a region is treated in the same way as a write to the entire region.

In Storage Foundation Cluster File System High Availability 6.0, the volume layout
of an instant snap DCO has been changed to improve the I/O performance and
scalability of instant snapshots. The change in layout does not alter how you
administer instant snapshots. The only visible affect is in improved I/O performance
and in some cases, increased size of a DCO volume.

The layout of an instant snap DCO volume uses dynamic creation of maps on the
preallocated storage. The size of the DRL (Dirty region logging) map does not
depend on volume size. You can configure the size of the DRL by using the option
drlmapsz while creating the DCO volume. By default, the size of the DRL is 1MB.

For CVM configurations, each node has a dedicated DRL map that gets allocated
during the first write on that node. By default, the size of the DCO volume
accommodates 32 DRL maps, an accumulator, and 16 per-volume maps (including
a DRL recovery map, a detach map to track detached plexes, and the remaining
14 maps for tracking snapshots).

The size of the DCO plex can be estimated using the following formula:

DCO_volume_size = (32*drlmapsize + acmsize + 16*per-volume_map_size)

where:

acmsize = (volume_size / (region_size*4))

per-volume_map_size = (volume_size/region_size*8)

drlmapsize = 1M, by default

141How Veritas Volume Manager works
FastResync

For a 100GB volume, the size of the DCO volume with the default regionsize of
64KB is approximately 36MB.

Create the DCOs for instant snapshots by using the vxsnap prepare command or
by specifying the options logtype=dco dcoversion=20 while creating a volume
with the vxassist make command.

Version 0 DCO volume layout
The version 0 DCO volume layout supports only traditional (third-mirror) volume
snapshots that are administered using the vxassist command. Full-sized and
space-optimized instant snapshots are not supported with this DCO layout.

The size of each map can be changed by specifying the dcolen attribute to the
vxassist command when the volume is created. The default value of dcolen is
132 blocks (the plex contains 33 maps, each of length 4 blocks). To use a larger
map size, multiply the desired map size by 33 to calculate the value of dcolen. For
example, to use an 8-block map, specify dcolen=264. The maximum possible map
size is 64 blocks, which corresponds to a dcolen value of 2112 blocks.

The size of a DCO plex is rounded up to the nearest integer multiple of the disk
group alignment value. The alignment value is 8KB for disk groups that support the
Cross-platform Data Sharing (CDS) feature. Otherwise, the alignment value is 1
block.

Effect of growing a volume on the FastResync map
It is possible to grow the replica volume, or the original volume, and still use
FastResync. According to the DCO volume layout, growing the volume has the
following different effects on the map that FastResync uses to track changes to the
original volume:

■ For an instant snap DCO volume, the size of the map is increased and the size
of the region that is tracked by each bit in the map stays the same.

■ For a version 0 DCO volume, the size of the map remains the same and the
region size is increased.

In either case, the part of the map that corresponds to the grown area of the volume
is marked as “dirty” so that this area is resynchronized. The snapback operation
fails if it attempts to create an incomplete snapshot plex. In such cases, you must
grow the replica volume, or the original volume, before invoking any of the
commands vxsnap reattach, vxsnap restore, or vxassist snapback. Growing
the two volumes separately can lead to a snapshot that shares physical disks with
another mirror in the volume. To prevent this, grow the volume after the snapback

command is complete.

142How Veritas Volume Manager works
FastResync

FastResync limitations
The following limitations apply to FastResync:

■ Persistent FastResync is supported for RAID-5 volumes, but this prevents the
use of the relayout or resize operations on the volume while a DCO is associated
with it.

■ Neither non-persistent nor persistent FastResync can be used to resynchronize
mirrors after a system crash. Dirty region logging (DRL), which can coexist with
FastResync, should be used for this purpose. In VxVM 4.0 and later releases,
DRL logs may be stored in an instant snap DCO volume.

■ When a subdisk is relocated, the entire plex is marked “dirty” and a full
resynchronization becomes necessary.

■ If a snapshot volume is split off into another disk group, non-persistent
FastResync cannot be used to resynchronize the snapshot plexes with the
original volume when the disk group is rejoined with the original volume’s disk
group. Persistent FastResync must be used for this purpose.

■ If you move or split an original volume (on which persistent FastResync is
enabled) into another disk group, and then move or join it to a snapshot volume’s
disk group, you cannot use vxassist snapback to resynchronize traditional
snapshot plexes with the original volume. This restriction arises because a
snapshot volume references the original volume by its record ID at the time that
the snapshot volume was created. Moving the original volume to a different disk
group changes the volume’s record ID, and so breaks the association. However,
in such a case, you can use the vxplex snapback command with the -f (force)
option to perform the snapback.

Note: This restriction only applies to traditional snapshots. It does not apply to
instant snapshots.

■ Any operation that changes the layout of a replica volume can mark the
FastResync change map for that snapshot “dirty” and require a full
resynchronization during snapback. Operations that cause this include subdisk
split, subdisk move, and online relayout of the replica. It is safe to perform these
operations after the snapshot is completed.
See the vxassist (1M) manual page.
See the vxplex (1M) manual page.
See the vxvol (1M) manual page.

143How Veritas Volume Manager works
FastResync

Volume sets
Volume sets are an enhancement to Veritas Volume Manager (VxVM) that allow
several volumes to be represented by a single logical object. All I/O from and to
the underlying volumes is directed by way of the I/O interfaces of the volume set.
The Veritas File System (VxFS) uses volume sets to manage multi-volume file
systems and the SmartTier feature. This feature allows VxFS to make best use of
the different performance and availability characteristics of the underlying volumes.
For example, file system metadata can be stored on volumes with higher
redundancy, and user data on volumes with better performance.

See “Creating a volume set” on page 715.

144How Veritas Volume Manager works
Volume sets

How Cluster Volume
Manager works

This chapter includes the following topics:

■ About the cluster functionality of VxVM

■ Overview of clustering

■ Cluster Volume Manager (CVM) tolerance to storage connectivity failures

■ CVM initialization and configuration

■ Dirty region logging in cluster environments

■ Multiple host failover configurations

About the cluster functionality of VxVM
A cluster consists of a number of hosts or nodes that share a set of disks. The
following are the main benefits of cluster configurations:

5Chapter

If one node fails, the other nodes can still access the shared disks.
When configured with suitable software, mission-critical applications
can continue running by transferring their execution to a standby node
in the cluster. This ability to provide continuous uninterrupted service
by switching to redundant hardware is commonly termed failover.

Failover is transparent to users and high-level applications for database
and file-sharing. You must configure cluster management software,
such as Veritas Cluster Server (VCS), to monitor systems and services,
and to restart applications on another node in the event of either
hardware or software failure. VCS also allows you to perform general
administration tasks such as making nodes join or leave a cluster.

Note that a standby node need not remain idle. It could be used to serve
other applications in parallel.

Availability

Clusters can reduce contention for system resources by performing
activities such as backup, decision support, and report generation on
the more lightly-loaded nodes of the cluster. This allows businesses to
derive enhanced value from their investment in cluster systems.

Off-host
processing

The nodes can simultaneously access and manage a set of disks or LUNs under
Veritas Volume Manager (VxVM) control. The same logical view of disk configuration
and any changes to this view are available on all the nodes. When the CVM
functionality is enabled, all cluster nodes can share VxVM objects such as shared
disk groups. Private disk groups are supported in the same way as in a non-clustered
environment.

Products such as Veritas Storage Foundation Cluster File System (SFCFS), and
Veritas Cluster Server (VCS) are separately licensed, and are not included with
Veritas Volume Manager. See the documentation provided with those products for
more information about them.

Veritas Dynamic Multi-Pathing (DMP) can be used in a clustered environment.

See “DMP in a clustered environment” on page 188.

Campus cluster configurations (also known as stretch cluster or remote mirror
configurations) can also be configured and administered.

See “About sites and remote mirrors” on page 517.

Overview of clustering
Tightly-coupled cluster systems are common in the realm of enterprise-scale
mission-critical data processing. The primary advantage of clusters is protection
against hardware failure. Should the primary node fail or otherwise become
unavailable, applications can continue to run by transferring their execution to

146How Cluster Volume Manager works
Overview of clustering

standby nodes in the cluster. This ability to provide continuous availability of service
by switching to redundant hardware is commonly termed failover.

Another major advantage of clustered systems is their ability to reduce contention
for system resources caused by activities such as backup, decision support, and
report generation. Businesses can derive enhanced value from their investment in
cluster systems by performing such operations on lightly-loaded nodes in the cluster
rather than on the heavily-loaded nodes that answer requests for service. This
ability to perform some operations on the lightly-loaded nodes is commonly termed
load balancing.

Overview of cluster volume management
Over the past several years, parallel applications using shared data access have
become increasingly popular. Examples of commercially available applications
include Oracle Real Application Clusters™ (RAC), Sybase Adaptive Server®, and
Informatica Enterprise Cluster Edition. In addition, the semantics of Network File
System (NFS), File Transfer Protocol (FTP), and Network News Transfer Protocol
(NNTP) allow these workloads to be served by shared data access clusters. Finally,
numerous organizations have developed internal applications that take advantage
of shared data access clusters.

The cluster functionality of VxVM (CVM) works together with the cluster monitor
daemon that is provided by VCS or by the host operating system. The cluster monitor
informs VxVM of changes in cluster membership. Each node starts up independently
and has its own cluster monitor plus its own copies of the operating system and
VxVM/CVM. When a node joins a cluster, it gains access to shared disk groups
and volumes. When a node leaves a cluster, it loses access to these shared objects.
A node joins a cluster when you issue the appropriate command on that node.

Warning: The CVM functionality of VxVM is supported only when used in conjunction
with a cluster monitor that has been configured correctly to work with VxVM.

Figure 5-1 shows a simple cluster arrangement consisting of four nodes with similar
or identical hardware characteristics (CPUs, RAM, and host adapters), and
configured with identical software (including the operating system).

147How Cluster Volume Manager works
Overview of clustering

Figure 5-1 Example of a 4-node CVM cluster

Cluster-shareable disks

Cluster-shareable
disk groups

Node 0
(master)

Redundant private network

Redundant
SCSIor Fibre

Channel
connectivity

Node 3
(slave)

Node 2
(slave)

Node 1
(slave)

To the cluster monitor, all nodes are the same. VxVM objects configured within
shared disk groups can potentially be accessed by all nodes that join the cluster.
However, the CVM functionality of VxVM requires that one node act as the master
node; all other nodes in the cluster are slave nodes. Any node is capable of being
the master node, and it is responsible for coordinating certain VxVM activities.

In this example, node 0 is configured as the CVM master node and nodes 1, 2 and
3 are configured as CVM slave nodes. The nodes are fully connected by a private
network and they are also separately connected to shared external storage (either
disk arrays or JBODs: just a bunch of disks) through SCSI or Fibre Channel in a
Storage Area Network (SAN).

Figure 5-1 shows each node has two independent paths to the disks, which are
configured in one or more cluster-shareable disk groups. Multiple paths provide
resilience against failure of one of the paths, but this is not a requirement for cluster
configuration. Disks may also be connected by single paths.

The private network allows the nodes to share information about system resources
and about each other’s state. Using the private network, any node can recognize
which other nodes are currently active, which are joining or leaving the cluster, and
which have failed. The private network requires at least two communication channels
to provide redundancy against one of the channels failing. If only one channel were
used, its failure would be indistinguishable from node failure—a condition known
as network partitioning.

148How Cluster Volume Manager works
Overview of clustering

You can run commands that configure or reconfigure VxVM objects on any node
in the cluster. These tasks include setting up shared disk groups, creating and
reconfiguring volumes, and performing snapshot operations.

The first node to join a cluster performs the function of master node. If the master
node leaves a cluster, one of the slave nodes is chosen to be the new master.

See “Methods to control CVM master selection” on page 379.

About private and shared disk groups
The following types of disk groups are defined:

Belongs to only one node. A private disk group can only be imported
by one system. LUNs in a private disk group may be physically
accessible from one or more systems, but access is restricted to only
one system at a time.

The boot disk group (usually aliased by the reserved disk group name
bootdg) is always a private disk group.

Private disk group

Can be shared by all nodes. A shared (or cluster-shareable) disk group
is imported by all cluster nodes. LUNs in a shared disk group must be
physically accessible from all systems that may join the cluster.

Shared disk group

In a CVM cluster, most disk groups are shared. LUNs in a shared disk group are
accessible from all nodes in a cluster, allowing applications on multiple cluster
nodes to simultaneously access the same LUN. A volume in a shared disk group
can be simultaneously accessed by more than one node in the cluster, subject to
license key and disk group activation mode restrictions.

You can use the vxdg command to designate a disk group as cluster-shareable.

See “Importing disk groups as shared” on page 395.

When a disk group is imported as cluster-shareable for one node, each disk header
is marked with the cluster ID. As each node subsequently joins the cluster, it
recognizes the disk group as being cluster-shareable and imports it. In contrast, a
private disk group's disk headers are marked with the individual node's host name.
As system administrator, you can import or deport a shared disk group at any time;
the operation takes place in a distributed fashion on all nodes.

Each LUN is marked with a unique disk ID. When cluster functionality for VxVM
starts on the master, it imports all shared disk groups (except for any that do not
have the autoimport attribute set). When a slave tries to join a cluster, the master
sends it a list of the disk IDs that it has imported, and the slave checks to see if it
can access them all. If the slave cannot access one of the listed disks, it abandons
its attempt to join the cluster. If it can access all of the listed disks, it joins the cluster

149How Cluster Volume Manager works
Overview of clustering

and imports the same shared disk groups as the master. When a node leaves the
cluster gracefully, it deports all its imported shared disk groups, but they remain
imported on the surviving nodes.

Reconfiguring a shared disk group is performed with the cooperation of all nodes.
Configuration changes to the disk group are initiated by the master, and happen
simultaneously on all nodes and the changes are identical. Such changes are atomic
in nature, which means that they either occur simultaneously on all nodes or not at
all.

Whether all members of the cluster have simultaneous read and write access to a
cluster-shareable disk group depends on its activation mode setting.

See “Activation modes of shared disk groups” on page 150.

The data contained in a cluster-shareable disk group is available as long as at least
one node is active in the cluster. The failure of a cluster node does not affect access
by the remaining active nodes. Regardless of which node accesses a
cluster-shareable disk group, the configuration of the disk group looks the same.

Warning: Applications running on each node can access the data on the VM disks
simultaneously. VxVM does not protect against simultaneous writes to shared
volumes by more than one node. It is assumed that applications control consistency
(by using Veritas Cluster File System or a distributed lock manager, for example).

Activation modes of shared disk groups
A shared disk group must be activated on a node in order for the volumes in the
disk group to become accessible for application I/O from that node. The ability of
applications to read from or to write to volumes is dictated by the activation mode
of a shared disk group. Valid activation modes for a shared disk group are
exclusivewrite, readonly, sharedread, sharedwrite, and off (inactive).

The default activation mode for shared disk groups is sharedwrite.

Special uses of clusters, such as high availability (HA) applications and off-host
backup, can use disk group activation to explicitly control volume access from
different nodes in the cluster

Table 5-1 describes the activation modes.

150How Cluster Volume Manager works
Overview of clustering

Table 5-1 Activation modes for shared disk groups

DescriptionActivation
mode

The node has exclusive write access to the disk group. No other node
can activate the disk group for write access.

exclusivewrite
(ew)

The node has read access to the disk group and denies write access
for all other nodes in the cluster. The node has no write access to the
disk group. Attempts to activate a disk group for either of the write
modes on other nodes fail.

readonly (ro)

The node has read access to the disk group. The node has no write
access to the disk group, however other nodes can obtain write access.

sharedread
(sr)

The node has write access to the disk group. Attempts to activate the
disk group for shared read and shared write access succeed. Attempts
to activate the disk group for exclusive write and read-only access fail.

sharedwrite
(sw)

The node has neither read nor write access to the disk group. Query
operations on the disk group are permitted.

off

Table 5-2 summarizes the allowed and conflicting activation modes for shared disk
groups.

Table 5-2 Allowed and conflicting activation modes

Attempt to
activate disk
group on
another node
as...

Disk group
activated in
cluster as...

sharedwritesharedreadreadonlyexclusive-
write

FailsSucceedsFailsFailsexclusivewrite

FailsSucceedsSucceedsFailsreadonly

SucceedsSucceedsSucceedsSucceedssharedread

SucceedsSucceedsFailsFailssharedwrite

Shared disk groups can be automatically activated in a specified mode when the
disk group is created or imported. To control automatic activation of shared disk
groups, create a defaults file /etc/default/vxdg containing the following lines:

151How Cluster Volume Manager works
Overview of clustering

enable_activation=true

default_activation_mode=activation-mode

The activation-mode is one of exclusivewrite, readonly, sharedread,
sharedwrite, or off.

When a shared disk group is created or imported, it is activated in the specified
mode. When a node joins the cluster, all shared disk groups accessible from the
node are activated in the specified mode.

The activation mode of a disk group controls volume I/O from different nodes in the
cluster. It is not possible to activate a disk group on a given node if it is activated
in a conflicting mode on another node in the cluster. When enabling activation using
the defaults file, it is recommended that the file be consistent on all nodes in the
cluster as in Table 5-2. Otherwise, the results of activation are unpredictable.

If the defaults file is edited while the vxconfigd daemon is already running, run the
/sbin/vxconfigd -k -x syslog command on all nodes to restart the process.

If the default activation mode is anything other than off, an activation following a
cluster join, or a disk group creation or import can fail if another node in the cluster
has activated the disk group in a conflicting mode.

To display the activation mode for a shared disk group, use the vxdg list

diskgroup command.

See “Listing shared disk groups” on page 393.

You can also use the vxdg command to change the activation mode on a shared
disk group.

See “Changing the activation mode on a shared disk group” on page 397.

It is also possible to configure a volume so that it can only be opened by a single
node in a cluster.

See “Creating volumes with exclusive open access by a node” on page 399.

See “Setting exclusive open access to a volume by a node” on page 400.

Limitations of shared disk groups
Only raw device access may be performed via CVM. It does not support shared
access to file systems in shared volumes unless the appropriate software, such as
Veritas Cluster File System, is installed and configured.

Note: The boot disk group (usually aliased as bootdg) cannot be made
cluster-shareable. It must be private.

152How Cluster Volume Manager works
Overview of clustering

The cluster functionality of VxVM does not support RAID-5 volumes, or task
monitoring for cluster-shareable disk groups. These features can, however, be used
in private disk groups that are attached to specific nodes of a cluster or can be
failed over to other nodes in the cluster.

If you have RAID-5 volumes in a private disk group that you wish to make shareable,
you must first relayout the volumes as a supported volume type such as
stripe-mirror or mirror-stripe. Online relayout of shared volumes is supported
provided that it does not involve RAID-5 volumes.

If a shared disk group contains RAID-5 volumes, deport it and then reimport the
disk group as private on one of the cluster nodes. Reorganize the volumes into
layouts that are supported for shared disk groups, and then deport and reimport
the disk group as shared.

Cluster Volume Manager (CVM) tolerance to
storage connectivity failures

Cluster Volume Manager (CVM) uses a shared storage model. A shared disk group
provides concurrent read and write access to the volumes that it contains for all
nodes in a cluster.

Cluster resiliency means that the cluster functions with minimal disruptions if one
or more nodes lose connectivity to the shared storage. When CVM detects a loss
of storage connectivity for an online disk group, CVM performs appropriate error
handling for the situation. For example, CVM may redirect I/O over the network,
detach a plex, or disable a volume for all disks, depending on the situation. The
behavior of CVM can be customized to ensure the appropriate handling for your
environment.

The CVM resiliency features also enable a node to join the cluster even if the new
node does not have connectivity to all the disks in the shared disk group.This
behavior ensures that a node that is taken offline can rejoin the cluster. Similarly,
a shared disk group can be imported on a node.

Note: Cluster resiliency functionality is intended to handle temporary failures.
Restore the connectivity as soon as possible.

CVM provides increased cluster resiliency and tolerance to connectivity failure in
the following ways:

153How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 5-3

Configurable?DescriptionFunctionality

Yes. Controlled by
the detach policy,
which can be local
or global.

See “Setting the
detach policy for
shared disk
groups”
on page 398.

CVM manages connectivity errors
for data disks so that I/O can
continue to the unaffected disks.

■ If a failure is seen on all nodes,
CVM detaches the affected
plexes as long at least one plex
is still accessible.

■ If a failure does not affect all of
the nodes, the disk detach
policy determines how CVM
handles the failure.
See “About disk detach
policies” on page 159.

Consistency of data plexes.

Yes. Controlled by
the ioship
tunable parameter,
which is set for a
disk group.

See “Enabling I/O
shipping for shared
disk groups”
on page 398.

If a connectivity failure does not
affect all the nodes, CVM can
redirect I/O over the network to a
node that has access to the
storage. This behavior enables the
application I/O to continue even
when storage connectivity failures
occur.

By redirecting I/O, CVM can avoid
the need to either locally fail the
I/O on the volume or detach the
plex when at least one node has
access to the underlying storage.
Therefore, the ioship policy
changes the behavior of the disk
detach policy.

See “About redirection of
application I/Os with CVM I/O
shipping” on page 156.

Continuity of application I/O

154How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 5-3 (continued)

Configurable?DescriptionFunctionality

No. Enabled by
default.

The master node handles
configuration changes to the
shared disk group, so CVM
ensures that the master node has
access to the configuration copies.

If the master node loses
connectivity to a configuration
copy, CVM redirects the I/O
requests over the network to a
node that can access the
configuration copy. This behavior
ensures that the disk group stays
available.

This behavior is independent of the
disk detach policy or ioship policy.

If the disk group version is less
than 170, CVM handles the
disconnectivity according to the
disk group failure policy
(dgfailpolicy) .

See “Availability of shared disk
group configuration copies”
on page 156.

Availability of shared disk group
configurations.

No. Enabled by
default.

CVM initiates internal I/Os to
update Data Change Objects
(DCOs).

If a node loses connectivity to
these objects, CVM redirects the
internal I/Os over the network to a
node that has access.

This behavior is independent of the
disk detach policy or ioship policy.

Availability of snapshots

155How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 5-3 (continued)

Configurable?DescriptionFunctionality

Yes. Controlled by
the
storage_connectivity
tunable.

See “Controlling
the CVM tolerance
to storage
disconnectivity ”
on page 398.

CVM enables a cluster node to join
even if the node does not have
access to all of the shared storage.

Similarly, a node can import a
shared disk group even if there is
a local failure to the storage.

This behavior is independent of the
disk detach policy or ioship policy.

See “Availability of cluster nodes
and shared disk groups”
on page 166.

Availability of cluster nodes and
shared disk groups

Availability of shared disk group configuration copies
CVM maintains connectivity to shared disk groups as long as at least one node in
the cluster has access to the configuration copies. The master node performs
changes to the configuration and propagates the changes to all of the slave nodes.
If the master node loses access to the copies of the configuration, the master node
sends the writes for the configuration change to a slave node that has access. The
slave node implements the changes. This behavior enables the disk group to stay
active, even when the master node loses access to the shared disk group
configuration. If all nodes lose access to the shared disk group, the disk group is
disabled.

In previous releases, you could configure a disk group failure policy for a shared
disk group. In this release, the disk group failure policy is no longer supported for
disk groups with the latest disk group version and cluster protocol version.

If the cluster protocol version is less than 110, or the disk group version is less than
170, the disk group failure policy (dgfailpolicy) determines the behavior after failure.

See the documentation from the relevant release of VxVM.

Disk group configurations are handled this way regardless of the setting for the
ioship policy. The ioship policy controls redirection of application I/Os.

See “About redirection of application I/Os with CVM I/O shipping” on page 156.

About redirection of application I/Os with CVM I/O shipping
Cluster Volume Manager (CVM) provides an option to handle loss of connectivity
by redirecting application I/Os over the network if a node loses connectivity to a

156How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

disk. The node that lost connectivity sends the I/O request over the network to a
node that can access the disk. The node can be a master node or a slave node.
The process of redirecting the I/Os is also called I/O shipping. The application I/Os
are only shipped when the node has lost local connectivity.

The I/O shipping is controlled by the ioship policy, which is disabled by default. You
can turn on I/O shipping per shared disk group.

See “Enabling I/O shipping for shared disk groups” on page 398.

CVM considers the I/O shipping policy together with the disk detach policy to
determine how to handle the I/O errors.

See “How CVM detach policies interact with I/O shipping” on page 163.

The I/O shipping policy handles only application I/O.

CVM always uses I/O redirection for I/O to the configuration entries.

See “Availability of shared disk group configuration copies” on page 156.

Storage disconnectivity and CVM disk detach policies
When Cluster Volume Manager (CVM) detects a connectivity failure to one or more
plexes on one or more data disks, CVM determines the handling of the connectivity
failure based on the following:

■ The type of storage disconnectivity failure.
See “About the types of storage connectivity failures” on page 157.

■ The detach policy set for the disk group.
See “About disk detach policies” on page 159.

About the types of storage connectivity failures
CVM determines the type of storage disconnnectivity failure based on the scope
of failure. CVM determines whether the failure affects all nodes (global failure), or
only particular nodes (local failure). CVM also determines whether the failure affects
one or more plexes of the volume. If the failure affects all plexes, it is considered
total failure. Otherwise, it is considered partial failure.

CVM defines the following types of storage disconnectivity:

■ global partial failure
Figure 5-2 shows this scenario.

■ global total failure
Figure 5-3 shows a global total failure.

■ local partial failure

157How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 5-4 shows a local partial failure.

■ local total failure
Figure 5-5 shows a local total failure.

Figure 5-2 shows a global partial failure. A global partial failure indicates that all of
the nodes are affected, but not all of the plexes in the volume. In the example, all
nodes in the cluster lost access to Array B, which has plex B for the volume.

Figure 5-2 Global partial failure

Figure 5-3 shows a global total failure. A global total failure means that all nodes
are affected and all plexes in the volume are affected.

Figure 5-3 Global total failure

158How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 5-4 shows a local partial failure. A local partial failure indicates that the failure
did not affect all plexes, and the failure occured on one or more nodes, but not on
all nodes.

Figure 5-4 Local partial failure

Figure 5-5 shows a local total failure. A local total failure indicates that the failure
affect all plexes, and the failure occured on one or more nodes, but not on all nodes.

Figure 5-5 Local total failure

About disk detach policies
The disk detach policy determines how CVM handles failures in the storage or
connectivity to the storage.

For small mirrored volumes, non-mirrored volumes, volumes that use hardware
mirrors, and volumes in private disk groups, there is no benefit in configuring the
local detach policy. In most cases, Symantec recommends that you use the default
global detach policy.

The following disk detach policies are available:

159How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

■ Global detach policy
The global detach policy specifies that on any I/O error, the plex seeing the error
is detached cluster-wide for the volume. This behavior assures a symmetric
access to the volumes on all nodes in the cluster. The global detach policy is
the traditional and default policy for all nodes in the configuration.
See “How CVM handles local storage disconnectivity with the global detach
policy” on page 160.

■ Local detach policy
The local detach policy indicates that when a node has an I/O failure to a plex
due to a local connectivity issue, the volume is disabled locally. The plex is not
detached for the whole cluster. This behavior ensures that all of the plexes are
available for I/O on the other nodes. Only the node or nodes that had the failure
are affected.
See “How CVM handles local storage disconnectivity with the local detach policy”
on page 161.

The disk detach policy is set for the shared disk group. If you need to change the
detach policy from the default global detach policy to the local detach policy, use
the vxdg command.

How CVM handles local storage disconnectivity with the
global detach policy
CVM behavior for a local failure depends on the setting for the detach policy, and
the number of plexes affected.

If the failure does not affect all nodes, the failure is considered to be local. Local
failure could occur on one or more nodes, but not all nodes. The I/O failure is
considered local if at least one node still has access to the plex.

If the detach policy is set to global, and the failure affects one or more plexes in the
volume for one or more nodes, CVM detaches the plex. The global detach policy
indicates that CVM should ensure that the plexes (mirrors) of the volume stay
consistent. Detaching the plex ensures that data on the plex is exactly the same
for all nodes. When the connectivity returns, CVM reattaches the plex to the volume
and resynchronizes the plex.

Figure 5-6 shows how CVM handles a local partial failure, when the detach policy
is global.

160How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 5-6 How CVM handles local partial failure - global detach policy

The benefit with this policy is that the volume is still available for I/O on all nodes.
If there is a read or write I/O failure on a slave node, the master node performs the
usual I/O recovery operations to repair the failure. If required, the plex is detached
from the volume, for the entire cluster. All nodes remain in the cluster and continue
to perform I/O, but the redundancy of the mirrors is reduced.

The disadvantage is that redundancy is lost, because of the detached plex. Because
one or more nodes in the cluster lose connectivity to a plex, the entire cluster loses
access to that plex. This behavior means that a local fault on one node has a global
impact on all nodes in the cluster.

The global detach policy also requires the overhead of reattaching the plex. When
the problem that caused the I/O failure has been corrected, the disks should be
re-attached. The mirrors that were detached must be recovered before the
redundancy of the data can be restored.

If a node experiences failure to all of the plexes of a mirrored volume, the I/Os fail
to the volume from the local node, but no plexes are detached. This behavior
prevents the behavior wherein each plex was detached one after other and the
volume was disabled globally.

How CVM handles local storage disconnectivity with the
local detach policy
The local detach policy indicates that when a node has an I/O failure to a plex due
to a local connectivity issue, the I/Os fail to the llocal volume. The plex is not
detached for the whole cluster. This behavior ensures that all of the plexes are

161How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

available for I/O on the other nodes. Only the node or nodes that had the failure
are affected.

The benefit with this policy is that the redundancy of the volume is protected, as
much as possible. The local detach policy supports failover applications in large
clusters where the redundancy of the volume is more important than the number
of nodes that can access the volume. That is, you would prefer one or more nodes
to lose I/O access to the volume, rather than lose a plex of the volume for all of the
nodes in the cluster. This scenario typically applies when the volumes are mirrored,
and a parallel application is used that can seamlessly provide the same service
from the other nodes. For example, this option is not appropriate for fast failover
configurations.

If the detach policy is set to local, and the failure is a local partial failure, CVM locally
fails write I/Os to the volume. The local detach policy indicates that CVM should
ensure that a local connectivity error only affects the local node. When the I/O is
failing locally to the volume, applications need to be failed over to another node.

If the I/O shipping policy is on, the I/Os are redirected over the network to another
node in the cluster. CVM does not fail the I/O in this case.

Figure 5-7 shows a local partial failure.

Figure 5-7 Local partial failure - local detach policy

Guidelines for choosing detach policies
In most cases it is recommended that you use the global detach policy, and
particularly if any of the following conditions apply:

162How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

■ If only non-mirrored volumes, small, mirrored volumes, or hardware-mirrored
volumes are configured. This avoids the system overhead of the extra messaging
that is required by the local detach policy.

The local detach policy may be suitable in the following cases:

■ When large, mirrored volumes are configured. Resynchronizing a reattached
plex can degrade system performance. The local detach policy can avoid the
need to detach the plex at all. Alternatively, the dirty region logging (DRL) feature
can reduce the amount of resynchronization that is required.

■ For clusters with more than four nodes. Keeping an application running on a
particular node is less critical when there are many nodes in a cluster. It may
be possible to configure the cluster management software to move an application
to a node that has access to the volumes. In addition, load balancing may be
able to move applications to a different volume from the one that experienced
the I/O problem. This behavior preserves data redundancy, and other nodes
may still be able to perform I/O to and from the volumes on the disk.

Table 5-4 compares the behavior of CVM when I/O failures occur under the different
detach policies.

Table 5-4 Cluster behavior under I/O failure to a mirrored volume for disk
detach policies

Global detach policyLocal detach policyType of failure

Detaches the plex.Fails I/O to the volume from
the nodes that cannot access
the plex.

Local partial failure

Fails I/O to the volume.Fails I/O to the volume from
the nodes that cannot access
the plex.

Local total failure

Detaches the plex.Detaches the plex.Global partial failure

Disables the volume.Disables the volume.Global total failure

How CVM detach policies interact with I/O shipping
When I/O shipping is enabled, CVM tries to redirect the I/O across the network,
before locally disabling a volume or detaching a plex. Therefore, the behavior of
the detach policies differs when I/O shipping is enabled.

Table 5-5 summarizes the effect on a cluster of I/O failure to the disks in a mirrored
volume when I/O shipping is enabled.

163How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 5-5 Cluster behavior under I/O failure to a mirrored volume for disk
detach policies when I/O shipping is enabled

Global detach
policy

Local detach
policy

Type of failure

Detaches the plexes.Ships I/O.Local partial failure

Ships I/O.Ships I/O.Local total failure

Detaches the plex.Detaches the plex.Global partial failure

Disables the volume.Detaches all plexes
but the last plex.

Global total failure

CVM storage disconnectivity scenarios that are policy
independent
The behavior for the following storage connectivity failures is the same regardless
of the detach policy.

■ global partial failure.
Figure 5-8 shows this scenario.

■ global total failure.
Figure 5-9 shows a global total failure

■ local total failure.
Figure 5-10 shows a global total failure

Figure 5-8 shows a global partial failure. A global partial failure indicates that all of
the nodes are affected, but not all of the plexes in the volume. In the example, all
nodes in the cluster lost access to Array B, which has plex B for the volume.

Plex B is detached. None of the nodes can access the plex, so the plex must be
detached to maintain the consistency of the mirror. I/O continues to other plexes
in the volume. This reduces the redundancy of the volume.

164How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 5-8 Global partial failure - policy independent

Figure 5-9 shows a global total failure. This means that all nodes are affected and
all plexes in the volume are affected. The volume is disabled. Since no plexes are
available, the volume is not available for any I/Os. If the failure occurs on all nodes
at the same time, no plexes are detached.

Figure 5-9 Global total failure - policy independent

If the local failure is total for all of the plexes in the volume, CVM behavior is the
same regardless of policy. CVM locally fails I/O to the volume. I/O fails to the volume
from the node or nodes that cannot access the plex. I/O continues to the volume
from other nodes.

Figure 5-10 shows a local total failure.

165How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 5-10 Local total failure - policy independent

Availability of cluster nodes and shared disk groups
By default, Cluster Volume Manager (CVM) requires that a node joining a cluster
must have access to all the disks in all shared disk groups. This requirement applies
also to a node that was removed from the cluster because of an I/O failure. The
node cannot rejoin the cluster until the disk access is restored. Similarly, a shared
disk group cannot be imported unless all of the nodes in the cluster can access all
of the disks in the disk group.

CVM now provides a storage connectivity asymmetric option to enable a node to
join the cluster as long as the node has access to the disks through at least one
node in the cluster. Typically, the node accesses the disks through the master node.
A shared disk group can also be imported if some nodes cannot access all of the
disks. During a node join operation or a disk group import operation, if CVM detects
that the node does not have access to the underlying storage for the volume, the
volume is placed in the LDISABLED state. The storage connectivity in such a
situation is asymmetric, meaning that not all nodes have the same access to all the
disks in the shared disk group.

Note: The support for asymmetric disk access is intended to handle temporary
connectivity issues, and not to be a permanent state. The connectivity should be
restored as soon as possible. CVM considers the cluster to be in a degraded mode
until the connectivity is restored.

This behavior is disabled by default. You can enable this functionality with the option
to support asymmetric storage connectivity. The configuration of this feature is
independent from the detach policy and the I/O shipping policy. However, the disk

166How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

group version and the cluster protocol version must be a level to support the
behavior.

See “Controlling the CVM tolerance to storage disconnectivity ” on page 398.

CVM initialization and configuration
Before any nodes can join a new cluster for the first time, you must supply certain
configuration information during cluster monitor setup. This information is normally
stored in some form of cluster monitor configuration database. The precise content
and format of this information depends on the characteristics of the cluster monitor.
The information required by VxVM is as follows:

■ Cluster ID

■ Node IDs

■ Network addresses of nodes

■ Port addresses

When a node joins the cluster, this information is automatically loaded into VxVM
on that node at node startup time.

Note: The CVM functionality of VxVM is supported only when used with a cluster
monitor that has been configured correctly to work with VxVM.

Use a cluster monitor such as GAB (Group Membership and Atomic Broadcast) in
Veritas Cluster Service (VCS). For a VCS environment, use the vxcvmconfig

command on any node to configure the cluster to use the CVM functionality of
VxVM. The vxcvmconfig command is not included with Veritas Volume Manager.

The cluster monitor startup procedure effects node initialization, and brings up the
various cluster components (such as VxVM with cluster support, the cluster monitor,
and a distributed lock manager) on the node. Once this is complete, applications
may be started. The cluster monitor startup procedure must be invoked on each
node to be joined to the cluster.

For VxVM in a cluster environment, initialization consists of loading the cluster
configuration information and joining the nodes in the cluster. The first node to join
becomes the master node, and later nodes (slaves) join to the master. If two nodes
join simultaneously, VxVM chooses the master. After a given node joins, that node
has access to the shared disk groups and volumes.

167How Cluster Volume Manager works
CVM initialization and configuration

Cluster reconfiguration
Cluster reconfiguration occurs if a node leaves or joins a cluster. Each node’s cluster
monitor continuously watches the other cluster nodes. When the membership of
the cluster changes, the cluster monitor informs Veritas Volume Manager (VxVM)
to take appropriate action.

During cluster reconfiguration, VxVM suspends I/O to shared disks. I/O resumes
when the reconfiguration completes. Applications may appear to freeze for a short
time during reconfiguration.

If other operations, such as VxVM operations or recoveries, are in progress, cluster
reconfiguration can be delayed until those operations complete. Volume
reconfigurations do not take place at the same time as cluster reconfigurations.
Depending on the circumstances, an operation may be held up and restarted later.
In most cases, cluster reconfiguration takes precedence. However, if the volume
reconfiguration is in the commit stage, it completes first.

See “Volume reconfiguration” on page 170.

See “vxclustadm utility” on page 168.

vxclustadm utility
The vxclustadm command provides an interface to the CVM functionality of VxVM
when VCS is used as the cluster monitor. It is also called during cluster startup and
shutdown. In the absence of a cluster monitor, vxclustadm can also be used to
activate or deactivate the CVM functionality of VxVM on any node in a cluster.

The startnode keyword to vxclustadm starts CVM functionality on a cluster node
by passing cluster configuration information to the VxVM kernel. In response to this
command, the kernel and the VxVM configuration daemon, vxconfigd, perform
initialization.

The stopnode keyword stops CVM functionality on a node. It waits for all outstanding
I/O to complete and for all applications to close shared volumes.

The setmaster keyword migrates the CVM master to the specified node. The
migration is an online operation. Symantec recommends that you switch the master
when the cluster is not handling VxVM configuration changes or cluster
reconfiguration operations.

The reinit keyword allows nodes to be added to or removed from a cluster without
stopping the cluster. Before running this command, the cluster configuration file
must have been updated with information about the supported nodes in the cluster.

168How Cluster Volume Manager works
CVM initialization and configuration

The nidmap keyword prints a table showing the mapping between CVM node IDs
in VxVM’s cluster-support subsystem and node IDs in the cluster monitor. It also
prints the state of the nodes in the cluster.

The nodestate keyword reports the state of a cluster node and also the reason for
the last abort of the node as shown in this example:

vxclustadm nodestate

state: out of cluster

reason: user initiated stop

Table 5-6 lists the various reasons that may be given for a node abort.

Table 5-6 Node abort messages

DescriptionReason

Missing disk or bad disk on the slave node.cannot find disk on slave node

The node cannot read the configuration data due
to an error such as disk failure.

cannot obtain configuration
data

Open of a cluster device failed.cluster device open failed

Clustering license does not match that on the
master node.

clustering license mismatch
with master node

Clustering license cannot be found.clustering license not
available

Join of a node refused by the master node.connection refused by master

A disk belongs to a cluster other than the one that
a node is joining.

disk in use by another cluster

Join of a node has timed out due to reconfiguration
taking place in the cluster.

join timed out during
reconfiguration

Cannot update kernel log copies during the join of
a node.

klog update failed

Master node aborted while another node was
joining the cluster.

master aborted during join

Cluster protocol version mismatch or unsupported
version.

protocol version out of range

Volumes that were opened by the node are still
recovering.

recovery in progress

169How Cluster Volume Manager works
CVM initialization and configuration

Table 5-6 Node abort messages (continued)

DescriptionReason

Changing the role of a node to be the master failed.transition to role failed

Node is out of cluster due to an abort initiated by
the user or by the cluster monitor.

user initiated abort

Node is out of cluster due to a stop initiated by the
user or by the cluster monitor.

user initiated stop

The VxVM configuration daemon is not enabled.vxconfigd is not enabled

See the vxclustadm(1M) manual page.

Volume reconfiguration
Volume reconfiguration is the process of creating, changing, and removing VxVM
objects such as disk groups, volumes and plexes. In a cluster, all nodes cooperate
to perform such operations. The vxconfigd daemons play an active role in volume
reconfiguration. For reconfiguration to succeed, a vxconfigd daemon must be
running on each of the nodes.

See “vxconfigd daemon” on page 171.

A volume reconfiguration transaction is initiated by running a VxVM utility on the
master node. The utility contacts the local vxconfigd daemon on the master node,
which validates the requested change. For example, vxconfigd rejects an attempt
to create a new disk group with the same name as an existing disk group. The
vxconfigd daemon on the master node then sends details of the changes to the
vxconfigd daemons on the slave nodes. The vxconfigd daemons on the slave
nodes then perform their own checking. For example, each slave node checks that
it does not have a private disk group with the same name as the one being created.
If the operation involves a new disk, each node checks that it can access that disk.
When the vxconfigd daemons on all the nodes agree that the proposed change
is reasonable, each notifies its kernel. The kernels then cooperate to either commit
or to abandon the transaction. Before the transaction can be committed, all of the
kernels ensure that no I/O is underway, and block any I/O issued by applications
until the reconfiguration is complete. The master node is responsible both for
initiating the reconfiguration, and for coordinating the commitment of the transaction.
The resulting configuration changes appear to occur simultaneously on all nodes.

If a vxconfigd daemon on any node goes away during reconfiguration, all nodes
are notified and the operation fails. If any node leaves the cluster, the operation
fails unless the master has already committed it. If the master node leaves the

170How Cluster Volume Manager works
CVM initialization and configuration

cluster, the new master node, which was previously a slave node, completes or
fails the operation depending on whether or not it received notification of successful
completion from the previous master node. This notification is performed in such a
way that if the new master does not receive it, neither does any other slave.

If a node attempts to join a cluster while a volume reconfiguration is being performed,
the result of the reconfiguration depends on how far it has progressed. If the kernel
has not yet been invoked, the volume reconfiguration is suspended until the node
has joined the cluster. If the kernel has been invoked, the node waits until the
reconfiguration is complete before joining the cluster.

When an error occurs, such as when a check on a slave fails or a node leaves the
cluster, the error is returned to the utility and a message is sent to the console on
the master node to identify on which node the error occurred.

vxconfigd daemon
The VxVM configuration daemon, vxconfigd, maintains the configuration of VxVM
objects. It receives cluster-related instructions from the kernel. A separate copy of
vxconfigd runs on each node, and these copies communicate with each other over
a network. When invoked, a VxVM utility communicates with the vxconfigd daemon
running on the same node; it does not attempt to connect with vxconfigd daemons
on other nodes. During cluster startup, the kernel prompts vxconfigd to begin
cluster operation and indicates whether it is a master node or a slave node.

When a node is initialized for cluster operation, the vxconfigd daemon is notified
that the node is about to join the cluster and is provided with the following information
from the cluster monitor configuration database:

■ cluster ID

■ node IDs

■ master node ID

■ role of the node

■ network address of the node

On the master node, the vxconfigd daemon sets up the shared configuration by
importing shared disk groups, and informs the kernel when it is ready for the slave
nodes to join the cluster.

On slave nodes, the vxconfigd daemon is notified when the slave node can join
the cluster. When the slave node joins the cluster, the vxconfigd daemon and the
VxVM kernel communicate with their counterparts on the master node to set up the
shared configuration.

171How Cluster Volume Manager works
CVM initialization and configuration

When a node leaves the cluster, the kernel notifies the vxconfigd daemon on all
the other nodes. The master node then performs any necessary cleanup. If the
master node leaves the cluster, the kernels select a new master node and the
vxconfigd daemons on all nodes are notified of the choice.

The vxconfigd daemon also participates in volume reconfiguration.

See “Volume reconfiguration” on page 170.

vxconfigd daemon recovery
In a cluster, the vxconfigd daemons on the slave nodes are always connected to
the vxconfigd daemon on the master node. If the vxconfigd daemon is stopped,
volume reconfiguration cannot take place. Other nodes can join the cluster if the
vxconfigd daemon is not running on the slave nodes.

If the vxconfigd daemon stops, different actions are taken depending on which
node this occurred:

■ If the vxconfigd daemon is stopped on the master node, the vxconfigd

daemons on the slave nodes periodically attempt to rejoin to the master node.
Such attempts do not succeed until the vxconfigd daemon is restarted on the
master. In this case, the vxconfigd daemons on the slave nodes have not lost
information about the shared configuration, so that any displayed configuration
information is correct.

■ If the vxconfigd daemon is stopped on a slave node, the master node takes
no action. When the vxconfigd daemon is restarted on the slave, the slave
vxconfigd daemon attempts to reconnect to the master daemon and to
re-acquire the information about the shared configuration. (Neither the kernel
view of the shared configuration nor access to shared disks is affected.) Until
the vxconfigd daemon on the slave node has successfully reconnected to the
vxconfigd daemon on the master node, it has very little information about the
shared configuration and any attempts to display or modify the shared
configuration can fail. For example, shared disk groups listed using the vxdg

list command are marked as disabled; when the rejoin completes successfully,
they are marked as enabled.

■ If the vxconfigd daemon is stopped on both the master and slave nodes, the
slave nodes do not display accurate configuration information until vxconfigd
is restarted on the master and slave nodes, and the daemons have reconnected.

If the Cluster Volume Manager (CVM) agent for Veritas Cluster Server (VCS)
determines that the vxconfigd daemon is not running on a node during a cluster
reconfiguration, vxconfigd is restarted automatically.

172How Cluster Volume Manager works
CVM initialization and configuration

Warning: The -r reset option to vxconfigd restarts the vxconfigd daemon and
recreates all states from scratch. This option cannot be used to restart vxconfigd
while a node is joined to a cluster because it causes cluster information to be
discarded.

It may sometimes be necessary to restart vxconfigd manually in a VCS-controlled
cluster to resolve a Veritas Volume Manager (VxVM) issue.

To restart vxconfigd manually

1 Use the following command to disable failover on any service groups that
contain VxVM objects:

hagrp -freeze groupname

2 Enter the following command to stop and restart the VxVM configuration
daemon on the affected node:

vxconfigd -k

3 Use the following command to re-enable failover for the service groups that
you froze in step 1:

hagrp -unfreeze groupname

Node shutdown
Although it is possible to shut down the cluster on a node by invoking the shutdown
procedure of the node’s cluster monitor, this procedure is intended for terminating
cluster components after stopping any applications on the node that have access
to shared storage. VxVM supports clean node shutdown, which allows a node to
leave the cluster gracefully when all access to shared volumes has ceased. The
host is still operational, but cluster applications cannot be run on it.

The CVM functionality of VxVM maintains global state information for each volume.
This enables VxVM to determine which volumes need to be recovered when a node
crashes. When a node leaves the cluster due to a crash or by some other means
that is not clean, VxVM determines which volumes may have writes that have not
completed and the master node resynchronizes these volumes. It can use dirty
region logging (DRL) or FastResync if these are active for any of the volumes.

Clean node shutdown must be used after, or in conjunction with, a procedure to
halt all cluster applications. Depending on the characteristics of the clustered
application and its shutdown procedure, a successful shutdown can require a lot
of time (minutes to hours). For instance, many applications have the concept of

173How Cluster Volume Manager works
CVM initialization and configuration

draining, where they accept no new work, but complete any work in progress before
exiting. This process can take a long time if, for example, a long-running transaction
is active.

When the VxVM shutdown procedure is invoked, it checks all volumes in all shared
disk groups on the node that is being shut down. The procedure then either continues
with the shutdown, or fails for one of the following reasons:

■ If all volumes in shared disk groups are closed, VxVM makes them unavailable
to applications. Because all nodes are informed that these volumes are closed
on the leaving node, no resynchronization is performed.

■ If any volume in a shared disk group is open, the shutdown procedure fails. The
shutdown procedure can be repeatedly retried until it succeeds. There is no
timeout checking in this operation—it is intended as a service that verifies that
the clustered applications are no longer active.

Once shutdown succeeds, the node has left the cluster. It is not possible to access
the shared volumes until the node joins the cluster again.

Since shutdown can be a lengthy process, other reconfiguration can take place
while shutdown is in progress. Normally, the shutdown attempt is suspended until
the other reconfiguration completes. However, if it is already too far advanced, the
shutdown may complete first.

Cluster shutdown
If all nodes leave a cluster, shared volumes must be recovered when the cluster is
next started if the last node did not leave cleanly, or if resynchronization from
previous nodes leaving uncleanly is incomplete. CVM automatically handles the
recovery and resynchronization tasks when a node joins the cluster.

Dirty region logging in cluster environments
Dirty region logging (DRL) is an optional property of a volume that provides speedy
recovery of mirrored volumes after a system failure. DRL is supported in
cluster-shareable disk groups. This section provides a brief overview of how DRL
behaves in a cluster environment.

In a cluster environment, the VxVM implementation of DRL differs slightly from the
normal implementation.

A dirty region log on a system without cluster support has a recovery map and a
single active map. A CVM DRL, however, has a single recovery map per cluster
and one active map per cluster node.

174How Cluster Volume Manager works
Dirty region logging in cluster environments

The dirty region log size in clusters is typically larger than in non-clustered systems,
as it must accommodate a recovery map plus active maps for each node in the
cluster. The size of each map within the dirty region log is one or more whole blocks.
The vxassist command automatically allocates a sufficiently large dirty region log
for the size of the volume and the number of nodes.

It is possible to reimport a non-shared disk group (and its volumes) as a shared
disk group in a cluster environment. However, the dirty region logs of the imported
disk group may be considered invalid and a full recovery may result.

If a shared disk group is imported as a private disk group on a system without cluster
support, VxVM considers the logs of the shared volumes to be invalid and conducts
a full volume recovery. After the recovery completes, VxVM uses DRL.

The cluster functionality of VxVM can perform a DRL recovery on a non-shared
volume. However, if such a volume is moved to a VxVM system with cluster support
and imported as shared, the dirty region log is probably too small to accommodate
maps for all the cluster nodes. VxVM then marks the log invalid and performs a full
recovery anyway. Similarly, moving a DRL volume from a two-node cluster to a
four-node cluster can result in too small a log size, which the cluster functionality
of VxVM handles with a full volume recovery. In both cases, you must allocate a
new log of sufficient size.

See “Dirty region logging” on page 129.

How DRL works in a cluster environment
When one or more nodes in a cluster crash, DRL must handle the recovery of all
volumes that were in use by those nodes when the crashes occurred. On initial
cluster startup, all active maps are incorporated into the recovery map during the
volume start operation.

Nodes that crash (that is, leave the cluster as dirty) are not allowed to rejoin the
cluster until their DRL active maps have been incorporated into the recovery maps
on all affected volumes. The recovery utilities compare a crashed node's active
maps with the recovery map and make any necessary updates. Only then can the
node rejoin the cluster and resume I/O to the volume (which overwrites the active
map). During this time, other nodes can continue to perform I/O.

VxVM tracks which nodes have crashed. If multiple node recoveries are underway
in a cluster at a given time. VxVM tracks changes in the state of DRL recovery and
prevents I/O collisions.

The master node performs volatile tracking of DRL recovery map updates for each
volume, and prevents multiple utilities from changing the recovery map
simultaneously.

175How Cluster Volume Manager works
Dirty region logging in cluster environments

Multiple host failover configurations
Outside the context of Cluster Volume Manager (CVM), Veritas Volume Manager
(VxVM) disk groups can be imported (made available) on only one host at any given
time. When a host imports a (private) disk group, the volumes and configuration of
that disk group become accessible to the host. If the administrator or system software
wants to privately use the same disk group from another host, the host that already
has the disk group imported (importing host) must deport (give up access to) the
disk group. Once deported, the disk group can be imported by another host.

If two hosts are allowed to access a disk group concurrently without proper
synchronization, such as that provided by Oracle RAC, the configuration of the disk
group, and possibly the contents of volumes, can be corrupted. Similar corruption
can also occur if a file system or database on a raw disk partition is accessed
concurrently by two hosts, so this problem is not limited to VxVM.

Import lock
When a host in a non-Cluster Volume Manager (CVM) environment imports a disk
group, an import lock is written on all disks in that disk group. The import lock is
cleared when the host deports the disk group. The presence of the import lock
prevents other hosts from importing the disk group until the importing host has
deported the disk group.

Specifically, when a host imports a disk group, the import normally fails if any disks
within the disk group appear to be locked by another host. This allows automatic
re-importing of disk groups after a reboot (autoimporting) and prevents imports by
another host, even while the first host is shut down. If the importing host is shut
down without deporting the disk group, the disk group can only be imported by
another host by clearing the host ID lock first (discussed later).

The import lock contains a host ID (the host name) reference to identify the importing
host and enforce the lock. Problems can therefore arise if two hosts have the same
host ID.

Since Veritas Volume Manager (VxVM) uses the host name as the host ID (by
default), it is advisable to change the host name of one machine if another machine
shares its host name. To change the host name, use the vxdctl hostid

new_hostname command.

Failover
The import locking scheme works well in an environment where disk groups are
not normally shifted from one system to another. However, consider a setup where
two hosts, Node A and Node B, can access the drives of a disk group. The disk

176How Cluster Volume Manager works
Multiple host failover configurations

group is initially imported by Node A, but the administrator wants to access the disk
group from Node B if Node A crashes. Such a failover scenario can be used to
provide manual high availability to data, where the failure of one node does not
prevent access to data. Failover can be combined with a “high availability” monitor
to provide automatic high availability to data: when Node B detects that Node A
has crashed or shut down, Node B imports (fails over) the disk group to provide
access to the volumes.

Veritas Volume Manager can support failover, but it relies on the administrator or
on an external high-availability monitor, such as Veritas Cluster Server (VCS), to
ensure that the first system is shut down or unavailable before the disk group is
imported to another system.

See “Moving disk groups between systems” on page 894.

See the vxdg(1M) manual page.

Corruption of disk group configuration
If vxdg import is used with -C (clears locks) and/or -f (forces import) to import a
disk group that is still in use from another host, disk group configuration corruption
is likely to occur. Volume content corruption is also likely if a file system or database
is started on the imported volumes before the other host crashes or shuts down.

If this kind of corruption occurs, your configuration must typically be rebuilt from
scratch and all data be restored from a backup. There are typically numerous
configuration copies for each disk group, but corruption nearly always affects all
configuration copies, so redundancy does not help in this case.

As long as the configuration backup daemon, vxconfigbackupd, is running, Veritas
Volume Manager (VxVM) will backup configurations whenever the configuration is
changed. By default, backups are stored in /etc/vx/cbr/bk. You may also manually
backup the configuration using the vxconfigbackup utility. The configuration can
be rebuilt using the vxconfigrestore utility.

See the vxconfigbackup, vxconfigbackupd, vxconfigrestore man pages.

Disk group configuration corruption usually shows up as missing or duplicate records
in the configuration databases. This can result in a variety of vxconfigd error
messages, in the following format:

VxVM vxconfigd ERROR

V-5-1-569 Disk group group,Disk disk:

Cannot auto-import group: reason

where the reason can describe errors such as:

177How Cluster Volume Manager works
Multiple host failover configurations

Association not resolved

Association count is incorrect

Duplicate record in configuration

Configuration records are inconsistent

These errors are typically reported in association with specific disk group
configuration copies, but usually apply to all copies. The following is usually displayed
along with the error:

Disk group has no valid configuration copies

If you use the Veritas Cluster Server (VCS) product, all disk group failover issues
can be managed correctly. VCS includes a high availability monitor and includes
failover scripts for VxVM, Veritas File System (VxFS), and for several popular
databases.

The -t option to vxdg prevents automatic re-imports on reboot and is necessary
when used with a host monitor (such as VCS) that controls imports itself, rather
than relying on automatic imports by VxVM.

See the Veritas Storage Foundation and High Availability Solutions Troubleshooting
Guide.

178How Cluster Volume Manager works
Multiple host failover configurations

How Veritas Dynamic
Multi-Pathing works

This chapter includes the following topics:

■ How DMP works

■ Veritas Volume Manager co-existence with Oracle Automatic Storage
Management disks

How DMP works
Veritas Dynamic Multi-Pathing (DMP) provides greater availability, reliability, and
performance by using path failover and load balancing. This feature is available for
multiported disk arrays from various vendors.

Disk arrays can be connected to host systems through multiple paths. To detect
the various paths to a disk, DMP uses a mechanism that is specific to each
supported array. DMP can also differentiate between different enclosures of a
supported array that are connected to the same host system.

See “Discovering and configuring newly added disk devices” on page 266.

The multi-pathing policy that is used by DMP depends on the characteristics of the
disk array.

DMP supports the following standard array types:

Allows several paths to be used concurrently for
I/O. Such arrays allow DMP to provide greater I/O
throughput by balancing the I/O load uniformly
across the multiple paths to the LUNs. In the event
that one path fails, DMP automatically routes I/O
over the other available paths.

Active/Active (A/A)

6Chapter

A/A-A or Asymmetric Active/Active arrays can be
accessed through secondary storage paths with
little performance degradation. The behavior is
similar to ALUA, except that it does not support
those SCSI commands which an ALUA array
supports.

Asymmetric Active/Active (A/A-A)

DMP supports all variants of ALUA.Asymmetric Logical Unit Access (ALUA)

Allows access to its LUNs (logical units; real disks
or virtual disks created using hardware) via the
primary (active) path on a single controller (also
known as an access port or a storage processor)
during normal operation.

In implicit failover mode (or autotrespass mode),
an A/P array automatically fails over by scheduling
I/O to the secondary (passive) path on a separate
controller if the primary path fails. This passive port
is not used for I/O until the active port fails. In A/P
arrays, path failover can occur for a single LUN if
I/O fails on the primary path.

This policy supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

Active/Passive (A/P)

The appropriate command must be issued to the
array to make the LUNs fail over to the secondary
path.

This policy supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

Active/Passive in explicit failover mode
or non-autotrespass mode (A/P-F)

180How Veritas Dynamic Multi-Pathing works
How DMP works

For Active/Passive arrays with LUN group failover
(A/P-G arrays), a group of LUNs that are connected
through a controller is treated as a single failover
entity. Unlike A/P arrays, failover occurs at the
controller level, and not for individual LUNs. The
primary controller and the secondary controller are
each connected to a separate group of LUNs. If a
single LUN in the primary controller’s LUN group
fails, all LUNs in that group fail over to the
secondary controller.

This policy supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

Active/Passive with LUN group failover
(A/P-G)

An array policy module (APM) may define array types to DMP in addition to the
standard types for the arrays that it supports.

Veritas Storage Foundation Cluster File System High Availability uses DMP
metanodes (DMP nodes) to access disk devices connected to the system. For each
disk in a supported array, DMP maps one node to the set of paths that are connected
to the disk. Additionally, DMP associates the appropriate multi-pathing policy for
the disk array with the node.

For disks in an unsupported array, DMP maps a separate node to each path that
is connected to a disk. The raw and block devices for the nodes are created in the
directories /dev/vx/rdmp and /dev/vx/dmp respectively.

Figure 6-1 shows how DMP sets up a node for a disk in a supported disk array.

181How Veritas Dynamic Multi-Pathing works
How DMP works

Figure 6-1 How DMP represents multiple physical paths to a disk as one
node

Host

Disk

Multiple paths

Multiple paths

Single DMP node

Mapped by DMP
c2c1

VxVM

DMP

DMP implements a disk device naming scheme that allows you to recognize to
which array a disk belongs.

Figure 6-2 shows an example where two paths, sdf and sdm, exist to a single disk
in the enclosure, but VxVM uses the single DMP node, enc0_0, to access it.

Figure 6-2 Example of multi-pathing for a disk enclosure in a SAN
environment

sdmsdf

enc0_0Mapped
by DMP

VxVM

DMP

Host

Fibre Channel
switches

c1 c2

Disk enclosure
enc0

Disk is sdf or sdm
depending on the path

See “About enclosure-based naming” on page 183.

See “Changing the disk device naming scheme” on page 341.

182How Veritas Dynamic Multi-Pathing works
How DMP works

See “Discovering and configuring newly added disk devices” on page 266.

Device discovery
Device discovery is the term used to describe the process of discovering the disks
that are attached to a host. This feature is important for DMP because it needs to
support a growing number of disk arrays from a number of vendors. In conjunction
with the ability to discover the devices attached to a host, the Device Discovery
service enables you to add support for new disk arrays. The Device Discovery uses
a facility called the Device Discovery Layer (DDL).

The DDL enables you to add support for new disk arrays without the need for a
reboot.

See “How to administer the Device Discovery Layer” on page 272.

About enclosure-based naming
Enclosure-based naming provides an alternative to operating system-based device
naming. In a Storage Area Network (SAN) that uses Fibre Channel switches,
information about disk location provided by the operating system may not correctly
indicate the physical location of the disks. Enclosure-based naming allows SFCFSHA
to access enclosures as separate physical entities. By configuring redundant copies
of your data on separate enclosures, you can safeguard against failure of one or
more enclosures.

Figure 6-3 shows a typical SAN environment where host controllers are connected
to multiple enclosures through a Fibre Channel switch.

183How Veritas Dynamic Multi-Pathing works
How DMP works

Figure 6-3 Example configuration for disk enclosures connected via a fibre
channel switch

enc0 enc2

Host

Fibre Channel
switch

Disk enclosures

c1

enc1

In such a configuration, enclosure-based naming can be used to refer to each disk
within an enclosure. For example, the device names for the disks in enclosure enc0

are named enc0_0, enc0_1, and so on. The main benefit of this scheme is that it
allows you to quickly determine where a disk is physically located in a large SAN
configuration.

In most disk arrays, you can use hardware-based storage management to represent
several physical disks as one LUN to the operating system. In such cases, VxVM
also sees a single logical disk device rather than its component disks. For this
reason, when reference is made to a disk within an enclosure, this disk may be
either a physical disk or a LUN.

Another important benefit of enclosure-based naming is that it enables VxVM to
avoid placing redundant copies of data in the same enclosure. This is a good thing
to avoid as each enclosure can be considered to be a separate fault domain. For
example, if a mirrored volume were configured only on the disks in enclosure enc1,
the failure of the cable between the switch and the enclosure would make the entire
volume unavailable.

If required, you can replace the default name that SFCFSHA assigns to an enclosure
with one that is more meaningful to your configuration.

See “Renaming an enclosure” on page 320.

184How Veritas Dynamic Multi-Pathing works
How DMP works

Figure 6-4 shows a High Availability (HA) configuration where redundant-loop access
to storage is implemented by connecting independent controllers on the host to
separate switches with independent paths to the enclosures.

Figure 6-4 Example HA configuration using multiple switches to provide
redundant loop access

enc0 enc2

Host

Fibre Channel
switches

Disk enclosures

c1 c2

enc1

Such a configuration protects against the failure of one of the host controllers (c1
and c2), or of the cable between the host and one of the switches. In this example,
each disk is known by the same name to VxVM for all of the paths over which it
can be accessed. For example, the disk device enc0_0 represents a single disk for
which two different paths are known to the operating system, such as sdf and sdm.

See “Changing the disk device naming scheme” on page 341.

To take account of fault domains when configuring data redundancy, you can control
how mirrored volumes are laid out across enclosures.

How DMP monitors I/O on paths
In VxVM prior to release 5.0, DMP had one kernel daemon (errord) that performed
error processing, and another (restored) that performed path restoration activities.

From release 5.0, DMP maintains a pool of kernel threads that are used to perform
such tasks as error processing, path restoration, statistics collection, and SCSI
request callbacks. The vxdmpadm gettune command can be used to provide

185How Veritas Dynamic Multi-Pathing works
How DMP works

information about the threads. The name restored has been retained for backward
compatibility.

One kernel thread responds to I/O failures on a path by initiating a probe of the host
bus adapter (HBA) that corresponds to the path. Another thread then takes the
appropriate action according to the response from the HBA. The action taken can
be to retry the I/O request on the path, or to fail the path and reschedule the I/O on
an alternate path.

The restore kernel task is woken periodically (typically every 5 minutes) to check
the health of the paths, and to resume I/O on paths that have been restored. As
some paths may suffer from intermittent failure, I/O is only resumed on a path if the
path has remained healthy for a given period of time (by default, 5 minutes). DMP
can be configured with different policies for checking the paths.

See “Configuring DMP path restoration policies” on page 325.

The statistics-gathering task records the start and end time of each I/O request,
and the number of I/O failures and retries on each path. DMP can be configured to
use this information to prevent the SCSI driver being flooded by I/O requests. This
feature is known as I/O throttling.

If an I/O request relates to a mirrored volume, VxVM specifies the FAILFAST flag.
In such cases, DMP does not retry failed I/O requests on the path, and instead
marks the disks on that path as having failed.

See “Path failover mechanism” on page 186.

See “I/O throttling” on page 187.

Path failover mechanism
DMP enhances system availability when used with disk arrays having multiple
paths. In the event of the loss of a path to a disk array, DMP automatically selects
the next available path for I/O requests without intervention from the administrator.

DMP is also informed when a connection is repaired or restored, and when you
add or remove devices after the system has been fully booted (provided that the
operating system recognizes the devices correctly).

If required, the response of DMP to I/O failure on a path can be tuned for the paths
to individual arrays. DMP can be configured to time out an I/O request either after
a given period of time has elapsed without the request succeeding, or after a given
number of retries on a path have failed.

See “Configuring the response to I/O failures” on page 321.

186How Veritas Dynamic Multi-Pathing works
How DMP works

Subpaths Failover Group (SFG)
A subpaths failover group (SFG) represents a group of paths which could fail and
restore together. When an I/O error is encountered on a path in an SFG, DMP does
proactive path probing on the other paths of that SFG as well. This behavior adds
greatly to the performance of path failover thus improving I/O performance. Currently
the criteria followed by DMP to form the subpaths failover groups is to bundle the
paths with the same endpoints from the host to the array into one logical storage
failover group.

See “Configuring Subpaths Failover Groups (SFG)” on page 324.

Low Impact Path Probing (LIPP)
The restore daemon in DMP keeps probing the LUN paths periodically. This behavior
helps DMP to keep the path states up-to-date even though IO activity is not there
on the paths. Low Impact Path Probing adds logic to the restore daemon to optimize
the number of the probes performed while the path status is being updated by the
restore daemon. This optimization is achieved with the help of the logical subpaths
failover groups. With LIPP logic in place, DMP probes only limited number of paths
within a subpaths failover group (SFG), instead of probing all the paths in an SFG.
Based on these probe results, DMP determines the states of all the paths in that
SFG.

See “Configuring Low Impact Path Probing” on page 323.

I/O throttling
If I/O throttling is enabled, and the number of outstanding I/O requests builds up
on a path that has become less responsive, DMP can be configured to prevent new
I/O requests being sent on the path either when the number of outstanding I/O
requests has reached a given value, or a given time has elapsed since the last
successful I/O request on the path. While throttling is applied to a path, the new I/O
requests on that path are scheduled on other available paths. The throttling is
removed from the path if the HBA reports no error on the path, or if an outstanding
I/O request on the path succeeds.

See “Configuring the I/O throttling mechanism” on page 322.

Load balancing
By default, Veritas Dynamic Multi-Pathing (DMP) uses the Minimum Queue I/O
policy for load balancing across paths for Active/Active (A/A), Active/Passive (A/P),
Active/Passive with explicit failover (A/P-F) and Active/Passive with group failover
(A/P-G) disk arrays. Load balancing maximizes I/O throughput by using the total
bandwidth of all available paths. I/O is sent down the path which has the minimum
outstanding I/Os.

187How Veritas Dynamic Multi-Pathing works
How DMP works

For A/P disk arrays, I/O is sent down the primary paths. If all of the primary paths
fail, I/O is switched over to the available secondary paths. As the continuous transfer
of ownership of LUNs from one controller to another results in severe I/O slowdown,
load balancing across primary and secondary paths is not performed for A/P disk
arrays unless they support concurrent I/O.

For A/P, A/P-F and A/P-G arrays, load balancing is performed across all the currently
active paths as is done for A/A arrays.

You can change the I/O policy for the paths to an enclosure or disk array.

See “Specifying the I/O policy” on page 312.

DMP in a clustered environment

Note: You need an additional license to use the cluster feature of Veritas Volume
Manager (VxVM). Clustering is only supported for VxVM.

In a clustered environment where Active/Passive (A/P) type disk arrays are shared
by multiple hosts, all nodes in the cluster must access the disk through the same
physical storage controller port. Accessing a disk through multiple paths
simultaneously can severely degrade I/O performance (sometimes referred to as
the ping-pong effect). Path failover on a single cluster node is also coordinated
across the cluster so that all the nodes continue to share the same physical path.

Prior to release 4.1 of VxVM, the clustering and DMP features could not handle
automatic failback in A/P arrays when a path was restored, and did not support
failback for explicit failover mode arrays. Failback could only be implemented
manually by running the vxdctl enable command on each cluster node after the
path failure had been corrected. From release 4.1, failback is now an automatic
cluster-wide operation that is coordinated by the master node. Automatic failback
in explicit failover mode arrays is also handled by issuing the appropriate low-level
command.

Note: Support for automatic failback of an A/P array requires that an appropriate
Array Support Library (ASL) is installed on the system. An Array Policy Module
(APM) may also be required.

See “Discovering disks and dynamically adding disk arrays” on page 268.

For Active/Active type disk arrays, any disk can be simultaneously accessed through
all available physical paths to it. In a clustered environment, the nodes do not need
to access a disk through the same physical path.

See “How to administer the Device Discovery Layer” on page 272.

188How Veritas Dynamic Multi-Pathing works
How DMP works

See “Configuring array policy modules” on page 327.

About enabling or disabling controllers with shared disk
groups
Prior to release 5.0, Veritas Volume Manager (VxVM) did not allow enabling or
disabling of paths or controllers connected to a disk that is part of a shared Veritas
Volume Manager disk group. From VxVM 5.0 onward, such operations are supported
on shared DMP nodes in a cluster.

Veritas VolumeManager co-existence with Oracle
Automatic Storage Management disks

Automatic Storage Management (ASM) disks are the disks used by Oracle Automatic
Storage Management software. Veritas Volume Manager (VxVM) co-exists with
Oracle ASM disks, by recognizing the disks as the type Oracle ASM. VxVM protects
ASM disks from any operations that may overwrite the disk. VxVM classifies and
displays the ASM disks as ASM format disks. You cannot initialize an ASM disk,
or perform any VxVM operations that may overwrite the disk.

If the disk is claimed as an ASM disk, disk initialization commands fail with an
appropriate failure message. The vxdisk init command and the vxdisksetup

command fail, even if the force option is specified. The vxprivutil command also
fails for disks under ASM control, to prevent any on-disk modification of the ASM
device.

If the target disk is under ASM control, any rootability operations that overwrite the
target disk fail. A message indicates that the disk is already in use as an ASM disk.
The rootability operations include operations to create a VM root image
(vxcp_lvmroot command) , create a VM root mirror (vxrootmir command), or
restore the LVM root image (vxres_lvmroot command). The vxdestroy_lvmroot

command also fails for ASM disks, since the target disk is not under LVM control
as expected.

Disks that ASM accessed previously but that no longer belong to an ASM disk group
are called FORMER ASM disks. If you remove an ASM disk from ASM control,
VxVM labels the disk as a FORMER ASM disk. VxVM enforces the same restrictions
for FORMER ASM disks as for ASM disks, to enable ASM to reuse the disk in the
future. To use a FORMER ASM disk with VxVM, you must clean the disk of ASM
information after you remove the disk from ASM control. If a disk initialization
command is issued on a FORMER ASM disk, the command fails. A message
indicates that the disk must be cleaned up before the disk can be initialized for use
with VxVM.

189How Veritas Dynamic Multi-Pathing works
Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

To remove a FORMER ASM disk from ASM control for use with VxVM

1 Clean the disk with the dd command to remove all ASM identification information
on it. For example:

dd if=/dev/zero of=/dev/rdsk/<wholedisk|partition> count=1 bs=1024

where wholedisk is a disk name in the format: cxtydz

where partition is a partition name in the format:cxtydzsn

2 Perform a disk scan:

vxdisk scandisks

To view the ASM disks

◆ You can use either of the following commands to display ASM disks:

The vxdisk list command displays the disk type as ASM.

vxdisk list

DEVICE TYPE DISK GROUP STATUS

Disk_0s2 auto:LVM - - LVM

Disk_1 auto:ASM - - ASM

EVA4K6K0_0 auto - - online

EVA4K6K0_1 auto - - online

The vxdisk classify command classifies and displays ASM disks as Oracle
ASM.

vxdisk -d classify disk=c1t0d5

device: c1t0d5

status: CLASSIFIED

type: Oracle ASM

groupid: -

hostname: -

domainid: -

centralhost: -

Specify the -f option to the vxdisk classify command, to perform a full scan
of the OS devices.

190How Veritas Dynamic Multi-Pathing works
Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

To check if a particular disk is under ASM control

◆ Use the vxisasm utility to check if a particular disk is under ASM control.

/etc/vx/bin/vxisasm 3pardata0_2799

3pardata0_2799 ACTIVE

/etc/vx/bin/vxisasm 3pardata0_2798

3pardata0_2798 FORMER

Alternatively, use the vxisforeign utility to check if the disk is under control
of any foreign software like LVM or ASM:

/etc/vx/bin/vxisforeign 3pardata0_2799

3pardata0_2799 ASM ACTIVE

/etc/vx/bin/vxisforeign 3pardata0_2798

3pardata0_2798 ASM FORMER

191How Veritas Dynamic Multi-Pathing works
Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

Provisioning storage

■ Chapter 7. Provisioning new storage

■ Chapter 8. Advanced allocation methods for configuring storage

■ Chapter 9. Creating and mounting VxFS file systems

■ Chapter 10. Extent attributes

2Section

Provisioning new storage
This chapter includes the following topics:

■ Provisioning new storage

■ Growing the existing storage by adding a new LUN

■ Growing the existing storage by growing the LUN

■ Displaying SFCFSHA information with vxlist

Provisioning new storage
The following procedure describes how to provision new storage. If you are
provisioning Storage Foundation Cluster File System High Availability on thin
storage, you should understand how Storage Foundation Cluster File System High
Availability works with thin storage.

See “About thin optimization solutions in Storage Foundation Cluster File System
High Availability ” on page 683.

To provision new storage

1 Set up the LUN. See the documentation for your storage array for information
about how to create, mask, and bind the LUN.

2 Initialize the LUNs for Veritas Volume Manager (VxVM), using one of the
following commands.

The recommended method is to use the vxdisksetup command.

vxdisksetup -i 3PARDATA0_1

vxdisk init 3PARDATA0_1

3 Add the LUN to a disk group.

7Chapter

■ If you do not have a disk group for your LUN, create the disk group:

vxdg init dg1 dev1=3PARDATA0_1

■ If you already have a disk group for your LUN, add the LUN to the disk
group:

vxdg -g dg1 adddisk 3PARDATA0_1

4 Create the volume on the LUN:

vxassist -b -g dg1 make vol1 100g 3PARDATA0_1

5 Create a Veritas File System (VxFS) file system on the volume:

mkfs -t vxfs /dev/vx/rdsk/dg1/vol1

6 Create a mount point on the file system:

mkdir /mount1

7 Mount the file system:

mount -t vxfs /dev/vx/dsk/dg1/vol1 /mount1

Growing the existing storage by adding a new
LUN

The following procedure describes how to grow the existing storage by adding a
new LUN.

To grow the existing storage by adding a new LUN

1 Create and set up the LUN.

2 Add the LUN to the disk group.

vxdg -g dg1 adddisk 3PARDATA0_2

3 Grow the volume and the file system to the desired size. For example:

vxresize -b -F vxfs -g dg1 vol1 100g

194Provisioning new storage
Growing the existing storage by adding a new LUN

Growing the existing storage by growing the LUN
The following procedure describes how to grow the existing storage by growing a
LUN.

To grow the existing storage by growing a LUN

1 Grow the existing LUN. See the documentation for your storage array for
information about how to create, mask, and bind the LUN.

2 Make Veritas Volume Manager (VxVM) aware of the new LUN size.

vxdisk -g dg1 resize c0t1d0s4

See “Dynamic LUN expansion” on page 334.

3 Calculate the new maximum volume size:

vxassist -g dg1 -b maxgrow vol1

4 Grow the volume and the file system to the desired size:

vxresize -b -F vxfs -g dg1 vol1 100g

Displaying SFCFSHA information with vxlist
The vxlist command is a display command that provides a consolidated view of
the SFCFSHA configuration. The vxlist command consolidates information from
Veritas Volume Manager (VxVM) and Veritas File System (VxFS). The vxlist

command provides various options to display information. For example, use the
following form of the command to display file system information including information
about the volume, disk group, and so on. In previous releases, you needed to run
at least two commands to retrieve the following information.

/opt/VRTSsfmh/bin/vxlist fs

TY FS FSTYPE SIZE FREE %USED DEVICE_PATH MOUNT_POINT

fs / ext3 65.20g 51.70g 17% /dev/sda1 /

fs mnt vxfs 19.84g 9.96g 49% /dev/vx/dsk/bardg/vol1 /mnt

For help on the vxlist command, enter the following command:

vxlist -H

See the vxlist(1m) manual page.

195Provisioning new storage
Growing the existing storage by growing the LUN

Advanced allocation
methods for configuring
storage

This chapter includes the following topics:

■ Customizing allocation behavior

■ Creating volumes of a specific layout

■ Creating a volume on specific disks

■ Creating volumes on specific media types

■ Specifying ordered allocation of storage to volumes

■ Site-based allocation

■ Changing the read policy for mirrored volumes

Customizing allocation behavior
By default, the vxassist command creates volumes on any available storage that
meets basic requirements. The vxassist command seeks out available disk space
and allocates it in the configuration that conforms to the layout specifications and
that offers the best use of free space. The vxassist command creates the required
plexes and subdisks using only the basic attributes of the desired volume as input.

If you are provisioning Storage Foundation Cluster File System High Availability on
thin storage, you should understand how Storage Foundation Cluster File System
High Availability works with thin storage.

8Chapter

See “About thin optimization solutions in Storage Foundation Cluster File System
High Availability ” on page 683.

Additionally, when you modify existing volumes using the vxassist command, the
vxassist command automatically modifies underlying or associated objects. The
vxassist command uses default values for many volume attributes, unless you
provide specific values to the command line. You can customize the default behavior
of the vxassist command by customizing the default values.

See “Setting default values for vxassist” on page 198.

The vxassist command creates volumes in a default disk group according to the
default rules. To use a different disk group, specify the -g diskgroup option to the
vxassist command.

See “Rules for determining the default disk group” on page 848.

If you want to assign particular characteristics for a certain volume, you can specify
additional attributes on the vxassist command line. These can be storage
specifications to select certain types of disks for allocation, or other attributes such
as the stripe unit width, number of columns in a RAID-5 or stripe volume, number
of mirrors, number of logs, and log type.

For details of available vxassist keywords and attributes, refer to the vxassist(1M)
manual page.

You can use allocation attributes to specify the following types of allocation behavior:

See “Creating volumes of a specific layout”
on page 219.

Layouts for the volumes

See “Creating volumes on specific media
types” on page 227.

Media types

See “Creating a volume on specific disks”
on page 226.

Specific disks, subdisks, plexes locations

See “Specifying ordered allocation of storage
to volumes” on page 228.

Ordered allocation

See “Site-based allocation” on page 231.Site-based allocation

See “Changing the read policy for mirrored
volumes” on page 231.

Setting the read policy

The vxassist utility also provides various constructs to help define and manage
volume allocations, with efficiency and flexibility.

See “Setting default values for vxassist” on page 198.

197Advanced allocation methods for configuring storage
Customizing allocation behavior

See “Using rules to make volume allocation more efficient” on page 199.

See “Understanding persistent attributes” on page 202.

See “Customizing disk classes for allocation” on page 205.

See “Specifying allocation constraints for vxassist operations with the use clause
and the require clause” on page 207.

See “Management of the use and require type of persistent attributes ” on page 215.

Setting default values for vxassist
The default values that the vxassist command uses may be specified in the file
/etc/default/vxassist. The defaults listed in this file take effect if you do not
override them on the command line, or in an alternate defaults file that you specify
using the -d option. A default value specified on the command line always takes
precedence. vxassist also has a set of built-in defaults that it uses if it cannot find
a value defined elsewhere.

You must create the /etc/default directory and the vxassist default file if these
do not already exist on your system.

The format of entries in a defaults file is a list of attribute-value pairs separated by
new lines. These attribute-value pairs are the same as those specified as options
on the vxassist command line.

See the vxassist(1M) manual page.

To display the default attributes held in the file /etc/default/vxassist, use the
following form of the vxassist command:

vxassist help showattrs

The following is a sample vxassist defaults file:

By default:

create unmirrored, unstriped volumes

allow allocations to span drives

with RAID-5 create a log, with mirroring don’t create a log

align allocations on cylinder boundaries

layout=nomirror,nostripe,span,nocontig,raid5log,noregionlog,

diskalign

use the fsgen usage type, except when creating RAID-5 volumes

usetype=fsgen

allow only root access to a volume

mode=u=rw,g=,o=

198Advanced allocation methods for configuring storage
Customizing allocation behavior

user=root

group=root

when mirroring, create two mirrors

nmirror=2

for regular striping, by default create between 2 and 8 stripe

columns

max_nstripe=8

min_nstripe=2

for RAID-5, by default create between 3 and 8 stripe columns

max_nraid5stripe=8

min_nraid5stripe=3

by default, create 1 log copy for both mirroring and RAID-5 volumes

nregionlog=1

nraid5log=1

by default, limit mirroring log lengths to 32Kbytes

max_regionloglen=32k

use 64K as the default stripe unit size for regular volumes

stripe_stwid=64k

use 16K as the default stripe unit size for RAID-5 volumes

raid5_stwid=16k

Using rules to make volume allocation more efficient
The vxassist command lets you create a set of volume allocation rules and define
it with a single name. When you specify this name in your volume allocation request,
all the attributes that are defined in this rule are honored when vxassist creates
the volume.

Creating volume allocation rules has the following benefits:

■ Rules streamline your typing and reduce errors. You can define relatively complex
allocation rules once in a single location and reuse them.

■ Rules let you standardize behaviors in your environment, including across a set
of servers.

For example, you can create allocation rules so that a set of servers can standardize
their storage tiering. Suppose you had the following requirements:

199Advanced allocation methods for configuring storage
Customizing allocation behavior

Enclosure mirroring between a specific set of array typesTier 1

Non-mirrored striping between a specific set of array typesTier 2

Select solid-state drive (SSD) storageTier 0

You can create rules for each volume allocation requirement and name the rules
tier1, tier2, and tier0.

You can also define rules so that each time you create a volume for a particular
purpose, the volume is created with the same attributes. For example, to create
the volume for a production database, you can create a rule called productiondb.
To create standardized volumes for home directories, you can create a rule called
homedir. To standardize your high performance index volumes, you can create a
rule called dbindex.

Rule file format
When you create rules, you do not define them in the /etc/default/vxassist file.
You create the rules in another file and add the path information to
/etc/default/vxassist. By default, a rule file is loaded from
/etc/default/vxsf_rules. You can override this location in
/etc/default/vxassistwith the attribute rulefile=/path/rule_file_name. You
can also specify additional rule files on the command line.

A rule file uses the following conventions:

■ Blank lines are ignored.

■ Use the pound sign, #, to begin a comment.

■ Use C language style quoting for the strings that may include embedded spaces,
new lines, or tabs. For example, use quotes around the text for the description

attribute.

■ Separate tokens with a space.

■ Use braces for a rule that is longer than one line.

Within the rule file, a volume allocation rule has the following format:

volume rule rulename vxassist_attributes

This syntax defines a rule named rulename which is a short-hand for the listed
vxassist attributes. Rules can reference other rules using an attribute of
rule=rulename[,rulename,...], which adds all the attributes from that rule into
the rule currently being defined. The attributes you specify in a rule definition override
any conflicting attributes that are in a rule that you specify by reference. You can
add a description to a rule with the attribute description=description_text.

200Advanced allocation methods for configuring storage
Customizing allocation behavior

The following is a basic rule file. The first rule in the file, base, defines the logtype

and persist attributes. The remaining rules in the file – tier0, tier1, and tier2 –
reference this rule and also define their own tier-specific attributes. Referencing a
rule lets you define attributes in one place and reuse them in other rules.

Create tier 1 volumes mirrored between disk arrays, tier 0 on SSD,

and tier 2 as unmirrored. Always use FMR DCO objects.

volume rule base { logtype=dco persist=yes }

volume rule tier0 { rule=base mediatype:ssd tier=tier0 }

volume rule tier1 { rule=base mirror=enclosure tier=tier1 }

volume rule tier2 { rule=base tier=tier2 }

The following rule file contains a more complex definition that runs across several
lines.

volume rule appXdb_storage {

description="Create storage for the database of Application X"

rule=base

siteconsistent=yes

mirror=enclosure

}

By default, a rule file is loaded from /etc/default/vxsf_rules. You can override
this location in /etc/default/vxassist. You can also specify additional rule files
on the command line.

Using rules to create a volume
When you use the vxassist command to create a volume, you can include the
rule name on the command line. For example, the content of the vxsf_rules file
is as follows:

volume rule basic { logtype=dco }

volume rule tier1 {

rule=basic

layout=mirror

tier=tier1

}

In the following example, when you create the volume vol1 in disk group dg3, you
can specify the tier1 rule on the command line. In addition to the attributes you
enter on the command line, vol1 is given the attributes that you defined in tier1.

vxassist -g dg3 make vol1 200m rule=tier1

201Advanced allocation methods for configuring storage
Customizing allocation behavior

The following vxprint command displays the attributes of disk group dg3. The
output includes the new volume, vol1.

vxprint -g dg3

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dg3 dg3 - - - - - -

dm ibm_ds8x000_0266 ibm_ds8x000_0266 - 2027264 - - - -

dm ibm_ds8x000_0267 ibm_ds8x000_0267 - 2027264 - - - -

dm ibm_ds8x000_0268 ibm_ds8x000_0268 - 2027264 - - - -

v vol1 fsgen ENABLED 409600 - ACTIVE - -

pl vol1-01 vol1 ENABLED 409600 - ACTIVE - -

sd ibm_ds8x000_0266-01 vol1-01 ENABLED 409600 0 - - -

pl vol1-02 vol1 ENABLED 409600 - ACTIVE - -

sd ibm_ds8x000_0267-01 vol1-02 ENABLED 409600 0 - - -

dc vol1_dco vol1 - - - - - -

v vol1_dcl gen ENABLED 144 - ACTIVE - -

pl vol1_dcl-01 vol1_dcl ENABLED 144 - ACTIVE - -

sd ibm_ds8x000_0266-02 vol1_dcl-01 ENABLED 144 0 - - -

pl vol1_dcl-02 vol1_dcl ENABLED 144 - ACTIVE - -

sd ibm_ds8x000_0267-02 vol1_dcl-02 ENABLED 144 0 - - -

The following vxassist command confirms that vol1 is in tier1. The application of
rule tier1 was successful.

vxassist -g dg3 listtag

TY NAME DISKGROUP TAG

===

v vol1 dg3 vxfs.placement_class.tier1

Understanding persistent attributes
The vxassist command lets you record certain volume allocation attributes for a
volume. These attributes are called persistent attributes. You can record the
attributes which would be useful in later allocation operations on the volume. Useful
attributes include volume grow and enclosure mirroring. You can also restrict
allocation to storage that has a particular property (such as the enclosure type, disk
tag, or media type). On the other hand, volume length is not useful, and generally
neither is a specific list of disks.

The persistent attributes can be retrieved and applied to the allocation requests
(with possible modifications) for the following operations:

■ volume grow or shrink

202Advanced allocation methods for configuring storage
Customizing allocation behavior

■ move

■ relayout

■ mirror

■ add a log

Persistent attributes let you record carefully-described allocation attributes at the
time of volume creation and retain them for future allocation operations on the
volume. Also, you can modify, enhance, or discard the persistent attributes. For
example, you can add and retain a separation rule for a volume that is originally
not mirrored. Alternatively, you can temporarily suspend a volume allocation which
has proven too restrictive or discard it to allow a needed allocation to succeed.

You can use the persist attribute to record allocation attributes on the command
line or in a rule file.

See “Using persistent attributes” on page 203.

You can manage the use and require type of persistent attributes with the intent
management operations: setrule, changerule, clearrule, and listrule.

See “Management of the use and require type of persistent attributes ” on page 215.

Using persistent attributes
You can define volume allocation attributes so they can be reused in subsequent
operations. These attributes are called persistent attributes, and they are stored in
a set of hidden volume tags. The persist attribute determines whether an attribute
persists, and how the current command might use or modify preexisting persisted
attributes. You can specify persistence rules in defaults files, in rules, or on the
command line. For more information, see the vxassist manual page.

To illustrate how persistent attributes work, we'll use the following vxsf_rules file.
It contains a rule, rule1, which defines the mediatype attribute. This rule also uses
the persist attribute to make the mediatype attribute persistent.

cat /etc/default/vxsf_rules

volume rule rule1 { mediatype:ssd persist=extended }

The following command confirms that LUNs ibm_ds8x000_0266 and
ibm_ds8x000_0268 are solid-state disk (SSD) devices.

vxdisk listtag

DEVICE NAME VALUE

ibm_ds8x000_0266 vxmediatype ssd

ibm_ds8x000_0268 vxmediatype ssd

203Advanced allocation methods for configuring storage
Customizing allocation behavior

The following command creates a volume, vol1, in the disk group dg3. rule1 is
specified on the command line, so those attributes are also applied to vol1.

vxassist -g dg3 make vol1 100m rule=rule1

The following command shows that the volume vol1 is created off the SSD device
ibm_ds8x000_0266 as specified in rule1.

vxprint -g dg3

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dg3 dg3 - - - - - -

dm ibm_ds8x000_0266 ibm_ds8x000_0266 - 2027264 - - - -

dm ibm_ds8x000_0267 ibm_ds8x000_0267 - 2027264 - - - -

dm ibm_ds8x000_0268 ibm_ds8x000_0268 - 2027264 - - - -

v vol1 fsgen ENABLED 204800 - ACTIVE - -

pl vol1-01 vol1 ENABLED 204800 - ACTIVE - -

sd ibm_ds8x000_0266-01 vol1-01 ENABLED 204800 0 - - -

The following command displays the attributes that are defined in rule1.

vxassist -g dg3 help showattrs rule=rule1

alloc=mediatype:ssd

persist=extended

If no persistent attributes are defined, the following command grows vol1 on hard
disk drive (HDD) devices. However, at the beginning of this section, mediatype:ssd
was defined as a persistent attribute. Therefore, the following command honors
this original intent and grows the volume on SSD devices.

vxassist -g dg3 growby vol1 1g

The following vxprint command confirms that the volume was grown on SSD
devices.

vxprint -g dg3

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg dg3 dg3 - - - - - -

dm ibm_ds8x000_0266 ibm_ds8x000_0266 - 2027264 - - - -

dm ibm_ds8x000_0267 ibm_ds8x000_0267 - 2027264 - - - -

dm ibm_ds8x000_0268 ibm_ds8x000_0268 - 2027264 - - - -

v vol1 fsgen ENABLED 2301952 - ACTIVE - -

204Advanced allocation methods for configuring storage
Customizing allocation behavior

pl vol1-01 vol1 ENABLED 2301952 - ACTIVE - -

sd ibm_ds8x000_0266-01 vol1-01 ENABLED 2027264 0 - - -

sd ibm_ds8x000_0268-01 vol1-01 ENABLED 274688 2027264 - - -

Customizing disk classes for allocation
The vxassist command accepts disk classes to indicate storage specifications for
allocation. The disk classes are internally-discovered attributes that are automatically
associated with the disks. You can specify disk classes to an allocation request
with vxassist to indicate the type of storage to allocate.

For more information about the disk classes, see the Storage Specifications section
of the vxassist(1M) manual page.

You can customize the disk classes in the following ways:

■ Create a customized alias name.
See “User-defined alias names for disk classes” on page 205.

■ Customize the priority order for the disk classes.
See “User-defined precedence order for disk classes” on page 205.

You can also create customized, user-defined disk classes.

See “User-defined disk classes” on page 206.

User-defined alias names for disk classes
For convenience, you can define alias names for existing storage-specification disk
classes. Typically, an alias is a shorter or more user-friendly name. You can use
the alias instead of its corresponding disk class, to specify vxassist allocation
constraints. Define the alias names in rule files.

For example, to define “atyp” as an alias for the base disk class “arraytype”, include
the following statement in a rule file.

class alias atyp=arraytype

When the above rule file is used, you can specify the alias “atyp” for allocation. For
example, the following constraint specification allocates storage from A/A arrays
for the volume creation.

vxassist -g dgname make volname volsize use=atyp:A/A

User-defined precedence order for disk classes
The vxassist command applies a default priority order for the disk classes that
are specified in the mirror confinement (mirrorconfine, wantmirrorconfine),

205Advanced allocation methods for configuring storage
Customizing allocation behavior

mirror separation (mirror, wantmirror), and stripe separation (stripe, wantstripe)
constraints. The higher priority class is honored for allocation when mirroring or
striping. If a different priority order is required, you can change the default order for
these disk classes.

Note: The “site” class always has the highest precedence, and its order cannot be
overridden.

Define the customized precedence order in a rule file. The higher the order number,
the higher is the class precedence.

The following shows the default precedence order, for the class names supported
with mirror and stripe separation or confinement constraints.

order=1000site

order=900vendor

order=800arrayproduct

order=700array

order=600arrayport

order=400hostport

The acceptable range for the precedence order is between 0 and 1000.

For example, the array class has a higher priority than the hostport class by default.
To make the hostport class have a higher priority, assign the hostport class a higher
order number. To define the order for the classes, include the following statement
in a rule file:

class define array order=400

class define hostport order=700

When the above rule is used, the following command mirrors across hostport class
rather than the array class.

vxassist -g dgname make volname volsize mirror=array,hostport

User-defined disk classes
You can define customized disk classes to use in storage specifications for the
vxassist command. Customized disk classes allow for user-defined device
classification and grouping. You can use these disk classes to control allocations.
A customized disk class is a user-defined property that is associated with a set of

206Advanced allocation methods for configuring storage
Customizing allocation behavior

disks. The property is attached as a disk class to the disks that satisfy a particular
constraint.

You can use the custom disk classes like other storage-specification disk classes,
to specify vxassist allocation constraints. Define the custom disk classes in a rule
file.

Example

With the following definition in the rule file, the user-defined property “poolname”
is associated to the referenced disks. All devices that have the array vendor property
defined as HITACHI or IBM, are marked as poolname “finance”. All devices that
have the array vendor property defined as DGC or EMC, are marked as poolname
“admin”.

disk properties vendor:HITACHI {

poolname:finance

}

disk properties vendor:IBM {

poolname:finance

}

disk properties vendor:DGC {

poolname:admin

}

disk properties vendor:EMC {

poolname:admin

}

You can now use the user-defined disk class “poolname”for allocation. For example,
the following constraint specification allocates disks from the poolname “admin” for
the volume creation.

vxassist -g dgname make volname volsize poolname:admin

Specifying allocation constraints for vxassist operations with the use
clause and the require clause

The vxassist command accepts a variety of storage specifications for allocations.
The require constraint and the use constraint are methods to specify detailed storage
specifications for allocations. These constraints enable you to select disks from an
intersection set or a union set of intended properties. You can specify the set of
disks for allocations with more precision than the existing methods alloc and
logdisk clauses. The use and require constraints can apply to data, log, or both
data and log.

The constraints can be one of the following types:

207Advanced allocation methods for configuring storage
Customizing allocation behavior

■ The require constraints
All of the specifications in the constraint must be satisfied, or the allocation fails.
A require constraint behaves as an intersection set. For example, allocate disks
from a particular array vendor AND with a particular array type.

■ The use constraints
At least one of the specifications in the constraint must be satisfied, or the
allocation fails. A use constraint behaves as a union set. For example, allocate
disks from any of the specified enclosures: enclrA or enclrB.

For disk group version of 180 or above, the use and require type of constraints are
persistent for the volume by default. The default preservation of these clauses
enables further allocation operations like grow, without breaking the specified intents.

You can specify multiple storage specifications, separated by commas, in a use or
require clause on the vxassist command line. You can also specify multiple use
or require clauses on the vxassistcommand line.

See “Interaction of multiple require and use constraints” on page 209.

Use the vxassist intent management operations (setrule, changerule, clearrule,
listrule) to manage persistent require and use constraints.

See “Management of the use and require type of persistent attributes ” on page 215.

About require constraints
The “require” type of constraints specify that the allocation must select storage that
matches all the storage specifications in the constraint. Therefore, the require
constraint acts like an intersection set, or a logical AND operation. If any of the
specifications cannot be met, the operation fails. The attribute names to specify
require constraints are:

■ require

The constraint applies to both data and log allocation.

■ logrequire

The constraint applies to log allocations only.

■ datarequire

The constraint applies to data allocations only.

If any storage-specification is negated with !, the allocation excludes the storage
that matches that storage specification

208Advanced allocation methods for configuring storage
Customizing allocation behavior

Note: If the require type of constraint is provided with the same class but different
instances, then these instances are unionized rather than intersected. That is, the
allocation selects storage that satisfies any of these storage specifications (similar
to use type of constraint).

See “Interaction of multiple require and use constraints” on page 209.

About use constraints
The “use” type of constraints specify that the allocation must select storage that
matches at least one of the storage specifications in the constraint. Therefore, the
use constraint acts like a union set, or a logical OR operation. If none of the
specifications can be met, the operation fails. The attribute names to specify use
constraints are:

■ use

The constraint applies to both data and log allocation.

■ loguse

The constraint applies to log allocations only.

■ datause

The constraint applies to data allocations only.

See “Interaction of multiple require and use constraints” on page 209.

If the storage specification is negated with !, then the allocation excludes the storage
that matches that storage specification.

Interaction of multiple require and use constraints
You can specify multiple use or require clauses on the vxassist command line.
Not all combinations are supported. However, all possible constraint specifications
can be achieved with the supported combinations.

The scope for a constraint can be data-specific (datause or datarequire), log-specific
(loguse or logrequire) or general, which applies to both data and log (use or require).

Note: Symantec recommends that you do not combine use or require constraints
with direct storage-specifications or other clauses like alloc or logdisk.

The following rules apply when multiple use or require clauses are specified:

■ Multiple use constraints of the same scope are unionized, so that at least one
of the storage specifications is satisfied. That is, multiple use clauses; multiple
datause clauses; or multiple loguse clauses.

209Advanced allocation methods for configuring storage
Customizing allocation behavior

■ Multiple require constraints of the same scope are intersected, so that all the
storage specifications are satisfied. That is, multiple require clauses; multiple
datarequire clauses; or multiple logrequire clauses.

■ Require and use constraints of the same scope are mutually intersected. That
is, require clauses and use clauses; datarequire clauses and datause clauses;
or logrequire clauses and loguse clauses. At least one of the use storage
specifications must be satisfied and all of the require storage specifications are
satisfied. For example, if a datause clause and a datarequire clause are used
together, the allocation for the data must meet at least one of the datause

specifications and all of the datarequire specifications.

■ Data-specific constraints and log-specific constraints can be used together.
They are applied independently to data and logs respectively. That is, datause
clause with loguse clause or logrequire clause; datarequire clause with
loguse clause or logrequire clause . For example, a datarequire clause can
be used to control data allocation along with a logrequire clause to control log
allocation.

■ The vxassist command does not support a mix of general scope constraints
with data-specific or log-specific constraints. For example, a require clause
cannot be used along with the logrequire clause or a datarequire clause.
However, all possible constraint specifications can be achieved with the
supported combinations.

Table 8-1 summarizes these rules for the interaction of each type of constraint if
multiple constraints are specified.

Table 8-1 Combinations of require and use constraints

Applied
independently

Mutually
intersected

Mutually unionizedScope

datause - loguse

datause - logrequire

datarequire - loguse

datarequire -
logrequire

datarequire - datause

datarequire -
datarequire

datause - datauseData

loguse - datause

loguse - datarequire

logrequire -datause

logrequire -
datarequire

logrequire - loguse

logrequire - logrequire

loguse - loguseLog

210Advanced allocation methods for configuring storage
Customizing allocation behavior

Table 8-1 Combinations of require and use constraints (continued)

Applied
independently

Mutually
intersected

Mutually unionizedScope

N/Ause - require

require - require

use - useGeneral - log and
data

Examples of use and require constraints
The following examples show use and require constraints for storage allocation.

Example 1 - require constraint

This example shows the require constraint in a disk group that has disks from two
arrays: emc_clariion0 and ams_wms0. Both arrays are connected through the same
HBA hostportid (06-08-02), but the arrays have different arraytype (A/A and A/A-A
respectively).

The following output shows the disk group information:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

To allocate both the data and the log on the disks that are attached to the particular
HBA and that have the array type A/A:

vxassist -g testdg make v1 1G logtype=dco dcoversion=20 \

require=hostportid:06-08-02,arraytype:A/A

The following output shows the results of the above command. The command
allocated disk space for the data and the log on emc_clariion0 array disks, which
satisfy all the storage specifications in the require constraint:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

211Advanced allocation methods for configuring storage
Customizing allocation behavior

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

v v1 fsgen ENABLED 2097152 - ACTIVE - -

pl v1-01 v1 ENABLED 2097152 - ACTIVE - -

sd emc_clariion0_0-01 v1-01 ENABLED 2097152 0 - - -

dc v1_dco v1 - - - - - -

v v1_dcl gen ENABLED 67840 - ACTIVE - -

pl v1_dcl-01 v1_dcl ENABLED 67840 - ACTIVE - -

sd emc_clariion0_0-02 v1_dcl-01 ENABLED 67840 0 - - -

Example 2 - use constraint

This example shows the use constraint in a disk group that has disks from three
arrays: ams_wms0, emc_clariion0, and hitachi_vsp0.

The following output shows the disk group information:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

To allocate both the data and the log on the disks that belong to the array ams_wms0
or the array emc_clariion0:

vxassist -g testdg make v1 3G logtype=dco dcoversion=20 \

use=array:ams_wms0,array:emc_clariion0

The following output shows the results of the above command. The command
allocated disk space for the data and the log on disks that satisfy the arrays specified
in the use constraint.

212Advanced allocation methods for configuring storage
Customizing allocation behavior

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

v v1 fsgen ENABLED 6291456 - ACTIVE - -

pl v1-01 v1 ENABLED 6291456 - ACTIVE - -

sd ams_wms0_359-01 v1-01 ENABLED 2027264 0 - - -

sd ams_wms0_360-01 v1-01 ENABLED 143872 2027264 - - -

sd emc_clariion0_0-01 v1-01 ENABLED 4120320 2171136 - - -

dc v1_dco v1 - - - - - -

v v1_dcl gen ENABLED 67840 - ACTIVE - -

pl v1_dcl-01 v1_dcl ENABLED 67840 - ACTIVE - -

sd ams_wms0_360-02 v1_dcl-01 ENABLED 67840 0 - - -

Example 3: datause and logrequire combination

This example shows the combination of a datause constraint and a logrequire

constraint. The disk group has disks from three arrays: ams_wms0, emc_clariion0,
and hitachi_vsp0, which have different array types.

The following output shows the disk group information:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

To allocate data on disks from ams_wms0 or emc_clariion0 array, and to allocate
log on disks from arraytype A/A-A:

213Advanced allocation methods for configuring storage
Customizing allocation behavior

vxassist -g testdg make v1 1G logtype=dco dcoversion=20 \

datause=array:ams_wms0,array:emc_clariion0 logrequire=arraytype:A/A-A

The following output shows the results of the above command. The command
allocated disk space for the data and the log independently. The data space is
allocated on emc_clariion0 disks that satisfy the datause constraint. The log space
is allocated on ams_wms0 disks that are A/A-A arraytype and that satisfy the
logrequire constraint:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

v v1 fsgen ENABLED 2097152 - ACTIVE - -

pl v1-01 v1 ENABLED 2097152 - ACTIVE - -

sd emc_clariion0_0-01 v1-01 ENABLED 2097152 0 - - -

dc v1_dco v1 - - - - - -

v v1_dcl gen ENABLED 67840 - ACTIVE - -

pl v1_dcl-01 v1_dcl ENABLED 67840 - ACTIVE - -

sd ams_wms0_359-01 v1_dcl-01 ENABLED 67840 0 - - -

Example 4 - use and require combination

This example shows the combination of a use constraint and a require constraint.
The disk group has disks from three arrays: ams_wms0, emc_clariion0, and
hitachi_vsp0. Only the disks from ams_wms0 array are multi-pathed.

The following output shows the disk group information:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

214Advanced allocation methods for configuring storage
Customizing allocation behavior

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

To allocate data and log space on disks from emc_clariion0 or ams_wms0 array,
and disks that are multi-pathed:

vxassist -g testdg make v1 1G logtype=dco dcoversion=20 \

use=array:emc_clariion0,array:ams_wms0 require=multipathed:yes

The following output shows the results of the allocation. The data and log space is
on ams_wms0 disks, which satisfy the use as well as the require constraints:

vxprint -g testdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg testdg testdg - - - - - -

dm ams_wms0_359 ams_wms0_359 - 2027264 - - - -

dm ams_wms0_360 ams_wms0_360 - 2027264 - - - -

dm ams_wms0_361 ams_wms0_361 - 2027264 - - - -

dm ams_wms0_362 ams_wms0_362 - 2027264 - - - -

dm emc_clariion0_0 emc_clariion0_0 - 4120320 - - - -

dm emc_clariion0_1 emc_clariion0_1 - 4120320 - - - -

dm emc_clariion0_2 emc_clariion0_2 - 4120320 - - - -

dm emc_clariion0_3 emc_clariion0_3 - 4120320 - - - -

dm hitachi_vsp0_3 hitachi_vsp0_3 - 4120320 - - - -

v v1 fsgen ENABLED 2097152 - ACTIVE - -

pl v1-01 v1 ENABLED 2097152 - ACTIVE - -

sd ams_wms0_359-01 v1-01 ENABLED 2027264 0 - - -

sd ams_wms0_360-01 v1-01 ENABLED 69888 2027264 - - -

dc v1_dco v1 - - - - - -

v v1_dcl gen ENABLED 67840 - ACTIVE - -

pl v1_dcl-01 v1_dcl ENABLED 67840 - ACTIVE - -

sd ams_wms0_360-02 v1_dcl-01 ENABLED 67840 0 - - -

Management of the use and require type of persistent attributes
Persistent attributes are the saved vlume intents that should be honored for
subsequent allocation operations for that volume. The intent management operations
enable you to manage the use and require type of persistent intents for volumes.
These operations allow you to independently manage the intents after the volume
creation. When you change the persistent intents for a volume, the changed intents
are not checked for validity or enforced for the current allocation of the volume.

215Advanced allocation methods for configuring storage
Customizing allocation behavior

You can set, change, clear, or list the persistent intents for the volume with the
following vxassist operations:

■ setrule

Replaces any existing saved intents with the specified intents for the specified
volume.

■ changerule

Appends the specified intents to the existing saved intents for the specified
volume.

■ clearrule

Removes any existing saved intents for the specified volume.

■ listrule

Lists any saved intents for the specified volume. If no volume name is specified,
the command shows the intents for all of the volumes.

The intent management operations only apply to the use or require type of persistent
constraints. The other type of persistent constraints are managed with the persist

attribute.

See “Using persistent attributes” on page 203.

To display the intents that are currently associated to a volume

◆ To display the intents that are currently associated to a volume, use the
following command:

vxassist [options] listrule [volume]

For example, to display the existing saved intents for the volume v1:

vxassist -g testdg listrule v1

volume rule v1 {

require=array:ams_wms0

}

216Advanced allocation methods for configuring storage
Customizing allocation behavior

To replace the intents that are currently associated to a volume

1 Display the intents that are currently associated to the volume:

vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ams_wms0. For example, to display the existing saved intents for
the volume v1:

vxassist -g testdg listrule v1

volume rule v1 {

require=array:ams_wms0

}

2 Specify the new intent with the following command:

vxassist [options] setrule volume attributes...

For example, to replace the array with the ds4100-0 array, specify the new
intent with the following command:

vxassist -g testdg setrule v1 require=array:ds4100-0

3 Verify the new intent with the display command.

For example, the following command shows that the intent has changed:

vxassist -g testdg listrule v1

volume rule v1 {

require=array:ds4100-0

}

217Advanced allocation methods for configuring storage
Customizing allocation behavior

To add to the intents that are currently associated to a volume

1 Display the intents that are currently associated to the volume:

vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ds4100-0. For example, to display the existing saved intents for
the volume v1:

vxassist -g testdg listrule v1

volume rule v1 {

use=array:ds4100-0

}

2 Add the new intent with the following command:

vxassist [options] changerule volume attributes...

For example, to add the ams_wms0 array in the use constraint, specify the
new intent with the following command:

vxassist -g testdg changerule v1 use=array:ams_wms0

3 Verify the new intent with the display command.

For example, the following command shows that the intent has changed:

vxassist -g testdg listrule v1

volume rule v1 {

use=array:ds4100-0,array:ams_wms0

}

218Advanced allocation methods for configuring storage
Customizing allocation behavior

To clear the intents that are currently associated to a volume

1 Display the intents that are currently associated to the volume:

vxassist [options] listrule [volume]

For example, to display the existing saved intents for the volume v1:

vxassist -g testdg listrule v1

volume rule v1 {

require=multipathed:yes

use=array:emc_clariion0,array:ams_wms0

}

2 Clear the existing intents with the following command:

vxassist [options] clearrule volume

For example, to clear the intents for the volume v1:

vxassist -g testdg clearrule v1

3 Verify that the volume has no saved intents.

For example, the following command shows that the volume v1 has no saved
intents:

vxassist -g testdg listrule v1

volume rule v1 {}

Creating volumes of a specific layout
Veritas Volume Manager (VxVM) enables you to create volumes of various layouts.
You can specify an attribute to indicate the type of layout you want to create. The
following sections include details for each of the following types:

■ mirrored volumes
See “Creating a mirrored volume” on page 221.

■ striped volumes
See “Creating a striped volume” on page 223.

■ RAID-5 volumes
See “Creating a RAID-5 volume” on page 224.

219Advanced allocation methods for configuring storage
Creating volumes of a specific layout

Types of volume layouts
Veritas Volume Manager (VxVM) allows you to create volumes with the following
layout types:

A volume whose subdisks are arranged both sequentially and
contiguously within a plex. Concatenation allows a volume to be
created from multiple regions of one or more disks if there is not
enough space for an entire volume on a single region of a disk. If
a single LUN or disk is split into multiple subdisks, and each subdisk
belongs to a unique volume, this is called carving.

See “Concatenation, spanning, and carving” on page 108.

Concatenated

A volume with data spread evenly across multiple disks. Stripes
are equal-sized fragments that are allocated alternately and evenly
to the subdisks of a single plex. There must be at least two subdisks
in a striped plex, each of which must exist on a different disk.
Throughput increases with the number of disks across which a plex
is striped. Striping helps to balance I/O load in cases where high
traffic areas exist on certain subdisks.

See “Striping (RAID-0)” on page 110.

Striped

A volume with multiple data plexes that duplicate the information
contained in a volume. Although a volume can have a single data
plex, at least two are required for true mirroring to provide
redundancy of data. For the redundancy to be useful, each of these
data plexes should contain disk space from different disks.

See “Mirroring (RAID-1)” on page 113.

Mirrored

A volume that uses striping to spread data and parity evenly across
multiple disks in an array. Each stripe contains a parity stripe unit
and data stripe units. Parity can be used to reconstruct data if one
of the disks fails. In comparison to the performance of striped
volumes, write throughput of RAID-5 volumes decreases since
parity information needs to be updated each time data is modified.
However, in comparison to mirroring, the use of parity to implement
data redundancy reduces the amount of space required.

See “RAID-5 (striping with parity)” on page 116.

RAID-5

220Advanced allocation methods for configuring storage
Creating volumes of a specific layout

A volume that is configured as a striped plex and another plex that
mirrors the striped one. This requires at least two disks for striping
and one or more other disks for mirroring (depending on whether
the plex is simple or striped). The advantages of this layout are
increased performance by spreading data across multiple disks
and redundancy of data.

See “Striping plus mirroring (mirrored-stripe or RAID-0+1)”
on page 114.

Mirrored-stripe

A volume constructed from other volumes. Non-layered volumes
are constructed by mapping their subdisks to VM disks. Layered
volumes are constructed by mapping their subdisks to underlying
volumes (known as storage volumes), and allow the creation of
more complex forms of logical layout.

See “About layered volumes” on page 121.

The following layouts are examples of layered volumes:

■ Striped-mirror
A striped-mirror volume is created by configuring several
mirrored volumes as the columns of a striped volume. This
layout offers the same benefits as a non-layered mirrored-stripe
volume. In addition, it provides faster recovery as the failure of
single disk does not force an entire striped plex offline.
See “Mirroring plus striping (striped-mirror, RAID-1+0, or
RAID-10)” on page 115.

■ Concatenated-mirror
A concatenated-mirror volume is created by concatenating
several mirrored volumes. This provides faster recovery as the
failure of a single disk does not force the entire mirror offline.

Layered Volume

Creating a mirrored volume
A mirrored volume provides data redundancy by containing more than one copy of
its data. Each copy (or mirror) is stored on different disks from the original copy of
the volume and from other mirrors. Mirroring a volume ensures that its data is not
lost if a disk in one of its component mirrors fails.

A mirrored volume requires space to be available on at least as many disks in the
disk group as the number of mirrors in the volume.

If you specify layout=mirror, vxassist determines the best layout for the mirrored
volume. Because the advantages of the layouts are related to the size of the volume,
vxassist selects the layout based on the size of the volume. For smaller volumes,
vxassist uses the simpler mirrored concatenated (mirror-concat) layout. For larger
volumes, vxassist uses the more complex concatenated mirror (concat-mirror)

221Advanced allocation methods for configuring storage
Creating volumes of a specific layout

layout. The attribute stripe-mirror-col-split-trigger-pt controls the selection. Volumes
that are smaller than stripe-mirror-col-split-trigger-pt are created as mirror-concat,
and volumes that are larger are created as concat-mirror. By default, the attribute
stripe-mirror-col-split-trigger-pt is set to one gigabyte. The value can be set in
/etc/default/vxassist. If there is a reason to implement a particular layout, you
can specify layout=mirror-concat or layout=concat-mirror to implement the desired
layout.

To create a new mirrored volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror [nmirror=number] [init=active]

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the mirrored volume, volmir, in the disk group, mydg, use
the following command:

vxassist -b -g mydg make volmir 5g layout=mirror

To create a volume with 3 instead of the default of 2 mirrors, modify the command
to read:

vxassist -b -g mydg make volmir 5g layout=mirror nmirror=3

Creating a mirrored-concatenated volume
A mirrored-concatenated volume mirrors several concatenated plexes. To create
a concatenated-mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-concat [nmirror=number]

Specify the -b option if you want to make the volume immediately available for use.

Alternatively, first create a concatenated volume, and then mirror it.

See “Adding a mirror to a volume ” on page 876.

Creating a concatenated-mirror volume
A concatenated-mirror volume is an example of a layered volume which
concatenates several underlying mirror volumes. To create a concatenated-mirror
volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=concat-mirror [nmirror=number]

222Advanced allocation methods for configuring storage
Creating volumes of a specific layout

Specify the -b option if you want to make the volume immediately available for use.

Creating a striped volume
A striped volume contains at least one plex that consists of two or more subdisks
located on two or more physical disks. A striped volume requires space to be
available on at least as many disks in the disk group as the number of columns in
the volume.

See “Striping (RAID-0)” on page 110.

To create a striped volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=stripe

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the 10-gigabyte striped volume volzebra, in the disk group,
mydg, use the following command:

vxassist -b -g mydg make volzebra 10g layout=stripe

This creates a striped volume with the default stripe unit size (64 kilobytes) and the
default number of stripes (2).

You can specify the disks on which the volumes are to be created by including the
disk names on the command line. For example, to create a 30-gigabyte striped
volume on three specific disks, mydg03, mydg04, and mydg05, use the following
command:

vxassist -b -g mydg make stripevol 30g layout=stripe \

mydg03 mydg04 mydg05

To change the number of columns or the stripe width, use the ncolumn and
stripeunit modifiers with vxassist. For example, the following command creates
a striped volume with 5 columns and a 32-kilobyte stripe size:

vxassist -b -g mydg make stripevol 30g layout=stripe \

stripeunit=32k ncol=5

Creating a mirrored-stripe volume
A mirrored-stripe volume mirrors several striped data plexes. A mirrored-stripe
volume requires space to be available on at least as many disks in the disk group
as the number of mirrors multiplied by the number of columns in the volume.

To create a striped-mirror volume, use the following command:

223Advanced allocation methods for configuring storage
Creating volumes of a specific layout

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-stripe [nmirror=number_of_mirrors] \

[ncol=number_of_columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

Alternatively, first create a striped volume, and then mirror it. In this case, the
additional data plexes may be either striped or concatenated.

See “Adding a mirror to a volume ” on page 876.

Creating a striped-mirror volume
A striped-mirror volume is an example of a layered volume which stripes several
underlying mirror volumes. A striped-mirror volume requires space to be available
on at least as many disks in the disk group as the number of columns multiplied by
the number of stripes in the volume.

To create a striped-mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=stripe-mirror [nmirror=number_of_mirrors] \

[ncol=number_of_columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

By default, VxVM attempts to create the underlying volumes by mirroring subdisks
rather than columns if the size of each column is greater than the value for the
attribute stripe-mirror-col-split-trigger-pt that is defined in the vxassist

defaults file.

If there are multiple subdisks per column, you can choose to mirror each subdisk
individually instead of each column. To mirror at the subdisk level, specify the layout
as stripe-mirror-sd rather than stripe-mirror. To mirror at the column level,
specify the layout as stripe-mirror-col rather than stripe-mirror.

Creating a RAID-5 volume
A RAID-5 volume requires space to be available on at least as many disks in the
disk group as the number of columns in the volume. Additional disks may be required
for any RAID-5 logs that are created.

Note: VxVM supports the creation of RAID-5 volumes in private disk groups, but
not in shareable disk groups in a cluster environment.

224Advanced allocation methods for configuring storage
Creating volumes of a specific layout

You can create RAID-5 volumes by using either the vxassist command
(recommended) or the vxmake command. Both approaches are described below.

A RAID-5 volume contains a RAID-5 data plex that consists of three or more
subdisks located on three or more physical disks. Only one RAID-5 data plex can
exist per volume. A RAID-5 volume can also contain one or more RAID-5 log plexes,
which are used to log information about data and parity being written to the volume.

See “RAID-5 (striping with parity)” on page 116.

Warning: Do not create a RAID-5 volume with more than 8 columns because the
volume will be unrecoverable in the event of the failure of more than one disk.

To create a RAID-5 volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=raid5 \

[ncol=number_of_columns] [stripewidth=size] [nlog=number] \

[loglen=log_length]

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the RAID-5 volume volraid together with 2 RAID-5 logs in
the disk group, mydg, use the following command:

vxassist -b -g mydg make volraid 10g layout=raid5 nlog=2

This creates a RAID-5 volume with the default stripe unit size on the default number
of disks. It also creates two RAID-5 logs rather than the default of one log.

If you require RAID-5 logs, you must use the logdisk attribute to specify the disks
to be used for the log plexes.

RAID-5 logs can be concatenated or striped plexes, and each RAID-5 log associated
with a RAID-5 volume has a complete copy of the logging information for the volume.
To support concurrent access to the RAID-5 array, the log should be several times
the stripe size of the RAID-5 plex.

It is suggested that you configure a minimum of two RAID-5 log plexes for each
RAID-5 volume. These log plexes should be located on different disks. Having two
RAID-5 log plexes for each RAID-5 volume protects against the loss of logging
information due to the failure of a single disk.

If you use ordered allocation when creating a RAID-5 volume on specified storage,
you must use the logdisk attribute to specify on which disks the RAID-5 log plexes
should be created. Use the following form of the vxassist command to specify the
disks from which space for the logs is to be allocated:

225Advanced allocation methods for configuring storage
Creating volumes of a specific layout

vxassist [-b] [-g diskgroup] -o ordered make volumelength \

layout=raid5 [ncol=number_columns] [nlog=number] \

[loglen=log_length] logdisk=disk[,disk,...] \

storage_attributes

For example, the following command creates a 3-column RAID-5 volume with the
default stripe unit size on disks mydg04, mydg05 and mydg06. It also creates two
RAID-5 logs on disks mydg07 and mydg08.

vxassist -b -g mydg -o ordered make volraid 10g layout=raid5 \

ncol=3 nlog=2 logdisk=mydg07,mydg08 mydg04 mydg05 mydg06

The number of logs must equal the number of disks that is specified to logdisk.

See “Specifying ordered allocation of storage to volumes” on page 228.

See the vxassist(1M) manual page.

It is possible to add more logs to a RAID-5 volume at a later time.

Creating a volume on specific disks
VxVM automatically selects the disks on which each volume resides, unless you
specify otherwise. If you want to select a particular type of disks for a certain volume,
you can provide the storage specifications to vxassist for storage allocation.

For more infornation, see the Storage Specifications section of the vxassist(1M)
manual page.

If you want a volume to be created on specific disks, you must designate those
disks to VxVM. More than one disk can be specified.

To create a volume on a specific disk or disks, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

[layout=layout] diskname ...

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the volume volspec with length 5 gigabytes on disks mydg03
and mydg04, use the following command:

vxassist -b -g mydg make volspec 5g mydg03 mydg04

The vxassist command allows you to specify storage attributes. These give you
control over the devices, including disks and controllers, which vxassist uses to
configure a volume.

For example, you can specifically exclude disk mydg05.

226Advanced allocation methods for configuring storage
Creating a volume on specific disks

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

vxassist -b -g mydg make volspec 5g \!mydg05

The following example excludes all disks that are on controller c2:

vxassist -b -g mydg make volspec 5g \!ctlr:c2

If you want a volume to be created using only disks from a specific disk group, use
the -g option to vxassist, for example:

vxassist -g bigone -b make volmega 20g bigone10 bigone11

or alternatively, use the diskgroup attribute:

vxassist -b make volmega 20g diskgroup=bigone bigone10 \

bigone11

Any storage attributes that you specify for use must belong to the disk group.
Otherwise, vxassist will not use them to create a volume.

You can also use storage attributes to control how vxassist uses available storage,
for example, when calculating the maximum size of a volume, when growing a
volume or when removing mirrors or logs from a volume. The following example
excludes disks dgrp07 and dgrp08 when calculating the maximum size of RAID-5
volume that vxassist can create using the disks in the disk group dg:

vxassist -b -g dgrp maxsize layout=raid5 nlog=2 \!dgrp07 \!dgrp08

It is also possible to control how volumes are laid out on the specified storage.

See “Specifying ordered allocation of storage to volumes” on page 228.

See the vxassist(1M) manual page.

vxassist also lets you select disks based on disk tags. The following command
only includes disks that have a tier1 disktag.

vxassist -g dg3 make vol3 1g disktag:tier1

Creating volumes on specific media types
When you create a volume, you can specify the media type for the volume. The
supported media types are Hard Disk Drives (HDD) or Solid State Devices (SSD).
The SSD media type requires disk group 150 or greater. The default is HDD.

227Advanced allocation methods for configuring storage
Creating volumes on specific media types

To specify a media type, specify the vxassist command with the mediatype

attribute. If no mediatype is specified, the volume allocates storage only from the
HDD devices.

Specifying ordered allocation of storage to
volumes

Ordered allocation gives you complete control of space allocation. It requires that
the number of disks that you specify to the vxassist command must match the
number of disks that are required to create a volume. The order in which you specify
the disks to vxassist is also significant.

If you specify the -o ordered option to vxassist when creating a volume, any
storage that you also specify is allocated in the following order:

■ Concatenate disks.

■ Form columns.

■ Form mirrors.

For example, the following command creates a mirrored-stripe volume with 3
columns and 2 mirrors on 6 disks in the disk group, mydg:

vxassist -b -g mydg -o ordered make mirstrvol 10g \

layout=mirror-stripe ncol=3 mydg01 mydg02 mydg03 \

mydg04 mydg05 mydg06

This command places columns 1, 2 and 3 of the first mirror on disks mydg01, mydg02
and mydg03 respectively, and columns 1, 2 and 3 of the second mirror on disks
mydg04, mydg05 and mydg06 respectively.

Figure 8-1 shows an example of using ordered allocation to create a mirrored-stripe
volume.

228Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

Figure 8-1 Example of using ordered allocation to create a mirrored-stripe
volume

Striped
plex

Mirror

column 1
mydg01-01 mydg02-01 mydg03-01

column 2 column 3

column 1 column 2 column 3

Mirrored-stripe
volume

mydg04-01 mydg05-01 mydg06-01 Striped
plex

For layered volumes, vxassist applies the same rules to allocate storage as for
non-layered volumes. For example, the following command creates a striped-mirror
volume with 2 columns:

vxassist -b -g mydg -o ordered make strmirvol 10g \

layout=stripe-mirror ncol=2 mydg01 mydg02 mydg03 mydg04

This command mirrors column 1 across disks mydg01 and mydg03, and column 2
across disks mydg02 and mydg04.

Figure 8-2 shows an example of using ordered allocation to create a striped-mirror
volume.

Figure 8-2 Example of using ordered allocation to create a striped-mirror
volume

Striped plex

Mirror

column 1
mydg01-01 mydg02-01

column 2

column 1 column 2

Striped-mirror
volume

Underlying mirrored volumes

mydg03-01 mydg04-01

Additionally, you can use the col_switch attribute to specify how to concatenate
space on the disks into columns. For example, the following command creates a
mirrored-stripe volume with 2 columns:

229Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

vxassist -b -g mydg -o ordered make strmir2vol 10g \

layout=mirror-stripe ncol=2 col_switch=3g,2g \

mydg01 mydg02 mydg03 mydg04 mydg05 mydg06 mydg07 mydg08

This command allocates 3 gigabytes from mydg01 and 2 gigabytes from mydg02 to
column 1, and 3 gigabytes from mydg03 and 2 gigabytes from mydg04 to column 2.
The mirrors of these columns are then similarly formed from disks mydg05 through
mydg08.

Figure 8-3 shows an example of using concatenated disk space to create a
mirrored-stripe volume.

Figure 8-3 Example of using concatenated disk space to create a
mirrored-stripe volume

Striped
plex

Mirror

column 1
mydg01-01

Mirrored-stripe
volume

mydg02-01

column 1
mydg05-01

mydg06-01

column 2
mydg03-01

mydg04-01

column 1
mydg07-01

mydg08-01
Striped

plex

Other storage specification classes for controllers, enclosures, targets and trays
can be used with ordered allocation. For example, the following command creates
a 3-column mirrored-stripe volume between specified controllers:

vxassist -b -g mydg -o ordered make mirstr2vol 80g \

layout=mirror-stripe ncol=3 \

ctlr:c1 ctlr:c2 ctlr:c3 ctlr:c4 ctlr:c5 ctlr:c6

This command allocates space for column 1 from disks on controllers c1, for column
2 from disks on controller c2, and so on.

Figure 8-4 shows an example of using storage allocation to create a mirrored-stripe
volume across controllers.

230Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

Figure 8-4 Example of storage allocation used to create a mirrored-stripe
volume across controllers

Controllers

Controllers

Striped plex

Mirror

c1 c2 c3

column 1 column 2 column 3

Striped plex

column 1 column 2 column 3

c4 c5 c6

Mirrored-stripe volume

There are other ways in which you can control how vxassist lays out mirrored
volumes across controllers.

Site-based allocation
In a Remote Mirror configuration (also known as a campus cluster or stretch cluster),
the hosts and storage of a cluster are divided between two or more sites. These
sites are typically connected via a redundant high-capacity network that provides
access to storage and private link communication between the cluster nodes.

Configure the disk group in a Remote Mirror site to be site-consistent. When you
create volumes in such a disk group, the volumes are mirrored across all sites by
default.

See “About sites and remote mirrors” on page 517.

Changing the read policy for mirrored volumes
VxVM offers the choice of the following read policies on the data plexes in a mirrored
volume:

Reads each plex in turn in “round-robin” fashion for each
nonsequential I/O detected. Sequential access causes only
one plex to be accessed. This approach takes advantage of
the drive or controller read-ahead caching policies.

round

231Advanced allocation methods for configuring storage
Site-based allocation

Reads first from a plex that has been named as the preferred
plex.

prefer

Chooses a default policy based on plex associations to the
volume. If the volume has an enabled striped plex, the
select option defaults to preferring that plex; otherwise, it
defaults to round-robin.

For disk group versions 150 or higher and if there is a SSD
based plex available, it will be preferred over other plexes.

select

Reads preferentially from plexes at the locally defined site.
This method is the default policy for volumes in disk groups
where site consistency has been enabled.

For disk group versions 150 or higher and if the local site has
a SSD based plex, it will be preferred.

See “About site consistency” on page 521.

siteread

Divides the read requests and distributes them across all the
available plexes.

split

Note: You cannot set the read policy on a RAID-5 volume.

For shared disk groups with asymmetric storage connectivity, reads are served
from among locally connected plexes and remote plexes are used if no other options
are available.

If the read policy is set to round, locally connected plexes are read in a "round-robin"
fashion, and I/Os are shipped to remote plexes only if none of the locally connected
plexes are available.

If the read policy is set to prefer, the preferred plex is disregarded if it is not locally
connected. In other words, the local connectivity requirement overrides any
preferred-plex setting that is set by the user. If the preferred plex is not locally
connected, the policy will default to round, and round-robin among locally connected
plexes.

To set the read policy to round, use the following command:

vxvol [-g diskgroup] rdpol round volume

For example, to set the read policy for the volume vol01 in disk group mydg to
round-robin, use the following command:

vxvol -g mydg rdpol round vol01

To set the read policy to prefer, use the following command:

232Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

vxvol [-g diskgroup] rdpol prefer volume preferred_plex

For example, to set the policy for vol01 to read preferentially from the plex vol01-02,
use the following command:

vxvol -g mydg rdpol prefer vol01 vol01-02

To set the read policy to select, use the following command:

vxvol [-g diskgroup] rdpol select volume

233Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

Creating and mounting
VxFS file systems

This chapter includes the following topics:

■ Creating a VxFS file system

■ Converting a file system to VxFS

■ Mounting a VxFS file system

■ Unmounting a file system

■ Resizing a file system

■ Displaying information on mounted file systems

■ Identifying file system types

■ Monitoring free space

Creating a VxFS file system
The mkfs command creates a VxFS file system by writing to a special character
device file. The special character device must be a Veritas Volume Manager (VxVM)
volume. The mkfs command builds a file system with a root directory and a
lost+found directory.

Before running mkfs, you must create the target device.

See to your operating system documentation.

If you are using a logical device (such as a VxVM volume), see the VxVM
documentation.

9Chapter

Note: Creating a VxFS file system on a Logical Volume Manager (LVM) or Multiple
Device (MD) driver volume is not supported in this release. You also must convert
an underlying LVM to a VxVM volume before converting an ext2 or ext3 file system
to a VxFS file system. See the vxvmconvert(1M) manual page.

See the mkfs(1M) and mkfs_vxfs(1M) manual pages.

When you create a file system with the mkfs command, you can select the following
characteristics:

■ Block size

■ Intent log size

To create a file system

◆ Use the mkfs command to create a file system:

/opt/VRTS/bin/mkfs [-t vxfs] [generic_options]

[-o specific_options] special [size]

Specifies the VxFS file system type.-t vxfs

Displays the command line that was used to create the file
system. The file system must already exist. This option enables
you to determine the parameters used to construct the file
system.

-m

Options common to most other file system types.generic_options

Options specific to VxFS.-o specific_options

Displays the geometry of the file system and does not write
to the device.

-o N

Allows users to create files larger than two gigabytes. The
default option is largefiles.

-o largefiles

Specifies the special device file location or character device
node of a particular storage device. The device must be a
Veritas Volume Manager volume.

special

Specifies the number of 512-byte sectors in the file system.
If size is not specified, mkfs determines the size of the special
device.

size

235Creating and mounting VxFS file systems
Creating a VxFS file system

Block size
The unit of allocation in VxFS is an extent. Unlike some other UNIX file systems,
VxFS does not make use of block fragments for allocation because storage is
allocated in extents that consist of one or more blocks.

You specify the block size when creating a file system by using the mkfs -o bsize

option. The block size cannot be altered after the file system is created. The smallest
available block size for VxFS is 1K. The default block size is 1024 bytes for file
systems smaller than 1 TB, and 8192 bytes for file systems 1 TB or larger.

Choose a block size based on the type of application being run. For example, if
there are many small files, a 1K block size may save space. For large file systems,
with relatively few files, a larger block size is more appropriate. Larger block sizes
use less disk space in file system overhead, but consume more space for files that
are not a multiple of the block size. The easiest way to judge which block sizes
provide the greatest system efficiency is to try representative system loads against
various sizes and pick the fastest.

For 64-bit kernels, the block size and disk layout version determine the maximum
size of the file system you can create.

See “About Veritas File System disk layouts” on page 1037.

Intent log size
You specify the intent log size when creating a file system by using the mkfs -o

logsize option.You can dynamically increase or decrease the intent log size using
the logsize option of the fsadm command. The mkfs utility uses a default intent
log size of 64 megabytes. The default size is sufficient for most workloads. If the
system is used as an NFS server or for intensive synchronous write workloads,
performance may be improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file
system may consume more system resources (such as memory) during normal
operation.

There are several system performance benchmark suites for which VxFS performs
better with larger log sizes. As with block sizes, the best way to pick the log size is
to try representative system loads against various sizes and pick the fastest.

Example of creating a file system
The following example creates a VxFS file system of 12288 sectors in size on a
VxVM volume.

236Creating and mounting VxFS file systems
Creating a VxFS file system

To create a VxFS file system

1 Create the file system:

/opt/VRTS/bin/mkfs /dev/vx/rdsk/diskgroup/volume 12288

version 9 layout

12288 sectors, 6144 blocks of size 1024, log size 512 blocks

largefiles supported

2 Mount the newly created file system:

mount -t vxfs /dev/vx/dsk/diskgroup/volume /mnt1

Converting a file system to VxFS
The vxfsconvert command can be used to convert a ext2 or ext3 file system to a
VxFS file system.

See the vxfsconvert(1M) manual page.

To convert a ext2 or ext3 file system to a VxFS file system

◆ Use the vxfsconvert command to convert a ext2 or ext3 file system to VxFS:

vxfsconvert [-l logsize] [-s size] [-efnNvyY] special

Estimates the amount of space required to complete the conversion.-e

Displays the list of supported file system types.-f

Specifies the size of the file system intent log.-l logsize

Assumes a no response to all questions asked by vxfsconvert.-n|N

Directs vxfsconvert to use free disk space past the current end of the
file system to store VxFS metadata.

-s size

Specifies verbose mode.-v

Assumes a yes response to all questions asked by vxfsconvert.-y|Y

Specifies the name of the character (raw) device that contains the file
system to convert.

special

237Creating and mounting VxFS file systems
Converting a file system to VxFS

Example of converting a file system
The following example converts a ext2 or ext3 file system to a VxFS file system
with an intent log size of 16384 blocks.

To convert an ext2 or ext3 file system to a VxFS file system

◆ Convert the file system:

vxfsconvert -l 16384 /dev/vx/rdsk/diskgroup/volume

Mounting a VxFS file system
You can mount a VxFS file system by using the mount command. When you enter
the mount command, the generic mount command parses the arguments and the
-t FSType option executes the mount command specific to that file system type.
If the -t option is not supplied, the command searches the file /etc/fstab for a
file system and an FSType matching the special file or mount point provided. If no
file system type is specified, mount uses the default file system.

The mount command automatically runs the VxFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This
functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

In addition to the standard mount mode (delaylog mode), Veritas File System
(VxFS) provides the following mount options for you to specify other modes of
operation:

■ log mount option

■ delaylog mount option

■ tmplog mount option

■ logiosize mount option

■ nodatainlog mount option

■ blkclear mount option

■ mincache mount option

■ convosync mount option

■ ioerror mount option

■ largefiles and nolargefiles mount options

■ cio mount option

238Creating and mounting VxFS file systems
Mounting a VxFS file system

■ mntlock mount option

■ ckptautomnt mount option

Caching behavior can be altered with the mincache option, and the behavior of
O_SYNC and D_SYNC writes can be altered with the convosync option.

See the fcntl(2) manual page.

The delaylog and tmplog modes can significantly improve performance. The
improvement over log mode is typically about 15 to 20 percent with delaylog; with
tmplog, the improvement is even higher. Performance improvement varies,
depending on the operations being performed and the workload. Read/write intensive
loads should show less improvement, while file system structure intensive loads,
such as mkdir, create, and rename, may show over 100 percent improvement.
The best way to select a mode is to test representative system loads against the
logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine
might use both the blkclear and mincache=closesync modes.

The mount command automatically runs the VxFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This
functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

See the mount_vxfs(1M) manual page.

To mount a file system

◆ Use the mount command to mount a file system:

mount [-t vxfs] [generic_options] [-r] [-o specific_options] \

special mount_point

File system type.vxfs

Options common to most other file system types.generic_options

Options specific to VxFS.specific_options

Mounts a Storage Checkpoint.-o ckpt=ckpt_name

Mounts a file system in shared mode. Available only with the VxFS
cluster file system feature.

-o cluster

A VxFS block special device.special

Directory on which to mount the file system.mount_point

239Creating and mounting VxFS file systems
Mounting a VxFS file system

Mounts the file system as read-only.-r

log mount option
File systems are typically asynchronous in that structural changes to the file system
are not immediately written to disk, which provides better performance. However,
recent changes made to a system can be lost if a system failure occurs. Specifically,
attribute changes to files and recently created files may disappear. In log mode, all
system calls other than write(2), writev(2), and pwrite(2) are guaranteed to be
persistent after the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In both the log and delaylog modes, the rename
is also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.

delaylog mount option
The default logging mode is delaylog, in which writing to a file is delayed, or
buffered, meaning that the data to be written is copied to the file system cache and
later flushed to disk. In delaylog mode, the effects of most system calls other than
write(2), writev(2), and pwrite(2) are guaranteed to be persistent approximately
3 seconds after the system call returns to the application. Contrast this with the
behavior of most other file systems in which most system calls are not persistent
until approximately 30 seconds or more after the call has returned. Fast file system
recovery works with this mode.

A delayed write provides much better performance than synchronously writing the
data to disk. However, in the event of a system failure, data written shortly before
the failure may be lost since it was not flushed to disk. In addition, if space was
allocated to the file as part of the write request, and the corresponding data was
not flushed to disk before the system failure occurred, uninitialized data can appear
in the file.

For the most common type of write, delayed extending writes (a delayed write that
increases the file size), VxFS avoids the problem of uninitialized data appearing in
the file by waiting until the data has been flushed to disk before updating the new
file size to disk. If a system failure occurs before the data has been flushed to disk,
the file size has not yet been updated, thus no uninitialized data appears in the file.
The unused blocks that were allocated are reclaimed.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In the log and delaylog modes, the rename is

240Creating and mounting VxFS file systems
Mounting a VxFS file system

also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.

tmplog mount option
In tmplog mode, the effects of system calls have persistence guarantees that are
similar to those in delaylog mode. In addition, enhanced flushing of delayed
extending writes is disabled, which results in better performance but increases the
chances of data being lost or uninitialized data appearing in a file that was being
actively written at the time of a system failure. This mode is only recommended for
temporary file systems. Fast file system recovery works with this mode.

Note: The term "effects of system calls" refers to changes to file system data and
metadata caused by the system call, excluding changes to st_atime.

See the stat(2) manual page.

Logging mode persistence guarantees
In all logging modes, VxFS is fully POSIX compliant. The effects of the fsync(2)
and fdatasync(2) system calls are guaranteed to be persistent after the calls return.
The persistence guarantees for data or metadata modified by write(2), writev(2),
or pwrite(2) are not affected by the logging mount options. The effects of these
system calls are guaranteed to be persistent only if the O_SYNC, O_DSYNC, VX_DSYNC,
or VX_DIRECT flag, as modified by the convosync= mount option, has been specified
for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the log and
tmplog mount options, but not delaylog. In all cases except for tmplog, VxFS
complies with the persistency requirements of the NFS v2 and NFS v3 standard.
Unless a UNIX application has been developed specifically for the VxFS file system
in logmode, it expects the persistence guarantees offered by most other file systems
and experiences improved robustness when used with a VxFS file system mounted
in delaylog mode. Applications that expect better persistence guarantees than
that offered by most other file systems can benefit from the log, mincache=, and
closesync mount options. However, most commercially available applications work
well with the default VxFS mount options, including the delaylog mode.

241Creating and mounting VxFS file systems
Mounting a VxFS file system

logiosize mount option
The logiosize=size option enhances the performance of storage devices that
employ a read-modify-write feature. If you specify logiosize when you mount a
file system, VxFS writes the intent log in the least size bytes or a multiple of size
bytes to obtain the maximum performance from such devices.

See the mount_vxfs(1M) manual page.

The values for size can be 512, 1024, 2048, 4096, or 8192.

nodatainlog mount option
Use the nodatainlog mode on systems with disks that do not support bad block
revectoring. Usually, a VxFS file system uses the intent log for synchronous writes.
The inode update and the data are both logged in the transaction, so a synchronous
write only requires one disk write instead of two. When the synchronous write returns
to the application, the file system has told the application that the data is already
written. If a disk error causes the metadata update to fail, then the file must be
marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely,
so logging synchronous writes should be allowed. If the disk does not support bad
block revectoring, then a failure is more likely, so the nodatainlog mode should
be used.

A nodatainlogmode file system is approximately 50 percent slower than a standard
mode VxFS file system for synchronous writes. Other operations are not affected.

blkclear mount option
The blkclear mode is used in increased data security environments. The blkclear

mode guarantees that uninitialized storage never appears in files. The increased
integrity is provided by clearing extents on disk when they are allocated within a
file. This mode does not affect extending writes. A blkclear mode file system is
approximately 10 percent slower than a standard mode VxFS file system, depending
on the workload.

mincache mount option
The mincache mode has the following suboptions:

■ mincache=closesync

■ mincache=direct

■ mincache=dsync

242Creating and mounting VxFS file systems
Mounting a VxFS file system

■ mincache=unbuffered

■ mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users
are likely to shut off the power on the machine without halting it first. In this mode,
any changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data and
inode changes to disk. If the system crashes, files that have been updated within
the past minute are in danger of losing data. With the mincache=closesync mode,
if the system crashes or is switched off, only open files can lose data. A
mincache=closesync mode file system could be approximately 15 percent slower
than a standard mode VxFS file system, depending on the workload.

The following describes where to use the mincache modes:

■ The mincache=direct, mincache=unbuffered, and mincache=dsync modes
are used in environments where applications have reliability problems caused
by the kernel buffering of I/O and delayed flushing of non-synchronous I/O.

■ The mincache=direct and mincache=unbuffered modes guarantee that all
non-synchronous I/O requests to files are handled as if the VX_DIRECT or
VX_UNBUFFERED caching advisories had been specified.

■ The mincache=dsync mode guarantees that all non-synchronous I/O requests
to files are handled as if the VX_DSYNC caching advisory had been specified.
Refer to the vxfsio(7) manual page for explanations of VX_DIRECT,
VX_UNBUFFERED, and VX_DSYNC, as well as for the requirements for direct I/O.

■ The mincache=direct, mincache=unbuffered, and mincache=dsync modes
also flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync

modes change non-synchronous I/O to synchronous I/O, throughput can substantially
degrade for small to medium size files with most applications. Since the VX_DIRECT

and VX_UNBUFFERED advisories do not allow any caching of data, applications that
normally benefit from caching for reads usually experience less degradation with
the mincache=dsync mode. mincache=direct and mincache=unbuffered require
significantly less CPU time than buffered I/O.

If performance is more important than data integrity, you can use the
mincache=tmpcachemode. The mincache=tmpcachemode disables special delayed
extending write handling, trading off less integrity for better performance. Unlike
the other mincache modes, tmpcache does not flush the file to disk the file is closed.
When the mincache=tmpcache option is used, bad data can appear in a file that
was being extended when a crash occurred.

243Creating and mounting VxFS file systems
Mounting a VxFS file system

convosync mount option
The convosync (convert osync) mode has the following suboptions:

■ convosync=closesync

Note: The convosync=closesync mode converts synchronous and data
synchronous writes to non-synchronous writes and flushes the changes to the
file to disk when the file is closed.

■ convosync=delay

■ convosync=direct

■ convosync=dsync

Note: The convosync=dsync option violates POSIX guarantees for synchronous
I/O.

■ convosync=unbuffered

The convosync=delay mode causes synchronous and data synchronous writes to
be delayed rather than to take effect immediately. No special action is performed
when closing a file. This option effectively cancels any data integrity guarantees
normally provided by opening a file with O_SYNC.

See the open(2), fcntl(2), and vxfsio(7) manual pages.

Warning: Be very careful when using the convosync=closesync or
convosync=delay mode because they actually change synchronous I/O into
non-synchronous I/O. Applications that use synchronous I/O for data reliability may
fail if the system crashes and synchronously written data is lost.

The convosync=dsync mode converts synchronous writes to data synchronous
writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to
the file to disk when it is closed. These modes can be used to speed up applications
that use synchronous I/O. Many applications that are concerned with data integrity
specify the O_SYNC fcntl in order to write the file data synchronously. However, this
has the undesirable side effect of updating inode times and therefore slowing down
performance. The convosync=dsync, convosync=unbuffered, and

244Creating and mounting VxFS file systems
Mounting a VxFS file system

convosync=direct modes alleviate this problem by allowing applications to take
advantage of synchronous writes without modifying inode times as well.

Before using convosync=dsync, convosync=unbuffered, or convosync=direct,
make sure that all applications that use the file system do not require synchronous
inode time updates for O_SYNC writes.

ioerror mount option
This mode sets the policy for handling I/O errors on a mounted file system. I/O
errors can occur while reading or writing file data or metadata. The file system can
respond to these I/O errors either by halting or by gradually degrading. The ioerror

option provides five policies that determine how the file system responds to the
various errors. All policies limit data corruption, either by stopping the file system
or by marking a corrupted inode as bad.

The policies are as follows:

■ disable policy

■ nodisable policy

■ wdisable policy and mwdisable policy

■ mdisable policy

disable policy
If disable is selected, VxFS disables the file system after detecting any I/O error.
You must then unmount the file system and correct the condition causing the I/O
error. After the problem is repaired, run fsck and mount the file system again. In
most cases, replay fsck to repair the file system. A full fsck is required only in
cases of structural damage to the file system's metadata. Select disable in
environments where the underlying storage is redundant, such as RAID-5 or mirrored
disks.

nodisable policy
If nodisable is selected, when VxFS detects an I/O error, it sets the appropriate
error flags to contain the error, but continues running. Note that the degraded
condition indicates possible data or metadata corruption, not the overall performance
of the file system.

For file data read and write errors, VxFS sets the VX_DATAIOERR flag in the
super-block. For metadata read errors, VxFS sets the VX_FULLFSCK flag in the
super-block. For metadata write errors, VxFS sets the VX_FULLFSCK and

245Creating and mounting VxFS file systems
Mounting a VxFS file system

VX_METAIOERR flags in the super-block and may mark associated metadata as bad
on disk. VxFS then prints the appropriate error messages to the console.

You should stop the file system as soon as possible and repair the condition causing
the I/O error. After the problem is repaired, run fsck and mount the file system
again. Select nodisable if you want to implement the policy that most closely
resembles the error handling policy of the previous VxFS release.

wdisable policy and mwdisable policy
If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the
file system is disabled or degraded, depending on the type of error encountered.
Select wdisable or mwdisable for environments where read errors are more likely
to persist than write errors, such as when using non-redundant storage. mwdisable
is the default ioerror mount option for local mounts.

See the mount_vxfs(1M) manual page.

mdisable policy
If mdisable (metadata disable) is selected, the file system is disabled if a metadata
read or write fails. However, the file system continues to operate if the failure is
confined to data extents. mdisable is the default ioerror mount option for cluster
mounts.

largefiles and nolargefiles mount options
VxFS supports sparse files up to 16 terabytes, and non-sparse files up to 2 terabytes
- 1 kilobyte.

Note: Applications and utilities such as backup may experience problems if they
are not aware of large files. In such a case, create your file system without large
file capability.

See “Creating a file system with large files” on page 246.

See “Mounting a file system with large files” on page 247.

See “Managing a file system with large files” on page 247.

Creating a file system with large files
To create a file system with a file capability:

mkfs -t vxfs -o largefiles special_device size

246Creating and mounting VxFS file systems
Mounting a VxFS file system

Specifying largefiles sets the largefiles flag. This lets the file system to hold
files that are two gigabytes or larger. This is the default option.

To clear the flag and prevent large files from being created:

mkfs -t vxfs -o nolargefiles special_device size

The largefiles flag is persistent and stored on disk.

Mounting a file system with large files
If a mount succeeds and nolargefiles is specified, the file system cannot contain
or create any large files. If a mount succeeds and largefiles is specified, the file
system may contain and create large files.

The mount command fails if the specified largefiles|nolargefiles option does
not match the on-disk flag.

Because the mount command defaults to match the current setting of the on-disk
flag if specified without the largefiles or nolargefiles option, the best practice
is not to specify either option. After a file system is mounted, you can use the fsadm

utility to change the large files option.

Managing a file system with large files
Managing a file system with large files includes the following tasks:

■ Determining the current status of the large files flag

■ Switching capabilities on a mounted file system

■ Switching capabilities on an unmounted file system

To determine the current status of the largefiles flag, type either of the following
commands:

mkfs -t vxfs -m special_device

/opt/VRTS/bin/fsadm mount_point | special_device

To switch capabilities on a mounted file system:

/opt/VRTS/bin/fsadm -o [no]largefiles mount_point

To switch capabilities on an unmounted file system:

/opt/VRTS/bin/fsadm -o [no]largefiles special_device

You cannot change a file system to nolargefiles if it contains large files.

See the mount_vxfs(1M), fsadm_vxfs(1M), and mkfs_vxfs(1M) manual pages.

247Creating and mounting VxFS file systems
Mounting a VxFS file system

cio mount option
The cio (Concurrent I/O) option specifies the file system to be mounted for
concurrent reads and writes. Concurrent I/O is a licensed feature of VxFS. If cio
is specified, but the license is not present, the mount command prints an error
message and terminates the operation without mounting the file system. The cio

option cannot be disabled through a remount. To disable the cio option, the file
system must be unmounted and mounted again without the cio option.

Note: There is no separate license required for the cio option, it is a part of the
“standard” license.

mntlock mount option
The mntlock option prevents a file system from being unmounted by an application.
This option is useful for applications that do not want the file systems that the
applications are monitoring to be improperly unmounted by other applications or
administrators.

The mntunlock option of the vxumount command reverses the mntlock option if
you previously locked the file system.

ckptautomnt mount option
The ckptautomnt option enables the Storage Checkpoint visibility feature, which
makes Storage Checkpoints easier to access.

See “Storage Checkpoint visibility” on page 585.

Combining mount command options
Although mount options can be combined arbitrarily, some combinations do not
make sense. The following examples provide some common and reasonable mount
option combinations.

To mount a desktop file system using options:

mount -t vxfs -o log,mincache=closesync \

/dev/vx/dsk/diskgroup/volume /mnt

This guarantees that when a file is closed, its data is synchronized to disk and
cannot be lost. Thus, after an application has exited and its files are closed, no data
is lost even if the system is immediately turned off.

To mount a temporary file system or to restore from backup:

248Creating and mounting VxFS file systems
Mounting a VxFS file system

mount -t vxfs -o tmplog,convosync=delay,mincache=tmpcache \

/dev/vx/dsk/diskgroup/volume /mnt

This combination might be used for a temporary file system where performance is
more important than absolute data integrity. Any O_SYNC writes are performed as
delayed writes and delayed extending writes are not handled. This could result in
a file that contains corrupted data if the system crashes. Any file written 30 seconds
or so before a crash may contain corrupted data or be missing if this mount
combination is in effect. However, such a file system does significantly less disk
writes than a log file system, and should have significantly better performance,
depending on the application.

To mount a file system for synchronous writes:

mount -t vxfs -o log,convosync=dsync \

/dev/vx/dsk/diskgroup/volume /mnt

This combination can be used to improve the performance of applications that
perform O_SYNC writes, but only require data synchronous write semantics.
Performance can be significantly improved if the file system is mounted using
convosync=dsync without any loss of data integrity.

Example of mounting a file system
The following example mounts the file system /dev/vx/dsk/fsvol/vol1 on the
/mnt1 directory with read/write access and delayed logging.

To mount the file system

◆ Mount the file system:

mount -t vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /mnt1

Unmounting a file system
Use the umount command to unmount a currently mounted file system.

See the vxumount(1M) manual page.

To unmount a file system

◆ Use the umount command to unmount a file system:

Specify the file system to be unmounted as a mount_point or special. special
is the VxFS block special device on which the file system resides.

249Creating and mounting VxFS file systems
Unmounting a file system

Example of unmounting a file system
The following are examples of unmounting file systems.

To unmount the file system /dev/vx/dsk/fsvol/vol1

◆ Unmount the file system:

umount /dev/vx/dsk/fsvol/vol1

Resizing a file system
You can extend or shrink mounted VxFS file systems using the fsadm command.
The size to which file system can be increased depends on the file system disk
layout version. A file system using the Version 7 or later disk layout can be up to
256 terabytes in size. The size to which a Version 7 or later disk layout file system
can be increased depends on the file system block size.

See “About Veritas File System disk layouts” on page 1037.

See the fsadm_vxfs(1M) and fdisk(8) manual pages.

Extending a file system using fsadm
You can resize a file system by using the fsadm command.

To resize a VxFS file system

◆ Use the fsadm command to extend a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] \

mount_point

The file system type.vxfs

The size to which the file system will increase. The default units is
sectors, but you can specify k or K for kilobytes, m or M for megabytes,
or g or G for gigabytes.

newsize

The file system's mount point.mount_point

Specifies the path name of the raw device if there is no entry in
/etc/fstab and fsadm cannot determine the raw device.

-r rawdev

Examples of extending a file system
The following example extends a file system mounted at /mnt1 to 22528 sectors.

250Creating and mounting VxFS file systems
Resizing a file system

To extend a file system to 22528 sectors

◆ Extend the VxFS file system mounted on /mnt1 to 22528 sectors:

fsadm -t vxfs -b 22528 /mnt1

The following example extends a file system mounted at /mnt1 to 500 gigabytes.

To extend a file system to 500 gigabytes

◆ Extend the VxFS file system mounted on /mnt1 to 500 gigabytes:

fsadm -t vxfs -b 500g /mnt1

Shrinking a file system
You can decrease the size of the file system using fsadm, even while the file system
is mounted.

Warning: After this operation, there is unused space at the end of the device. You
can then resize the device, but be careful not to make the device smaller than the
new size of the file system.

To decrease the size of a VxFS file system

◆ Use the fsadm command to decrease the size of a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] mount_point

The file system type.vxfs

The size to which the file system will shrink. The default units is
sectors, but you can specify k or K for kilobytes, m or M for
megabytes, or g or G for gigabytes.

newsize

The file system's mount point.mount_point

Specifies the path name of the raw device if there is no entry in
/etc/fstab and fsadm cannot determine the raw device.

-r rawdev

Examples of shrinking a file system
The following example shrinks a VxFS file system mounted at /mnt1 to 20480
sectors.

251Creating and mounting VxFS file systems
Resizing a file system

To shrink a file system to 20480 sectors

◆ Shrink a VxFS file system mounted at /mnt1 to 20480 sectors:

fsadm -t vxfs -b 20480 /mnt1

The following example shrinks a file system mounted at /mnt1 to 450 gigabytes.

To shrink a file system to 450 gigabytes

◆ Shrink the VxFS file system mounted on /mnt1 to 450 gigabytes:

fsadm -t vxfs -b 450g /mnt1

Reorganizing a file system
You can reorganize or compact a fragmented file system using fsadm, even while
the file system is mounted. This may help shrink a file system that could not
previously be decreased.

To reorganize a VxFS file system

◆ Use the fsadm command to reorganize a VxFS file system:

fsadm [-t vxfs] [-e] [-d] [-E] [-D] [-H] [-r rawdev] mount_point

The file system type.vxfs

Reorders directory entries to put subdirectory entries first, then all
other entries in decreasing order of time of last access. Also
compacts directories to remove free space.

-d

Reports on directory fragmentation.-D

Minimizes file system fragmentation. Files are reorganized to have
the minimum number of extents.

-e

Reports on extent fragmentation.-E

Displays the storage size in human friendly units
(KB/MB/GB/TB/PB/EB), when used with the -E and -D options.

-H

The file system's mount point.mount_point

Specifies the path name of the raw device if there is no entry in
/etc/fstab and fsadm cannot determine the raw device.

-r rawdev

252Creating and mounting VxFS file systems
Resizing a file system

To perform free space defragmentation

◆ Use the fsadm command to perform free space defragmentation of a VxFS file
system:

fsadm [-t vxfs] [-C] mount_point

The file system type.vxfs

Minimizes file system free space fragmentation. This attempts to
generate bigger chunks of free space in the device.

-C

The file system's mount point.mount_point

Example of reorganizing a file system
The following example reorganizes the file system mounted at /mnt1.

To reorganize a VxFS file system

◆ Reorganize the VxFS file system mounted at /mnt1:

fsadm -t vxfs -EeDd /mnt1

Example of running free space defragmentation
The following example minimizes the free space fragmentation of the file system
mounted at /mnt1.

To run free space defragmentation

◆ Minimize the free space of the the VxFS file system mounted at /mnt1:

fsadm -t vxfs -C /mnt1

Displaying information on mounted file systems
Use the mount command to display a list of currently mounted file systems.

See the mount_vxfs(1M) and mount(8) manual pages.

253Creating and mounting VxFS file systems
Displaying information on mounted file systems

To view the status of mounted file systems

◆ Use the mount command to view the status of mounted file systems:

mount

This shows the file system type and mount options for all mounted file systems.

Example of displaying information on mounted file systems
The following example shows the result of invoking the mount command without
options.

To display information on mounted file systems

◆ Invoke the mount command without options:

mount

//dev/sda3 on / type ext3 (rw,acl,user_xattr)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

/dev/vx/dsk/testdg/vol01 on /vol01_testdg type vxfs (rw,delaylog,largefiles,ioerror=mwdisable)

Identifying file system types
Use the fstyp command to determine the file system type for a specified file system.
This is useful when a file system was created elsewhere and you want to know its
type.

See the fstyp_vxfs(1M) manual page.

To determine a file system's type

◆ Use the fstyp command to determine a file system's type:

fstyp -v special

The block or character (raw) device.special

Specifies verbose mode.-v

Example of determining a file system's type
The following example uses the fstyp command to determine a the file system
type of the /dev/vx/dsk/fsvol/vol1 device.

254Creating and mounting VxFS file systems
Identifying file system types

To determine the file system's type

◆ Use the fstyp command to determine the file system type of the device

fstyp -v /dev/vx/dsk/fsvol/vol1

The output indicates that the file system type is vxfs, and displays file system
information similar to the following:

vxfs

magic a501fcf5 version 7 ctime Tue Jun 23 18:29:39 2004

logstart 17 logend 1040

bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8

defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10

aufirst 1049 emap 2 imap 0 iextop 0 istart 0

bstart 34 femap 1051 fimap 0 fiextop 0 fistart 0 fbstart

1083

nindir 2048 aulen 131106 auimlen 0 auemlen 32

auilen 0 aupad 0 aublocks 131072 maxtier 17

inopb 4 inopau 0 ndiripau 0 iaddrlen 8 bshift 10

inoshift 2 bmask fffffc00 boffmask 3ff checksum d7938aa1

oltext1 9 oltext2 1041 oltsize 8 checksum2 52a

free 382614 ifree 0

efree 676 413 426 466 612 462 226 112 85 35 14 3 6 5 4 4 0 0

Monitoring free space
In general, Veritas File System (VxFS) works best if the percentage of free space
in the file system does not get below 10 percent. This is because file systems with
10 percent or more free space have less fragmentation and better extent allocation.
Regular use of the df command to monitor free space is desirable.

See the df_vxfs(1M) manual page.

Full file systems may have an adverse effect on file system performance. Full file
systems should therefore have some files removed, or should be expanded.

See the fsadm_vxfs(1M) manual page.

VxFS supports reclamation of free storage on a Thin Storage LUN.

See “About Thin Reclamation of a file system” on page 695.

255Creating and mounting VxFS file systems
Monitoring free space

Monitoring fragmentation
Fragmentation reduces performance and availability. Regular use of fsadm's
fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to
schedule regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file
systems) to monthly (for infrequently used file systems). Extent fragmentation should
be monitored with fsadm command.

To determine the degree of fragmentation, use the following factors:

■ Percentage of free space in extents of less than 8 blocks in length

■ Percentage of free space in extents of less than 64 blocks in length

■ Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system has the following characteristics:

■ Less than 1 percent of free space in extents of less than 8 blocks in length

■ Less than 5 percent of free space in extents of less than 64 blocks in length

■ More than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

A badly fragmented file system has one or more of the following characteristics:

■ Greater than 5 percent of free space in extents of less than 8 blocks in length

■ More than 50 percent of free space in extents of less than 64 blocks in length

■ Less than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

Fragmentation can also be determined based on the fragmentation index. Two
types of indices are generated by the fsadm command: the file fragmentation index
and the free space fragmentation index. Both of these indices range between 0 and
100, and give an idea about the level of file fragmentation and free space
fragmentation, respectively. A value of 0 for the fragmentation index means that
the file system has no fragmentation, and a value of 100 means that the file system
has the highest level of fragmentation. Based on the index, you should use the
appropriate defragmentation option with the fsadm command. For example if the
file fragmentation index is high, the fsadm command should be run with the -e

option. If the free space fragmentation index is high, the fsadm command should
be run with -C option. When the fsadm command is run with the -e option, internally
it performs free space defragmentation before performing file defragmentaion.

256Creating and mounting VxFS file systems
Monitoring free space

The optimal period for scheduling of extent reorganization runs can be determined
by choosing a reasonable interval, scheduling fsadm runs at the initial interval, and
running the extent fragmentation report feature of fsadm before and after the
reorganization.

The “before" result is the degree of fragmentation prior to the reorganization. If the
degree of fragmentation is approaching the figures for bad fragmentation, reduce
the interval between fsadm runs. If the degree of fragmentation is low, increase the
interval between fsadm runs.

The “after" result is an indication of how well the reorganizer has performed. The
degree of fragmentation should be close to the characteristics of an unfragmented
file system. If not, it may be a good idea to resize the file system; full file systems
tend to fragment and are difficult to defragment. It is also possible that the
reorganization is not being performed at a time during which the file system in
question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization improves performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The
following is a sample script that is run periodically at 3:00 A.M. from cron for a
number of file systems:

outfile=/var/spool/fsadm/out.‘/bin/date +'%m%d'‘

for i in /home /home2 /project /db

do

/bin/echo "Reorganizing $i"

/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -e -E -s $i

/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -s -d -D $i

done > $outfile 2>&1

257Creating and mounting VxFS file systems
Monitoring free space

Extent attributes
This chapter includes the following topics:

■ About extent attributes

■ Commands related to extent attributes

About extent attributes
Veritas File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows
programs to control various aspects of the extent allocation for a given file. The
extent allocation policies associated with a file are referred to as extent attributes.

The VxFS getext and setext commands let you view or manipulate file extent
attributes.

See the setext(1) and getext(1) manual pages.

The two basic extent attributes associated with a file are its reservation and its fixed
extent size. You can preallocate space to the file by manipulating a file's reservation,
or override the default allocation policy of the file system by setting a fixed extent
size.

See “Reservation: preallocating space to a file” on page 259.

See “Fixed extent size” on page 259.

Other policies determine the way these attributes are expressed during the allocation
process.

You can specify the following criteria:

■ The space reserved for a file must be contiguous

■ No allocations will be made for a file beyond the current reservation

■ An unused reservation will be released when the file is closed

10Chapter

■ Space will be allocated, but no reservation will be assigned

■ The file size will be changed to incorporate the allocated space immediately

Some of the extent attributes are persistent and become part of the on-disk
information about the file, while other attributes are temporary and are lost after the
file is closed or the system is rebooted. The persistent attributes are similar to the
file's permissions and are written in the inode for the file. When a file is copied,
moved, or archived, only the persistent attributes of the source file are preserved
in the new file.

See “Other extent attribute controls” on page 260.

In general, the user will only set extent attributes for reservation. Many of the
attributes are designed for applications that are tuned to a particular pattern of I/O
or disk alignment.

See “About Veritas File System I/O” on page 540.

Reservation: preallocating space to a file
VxFS makes it possible to preallocate space to a file at the time of the request
rather than when data is written into the file. This space cannot be allocated to other
files in the file system. VxFS prevents any unexpected out-of-space condition on
the file system by ensuring that a file's required space will be associated with the
file before it is required.

A persistent reservation is not released when a file is truncated. The reservation
must be cleared or the file must be removed to free the reserved space.

Fixed extent size
The VxFS default allocation policy uses a variety of methods to determine how to
make an allocation to a file when a write requires additional space. The policy
attempts to balance the two goals of optimum I/O performance through large
allocations and minimal file system fragmentation. VxFS accomplishes these goals
by allocating from space available in the file system that best fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and
always serves as a persistent attribute. Be careful to choose an extent size
appropriate to the application when using fixed extents. An advantage of the VxFS
extent-based allocation policies is that they rarely use indirect blocks compared to
block based file systems; VxFS eliminates many instances of disk access that stem
from indirect references. However, a small extent size can eliminate this advantage.

Files with large extents tend to be more contiguous and have better I/O
characteristics. However, the overall performance of the file system degrades
because the unused space fragments free space by breaking large extents into

259Extent attributes
About extent attributes

smaller pieces. By erring on the side of minimizing fragmentation for the file system,
files may become so non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

■ If a file is large and sparse and its write size is fixed, a fixed extent size that is
a multiple of the write size can minimize space wasted by blocks that do not
contain user data as a result of misalignment of write and extent sizes. The
default extent size for a sparse file is 8K.

■ If a file is large and contiguous, a large fixed extent size can minimize the number
of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as
the need to align extents to cylinder or striping boundaries on disk.

How the fixed extent size works with the shared extents
Veritas File System (VxFS) allows the user to set the fixed extent size option on a
file that controls the minimum allocation size of the file. If a file has shared extents
that must be unshared, the allocation that is done as a part of the unshare operation
ignores the fixed extent size option that is set on the file. The allocation size during
the unshare operation, is dependent on the size of the write operation on the shared
region.

Other extent attribute controls
The auxiliary controls on extent attributes determine the following conditions:

■ Whether allocations are aligned
See “Extent attribute alignment” on page 261.

■ Whether allocations are contiguous
See “Extent attribute contiguity” on page 261.

■ Whether the file can be written beyond its reservation
See “Write operations beyond extent attribute reservation” on page 261.

■ Whether an unused reservation is released when the file is closed
See “Extent attribute reservation trimming” on page 261.

■ Whether the reservation is a persistent attribute of the file
See “Extent attribute reservation persistence” on page 261.

■ When the space reserved for a file will actually become part of the file
See “Including an extent attribute reservation in the file” on page 261.

260Extent attributes
About extent attributes

Extent attribute alignment
Specific alignment restrictions coordinate a file's allocations with a particular I/O
pattern or disk alignment. Alignment can only be specified if a fixed extent size has
also been set. Setting alignment restrictions on allocations is best left to
well-designed applications.

See the setext(1) manual page.

See “About Veritas File System I/O” on page 540.

Extent attribute contiguity
A reservation request can specify that its allocation remain contiguous (all one
extent). Maximum contiguity of a file optimizes its I/O characteristics.

Note: Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available. This
can happen even if the file system has sufficient free space and the fixed extent
size is large.

Write operations beyond extent attribute reservation
A reservation request can specify that no allocations can take place after a write
operation fills the last available block in the reservation. This request can be used
a way similar to the function of the ulimit command to prevent a file's uncontrolled
growth.

Extent attribute reservation trimming
A reservation request can specify that any unused reservation be released when
the file is closed. The file is not completely closed until all processes open against
the file have closed it.

Extent attribute reservation persistence
A reservation request can ensure that the reservation does not become a persistent
attribute of the file. The unused reservation is discarded when the file is closed.

Including an extent attribute reservation in the file
A reservation request can make sure the size of the file is adjusted to include the
reservation. Normally, the space of the reservation is not included in the file until
an extending write operation requires it. A reservation that immediately changes
the file size can generate large temporary files. Unlike a ftruncate operation that

261Extent attributes
About extent attributes

increases the size of a file, this type of reservation does not perform zeroing of the
blocks included in the file and limits this facility to users with appropriate privileges.
The data that appears in the file may have been previously contained in another
file. For users who do not have the appropriate privileges, there is a variant request
that prevents such users from viewing uninitialized data.

Commands related to extent attributes
The VxFS commands for manipulating extent attributes are setext and getext;
they allow the user to set up files with a given set of extent attributes or view any
attributes that are already associated with a file.

See the setext(1) and getext(1) manual pages.

The VxFS-specific commands vxdump and vxrestore preserve extent attributes
when backing up, restoring, moving, or copying files.

Most of these commands include a command line option (-e) for maintaining extent
attributes on files. This option specifies dealing with a VxFS file that has extent
attribute information including reserved space, a fixed extent size, and extent
alignment. The extent attribute information may be lost if the destination file system
does not support extent attributes, has a different block size than the source file
system, or lacks free extents appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

Issues a warning message if extent attribute information cannot be
maintained (the default)

warn

Fails the copy if extent attribute information cannot be maintainedforce

Ignores extent attribute information entirelyignore

Example of setting an extent attribute
The following example creates a file named file1 and preallocates 2 GB of disk
space for the file.

262Extent attributes
Commands related to extent attributes

To set an extent attribute

1 Create the file file1:

touch file1

2 Preallocate 2 GB of disk space for the file file1:

setext -t vxfs -r 2g -f chgsize file1

Since the example specifies the -f chgsize option, VxFS immediately
incorporates the reservation into the file and updates the file’s inode with size
and block count information that is increased to include the reserved space.
Only users with root privileges can use the -f chgsize option.

Example of getting an extent attribute
The following example gets the extent atribute information of a file named file1.

To get an extent attribute's information

◆ Get the extent attribute information for the file file1:

getext -t vxfs file1

file1: Bsize 1024 Reserve 36 Extent Size 3 align noextend

The file file1 has a block size of 1024 bytes, 36 blocks reserved, a fixed extent
size of 3 blocks, and all extents aligned to 3 block boundaries. The file size
cannot be increased after the current reservation is exhausted. Reservations
and fixed extent sizes are allocated in units of the file system block size.

Failure to preserve extent attributes
Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is the possibility of losing the attributes.

Such a failure might occur for one of the following reasons:

■ The file system receiving a copied, moved, or restored file from an archive is
not a VxFS type. Since other file system types do not support the extent attributes
of the VxFS file system, the attributes of the source file are lost during the
migration.

■ The file system receiving a copied, moved, or restored file is a VxFS type but
does not have enough free space to satisfy the extent attributes. For example,
consider a 50K file and a reservation of 1 MB. If the target file system has 500K
free, it could easily hold the file but fail to satisfy the reservation.

263Extent attributes
Commands related to extent attributes

■ The file system receiving a copied, moved, or restored file from an archive is a
VxFS type but the different block sizes of the source and target file system make
extent attributes impossible to maintain. For example, consider a source file
system of block size 1024, a target file system of block size 4096, and a file that
has a fixed extent size of 3 blocks (3072 bytes). This fixed extent size adapts
to the source file system but cannot translate onto the target file system.

The same source and target file systems in the preceding example with a file
carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096
byte) extent on the source file system would translate into a 1 block extent on
the target.

On a system with mixed block sizes, a copy, move, or restoration operation may
or may not succeed in preserving attributes. It is recommended that the same
block size be used for all file systems on a given system.

264Extent attributes
Commands related to extent attributes

Administering multi-pathing
with DMP

■ Chapter 11. Administering Dynamic Multi-Pathing

■ Chapter 12. Dynamic Reconfiguration of devices

■ Chapter 13. Managing devices

■ Chapter 14. Event monitoring

3Section

Administering Dynamic
Multi-Pathing

This chapter includes the following topics:

■ Discovering and configuring newly added disk devices

■ Making devices invisible to VxVM

■ Making devices visible to VxVM

■ About enabling and disabling I/O for controllers and storage processors

■ About displaying DMP database information

■ Displaying the paths to a disk

■ Administering DMP using vxdmpadm

Discovering and configuring newly added disk
devices

When you physically connect new disks to a host or when you zone new fibre
channel devices to a host, you can use the vxdctl enable command to rebuild
the volume device node directories and to update the Dynamic Multi-Pathing (DMP)
internal database to reflect the new state of the system.

To reconfigure the DMP database, first reboot the system to make Linux recognize
the new disks, and then invoke the vxdctl enable command.

You can also use the vxdisk scandisks command to scan devices in the operating
system device tree, and to initiate dynamic reconfiguration of multipathed disks.

11Chapter

If you want SFCFSHA to scan only for new devices that have been added to the
system, and not for devices that have been enabled or disabled, specify the -f

option to either of the commands, as shown here:

vxdctl -f enable

vxdisk -f scandisks

However, a complete scan is initiated if the system configuration has been modified
by changes to:

■ Installed array support libraries.

■ The list of devices that are excluded from use by VxVM.

■ DISKS (JBOD), SCSI3, or foreign device definitions.

See the vxdctl(1M) manual page.

See the vxdisk(1M) manual page.

Partial device discovery
Dynamic Multi-Pathing (DMP) supports partial device discovery where you can
include or exclude paths to a physical disk from the discovery process.

The vxdisk scandisks command rescans the devices in the OS device tree and
triggers a DMP reconfiguration. You can specify parameters to vxdisk scandisks

to implement partial device discovery. For example, this command makes SFCFSHA
discover newly added devices that were unknown to it earlier:

vxdisk scandisks new

The next example discovers fabric devices:

vxdisk scandisks fabric

The following command scans for the devices sdm and sdn:

vxdisk scandisks device=sdm,sdn

Alternatively, you can specify a ! prefix character to indicate that you want to scan
for all devices except those that are listed.

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

vxdisk scandisks \!device=sdm,sdn

267Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

You can also scan for devices that are connected (or not connected) to a list of
logical or physical controllers. For example, this command discovers and configures
all devices except those that are connected to the specified logical controllers:

vxdisk scandisks \!ctlr=c1,c2

The next command discovers only those devices that are connected to the specified
physical controller:

vxdisk scandisks pctlr=c1+c2

The items in a list of physical controllers are separated by + characters.

You can use the command vxdmpadm getctlr all to obtain a list of physical
controllers.

You should specify only one selection argument to the vxdisk scandisks command.
Specifying multiple options results in an error.

See the vxdisk(1M) manual page.

Discovering disks and dynamically adding disk arrays
DMP uses array support libraries (ASLs) to provide array-specific support for
multi-pathing. An array support library (ASL) is a dynamically loadable shared library
(plug-in for DDL). The ASL implements hardware-specific logic to discover device
attributes during device discovery. DMP provides the device discovery layer (DDL)
to determine which ASLs should be associated to each disk array.

In some cases, DMP can also provide basic multi-pathing and failover functionality
by treating LUNs as disks (JBODs).

How DMP claims devices
For fully optimized support of any array and for support of more complicated array
types, DMP requires the use of array-specific array support libraries (ASLs), possibly
coupled with array policy modules (APMs). ASLs and APMs effectively are
array-specific plugins that allow close tie-in of DMP with any specific array model.

See the Hardware Compatibility List for the complete list of supported arrays.

http://www.symantec.com/docs/TECH170013

During device discovery, the DDL checks the installed ASL for each device to find
which ASL claims the device.

If no ASL is found to claim the device, the DDL checks for a corresponding JBOD
definition. You can add JBOD definitions for unsupported arrays to enable DMP to
provide multi-pathing for the array. If a JBOD definition is found, the DDL claims

268Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

http://www.symantec.com/docs/TECH170013

the devices in the DISKS category, which adds the LUNs to the list of JBOD (physical
disk) devices used by DMP. If the JBOD definition includes a cabinet number, DDL
uses the cabinet number to group the LUNs into enclosures.

See “Adding unsupported disk arrays to the DISKS category” on page 279.

DMP can provide basic multi-pathing to ALUA-compliant arrays even if there is no
ASL or JBOD definition. DDL claims the LUNs as part of the aluadisk enclosure.
The array type is shown as ALUA. Adding a JBOD definition also enables you to
group the LUNs into enclosures.

Disk categories
Disk arrays that have been certified for use with Veritas Storage Foundation Cluster
File System High Availability are supported by an array support library (ASL), and
are categorized by the vendor ID string that is returned by the disks (for example,
“HITACHI”).

Disks in JBODs which are capable of being multipathed by DMP, are placed in the
DISKS category. Disks in unsupported arrays can also be placed in the DISKS

category.

See “Adding unsupported disk arrays to the DISKS category” on page 279.

Disks in JBODs that do not fall into any supported category, and which are not
capable of being multipathed by DMP are placed in the OTHER_DISKS category.

Adding support for a new disk array
You can dynamically add support for a new type of disk array. The support comes
in the form of Array Support Libraries (ASLs) that are developed by Symantec.
Symantec provides support for new disk arrays through updates to the VRTSaslapm

RPM. To determine if an updated VRTSaslapm RPM is available for download, refer
to the hardware compatibility list tech note. The hardware compatibility list provides
a link to the latest RPM for download and instructions for installing the VRTSaslapm

RPM. You can upgrade the VRTSaslapm RPM while the system is online; you do
not need to stop the applications.

To access the hardware compatibility list, go to the following URL:

http://www.symantec.com/docs/TECH170013

Each VRTSaslapm RPM is specific for the Storage Foundation Cluster File System
High Availability version. Be sure to install the VRTSaslapm RPM that supports the
installed version of Storage Foundation Cluster File System High Availability.

The new disk array does not need to be already connected to the system when the
VRTSaslapm RPM is installed. On a SLES11 system, if any of the disks in the new

269Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

http://www.symantec.com/docs/TECH170013

disk array are subsequently connected, and if vxconfigd is running, vxconfigd
immediately invokes the DDL device discovery and includes the new disks in the
VxVM device list. For other Linux flavors, reboot the system to make Linux recognize
the new disks, and then use the vxdctl enable command to include the new disks
in the VxVM device list.

If you need to remove the latest VRTSaslapm RPM, you can revert to the previously
installed version. For the detailed procedure, refer to the Veritas Storage Foundation
and High Availability Solutions Troubleshooting Guide.

Enabling discovery of new disk arrays
The vxdctl enable command scans all of the disk devices and their attributes,
updates the SFCFSHA device list, and reconfigures DMP with the new device
database. There is no need to reboot the host.

Warning: This command ensures that Dynamic Multi-Pathing is set up correctly
for the array. Otherwise, VxVM treats the independent paths to the disks as separate
devices, which can result in data corruption.

To enable discovery of a new disk array

◆ Type the following command:

vxdctl enable

Third-party driver coexistence
The third-party driver (TPD) coexistence feature of SFCFSHA allows I/O that is
controlled by some third-party multi-pathing drivers to bypass DMP while retaining
the monitoring capabilities of DMP. If a suitable ASL is available and installed,
devices that use TPDs can be discovered without requiring you to set up a
specification file, or to run a special command. The TPD coexistence feature of
SFCFSHA permits coexistence without requiring any change in a third-party
multi-pathing driver.

See “Changing device naming for TPD-controlled enclosures” on page 344.

See “Displaying information about TPD-controlled devices” on page 299.

Autodiscovery of EMC Symmetrix arrays
In VxVM 4.0, there were two possible ways to configure EMC Symmetrix arrays:

270Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

■ With EMC PowerPath installed, EMC Symmetrix arrays could be configured as
foreign devices.
See “Foreign devices” on page 283.

■ Without EMC PowerPath installed, DMP could be used to perform multi-pathing.

On upgrading a system to VxVM 4.1 or later release, existing EMC PowerPath
devices can be discovered by DDL, and configured into DMP as autoconfigured
disks with DMP nodes, even if PowerPath is being used to perform multi-pathing.
There is no need to configure such arrays as foreign devices.

Table 11-1 shows the scenarios for using DMP with PowerPath.

The ASLs are all included in the ASL-APM RPM, which is installed when you install
Storage Foundation products.

Table 11-1 Scenarios for using DMP with PowerPath

Array configuration
mode

DMPPowerPath

EMC Symmetrix - Any

DGC CLARiiON -
Active/Passive (A/P),
Active/Passive in Explicit
Failover mode (A/P-F)
and ALUA Explicit
failover

The libvxppASL handles EMC
Symmetrix arrays and DGC
CLARiiON claiming internally.
PowerPath handles failover.

Installed.

Active/ActiveDMP handles multi-pathing.

The ASL name is libvxemc.

Not installed; the array is EMC
Symmetrix.

Active/Passive (A/P),
Active/Passive in Explicit
Failover mode (A/P-F)
and ALUA

DMP handles multi-pathing.

The ASL name is
libvxCLARiiON.

Not installed; the array is DGC
CLARiioN (CXn00).

If any EMCpower disks are configured as foreign disks, use the vxddladm

rmforeign command to remove the foreign definitions, as shown in this example:

vxddladm rmforeign blockpath=/dev/emcpowera10 \

charpath=/dev/emcpowera10

To allow DMP to receive correct inquiry data, the Common Serial Number (C-bit)
Symmetrix Director parameter must be set to enabled.

271Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

How to administer the Device Discovery Layer
The Device Discovery Layer (DDL) allows dynamic addition of disk arrays. DDL
discovers disks and their attributes that are required for SFCFSHA operations.

The DDL is administered using the vxddladm utility to perform the following tasks:

■ List the hierarchy of all the devices discovered by DDL including iSCSI devices.

■ List all the Host Bus Adapters including iSCSI

■ List the ports configured on a Host Bus Adapter

■ List the targets configured from a Host Bus Adapter

■ List the devices configured from a Host Bus Adapter

■ Get or set the iSCSI operational parameters

■ List the types of arrays that are supported.

■ Add support for an array to DDL.

■ Remove support for an array from DDL.

■ List information about excluded disk arrays.

■ List disks that are supported in the DISKS (JBOD) category.

■ Add disks from different vendors to the DISKS category.

■ Remove disks from the DISKS category.

■ Add disks as foreign devices.

The following sections explain these tasks in more detail.

See the vxddladm(1M) manual page.

Listing all the devices including iSCSI
You can display the hierarchy of all the devices discovered by DDL, including iSCSI
devices.

272Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To list all the devices including iSCSI

◆ Type the following command:

vxddladm list

The following is a sample output:

HBA fscsi0 (20:00:00:E0:8B:19:77:BE)

Port fscsi0_p0 (50:0A:09:80:85:84:9D:84)

Target fscsi0_p0_t0 (50:0A:09:81:85:84:9D:84)

Device sda

. . .

HBA iscsi0 (iqn.1986-03.com.sun:01:0003ba8ed1b5.45220f80)

Port iscsi0_p0 (10.216.130.10:3260)

Target iscsi0_p0_t0 (iqn.1992-08.com.netapp:sn.84188548)

Device sdb

Device sdc

Target iscsi0_p0_t1 (iqn.1992-08.com.netapp:sn.84190939)

. . .

Listing all the Host Bus Adapters including iSCSI
You can obtain information about all the Host Bus Adapters configured on the
system, including iSCSI adapters. This includes the following information:

Driver controlling the HBA.Driver

Firmware version.Firmware

The discovery method employed for the targets.Discovery

Whether the device is Online or Offline.State

The hardware address.Address

To list all the Host Bus Adapters including iSCSI

◆ Use the following command to list all of the HBAs, including iSCSI devices,
configured on the system:

vxddladm list hbas

273Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Listing the ports configured on a Host Bus Adapter
You can obtain information about all the ports configured on an HBA. The display
includes the following information:

The parent HBA.HBA-ID

Whether the device is Online or Offline.State

The hardware address.Address

To list the ports configured on a Host Bus Adapter

◆ Use the following command to obtain the ports configured on an HBA:

vxddladm list ports

PortID HBA-ID State Address

--

c2_p0 c2 Online 50:0A:09:80:85:84:9D:84

c3_p0 c3 Online 10.216.130.10:3260

Listing the targets configured from a Host Bus Adapter or
a port
You can obtain information about all the targets configured from a Host Bus Adapter
or a port. This includes the following information:

The alias name, if available.Alias

Parent HBA or port.HBA-ID

Whether the device is Online or Offline.State

The hardware address.Address

To list the targets

◆ To list all of the targets, use the following command:

vxddladm list targets

The following is a sample output:

TgtID Alias HBA-ID State Address

c2_p0_t0 - c2 Online 50:0A:09:80:85:84:9D:84

c3_p0_t1 - c3 Online iqn.1992-08.com.netapp:sn.84190939

274Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To list the targets configured from a Host Bus Adapter or port

◆ You can filter based on a HBA or port, using the following command:

vxddladm list targets [hba=hba_name|port=port_name]

For example, to obtain the targets configured from the specified HBA:

vxddladm list targets hba=c2

TgtID Alias HBA-ID State Address

--

c2_p0_t0 - c2 Online 50:0A:09:80:85:84:9D:84

Listing the devices configured from a Host Bus Adapter
and target
You can obtain information about all the devices configured from a Host Bus Adapter.
This includes the following information:

The device name.Device

The parent target.Target-ID

Whether the device is Online or Offline.State

Whether the device is claimed by DDL. If claimed, the output
also displays the ASL name.

DDL status

To list the devices configured from a Host Bus Adapter

◆ To obtain the devices configured, use the following command:

vxddladm list devices

Device Target-ID State DDL status (ASL)

sda fscsi0_p0_t0 Online CLAIMED (libvxemc.so)

sdb fscsi0_p0_t0 Online SKIPPED (libvxemc.so)

sdc fscsi0_p0_t0 Offline ERROR

sdd fscsi0_p0_t0 Online EXCLUDED

sde fscsi0_p0_t0 Offline MASKED

275Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To list the devices configured from a Host Bus Adapter and target

◆ To obtain the devices configured from a particular HBA and target, use the
following command:

vxddladm list devices target=target_name

Getting or setting the iSCSI operational parameters
DDL provides an interface to set and display certain parameters that affect the
performance of the iSCSI device path. However, the underlying OS framework must
support the ability to set these values. The vxddladm set command returns an
error if the OS support is not available.

Table 11-2 Parameters for iSCSI devices

MaximumvalueMinimum valueDefault valueParameter

yesnoyesDataPDUInOrder

yesnoyesDataSequenceInOrder

3600020DefaultTime2Retain

360002DefaultTime2Wait

200ErrorRecoveryLevel

1677721551265535FirstBurstLength

yesnoyesInitialR2T

yesnoyesImmediateData

16777215512262144MaxBurstLength

6553511MaxConnections

6553511MaxOutStandingR2T

167772155128182MaxRecvDataSegmentLength

276Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To get the iSCSI operational parameters on the initiator for a specific iSCSI
target

◆ Type the following commands:

vxddladm getiscsi target=tgt-id {all | parameter}

You can use this command to obtain all the iSCSI operational parameters.

vxddladm getiscsi target=c2_p2_t0

The following is a sample output:

PARAMETER CURRENT DEFAULT MIN MAX

--

DataPDUInOrder yes yes no yes

DataSequenceInOrder yes yes no yes

DefaultTime2Retain 20 20 0 3600

DefaultTime2Wait 2 2 0 3600

ErrorRecoveryLevel 0 0 0 2

FirstBurstLength 65535 65535 512 16777215

InitialR2T yes yes no yes

ImmediateData yes yes no yes

MaxBurstLength 262144 262144 512 16777215

MaxConnections 1 1 1 65535

MaxOutStandingR2T 1 1 1 65535

MaxRecvDataSegmentLength 8192 8182 512 16777215

To set the iSCSI operational parameters on the initiator for a specific iSCSI
target

◆ Type the following command:

vxddladm setiscsi target=tgt-id parameter=value

Listing all supported disk arrays
Use this procedure to obtain values for the vid and pid attributes that are used
with other forms of the vxddladm command.

To list all supported disk arrays

◆ Type the following command:

vxddladm listsupport all

277Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Displaying details about a supported array library
DMP enables you to display details about the Array Support Libraries (ASL).

The Array Support Libraries are in the directory /etc/vx/lib/discovery.d.

To display details about a supported array library

◆ Type the following command:

vxddladm listsupport libname=library_name.so

This command displays the vendor ID (VID), product IDs (PIDs) for the arrays,
array types (for example, A/A or A/P), and array names. The following is sample
output.

vxddladm listsupport libname=libvxfujitsu.so

ATTR_NAME ATTR_VALUE

===

LIBNAME libvxfujitsu.so

VID vendor

PID GR710, GR720, GR730

GR740, GR820, GR840

ARRAY_TYPE A/A, A/P

ARRAY_NAME FJ_GR710, FJ_GR720, FJ_GR730

FJ_GR740, FJ_GR820, FJ_GR840

Excluding support for a disk array library
You can exclude support for disk arrays that depends on a particular disk array
library. You can also exclude support for disk arrays from a particular vendor.

To exclude support for a disk array library

◆ To exclude support for a disk array library, specify the array library to the
following command.

vxddladm excludearray libname=libvxemc.so

You can also exclude support for disk arrays from a particular vendor, as shown
in this example:

vxddladm excludearray vid=ACME pid=X1

278Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Re-including support for an excluded disk array library
If you previously excluded support for all arrays that depend on a particular disk
array library, use this procedure to include the support for those arrays. This
procedure removes the library from the exclude list.

To re-include support for an excluded disk array library

◆ If you have excluded support for all arrays that depend on a particular disk
array library, you can use the includearray keyword to remove the entry from
the exclude list, as shown in the following example:

vxddladm includearray libname=libvxemc.so

This command adds the array library to the database so that the library can
once again be used in device discovery. If vxconfigd is running, you can use
the vxdisk scandisks command to discover the arrays and add their details
to the database.

Listing excluded disk arrays
To list all disk arrays that are currently excluded from use by VxVM

◆ Type the following command:

vxddladm listexclude

Listing supported disks in the DISKS category
To list disks that are supported in the DISKS (JBOD) category

◆ Type the following command:

vxddladm listjbod

Adding unsupported disk arrays to the DISKS category
Disk arrays should be added as JBOD devices if no Array Support Library (ASL)
is available for the array.

JBODs are assumed to be Active/Active (A/A) unless otherwise specified. If a
suitable ASL is not available, an A/A-A, A/P or A/PF array must be claimed as an
Active/Passive (A/P) JBOD to prevent path delays and I/O failures. If a JBOD is
ALUA-compliant, it is added as an ALUA array.

See “How DMP works” on page 179.

279Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Warning: This procedure ensures that Dynamic Multi-Pathing (DMP) is set up
correctly on an array that is not supported by Veritas Volume Manager. Otherwise,
Veritas Volume Manager treats the independent paths to the disks as separate
devices, which can result in data corruption.

To add an unsupported disk array to the DISKS category

1 Use the following command to identify the vendor ID and product ID of the
disks in the array:

/etc/vx/diag.d/vxscsiinq device_name

where device_name is the device name of one of the disks in the array. Note
the values of the vendor ID (VID) and product ID (PID) in the output from this
command. For Fujitsu disks, also note the number of characters in the serial
number that is displayed.

The following example output shows that the vendor ID is SEAGATE and the
product ID is ST318404LSUN18G.

Vendor id (VID) : SEAGATE

Product id (PID) : ST318404LSUN18G

Revision : 8507

Serial Number : 0025T0LA3H

2 Stop all applications, such as databases, from accessing VxVM volumes that
are configured on the array, and unmount all file systems and Storage
Checkpoints that are configured on the array.

3 If the array is of type A/A-A, A/P or A/PF, configure it in autotrespass mode.

280Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

4 Enter the following command to add a new JBOD category:

vxddladm addjbod vid=vendorid [pid=productid] \

[serialnum=opcode/pagecode/offset/length] \

[cabinetnum=opcode/pagecode/offset/length] policy={aa|ap}]

where vendorid and productid are the VID and PID values that you found from
the previous step. For example, vendorid might be FUJITSU, IBM, or SEAGATE.
For Fujitsu devices, you must also specify the number of characters in the
serial number as the argument to the length argument (for example, 10). If
the array is of type A/A-A, A/P or A/PF, you must also specify the policy=ap

attribute.

Continuing the previous example, the command to define an array of disks of
this type as a JBOD would be:

vxddladm addjbod vid=SEAGATE pid=ST318404LSUN18G

5 Use the vxdctl enable command to bring the array under VxVM control.

vxdctl enable

See “Enabling discovery of new disk arrays” on page 270.

6 To verify that the array is now supported, enter the following command:

vxddladm listjbod

The following is sample output from this command for the example array:

VID PID SerialNum CabinetNum Policy

(Cmd/PageCode/off/len) (Cmd/PageCode/off/len)

==

SEAGATE ALL PIDs 18/-1/36/12 18/-1/10/11 Disk

SUN SESS01 18/-1/36/12 18/-1/12/11 Disk

281Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

7 To verify that the array is recognized, use the vxdmpadm listenclosure

command as shown in the following sample output for the example array:

vxdmpadm listenclosure

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE LUN_COUNT

==

Disk Disk DISKS CONNECTED Disk 2

The enclosure name and type for the array are both shown as being set to
Disk. You can use the vxdisk list command to display the disks in the array:

vxdisk list

DEVICE TYPE DISK GROUP STATUS

Disk_0 auto:none - - online invalid

Disk_1 auto:none - - online invalid

...

8 To verify that the DMP paths are recognized, use the vxdmpadm getdmpnode

command as shown in the following sample output for the example array:

vxdmpadm getdmpnode enclosure=Disk

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

===

Disk_0 ENABLED Disk 2 2 0 Disk

Disk_1 ENABLED Disk 2 2 0 Disk

...

The output in this example shows that there are two paths to the disks in the
array.

For more information, enter the command vxddladm help addjbod.

See the vxddladm(1M) manual page.

See the vxdmpadm(1M) manual page.

Removing disks from the DISKS category
Use the procedure in this section to remove disks from the DISKS category.

To remove disks from the DISKS category

◆ Use the vxddladm command with the rmjbod keyword. The following example
illustrates the command for removing disks which have the vendor id of
SEAGATE:

vxddladm rmjbod vid=SEAGATE

282Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Foreign devices
DDL may not be able to discover some devices that are controlled by third-party
drivers, such as those that provide multi-pathing or RAM disk capabilities. For these
devices it may be preferable to use the multi-pathing capability that is provided by
the third-party drivers for some arrays rather than using Dynamic Multi-Pathing
(DMP). Such foreign devices can be made available as simple disks to VxVM by
using the vxddladm addforeign command. This also has the effect of bypassing
DMP for handling I/O. The following example shows how to add entries for block
and character devices in the specified directories:

vxddladm addforeign blockdir=/dev/foo/dsk \

chardir=/dev/foo/rdsk

If a block or character device is not supported by a driver, it can be omitted from
the command as shown here:

vxddladm addforeign blockdir=/dev/foo/dsk

By default, this command suppresses any entries for matching devices in the
OS-maintained device tree that are found by the autodiscovery mechanism. You
can override this behavior by using the -f and -n options as described on the
vxddladm(1M) manual page.

After adding entries for the foreign devices, use either the vxdisk scandisks or
the vxdctl enable command to discover the devices as simple disks. These disks
then behave in the same way as autoconfigured disks.

The foreign device feature was introduced in VxVM 4.0 to support non-standard
devices such as RAM disks, some solid state disks, and pseudo-devices such as
EMC PowerPath.

Foreign device support has the following limitations:

■ A foreign device is always considered as a disk with a single path. Unlike an
autodiscovered disk, it does not have a DMP node.

■ It is not supported for shared disk groups in a clustered environment. Only
standalone host systems are supported.

■ It is not supported for Persistent Group Reservation (PGR) operations.

■ It is not under the control of DMP, so enabling of a failed disk cannot be
automatic, and DMP administrative commands are not applicable.

■ Enclosure information is not available to VxVM. This can reduce the availability
of any disk groups that are created using such devices.

■ The I/O Fencing and Cluster File System features are not supported for foreign
devices.

283Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

If a suitable ASL is available and installed for an array, these limitations are removed.

See “Third-party driver coexistence” on page 270.

Making devices invisible to VxVM
Use this procedure to exclude a device from the view of VxVM. The options to
prevent a device from being multi-pathed by the VxVM DMP driver (vxdmp) are
deprecated.

284Administering Dynamic Multi-Pathing
Making devices invisible to VxVM

To make devices invisible to VxVM

1 Run the vxdiskadm command, and select Prevent multipathing/Suppress

devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Suppresses all paths through the specified controller from the view of
VxVM.

Option 1

Suppresses specified paths from the view of VxVM.Option 2

Suppresses disks from the view of VxVM that match a specified Vendor
ID and Product ID combination.

The root disk cannot be suppressed.

The operation fails if the VID:PID of an external disk is the same VID:PID
as the root disk and the root disk is encapsulated under VxVM.

Option 3

Suppresses all but one path to a disk. Only one path is made visible to
VxVM.

This operation is deprecated, since it can lead to unsupported
configurations.

Option 4

Prevents multi-pathing for all disks on a specified controller by VxVM.

This operation is deprecated, since it can lead to unsupported
configurations.

Option 5

Prevents multi-pathing of a disk by VxVM. The disks that correspond
to a specified path are claimed in the OTHER_DISKS category and are
not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Option 6

Prevents multi-pathing for the disks that match a specified Vendor ID
and Product ID combination. The disks that correspond to a specified
Vendor ID and Product ID combination are claimed in the
OTHER_DISKS category and are not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Option 7

Lists the devices that are currently suppressed.Option 8

285Administering Dynamic Multi-Pathing
Making devices invisible to VxVM

Making devices visible to VxVM
Use this procedure to make a device visible to VxVM again. The options to allow
multi-pathing by the VxVM DMP driver (vxdmp) are deprecated.

To make devices visible to VxVM

1 Run the vxdiskadm command, and select Allow multipathing/Unsuppress

devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Unsuppresses all paths through the specified controller from the view
of VxVM.

Option 1

Unsuppresses specified paths from the view of VxVM.Option 2

Unsuppresses disks from the view of VxVM that match a specified
Vendor ID and Product ID combination.

Option 3

Removes a pathgroup definition. (A pathgroup explicitly defines alternate
paths to the same disk.) Once a pathgroup has been removed, all paths
that were defined in that pathgroup become visible again.

This operation is deprecated.

Option 4

Allows multi-pathing of all disks that have paths through the specified
controller.

This operation is deprecated.

Option 5

Allows multi-pathing of a disk by VxVM.

This operation is deprecated.

Option 6

Allows multi-pathing of disks that match a specified Vendor ID and
Product ID combination.

This operation is deprecated.

Option 7

Lists the devices that are currently suppressed.Option 8

About enabling and disabling I/O for controllers
and storage processors

DMP lets you to turn off I/O through an HBA controller or the array port of a storage
processor so that you can perform administrative operations. This feature can be

286Administering Dynamic Multi-Pathing
Making devices visible to VxVM

used for maintenance of HBA controllers on the host, or array ports that are attached
to disk arrays supported by SFCFSHA. I/O operations to the HBA controller or the
array port can be turned back on after the maintenance task is completed. You can
accomplish these operations using the vxdmpadm command.

For Active/Active type disk arrays, when you disable the I/O through an HBA
controller or array port, the I/O continues on the remaining paths. For Active/Passive
type disk arrays, if disabling I/O through an HBA controller or array port resulted in
all primary paths being disabled, DMP will failover to secondary paths and I/O will
continue on them.

DMP does not support the operations to enable I/O or disable I/O for the controllers
that use Third-Party Drivers (TPD) for multi-pathing.

After the administrative operation is over, use the vxdmpadm command to re-enable
the paths through the HBA controllers.

See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 318.

See “Enabling I/O for paths, controllers, array ports, or DMP nodes” on page 319.

Note: From release 5.0 of VxVM, these operations are supported for controllers
that are used to access disk arrays on which cluster-shareable disk groups are
configured.

You can also perform certain reconfiguration operations dynamically online.

About displaying DMP database information
You can use the vxdmpadm command to list DMP database information and perform
other administrative tasks. This command allows you to list all controllers that are
connected to disks, and other related information that is stored in the DMP database.
You can use this information to locate system hardware, and to help you decide
which controllers need to be enabled or disabled.

The vxdmpadm command also provides useful information such as disk array serial
numbers, which DMP devices (disks) are connected to the disk array, and which
paths are connected to a particular controller, enclosure or array port.

See “Administering DMP using vxdmpadm” on page 290.

Displaying the paths to a disk
The vxdisk command is used to display the multi-pathing information for a particular
metadevice. The metadevice is a device representation of a physical disk having

287Administering Dynamic Multi-Pathing
About displaying DMP database information

multiple physical paths through the system’s HBA controllers. In DMP, all the physical
disks in the system are represented as metadevices with one or more physical
paths.

To display the multi-pathing information on a system

◆ Use the vxdisk path command to display the relationships between the device
paths, disk access names, disk media names and disk groups on a system as
shown here:

vxdisk path

SUBPATH DANAME DMNAME GROUP STATE

sda sda mydg01 mydg ENABLED

sdi sdi mydg01 mydg ENABLED

sdb sdb mydg02 mydg ENABLED

sdj sdj mydg02 mydg ENABLED

.

.

.

This shows that two paths exist to each of the two disks, mydg01 and mydg02,
and also indicates that each disk is in the ENABLED state.

288Administering Dynamic Multi-Pathing
Displaying the paths to a disk

To view multi-pathing information for a particular metadevice

1 Use the following command:

vxdisk list devicename

For example, to view multi-pathing information for the device sdl, use the
following command:

vxdisk list sdl

The output from the vxdisk list command displays the multi-pathing
information, as shown in the following example:

Device: sdl

devicetag: sdl

type: sliced

hostid: sys1

.

.

.

Multipathing information:

numpaths: 2

sdl state=enabled type=secondary

sdp state=disabled type=primary

The numpaths line shows that there are 2 paths to the device. The next two
lines in the "Multipathing information" section show that one path is active
(state=enabled) and that the other path has failed (state=disabled).

The type field is shown for disks on Active/Passive type disk arrays such as
the EMC CLARiiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and
Sun StorEdge T3 array. This field indicates the primary and secondary paths
to the disk.

The type field is not displayed for disks on Active/Active type disk arrays such
as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series, and
IBM ESS Series. Such arrays have no concept of primary and secondary paths.

289Administering Dynamic Multi-Pathing
Displaying the paths to a disk

2 Alternately, you can use the following command to view multi-pathing
information:

vxdmpadm getsubpaths dmpnodename=devicename

For example, to view multi-pathing information for emc_clariion0_893, use
the following command:

vxdmpadm getsubpaths dmpnodename=emc_clariion0_893

Typical output from the vxdmpadm getsubpaths command is as follows:

NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

==

sdbc ENABLED(A) PRIMARY c3 EMC_CLARiiON emc_clariion0 -

sdbm ENABLED SECONDARY c3 EMC_CLARiiON emc_clariion0 -

sdbw ENABLED(A) PRIMARY c3 EMC_CLARiiON emc_clariion0 -

sdck ENABLED(A) PRIMARY c2 EMC_CLARiiON emc_clariion0 -

sdcu ENABLED SECONDARY c2 EMC_CLARiiON emc_clariion0 -

sdde ENABLED(A) PRIMARY c2 EMC_CLARiiON emc_clariion0 -

Administering DMP using vxdmpadm
The vxdmpadm utility is a command line administrative interface to DMP.

You can use the vxdmpadm utility to perform the following tasks:

■ Retrieve the name of the DMP device corresponding to a particular path.
See “Retrieving information about a DMP node” on page 292.

■ Display consolidated information about the DMP nodes
See “Displaying consolidated information about the DMP nodes” on page 293.

■ Display the members of a LUN group.
See “Displaying the members of a LUN group” on page 294.

■ List all paths under a DMP device node, HBA controller, enclosure, or array
port.
See “Displaying paths controlled by a DMP node, controller, enclosure, or array
port” on page 294.

■ Display information about the HBA controllers on the host.
See “Displaying information about controllers” on page 297.

■ Display information about enclosures.
See “Displaying information about enclosures” on page 298.

290Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

■ Display information about array ports that are connected to the storage
processors of enclosures.
See “Displaying information about array ports” on page 299.

■ Display information about devices that are controlled by third-party multi-pathing
drivers.
See “Displaying information about TPD-controlled devices” on page 299.

■ Display extended devices attributes.
See “Displaying extended device attributes” on page 300.

■ Suppress or include devices from VxVM control.
See “Suppressing or including devices from VxVM control” on page 302.

■ Gather I/O statistics for a DMP node, enclosure, path or controller.
See “Gathering and displaying I/O statistics” on page 303.

■ Configure the attributes of the paths to an enclosure.
See “Setting the attributes of the paths to an enclosure” on page 308.

■ Display the redundancy level of a device or enclosure
See “Displaying the redundancy level of a device or enclosure” on page 310.

■ Specify the minimum number of active paths
See “Specifying the minimum number of active paths” on page 311.

■ Display or set the I/O policy that is used for the paths to an enclosure.
See “Specifying the I/O policy” on page 312.

■ Enable or disable I/O for a path, HBA controller or array port on the system.
See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 318.

■ Rename an enclosure.
See “Renaming an enclosure” on page 320.

■ Configure how DMP responds to I/O request failures.
See “Configuring the response to I/O failures” on page 321.

■ Configure the I/O throttling mechanism.
See “Configuring the I/O throttling mechanism” on page 322.

■ Control the operation of the DMP path restoration thread.
See “Configuring DMP path restoration policies” on page 325.

■ Configure array policy modules
See “Configuring array policy modules” on page 327.

■ Get or set the values of various tunables used by DMP.
See “DMP tunable parameters” on page 985.

The following sections cover these tasks in detail along with sample output.

291Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

See the vxdmpadm(1M) manual page.

Retrieving information about a DMP node
The following command displays the DMP node that controls a particular physical
path:

vxdmpadm getdmpnode nodename=pathname

The physical path is specified by argument to the nodename attribute, which must
be a valid path listed in the device directory.

The device directory is the /dev directory.

The command displays output similar to the following example output.

vxdmpadm getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

==

emc_clariion0_89 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0

Use the -v option to display the LUN serial number and the array volume ID.

vxdmpadm -v getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME SERIAL-NO ARRAY_VOL_ID

===

emc_clariion0_89 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0 600601601 893

Use the enclosure attribute with getdmpnode to obtain a list of all DMP nodes for
the specified enclosure.

vxdmpadm getdmpnode enclosure=enc0

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

==

sdm ENABLED ACME 2 2 0 enc0

sdn ENABLED ACME 2 2 0 enc0

sdo ENABLED ACME 2 2 0 enc0

sdp ENABLED ACME 2 2 0 enc0

Use the dmpnodename attribute with getdmpnode to display the DMP information for
a given DMP node.

vxdmpadm getdmpnode dmpnodename=emc_clariion0_158

292Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

==

emc_clariion0_158 ENABLED EMC_CLARiiON 1 1 0 emc_clariion0

Displaying consolidated information about the DMP nodes
The vxdmpadm list dmpnode command displays the detail information of a DMP
node. The information includes the enclosure name, LUN serial number, port id
information, device attributes, etc.

The following command displays the consolidated information for all of the DMP
nodes in the system:

vxdmpadm list dmpnode all

Use the enclosure attribute with list dmpnode to obtain a list of all DMP nodes
for the specified enclosure.

vxdmpadm list dmpnode enclosure=enclosure name

For example, the following command displays the consolidated information for all
of the DMP nodes in the enc0 enclosure.

vxdmpadm list dmpnode enclosure=enc0

Use the dmpnodename attribute with list dmpnode to display the DMP information
for a given DMP node. The DMP node can be specified by name or by specifying
a path name. The detailed information for the specified DMP node includes path
information for each subpath of the listed dmpnode.

The path state differentiates between a path that is disabled due to a failure and a
path that has been manually disabled for administrative purposes. A path that has
been manually disabled using the vxdmpadm disable command is listed as
disabled(m).

vxdmpadm list dmpnode dmpnodename=dmpnodename

For example, the following command displays the consolidated information for the
DMP node emc_clariion0_158.

vxdmpadm list dmpnode dmpnodename=emc_clariion0_158

dmpdev = emc_clariion0_158

state = enabled

enclosure = emc_clariion0

cab-sno = CK200070400359

asl = libvxCLARiiON.so

293Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vid = DGC

pid = DISK

array-name = EMC_CLARiiON

array-type = CLR-A/PF

iopolicy = MinimumQ

avid = 158

lun-sno = 600601601A141B001D4A32F92B49DE11

udid = DGC%5FDISK%5FCK200070400359%5F600601601A141B001D4A32F92B49DE11

dev-attr = lun

###path = name state type transport ctlr hwpath aportID aportWWN attr

path = sdck enabled(a) primary FC c2 c2 A5 50:06:01:61:41:e0:3b:33 -

path = sdde enabled(a) primary FC c2 c2 A4 50:06:01:60:41:e0:3b:33 -

path = sdcu enabled secondary FC c2 c2 B4 50:06:01:68:41:e0:3b:33 -

path = sdbm enabled secondary FC c3 c3 B4 50:06:01:68:41:e0:3b:33 -

path = sdbw enabled(a) primary FC c3 c3 A4 50:06:01:60:41:e0:3b:33 -

path = sdbc enabled(a) primary FC c3 c3 A5 50:06:01:61:41:e0:3b:33 -

Displaying the members of a LUN group
The following command displays the DMP nodes that are in the same LUN group
as a specified DMP node:

vxdmpadm getlungroup dmpnodename=sdq

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

===

sdo ENABLED ACME 2 2 0 enc1

sdp ENABLED ACME 2 2 0 enc1

sdq ENABLED ACME 2 2 0 enc1

sdr ENABLED ACME 2 2 0 enc1

Displaying paths controlled by a DMP node, controller, enclosure,
or array port

The vxdmpadm getsubpaths command lists all of the paths known to DMP. The
vxdmpadm getsubpaths command also provides options to list the subpaths through
a particular DMP node, controller, enclosure, or array port. To list the paths through
an array port, specify either a combination of enclosure name and array port id, or
array port WWN.

To list all subpaths known to DMP:

vxdmpadm getsubpaths

294Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

===

sdaf ENABLED(A) PRIMARY ams_wms0_130 ams_wms0 c2 -

sdc ENABLED SECONDARY ams_wms0_130 ams_wms0 c3 -

sdb ENABLED(A) - disk_24 disk c0 -

sda ENABLED(A) - disk_25 disk c0 -

sdav ENABLED(A) PRIMARY emc_clariion0_1017 emc_clariion0 c3 -

sdbf ENABLED SECONDARY emc_clariion0_1017 emc_clariion0 c3 -

The vxdmpadm getsubpaths command combined with the dmpnodename attribute
displays all the paths to a LUN that are controlled by the specified DMP node name
from the /dev/vx/rdmp directory:

vxdmpadm getsubpaths dmpnodename=sdu

NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

==

sdu ENABLED(A) PRIMARY c2 ACME enc0 -

sdt ENABLED PRIMARY c1 ACME enc0 -

For A/A arrays, all enabled paths that are available for I/O are shown as ENABLED(A).

For A/P arrays in which the I/O policy is set to singleactive, only one path is
shown as ENABLED(A). The other paths are enabled but not available for I/O. If the
I/O policy is not set to singleactive, DMP can use a group of paths (all primary
or all secondary) for I/O, which are shown as ENABLED(A).

See “Specifying the I/O policy” on page 312.

Paths that are in the DISABLED state are not available for I/O operations.

A path that was manually disabled by the system administrator displays as
DISABLED(M). A path that failed displays as DISABLED.

You can use getsubpaths to obtain information about all the paths that are
connected to a particular HBA controller:

vxdmpadm getsubpaths ctlr=c2

NAME STATE[-] PATH-TYPE[-] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

===

sdk ENABLED(A) PRIMARY sdk ACME enc0 -

sdl ENABLED(A) PRIMARY sdl ACME enc0 -

sdm DISABLED SECONDARY sdm ACME enc0 -

sdn ENABLED SECONDARY sdn ACME enc0 -

295Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

You can also use getsubpaths to obtain information about all the paths that are
connected to a port on an array. The array port can be specified by the name of
the enclosure and the array port ID, or by the worldwide name (WWN) identifier of
the array port:

vxdmpadm getsubpaths enclosure=enclosure portid=portid

vxdmpadm getsubpaths pwwn=pwwn

For example, to list subpaths through an array port through the enclosure and the
array port ID:

vxdmpadm getsubpaths enclosure=emc_clariion0 portid=A5

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

==

sdav ENABLED(A) PRIMARY emc_clariion0_1017 emc_clariion0 c3 -

sdcd ENABLED(A) PRIMARY emc_clariion0_1017 emc_clariion0 c2 -

sdau ENABLED(A) PRIMARY emc_clariion0_1018 emc_clariion0 c3 -

sdcc ENABLED(A) PRIMARY emc_clariion0_1018 emc_clariion0 c2 -

For example, to list subpaths through an array port through the WWN:

vxdmpadm getsubpaths pwwn=50:06:01:61:41:e0:3b:33

NAME STATE[A] PATH-TYPE[M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS

==

sdav ENABLED(A) PRIMARY c3 EMC_CLARiiON emc_clariion0 -

sdcd ENABLED(A) PRIMARY c2 EMC_CLARiiON emc_clariion0 -

sdau ENABLED(A) PRIMARY c3 EMC_CLARiiON emc_clariion0 -

sdcc ENABLED(A) PRIMARY c2 EMC_CLARiiON emc_clariion0 -

vxdmpadm getsubpaths pwwn=20:00:00:E0:8B:06:5F:19

You can use getsubpaths to obtain information about all the subpaths of an
enclosure.

vxdmpadm getsubpaths enclosure=enclosure_name [ctlr=ctlrname]

To list all subpaths of an enclosure:

vxdmpadm getsubpaths enclosure=emc_clariion0

NAME STATE[A] PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS

==

sdav ENABLED(A) PRIMARY emc_clariion0_1017 emc_clariion0 c3 -

sdbf ENABLED SECONDARY emc_clariion0_1017 emc_clariion0 c3 -

sdau ENABLED(A) PRIMARY emc_clariion0_1018 emc_clariion0 c3 -

sdbe ENABLED SECONDARY emc_clariion0_1018 emc_clariion0 c3 -

296Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

To list all subpaths of a controller on an enclosure:

vxdmpadm getsubpaths enclosure=Disk ctlr=c1

By default, the output of the vxdmpadm getsubpaths command is sorted by
enclosure name, DMP node name, and within that, path name.

To sort the output based on the pathname, the DMP node name, the enclosure
name, or the host controller name, use the -s option.

To sort subpaths information, use the following command:

vxdmpadm -s {path | dmpnode | enclosure | ctlr} getsubpaths \

[all | ctlr=ctlr_name | dmpnodename=dmp_device_name | \

enclosure=enclr_name [ctlr=ctlr_name | portid=array_port_ID] | \

pwwn=port_WWN | tpdnodename=tpd_node_name]

Displaying information about controllers
The following command lists attributes of all HBA controllers on the system:

vxdmpadm listctlr all

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME

===

c1 OTHER ENABLED other0

c2 X1 ENABLED jbod0

c3 ACME ENABLED enc0

c4 ACME ENABLED enc0

This output shows that the controller c1 is connected to disks that are not in any
recognized DMP category as the enclosure type is OTHER.

The other controllers are connected to disks that are in recognized DMP categories.

All the controllers are in the ENABLED state which indicates that they are available
for I/O operations.

The state DISABLED is used to indicate that controllers are unavailable for I/O
operations. The unavailability can be due to a hardware failure or due to I/O
operations being disabled on that controller by using the vxdmpadm disable

command.

The following forms of the command lists controllers belonging to a specified
enclosure or enclosure type:

vxdmpadm listctlr enclosure=enc0

or

297Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm listctlr type=ACME

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME

===

c2 ACME ENABLED enc0

c3 ACME ENABLED enc0

The vxdmpadm getctlr command displays HBA vendor details and the Controller
ID. For iSCSI devices, the Controller ID is the IQN or IEEE-format based name.
For FC devices, the Controller ID is the WWN. Because the WWN is obtained from
ESD, this field is blank if ESD is not running. ESD is a daemon process used to
notify DDL about occurrence of events. The WWN shown as ‘Controller ID’ maps
to the WWN of the HBA port associated with the host controller.

vxdmpadm getctlr c5

LNAME PNAME VENDOR CTLR-ID

===

c5 c5 qlogic 20:07:00:a0:b8:17:e1:37

Displaying information about enclosures
To display the attributes of a specified enclosure, including its enclosure type,
enclosure serial number, status, array type, and number of LUNs, use the following
command:

vxdmpadm listenclosure enc0

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE LUN_COUNT

===

enc0 A3 60020f20000001a90000 CONNECTED A/P 30

The following command lists attributes for all enclosures in a system:

vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE LUN_COUNT

===

Disk Disk DISKS CONNECTED Disk 6

ANA0 ACME 508002000001d660 CONNECTED A/A 57

enc0 A3 60020f20000001a90000 CONNECTED A/P 30

298Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Displaying information about array ports
Use the commands in this section to display information about array ports. The
information displayed for an array port includes the name of its enclosure, and its
ID and worldwide name (WWN) identifier.

To display the attributes of an array port that is accessible via a path, DMP node
or HBA controller, use one of the following commands:

vxdmpadm getportids path=path-name

vxdmpadm getportids dmpnodename=dmpnode-name

vxdmpadm getportids ctlr=ctlr-name

The following form of the command displays information about all of the array ports
within the specified enclosure:

vxdmpadm getportids enclosure=enclr-name

The following example shows information about the array port that is accessible
via DMP node sdg:

vxdmpadm getportids dmpnodename=sdg

NAME ENCLR-NAME ARRAY-PORT-ID pWWN

==

sdg HDS9500V0 1A 20:00:00:E0:8B:06:5F:19

Displaying information about TPD-controlled devices
The third-party driver (TPD) coexistence feature allows I/O that is controlled by
third-party multi-pathing drivers to bypass DMP while retaining the monitoring
capabilities of DMP. The following commands allow you to display the paths that
DMP has discovered for a given TPD device, and the TPD device that corresponds
to a given TPD-controlled node discovered by DMP:

vxdmpadm getsubpaths tpdnodename=TPD_node_name

vxdmpadm gettpdnode nodename=TPD_path_name

See “Changing device naming for TPD-controlled enclosures” on page 344.

For example, consider the following disks in an EMC Symmetrix array controlled
by PowerPath, which are known to DMP:

vxdisk list

DEVICE TYPE DISK GROUP STATUS

emcpower10 auto:sliced disk1 ppdg online

299Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

emcpower11 auto:sliced disk2 ppdg online

emcpower12 auto:sliced disk3 ppdg online

emcpower13 auto:sliced disk4 ppdg online

emcpower14 auto:sliced disk5 ppdg online

emcpower15 auto:sliced disk6 ppdg online

emcpower16 auto:sliced disk7 ppdg online

emcpower17 auto:sliced disk8 ppdg online

emcpower18 auto:sliced disk9 ppdg online

emcpower19 auto:sliced disk10 ppdg online

The following command displays the paths that DMP has discovered, and which
correspond to the PowerPath-controlled node, emcpower10:

vxdmpadm getsubpaths tpdnodename=emcpower10

NAME TPDNODENAME PATH-TYPE[-]DMP-NODENAME ENCLR-TYPE ENCLR-NAME

===

sdq emcpower10s2 - emcpower10 PP_EMC pp_emc0

sdr emcpower10s2 - emcpower10 PP_EMC pp_emc0

Conversely, the next command displays information about the PowerPath node
that corresponds to the path, sdq, discovered by DMP:

vxdmpadm gettpdnode nodename=sdq

NAME STATE PATHS ENCLR-TYPE ENCLR-NAME

===

emcpower10s2 ENABLED 2 PP_EMC pp_emc0

Displaying extended device attributes
Device Discovery Layer (DDL) extended attributes are attributes or flags
corresponding to a VxVM or DMP LUN or Disk and which are discovered by DDL.
These attributes identify a LUN to a specific hardware category.

The list of categories includes:

Displays what kind of Storage RAID Group the
LUN belongs to

Hardware RAID types

Displays the LUN’s thin reclamation abilitiesThin Provisioning Discovery and
Reclamation

Displays the type of media –whether SSD (solid
state disk)

Device Media Type

300Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Displays whether the LUN is a SNAPSHOT or a
CLONE of a PRIMARY LUN

Storage-based Snapshot/Clone

Displays if the LUN is part of a replicated group
across a remote site

Storage-based replication

Displays what kind of HBA is used to connect to
this LUN (FC, SATA, iSCSI)

Transport

Each LUN can have one or more of these extended attributes. DDL discovers the
extended attributes during device discovery from the array support library (ASL). If
Veritas Operations Manager (VOM) is present, DDL can also obtain extended
attributes from the VOM Management Server for hosts that are configured as
managed hosts.

The vxdisk -p list command displays DDL extended attributes. For example,
the following command shows attributes of “std”, “fc”, and “RAID_5” for this LUN:

vxdisk -p list

DISK : tagmastore-usp0_0e18

DISKID : 1253585985.692.rx2600h11

VID : HITACHI

UDID : HITACHI%5FOPEN-V%5F02742%5F0E18

REVISION : 5001

PID : OPEN-V

PHYS_CTLR_NAME : 0/4/1/1.0x50060e8005274246

LUN_SNO_ORDER : 411

LUN_SERIAL_NO : 0E18

LIBNAME : libvxhdsusp.sl

HARDWARE_MIRROR: no

DMP_DEVICE : tagmastore-usp0_0e18

DDL_THIN_DISK : thick

DDL_DEVICE_ATTR: std fc RAID_5

CAB_SERIAL_NO : 02742

ATYPE : A/A

ARRAY_VOLUME_ID: 0E18

ARRAY_PORT_PWWN: 50:06:0e:80:05:27:42:46

ANAME : TagmaStore-USP

TRANSPORT : FC

The vxdisk -x attribute -p list command displays the one-line listing for the
property list and the attributes. The following example shows two Hitachi LUNs that
support Thin Reclamation via the attribute hdprclm:

301Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdisk -x DDL_DEVICE_ATTR -p list

DEVICE DDL_DEVICE_ATTR

tagmastore-usp0_0a7a std fc RAID_5

tagmastore-usp0_065a hdprclm fc

tagmastore-usp0_065b hdprclm fc

User can specify multiple -x options in the same command to display multiple entries.
For example:

vxdisk -x DDL_DEVICE_ATTR -x VID -p list

DEVICE DDL_DEVICE_ATTR VID

tagmastore-usp0_0a7a std fc RAID_5 HITACHI

tagmastore-usp0_0a7b std fc RAID_5 HITACHI

tagmastore-usp0_0a78 std fc RAID_5 HITACHI

tagmastore-usp0_0a79 std fc RAID_5 HITACHI

tagmastore-usp0_065a hdprclm fc HITACHI

tagmastore-usp0_065b hdprclm fc HITACHI

tagmastore-usp0_065c hdprclm fc HITACHI

tagmastore-usp0_065d hdprclm fc HITACHI

Use the vxdisk -e list command to show the DLL_DEVICE_ATTR property in
the last column named ATTR.

vxdisk -e list

DEVICE TYPE DISK GROUP STATUS OS_NATIVE_NAME ATTR

tagmastore-usp0_0a7a auto - - online c10t0d2 std fc RAID_5

tagmastore-usp0_0a7b auto - - online c10t0d3 std fc RAID_5

tagmastore-usp0_0a78 auto - - online c10t0d0 std fc RAID_5

tagmastore-usp0_0655 auto - - online c13t2d7 hdprclm fc

tagmastore-usp0_0656 auto - - online c13t3d0 hdprclm fc

tagmastore-usp0_0657 auto - - online c13t3d1 hdprclm fc

For a list of ASLs that supports Extended Attributes, and descriptions of these
attributes, refer to the hardware compatibility list (HCL) at the following URL:

http://www.symantec.com/docs/TECH170013

Suppressing or including devices from VxVM control
The vxdmpadm exclude command suppresses devices from VxVM based on the
criteria that you specify. When a device is suppressed, DMP does not claim the
device so that the device is not available for VxVM to use. You can add the devices
back into VxVM control with the vxdmpadm include command. The devices can
be included or excluded based on VID:PID combination, paths, controllers, or disks.

302Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

http://www.symantec.com/docs/TECH170013

You can use the bang symbol (!) to exclude or include any paths or controllers
except the one specified.

The root disk cannot be suppressed. The operation fails if the VID:PID of an external
disk is the same VID:PID as the root disk and the root disk is encapsulated under
VxVM.

Note: The ! character is a special character in some shells. The following syntax
shows how to escape it in a bash shell.

vxdmpadm exclude { all | product=VID:PID |

ctlr=[\!]ctlrname | dmpnodename=diskname [path=[\!]pathname] }

vxdmpadm include { all | product=VID:PID |

ctlr=[\!]ctlrname | dmpnodename=diskname [path=[\!]pathname] }

where:

all – all devices

product=VID:PID – all devices with the specified VID:PID

ctlr=ctlrname – all devices through the given controller

dmpnodename=diskname - all paths under the DMP node

dmpnodename=diskname path=\!pathname - all paths under the DMP node except
the one specified.

Gathering and displaying I/O statistics
You can use the vxdmpadm iostat command to gather and display I/O statistics
for a specified DMP node, enclosure, path or controller.

To enable the gathering of statistics, enter this command:

vxdmpadm iostat start [memory=size]

To reset the I/O counters to zero, use this command:

vxdmpadm iostat reset

The memory attribute can be used to limit the maximum amount of memory that is
used to record I/O statistics for each CPU. The default limit is 32k (32 kilobytes)
per CPU.

To display the accumulated statistics at regular intervals, use the following command:

303Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm iostat show {all | ctlr=ctlr-name \

| dmpnodename=dmp-node \

| enclosure=enclr-name [portid=array-portid] \

| pathname=path-name | pwwn=array-port-wwn } \

[interval=seconds [count=N]]

This command displays I/O statistics for all paths (all), or for a specified controller,
DMP node, enclosure, path or port ID. The statistics displayed are the CPU usage
and amount of memory per CPU used to accumulate statistics, the number of read
and write operations, the number of kilobytes read and written, and the average
time in milliseconds per kilobyte that is read or written.

The interval and count attributes may be used to specify the interval in seconds
between displaying the I/O statistics, and the number of lines to be displayed. The
actual interval may be smaller than the value specified if insufficient memory is
available to record the statistics.

To disable the gathering of statistics, enter this command:

vxdmpadm iostat stop

Displaying cumulative I/O statistics
Use the groupby clause of the vxdmpadm iostat command to display cumulative
I/O statistics listings per DMP node, controller, array port id, or host-array controller
pair and enclosure. If the groupby clause is not specified, then the statistics are
displayed per path.

By default, the read/write times are displayed in milliseconds up to 2 decimal places.
The throughput data is displayed in terms of BLOCKS, and the output is scaled,
meaning that the small values are displayed in small units and the larger values
are displayed in bigger units, keeping significant digits constant. You can specify
the units in which the statistics data is displayed. The -u option accepts the following
options:

Displays throughput in the highest possible unit.h or H

Displays throughput in kilobytes.k

Displays throughput in megabytes.m

Displays throughput in gigabytes.g

Displays throughput in exact number of bytes.bytes| b

Displays average read/write time in microseconds.us

304Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

To group by DMP node:

vxdmpadm [-u unit] iostat show groupby=dmpnode \

[all | dmpnodename=dmpnodename | enclosure=enclr-name]

To group by controller:

vxdmpadm [-u unit] iostat show groupby=ctlr [all | ctlr=ctlr]

For example:

vxdmpadm iostat show groupby=ctlr ctlr=c5

OPERATIONS BLOCKS AVG TIME(ms)

CTLRNAME READS WRITES READS WRITES READS WRITES

c5 224 14 54 7 4.20 11.10

To group by arrayport:

vxdmpadm [-u unit] iostat show groupby=arrayport [all \

| pwwn=array_pwwn | enclosure=enclr portid=array-port-id]

For example:

vxdmpadm -u m iostat show groupby=arrayport \

enclosure=HDS9500-ALUA0 portid=1A

OPERATIONS BYTES AVG TIME(ms)

PORTNAME READS WRITES READS WRITES READS WRITES

1A 743 1538 11m 24m 17.13 8.61

To group by enclosure:

vxdmpadm [-u unit] iostat show groupby=enclosure [all \

| enclosure=enclr]

For example:

vxdmpadm -u h iostat show groupby=enclosure enclosure=EMC_CLARiiON0

OPERATIONS BLOCKS AVG TIME(ms)

ENCLRNAME READS WRITES READS WRITES READS WRITES

EMC_CLARiiON 743 1538 11392k 24176k 17.13 8.61

You can also filter out entities for which all data entries are zero. This option is
especially useful in a cluster environment which contains many failover devices.
You can display only the statistics for the active paths.

To filter all zero entries from the output of the iostat show command:

305Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm [-u unit] -z iostat show [all|ctlr=ctlr_name |

dmpnodename=dmp_device_name | enclosure=enclr_name [portid=portid] |

pathname=path_name|pwwn=port_WWN][interval=seconds [count=N]]

For example:

vxdmpadm -z iostat show dmpnodename=emc_clariion0_893

cpu usage = 9852us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdbc 32 0 258 0 0.04 0.00

sdbw 27 0 216 0 0.03 0.00

sdck 8 0 57 0 0.04 0.00

sdde 11 0 81 0 0.15 0.00

To display average read/write times in microseconds.

vxdmpadm -u us iostat show pathname=sdck

cpu usage = 9865us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME(us)

PATHNAME READS WRITES READS WRITES READS WRITES

sdck 8 0 57 0 43.04 0.00

Displaying statistics for queued or erroneous I/Os
Use the vxdmpadm iostat show command with the -q option to display the I/Os
queued in DMP for a specified DMP node, or for a specified path or controller. For
a DMP node, the -q option displays the I/Os on the specified DMP node that were
sent to underlying layers. If a path or controller is specified, the -q option displays
I/Os that were sent to the given path or controller and not yet returned to DMP.

See the vxdmpadm(1m) manual page for more information about the vxdmpadm

iostat command.

To display queued I/O counts on a DMP node:

vxdmpadm -q iostat show [filter]

[interval=n [count=m]]

For example:

vxdmpadm -q iostat show dmpnodename=emc_clariion0_352

cpu usage = 338us per cpu memory = 102400b

QUEUED I/Os PENDING I/Os

306Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

DMPNODENAME READS WRITES

emc_clariion0_352 0 0 0

To display the count of I/Os that returned with errors on a DMP node, path or
controller:

vxdmpadm -e iostat show [filter]

[interval=n [count=m]]

For example, to show the I/O counts that returned errors on a path:

vxdmpadm -e iostat show pathname=sdo

cpu usage = 637us per cpu memory = 102400b

ERROR I/Os

PATHNAME READS WRITES

sdo 0 0

Examples of using the vxdmpadm iostat command
The following is an example session using the vxdmpadm iostat command. The
first command enables the gathering of I/O statistics:

vxdmpadm iostat start

The next command displays the current statistics including the accumulated total
numbers of read and write operations, and the kilobytes read and written, on all
paths.

vxdmpadm -u k iostat show all

cpu usage = 7952us per cpu memory = 8192b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdf 87 0 44544k 0 0.00 0.00

sdk 0 0 0 0 0.00 0.00

sdg 87 0 44544k 0 0.00 0.00

sdl 0 0 0 0 0.00 0.00

sdh 87 0 44544k 0 0.00 0.00

sdm 0 0 0 0 0.00 0.00

sdi 87 0 44544k 0 0.00 0.00

sdn 0 0 0 0 0.00 0.00

sdj 87 0 44544k 0 0.00 0.00

sdo 0 0 0 0 0.00 0.00

sdj 87 0 44544k 0 0.00 0.00

sdp 0 0 0 0 0.00 0.00

307Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

The following command changes the amount of memory that vxdmpadm can use to
accumulate the statistics:

vxdmpadm iostat start memory=4096

The displayed statistics can be filtered by path name, DMP node name, and
enclosure name (note that the per-CPU memory has changed following the previous
command):

vxdmpadm -u k iostat show pathname=sdk

cpu usage = 8132us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdk 0 0 0 0 0.00 0.00

vxdmpadm -u k iostat show dmpnodename=sdf

cpu usage = 8501us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdf 1088 0 557056k 0 0.00 0.00

vxdmpadm -u k iostat show enclosure=Disk

cpu usage = 8626us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdf 1088 0 557056k 0 0.00 0.00

You can also specify the number of times to display the statistics and the time
interval. Here the incremental statistics for a path are displayed twice with a 2-second
interval:

vxdmpadm iostat show pathname=sdk interval=2 count=2

cpu usage = 9621us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdk 0 0 0 0 0.00 0.00

sdk 0 0 0 0 0.00 0.00

Setting the attributes of the paths to an enclosure
You can use the vxdmpadm setattr command to set the attributes of the paths to
an enclosure or disk array.

308Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

The attributes set for the paths are persistent and are stored in the
/etc/vx/dmppolicy.info file.

You can set the following attributes:

Changes a standby (failover) path to an active path. The following
example specifies an active path for an array:

vxdmpadm setattr path sde pathtype=active

active

Restores the original primary or secondary attributes of a path. This
example restores the path to a JBOD disk:

vxdmpadm setattr path sdm pathtype=nomanual

nomanual

Restores the normal priority of a path. The following example restores
the default priority to a path:

vxdmpadm setattr path sdk \
pathtype=nopreferred

nopreferred

Specifies a path as preferred, and optionally assigns a priority number
to it. If specified, the priority number must be an integer that is greater
than or equal to one. Higher priority numbers indicate that a path is
able to carry a greater I/O load.

See “Specifying the I/O policy” on page 312.

This example first sets the I/O policy to priority for an Active/Active
disk array, and then specifies a preferred path with an assigned priority
of 2:

vxdmpadm setattr enclosure enc0 \
iopolicy=priority

vxdmpadm setattr path sdk pathtype=preferred \
priority=2

preferred
[priority=N]

Defines a path as being the primary path for a JBOD disk array. The
following example specifies a primary path for a JBOD disk array:

vxdmpadm setattr path sdm pathtype=primary

primary

Defines a path as being the secondary path for a JBOD disk array. The
following example specifies a secondary path for a JBOD disk array:

vxdmpadm setattr path sdn pathtype=secondary

secondary

309Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Marks a standby (failover) path that it is not used for normal I/O
scheduling. This path is used if there are no active paths available for
I/O. The next example specifies a standby path for an A/P-C disk array:

vxdmpadm setattr path sde pathtype=standby

standby

Displaying the redundancy level of a device or enclosure
Use the vxdmpadm getdmpnode command to list the devices with less than the
required redundancy level.

To list the devices on a specified enclosure with fewer than a given number of
enabled paths, use the following command:

vxdmpadm getdmpnode enclosure=encl_name redundancy=value

For example, to list the devices with fewer than 3 enabled paths, use the following
command:

vxdmpadm getdmpnode enclosure=EMC_CLARiiON0 redundancy=3

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

===

emc_clariion0_162 ENABLED EMC_CLARiiON 3 2 1 emc_clariion0

emc_clariion0_182 ENABLED EMC_CLARiiON 2 2 0 emc_clariion0

emc_clariion0_184 ENABLED EMC_CLARiiON 3 2 1 emc_clariion0

emc_clariion0_186 ENABLED EMC_CLARiiON 2 2 0 emc_clariion0

To display the minimum redundancy level for a particular device, use the vxdmpadm

getattr command, as follows:

vxdmpadm getattr enclosure|arrayname|arraytype \

component-name redundancy

For example, to show the minimum redundancy level for the enclosure
HDS9500-ALUA0:

vxdmpadm getattr enclosure HDS9500-ALUA0 redundancy

ENCLR_NAME DEFAULT CURRENT

===

HDS9500-ALUA0 0 4

310Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Specifying the minimum number of active paths
You can set the minimum redundancy level for a device or an enclosure. The
minimum redundancy level is the minimum number of paths that should be active
for the device or the enclosure. If the number of paths falls below the minimum
redundancy level for the enclosure, a message is sent to the system console and
also logged to the DMP log file. Also, notification is sent to vxnotify clients.

The value set for minimum redundancy level is stored in the dmppolicy.info file,
and is persistent. If no minimum redundancy level is set, the default value is 0.

You can use the vxdmpadm setattr command to set the minimum redundancy
level.

To specify the minimum number of active paths

◆ Use the vxdmpadm setattr command with the redundancy attribute as follows:

vxdmpadm setattr enclosure|arrayname|arraytype component-name

redundancy=value

where value is the number of active paths.

For example, to set the minimum redundancy level for the enclosure
HDS9500-ALUA0:

vxdmpadm setattr enclosure HDS9500-ALUA0 redundancy=2

Displaying the I/O policy
To display the current and default settings of the I/O policy for an enclosure, array
or array type, use the vxdmpadm getattr command.

The following example displays the default and current setting of iopolicy for
JBOD disks:

vxdmpadm getattr enclosure Disk iopolicy

ENCLR_NAME DEFAULT CURRENT

Disk MinimumQ Balanced

The next example displays the setting of partitionsize for the enclosure enc0,
on which the balanced I/O policy with a partition size of 2MB has been set:

vxdmpadm getattr enclosure enc0 partitionsize

ENCLR_NAME DEFAULT CURRENT

311Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

enc0 512 4096

Specifying the I/O policy
You can use the vxdmpadm setattr command to change the I/O policy for
distributing I/O load across multiple paths to a disk array or enclosure. You can set
policies for an enclosure (for example, HDS01), for all enclosures of a particular type
(such as HDS), or for all enclosures of a particular array type (such as A/A for
Active/Active, or A/P for Active/Passive).

Warning: I/O policies are recorded in the file /etc/vx/dmppolicy.info, and are
persistent across reboots of the system.

Do not edit this file yourself.

The following policies may be set:

This policy attempts to maximize overall I/O throughput
from/to the disks by dynamically scheduling I/O on the paths.
It is suggested for use where I/O loads can vary over time.
For example, I/O from/to a database may exhibit both long
transfers (table scans) and short transfers (random look ups).
The policy is also useful for a SAN environment where
different paths may have different number of hops. No further
configuration is possible as this policy is automatically
managed by DMP.

In this example, the adaptive I/O policy is set for the enclosure
enc1:

vxdmpadm setattr enclosure enc1 \
iopolicy=adaptive

adaptive

Similar to the adaptive policy, except that I/O is scheduled
according to the length of the I/O queue on each path. The
path with the shortest queue is assigned the highest priority.

adaptiveminq

312Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

This policy is designed to optimize the use of caching in disk
drives and RAID controllers. The size of the cache typically
ranges from 120KB to 500KB or more, depending on the
characteristics of the particular hardware. During normal
operation, the disks (or LUNs) are logically divided into a
number of regions (or partitions), and I/O from/to a given
region is sent on only one of the active paths. Should that
path fail, the workload is automatically redistributed across
the remaining paths.

You can use the size argument to the partitionsize attribute
to specify the partition size. The partition size in blocks is
adjustable in powers of 2 from 2 up to 231. A value that is
not a power of 2 is silently rounded down to the nearest
acceptable value.

Specifying a partition size of 0 is equivalent to specifying the
default partition size.

The default value for the partition size is 512 blocks (256k).
Specifying a partition size of 0 is equivalent to the default
partition size of 512 blocks (256k).

The default value can be changed by adjusting the value of
the dmp_pathswitch_blks_shift tunable parameter.

See “DMP tunable parameters” on page 985.

Note: The benefit of this policy is lost if the value is set larger
than the cache size.

For example, the suggested partition size for an Hitachi HDS
9960 A/A array is from 32,768 to 131,072 blocks (16MB to
64MB) for an I/O activity pattern that consists mostly of
sequential reads or writes.

The next example sets the balanced I/O policy with a partition
size of 4096 blocks (2MB) on the enclosure enc0:

vxdmpadm setattr enclosure enc0 \
iopolicy=balanced partitionsize=4096

balanced
[partitionsize=size]

313Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

This policy sends I/O on paths that have the minimum number
of outstanding I/O requests in the queue for a LUN. No further
configuration is possible as DMP automatically determines
the path with the shortest queue.

The following example sets the I/O policy to minimumq for
a JBOD:

vxdmpadm setattr enclosure Disk \
iopolicy=minimumq

This is the default I/O policy for all arrays.

minimumq

This policy is useful when the paths in a SAN have unequal
performance, and you want to enforce load balancing
manually. You can assign priorities to each path based on
your knowledge of the configuration and performance
characteristics of the available paths, and of other aspects
of your system.

See “Setting the attributes of the paths to an enclosure”
on page 308.

In this example, the I/O policy is set to priority for all
SENA arrays:

vxdmpadm setattr arrayname SENA \
iopolicy=priority

priority

This policy shares I/O equally between the paths in a
round-robin sequence. For example, if there are three paths,
the first I/O request would use one path, the second would
use a different path, the third would be sent down the
remaining path, the fourth would go down the first path, and
so on. No further configuration is possible as this policy is
automatically managed by DMP.

The next example sets the I/O policy to round-robin for
all Active/Active arrays:

vxdmpadm setattr arraytype A/A \
iopolicy=round-robin

round-robin

314Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

This policy routes I/O down the single active path. This policy
can be configured for A/P arrays with one active path per
controller, where the other paths are used in case of failover.
If configured for A/A arrays, there is no load balancing across
the paths, and the alternate paths are only used to provide
high availability (HA). If the current active path fails, I/O is
switched to an alternate active path. No further configuration
is possible as the single active path is selected by DMP.

The following example sets the I/O policy to singleactive
for JBOD disks:

vxdmpadm setattr arrayname Disk \
iopolicy=singleactive

singleactive

Scheduling I/O on the paths of an Asymmetric
Active/Active or an ALUA array
You can specify the use_all_paths attribute in conjunction with the adaptive,
balanced, minimumq, priority and round-robin I/O policies to specify whether
I/O requests are to be scheduled on the secondary paths in addition to the primary
paths of an Asymmetric Active/Active (A/A-A) array or an ALUA array. Depending
on the characteristics of the array, the consequent improved load balancing can
increase the total I/O throughput. However, this feature should only be enabled if
recommended by the array vendor. It has no effect for array types other than A/A-A
or ALUA.

For example, the following command sets the balanced I/O policy with a partition
size of 4096 blocks (2MB) on the enclosure enc0, and allows scheduling of I/O
requests on the secondary paths:

vxdmpadm setattr enclosure enc0 iopolicy=balanced \

partitionsize=4096 use_all_paths=yes

The default setting for this attribute is use_all_paths=no.

You can display the current setting for use_all_paths for an enclosure, arrayname
or arraytype. To do this, specify the use_all_paths option to the vxdmpadm

gettattr command.

vxdmpadm getattr enclosure HDS9500-ALUA0 use_all_paths

ENCLR_NAME ATTR_NAME DEFAULT CURRENT

===

HDS9500-ALUA0 use_all_paths no yes

315Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

The use_all_paths attribute only applies to A/A-A arrays and ALUA arrays. For
other arrays, the above command displays the message:

Attribute is not applicable for this array.

Example of applying load balancing in a SAN
This example describes how to configure load balancing in a SAN environment
where there are multiple primary paths to an Active/Passive device through several
SAN switches.

As shown in this sample output from the vxdisk list command, the device sdm

has eight primary paths:

vxdisk list sdq

Device: sdq

.

.

.

numpaths: 8

sdj state=enabled type=primary

sdk state=enabled type=primary

sdl state=enabled type=primary

sdm state=enabled type=primary

sdn state=enabled type=primary

sdo state=enabled type=primary

sdp state=enabled type=primary

sdq state=enabled type=primary

In addition, the device is in the enclosure ENC0, belongs to the disk group mydg, and
contains a simple concatenated volume myvol1.

The first step is to enable the gathering of DMP statistics:

vxdmpadm iostat start

Next, use the dd command to apply an input workload from the volume:

dd if=/dev/vx/rdsk/mydg/myvol1 of=/dev/null &

By running the vxdmpadm iostat command to display the DMP statistics for the
device, it can be seen that all I/O is being directed to one path, sdq:

vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

.

.

316Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

.

cpu usage = 11294us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdj 0 0 0 0 0.00 0.00

sdk 0 0 0 0 0.00 0.00

sdl 0 0 0 0 0.00 0.00

sdm 0 0 0 0 0.00 0.00

sdn 0 0 0 0 0.00 0.00

sdo 0 0 0 0 0.00 0.00

sdp 0 0 0 0 0.00 0.00

sdq 10986 0 5493 0 0.41 0.00

The vxdmpadm command is used to display the I/O policy for the enclosure that
contains the device:

vxdmpadm getattr enclosure ENC0 iopolicy

ENCLR_NAME DEFAULT CURRENT

==

ENC0 MinimumQ Single-Active

This shows that the policy for the enclosure is set to singleactive, which explains
why all the I/O is taking place on one path.

To balance the I/O load across the multiple primary paths, the policy is set to
round-robin as shown here:

vxdmpadm setattr enclosure ENC0 iopolicy=round-robin

vxdmpadm getattr enclosure ENC0 iopolicy

ENCLR_NAME DEFAULT CURRENT

==

ENC0 MinimumQ Round-Robin

The DMP statistics are now reset:

vxdmpadm iostat reset

With the workload still running, the effect of changing the I/O policy to balance the
load across the primary paths can now be seen.

vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

.

.

.

317Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

cpu usage = 14403us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME(ms)

PATHNAME READS WRITES READS WRITES READS WRITES

sdj 2041 0 1021 0 0.39 0.00

sdk 1894 0 947 0 0.39 0.00

sdl 2008 0 1004 0 0.39 0.00

sdm 2054 0 1027 0 0.40 0.00

sdn 2171 0 1086 0 0.39 0.00

sdo 2095 0 1048 0 0.39 0.00

sdp 2073 0 1036 0 0.39 0.00

sdq 2042 0 1021 0 0.39 0.00

The enclosure can be returned to the single active I/O policy by entering the following
command:

vxdmpadm setattr enclosure ENC0 iopolicy=singleactive

Disabling I/O for paths, controllers, array ports, or DMP nodes
Disabling I/O through a path, HBA controller, array port, or DMP node prevents
DMP from issuing I/O requests through the specified path, or the paths that are
connected to the specified controller, array port, or DMP node. The command blocks
until all pending I/O requests issued through the paths are completed.

Note: From release 5.0 of VxVM, this operation is supported for controllers that are
used to access disk arrays on which cluster-shareable disk groups are configured.

DMP does not support the operation to disable I/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To disable I/O for one or more paths, use the following command:

vxdmpadm [-c|-f] disable path=path_name1[,path_name2,path_nameN]

To disable I/O for the paths connected to one or more HBA controllers, use the
following command:

vxdmpadm [-c|-f] disable ctlr=ctlr_name1[,ctlr_name2,ctlr_nameN]

To disable I/O for the paths connected to an array port, use one of the following
commands:

vxdmpadm [-c|-f] disable enclosure=enclr_name portid=array_port_ID

vxdmpadm [-c|-f] disable pwwn=array_port_WWN

318Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following examples show how to disable I/O on an array port:

vxdmpadm disable enclosure=HDS9500V0 portid=1A

vxdmpadm disable pwwn=20:00:00:E0:8B:06:5F:19

To disable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

vxdmpadm [-c|-f] disable ctlr=ctlr_name enclosure=enclr_name \

portid=array_port_ID

To disable I/O for a particular DMP node, specify the DMP node name.

vxdmpadm [-c|-f] disable dmpnodename=dmpnode

You can use the -c option to check if there is only a single active path to the disk.
If so, the disable command fails with an error message unless you use the -f

option to forcibly disable the path.

The disable operation fails if it is issued to a controller that is connected to the
root disk through a single path, and there are no root disk mirrors configured on
alternate paths. If such mirrors exist, the command succeeds.

Enabling I/O for paths, controllers, array ports, or DMP nodes
Enabling a controller allows a previously disabled path, HBA controller, array port,
or DMP node to accept I/O again. This operation succeeds only if the path, controller,
array port, or DMP node is accessible to the host, and I/O can be performed on it.
When connecting Active/Passive disk arrays, the enable operation results in failback
of I/O to the primary path. The enable operation can also be used to allow I/O to
the controllers on a system board that was previously detached.

Note: This operation is supported for controllers that are used to access disk arrays
on which cluster-shareable disk groups are configured.

DMP does not support the operation to enable I/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To enable I/O for one or more paths, use the following command:

vxdmpadm enable path=path_name1[,path_name2,path_nameN]

319Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

To enable I/O for the paths connected to one or more HBA controllers, use the
following command:

vxdmpadm enable ctlr=ctlr_name1[,ctlr_name2,ctlr_nameN]

To enable I/O for the paths connected to an array port, use one of the following
commands:

vxdmpadm enable enclosure=enclr_name portid=array_port_ID

vxdmpadm enable pwwn=array_port_WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following are examples of using the command to enable I/O on an array port:

vxdmpadm enable enclosure=HDS9500V0 portid=1A

vxdmpadm enable pwwn=20:00:00:E0:8B:06:5F:19

To enable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

vxdmpadm enable ctlr=ctlr_name enclosure=enclr_name \

portid=array_port_ID

To enable I/O for a particular DMP node, specify the DMP node name.

vxdmpadm enable dmpnodename=dmpnode

Renaming an enclosure
The vxdmpadm setattr command can be used to assign a meaningful name to an
existing enclosure, for example:

vxdmpadm setattr enclosure enc0 name=GRP1

This example changes the name of an enclosure from enc0 to GRP1.

Note: The maximum length of the enclosure name prefix is 23 characters.

The following command shows the changed name:

vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS

==

other0 OTHER OTHER_DISKS CONNECTED

320Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

jbod0 X1 X1_DISKS CONNECTED

GRP1 ACME 60020f20000001a90000 CONNECTED

Configuring the response to I/O failures
You can configure how DMP responds to failed I/O requests on the paths to a
specified enclosure, disk array name, or type of array. By default, DMP is configured
to retry a failed I/O request up to five times for a single path.

To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name or array type, use the vxdmpadm getattr

command.

See “Displaying recovery option values” on page 324.

To set a limit for the number of times that DMP attempts to retry sending an I/O
request on a path, use the following command:

vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=fixedretry retrycount=n

The value of the argument to retrycount specifies the number of retries to be
attempted before DMP reschedules the I/O request on another available path, or
fails the request altogether.

As an alternative to specifying a fixed number of retries, you can specify the amount
of time DMP allows for handling an I/O request. If the I/O request does not succeed
within that time, DMP fails the I/O request. To specify an iotimeout value, use the
following command:

vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=timebound iotimeout=seconds

The default value of iotimeout is 300 seconds. For some applications such as
Oracle, it may be desirable to set iotimeout to a larger value. The iotimeout value
for DMP should be greater than the I/O service time of the underlying operating
system layers.

Note: The fixedretry and timebound settings are mutually exclusive.

The following example configures time-bound recovery for the enclosure enc0, and
sets the value of iotimeout to 360 seconds:

321Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm setattr enclosure enc0 recoveryoption=timebound \

iotimeout=360

The next example sets a fixed-retry limit of 10 for the paths to all Active/Active
arrays:

vxdmpadm setattr arraytype A/A recoveryoption=fixedretry \

retrycount=10

Specifying recoveryoption=default resets DMP to the default settings
corresponding to recoveryoption=fixedretry retrycount=5, for example:

vxdmpadm setattr arraytype A/A recoveryoption=default

The above command also has the effect of configuring I/O throttling with the default
settings.

See “Configuring the I/O throttling mechanism” on page 322.

Note: The response to I/O failure settings is persistent across reboots of the system.

Configuring the I/O throttling mechanism
By default, DMP is configured with I/O throttling turned off for all paths. To display
the current settings for I/O throttling that are applied to the paths to an enclosure,
array name or array type, use the vxdmpadm getattr command.

See “Displaying recovery option values” on page 324.

If enabled, I/O throttling imposes a small overhead on CPU and memory usage
because of the activity of the statistics-gathering daemon. If I/O throttling is disabled,
the daemon no longer collects statistics, and remains inactive until I/O throttling is
re-enabled.

To turn off I/O throttling, use the following form of the vxdmpadm setattr command:

vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=nothrottle

The following example shows how to disable I/O throttling for the paths to the
enclosure enc0:

vxdmpadm setattr enclosure enc0 recoveryoption=nothrottle

The vxdmpadm setattr command can be used to enable I/O throttling on the paths
to a specified enclosure, disk array name, or type of array:

322Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type}\

recoveryoption=throttle [iotimeout=seconds]

If the iotimeout attribute is specified, its argument specifies the time in seconds
that DMP waits for an outstanding I/O request to succeed before invoking I/O
throttling on the path. The default value of iotimeout is 10 seconds. Setting
iotimeout to a larger value potentially causes more I/O requests to become queued
up in the SCSI driver before I/O throttling is invoked.

The following example sets the value of iotimeout to 60 seconds for the enclosure
enc0:

vxdmpadm setattr enclosure enc0 recoveryoption=throttle \

iotimeout=60

Specify recoveryoption=default to reset I/O throttling to the default settings, as
follows:

vxdmpadm setattr arraytype A/A recoveryoption=default

The above command configures the default behavior, corresponding to
recoveryoption=nothrottle. The above command also configures the default
behavior for the response to I/O failures.

See “Configuring the response to I/O failures” on page 321.

Note: The I/O throttling settings are persistent across reboots of the system.

Configuring Low Impact Path Probing
The Low Impact Path Probing (LIPP) feature can be turned on or off using the
vxdmpadm settune command:

vxdmpadm settune dmp_low_impact_probe=[on|off]

Path probing will be optimized by probing a subset of paths connected to the same
HBA and array port. The size of the subset of paths can be controlled by the
dmp_probe_threshold tunable. The default value is set to 5.

vxdmpadm settune dmp_probe_threshold=N

323Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Configuring Subpaths Failover Groups (SFG)
The Subpaths Failover Groups (SFG) feature can be turned on or off using the
tunable dmp_sfg_threshold.

To turn off the feature, set the tunable dmp_sfg_threshold value to 0:

vxdmpadm settune dmp_sfg_threshold=0

To turn on the feature, set the dmp_sfg_threshold value to the required number
of path failures which triggers SFG. The default is 1.

vxdmpadm settune dmp_sfg_threshold=N

The default value of the tunable is “1” which represents that the feature is on.

To see the Subpaths Failover Groups ID, use the following command:

vxdmpadm getportids {ctlr=ctlr_name | dmpnodename=dmp_device_name \

| enclosure=enclr_name | path=path_name}

Displaying recovery option values
To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name or array type, use the following command:

vxdmpadm getattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption

The following example shows the vxdmpadm getattr command being used to
display the recoveryoption option values that are set on an enclosure.

vxdmpadm getattr enclosure HDS9500-ALUA0 recoveryoption

ENCLR-NAME RECOVERY-OPTION DEFAULT[VAL] CURRENT[VAL]

===

HDS9500-ALUA0 Throttle Nothrottle[0] Timebound[60]

HDS9500-ALUA0 Error-Retry Fixed-Retry[5] Timebound[20]

This shows the default and current policy options and their values.

Table 11-3 summarizes the possible recovery option settings for retrying I/O after
an error.

324Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Table 11-3 Recovery options for retrying I/O after an error

DescriptionPossible settingsRecovery option

DMP retries a failed I/O
request for the specified
number of times if I/O fails.

Fixed-Retry (retrycount)recoveryoption=fixedretry

DMP retries a failed I/O
request for the specified time
in seconds if I/O fails.

Timebound (iotimeout)recoveryoption=timebound

Table 11-4 summarizes the possible recovery option settings for throttling I/O.

Table 11-4 Recovery options for I/O throttling

DescriptionPossible settingsRecovery option

I/O throttling is not used.Nonerecoveryoption=nothrottle

DMP throttles the path if an
I/O request does not return
within the specified time in
seconds.

Timebound (iotimeout)recoveryoption=throttle

Configuring DMP path restoration policies
DMP maintains a kernel thread that re-examines the condition of paths at a specified
interval. The type of analysis that is performed on the paths depends on the checking
policy that is configured.

Note: The DMP path restoration thread does not change the disabled state of the
path through a controller that you have disabled using vxdmpadm disable.

When configuring DMP path restoration policies, you must stop the path restoration
thread, and then restart it with new attributes.

See “Stopping the DMP path restoration thread” on page 327.

Use the vxdmpadm settune dmp_restore_policy command to configure one of
the following restore policies. The policy will remain in effect until the restore thread
is stopped or the values are changed using vxdmpadm settune command.

■ check_all

The path restoration thread analyzes all paths in the system and revives the
paths that are back online, as well as disabling the paths that are inaccessible.
The command to configure this policy is:

325Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

vxdmpadm settune dmp_restore_policy=check_all

■ check_alternate

The path restoration thread checks that at least one alternate path is healthy.
It generates a notification if this condition is not met. This policy avoids inquiry
commands on all healthy paths, and is less costly than check_all in cases
where a large number of paths are available. This policy is the same as
check_all if there are only two paths per DMP node. The command to configure
this policy is:

vxdmpadm settune dmp_restore_policy=check_alternate

■ check_disabled

This is the default path restoration policy. The path restoration thread checks
the condition of paths that were previously disabled due to hardware failures,
and revives them if they are back online. The command to configure this policy
is:

vxdmpadm settune dmp_restore_policy=check_disabled

■ check_periodic

The path restoration thread performs check_all once in a given number of
cycles, and check_disabled in the remainder of the cycles. This policy may
lead to periodic slowing down (due to check_all) if a large number of paths are
available. The command to configure this policy is:

vxdmpadm settune dmp_restore_policy=check_periodic

The default number of cycles between running the check_all policy is 10.

The dmp_restore_interval tunable parameter specifies how often the path
restoration thread examines the paths. For example, the following command sets
the polling interval to 400 seconds:

vxdmpadm settune dmp_restore_interval=400

The settings are immediately applied and are persistent across reboots. Use the
vxdmpadm gettune to view the current settings.

See “DMP tunable parameters” on page 985.

If the vxdmpadm start restore command is given without specifying a policy or
interval, the path restoration thread is started with the persistent policy and interval
settings previously set by the administrator with the vxdmpadm settune command.
If the administrator has not set a policy or interval, the system defaults are used.

326Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

The system default restore policy is check_disabled. The system default interval
is 300 seconds.

Warning: Decreasing the interval below the system default can adversely affect
system performance.

Stopping the DMP path restoration thread
Use the following command to stop the DMP path restoration thread:

vxdmpadm stop restore

Warning: Automatic path failback stops if the path restoration thread is stopped.

Displaying the status of the DMP path restoration thread
Use the vxdmpadm gettune command to display the tunable parameter values that
show the status of the DMP path restoration thread. These tunables include:

the status of the automatic path restoration kernel thread.dmp_restore_state

the polling interval for the DMP path restoration thread.dmp_restore_interval

the policy that DMP uses to check the condition of paths.dmp_restore_policy

To display the status of the DMP path restoration thread

◆ Use the following commands:

vxdmpadm gettune dmp_restore_state

vxdmpadm gettune dmp_restore_interval

vxdmpadm gettune dmp_restore_policy

Configuring array policy modules
An array policy module (APM) is a dynamically loadable kernel module (plug-in for
DMP) for use in conjunction with an array. An APM defines array-specific procedures
and commands to:

■ Select an I/O path when multiple paths to a disk within the array are available.

■ Select the path failover mechanism.

327Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

■ Select the alternate path in the case of a path failure.

■ Put a path change into effect.

■ Respond to SCSI reservation or release requests.

DMP supplies default procedures for these functions when an array is registered.
An APM may modify some or all of the existing procedures that are provided by
DMP or by another version of the APM.

You can use the following command to display all the APMs that are configured for
a system:

vxdmpadm listapm all

The output from this command includes the file name of each module, the supported
array type, the APM name, the APM version, and whether the module is currently
loaded and in use. To see detailed information for an individual module, specify the
module name as the argument to the command:

vxdmpadm listapm module_name

To add and configure an APM, use the following command:

vxdmpadm -a cfgapm module_name [attr1=value1 \

[attr2=value2 ...]]

The optional configuration attributes and their values are specific to the APM for
an array. Consult the documentation that is provided by the array vendor for details.

Note: By default, DMP uses the most recent APM that is available. Specify the -u

option instead of the -a option if you want to force DMP to use an earlier version
of the APM. The current version of an APM is replaced only if it is not in use.

Specifying the -r option allows you to remove an APM that is not currently loaded:

vxdmpadm -r cfgapm module_name

See the vxdmpadm(1M) manual page.

328Administering Dynamic Multi-Pathing
Administering DMP using vxdmpadm

Dynamic Reconfiguration
of devices

This chapter includes the following topics:

■ About online Dynamic Reconfiguration

■ Reconfiguring a LUN online that is under DMP control

■ Replacing a host bus adapter online

■ Upgrading the array controller firmware online

About online Dynamic Reconfiguration
System administrators and storage administrators may need to modify the set of
LUNs provisioned to a server. You can change the LUN configuration dynamically,
without performing a reconfiguration reboot on the host.

You can perform the following kinds of online dynamic reconfigurations:

■ Reconfiguring a LUN online that is under DMP control
See “Reconfiguring a LUN online that is under DMP control” on page 330.

■ Replacing a host bus adapter (HBA) online
See “Replacing a host bus adapter online” on page 337.

■ Updating the array controller firmware, also known as a nondisruptive upgrade
See “Upgrading the array controller firmware online” on page 338.

12Chapter

Reconfiguring a LUN online that is under DMP
control

System administrators and storage administrators may need to modify the set of
LUNs provisioned to a server. You can change the LUN configuration dynamically,
without performing a reconfiguration reboot on the host.

The operations are as follows:

■ Dynamic LUN removal from an existing target ID
See “Removing LUNs dynamically from an existing target ID” on page 330.

■ Dynamic new LUN addition to a new target ID
See “Adding new LUNs dynamically to a new target ID” on page 332.

■ Replacing a LUN on an existing target ID
See “Replacing LUNs dynamically from an existing target ID” on page 333.

■ Dynamic LUN expansion
See “Dynamic LUN expansion” on page 334.

■ Changing the LUN characteristics
See “Changing the characteristics of a LUN from the array side” on page 336.

Removing LUNs dynamically from an existing target ID
Veritas Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to
simplify the removal of LUNs from an existing target ID. Each LUN is unmapped
from the host. DMP issues an operating system device scan and cleans up the
operating system device tree.

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

To remove LUNs dynamically from an existing target ID

1 Remove the device from use by any volume manager.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

■ If the device is part of a disk group, move the disk out of the disk group.

vxdg -g dgname rmdisk daname

See “Removing a disk from a disk group” on page 889.

■ Remove the disk from the vxdisk list.

330Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

In a cluster, perform this step from all of the nodes.

vxdisk rm da-name

For example:

vxdisk rm eva4k6k0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

2 Start the vxdiskadm utility:

vxdiskadm

3 Select the Dynamic Reconfiguration operations option from the vxdiskadm

menu.

4 Select the Remove LUNs option.

5 Type list or pressReturn to display a list of LUNs that are available for removal.
A LUN is available for removal if it is not in a disk group and the state is online,
nolabel, online invalid, or online thinrclm.

The following shows an example output:

Select disk devices to remove: [<pattern-list>,all,list]: list

LUN(s) available for removeal:

eva4k6k0_0

eva4k6k0_1

eva4k6k0_2

eva4k6k0_3

eva4k6k0_4

emc0_017e

6 Enter the name of a LUN, a comma-separated list of LUNs, or a regular
expression to specify the LUNs to remove.

For example, enter emc0_017e.

7 At the prompt, confirm the LUN selection.

DMP removes the LUN from VxVM usage.

331Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

8 At the following prompt, remove the LUN from the array.

Enclosure=emc0 AVID=017E

Device=emc0_017e Serial=830017E000

--

PATH=sda ctlr=c15 port=7e-a [50:01:43:80:12:08:3c:26]

PATH=sdc ctlr=c17 port=7e-a [50:01:43:80:12:08:3a:76]

--

Please remove LUNs with Above details from array and

press 'y' to continue removal (default:y):

9 Return to the Dynamic Reconfiguration tool and select y to continue the removal
process.

DMP completes the removal of the device from VxVM usage. Output similar
to the following displays:

Luns Removed

emc0_017e

DMP updates the operating system device tree and the VxVM device tree.

10 Select exit to exit the Dynamic Reconfiguration tool.

Adding new LUNs dynamically to a new target ID
The Dynamic Reconfiguration tool simplifies the addition of new LUNs to an existing
target ID. One or more new LUNs are mapped to the host by way of multiple HBA
ports. An operating system device scan is issued for the LUNs to be recognized
and added to DMP control.

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

To add new LUNs dynamically to a new target ID

1 Start the vxdiskadm utility:

vxdiskadm

2 Select the Dynamic Reconfiguration operations option from the vxdiskadm

menu.

332Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

3 Select the Add LUNs option.

The tool issues a device discovery.

4 When the prompt displays, add the LUNs from the array.

5 Select y to continue to add the LUNs to DMP.

The operation issues a device scan. The newly-discovered devices are now
visible.

Luns Added

Enclosure=emc0 AVID=017E

Device=emc0_017e Serial=830017E000

PATH=c15t0d6 ctlr=c15 port=7e-a [50:01:43:80:12:08:3c:26]

PATH=c17t0d6 ctlr=c17 port=7e-a [50:01:43:80:12:08:3a:76]

6 Select exit to exit the Dynamic Reconfiguration tool.

Replacing LUNs dynamically from an existing target ID
The Veritas Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool
to simplify the replacement of new LUNs from an existing target ID. Each LUN is
unmapped from the host. DMP issues an operating system device scan and cleans
up the operating system device tree.

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

To replace LUNs dynamically from an existing target ID

1 Remove the device from use by any volume manager.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

■ If the device is part of a disk group, move the disk out of the disk group.

vxdg -g dgname rmdisk daname

See “Removing a disk from a disk group” on page 889.

■ Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.

vxdisk rm da-name

333Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

For example:

vxdisk rm eva4k6k0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

2 Start the vxdiskadm utility:

vxdiskadm

3 Select the Dynamic Reconfiguration operations option from the vxdiskadm

menu.

4 Select the Replace LUNs option.

The output displays a list of LUNs that are available for replacement. A LUN
is available for replacement if it is not in a disk group.and the state is online,
nolabel, online invalid, or online thinrclm.

5 Select one or more LUNs to replace.

6 At the prompt, confirm the LUN selection.

7 Remove the LUN from the array.

8 Return to the Dynamic Reconfiguration tool and select y to continue the removal.

After the removal completes successfully, the Dynamic Reconfiguration tool
prompts you to add a LUN.

9 When the prompt displays, add the LUNs from the array.

10 Select y to continue to add the LUNs to DMP.

The operation issues a device scan. The newly-discovered devices are now
visible.

DMP updates the operating system device tree.

Dynamic LUN expansion
Many modern disk arrays allow existing LUNs to be resized. The Veritas Volume
Manager (VxVM) supports dynamic LUN expansion, by providing a facility to update
disk headers and other VxVM structures to match a new LUN size. The device must
have a SCSI interface that is presented by a smart switch, smart array or RAID
controller.

334Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

Resizing should only be performed on LUNs that preserve data. Consult the array
documentation to verify that data preservation is supported and has been qualified.
The operation also requires that only storage at the end of the LUN is affected.
Data at the beginning of the LUN must not be altered. No attempt is made to verify
the validity of pre-existing data on the LUN. The operation should be performed on
the host where the disk group is imported (or on the master node for a cluster-shared
disk group).

VxVM does not support resizing of LUNs that are not part of a disk group. It is not
possible to resize LUNs that are in the boot disk group (aliased as bootdg), in a
deported disk group, or that are offline, uninitialized, being reinitialized, or in an
error state.

For disks with the VxVM cdsdisk layout, disks larger than 1 TB in size have a
different internal layout than disks smaller than 1 TB. Therefore, resizing a cdsdisk

disk from less than 1 TB to greater than 1 TB requires special care. If the disk has
the VxVM disk group has only one disk, which has the cdsdisk layout, you must
add a second disk (of any size) to the disk group prior to performing the vxdisk

resize command on the original disk. You can remove the second disk from the
disk group after the resize operation has completed.

Use the following form of the vxdisk command to make VxVM aware of the new
size of a LUN that has been resized:

vxdisk [-f] [-g diskgroup] resize {accessname|medianame} \

[length=value]

If a disk media name rather than a disk access name is specified, a disk group
name is required. Specify a disk group with the -g option or configure a default disk
group. If the default disk group is not configured, the above command generates
an error message.

Following a resize operation to increase the length that is defined for a device,
additional disk space on the device is available for allocation. You can optionally
specify the new size by using the length attribute.

Any volumes on the device should only be grown after the LUN itself has first been
grown.

Warning: Do not perform this operation when replacing a physical disk with a disk
of a different size as data is not preserved.

Before shrinking a LUN, first shrink any volumes on the LUN or move those volumes
off of the LUN. Then, resize the device using vxdisk resize. Finally, resize the
LUN itself using the storage array's management utilities. By default, the resize

335Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

fails if any subdisks would be disabled as a result of their being removed in whole
or in part during a shrink operation.

If the device that is being resized has the only valid configuration copy for a disk
group, the -f option may be specified to forcibly resize the device. Note the following
exception. For disks with the VxVM cdsdisk layout, disks larger than 1 TB in size
have a different internal layout than disks smaller than 1 TB. Therefore, resizing a
cdsdisk disk from less than 1 TB to greater than 1 TB requires special care if the
disk group only has one disk. In this case, you must add a second disk (of any size)
to the disk group prior to performing the vxdisk resize command on the original
disk. You can remove the second disk from the disk group after the resize operation
has completed.

Caution: Resizing a device that contains the only valid configuration copy for a
disk group can result in data loss if a system crash occurs during the resize.

Resizing a virtual disk device is a non-transactional operation outside the control
of VxVM. This means that the resize command may have to be re-issued following
a system crash. In addition, a system crash may leave the private region on the
device in an unusable state. If this occurs, the disk must be reinitialized, reattached
to the disk group, and its data resynchronized or recovered from a backup.

Changing the characteristics of a LUN from the array side
Some arrays provide a way to change the properties of LUNs. For example, the
EMC Symmetrix array allows write-protected (Read-only), and read-write enabled
LUNs. Before changing the properties of a LUN, you must remove the device from
Veritas Volume Manager (VxVM) control.

To change the properties of a LUN

1 Remove the device from use by any volume manager.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

■ If the device is part of a disk group, move the disk out of the disk group.

vxdg -g dgname rmdisk daname

See “Removing a disk from a disk group” on page 889.

■ Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.

vxdisk rm da-name

336Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control

For example:

vxdisk rm eva4k6k0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

vgreduce vgname devicepath

2 Change the device characteristics.

3 Use SFCFSHA to perform a device scan. In a cluster, perform this command
on all the nodes.

vxdisk scandisks

4 Add the device back to the disk group.

vxdg -g dgname adddisk daname

Replacing a host bus adapter online
Veritas Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to
simplify the removal of host bus adapters from an existing system.

To replace a host bus adapter online

1 Start the vxdiskadm utility:

vxdiskadm

2 Select the Dynamic Reconfiguration operations option from the vxdiskadm

menu.

3 Select the Replace HBAs option.

The output displays a list of HBAs that are available to DMP.

4 Select one or more HBAs to replace.

5 At the prompt, confirm the HBA selection.

6 Replace the host bus adapter.

7 Return to the Dynamic Reconfiguration tool and select y to continue the
replacement process.

DMP updates the operating system device tree.

337Dynamic Reconfiguration of devices
Replacing a host bus adapter online

Upgrading the array controller firmware online
Storage array subsystems need code upgrades as fixes, patches, or feature
upgrades. You can perform these upgrades online when the file system is mounted
and I/Os are being served to the storage.

Legacy storage subsystems contain two controllers for redundancy. An online
upgrade is done one controller at a time. DMP fails over all I/O to the second
controller while the first controller is undergoing an Online Controller Upgrade. After
the first controller has completely staged the code, it reboots, resets, and comes
online with the new version of the code. The second controller goes through the
same process, and I/O fails over to the first controller.

Note: Throughout this process, application I/O is not affected.

Array vendors have different names for this process. For example, EMC calls it a
nondisruptive upgrade (NDU) for CLARiiON arrays.

A/A type arrays require no special handling during this online upgrade process. For
A/P, A/PF, and ALUA type arrays, DMP performs array-specific handling through
vendor-specific array policy modules (APMs) during an online controller code
upgrade.

When a controller resets and reboots during a code upgrade, DMP detects this
state through the SCSI Status. DMP immediately fails over all I/O to the next
controller.

If the array does not fully support NDU, all paths to the controllers may be
unavailable for I/O for a short period of time. Before beginning the upgrade, set the
dmp_lun_retry_timeout tunable to a period greater than the time that you expect
the controllers to be unavailable for I/O. DMP does not fail the I/Os until the end of
the dmp_lun_retry_timeout period, or until the I/O succeeds, whichever happens
first. Therefore, you can perform the firmware upgrade without interrupting the
application I/Os.

For example, if you expect the paths to be unavailable for I/O for 300 seconds, use
the following command:

vxdmpadm settune dmp_lun_retry_timeout=300

DMP does not fail the I/Os for 300 seconds, or until the I/O succeeds.

To verify which arrays support Online Controller Upgrade or NDU, see the hardware
compatibility list (HCL) at the following URL:

http://www.symantec.com/docs/TECH170013

338Dynamic Reconfiguration of devices
Upgrading the array controller firmware online

http://www.symantec.com/docs/TECH170013

Managing devices
This chapter includes the following topics:

■ Displaying disk information

■ Changing the disk device naming scheme

■ About disk installation and formatting

■ Adding and removing disks

■ Renaming a disk

Displaying disk information
Before you use a disk, you need to know if it has been initialized and placed under
VxVM control. You also need to know if the disk is part of a disk group, because
you cannot create volumes on a disk that is not part of a disk group. The vxdisk

list command displays device names for all recognized disks, the disk names,
the disk group names associated with each disk, and the status of each disk.

13Chapter

To display information on all disks that are known to VxVM

◆ Use the following command:

vxdisk list

VxVM displays output similar to the following:

DEVICE TYPE DISK GROUP STATUS

sdb auto:sliced mydg04 mydg online

sdc auto:sliced mydg03 mydg online

sdd auto:sliced - - online invalid

sde auto:sliced - - online thinrclm

The phrase online invalid in the STATUS line indicates that a disk has not
yet been added to VxVM control. These disks may or may not have been
initialized by VxVM previously. Disks that are listed as online are already
under VxVM control.

To display information about an individual disk

◆ Use the following command:

vxdisk [-v] list diskname

The -v option causes the command to additionally list all tags and tag values
that are defined for the disk. By default, tags are not displayed.

Displaying disk information with vxdiskadm
Disk information shows you which disks are initialized, to which disk groups they
belong, and the disk status. The list option displays device names for all recognized
disks, the disk names, the disk group names associated with each disk, and the
status of each disk.

To display disk information

1 Start the vxdiskadm program, and select list (List disk information)

from the main menu.

2 At the following prompt, enter the name of the device you want to see, or enter
all for a list of all devices:

List disk information

Menu: VolumeManager/Disk/ListDisk

VxVM INFO V-5-2-475 Use this menu operation to display a list of

disks. You can also choose to list detailed information about

340Managing devices
Displaying disk information

the disk at a specific disk device address.

Enter disk device or "all" [<address>,all,q,?] (default: all)

■ If you enter all, VxVM displays the device name, disk name, group, and
status of all the devices.

■ If you enter the name of a device, VxVM displays complete disk information
(including the device name, the type of disk, and information about the
public and private areas of the disk) of that device.

Once you have examined this information, press Return to return to the main
menu.

Changing the disk device naming scheme
You can either use enclosure-based naming for disks or the operating system’s
naming scheme. SFCFSHA commands display device names according to the
current naming scheme.

The default naming scheme is enclosure-based naming (EBN).

When you use DMP with native volumes, the disk naming scheme must be EBN,
the use_avid attribute must be on, and the persistence attribute must be set to yes.

341Managing devices
Changing the disk device naming scheme

To change the disk-naming scheme

◆ Select Change the disk naming scheme from the vxdiskadm main menu to
change the disk-naming scheme that you want SFCFSHA to use. When
prompted, enter y to change the naming scheme.

OR

Change the naming scheme from the command line. Use the following
command to select enclosure-based naming:

vxddladm set namingscheme=ebn [persistence={yes|no}] \

[use_avid=yes|no] [lowercase=yes|no]

Use the following command to select operating system-based naming:

vxddladm set namingscheme=osn [persistence={yes|no}] \

[lowercase=yes|no]

The optional persistence argument allows you to select whether the names
of disk devices that are displayed by SFCFSHA remain unchanged after disk
hardware has been reconfigured and the system rebooted. By default,
enclosure-based naming is persistent. Operating system-based naming is not
persistent by default.

To change only the naming persistence without changing the naming scheme,
run the vxddladm set namingscheme command for the current naming scheme,
and specify the persistence attribute.

By default, the names of the enclosure are converted to lowercase, regardless
of the case of the name specified by the ASL. The enclosure-based device
names are therefore in lower case. Set the lowercase=no option to suppress
the conversion to lowercase.

For enclosure-based naming, the use_avid option specifies whether the Array
Volume ID is used for the index number in the device name. By default,
use_avid=yes, indicating the devices are named as enclosure_avid. If use_avid
is set to no, DMP devices are named as enclosure_index. The index number
is assigned after the devices are sorted by LUN serial number.

The change is immediate whichever method you use.

See “Regenerating persistent device names” on page 344.

Displaying the disk-naming scheme
SFCFSHA disk naming can be operating-system based naming or enclosure-based
naming.

342Managing devices
Changing the disk device naming scheme

The following command displays whether the SFCFSHA disk naming scheme is
currently set. It also displays the attributes for the disk naming scheme, such as
whether persistence is enabled.

To display the current disk-naming scheme and its mode of operations, use the
following command:

vxddladm get namingscheme

NAMING_SCHEME PERSISTENCE LOWERCASE USE_AVID

===

Enclosure Based Yes Yes Yes

Setting customized names for DMP nodes
The DMP node name is the meta device name which represents the multiple paths
to a disk. The DMP node name is generated from the device name according to
the SFCFSHA naming scheme.

You can specify a customized name for a DMP node. User-specified names are
persistent even if names persistence is turned off.

You cannot assign a customized name that is already in use by a device. However,
if you assign names that follow the same naming conventions as the names that
the DDL generates, a name collision can potentially occur when a device is added.
If the user-defined name for a DMP device is the same as the DDL-generated name
for another DMP device, the vxdisk list command output displays one of the
devices as 'error'.

To specify a custom name for a DMP node

◆ Use the following command:

vxdmpadm setattr dmpnode dmpnodename name=name

You can also assign names from an input file. This enables you to customize the
DMP nodes on the system with meaningful names.

To assign DMP nodes from a file

1 Use the script vxgetdmpnames to get a sample file populated from the devices
in your configuration. The sample file shows the format required and serves
as a template to specify your customized names.

2 To assign the names, use the following command:

vxddladm assign names file=pathname

343Managing devices
Changing the disk device naming scheme

To clear custom names

◆ To clear the names, and use the default OSN or EBN names, use the following
command:

vxddladm -c assign names

Regenerating persistent device names
The persistent device naming feature makes the names of disk devices persistent
across system reboots. DDL assigns device names according to the persistent
device name database.

If operating system-based naming is selected, each disk name is usually set to the
name of one of the paths to the disk. After hardware reconfiguration and a
subsequent reboot, the operating system may generate different names for the
paths to the disks. Therefore, the persistent device names may no longer correspond
to the actual paths. This does not prevent the disks from being used, but the
association between the disk name and one of its paths is lost.

Similarly, if enclosure-based naming is selected, the device name depends on the
name of the enclosure and an index number. If a hardware configuration changes
the order of the LUNs exposed by the array, the persistent device name may not
reflect the current index.

To regenerate persistent device names

◆ To regenerate the persistent names repository, use the following command:

vxddladm [-c] assign names

The -c option clears all user-specified names and replaces them with
autogenerated names.

If the -c option is not specified, existing user-specified names are maintained,
but OS-based and enclosure-based names are regenerated.

The disk names now correspond to the new path names.

Changing device naming for TPD-controlled enclosures
By default, TPD-controlled enclosures use pseudo device names based on the
TPD-assigned node names. If you change the device naming to native, the devices
are named in the same format as other SFCFSHA devices. The devices use either
operating system names (OSN) or enclosure-based names (EBN), depending on
which naming scheme is set.

See “Displaying the disk-naming scheme” on page 342.

344Managing devices
Changing the disk device naming scheme

To change device naming for TPD-controlled enclosures

◆ For disk enclosures that are controlled by third-party drivers (TPD) whose
coexistence is supported by an appropriate ASL, the default behavior is to
assign device names that are based on the TPD-assigned node names. You
can use the vxdmpadm command to switch between these names and the device
names that are known to the operating system:

vxdmpadm setattr enclosure enclosure_name tpdmode=native|pseudo

The argument to the tpdmode attribute selects names that are based on those
used by the operating system (native), or TPD-assigned node names (pseudo).

The use of this command to change between TPD and operating system-based
naming is illustrated in the following example for the enclosure named EMC0.
In this example, the device-naming scheme is set to OSN.

vxdisk list

DEVICE TYPE DISK GROUP STATUS

emcpower10 auto:sliced disk1 mydg online

emcpower11 auto:sliced disk2 mydg online

emcpower12 auto:sliced disk3 mydg online

emcpower13 auto:sliced disk4 mydg online

emcpower14 auto:sliced disk5 mydg online

emcpower15 auto:sliced disk6 mydg online

emcpower16 auto:sliced disk7 mydg online

emcpower17 auto:sliced disk8 mydg online

emcpower18 auto:sliced disk9 mydg online

emcpower19 auto:sliced disk10 mydg online

vxdmpadm setattr enclosure EMC0 tpdmode=native

vxdisk list

DEVICE TYPE DISK GROUP STATUS

sdj auto:sliced disk1 mydg online

sdk auto:sliced disk2 mydg online

sdl auto:sliced disk3 mydg online

sdm auto:sliced disk4 mydg online

sdn auto:sliced disk5 mydg online

sdo auto:sliced disk6 mydg online

sdp auto:sliced disk7 mydg online

sdq auto:sliced disk8 mydg online

sdr auto:sliced disk9 mydg online

sds auto:sliced disk10 mydg online

345Managing devices
Changing the disk device naming scheme

If tpdmode is set to native, the path with the smallest device number is
displayed.

About the Array Volume Identifier (AVID) attribute
DMP assigns enclosure-based names to DMP meta-devices using an array-specific
attribute called the Array Volume ID (AVID). The AVID is a unique identifier for the
LUN that is provided by the array. The ASL corresponding to the array provides
the AVID property. Within an array enclosure, DMP uses the Array Volume Identifier
(AVID) as an index in the DMP metanode name. The DMP metanode name is in
the format enclosureID_AVID.

The SFCFSHA utilities such as vxdisk list display the DMP metanode name,
which includes the AVID property. Use the AVID to correlate the DMP metanode
name to the LUN displayed in the array management interface (GUI or CLI) .

If the ASL does not provide the array volume ID property, then DMP generates an
index number. DMP sorts the devices seen from an array by the LUN serial number
and then assigns the index number. In this case, the DMP metanode name is in
the format enclosureID_index.

In a cluster environment, the DMP device names are the same across all nodes in
the cluster.

For example, on an EMC CX array where the enclosure is emc_clariion0 and the
array volume ID provided by the ASL is 91, the DMP metanode name is
emc_clariion0_91. The following sample output shows the DMP metanode names:

$ vxdisk list

emc_clariion0_91 auto:cdsdisk emc_clariion0_91 dg1 online shared

emc_clariion0_92 auto:cdsdisk emc_clariion0_92 dg1 online shared

emc_clariion0_93 auto:cdsdisk emc_clariion0_93 dg1 online shared

emc_clariion0_282 auto:cdsdisk emc_clariion0_282 dg1 online shared

emc_clariion0_283 auto:cdsdisk emc_clariion0_283 dg1 online shared

emc_clariion0_284 auto:cdsdisk emc_clariion0_284 dg1 online shared

Enclosure based naming with the Array Volume Identifier
(AVID) attribute
By default, DMP assigns enclosure-based names to DMP meta-devices using an
array-specific attribute called the Array Volume ID (AVID). The AVID provides a
unique identifier for the LUN that is provided by the array. The ASL corresponding
to the array provides the AVID property. Within an array enclosure, DMP uses the
Array Volume Identifier (AVID) as an index in the DMP metanode name. The DMP
metanode name is in the format enclosureID_AVID.

346Managing devices
Changing the disk device naming scheme

With the introduction of AVID to the EBN naming scheme, identifying storage devices
becomes much easier. The array volume identifier (AVID) enables you to have
consistent device naming across multiple nodes connected to the same storage.
The disk access name never changes, because it is based on the name defined
by the array itself.

Note: DMP does not support AVID with PowerPath names.

If DMP does not have access to a device’s AVID, it retrieves another unique LUN
identifier called the LUN serial number. DMP sorts the devices based on the LUN
Serial Number (LSN), and then assigns the index number. All hosts see the same
set of devices, so all hosts will have the same sorted list, leading to consistent
device indices across the cluster. In this case, the DMP metanode name is in the
format enclosureID_index.

DMP also supports a scalable framework, that allows you to fully customize the
device names on a host by applying a device naming file that associates custom
names with cabinet and LUN serial numbers.

If a CVM cluster is symmetric, each node in the cluster accesses the same set of
disks. Enclosure-based names provide a consistent naming system so that the
device names are the same on each node.

The SFCFSHA utilities such as vxdisk list display the DMP metanode name,
which includes the AVID property. Use the AVID to correlate the DMP metanode
name to the LUN displayed in the array management interface (GUI or CLI) .

For example, on an EMC CX array where the enclosure is emc_clariion0 and the
array volume ID provided by the ASL is 91, the DMP metanode name is
emc_clariion0_91. The following sample output shows the DMP metanode names:

$ vxdisk list

emc_clariion0_91 auto:cdsdisk emc_clariion0_91 dg1 online shared

emc_clariion0_92 auto:cdsdisk emc_clariion0_92 dg1 online shared

emc_clariion0_93 auto:cdsdisk emc_clariion0_93 dg1 online shared

emc_clariion0_282 auto:cdsdisk emc_clariion0_282 dg1 online shared

emc_clariion0_283 auto:cdsdisk emc_clariion0_283 dg1 online shared

emc_clariion0_284 auto:cdsdisk emc_clariion0_284 dg1 online shared

vxddladm get namingscheme

NAMING_SCHEME PERSISTENCE LOWERCASE USE_AVID

==

Enclosure Based Yes Yes Yes

347Managing devices
Changing the disk device naming scheme

About disk installation and formatting
Depending on the hardware capabilities of your disks and of your system, you may
either need to shut down and power off your system before installing the disks, or
you may be able to hot-insert the disks into the live system. Many operating systems
can detect the presence of the new disks on being rebooted. If the disks are inserted
while the system is live, you may need to enter an operating system-specific
command to notify the system.

If the disks require low or intermediate-level formatting before use, use the operating
system-specific formatting command to do this.

Note: SCSI disks are usually preformatted. Reformatting is needed only if the
existing formatting has become damaged.

See “Adding a disk to VxVM” on page 348.

Adding and removing disks
This section describes managing devices.

Adding a disk to VxVM
Formatted disks being placed under VxVM control may be new or previously used
outside VxVM. The set of disks can consist of all disks on a controller, selected
disks, or a combination of these.

Depending on the circumstances, all of the disks may not be processed in the same
way.

For example, some disks may be initialized, while others may be encapsulated to
preserve existing data on the disks.

When initializing multiple disks at one time, it is possible to exclude certain disks
or certain controllers.

You can also exclude certain disks or certain controllers when encapsulating multiple
disks at one time.

To exclude a device from the view of VxVM, select Prevent
multipathing/Suppress devices from VxVM’s view from the vxdiskadm main
menu.

Warning: Initialization does not preserve the existing data on the disks.

348Managing devices
About disk installation and formatting

A disk cannot be initialized if it does not have a valid useable partition table. You
can use the fdisk command to create an empty partition table on a disk as shown
here:

fdisk /dev/sdX

Command (m for help): o

Command (m for help): w

where /dev/sdX is the name of the disk device, for example, /dev/sdi.

Warning: The fdisk command can destroy data on the disk. Do not use this
command if the disk contains data that you want to preserve.

See “Making devices invisible to VxVM” on page 284.

349Managing devices
Adding and removing disks

To initialize disks for VxVM use

1 Select Add or initialize one or more disks from the vxdiskadm main
menu.

2 At the following prompt, enter the disk device name of the disk to be added to
VxVM control (or enter list for a list of disks):

Select disk devices to add:

[<pattern-list>,all,list,q,?]

The pattern-list can be a single disk, or a series of disks. If pattern-list consists
of multiple items, separate them using white space. For example, specify four
disks as follows:

sde sdf sdg sdh

If you enter list at the prompt, the vxdiskadm program displays a list of the
disks available to the system:

DEVICE DISK GROUP STATUS

sdb mydg01 mydg online

sdc mydg02 mydg online

sdd mydg03 mydg online

sde - - online

sdf mydg04 mydg online

sdg - - online invalid

The phrase online invalid in the STATUS line indicates that a disk has yet
to be added or initialized for VxVM control. Disks that are listed as online with
a disk name and disk group are already under VxVM control.

Enter the device name or pattern of the disks that you want to initialize at the
prompt and press Return.

3 To continue with the operation, enter y (or press Return) at the following prompt:

Here are the disks selected. Output format: [Device]

list of device names

Continue operation? [y,n,q,?] (default: y) y

350Managing devices
Adding and removing disks

4 At the following prompt, specify the disk group to which the disk should be
added, or none to reserve the disks for future use:

You can choose to add these disks to an existing disk group,

a new disk group, or you can leave these disks available for use

by future add or replacement operations. To create a new disk

group, select a disk group name that does not yet exist. To

leave the disks available for future use, specify a disk group

name of none.

Which disk group [<group>,none,list,q,?]

5 If you specified the name of a disk group that does not already exist, vxdiskadm
prompts for confirmation that you really want to create this new disk group:

There is no active disk group named disk group name.

Create a new group named disk group name? [y,n,q,?]

(default: y)y

You are then prompted to confirm whether the disk group should support the
Cross-platform Data Sharing (CDS) feature:

Create the disk group as a CDS disk group? [y,n,q,?]

(default: n)

If the new disk group may be moved between different operating system
platforms, enter y. Otherwise, enter n.

6 At the following prompt, either press Return to accept the default disk name
or enter n to allow you to define your own disk names:

Use default disk names for the disks? [y,n,q,?] (default: y) n

7 When prompted whether the disks should become hot-relocation spares, enter
n (or press Return):

Add disks as spare disks for disk group name? [y,n,q,?]

(default: n) n

8 When prompted whether to exclude the disks from hot-relocation use, enter n
(or press Return).

Exclude disks from hot-relocation use? [y,n,q,?}

(default: n) n

351Managing devices
Adding and removing disks

9 You are next prompted to choose whether you want to add a site tag to the
disks:

Add site tag to disks? [y,n,q,?] (default: n)

A site tag is usually applied to disk arrays or enclosures, and is not required
unless you want to use the Remote Mirror feature.

If you enter y to choose to add a site tag, you are prompted to the site name
at step 11.

10 To continue with the operation, enter y (or press Return) at the following prompt:

The selected disks will be added to the disk group

disk group name with default disk names.

list of device names

Continue with operation? [y,n,q,?] (default: y) y

11 If you chose to tag the disks with a site in step 9, you are now prompted to
enter the site name that should be applied to the disks in each enclosure:

The following disk(s):

list of device names

belong to enclosure(s):

list of enclosure names

Enter site tag for disks on enclosure enclosure name

[<name>,q,?] site_name

352Managing devices
Adding and removing disks

12 If you see the following prompt, it lists any disks that have already been
initialized for use by VxVM:

The following disk devices appear to have been initialized

already.

The disks are currently available as replacement disks.

Output format: [Device]

list of device names

Use these devices? [Y,N,S(elect),q,?] (default: Y) Y

This prompt allows you to indicate “yes” or “no” for all of these disks (Y or N)
or to select how to process each of these disks on an individual basis (S).

If you are sure that you want to reinitialize all of these disks, enter Y at the
following prompt:

VxVM NOTICE V-5-2-366 The following disks you selected for use

appear to already have been initialized for the Volume

Manager. If you are certain the disks already have been

initialized for the Volume Manager, then you do not need to

reinitialize these disk devices.

Output format: [Device]

list of device names

Reinitialize these devices? [Y,N,S(elect),q,?] (default: Y) Y

353Managing devices
Adding and removing disks

13 vxdiskadm may now indicate that one or more disks is a candidate for
encapsulation. Encapsulation allows you to add an active disk to VxVM control
and preserve the data on that disk.If you want to preserve the data on the disk,
enter y. If you are sure that there is no data on the disk that you want to
preserve, enter n to avoid encapsulation.

VxVM NOTICE V-5-2-355 The following disk device has a valid

partition table, but does not appear to have been initialized

for the Volume Manager. If there is data on the disk that

should NOT be destroyed you should encapsulate the existing

disk partitions as volumes instead of adding the disk as a new

disk.

Output format: [Device]

device name

Encapsulate this device? [y,n,q,?] (default: y)

354Managing devices
Adding and removing disks

14 If you choose to encapsulate the disk vxdiskadm confirms its device name and
prompts you for permission to proceed. Enter y (or press Return) to continue
encapsulation:

VxVM NOTICE V-5-2-311 The following disk device has been

selected for encapsulation.

Output format: [Device]

device name

Continue with encapsulation? [y,n,q,?] (default: y) y

vxdiskadm now displays an encapsulation status and informs you

that you must perform a shutdown and reboot as soon as

possible:

VxVM INFO V-5-2-333 The disk device device name will be

encapsulated and added to the disk group disk group name with the

disk name disk name.

You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

If you entered cdsdisk as the format, you are prompted for the action to be
taken if the disk cannot be converted this format:

Do you want to use sliced as the format should cdsdisk fail?

[y,n,q,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

355Managing devices
Adding and removing disks

vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

shutdown -r now

The /etc/fstab file is updated to include the volume devices that are used to
mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/fstab file is saved as /etc/fstab.b4vxvm.

15 If you choose not to encapsulate the disk vxdiskadm asks if you want to initialize
the disk instead. Enter y to confirm this:

Instead of encapsulating, initialize? [y,n,q,?] (default: n) yvxdiskadm now
confirms those disks that are being initialized and added to VxVM control with
messages similar to the following. In addition, you may be prompted to perform
surface analysis.

VxVM INFO V-5-2-205 Initializing device device name.

16 You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

17 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

vxdiskadm then proceeds to add the disks.

VxVM INFO V-5-2-88 Adding disk device device name to disk group

disk group name with disk name disk name.

.

.

.

356Managing devices
Adding and removing disks

18 If you choose not to use the default disk names, vxdiskadm prompts you to
enter the disk name.

19 At the following prompt, indicate whether you want to continue to initialize more
disks (y) or return to the vxdiskadm main menu (n):

Add or initialize other disks? [y,n,q,?] (default: n)

The default layout for disks can be changed.

Disk reinitialization
You can reinitialize a disk that has previously been initialized for use by VxVM by
putting it under VxVM control as you would a new disk.

See “Adding a disk to VxVM” on page 348.

Warning: Reinitialization does not preserve data on the disk. If you want to
reinitialize the disk, make sure that it does not contain data that should be preserved.

If the disk you want to add has been used before, but not with a volume manager,
you can encapsulate the disk to preserve its information. If the disk you want to add
has previously been under LVM control, you can preserve the data it contains on
a VxVM disk by the process of conversion.

For detailed information about migrating volumes, see the Veritas Storage
Foundation and High Availability Solutions Solutions Guide.

357Managing devices
Adding and removing disks

Using vxdiskadd to put a disk under VxVM control
To use the vxdiskadd command to put a disk under VxVM control.

◆ Type the following command:

vxdiskadd disk

For example, to initialize the disk sdb:

vxdiskadd sdb

The vxdiskadd command examines your disk to determine whether it has
been initialized and also checks for disks that have been added to VxVM, and
for other conditions.

The vxdiskadd command also checks for disks that can be encapsulated.

See “Encapsulating a disk” on page 936.

If you are adding an uninitialized disk, warning and error messages are
displayed on the console by the vxdiskadd command. Ignore these messages.
These messages should not appear after the disk has been fully initialized; the
vxdiskadd command displays a success message when the initialization
completes.

The interactive dialog for adding a disk using vxdiskadd is similar to that for
vxdiskadm.

See “Adding a disk to VxVM” on page 348.

Removing disks
You must disable a disk group before you can remove the last disk in that group.

See “Disabling a disk group” on page 918.

As an alternative to disabling the disk group, you can destroy the disk group.

See “Destroying a disk group” on page 918.

You can remove a disk from a system and move it to another system if the disk is
failing or has failed.

358Managing devices
Adding and removing disks

To remove a disk

1 Stop all activity by applications to volumes that are configured on the disk that
is to be removed. Unmount file systems and shut down databases that are
configured on the volumes.

2 Use the following command to stop the volumes:

vxvol [-g diskgroup] stop vol1 vol2 ...

3 Move the volumes to other disks or back up the volumes. To move a volume,
use vxdiskadm to mirror the volume on one or more disks, then remove the
original copy of the volume. If the volumes are no longer needed, they can be
removed instead of moved.

4 Check that any data on the disk has either been moved to other disks or is no
longer needed.

5 Select Remove a disk from the vxdiskadm main menu.

6 At the following prompt, enter the disk name of the disk to be removed:

Enter disk name [<disk>,list,q,?] mydg01

7 If there are any volumes on the disk, VxVM asks you whether they should be
evacuated from the disk. If you wish to keep the volumes, answer y. Otherwise,
answer n.

8 At the following verification prompt, press Return to continue:

VxVM NOTICE V-5-2-284 Requested operation is to remove disk

mydg01 from group mydg.

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm utility removes the disk from the disk group and displays the
following success message:

VxVM INFO V-5-2-268 Removal of disk mydg01 is complete.

You can now remove the disk or leave it on your system as a replacement.

9 At the following prompt, indicate whether you want to remove other disks (y)
or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

359Managing devices
Adding and removing disks

Removing a disk with subdisks
You can remove a disk on which some subdisks are defined. For example, you can
consolidate all the volumes onto one disk. If you use the vxdiskadm program to
remove a disk, you can choose to move volumes off that disk.

Some subdisks are not movable. A subdisk may not be movable for one of the
following reasons:

■ There is not enough space on the remaining disks in the subdisks disk group.

■ Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If the vxdiskadm program cannot move some subdisks, remove some plexes from
some disks to free more space before proceeding with the disk removal operation.

See “Removing a volume” on page 925.

To remove a disk with subdisks

1 Run the vxdiskadm program and select Remove a disk from the main menu.

If the disk is used by some subdisks, the following message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of

disk mydg02:

home usrvol

Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

2 Choose y to move all subdisks off the disk, if possible.

360Managing devices
Adding and removing disks

Removing a disk with no subdisks
To remove a disk that contains no subdisks from its disk group

◆ Run the vxdiskadm program and select Remove a disk from the main menu,
and respond to the prompts as shown in this example to remove mydg02:

Enter disk name [<disk>,list,q,?] mydg02

VxVM NOTICE V-5-2-284 Requested operation is to remove disk

mydg02 from group mydg.

Continue with operation? [y,n,q,?] (default: y) y

VxVM INFO V-5-2-268 Removal of disk mydg02 is complete.

Clobber disk headers? [y,n,q,?] (default: n) y

Enter y to remove the disk completely from VxVM control. If you do not want
to remove the disk completely from VxVM control, enter n.

Renaming a disk
If you do not specify a VM disk name, VxVM gives the disk a default name when
you add the disk to VxVM control. The VM disk name is used by VxVM to identify
the location of the disk or the disk type.

361Managing devices
Renaming a disk

To rename a disk

◆ Type the following command:

vxedit [-g diskgroup] rename old_diskname new_diskname

By default, VxVM names subdisk objects after the VM disk on which they are
located. Renaming a VM disk does not automatically rename the subdisks on
that disk.

For example, you might want to rename disk mydg03, as shown in the following
output from vxdisk list, to mydg02:

vxdisk list

DEVICE TYPE DISK GROUP STATUS

sdb auto:sliced mydg01 mydg online

sdc auto:sliced mydg03 mydg online

sdd auto:sliced - - online

You would use the following command to rename the disk.

vxedit -g mydg rename mydg03 mydg02

To confirm that the name change took place, use the vxdisk list command
again:

vxdisk list

DEVICE TYPE DISK GROUP STATUS

sdb auto:sliced mydg01 mydg online

sdc auto:sliced mydg02 mydg online

sdd auto:sliced - - online

362Managing devices
Renaming a disk

Event monitoring
This chapter includes the following topics:

■ About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)

■ Fabric Monitoring and proactive error detection

■ Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology

■ DMP event logging

■ Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

About the Dynamic Multi-Pathing (DMP) event
source daemon (vxesd)

The event source daemon (vxesd) is a Veritas Dynamic Multi-Pathing (DMP)
component process that receives notifications of any device-related events that are
used to take appropriate actions. The benefits of vxesd include:

■ Monitoring of SAN fabric events and proactive error detection (SAN event)
See “Fabric Monitoring and proactive error detection” on page 364.

■ Logging of DMP events for troubleshooting (DMP event)
See “DMP event logging” on page 365.

■ Automated device discovery (OS event)

■ Discovery of SAN components and HBA-array port connectivity (Fibre Channel
and iSCSI)
See “Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology” on page 365.

14Chapter

See “Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon”
on page 366.

Fabric Monitoring and proactive error detection
DMP takes a proactive role in detecting errors on paths. The DMP event source
daemon vxesd uses the Storage Networking Industry Association (SNIA) HBA API
library to receive SAN fabric events from the HBA. DMP checks devices that are
suspect based on the infomration from the SAN events, even if there is no active
I/O. New I/O is directed to healthy paths while DMP verifies the suspect devices.

During startup, vxesd queries the HBA (by way of the SNIA library) to obtain the
SAN topology. The vxesd daemon determines the Port World Wide Names (PWWN)
that correspond to each of the device paths that are visible to the operating system.
After the vxesd daemon obtains the topology, vxesd registers with the HBA for SAN
event notification. If LUNs are disconnected from a SAN, the HBA notifies vxesd

of the SAN event, specifying the PWWNs that are affected. The vxesd daemon
uses this event information and correlates it with the previous topology information
to determine which set of device paths have been affected.

The vxesd daemon sends the affected set to the vxconfigd daemon (DDL) so that
the device paths can be marked as suspect. When the path is marked as suspect,
DMP does not send new I/O to the path unless it is the last path to the device. In
the background, the DMP restore task checks the accessibility of the paths on its
next periodic cycle using a SCSI inquiry probe. If the SCSI inquiry fails, DMP disables
the path to the affected LUNs, which is also logged in the event log.

If the LUNs are reconnected at a later time, the HBA informs vxesd of the SAN
event. When the DMP restore task runs its next test cycle, the disabled paths are
checked with the SCSI probe and re-enabled if successful.

Note: If vxesd receives an HBA LINK UP event, the DMP restore task is restarted
and the SCSI probes run immediately, without waiting for the next periodic cycle.
When the DMP restore task is restarted, it starts a new periodic cycle. If the disabled
paths are not accessible by the time of the first SCSI probe, they are re-tested on
the next cycle (300s by default).

The fabric monitor functionality is enabled by default. The value of the
dmp_monitor_fabric tunable is persistent across reboots.

To disable the Fabric Monitoring functionality, use the following command:

vxdmpadm settune dmp_monitor_fabric=off

364Event monitoring
Fabric Monitoring and proactive error detection

To enable the Fabric Monitoring functionality, use the following command:

vxdmpadm settune dmp_monitor_fabric=on

To display the current value of the dmp_monitor_fabric tunable, use the following
command:

vxdmpadm gettune dmp_monitor_fabric

Dynamic Multi-Pathing (DMP) discovery of iSCSI
and SAN Fibre Channel topology

The vxesd builds a topology of iSCSI and Fibre Channel devices that are visible to
the host. The vxesd daemon uses the SNIA Fibre Channel HBA API to obtain the
SAN topology. If IMA is not available, then iSCSI management CLI is used to obtain
the iSCSI SAN topology.

To display the hierarchical listing of Fibre Channel and iSCSI devices, use the
following command:

vxddladm list

See the vxddladm(1M) manual page.

DMP event logging
DMP notifies vxesd of major events, and vxesd logs the event in a log file
(/etc/vx/dmpevents.log). These events include:

■ Marking paths or dmpnodes enabled

■ Marking paths or dmpnodes disabled

■ Throttling of paths

■ I/O error analysis

■ Host Bus Adapter (HBA) and Storage Area Network (SAN) events

The log file is located in /var/adm/vx/dmpevents.log but is symbolically linked to
/etc/vx/dmpevents.log. When the file reaches 10,000 lines, the log is rotated.
That is, dmpevents.log is renamed dmpevents.log.X and a new dmpevents.log file
is created.

You can change the level of detail in the event log file using the tunable
dmp_log_level. Valid values are 1 through 4. The default level is 1.

365Event monitoring
Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel topology

vxdmpadm settune dmp_log_level=X

The current value of dmp_log_level can be displayed with:

vxdmpadm gettune dmp_log_level

For details on the various log levels, see the vxdmpadm(1M) manual page.

Starting and stopping the Dynamic Multi-Pathing
(DMP) event source daemon

By default, DMP starts vxesd at boot time.

To stop the vxesd daemon, use the vxddladm utility:

vxddladm stop eventsource

To start the vxesd daemon, use the vxddladm utility:

vxddladm start eventsource [logfile=logfilename]

To view the status of the vxesd daemon, use the vxddladm utility:

vxddladm status eventsource

366Event monitoring
Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

Administering Storage
Foundation Cluster File
System High Availability
and its components

■ Chapter 15. Administering Storage Foundation Cluster File System High
Availability and its components

■ Chapter 16. Using Clustered NFS

■ Chapter 17. Using Common Internet File System

■ Chapter 18. Administering sites and remote mirrors

4Section

Administering Storage
Foundation Cluster File
System High Availability
and its components

This chapter includes the following topics:

■ About Storage Foundation Cluster File System High Availability administration

■ Administering CFS

■ Administering VCS

■ Administering CVM

■ Administering ODM

■ Administering I/O fencing

■ Administering SFCFSHA global clusters

About Storage Foundation Cluster File System
High Availability administration

The Storage Foundation Cluster File System High Availability (SFCFSHA) is a
shared file system that enables multiple hosts to mount and perform file operations
concurrently on the same file. To operate in a cluster configuration, SFCFSHA
requires the integrated set of Veritas products included in the Veritas Storage
Foundation Cluster File System High Availability.

15Chapter

To configure a cluster, SFCFSHA requires the Veritas Cluster Server (VCS) that
is an included component. VCS supplies two major components integral to
SFCFSHA. The LLT RPM provides node-to-node communications and monitors
network communications. The GAB RPM provides cluster state, configuration, and
membership service, and monitors the heartbeat links between systems to ensure
that they are active. There are several other RPMs supplied by VCS that provide
application failover support when installing SFCFSHA.

See the Veritas Storage Foundation Cluster File System High Availability Installation
Guide.

For more information on VCS, refer to the Veritas Cluster Server documentation.

Administering CFS
This section describes some of the major aspects of Cluster File System (CFS)
administration.

If you encounter issues while administering CFS, refer to the Veritas Storage
Foundation and High Availability Solutions Troubleshooting Guide for assistance.

Adding CFS file systems to a VCS configuration
Run the following command to add a Cluster File System (CFS) file system to the
Veritas Cluster Server (VCS) main.cf file without using an editor.

For example:

cfsmntadm add oradatadg oradatavol \

/oradata1 all=suid,rw

Mount Point is being added...

/oradata1 added to the cluster-configuration

Using cfsmount to mount CFS file systems
To mount a CFS file system using cfsmount:

cfsmntadm add sdg vol1 /oradata1 all=

cfsmount /oradata1

Mounting...

[/dev/vx/dsk/sdg/vol1/oradatavol]

mounted successfully at /oradata1 on sys1

[/dev/vx/dsk/sdg/vol1/oradatavol]

mounted successfully at /oradata1 on sys2

369Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

Resizing CFS file systems
If you see a message on the console indicating that a Cluster File System (CFS)
file system is full, you may want to resize the file system. The vxresize command
lets you resize a CFS file system. It extends the file system and the underlying
volume.

See the vxresize (1M) manual page for information on various options.

The following command resizes an Oracle data CFS file system (the Oracle data
volume is CFS mounted):

vxresize -g oradatadg oradatavol +2G

where oradatadg is the CVM disk group, oradatavol is the volume, and +2G indicates
the increase in volume size by 2 Gigabytes.

Verifying the status of CFS file system nodes and their mount points
Run the cfscluster status command to see the status of the nodes and their
mount points:

cfscluster status

Node : sys2

Cluster Manager : not-running

CVM state : not-running

MOUNT POINT SHARED VOLUME DISK GROUP STATUS

/ocrvote ocrvotevol sys1_ocr NOT MOUNTED

/oracle ora_vol sys1_ora NOT MOUNTED

/crshome ora_crs_vol sys1_crs NOT MOUNTED

/oradata1 ora_data1_vol sys1_data1 NOT MOUNTED

/arch archivol sys1_data1 NOT MOUNTED

Node : sys1

Cluster Manager : running

CVM state : running

MOUNT POINT SHARED VOLUME DISK GROUP STATUS

/ocrvote ocrvotevol sys1_ocr MOUNTED

/oracle ora_vol sys1_ora MOUNTED

/crshome ora_crs_vol sys1_crs MOUNTED

/oradata1 ora_data1_vol sys1_data1 MOUNTED

/arch archivol sys1_data1 MOUNTED

370Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

Verifying the state of the CFS port
Cluster File System (CFS) uses port f for communication between nodes. Port f is
the GAB port used for CFS membership.

The CFS port state can be verified as follows:

gabconfig -a | grep "Port f"

CFS agents and AMF support
The Cluster File System (CFS) agents (CFSMount and CFSfsckd) are Asynchronous
Monitoring Framework (AMF) aware. In this release, the CFS agents use the V51
framework.

CFS agent log files
You can use the Cluster File System (CFS) agent log files that are located in the
/var/VRTSvcs/log directory to debug CFS issues.

cd /var/VRTSvcs/log

ls

CFSMount_A.log

CFSfsckd_A.log

engine_A.log

The agent framework information is located in the engine_A.log file while the agent
entry point information is located in the CFSMount_A.log and CFSfsckd_A.log files.

CFS commands
Table 15-1 describes the Cluster File System (CFS) commands.

Table 15-1 CFS commands

DescriptionCommands

Cluster configuration command

See the cfscluster(1M) manual page for more information.

cfscluster

Adds, deletes, modifies, and sets policy on cluster mounted file systems

See the cfsmntadm(1M) manual page for more information.

cfsmntadm

Adds or deletes shared disk groups to and from a cluster configuration

See the cfsdgadm(1M) manual page for more information.

cfsdgadm

371Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

Table 15-1 CFS commands (continued)

DescriptionCommands

Mounts a cluster file system on a shared volume

See the cfsmount(1M) manual page for more information.

cfsmount

Unmounts a cluster file system on a shared volume

See the cfsumount(1M) manual page for more information.

cfsumount

Clustered NFS (CNFS) and Common Internet File System (CIFS)
configuration command

See the cfsshare(1M) manual page for more information.

cfsshare

About the mount, fsclustadm, and fsadm commands
The fsadm command performs online administration functions on VxFS file systems,
Storage Checkpoints, or individual files and directories. The fsadm command
supports file system resizing, extent reorganization, directory reorganization,
querying or changing the largefiles flag, and Thin Storage Reclamation. The fsadm
command operates on file systems mounted for read/write access; however, the
-o option can also operate on a special device containing a clean, unmounted file
system. Only a privileged user can change the largefiles flag on a mounted file
system, or resize or reorganize a file system. You can invoke only one instance of
fsadm per file system at a time. If mount_point is a Storage Checkpoint, fsadm
performs the specified operation on the entire file system, including all of the file
system’s Storage Checkpoints.

See the fsadm_vxfs(1M) manual page.

The mount and fsclustadm commands are important for configuring cluster file
systems.

About the mount command
The mount command with the -o cluster option lets you access shared file
systems.

See the mount_vxfs(1M) manual page.

About the fsclustadm command
The fsclustadm command reports various attributes of a cluster file system. Using
fsclustadm you can show and set the primary node in a cluster, translate node
IDs to host names and vice versa, list all nodes that currently have a cluster mount

372Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

of the specified file system mount point, and determine whether a mount is a local
or a cluster mount. The fsclustadm command operates from any node in a cluster
on which the file system is mounted, and can control the location of the primary for
a specified mount point.

See the fsclustadm(1M) manual page.

About the fsadm command
The fsadm command performs online administration functions on VxFS file systems,
Storage Checkpoints, or individual files and directories. The fsadm command
supports file system resizing, extent reorganization, directory reorganization,
querying or changing the largefiles flag, Thin Storage Reclamation, and free space
defragmentation.

The fsadm command can be invoked from the primary or secondary node.

See the fsadm_vxfs(1M) manual page.

Running UNIX commands safely in a shared environment
Any UNIX command that can write to a raw device must be used carefully in a
shared environment to prevent data from being corrupted. For shared VxVM
volumes, SFCFSHA provides protection by reserving the volumes in a cluster to
prevent VxFS commands, such as fsck and mkfs, from inadvertently damaging a
mounted file system from another node in a cluster. However, commands such as
dd execute without any reservation, and can damage a file system mounted from
another node. Before running this kind of command on a file system, be sure the
file system is not mounted on a cluster. You can run the mount command to see if
a file system is a shared or a local mount.

Synchronizing system clocks on all nodes
Ensure that the system clocks on all nodes are synchronized using some external
component such as the Network Time Protocol (NTP). If the nodes are not in sync,
timestamps for creation (ctime) and modification (mtime) may not be consistent
with the sequence in which operations actually happened.

Growing a CFS file system
There is a master node for Cluster Volume Manager (CVM) as well as a primary
for Cluster File System (CFS). When growing a file system, you grow the volume
and slaves from the CVM master, and then grow the file system from any CFS
node. The CVM master and the CFS node can be different nodes.

373Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

To determine the primary file system in a cluster

◆ To determine the primary file system in a cluster, type the following command:

fsclustadm -v showprimary mount_point

To determine that the current node is the master CVM node

◆ To determine if the current node is the master CVM node, type the following
comannd:

vxdctl -c mode

To actually increase the size of the file system

1 On the master CVM node, type the following command:

vxassist -g shared_disk_group growto volume_name newlength

2 On any SFCFSHA node, type the following command:

fsadm -t vxfs -b newsize -r device_name mount_point

About the /etc/fstab file
In the /etc/fstab file, do not specify any cluster file systems to mount-at-boot
because mounts initiated from fstab occur before cluster configuration begins. For
cluster mounts, use the Veritas Cluster Server configuration file to determine which
file systems to enable following a reboot.

When the CFS primary node fails
If the server on which the Cluster File System (CFS) primary node is running fails,
the remaining cluster nodes elect a new primary node. The new primary node reads
the file system intent log and completes any metadata updates that were in process
at the time of the failure. Application I/O from other nodes may block during this
process and cause a delay. When the file system is again consistent, application
processing resumes.

Because nodes using a cluster file system in secondary node do not update file
system metadata directly, failure of a secondary node does not require metadata
repair. CFS recovery from secondary node failure is therefore faster than from a
primary node failure.

See the fsclustadm(1M) manual page for more information.

374Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

About distributing the workload on a cluster
Distributing the workload in a cluster provides performance and failover advantages.

For example, if you have eight file systems and four nodes, designating two file
systems per node as the primary would be beneficial. Primaryship is determined
by which node first mounts the file system. You can also use the fsclustadm

command to designate a SFCFSHA primary node. The fsclustadm setprimary

command can also define the order in which primaryship is assumed if the current
primary node fails. After setup, the policy is in effect as long as one or more nodes
in the cluster have the file system mounted.

Storage Checkpoints on SFCFSHA
The creation of Storage Checkpoints works the same on cluster file systems as
they do on local mount file systems.

More information on how to create and maintain Storage Checkpoints is available.

See “About Storage Checkpoints” on page 650.

About Snapshots on Storage Foundation Cluster File System High
Availability

A snapshot provides a consistent point-in-time image of a VxFS file system. A
snapshot can be accessed as a read-only mounted file system to perform efficient
online backups of the file system. Snapshots implement copy-on-write semantics
that incrementally copy data blocks when they are overwritten on the snapped file
system.

See “About snapshot file systems” on page 592.

Snapshots for cluster file systems extend the same copy-on-write mechanism for
the I/O originating from any node in the cluster.

Cluster snapshot characteristics
A cluster snapshot has the following characteristics:

■ A snapshot for a cluster-mounted file system can be mounted on any node in
a cluster. The file system can be a primary, secondary, or secondary-only. A
stable image of the file system is provided for writes from any node.

■ Multiple snapshots of a cluster file system can be mounted on the same or a
different node in a cluster.

■ A snapshot is accessible only on the node mounting a snapshot. The snapshot
device cannot be mounted on two different nodes simultaneously.

375Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

■ The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable from
other nodes in a cluster as long as the snapshot is active on that device.

■ On the node mounting a snapshot, the snapped file system cannot be unmounted
while the snapshot is mounted.

■ A cluster file system snapshot ceases to exist if it is unmounted or the node
mounting the snapshot fails. A snapshot, however, is not affected if any other
node leaves or joins the cluster.

■ A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount a snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

Performance considerations
Mounting a snapshot file system for backup increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the primary
server. Overhead from remote snapshots is small when compared to overall
snapshot overhead. Therefore, running a backup application by mounting a snapshot
from a relatively less loaded node is beneficial to overall cluster performance.

Creating a snapshot on a cluster
To create and mount a snapshot on a two-node cluster using cluster file system
administrative interface commands.

376Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

To create a snapshot on a cluster file system

1 To create a VxFS file system on a shared VxVM volume, type the following
command:

mkfs -t vxfs /dev/vx/rdsk/cfsdg/vol1

version 9 layout

104857600 sectors, 52428800 blocks of size 1024, log size

16384 blocks unlimited inodes, largefiles not supported

52428800 data blocks, 52399152 free data blocks 1600

allocation units of 32768 blocks, 32768 data blocks

2 To mount the file system on all nodes, type the following commands:

cfsmntadm add cfsdg vol1 /mnt1 all=cluster

cfsmount /mnt1

The cfsmntadm command adds an entry to the cluster manager configuration,
then the cfsmount command mounts the file system on all nodes.

3 Add the snapshot on a previously created volume (snapvol in this example)
to the cluster manager configuration. For example:

cfsmntadm add snapshot cfsdg snapvol /mnt1 /mnt1snap sys1=ro

The snapshot of a cluster file system is accessible only on the node where it
is created; the snapshot file system itself cannot be cluster mounted.

4 Create and locally mount the snapshot file system on sys1, type the following
command:

cfsmount /mnt1snap

5 A snapped file system cannot be unmounted until all of its snapshots are
unmounted. Unmount and destroy the snapshot before trying to unmount the
snapped cluster file system, type the following command:

cfsumount /mnt1snap

Administering VCS
This section provides instructions for the following VCS administration tasks:

■ Configuring VCS to start Oracle with a specified Pfile

■ Verifying VCS configuration

377Administering Storage Foundation Cluster File System High Availability and its components
Administering VCS

■ Starting and stopping VCS

If you encounter issues while administering VCS, refer to the troubleshooting section
for assistance.

Configuring VCS to start Oracle with a specified Pfile
If you want to configure VCS such that Oracle starts with a specified Pfile, modify
the main.cf file for the Oracle group as follows:

Oracle ora1 (

Sid @sys1 = vrts1

Sid @sys2 = vrts2

Owner = oracle

Home = "/app/oracle/orahome"

StartUpOpt = SRVCTLSTART

ShutDownOpt = SRVCTLSTOP

pfile="/app/oracle/orahome/dbs/initprod1.ora"

)

Verifying VCS configuration
To verify the VCS configuration:

cd /etc/VRTSvcs/conf/config

hacf -verify .

Starting and stopping VCS
To start VCS on each node:

hastart

To stop VCS on each node:

hastop -local

You can also use the command hastop -all; however, make sure that you wait
for port 'h' to close before restarting VCS.

Configuring destination-based load balancing for LLT
Destination-based load balancing for LLT is turned off by default. Symantec
recommends destination-based load balancing when the cluster setup has more
than two nodes and more active LLT ports.

378Administering Storage Foundation Cluster File System High Availability and its components
Administering VCS

To configure destination-based load balancing for LLT

◆ Run the following command to configure destination-based load balancing:

lltconfig -F linkburst:0

Administering CVM

Listing all the CVM shared disks
You can use the following command to list all the CVM shared disks:

vxdisk -o alldgs list |grep shared

Establishing CVM cluster membership manually
In most cases you do not have to start CVM manually; it normally starts when VCS
is started.

Run the following command to start CVM manually:

vxclustadm -m vcs -t gab startnode

vxclustadm: initialization completed

Note that vxclustadm reads main.cf for cluster configuration information and is
therefore not dependent upon VCS to be running. You do not need to run the
vxclustadm startnode command as normally the hastart (VCS start) command
starts CVM automatically.

To verify whether CVM is started properly:

vxclustadm nidmap

Name CVM Nid CM Nid State

sys1 0 0 Joined: Master

sys2 1 1 Joined: Slave

Methods to control CVM master selection
When a master node leaves, Cluster Volume Manager (CVM) fails over the master
role to another node in the cluster. CVM selects the node in the cluster that is best
suited to take over the master role. CVM gives preference to nodes that have
connectivity to the maximum number of disks in the disk group. This behavior is an
enhancement over previous releases of CVM.

379Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

During regular operations, CVM dynamically assigns an offset preference value to
each node. The preference assignment is automatic, and generally does not require
any intervention from the storage administrator. However, if you need greater control
over the master selection, you can also set customized preference values. When
a master failover occurs, CVM uses the custom node preferences together with the
offset preference values to select the new master node.

See “About setting cluster node preferences for master failover” on page 380.

To perform scheduled maintenance on a master node, you can manually migrate
the master role to another node in the cluster.

See “About changing the CVM master manually” on page 385.

About setting cluster node preferences for master failover
Cluster Volume Manager (CVM) dynamically assigns an offset preference value to
each node, depending on criteria such as the connectivity to the disks in the disk
group. The preference assignment is automatic and generally does not require any
intervention from the storage administrator.

If you need greater control over the master selection, you can set customized
preference values. Determine which nodes in the CVM cluster are the most
appropriate candidates to run the master role. Assign high or low preference values
to the nodes so that CVM selects the master node from the pool of the most
appropriate nodes. CVM uses the custom node preferences together with the offset
preference values to select the new master node. CVM fails over the master role
to the preferred node.

Cluster node preference for master failover
Cluster Volume Manager (CVM) assigns weight values to each node in the cluster
based on internal criteria, such as the disk connectivity. CVM assigns weight values
from -100 to 100. A negative value means that the node is less likely to become
the master node in case of failover. A positive value means that the node is more
likely to become the master node.

If the CVM default values produce the desired behavior, you need not adjust the
preference values. In some cases, you as administrator want more control over
which nodes may become master during a failover. You can assign a positive value
or a negative value as a custom weight on certain nodes. The customized preference
values are static and persistent.

The custom weight values do not prevent CVM from assigning weights. CVM
increases or decreases the weight values, starting from the custom value instead
of starting from the default value of 0. To make sure that your preference has the
effect that you want, consider the effect of the values that CVM generates.

380Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

For example, you want to ensure that NodeA always has preference for failover
over NodeB. If NodeA loses connectivity to some disks, CVM reduces the weight
value of NodeA. CVM also might increase the weight value of NodeB. To override
the preference weights that CVM assigns, the custom preference value of NodeA
must be at least 200 more than the custom value of NodeB. For example, CVM
assigns a value of -100 to NodeA and a value of 100 to NodeB. If you want NodeB
to be the master failover candidate in case NodeA loses connectivity to all disks,
assign NodeA a value of 99.

Considerations for setting CVM node preferences
You can determine which nodes in the Cluster Volume Manager (CVM) cluster are
the most appropriate candidates to run the master role. Assign high or low preference
values to the nodes so that CVM selects the master node from the pool of the most
appropriate nodes.

Set the preference value with the CVM resource agent or the vxclustadm command.
The preference values are in the range from -2147483648 to 2147483647.

If you do not specify custom preferences, CVM gives preference to the node with
the maximum visibility to the storage to become the CVM master node.

To set CVM preferences for master failover, the cluster must be cluster protocol
version 110 or greater.

The following scenarios can indicate that you specify preference values:

■ A cluster running an I/O intensive application
Set the preferences for master failover so that after a failover, the application
runs on the master node. After the application crashes due to master node panic,
the application fails over to the new master. During recovery, the failover does
not incur the cost of exchanging messages between slave node and master
node if the I/O intensive application is co-located on the master. This behavior
improves the failover and recovery time.

■ A cluster where frequent administrative operations create high loads of internal
I/Os.
Set the preferences for master failover so that after a failover, the application
runs on a slave node.
Storage Foundation issues I/Os for administrative operations such as creating
volumes or snapshots. In this release, VxVM throttles the administrative I/Os
when the application I/O load is high. Throttling reduces the effect of Storage
Foundation generated I/Os on the application I/Os.
If your environment requires frequent administrative operations, you can also
set master failover preferences to minimize the effect of the administrative I/Os.

381Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Set lower preference values for master failover on the nodes to which the
applications may failover.

■ A cluster where nodes have different storage and processing capacities.
If your cluster contains some nodes with high processing capacity, you want
CVM to prefer those nodes to serve as the master role and to run the
applications. After considering application placement options, decide how to
prioritize the cluster nodes. Assign high preference values to nodes that have
higher processing capacity or better throughput.
On the other hand, your cluster may contain a few low-capacity nodes, which
are used for regular backup of data or an internal low-priority job. These
low-capacity nodes may not have visibility to all the shared storage so you do
not want the master role to run on these nodes. Set negative preference values
on these nodes so that CVM does not select them as CVM master over a more
favorable candidate.

■ A campus cluster where the master node should be on the same site as the
application.
You may want to keep the master node co-located with the site where application
is running. If you have defined a scheme where application failover happens
within a site, you also want the CVM master to fail over to a node within the site.
Set high preference values at all the nodes of a site, so that the master stays
within the site during master failure. Currently, CVM does not automatically give
preference based on the site.

Setting the cluster node preference using the CVMCluster
agent
On a cluster node, you can set the preference values for master failover using the
CVMCluster agent. Preferences set with this method are persistent across reboots.

382Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

To set the cluster node preference using the CVMCluster agent

1 Make the configuration writable.

haconf -makerw

2 View the preferences of the node at the current time:

hares -display cvm_clus -attribute CVMNodePreference

The command displays an integer value specifying the preference of the local
node to become the next master. Run the command on all the nodes and then
check to see which node has the highest preference to become the next master.

3 Set new preference values:

hares -modify cvm_clus CVMNodePreference \

"node1=weight1, node2=weight2, ..."

Setting the cluster node preference value for master
failover using the vxclustadm command
The procedures in this section describe how to set the cluster node preference
value for master failover using the vxclustadm command. Preferences set with this
method are not persistent across reboots.

To set the cluster node preference using the vxclustadm command

1 To view the existing preferences, use the following command:

vxclustadm getpreference

2 To set a new preference, use the following command:

vxclustadm setpreference value

Example of setting the cluster node preference value for
master failover
This example describes a case where the cluster environment includes three types
of nodes. You can define master preferences for each type of node, so that CVM
fails over the master role to the best candidate.

Consider the three types of nodes as the following pools:

■ Pool1 (Node1, Node2, Node3)

383Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

These nodes have high capacity (storage and processing) and have full storage
visibility. An I/O intensive application is running at these nodes of the cluster.
You are OK to choose a node from this pool over nodes from the other pool
even if it loses 30% of its disks.

■ Pool2 (Node4, Node5)
The cluster has a few low capacity (storage and processing) nodes. Internal
(in-house) applications use these nodes to do post-processing over the data.
Some of these nodes are also used for snapshots and backups. You want to
choose a node from this pool:
If there are no nodes to choose from Pool1 OR
If all the nodes in Pool1 have lost access to substantial disks reducing their
preference values below the preference values of nodes from Pool2.

■ Pool3 (Node6, Node7)
These nodes run applications that do not need to work on all the volumes. These
nodes may have a restricted view to the storage (limited storage visibility). CVM
internally offsets the preference values of nodes in this pool, because they do
not see all of the storage. To reduce the likelihood that one of these nodes
becomes the master node, you can assign negative preference values.

If you do not define any custom preferences, CVM determines the preference as
an offset depending on disk availability. Suppose at time A, the current master,
Node1, leaves the cluster. CVM calculates the preferences, and chooses Node5
since it has the best connectivity. If Node5 leaves, CVM selects Node4. Nodes from
Pool2 are preferred over nodes in Pool1.

CVM offset at time ANodePool

0Node1 (Current master)Pool1

-30Node2Pool1

-25Node3Pool1

-20Node4.Pool2

0Node5Pool2

-50Node6Pool3

-50Node7Pool3

In this example, you want to specify higher preference values to nodes in Pool1
and lower preferences to the nodes in Pool3. The following diagram show possible
preference values to the nodes in the cluster:

384Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Pool1
[Preference 30]

Pool2
[Preference 0]

Pool3
[Preference -50]

To set the cluster node preference

1 For each node in Pool1, set the preference to 30.

hares -modify cvm_clus CVMNodePreference \

"node1=30, node2=30, node3=30"

2 For each node in Pool3, set the preference to -50.

hares -modify cvm_clus CVMNodePreference "node6=-50, node7=-50"

After you set the preference values as above, the behavior reflects the desired
behavior in case of failover. If Node1 fails, the other nodes in Pool1 are the most
likely candidates to take over the master. Node3 has lost 25 percent of its disks,
but it is still preferred over the nodes in the other pools. Although Node5 has good
connectivity, nodes in the Pool1 are preferred over this one.

Total preferenceCustom preferenceCVM offset at
time A

Node

30300Node1 (current
master)

130-29Node2

530-25Node3

-200-20Node4.

000Node5

-100-50-50Node6

-100-50-50.Node7

About changing the CVM master manually
When you migrate the master role manually, you must specify the node that you
want to take over the master role. You can view the preference values set on the
node to help you determine the best node to take over the master role.

385Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

When you change the master node manually, the cluster stays online, and none of
the nodes are required to leave the cluster. However, CVM quiesces the application
I/Os. Therefore, schedule the master switch operation at an appropriate time to
minimize the effect on performance.

After a master failover, if you decide that CVM selected an inappropriate node to
be the master, you can change the master role manually. In this case, you may
also want to change the customized failover preference values for the cluster nodes.

See “About setting cluster node preferences for master failover” on page 380.

Considerations for changing the master manually
If the master is not running on the node best suited to be the master of the cluster,
you can manually change the master. Here are some scenarios when this might
occur.

■ The currently running master lost access to some of its disks.
By default, CVM uses I/O shipping to handle this scenario. However, you may
want to failover the application to a node which has access to the disks. When
you move the application, you may also want to relocate the master role to a
new node. For example, you may want the master node and the application to
be on the same node.
You can use the master switching operation to move the master role without
causing the original master node to leave the cluster. After the master role and
the application are both switched to other nodes, you may want to remove the
original node from the cluster. You can unmount the file systems and cleanly
shut down the node. You can then do maintenance on the node.

■ The master node is not scaling well with the overlap of application load and the
internally-generated administrative I/Os.
You may choose to reevaluate the placement strategy and relocate the master
node.

See “Considerations for setting CVM node preferences” on page 381.

Changing the CVM master manually
You can change the CVM master manually from one node in the cluster to another
node, while the cluster is online. CVM migrates the master node, and reconfigures
the cluster.

Symantec recommends that you switch the master when the cluster is not handling
VxVM configuration changes or cluster reconfiguration operations. In most cases,
CVM aborts the operation to change the master, if CVM detects that any
configuration changes are occurring in the VxVM or the cluster. After the master

386Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

change operation starts reconfiguring the cluster, other commands that require
configuration changes will fail until the master switch completes.

See “Errors during CVM master switching” on page 388.

To change the master online, the cluster must be cluster protocol version 100 or
greater.

To change the CVM master manually

1 To view the current master, use one of the following commands:

vxclustadm nidmap

Name CVM Nid CM Nid State

sys1 0 0 Joined: Slave

sys2 1 1 Joined: Master

vxdctl -c mode

mode: enabled: cluster active - MASTER

master: sys2

In this example, the CVM master is sys2.

2 From any node on the cluster, run the following command to change the CVM
master:

vxclustadm setmaster nodename

where nodename specifies the name of the new CVM master.

The following example shows changing the master on a cluster from sys2 to
sys1:

vxclustadm setmaster sys1

387Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

3 To monitor the master switching, use the following command:

vxclustadm -v nodestate

state: cluster member

nodeId=0

masterId=0

neighborId=1

members[0]=0xf

joiners[0]=0x0

leavers[0]=0x0

members[1]=0x0

joiners[1]=0x0

leavers[1]=0x0

reconfig_seqnum=0x9f9767

vxfen=off

state: master switching in progress

reconfig: vxconfigd in join

In this example, the state indicates that master is being changed.

4 To verify whether the master has successfully changed, use one of the following
commands:

vxclustadm nidmap

Name CVM Nid CM Nid State

sys1 0 0 Joined: Master

sys2 1 1 Joined: Slave

vxdctl -c mode

mode: enabled: cluster active - MASTER

master: sys1

Errors during CVM master switching
Symantec recommends that you switch the master when the cluster is not handling
VxVM or cluster configuration changes.

In most cases, CVM aborts the operation to change the master, if CVM detects any
configuration changes in progress. CVM logs the reason for the failure into the
system logs. In some cases, the failure is displayed in the vxclustadm setmaster

output as follows:

vxclustadm setmaster sys1

VxVM vxclustadm ERROR V-5-1-15837 Master switching, a reconfiguration or

a transaction is in progress.

Try again

388Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

In some cases, if the master switching operation is interrupted with another
reconfiguration operation, the master change fails. In this case, the existing master
remains the master of the cluster. After the reconfiguration is complete, reissue the
vxclustadm setmaster command to change the master.

If the master switching operation has started the reconfiguration, any command
that initiates a configuration change fails with the following error:

Node processing a master-switch request. Retry operation.

If you see this message, retry the command after the master switching has
completed.

Importing a shared disk group manually
You can use the following command to manually import a shared disk group:

vxdg -s import dg_name

Deporting a shared disk group manually
You can use the following command to manually deport a shared disk group:

vxdg deport dg_name

Note that the deport of a shared disk group removes the SCSI-3 PGR keys on the
disks.

Starting shared volumes manually
Following a manual CVM shared disk group import, the volumes in the disk group
need to be started manually, as follows:

vxvol -g dg_name startall

To verify that the volumes are started, run the following command:

vxprint -htrg dg_name | grep ^v

Evaluating the state of CVM ports
CVM kernel (vxio driver) uses port ‘v’ for kernel messaging, port ‘w’ for vxconfigd
communication between the cluster nodes, and port 'u' for shipping commands from
the slave node to the master node. The following command displays the state of
CVM ports:

389Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

gabconfig -a | egrep "Port [vwu]"

Verifying if CVM is running in an SFCFSHA cluster
You can use the following options to verify whether CVM is up or not in an SFCFSHA
cluster.

The following output is displayed on a node that is not a member of the cluster:

vxdctl -c mode

mode: enabled: cluster inactive

vxclustadm -v nodestate

state: out of cluster

On the master node, the following output is displayed:

vxdctl -c mode

mode: enabled: cluster active - MASTER

master: sys1

On the slave nodes, the following output is displayed:

vxdctl -c mode

mode: enabled: cluster active - SLAVE

master: sys2

The following command lets you view all the CVM nodes at the same time:

vxclustadm nidmap

Name CVM Nid CM Nid State

sys1 0 0 Joined: Master

sys2 1 1 Joined: Slave

Verifying CVM membership state
The state of CVM can be verified as follows:

vxclustadm -v nodestate

state: joining

nodeId=0

masterId=0

neighborId=1

members=0x3

joiners=0x0

390Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

leavers=0x0

reconfig_seqnum=0x72a10b

vxfen=on

The state indicates that CVM has completed its kernel level join and is in the middle
of vxconfigd level join.

The vxdctl -c mode command indicates whether a node is a CVM master or CVM
slave.

Verifying the state of CVM shared disk groups
You can use the following command to list the shared disk groups currently imported
in the SFCFSHA cluster:

vxdg list |grep shared

oradatadg enabled,shared 1052685125.1485.sys1

Verifying the activation mode
In an SFCFSHA cluster, the activation of shared disk group should be set to
“shared-write” on each of the cluster nodes.

To verify whether the “shared-write”activation is set:

vxdg list dg_name |grep activation

local-activation: shared-write

If "shared-write" activation is not set, run the following command:

vxdg -g dg_name set activation=sw

CVM log files
The /var/VRTSvcs/log directory contains the agent log files.

cd /var/VRTSvcs/log

ls -l *CVM* engine_A.log

CVMCluster_A.log # CVM Agent log

CVMVolDg_A.log # CVM VolDg Agent log

CVMVxconfigd_A.log # CVM vxconfigd Agent log

engine_A.log # VCS log

You can use the cmdlog file to view the list of CVM commands that have been
executed. The file is located at /var/adm/vx/cmdlog.

391Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Requesting node status and discovering the master node
The vxdctl utility controls the operation of the vxconfigd volume configuration
daemon. The -c option can be used to request cluster information and to find out
which node is the master. To determine whether the vxconfigd daemon is enabled
and/or running, use the following command:

vxdctl -c mode

Table 15-2 shows the various messages that may be output according to the current
status of the cluster node.

Table 15-2 Cluster status messages

DescriptionStatus message

The node is the master.mode: enabled:
cluster active - MASTER
master: mozart

The node is a slave.mode: enabled:
cluster active - SLAVE
master: mozart

The node has not yet been assigned a role,
and is in the process of joining the cluster.

mode: enabled:
cluster active - role not set
master: mozart
state: joining
reconfig: master update

The node is configured as a slave, and is in
the process of joining the cluster.

mode: enabled:
cluster active - SLAVE
master: mozart
state: joining

The cluster is not active on this node.mode: enabled:
cluster inactive

Enable root disk encapsulation but not
transactions.

mode: booted:
master: ts4200-04

Disable transactions.mode: disabled:

If the vxconfigd daemon is disabled, no cluster information is displayed.

392Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

See the vxdctl(1M) manual page.

Determining if a LUN is in a shareable disk group
The vxdisk utility manages VxVM disks. To use the vxdisk utility to determine
whether a LUN is part of a cluster-shareable disk group, use the following command:

vxdisk list accessname

where accessname is the disk access name (or device name).

For example, a portion of the output from this command (for the device sde) is
shown here:

Device: sde

devicetag: sde

type: auto

clusterid: cvm2

disk: name=shdg01 id=963616090.1034.cvm2

timeout: 30

group: name=shdg id=963616065.1032.cvm2

flags: online ready autoconfig shared imported

...

Note that the clusterid field is set to cvm2 (the name of the cluster), and the flags

field includes an entry for shared. The imported flag is only set if a node is a part
of the cluster and the disk group is imported.

Listing shared disk groups
vxdg can be used to list information about shared disk groups. To display information
for all disk groups, use the following command:

vxdg list

Example output from this command is displayed here:

NAME STATE ID

group2 enabled,shared 774575420.1170.teal

group1 enabled,shared 774222028.1090.teal

Shared disk groups are designated with the flag shared.

To display information for shared disk groups only, use the following command:

vxdg -s list

393Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Example output from this command is as follows:

NAME STATE ID

group2 enabled,shared 774575420.1170.teal

group1 enabled,shared 774222028.1090.teal

To display information about one specific disk group, use the following command:

vxdg list diskgroup

The following is example output for the command vxdg list group1 on the master:

Group: group1

dgid: 774222028.1090.teal

import-id: 32768.1749

flags: shared

version: 140

alignment: 8192 (bytes)

ssb: on

local-activation: exclusive-write

cluster-actv-modes: node0=ew node1=off

detach-policy: local

dg-fail-policy: leave

copies: nconfig=2 nlog=2

config: seqno=0.1976 permlen=1456 free=1448 templen=6

loglen=220

config disk sdk copy 1 len=1456 state=clean online

config disk sdk copy 1 len=1456 state=clean online

log disk sdk copy 1 len=220

log disk sdk copy 1 len=220

Note that the flags field is set to shared. The output for the same command when
run on a slave is slightly different. The local-activation and cluster-actv-modes

fields display the activation mode for this node and for each node in the cluster
respectively. The detach-policy and dg-fail-policy fields indicate how the
cluster behaves in the event of loss of connectivity to the disks, and to the
configuration and log copies on the disks.

Creating a shared disk group
You can run the command to create a shared disk group on a master node or a
slave node. If you create the disk group on a slave node, the command is shipped
to the master and executed on the master.

394Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

If the cluster software has been run to set up the cluster, a shared disk group can
be created using the following command:

vxdg -s init diskgroup [diskname=]devicenames

where diskgroup is the disk group name, diskname is the administrative name
chosen for a VM disk, and devicename is the device name (or disk access name).

Warning: The operating system cannot tell if a disk is shared. To protect data
integrity when dealing with disks that can be accessed by multiple systems, use
the correct designation when adding a disk to a disk group. VxVM allows you to
add a disk that is not physically shared to a shared disk group if the node where
the disk is accessible is the only node in the cluster. However, this means that other
nodes cannot join the cluster. Furthermore, if you attempt to add the same disk to
different disk groups (private or shared) on two nodes at the same time, the results
are undefined. Perform all configuration on one node only, and preferably on the
master node.

Importing disk groups as shared
You can import shared disk groups on a master node or a slave node. If you run
the command to import the shared disk group on a slave node, the command is
shipped to the master and executed on the master.

Disk groups can be imported as shared using the vxdg -s import command. If
the disk groups are set up before the cluster software is run, the disk groups can
be imported into the cluster arrangement using the following command:

vxdg -s import diskgroup

where diskgroup is the disk group name or ID. On subsequent cluster restarts, the
disk group is automatically imported as shared. Note that it can be necessary to
deport the disk group (using the vxdg deport diskgroup command) before invoking
the vxdg utility.

Forcibly importing a disk group
You can use the -f option to the vxdg command to import a disk group forcibly.

Warning: The force option(-f) must be used with caution and only if you are fully
aware of the consequences such as possible data corruption.

395Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

When a cluster is restarted, VxVM can refuse to auto-import a disk group for one
of the following reasons:

■ A disk in the disk group is no longer accessible because of hardware errors on
the disk. In this case, use the following command to forcibly reimport the disk
group:

vxdg -s -f import diskgroup

Note: After a forced import, the data on the volumes may not be available and
some of the volumes may be in the disabled state.

■ Some of the disks in the shared disk group are not accessible, so the disk group
cannot access all of its disks. In this case, a forced import is unsafe and must
not be attempted because it can result in inconsistent mirrors.

Converting a disk group from shared to private
You can convert shared disk groups on a master node or a slave node. If you run
the command to convert the shared disk group on a slave node, the command is
shipped to the master and executed on the master.

To convert a shared disk group to a private disk group, first deport it on the master
node using this command:

vxdg deport diskgroup

Then reimport the disk group on any cluster node using this command:

vxdg import diskgroup

Moving objects between shared disk groups
You can move objects between shared disk groups on a master node or a slave
node. If you run the command to move objects between shared disk groups on a
slave node, the command is shipped to the master and executed on the master.

You can use the vxdg move command to move a self-contained set of VxVM objects
such as disks and top-level volumes between disk groups. In a cluster, you can
move such objects between private disk groups on any cluster node where those
disk groups are imported.

See “Moving objects between disk groups” on page 859.

396Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Splitting shared disk groups
You can use the vxdg split command to remove a self-contained set of VxVM
objects from an imported disk group, and move them to a newly created disk group.

See “Splitting disk groups” on page 862.

Splitting a private disk group creates a private disk group, and splitting a shared
disk group creates a shared disk group. You can split a private disk group on any
cluster node where that disk group is imported.

You can split a shared disk group or create a shared target disk group on a master
node or a slave node. If you run the command to split a shared disk group or to
create a shared target disk group on a slave node, the command is shipped to the
master and executed on the master.

Joining shared disk groups
You cannot join a private disk group and a shared disk group.

You can use the vxdg join command to merge the contents of two imported disk
groups. In a cluster, you can join two private disk groups on any cluster node where
those disk groups are imported.

If the source disk group and the target disk group are both shared, you can perform
the join from a master node or a slave node. If you run the command to perform
the join on a slave node, the command is shipped to the master and executed on
the master.

See “Joining disk groups” on page 863.

Changing the activation mode on a shared disk group
The activation mode for access by a cluster node to a shared disk group is set
directly on that node.

The activation mode of a shared disk group can be changed using the following
command:

vxdg -g diskgroup set activation=mode

The activation mode is one of exclusivewrite or ew, readonly or ro, sharedread
or sr, sharedwrite or sw, or off.

If you use this command to change the activation mode of a shared disk group, you
must first change the activation mode to off before setting it to any other value, as
shown here:

397Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

vxdg -g myshdg set activation=off

vxdg -g myshdg set activation=readonly

See “Activation modes of shared disk groups” on page 150.

Enabling I/O shipping for shared disk groups
The default for the I/O ship policy is off. You can turn on I/O shipping for all nodes.

To enable I/O shipping on a shared disk group

◆ Set the I/O shipping policy to on for the specified disk group.

vxdg -g diskgroup set ioship=on

To disable I/O shipping on a shared disk group

◆ Set the I/O shipping policy to off for the specified disk group.

vxdg -g diskgroup set ioship=off

Setting the detach policy for shared disk groups
The default for the detach policy is global.

To change the detach policy on a shared disk group

◆ To set the detach policy to local on a shared disk group.

vxdg -g diskgroup set diskdetpolicy=local

To set the detach policy to global (the default).

vxdg -g diskgroup set diskdetpolicy=global

Controlling the CVM tolerance to storage disconnectivity
By default, CVM requires that a node has access to all of the disks in a shared disk
group before the node can join the cluster. The connectivity is also required before
a shared disk group can be imported. This behavior occurs when the tunable
parameter storage_connectivity is set to resilient.

If required, CVM can be configured to enable a node to join the cluster as long as
it has access to all of the disks through another node. Similarly, as long as at least
one node can access the disks in a shared disk group, CVM can import the shared
disk group. This behavior occurs when the tunable parameter storage_connectivity
is set to asymmetric.

398Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

The disk group version and cluster protocol version must be set to levels that support
the asymmetric behavior.

To set the storage connectivity parameter to asymmetric

1 Display the current setting for the CVM tolerance to storage disconnectivity.

vxtune storage_connectivity

KEYWORD CURRENT-VALUE DEFAULT-VALUE

storage_connectivity resilient resilient

2 If the output shows that the current value is resilient, you can enable the
asymmetric behavior with the following command:

vxtune storage_connectivity asymmetric

3 Verify the changed setting.

vxtune storage_connectivity

KEYWORD CURRENT-VALUE DEFAULT-VALUE

storage_connectivity asymmetric resilient

Handling cloned disks in a shared disk group
If a disk is cloned or copied in such a way to created a duplicate disk ID, you must
perform special actions to import the disk into VxVM. The procedures are the same
for shared disk groups as for private disk groups. When you are ready to import
the disk, specify the -s option to the vxdg import command:

vxdg -s import diskgroup

See “Handling cloned disks with duplicated identifiers” on page 900.

Creating volumes with exclusive open access by a node
When using the vxassist command to create a volume, you can use the
exclusive=on attribute to specify that the volume may only be opened by one node
in the cluster at a time. For example, to create the mirrored volume volmir in the
disk group dskgrp, and configure it for exclusive open, use the following command:

vxassist -g dskgrp make volmir 5g layout=mirror exclusive=on

399Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster can
open a volume simultaneously. This is the default behavior.

Setting exclusive open access to a volume by a node
Exclusive open access on a volume can be set from the any node in the cluster.
Ensure that none of the nodes in the cluster have the volume open when setting
this attribute.

You can set the exclusive=on attribute with the vxvol command to specify that an
existing volume may only be opened by one node in the cluster at a time.

For example, to set exclusive open on the volume volmir in the disk group dskgrp,
use the following command:

vxvol -g dskgrp set exclusive=on volmir

Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster can
open a volume simultaneously. This is the default behavior.

Displaying the cluster protocol version
The following command displays the cluster protocol version running on a node:

vxdctl list

This command produces output similar to the following:

Volboot file

version: 3/1

seqno: 0.19

cluster protocol version: 120

hostid: giga

entries:

You can also check the existing cluster protocol version using the following
command:

vxdctl protocolversion

400Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

This produces output similar to the following:

Cluster running at protocol 120

Displaying the supported cluster protocol version range
The following command displays the maximum and minimum protocol version
supported by the node and the current protocol version:

vxdctl support

This command produces output similar to the following:

Support information:

vxconfigd_vrsn: 31

dg_minimum: 20

dg_maximum: 180

kernel: 31

protocol_minimum: 90

protocol_maximum: 120

protocol_current: 120

You can also use the following command to display the maximum and minimum
cluster protocol version supported by the current Veritas Volume Manager release:

vxdctl protocolrange

This produces output similar to the following:

minprotoversion: 90, maxprotoversion: 120

Recovering volumes in shared disk groups
The vxrecover utility is used to recover plexes and volumes after disk replacement.
When a node leaves a cluster, it can leave some mirrors in an inconsistent state.
The vxrecover utility can be used to recover such volumes. The -c option to
vxrecover causes it to recover all volumes in shared disk groups. The vxconfigd

daemon automatically calls the vxrecover utility with the -c option when necessary.

Warning: While the vxrecover utility is active, there can be some degradation in
system performance.

401Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

Obtaining cluster performance statistics
The vxstat utility returns statistics for specified objects. In a cluster environment,
vxstat gathers statistics from all of the nodes in the cluster. The statistics give the
total usage, by all nodes, for the requested objects. If a local object is specified, its
local usage is returned.

You can optionally specify a subset of nodes using the following form of the
command:

vxstat -g diskgroup -n node[,node...]

where node is the CVM node ID number. You can find out the CVM node ID by
using the following command:

vxclustadm nidmap

If a comma-separated list of nodes is supplied, the vxstat utility displays the sum
of the statistics for the nodes in the list.

For example, to obtain statistics for node 2, volume vol1,use the following command:

vxstat -g diskgroup -n 2 vol1

This command produces output similar to the following:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

vol vol1 2421 0 600000 0 99.0 0.0

To obtain and display statistics for the entire cluster, use the following command:

vxstat -b

The statistics for all nodes are summed. For example, if node 1 performed 100 I/O
operations and node 2 performed 200 I/O operations, vxstat -b displays a total
of 300 I/O operations.

Administering CVM from the slave node
CVM requires that the master node of the cluster executes configuration commands,
which change the object configuration of a CVM shared disk group. Examples of
configuration changes include creating shared disk groups, importing shared disk
groups, deporting shared disk groups, and creating volumes or snapshots in a
shared disk group.

Starting in 5.1 Service Pack 1 release of SFCFSHA, you can issue most
configuration commands that operate on the shared disk group from any node in

402Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

the cluster. If you issue the command on the slave node, CVM ships the commands
from the slave node to the master node. CVM then executes the command on the
master node. In normal conditions, we recommend that you issue
configuration-changing commands for a shared disk group on the master node. If
the circumstances require, you can issue these commands from the slave node.

Commands that operate on private disk groups are not shipped to the master node.
Similarly, CVM does not ship commands that operate locally on the slave node,
such as vxprint and vxdisk list.

CVM uses the Group Membership Services and Atomic Broadcast (GAB) transport
mechanism of Veritas Cluster Server (VCS) to ship the commands from the slave
node to the master node.

When you issue a command on the slave that is executed on the master, the
command output (on the slave node) displays the object names corresponding to
the master node. For example, the command displays the disk access name
(daname) from the master node.

When run from a slave node, a query command such as vxtask or vxstat displays
the status of the commands on the slave node. The command does not show the
status of commands that originated from the slave node and that are executing on
the master node.

Note the following error handling for commands that you originate from the slave
node, which CVM executes on the master:

■ If the vxconfigd daemon on either the slave node or on the master node fails,
the command exits. The instance of the command on the master also exits. To
determine if the command executed successfully, use the vxprint command
to check the status of the VxVM objects.

■ If the slave node that shipped the command or the master node leaves the
cluster while the master is executing the command, the command exits on the
master node as well as on the slave node. To determine if the command
executed successfully, use thevxprint command to check the status of the
VxVM objects.

Note the following limitations for issuing CVM commands from the slave node:

■ The CVM protocol version must be at least 100 on all nodes in the cluster.
See “Displaying the cluster protocol version” on page 400.

■ CVM uses the values in the defaults file on the master node when CVM executes
the command. To avoid any ambiguity, we recommend that you use the same
values in the defaults file for each of the nodes in the cluster.

■ CVM does not support executing all commands on the slave node. You must
issue the following commands only on the master node:

403Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

■ Commands that specify a controller name. For example:

vxassist -g shareddg make sharedvol 20M ctlr:fscsi0

■ Commands that specify both a shared disk group and a private disk group.
For example:

vxdg destroy privatedg shareddg

■ Commands that include the defaults file as an argument. For example:

vxassist -d defaults_file

■ Veritas Volume Replicator (VVR) commands including vxibc, vxrlink,
vxrsync, vxrvg, vrport, vrstat, and vradmin.

■ The vxdisk command options that act on shared disk groups.
See “CVM commands supported for executing on the slave node” on page 1064.

Administering ODM
This section provides instructions for the following ODM administration tasks:

■ Verifying the ODM port

■ Starting ODM

If you encounter issues while administering ODM, refer to the troubleshooting
section for assistance.

Verifying the ODM port
It is recommended to enable ODM in SFCFSHA. Run the following command to
verify that ODM is running:

gabconfig -a | grep "Port d"

Starting ODM
The following procedure provides instructions for starting ODM.

To start ODM

◆ Run the following command:

/etc/init.d/vxodm start

404Administering Storage Foundation Cluster File System High Availability and its components
Administering ODM

Administering I/O fencing
See the Veritas Cluster Server Administrator's Guide for more information.

About administering I/O fencing
The I/O fencing feature provides the following utilities that are available through the
VRTSvxfen RPM:

Table 15-3 lists the utilities that are available through the VRTSvxfen RPM

DescriptionUtility

Tests SCSI-3 functionality of the disks for I/O fencing

See “About the vxfentsthdw utility” on page 405.

vxfentsthdw

Configures and unconfigures I/O fencing

Lists the coordination points used by the vxfen driver.

vxfenconfig

Displays information on I/O fencing operations and manages SCSI-3
disk registrations and reservations for I/O fencing

See “About the vxfenadm utility” on page 413.

vxfenadm

Removes SCSI-3 registrations and reservations from disks

See “About the vxfenclearpre utility” on page 418.

vxfenclearpre

Replaces coordination points without stopping I/O fencing

See “About the vxfenswap utility” on page 421.

vxfenswap

Generates the list of paths of disks in the diskgroup. This utility requires
that Veritas Volume Manager (VxVM) is installed and configured.

vxfendisk

The I/O fencing commands reside in the /opt/VRTS/bin|grep -i vxfen folder.
Make sure you added this folder path to the PATH environment variable.

For more information on commands, refer to the vxfensthdw(1M), vxfenconfig(1M),
vxfenadm(1M), vxfenclearpre(1M), vxfenswap(1M), vxfendisk(1M) manual pages.

About the vxfentsthdw utility
You can use the vxfentsthdw utility to verify that shared storage arrays to be used
for data support SCSI-3 persistent reservations and I/O fencing. During the I/O
fencing configuration, the testing utility is used to test a single disk. The utility has
other options that may be more suitable for testing storage devices in other
configurations. You also need to test coordinator disk groups.

405Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

See the Veritas Storage Foundation Cluster File System High Availability Installation
Guide to set up I/O fencing.

The utility, which you can run from one system in the cluster, tests the storage used
for data by setting and verifying SCSI-3 registrations on the disk or disks you specify,
setting and verifying persistent reservations on the disks, writing data to the disks
and reading it, and removing the registrations from the disks.

Refer also to the vxfentsthdw(1M) manual page.

About general guidelines for using the vxfentsthdw utility
Review the following guidelines to use the vxfentsthdw utility:

■ The utility requires two systems connected to the shared storage.

Caution: The tests overwrite and destroy data on the disks, unless you use the
-r option.

■ The two nodes must have SSH (default) or rsh communication. If you use rsh,
launch the vxfentsthdw utility with the -n option.
After completing the testing process, you can remove permissions for
communication and restore public network connections.

■ To ensure both systems are connected to the same disk during the testing, you
can use the vxfenadm -i diskpath command to verify a disk’s serial number.
See “Verifying that the nodes see the same disk” on page 417.

■ For disk arrays with many disks, use the -m option to sample a few disks before
creating a disk group and using the -g option to test them all.

■ The utility indicates a disk can be used for I/O fencing with a message
resembling:

The disk /dev/sdx is ready to be configured for

I/O Fencing on node sys1

If the utility does not show a message stating a disk is ready, verification has
failed.

■ If the disk you intend to test has existing SCSI-3 registration keys, the test issues
a warning before proceeding.

About the vxfentsthdw command options
Table 15-4 describes the methods that the utility provides to test storage devices.

406Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-4 vxfentsthdw options

When to useDescriptionvxfentsthdwoption

Use when rsh is used for
communication.

Utility uses rsh for
communication.

-n

Use during non-destructive
testing.

See “Performing non-destructive
testing on the disks using the -r
option” on page 409.

Non-destructive testing. Testing
of the disks for SCSI-3 persistent
reservations occurs in a
non-destructive way; that is,
there is only testing for reads, not
writes. May be used with -m, -f,
or -g options.

-r

When you want to perform TUR
testing.

Testing of the return value of
SCSI TEST UNIT (TUR)
command under SCSI-3
reservations. A warning is printed
on failure of TUR testing.

-t

By default, the script picks up the
DMP paths for disks in the disk
group. If you want the script to
use the raw paths for disks in the
disk group, use the -w option.

Use DMP devices.

May be used with -c or -g
options.

-d

With the -w option, the script
picks the operating system paths
for disks in the disk group. By
default, the script uses the -d
option to pick up the DMP paths
for disks in the disk group.

Use raw devices.

May be used with -c or -g
options.

-w

For testing disks in coordinator
disk group.

See “Testing the coordinator disk
group using the -c option of
vxfentsthdw” on page 408.

Utility tests the coordinator disk
group prompting for systems and
devices, and reporting success
or failure.

-c

For testing a few disks or for
sampling disks in larger arrays.

See “Testing the shared disks
using the -m option of
vxfentsthdw” on page 410.

Utility runs manually, in
interactive mode, prompting for
systems and devices, and
reporting success or failure.

May be used with -r and -t
options. -m is the default option.

-m

407Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-4 vxfentsthdw options (continued)

When to useDescriptionvxfentsthdwoption

For testing several disks.

See “Testing the shared disks
listed in a file using the -f option
of vxfentsthdw ” on page 412.

Utility tests system/device
combinations listed in a text file.

May be used with -r and -t
options.

-f filename

For testing many disks and
arrays of disks. Disk groups may
be temporarily created for testing
purposes and destroyed
(ungrouped) after testing.

See “Testing all the disks in a
disk group using the -g option of
vxfentsthdw” on page 412.

Utility tests all disk devices in a
specified disk group.

May be used with -r and -t
options.

-g disk_group

Testing the coordinator disk group using the -c option of
vxfentsthdw
Use the vxfentsthdw utility to verify disks are configured to support I/O fencing. In
this procedure, the vxfentsthdw utility tests the three disks, one disk at a time from
each node.

The procedure in this section uses the following disks for example:

■ From the node sys1, the disks are seen as /dev/sdg, /dev/sdh, and /dev/sdi.

■ From the node sys2, the same disks are seen as /dev/sdx, /dev/sdy, and
/dev/sdz.

Note: To test the coordinator disk group using the vxfentsthdw utility, the utility
requires that the coordinator disk group, vxfencoorddg, be accessible from two
nodes.

To test the coordinator disk group using the -c option of vxfentsthdw

1 Use the vxfentsthdw command with the -c option. For example:

vxfentsthdw -c vxfencoorddg

2 Enter the nodes you are using to test the coordinator disks:

Enter the first node of the cluster: sys1

Enter the second node of the cluster: sys2

408Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

3 Review the output of the testing process for both nodes for all disks in the
coordinator disk group. Each disk should display output that resembles:

ALL tests on the disk /dev/sdg have PASSED.

The disk is now ready to be configured for I/O Fencing on node

sys1 as a COORDINATOR DISK.

ALL tests on the disk /dev/sdx have PASSED.

The disk is now ready to be configured for I/O Fencing on node

sys2 as a COORDINATOR DISK.

4 After you test all disks in the disk group, the vxfencoorddg disk group is ready
for use.

Removing and replacing a failed disk
If a disk in the coordinator disk group fails verification, remove the failed disk or
LUN from the vxfencoorddg disk group, replace it with another, and retest the disk
group.

To remove and replace a failed disk

1 Use the vxdiskadm utility to remove the failed disk from the disk group.

Refer to the Veritas Storage Foundation Administrator’s Guide.

2 Add a new disk to the node, initialize it, and add it to the coordinator disk group.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for instructions to initialize disks for I/O fencing and to set
up coordinator disk groups.

If necessary, start the disk group.

See the Veritas Storage Foundation Cluster File System High Availability
Administrator’s Guide for instructions to start the disk group.

3 Retest the disk group.

See “Testing the coordinator disk group using the -c option of vxfentsthdw”
on page 408.

Performing non-destructive testing on the disks using the
-r option
You can perform non-destructive testing on the disk devices when you want to
preserve the data.

409Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To perform non-destructive testing on disks

◆ To test disk devices containing data you want to preserve, you can use the -r

option with the -m, -f, or -g options.

For example, to use the -m option and the -r option, you can run the utility as
follows:

vxfentsthdw -rm

When invoked with the -r option, the utility does not use tests that write to the
disks. Therefore, it does not test the disks for all of the usual conditions of use.

Testing the shared disks using the -m option of
vxfentsthdw
Review the procedure to test the shared disks. By default, the utility uses the -m

option.

This procedure uses the /dev/sdx disk in the steps.

If the utility does not show a message stating a disk is ready, verification has failed.
Failure of verification can be the result of an improperly configured disk array. It
can also be caused by a bad disk.

If the failure is due to a bad disk, remove and replace it. The vxfentsthdw utility
indicates a disk can be used for I/O fencing with a message resembling:

The disk /dev/sdx is ready to be configured for

I/O Fencing on node sys1

Note: For A/P arrays, run the vxfentsthdw command only on active enabled paths.

To test disks using the vxfentsthdw script

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

2 From one node, start the utility.

vxfentsthdw [-n]

410Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

3 After reviewing the overview and warning that the tests overwrite data on the
disks, confirm to continue the process and enter the node names.

******** WARNING!!!!!!!! ********

THIS UTILITY WILL DESTROY THE DATA ON THE DISK!!

Do you still want to continue : [y/n] (default: n) y

Enter the first node of the cluster: sys1

Enter the second node of the cluster: sys2

4 Enter the names of the disks you are checking. For each node, the disk may
be known by the same name:

Enter the disk name to be checked for SCSI-3 PGR on node

sys1 in the format:

for dmp: /dev/vx/rdmp/sdx

for raw: /dev/sdx

Make sure it's the same disk as seen by nodes sys1 and sys2

/dev/sdr

Enter the disk name to be checked for SCSI-3 PGR on node

sys2 in the format:

for dmp: /dev/vx/rdmp/sdx

for raw: /dev/sdx

Make sure it's the same disk as seen by nodes sys1 and sys2

/dev/sdr

If the serial numbers of the disks are not identical, then the test terminates.

5 Review the output as the utility performs the checks and report its activities.

6 If a disk is ready for I/O fencing on each node, the utility reports success:

ALL tests on the disk /dev/sdx have PASSED

The disk is now ready to be configured for I/O Fencing on node

sys1

...

Removing test keys and temporary files, if any ...

.

.

7 Run the vxfentsthdw utility for each disk you intend to verify.

411Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Testing the shared disks listed in a file using the -f option
of vxfentsthdw
Use the -f option to test disks that are listed in a text file. Review the following
example procedure.

To test the shared disks listed in a file

1 Create a text file disks_test to test two disks shared by systems sys1 and
sys2 that might resemble:

sys1 /dev/sdz sys2 /dev/sdy

sys1 /dev/sdu sys2 /dev/sdw

where the first disk is listed in the first line and is seen by sys1 as /dev/sdz and
by sys2 as /dev/sdy. The other disk, in the second line, is seen as /dev/sdu
from sys1 and /dev/sdw from sys2. Typically, the list of disks could be extensive.

2 To test the disks, enter the following command:

vxfentsthdw -f disks_test

The utility reports the test results one disk at a time, just as for the -m option.

Testing the shared disks using the -m option of vxfentsthdw

Testing all the disks in a disk group using the -g option of
vxfentsthdw
Use the -g option to test all disks within a disk group. For example, you create a
temporary disk group consisting of all disks in a disk array and test the group.

Note: Do not import the test disk group as shared; that is, do not use the -s option
with the vxdg import command.

After testing, destroy the disk group and put the disks into disk groups as you need.

To test all the disks in a disk group

1 Create a diskgroup for the disks that you want to test.

2 Enter the following command to test the diskgroup test_disks_dg:

vxfentsthdw -g test_disks_dg

The utility reports the test results one disk at a time.

412Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Testing a disk with existing keys
If the utility detects that a coordinator disk has existing keys, you see a message
that resembles:

There are Veritas I/O fencing keys on the disk. Please make sure

that I/O fencing is shut down on all nodes of the cluster before

continuing.

******** WARNING!!!!!!!! ********

THIS SCRIPT CAN ONLY BE USED IF THERE ARE NO OTHER ACTIVE NODES

IN THE CLUSTER! VERIFY ALL OTHER NODES ARE POWERED OFF OR

INCAPABLE OF ACCESSING SHARED STORAGE.

If this is not the case, data corruption will result.

Do you still want to continue : [y/n] (default: n) y

The utility prompts you with a warning before proceeding. You may continue as
long as I/O fencing is not yet configured.

About the vxfenadm utility
Administrators can use the vxfenadm command to troubleshoot and test fencing
configurations.

The command’s options for use by administrators are as follows:

Table 15-5 vxfenadm commands

read the keys on a disk and display the keys in numeric, character, and node
format

Note: The -g and -G options are deprecated. Use the -s option.

-s

read SCSI inquiry information from device-i

register with disks-m

make a reservation with disks-n

remove registrations made by other systems-p

read reservations-r

413Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-5 vxfenadm commands (continued)

remove registrations-x

Refer to the vxfenadm(1M) manual page for a complete list of the command options.

About the I/O fencing registration key format
The keys that the vxfen driver registers on the data disks and the coordinator disks
consist of eight bytes. The key format is different for the coordinator disks and data
disks.

The key format of the coordinator disks is as follows:

76543210Byte

nID 0xnID 0xcID 0xcID 0xcID 0xcID 0xFVValue

where:

■ VF is the unique identifier that carves out a namespace for the keys (consumes
two bytes)

■ cID 0x is the LLT cluster ID in hexadecimal (consumes four bytes)

■ nID 0x is the LLT node ID in hexadecimal (consumes two bytes)

The vxfen driver uses this key format in both sybase mode of I/O fencing.

The key format of the data disks that are configured as failover disk groups under
VCS is as follows:

76543210Byte

SCVA+nIDValue

where nID is the LLT node ID

For example: If the node ID is 1, then the first byte has the value as B (‘A’ + 1 = B).

The key format of the data disks configured as parallel disk groups under Cluster
Volume Manager (CVM) is as follows:

76543210Byte

DGcountDGcountDGcountDGcountRGPA+nIDValue

414Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

where DGcount is the count of disk group in the configuration (consumes four bytes).

By default, CVM uses unique fencing key for each disk group. However, some
arrays have a restriction on the total number of unique keys that can be registered.
In such cases, you can use the same_key_for_alldgs tunable parameter to change
the default behavior. The default value of the parameter is off. If your configuration
hits the storage array limit on total number of unique keys, you can turn the value
on using the vxdefault command as follows:

vxdefault set same_key_for_alldgs on

vxdefault list

KEYWORD CURRENT-VALUE DEFAULT-VALUE

...

same_key_for_alldgs on off

...

If the tunable is changed to on, all subsequent keys that the CVM generates on
disk group imports or creates have 0000 as their last four bytes (DGcount is 0).
You must deport and re-import all the disk groups that are already imported for the
changed value of the same_key_for_alldgs tunable to take effect.

Displaying the I/O fencing registration keys
You can display the keys that are currently assigned to the disks using the vxfenadm

command.

The variables such as disk_7, disk_8, and disk_9 in the following procedure
represent the disk names in your setup.

To display the I/O fencing registration keys

1 To display the key for the disks, run the following command:

vxfenadm -s disk_name

For example:

■ To display the key for the coordinator disk /dev/sdx from the system with
node ID 1, enter the following command:

vxfenadm -s /dev/sdx

key[1]:

[Numeric Format]: 86,70,68,69,69,68,48,48

[Character Format]: VFDEED00

* [Node Format]: Cluster ID: 57069 Node ID: 0 Node Name: sys1

The -s option of vxfenadm displays all eight bytes of a key value in three
formats. In the numeric format,

415Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

■ The first two bytes, represent the identifier VF, contains the ASCII value
86, 70.

■ The next four bytes contain the ASCII value of the cluster ID 57069
encoded in hex (0xDEED) which are 68, 69, 69, 68.

■ The remaining bytes contain the ASCII value of the node ID 0 (0x00)
which are 48, 48. Node ID 1 would be 01 and node ID 10 would be 0A.

An asterisk before the Node Format indicates that the vxfenadm command
is run from the node of a cluster where LLT is configured and is running.

■ To display the keys on a CVM parallel disk group:

vxfenadm -s /dev/vx/rdmp/disk_7

Reading SCSI Registration Keys...

Device Name: /dev/vx/rdmp/disk_7

Total Number Of Keys: 1

key[0]:

[Numeric Format]: 66,80,71,82,48,48,48,49

[Character Format]: BPGR0001

[Node Format]: Cluster ID: unknown Node ID: 1 Node Name: sys2

■ To display the keys on a Veritas Cluster Server (VCS) failover disk group:

vxfenadm -s /dev/vx/rdmp/disk_8

Reading SCSI Registration Keys...

Device Name: /dev/vx/rdmp/disk_8

Total Number Of Keys: 1

key[0]:

[Numeric Format]: 65,86,67,83,0,0,0,0

[Character Format]: AVCS

[Node Format]: Cluster ID: unknown Node ID: 0 Node Name: sys1

2 To display the keys that are registered in all the disks specified in a disk file:

vxfenadm -s all -f disk_filename

For example:

To display all the keys on coordinator disks:

vxfenadm -s all -f /etc/vxfentab

416Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Device Name: /dev/vx/rdmp/disk_9

Total Number Of Keys: 2

key[0]:

[Numeric Format]: 86,70,70,68,57,52,48,49

[Character Format]: VFFD9401

* [Node Format]: Cluster ID: 64916 Node ID: 1 Node Name: sys2

key[1]:

[Numeric Format]: 86,70,70,68,57,52,48,48

[Character Format]: VFFD9400

* [Node Format]: Cluster ID: 64916 Node ID: 0 Node Name: sys1

You can verify the cluster ID using the lltstat -C command, and the node
ID using the lltstat -N command. For example:

lltstat -C

57069

If the disk has keys that do not belong to a specific cluster, then the vxfenadm

command cannot look up the node name for the node ID, and hence prints the
node name as unknown. For example:

Device Name: /dev/vx/rdmp/disk_7

Total Number Of Keys: 1

key[0]:

[Numeric Format]: 86,70,45,45,45,45,48,49

[Character Format]: VF----01

[Node Format]: Cluster ID: unknown Node ID: 1 Node Name: sys2

For disks with arbitrary format of keys, the vxfenadm command prints all the
fields as unknown. For example:

[Numeric Format]: 65,66,67,68,49,50,51,45

[Character Format]: ABCD123-

[Node Format]: Cluster ID: unknown Node ID: unknown

Node Name: unknown

Verifying that the nodes see the same disk
To confirm whether a disk (or LUN) supports SCSI-3 persistent reservations, two
nodes must simultaneously have access to the same disks. Because a shared disk
is likely to have a different name on each node, check the serial number to verify
the identity of the disk. Use the vxfenadm command with the -i option to verify that
the same serial number for the LUN is returned on all paths to the LUN.

417Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

For example, an EMC disk is accessible by the /dev/sdr path on node A and the
/dev/sdt path on node B.

To verify that the nodes see the same disks

1 Verify the connection of the shared storage for data to two of the nodes on
which you installed Veritas Storage Foundation Cluster File System High
Availability (SFCFSHA).

2 From node A, enter the following command:

vxfenadm -i /dev/sdr

Vendor id : EMC

Product id : SYMMETRIX

Revision : 5567

Serial Number : 42031000a

The same serial number information should appear when you enter the
equivalent command on node B using the /dev/sdt path.

On a disk from another manufacturer, Hitachi Data Systems, the output is
different and may resemble:

vxfenadm -i /dev/sdt

Vendor id : HITACHI

Product id : OPEN-3

Revision : 0117

Serial Number : 0401EB6F0002

Refer to the vxfenadm(1M) manual page for more information.

About the vxfenclearpre utility
You can use the vxfenclearpre utility to remove SCSI-3 registrations and
reservations on the disks.

See “Removing preexisting keys” on page 418.

This utility currently does not support server-based fencing. You must manually
resolve any preexisting split-brain using the server-based fencing configuration.

Removing preexisting keys
If you encountered a split-brain condition, use the vxfenclearpre utility to remove
SCSI-3 registrations and reservations on the coordinator disks as well as on the
data disks in all shared disk groups.

418Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

You can also use this procedure to remove the registration and reservation keys
created by another node from a disk.

To clear keys after split-brain

1 Stop Veritas Cluster Server (VCS) on all nodes.

hastop -all

2 Make sure that the port h is closed on all the nodes. Run the following command
on each node to verify that the port h is closed:

gabconfig -a

Port h must not appear in the output.

3 Stop I/O fencing on all nodes. Enter the following command on each node:

/etc/init.d/vxfen stop

4 If you have any applications that run outside of VCS control that have access
to the shared storage, then shut down all other nodes in the cluster that have
access to the shared storage. This prevents data corruption.

5 Start the vxfenclearpre script:

/opt/VRTSvcs/vxfen/bin/vxfenclearpre

419Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

6 Read the script’s introduction and warning. Then, you can choose to let the
script run.

Do you still want to continue: [y/n] (default : n) y

In some cases, informational messages resembling the following may appear
on the console of one of the nodes in the cluster when a node is ejected from
a disk/LUN. You can ignore these informational messages.

<date> <system name> scsi: WARNING: /sbus@3,0/lpfs@0,0/

sd@0,1(sd91):

<date> <system name> Error for Command: <undecoded

cmd 0x5f> Error Level: Informational

<date> <system name> scsi: Requested Block: 0 Error Block 0

<date> <system name> scsi: Vendor: <vendor> Serial Number:

0400759B006E

<date> <system name> scsi: Sense Key: Unit Attention

<date> <system name> scsi: ASC: 0x2a (<vendor unique code

0x2a>), ASCQ: 0x4, FRU: 0x0

The script cleans up the disks and displays the following status messages.

Cleaning up the coordinator disks...

Cleaning up the data disks for all shared disk groups...

Successfully removed SCSI-3 persistent registration and

reservations from the coordinator disks as well as the

shared data disks.

You can retry starting fencing module. In order to

restart the whole product, you might want to

reboot the system.

7 Start the fencing module.

/etc/init.d/vxfen start

8 Start VCS on all nodes.

hastart

420Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

About the vxfenswap utility
The vxfenswap utility allows you to add, remove, and replace coordinator points in
a cluster that is online. The utility verifies that the serial number of the new disks
are identical on all the nodes and the new disks can support I/O fencing.

This utility supports both disk-based and server-based fencing.

Refer to the vxfenswap(1M) manual page.

See the Veritas Storage Foundation Cluster File System High Availability Installation
Guide for details on the I/O fencing requirements.

You can replace the coordinator disks without stopping I/O fencing in the following
cases:

■ The disk becomes defective or inoperable and you want to switch to a new
diskgroup.
See “Replacing I/O fencing coordinator disks when the cluster is online”
on page 422.
See “Replacing the coordinator disk group in a cluster that is online” on page 426.
If you want to replace the coordinator disks when the cluster is offline, you cannot
use the vxfenswap utility. You must manually perform the steps that the utility
does to replace the coordinator disks.

■ You want to switch the disk interface between raw devices and DMP devices.
See “Changing the disk interaction policy in a cluster that is online” on page 429.

■ The keys that are registered on the coordinator disks are lost.
In such a case, the cluster might panic when a network partition occurs. You
can replace the coordinator disks with the same disks using the vxfenswap

command. During the disk replacement, the missing keys register again without
any risk of data corruption.
See “Refreshing lost keys on coordinator disks” on page 433.

In the server-based fencing configuration, you can use the vxfenswap utility to
perform the following tasks:

■ Perform a planned replacement of customized coordination points (CP servers
or SCSI-3 disks).
See “Replacing coordination points for server-based fencing in an online cluster”
on page 443.

■ Refresh the I/O fencing keys that are registered on the coordination points.
See “Refreshing registration keys on the coordination points for server-based
fencing” on page 445.

421Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

You can also use the vxfenswap utility to migrate between the disk-based and the
server-based fencing without incurring application downtime in the Veritas Storage
Foundation Cluster File System High Availability (SFCFSHA) cluster.

See “Migrating from disk-based to server-based fencing in an online cluster”
on page 455.

See “Migrating from server-based to disk-based fencing in an online cluster”
on page 460.

If the vxfenswap operation is unsuccessful, then you can use the -a cancel of the
vxfenswap command to manually roll back the changes that the vxfenswap utility
does.

■ For disk-based fencing, use the vxfenswap -g diskgroup -a cancel command
to cancel the vxfenswap operation.
You must run this command if a node fails during the process of disk
replacement, or if you aborted the disk replacement.

■ For server-based fencing, use the vxfenswap -a cancel command to cancel
the vxfenswap operation.

Replacing I/O fencing coordinator disks when the cluster
is online
Review the procedures to add, remove, or replace one or more coordinator disks
in a cluster that is operational.

Warning: The cluster might panic if any node leaves the cluster membership before
the vxfenswap script replaces the set of coordinator disks.

To replace a disk in a coordinator disk group when the cluster is online

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

2 Determine the value of the FaultTolerance attribute.

hares -display coordpoint -attribute FaultTolerance -localclus

3 Estimate the number of coordination points you plan to use as part of the
fencing configuration.

422Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

4 Set the value of the FaultTolerance attribute to 0.

Note: It is necessary to set the value to 0 because later in the procedure you
need to reset the value of this attribute to a value that is lower than the number
of coordination points. This ensures that the Coordpoint Agent does not fault.

5 Check the existing value of the LevelTwoMonitorFreq attribute.

#hares -display coordpoint -attribute LevelTwoMonitorFreq -localclus

Note: Make a note of the attribute value before you proceed to the next step.
After migration, when you re-enable the attribute you want to set it to the same
value.

You can also run the hares -display coordpoint to find out whether the
LevelTwoMonitorFreq value is set.

6 Disable level two monitoring of the CoordPoint agent.

hares -modify coordpoint LevelTwoMonitorFreq 0

7 Make sure that the cluster is online.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

423Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

8 Import the coordinator disk group.

The /etc/vxfendg file includes the name of the disk group (typically,
vxfencoorddg) that contains the coordinator disks, so use the command:

vxdg -tfC import ‘cat /etc/vxfendg‘

where:

-t specifies that the disk group is imported only until the node restarts.

-f specifies that the import is to be done forcibly, which is necessary if one or
more disks is not accessible.

-C specifies that any import locks are removed.

9 If your setup uses VRTSvxvm version, then skip to step 10. You need not set
coordinator=off to add or remove disks. For other Veritas Volume Manager
(VxVM) versions, perform this step:

where <version> is the specific release version.

Turn off the coordinator attribute value for the coordinator disk group.

vxdg -g vxfencoorddg set -o coordinator=off

10 To remove disks from the coordinator disk group, use the VxVM disk
administrator utility vxdiskadm.

11 Perform the following steps to add new disks to the coordinator disk group:

■ Add new disks to the node.

■ Initialize the new disks as VxVM disks.

■ Check the disks for I/O fencing compliance.

■ Add the new disks to the coordinator disk group and set the coordinator
attribute value as "on" for the coordinator disk group.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for detailed instructions.

Note that though the disk group content changes, the I/O fencing remains in
the same state.

12 From one node, start the vxfenswap utility. You must specify the disk group to
the utility.

The utility performs the following tasks:

■ Backs up the existing /etc/vxfentab file.

424Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

■ Creates a test file /etc/vxfentab.test for the disk group that is modified
on each node.

■ Reads the disk group you specified in the vxfenswap command and adds
the diskgroup to the /etc/vxfentab.test file on each node.

■ Verifies that the serial number of the new disks are identical on all the nodes.
The script terminates if the check fails.

■ Verifies that the new disks can support I/O fencing on each node.

13 If the disk verification passes, the utility reports success and asks if you want
to commit the new set of coordinator disks.

14 Confirm whether you want to clear the keys on the coordination points and
proceed with the vxfenswap operation.

Do you want to clear the keys on the coordination points

and proceed with the vxfenswap operation? [y/n] (default: n) y

15 Review the message that the utility displays and confirm that you want to
commit the new set of coordinator disks. Else skip to step 16.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully commits, the utility moves the /etc/vxfentab.test

file to the /etc/vxfentab file.

16 If you do not want to commit the new set of coordinator disks, answer n.

The vxfenswap utility rolls back the disk replacement operation.

17 Re-enable the LevelTwoMonitorFreq attribute of the CoordPoint agent.You
may want to use the value that was set before disabling the attribute.

hares -modify coordpoint LevelTwoMonitorFreq Frequencyvalue

where Frequencyvalue is the value of the attribute.

18 Set the FaultTolerance attribute to a value that is lower than 50% of the total
number of coordination points.

For example, if there are four (4) coordination points in your configuration, then
the attribute value must be lower than two (2).If you set it to a higher value
than two (2) the CoordPoint agent faults.

425Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Replacing the coordinator disk group in a cluster that is
online
You can also replace the coordinator disk group using the vxfenswap utility. The
following example replaces the coordinator disk group vxfencoorddg with a new
disk group vxfendg.

To replace the coordinator disk group

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

2 Determine the value of the FaultTolerance attribute.

hares -display coordpoint -attribute FaultTolerance -localclus

3 Estimate the number of coordination points you plan to use as part of the
fencing configuration.

4 Set the value of the FaultTolerance attribute to 0.

Note: It is necessary to set the value to 0 because later in the procedure you
need to reset the value of this attribute to a value that is lower than the number
of coordination points. This ensures that the Coordpoint Agent does not fault.

5 Check the existing value of the LevelTwoMonitorFreq attribute.

#hares -display coordpoint -attribute LevelTwoMonitorFreq -localclus

Note: Make a note of the attribute value before you proceed to the next step.
After migration, when you re-enable the attribute you want to set it to the same
value.

6 Disable level two monitoring of CoordPoint agent.

hares -modify coordpoint LevelTwoMonitorFreq 0

426Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

7 Make sure that the cluster is online.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

8 Find the name of the current coordinator disk group (typically vxfencoorddg)
that is in the /etc/vxfendg file.

cat /etc/vxfendg

vxfencoorddg

9 Find the alternative disk groups available to replace the current coordinator
disk group.

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

sda auto:cdsdisk - (vxfendg) online

sdb auto:cdsdisk - (vxfendg) online

sdc auto:cdsdisk - (vxfendg) online

sdx auto:cdsdisk - (vxfencoorddg) online

sdy auto:cdsdisk - (vxfencoorddg) online

sdz auto:cdsdisk - (vxfencoorddg) online

10 Validate the new disk group for I/O fencing compliance. Run the following
command:

vxfentsthdw -c vxfendg

See “Testing the coordinator disk group using the -c option of vxfentsthdw”
on page 408.

427Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

11 If the new disk group is not already deported, run the following command to
deport the disk group:

vxdg deport vxfendg

12 Perform one of the following:

■ Create the /etc/vxfenmode.test file with new fencing mode and disk
policy information.

■ Edit the existing the /etc/vxfenmode with new fencing mode and disk policy
information and remove any preexisting /etc/vxfenmode.test file.

Note that the format of the /etc/vxfenmode.test file and the /etc/vxfenmode

file is the same.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for more information.

13 From any node, start the vxfenswap utility. For example, if vxfendg is the new
disk group that you want to use as the coordinator disk group:

vxfenswap -g vxfendg [-n]

The utility performs the following tasks:

■ Backs up the existing /etc/vxfentab file.

■ Creates a test file /etc/vxfentab.test for the disk group that is modified
on each node.

■ Reads the disk group you specified in the vxfenswap command and adds
the disk group to the /etc/vxfentab.test file on each node.

■ Verifies that the serial number of the new disks are identical on all the nodes.
The script terminates if the check fails.

■ Verifies that the new disk group can support I/O fencing on each node.

14 If the disk verification passes, the utility reports success and asks if you want
to replace the coordinator disk group.

15 Confirm whether you want to clear the keys on the coordination points and
proceed with the vxfenswap operation.

Do you want to clear the keys on the coordination points

and proceed with the vxfenswap operation? [y/n] (default: n) y

428Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

16 Review the message that the utility displays and confirm that you want to
replace the coordinator disk group. Else skip to step 19.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully commits, the utility moves the /etc/vxfentab.test

file to the /etc/vxfentab file.

The utility also updates the /etc/vxfendg file with this new disk group.

17 Set the coordinator attribute value as "on" for the new coordinator disk group.

vxdg -g vxfendg set -o coordinator=on

Set the coordinator attribute value as "off" for the old disk group.

vxdg -g vxfencoorddg set -o coordinator=off

18 Verify that the coordinator disk group has changed.

cat /etc/vxfendg

vxfendg

The swap operation for the coordinator disk group is complete now.

19 If you do not want to replace the coordinator disk group, answer n at the prompt.

The vxfenswap utility rolls back any changes to the coordinator disk group.

20 Re-enable the LevelTwoMonitorFreq attribute of the CoordPoint agent. You
may want to use the value that was set before disabling the attribute.

hares -modify coordpoint LevelTwoMonitorFreq Frequencyvalue

where Frequencyvalue is the value of the attribute.

21 Set the FaultTolerance attribute to a value that is lower than 50% of the total
number of coordination points.

For example, if there are four (4) coordination points in your configuration, then
the attribute value must be lower than two (2).If you set it to a higher value
than two (2) the CoordPoint agent faults.

Changing the disk interaction policy in a cluster that is
online
In a cluster that is online, you can change the disk interaction policy from dmp to
raw using the vxfenswap utility.

429Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To change the disk interaction policy

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

2 Make sure that the cluster is online.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Perform one of the following:

■ Create the /etc/vxfenmode.test file with new fencing mode and disk
policy information.

■ Edit the existing the /etc/vxfenmode with new fencing mode and disk policy
information and remove any preexisting /etc/vxfenmode.test file.

Note that the format of the /etc/vxfenmode.test file and the /etc/vxfenmode

file is the same.

cat /etc/vxfenmode

vxfen_mode=scsi3

scsi3_disk_policy=raw

430Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

4 From any node, start the vxfenswap utility:

vxfenswap -g vxfencoordg [-n]

5 Verify the change in the disk policy.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Sybase

Fencing SCSI3 Disk Policy: raw

Cluster Members:

* 0 (vcslx003)

1 (vcslx004)

2 (vcslx005)

3 (vcslx006)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

node 2 in state 8 (running)

node 3 in state 8 (running)

Adding disks from a recovered site to the coordinator disk
group
In a campus cluster environment, consider a case where the primary site goes
down and the secondary site comes online with a limited set of disks. When the
primary site restores, the primary site's disks are also available to act as coordinator
disks. You can use the vxfenswap utility to add these disks to the coordinator disk
group.

To add new disks from a recovered site to the coordinator disk group

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

431Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

2 Make sure that the cluster is online.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Verify the name of the coordinator disk group.

cat /etc/vxfendg

vxfencoorddg

4 Run the following command:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

sdx auto:cdsdisk - (vxfencoorddg) online

sdy auto - - offline

sdz auto - - offline

5 Verify the number of disks used in the coordinator disk group.

vxfenconfig -l

I/O Fencing Configuration Information:

======================================

Count : 1

Disk List

Disk Name Major Minor Serial Number Policy

/dev/vx/rdmp/sdx 32 48 R450 00013154 0312 dmp

432Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

6 When the primary site comes online, start the vxfenswap utility on any node
in the cluster:

vxfenswap -g vxfencoorddg [-n]

7 Verify the count of the coordinator disks.

vxfenconfig -l

I/O Fencing Configuration Information:

======================================

Single Disk Flag : 0

Count : 3

Disk List

Disk Name Major Minor Serial Number Policy

/dev/vx/rdmp/sdx 32 48 R450 00013154 0312 dmp

/dev/vx/rdmp/sdy 32 32 R450 00013154 0313 dmp

/dev/vx/rdmp/sdz 32 16 R450 00013154 0314 dmp

Refreshing lost keys on coordinator disks
If the coordinator disks lose the keys that are registered, the cluster might panic
when a network partition occurs.

You can use the vxfenswap utility to replace the coordinator disks with the same
disks. The vxfenswap utility registers the missing keys during the disk replacement.

To refresh lost keys on coordinator disks

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

433Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

2 Make sure that the cluster is online.

vxfenadm -d

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Run the following command to view the coordinator disks that do not have
keys:

vxfenadm -s all -f /etc/vxfentab

Device Name: /dev/vx/rdmp/sdx

Total Number of Keys: 0

No keys...

...

4 Copy the /etc/vxfenmode file to the /etc/vxfenmode.test file.

This ensures that the configuration details of both the files are the same.

5 On any node, run the following command to start the vxfenswap utility:

vxfenswap -g vxfencoorddg [-n]

6 Verify that the keys are atomically placed on the coordinator disks.

vxfenadm -s all -f /etc/vxfentab

Device Name: /dev/vx/rdmp/sdx

Total Number of Keys: 4

...

434Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

About administering the coordination point server
This section describes how to perform administrative and maintenance tasks on
the coordination point server (CP server).

For more information about the cpsadm command and the associated command
options, see the cpsadm(1M) manual page.

Environment variables associated with the coordination
point server
Table 15-6 describes the environment variables that are required for the cpsadm

command. The cpsadm command detects these environment variables and uses
their value when communicating with the CP server. They are used to authenticate
and authorize the user.

Note: The environment variables are not required when the cpsadm command is
run on the CP server. The environment variables are required when the cpsadm

command is run on the Veritas Storage Foundation Cluster File System High
Availability (SFCFSHA) cluster nodes.

Table 15-6 cpsadm command environment variables

DescriptionEnvironment variable

This is the fully qualified username as configured in VxSS (vssat
showcred).

CPS_USERNAME

One of the following values:

■ vx
■ unixpwd
■ nis
■ nisplus
■ ldap

CPS_DOMAINTYPE

The environment variables must be exported directly on the shell before running
the cpsadm command. For example,

export CPS_USERNAME=CPSADM@VCS_SERVICES

export CPS_DOMAINTYPE=vx

Additionally, the username and domaintype values are the same as those added
onto the CP server. To view these values run the following cpsadm command:

cpsadm -s cp_server -a list_users

435Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

where cp_server is the CP server's virtual IP address or virtual hostname.

CP server operations (cpsadm)
Table 15-7 lists coordination point server (CP server) operations and required
privileges.

Table 15-7 User privileges for CP server operations

CP server AdminCP server OperatorCP server operations

✓–add_cluster

✓–rm_clus

✓✓add_node

✓✓rm_node

✓–add_user

✓–rm_user

✓–add_clus_to_user

✓–rm_clus_from_user

✓✓reg_node

✓✓unreg_node

✓✓preempt_node

✓✓list_membership

✓✓list_nodes

✓✓list_users

✓–halt_cps

✓–db_snapshot

✓✓ping_cps

✓✓client_preupgrade

✓✓server_preupgrade

✓✓list_protocols

✓✓list_version

436Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-7 User privileges for CP server operations (continued)

CP server AdminCP server OperatorCP server operations

✓–list_ports

✓–add_port

✓–rm_port

Adding and removing SFCFSHA cluster entries from the
CP server database
To add a Veritas Storage Foundation Cluster File System High Availability
(SFCFSHA) to the CP server database, run the following command:

◆ # cpsadm -s cp_server -a add_clus -c cluster_name -u uuid

To remove a SFCFSHA from the CP server database, run the following
command:

◆ # cpsadm -s cp_server -a rm_clus -u uuid

The CP server's virtual IP address or virtual hostname.cp_server

The SFCFSHA cluster name.cluster_name

The UUID (Universally Unique ID) of the SFCFSHA cluster.uuid

Adding and removing a SFCFSHA cluster node from the
CP server database
To add a Veritas Storage Foundation Cluster File System High Availability
(SFCFSHA) node from the CP server database, run the following command:

◆ # cpsadm -s cp_server -a add_node -u uuid -n nodeid

-h host

To remove a SFCFSHA node from the CP server database, run the following
command:

◆ # cpsadm -s cp_server -a rm_node -u uuid -n nodeid

The CP server's virtual IP address or virtual hostname.cp_server

437Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

The UUID (Universally Unique ID) of the SFCFSHA cluster.uuid

The node id of the SFCFSHA cluster node.nodeid

Hostnamehost

Adding or removing CP server users
To add a user, run the following command:

◆ # cpsadm -s cp_server -a add_user -e user_name -f user_role

-g domain_type -u uuid

To remove a user, run the following command:

◆ # cpsadm -s cp_server -a rm_user -e user_name -g domain_type

The CP server's virtual IP address or virtual hostname.cp_server

The user to be added to the CP server configuration.user_name

The user role, either cps_admin or cps_operator.user_role

The domain type, for example vx, unixpwd, nis, and so on.domain_type

The UUID (Universally Unique ID) of the SFCFSHA cluster.uuid

Listing the CP server users
To list the CP server users, run the following command:

◆ # cpsadm -s cp_server -a list_users

Listing the nodes in all the SFCFSHA clusters
To list the nodes in all the SFCFSHA clusters, run the following command:

◆ # cpsadm -s cp_server -a list_nodes

Listing the membership of nodes in the SFCFSHA cluster
To list the membership of nodes in the SFCFSHA cluster, run the following
command:

◆ # cpsadm -s cp_server -a list_membership -c cluster_name

438Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

The CP server's virtual IP address or virtual hostname.cp_server

The SFCFSHA cluster name.cluster_name

Preempting a node
Use the following command to preempt a node.

To preempt a node

◆ Type the following command:

cpsadm -s cp_server -a preempt_node -u uuid -n nodeid

-v victim_node id

The CP server's virtual IP address or virtual hostname.cp_server

The UUID (Universally Unique ID) of the SFCFSHA cluster.uuid

The node id of the SFCFSHA cluster node.nodeid

Node id of one or more victim nodes.victim_node id

Registering and unregistering a node
To register a node, run the following command:

◆ # cpsadm -s cp_server -a reg_node -u uuid -n nodeid

To unregister a node, run the following command:

◆ # cpsadm -s cp_server -a unreg_node -u uuid -n nodeid

The CP server's virtual IP address or virtual hostname.cp_server

The UUID (Universally Unique ID) of the SFCFSHA cluster.uuid

The nodeid of the SFCFSHA cluster node.nodeid

Enable and disable access for a user to a SFCFSHA cluster
To enable access for a user to a SFCFSHA cluster, run the following command:

◆ # cpsadm -s cp_server -a add_clus_to_user -e user

-f user_role -g domain_type -u uuid

439Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To disable access for a user to a SFCFSHA cluster, run the following
command:

◆ # cpsadm -s cp_server -a rm_clus_from_user -e user_name

-f user_role -g domain_type -u uuid

The CP server's virtual IP address or virtual hostname.cp_server

The user name to be added to the CP server.user_name

The user role, either cps_admin or cps_operator.user_role

The domain type, for example vx, unixpwd, nis, etc.domain_type

The UUID (Universally Unique ID) of the SFCFSHA clusteruuid

Starting and stopping a CP server outside VCS control
You can start or stop coordination point server (CP server) outside VCS control.

To start a CP server outside VCS control

1 Run the vxcpserv binary directly:

/opt/VRTScps/bin/vxcpserv

If the command is successful, the command immediately returns without any
message.

2 Verify the log file /var/VRTScps/log/cpserver_A.log to confirm the state of
the CP server.

To stop a CP server outside VCS control

1 Run the following command:

cpsadm -s cp_server -a halt_cps

The variable cp_server represents the CP server's virtual IP address or virtual
host name and port_number represents the port number on which the CP
server is listening.

2 Verify the log file /var/VRTScps/log/cpserver_A.log to confirm that the CP
server received the halt message and has shut down.

440Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Checking the connectivity of CP servers
To check the connectivity of a CP server

◆ Type the following command:

cpsadm -s cp_server -a ping_cps

Adding and removing virtual IP addresses and ports for a
CP server at run-time
You can use more than one virtual IP address for coordination point server (CP
server) communication. You can assign port numbers to each of the virtual IP
addresses.

You can use the cpsadm command if you want to add or remove virtual IP addresses
and ports after your initial CP server setup. However, these virtual IP addresses
and ports that you add or remove does not change the vxcps.conf file. So, these
changes do not persist across CP server restarts.

See the cpsadm(1M) manual page for more details.

441Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To add and remove virtual IP addresses and ports for CP servers at run time

1 To list all the ports that the CP server is configured to listen on, run the following
command:

cpsadm -s cp_server -a list_ports

If the CP server has not been able to successfully listen on a given port at least
once, then the Connect History in the output shows never. If the IP addresses
are down when the vxcpserv process starts, vxcpserv binds to the IP
addresses when the addresses come up later. For example:

cpsadm -s 127.0.0.1 -a list_ports

IP Address Connect History

[10.209.79.60]:14250 once

[10.209.79.61]:56789 once

[10.209.78.252]:14250 never

[192.10.10.32]:14250 once

CP server does not actively monitor port health. If the CP server successfully
listens on any IP:port at least once, then the Connect History for that IP:port
shows once even if the port goes down later during the CP server's lifetime.
You can obtain the latest status of the IP address from the corresponding IP
resource state that is configured under Veritas Cluster Server (VCS).

2 To add a new port (IP:port) for the CP server without restarting the CP server,
run the following command:

cpsadm -s cp_server -a add_port

-i ip_address -r port_number

For example:

cpsadm -s 127.0.0.1 -a add_port -i 10.209.78.52 -r 14250

Port [10.209.78.52]:14250 successfully added.

442Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

3 To stop the CP server from listening on a port (IP:port) without restarting the
CP server, run the following command:

cpsadm -s cp_server -a rm_port

-i ip_address -r port_number

For example:

cpsadm -s 10.209.78.52 -a rm_port -i 10.209.78.252

No port specified. Assuming default port i.e 14250

Port [10.209.78.252]:14250 successfully removed.

Taking a CP server database snapshot
To take a CP server database snapshot, run the following command:

◆ # cpsadm -s cp_server -a db_snapshot

Replacing coordination points for server-based fencing
in an online cluster
Use the following procedure to perform a planned replacement of customized
coordination points (CP servers or SCSI-3 disks) without incurring application
downtime on an online Veritas Storage Foundation Cluster File System High
Availability (SFCFSHA) cluster.

Note: If multiple clusters share the same CP server, you must perform this
replacement procedure in each cluster.

You can use the vxfenswap utility to replace coordination points when fencing is
running in customized mode in an online cluster, with vxfen_mechanism=cps. The
utility also supports migration from server-based fencing (vxfen_mode=customized)
to disk-based fencing (vxfen_mode=scsi3) and vice versa in an online cluster.

However, if the SFCFSHA cluster has fencing disabled (vxfen_mode=disabled),
then you must take the cluster offline to configure disk-based or server-based
fencing.

See “Deployment and migration scenarios for CP server” on page 447.

You can cancel the coordination point replacement operation at any time using the
vxfenswap -a cancel command.

See “About the vxfenswap utility” on page 421.

443Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To replace coordination points for an online cluster

1 Ensure that the SFCFSHA cluster nodes and users have been added to the
new CP server(s). Run the following commands:

cpsadm -s cpserver -a list_nodes

cpsadm -s cpserver -a list_users

If the SFCFSHA cluster nodes are not present here, prepare the new CP
server(s) for use by the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for instructions.

2 Ensure that fencing is running on the cluster using the old set of coordination
points and in customized mode.

For example, enter the following command:

vxfenadm -d

The command returns:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: <version>

Fencing Mode: Customized

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Create a new /etc/vxfenmode.test file on each SFCFSHA cluster node with
the fencing configuration changes such as the CP server information.

Review and if necessary, update the vxfenmode parameters for security, the
coordination points, and if applicable to your configuration, vxfendg.

Refer to the text information within the vxfenmode file for additional information
about these parameters and their new possible values.

4 From one of the nodes of the cluster, run the vxfenswap utility.

The vxfenswap utility requires a secure ssh connection to all the cluster nodes.
Use -n to use rsh instead of default ssh.

vxfenswap [-n]

444Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

5 Review the message that the utility displays and confirm whether you want to
commit the change.

■ If you do not want to commit the new fencing configuration changes, press
Enter or answer n at the prompt.

Do you wish to commit this change? [y/n] (default: n) n

The vxfenswap utility rolls back the migration operation.

■ If you want to commit the new fencing configuration changes, answer y at
the prompt.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully completes the operation, the utility moves
the/etc/vxfenmode.test file to the /etc/vxfenmode file.

6 Confirm the successful execution of the vxfenswap utility by checking the
coordination points currently used by the vxfen driver.

For example, run the following command:

vxfenconfig -l

Refreshing registration keys on the coordination points
for server-based fencing
Replacing keys on a coordination point (CP server) when the Veritas Storage
Foundation Cluster File System High Availability (SFCFSHA) cluster is online
involves refreshing that coordination point's registrations. You can perform a planned
refresh of registrations on a CP server without incurring application downtime on
the SFCFSHA cluster. You must refresh registrations on a CP server if the CP
server agent issues an alert on the loss of such registrations on the CP server
database.

The following procedure describes how to refresh the coordination point registrations.

445Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To refresh the registration keys on the coordination points for server-based
fencing

1 Ensure that the SFCFSHA cluster nodes and users have been added to the
new CP server(s). Run the following commands:

cpsadm -s cp_server -a list_nodes

cpsadm -s cp_server -a list_users

If the SFCFSHA cluster nodes are not present here, prepare the new CP
server(s) for use by the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for instructions.

2 Ensure that fencing is running on the cluster in customized mode using the
coordination points mentioned in the /etc/vxfenmode file.

If the /etc/vxfenmode.test file exists, ensure that the information in it and the
/etc/vxfenmode file are the same. Otherwise, vxfenswap utility uses information
listed in /etc/vxfenmode.test file.

For example, enter the following command:

vxfenadm -d

================================

Fencing Protocol Version: 201

Fencing Mode: CUSTOMIZED

Cluster Members:

* 0 (galaxy)

1 (nebula)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 List the coordination points currently used by I/O fencing :

vxfenconfig -l

4 Copy the /etc/vxfenmode file to the /etc/vxfenmode.test file.

This ensures that the configuration details of both the files are the same.

446Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

5 Run the vxfenswap utility from one of the nodes of the cluster.

The vxfenswap utility requires a secure ssh connection to all the cluster nodes.
Use -n to use rsh instead of default ssh.

For example:

vxfenswap [-n]

The command returns:

VERITAS vxfenswap version <version> <platform>

The logfile generated for vxfenswap is

/var/VRTSvcs/log/vxfen/vxfenswap.log.

19156

Please Wait...

VXFEN vxfenconfig NOTICE Driver will use customized fencing

- mechanism cps

Validation of coordination points change has succeeded on

all nodes.

You may commit the changes now.

WARNING: This may cause the whole cluster to panic

if a node leaves membership before the change is complete.

6 You are then prompted to commit the change. Enter y for yes.

The command returns a confirmation of successful coordination point
replacement.

7 Confirm the successful execution of the vxfenswap utility. If CP agent is
configured, it should report ONLINE as it succeeds to find the registrations on
coordination points. The registrations on the CP server and coordinator disks
can be viewed using the cpsadm and vxfenadm utilities respectively.

Note that a running online coordination point refreshment operation can be
canceled at any time using the command:

vxfenswap -a cancel

Deployment and migration scenarios for CP server
Table 15-8 describes the supported deployment and migration scenarios, and the
procedures you must perform on the SFCFSHA cluster and the CP server.

447Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios

Action requiredSFCFSHA
cluster

CP serverScenario

On the designated CP server, perform the following
tasks:

1 Prepare to configure the new CP server.

2 Configure the new CP server.

3 Prepare the new CP server for use by the SFCFSHA
cluster.

On the SFCFSHA cluster nodes, configure server-based
I/O fencing.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

New SFCFSHA
cluster using CP
server as
coordination
point

New CP serverSetup of CP server
for a SFCFSHA
cluster for the first
time

On the SFCFSHA cluster nodes, configure server-based
I/O fencing.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

New SFCFSHA
cluster

Existing and
operational CP
server

Add a new
SFCFSHA cluster
to an existing and
operational CP
server

On the designated CP server, perform the following
tasks:

1 Prepare to configure the new CP server.

2 Configure the new CP server.

3 Prepare the new CP server for use by the SFCFSHA
cluster.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

On a node in the SFCFSHA cluster, run the vxfenswap
command to move to replace the CP server:

See “Replacing coordination points for server-based fencing
in an online cluster” on page 443.

Existing
SFCFSHA
cluster using CP
server as
coordination
point

New CP serverReplace the
coordination point
from an existing
CP server to a new
CP server

448Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios (continued)

Action requiredSFCFSHA
cluster

CP serverScenario

On the designated CP server, prepare to configure the new
CP server manually.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

On a node in the SFCFSHA cluster, run the vxfenswap
command to move to replace the CP server:

See “Replacing coordination points for server-based fencing
in an online cluster” on page 443.

Existing
SFCFSHA
cluster using CP
server as
coordination
point

Operational CP
server

Replace the
coordination point
from an existing
CP server to an
operational CP
server coordination
point

Note: Migrating from fencing in disabled mode to
customized mode incurs application downtime on the
SFCFSHA cluster.

On the designated CP server, perform the following
tasks:

1 Prepare to configure the new CP server.

2 Configure the new CP server

3 Prepare the new CP server for use by the SFCFSHA
cluster

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

On the SFCFSHA cluster nodes, perform the
following:

1 Stop all applications, VCS, and fencing on the
SFCFSHA cluster.

2 To stop VCS, use the following command (to be run
on all the SFCFSHA cluster nodes):

hastop -local

3 Stop fencing using the following command:

/etc/init.d/vxfen stop

4 Reconfigure I/O fencing on the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File
System High Availability Installation Guide for the
procedures.

Existing
SFCFSHA
cluster with
fencing
configured in
disabled mode

New CP serverEnabling fencing in
a SFCFSHA
cluster with a new
CP server
coordination point

449Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios (continued)

Action requiredSFCFSHA
cluster

CP serverScenario

Note: Migrating from fencing in disabled mode to
customized mode incurs application downtime.

On the designated CP server, prepare to configure the new
CP server.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for this procedure.

On the SFCFSHA cluster nodes, perform the following
tasks:

1 Stop all applications, VCS, and fencing on the
SFCFSHA cluster.

2 To stop VCS, use the following command (to be run
on all the SFCFSHA cluster nodes):

hastop -local

3 Stop fencing using the following command:

/etc/init.d/vxfen stop

4 Reconfigure fencing on the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File
System High Availability Installation Guide for the
procedures.

Existing
SFCFSHA
cluster with
fencing
configured in
disabled mode

Operational CP
server

Enabling fencing in
a SFCFSHA
cluster with an
operational CP
server coordination
point

450Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios (continued)

Action requiredSFCFSHA
cluster

CP serverScenario

On the designated CP server, perform the following
tasks:

1 Prepare to configure the new CP server.

2 Configure the new CP server

3 Prepare the new CP server for use by the SFCFSHA
cluster

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for the procedures.

Based on whether the cluster is online or offline, perform
the following procedures:

For a cluster that is online, perform the following task
on the SFCFSHA cluster:

◆ Run the vxfenswap command to migrate from
disk-based fencing to the server-based fencing.

See “Migrating from disk-based to server-based fencing
in an online cluster” on page 455.

For a cluster that is offline, perform the following tasks
on the SFCFSHA cluster:

1 Stop all applications, VCS, and fencing on the
SFCFSHA cluster.

2 To stop VCS, use the following command (to be run
on all the SFCFSHA cluster nodes):

hastop -local

3 Stop fencing using the following command:

/etc/init.d/vxfen stop

4 Reconfigure I/O fencing on the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File
System High Availability Installation Guide for the
procedures.

Existing
SFCFSHA
cluster with
fencing
configured in
scsi3 mode

New CP serverEnabling fencing in
a SFCFSHA
cluster with a new
CP server
coordination point

451Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios (continued)

Action requiredSFCFSHA
cluster

CP serverScenario

On the designated CP server, prepare to configure the new
CP server.

See the Veritas Storage Foundation Cluster File System
High Availability Installation Guide for this procedure.

Based on whether the cluster is online or offline, perform
the following procedures:

For a cluster that is online, perform the following task
on the SFCFSHA cluster:

◆ Run the vxfenswap command to migrate from
disk-based fencing to the server-based fencing.

See “Migrating from disk-based to server-based fencing
in an online cluster” on page 455.

For a cluster that is offline, perform the following tasks
on the SFCFSHA cluster:

1 Stop all applications, VCS, and fencing on the
SFCFSHA cluster.

2 To stop VCS, use the following command (to be run
on all the SFCFSHA cluster nodes):

hastop -local

3 Stop fencing using the following command:

/etc/init.d/vxfen stop

4 Reconfigure fencing on the SFCFSHA cluster.

See the Veritas Storage Foundation Cluster File
System High Availability Installation Guide for the
procedures.

Existing
SFCFSHA
cluster with
fencing
configured in
disabled mode

Operational CP
server

Enabling fencing in
a SFCFSHA
cluster with an
operational CP
server coordination
point

452Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-8 CP server deployment and migration scenarios (continued)

Action requiredSFCFSHA
cluster

CP serverScenario

On the SFCFSHA cluster run the vxfenswap command to
refresh the keys on the CP server:

See “Refreshing registration keys on the coordination points
for server-based fencing” on page 445.

Existing
SFCFSHA
cluster using the
CP server as
coordination
point

Operational CP
server

Refreshing
registrations of
SFCFSHA cluster
nodes on
coordination points
(CP servers/
coordinator disks)
without incurring
application
downtime

Migrating from non-secure to secure setup for CP server
and SFCFSHA cluster communication
The following procedure describes how to migrate from a non-secure to secure set
up for the coordination point server (CP server) and SFCFSHA cluster.

To migrate from non-secure to secure setup for CP server and SFCFSHA
cluster

1 Stop VCS on all cluster nodes that use the CP servers.

hastop -all

2 Stop fencing on all the SFCFSHA cluster nodes of all the clusters.

/etc/init.d/vxfen stop

3 Stop all the CP servers using the following command on each CP server:

hagrp -offline CPSSG -any

4 Ensure that security is configured for communication on CP Servers as well
as all the clients.

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for more information.

5 If CP server is hosted on an SFHA cluster, perform this step on each CP
server.

■

Bring the mount resource in the CPSSG service group online.

hares -online cpsmount -sys local_system_name

453Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Complete the remaining steps.

■ If CP server is hosted on a single-node VCS cluster, skip to step 8 and
complete the remaining steps.

6 After the mount resource comes online, move the credentials directory from
the default location to shared storage.

mv /var/VRTSvcs/vcsauth/data/CPSERVER /etc/VRTSvcs/db/

7 Create softlinks on all the nodes of the CP servers.

ln -s /etc/VRTScps/db/CPSERVER \

/var/VRTSvcs/vcsauth/data/CPSERVER

8 Edit /etc/vxcps.conf on each CP server to set security=1.

9 Start CP servers by using the following command:

hagrp -online CPSSG -any

10 Edit /etc/VRTSvcs/conf/config/main.cf on the first node of the cluster and
remove the UseFence=SCSI3 attribute.

Start VCS on the first node and then on all other nodes of the cluster.

11 Reconfigure fencing on each cluster by using the installer.

/opt/VRTS/install/installsfcfsha<version> -fencing

Where <version> is the specific release version.

About migrating between disk-based and server-based fencing
configurations

You can migrate between fencing configurations without incurring application
downtime in the SFCFSHA clusters.

You can migrate from disk-based fencing to server-based fencing in the following
cases:

■ You want to leverage the benefits of server-based fencing.

■ You want to replace faulty coordinator disks with coordination point servers (CP
servers).

See “Migrating from disk-based to server-based fencing in an online cluster”
on page 455.

454Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Similarly, you can migrate from server-based fencing to disk-based fencing when
you want to perform maintenance tasks on the CP server systems.

See “Migrating from server-based to disk-based fencing in an online cluster”
on page 460.

Migrating from disk-based to server-based fencing in an
online cluster
You can either use the installer or manually migrate from disk-based fencing to
server-based fencing without incurring application downtime in the SFCFSHA
clusters.

See “About migrating between disk-based and server-based fencing configurations”
on page 454.

You can also use response files to migrate between fencing configurations.

See “Migrating between fencing configurations using response files” on page 466.

Warning: The cluster might panic if any node leaves the cluster membership before
the coordination points migration operation completes.

This section covers the following procedures:

See “To migrate from disk-based fencing to server-based
fencing using the installer” on page 455.

Migrating using the
script-based installer

See “To manually migrate from disk-based fencing to
server-based fencing” on page 458.

Migrating manually

Tomigrate from disk-based fencing to server-based fencing using the installer

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

455Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

2 Make sure that the SFCFSHA cluster is online and uses disk-based fencing.

vxfenadm -d

For example, if SFCFSHA cluster uses disk-based fencing:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 On any node in the cluster, start the installsfcfsha with the -fencing option.

/opt/VRTS/install/installsfcfsha<version> -fencing

Where <version> is the specific release version.

The installsfcfsha starts with a copyright message and verifies the cluster
information.

Note the location of log files which you can access in the event of any problem
with the configuration process.

4 Confirm that you want to proceed with the I/O fencing configuration.

The installer verifies whether I/O fencing is configured in enabled mode.

5 Confirm that you want to reconfigure I/O fencing.

6 Review the I/O fencing configuration options that the program presents. Type
4 to migrate to server-based I/O fencing.

Select the fencing mechanism to be configured in this

Application Cluster [1-4,q] 4

456Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

7 From the list of coordination points that the installer presents, select the
coordination points that you want to replace.

For example:

Select the coordination points you would like to remove

from the currently configured coordination points:

1) emc_clariion0_62

2) emc_clariion0_65

3) emc_clariion0_66

4) All

5) None

b) Back to previous menu

Enter the options separated by spaces: [1-5,b,q,?] (5)? 1 2

If you want to migrate to server-based fencing with no coordinator disks, type
4 to remove all the coordinator disks.

8 Enter the total number of new coordination points.

If you want to migrate to server-based fencing configuration with a mix of
coordination points, the number you enter at this prompt must be a total of both
the new CP servers and the new coordinator disks.

9 Enter the total number of new coordinator disks.

If you want to migrate to server-based fencing with no coordinator disks, type
0 at this prompt.

10 Enter the total number of virtual IP addresses or host names of the virtual IP
address for each of the CP servers.

11 Enter the virtual IP addresses or host names of the virtual IP address for each
of the CP servers.

12 Verify and confirm the coordination points information for the fencing
reconfiguration.

13 Review the output as the installer performs the following tasks:

■ Removes the coordinator disks from the coordinator disk group.

■ Updates the application cluster details on each of the new CP servers.

■ Prepares the vxfenmode.test file on all nodes.

■ Runs the vxfenswap script.
Note the location of the vxfenswap.log file which you can access in the
event of any problem with the configuration process.

■ Completes the I/O fencing migration.

457Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

14 If you want to send this installation information to Symantec, answer y at the
prompt.

Would you like to send the information about this installation

to Symantec to help improve installation in the future? [y,n,q,?] (y) y

15 After the migration is complete, verify the change in the fencing mode.

vxfenadm -d

For example, after the migration from disk-based fencing to server-based
fencing in the SFCFSHA cluster:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Customized

Fencing Mechanism: cps

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

16 Verify the current coordination points that the vxfen driver uses.

vxfenconfig -l

To manually migrate from disk-based fencing to server-based fencing

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

458Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

2 Make sure that the SFCFSHA cluster is online and uses disk-based fencing.

vxfenadm -d

For example, if SFCFSHA cluster uses disk-based fencing:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Make sure that you performed the following tasks on the designated CP server:

■ Preparing to configure the new CP server.

■ Configuring the new CP server

■ Preparing the new CP server for use by the SFCFSHA cluster

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for the procedures.

4 Create a new /etc/vxfenmode.test file on each SFCFSHA cluster node with
the fencing configuration changes such as the CP server information.

Refer to the sample vxfenmode files in the /etc/vxfen.d folder.

5 From any node in the SFCFSHA cluster, start the vxfenswap utility:

vxfenswap [-n]

6 Review the message that the utility displays and confirm whether you want to
commit the change.

■ If you do not want to commit the new fencing configuration changes, press
Enter or answer n at the prompt.

Do you wish to commit this change? [y/n] (default: n) n

The vxfenswap utility rolls back the migration operation.

459Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

■ If you want to commit the new fencing configuration changes, answer y at
the prompt.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully commits, the utility moves the
/etc/vxfenmode.test file to the /etc/vxfenmode file.

7 After the migration is complete, verify the change in the fencing mode.

vxfenadm -d

For example, after the migration from disk-based fencing to server-based
fencing in the SFCFSHA cluster:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Customized

Fencing Mechanism: cps

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

8 Verify the current coordination points that the vxfen driver uses.

vxfenconfig -l

Migrating from server-based to disk-based fencing in an
online cluster
You can either use the installer or manually migrate from server-based fencing to
disk-based fencing without incurring application downtime in the Veritas Storage
Foundation Cluster File System High Availability (SFCFSHA) clusters.

See “About migrating between disk-based and server-based fencing configurations”
on page 454.

You can also use response files to migrate between fencing configurations.

See “Migrating between fencing configurations using response files” on page 466.

460Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Warning: The cluster might panic if any node leaves the cluster membership before
the coordination points migration operation completes.

This section covers the following procedures:

See “To migrate from server-based fecing to disk-based
fencing using the installer” on page 461.

Migrating using the
script-based installer

See “To manually migrate from server-based fencing to
disk-based fencing” on page 464.

Migrating manually

Tomigrate from server-based fecing to disk-based fencing using the installer

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

2 Make sure that the SFCFSHA cluster is configured to use server-based fencing.

vxfenadm -d

For example, if the SFCFSHA cluster uses server-based fencing, the output
appears similar to the following:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Customized

Fencing Mechanism: cps

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

461Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

3 On any node in the cluster, start the installsfcfsha with the -fencing option.

/opt/VRTS/install/installsfcfsha<version> -fencing

Where <version> is the specific release version.

The installsfcfsha starts with a copyright message and verifies the cluster
information.

Note the location of log files which you can access in the event of any problem
with the configuration process.

4 Confirm that you want to proceed with the I/O fencing configuration.

The installer verifies whether I/O fencing is configured in enabled mode.

5 Confirm that you want to reconfigure I/O fencing.

6 Review the I/O fencing configuration options that the program presents. Type
4 to migrate to disk-based I/O fencing.

Select the fencing mechanism to be configured in this

Application Cluster [1-4,q] 4

7 From the list of coordination points that the installer presents, select the
coordination points that you want to replace.

For example:

Select the coordination points you would like to remove

from the currently configured coordination points:

1) emc_clariion0_62

2) [10.209.80.197]:14250,[10.209.80.199]:14300

3) [10.209.80.198]:14250

4) All

5) None

b) Back to previous menu

Enter the options separated by spaces: [1-5,b,q,?] (5)? 2 3

8 Enter the total number of new coordination points.

9 Enter the total number of new coordinator disks.

462Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

10 From the list of available disks that the installer presents, select two disks which
you want to configure as coordinator disks.

For example:

List of available disks:

1) emc_clariion0_61

2) emc_clariion0_65

3) emc_clariion0_66

b) Back to previous menu

Select 2 disk(s) as coordination points. Enter the disk options

separated by spaces: [1-3,b,q]2 3

11 Verify and confirm the coordination points information for the fencing
reconfiguration.

12 To migrate to disk-based fencing, select the I/O fencing mode as SCSI3.

Select the vxfen mode: [1-2,b,q,?] (1) 1

The installer initializes the coordinator disks and the coordinator disk group,
and deports the disk group. Press Enter to continue.

13 Review the output as the installer prepares the vxfenmode.test file on all
nodes and runs the vxfenswap script.

Note the location of the vxfenswap.log file which you can access in the event
of any problem with the configuration process.

The installer cleans up the application cluster information from the CP servers.

14 If you want to send this installation information to Symantec, answer y at the
prompt.

Would you like to send the information about this installation

to Symantec to help improve installation in the future? [y,n,q,?] (y) y

463Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

15 After the migration is complete, verify the change in the fencing mode.

vxfenadm -d

For example, after the migration from server-based fencing to disk-based
fencing in the SFCFSHA cluster:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

16 Verify the current coordination points that the vxfen driver uses.

vxfenconfig -l

To manually migrate from server-based fencing to disk-based fencing

1 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

464Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

2 Make sure that the SFCFSHA cluster is online and uses server-based fencing.

vxfenadm -d

For example, if SFCFSHA cluster uses server-based fencing:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Customized

Fencing Mechanism: cps

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

3 Make sure that you performed the following preparatory tasks to configure
disk-based fencing:

■ Identifying disks to use as coordinator disks

■ Setting up coordinator disk group

■ Creating I/O configuration files

See the Veritas Storage Foundation Cluster File System High Availability
Installation Guide for the procedures.

4 Create a new /etc/vxfenmode.test file with the fencing configuration changes
such as the scsi3 disk policy information.

Refer to the sample vxfenmode files in the /etc/vxfen.d folder.

5 From any node in the SFCFSHA cluster, start the vxfenswap utility:

vxfenswap -g diskgroup [-n]

6 Review the message that the utility displays and confirm whether you want to
commit the change.

■ If you do not want to commit the new fencing configuration changes, press
Enter or answer n at the prompt.

Do you wish to commit this change? [y/n] (default: n) n

The vxfenswap utility rolls back the migration operation.

465Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

■ If you want to commit the new fencing configuration changes, answer y at
the prompt.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully commits, the utility moves the
/etc/vxfenmode.test file to the /etc/vxfenmode file.

7 After the migration is complete, verify the change in the fencing mode.

vxfenadm -d

For example, after the migration from server-based fencing to disk-based
fencing in the SFCFSHA cluster:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

8 Verify the current coordination points that the vxfen driver uses.

vxfenconfig -l

Migrating between fencing configurations using response
files
Typically, you can use the response file that the installer generates after you migrate
between I/O fencing configurations. Edit these response files to perform an
automated fencing reconfiguration in the Veritas Storage Foundation Cluster File
System High Availability (SFCFSHA) cluster.

466Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

To configure I/O fencing using response files

1 Make sure that SFCFSHA is configured.

2 Make sure system-to-system communication is functioning properly.

For more information on system-to-system communication, refer to the Veritas
Cluster Server Administrator's Guide.

3 Make sure that the SFCFSHA cluster is online and uses either disk-based or
server-based fencing.

vxfenadm -d

For example, if SFCFSHA cluster uses disk-based fencing:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: SCSI3

Fencing SCSI3 Disk Policy: dmp

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

For example, if the SFCFSHA cluster uses server-based fencing:

I/O Fencing Cluster Information:

================================

Fencing Protocol Version: 201

Fencing Mode: Customized

Fencing Mechanism: cps

Cluster Members:

* 0 (sys1)

1 (sys2)

RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

467Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

4 Copy the response file to one of the cluster systems where you want to
configure I/O fencing.

Review the sample files to reconfigure I/O fencing.

See “Sample response file to migrate from disk-based to server-based fencing”
on page 468.

See “Sample response file to migrate from server-based fencing to disk-based
fencing” on page 469.

See “Sample response file to migrate from single CP server-based fencing to
server-based fencing” on page 469.

5 Edit the values of the response file variables as necessary.

See “Response file variables to migrate between fencing configurations”
on page 469.

6 Start the I/O fencing reconfiguration from the system to which you copied the
response file. For example:

/opt/VRTS/install/installsfcfsha<version> -responsefile /tmp/

\ response_file

Where <version> is the specific release version, and /tmp/response_file is the
response file’s full path name.

Sample response file to migrate from disk-based to server-based
fencing
The following is a sample response file to migrate from disk-based fencing with
three coordinator disks to server-based fencing with one CP server and two
coordinator disks:

$CFG{disks_to_remove}=[qw(emc_clariion0_62)];

$CFG{fencing_cps}=[qw(10.198.89.251)];

$CFG{fencing_cps_ports}{"10.198.89.204"}=14250;

$CFG{fencing_cps_ports}{"10.198.89.251"}=14250;

$CFG{fencing_cps_vips}{"10.198.89.251"}=[qw(10.198.89.251 10.198.89.204)];

$CFG{fencing_ncp}=1;

$CFG{fencing_option}=4;

$CFG{opt}{configure}=1;

$CFG{opt}{fencing}=1;

$CFG{prod}="SFCFSHA60";

$CFG{systems}=[qw(sys1 sys2)];

$CFG{vcs_clusterid}=22462;

$CFG{vcs_clustername}="clus1";

468Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Sample response file to migrate from server-based fencing to
disk-based fencing
The following is a sample response file to migrate from server-based fencing with
one CP server and two coordinator disks to disk-based fencing with three coordinator
disks:

$CFG{fencing_disks}=[qw(emc_clariion0_66)];

$CFG{fencing_mode}="scsi3";

$CFG{fencing_ncp}=1;

$CFG{fencing_ndisks}=1;

$CFG{fencing_option}=4;

$CFG{opt}{configure}=1;

$CFG{opt}{fencing}=1;

$CFG{prod}="SFCFS60";

$CFG{servers_to_remove}=[qw([10.198.89.251]:14250)];

$CFG{systems}=[qw(sys1 sys2)];

$CFG{vcs_clusterid}=42076;

$CFG{vcs_clustername}="clus1";

Sample response file to migrate from single CP server-based fencing
to server-based fencing
The following is a sample response file to migrate from single CP server-based
fencing to server-based fencing with one CP server and two coordinator disks:

$CFG{fencing_disks}=[qw(emc_clariion0_62 emc_clariion0_65)];

$CFG{fencing_dgname}="fendg";

$CFG{fencing_scsi3_disk_policy}="dmp";

$CFG{fencing_ncp}=2;

$CFG{fencing_ndisks}=2;

$CFG{fencing_option}=4;

$CFG{opt}{configure}=1;

$CFG{opt}{fencing}=1;

$CFG{prod}="SFCFSHA60";

$CFG{systems}=[qw(sys1 sys2)];

$CFG{vcs_clusterid}=42076;

$CFG{vcs_clustername}="clus1";

Response file variables to migrate between fencing configurations
Table 15-9 lists the response file variables that specify the required information to
migrate between fencing configurations for SFCFSHA.

469Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-9 Response file variables specific to migrate between fencing
configurations

DescriptionList or
Scalar

Variable

Specifies the I/O fencing configuration
mode.

■ 1—Coordination Point Server-based
I/O fencing

■ 2—Coordinator disk-based I/O
fencing

■ 3—Disabled mode
■ 4—Fencing migration when the

cluster is online

(Required)

ScalarCFG {fencing_option}

If you migrate to disk-based fencing or
to server-based fencing that uses
coordinator disks, specifies whether to
use free disks or disks that already
belong to a disk group.

■ 0—Use free disks as coordinator
disks

■ 1—Use disks that already belong to
a disk group as coordinator disks
(before configuring these as
coordinator disks, installer removes
the disks from the disk group that the
disks belonged to.)

(Required if your fencing configuration
uses coordinator disks)

ScalarCFG {fencing_reusedisk}

Specifies the number of new
coordination points to be added.

(Required)

ScalarCFG {fencing_ncp}

Specifies the number of disks in the
coordination points to be added.

(Required if your fencing configuration
uses coordinator disks)

ScalarCFG {fencing_ndisks}

470Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

Table 15-9 Response file variables specific to migrate between fencing
configurations (continued)

DescriptionList or
Scalar

Variable

Specifies the disks in the coordination
points to be added.

(Required if your fencing configuration
uses coordinator disks)

ListCFG {fencing_disks}

Specifies the disk group that the
coordinator disks are in.

(Required if your fencing configuration
uses coordinator disks)

ScalarCFG {fencing_dgname}

Specifies the disk policy that the disks
must use.

(Required if your fencing configuration
uses coordinator disks)

ScalarCFG {fencing_scsi3_disk_policy}

Specifies the CP servers in the
coordination points to be added.

(Required for server-based fencing)

ListCFG {fencing_cps}

Specifies the virtual IP addresses or the
fully qualified host names of the new CP
server.

(Required for server-based fencing)

ListCFG {fencing_cps_vips}{$vip1}

Specifies the port that the virtual IP of
the new CP server must listen on. If you
do not specify, the default value is
14250.

(Optional)

ScalarCFG {fencing_cps_ports}{$vip}

Specifies the CP servers in the
coordination points to be removed.

ListCFG {servers_to_remove}

Specifies the disks in the coordination
points to be removed

ListCFG {disks_to_remove}

Enabling or disabling the preferred fencing policy
You can enable or disable the preferred fencing feature for your I/O fencing
configuration.

471Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

You can enable preferred fencing to use system-based race policy or group-based
race policy. If you disable preferred fencing, the I/O fencing configuration uses the
default count-based race policy.

See “About preferred fencing” on page 62.

See “How preferred fencing works” on page 63.

To enable preferred fencing for the I/O fencing configuration

1 Make sure that the cluster is running with I/O fencing set up.

vxfenadm -d

2 Make sure that the cluster-level attribute UseFence has the value set to SCSI3.

haclus -value UseFence

3 To enable system-based race policy, perform the following steps:

■ Make the Veritas Cluster Server (VCS) configuration writable.

haconf -makerw

■ Set the value of the cluster-level attribute PreferredFencingPolicy as
System.

haclus -modify PreferredFencingPolicy System

■ Set the value of the system-level attribute FencingWeight for each node
in the cluster.
For example, in a two-node cluster, where you want to assign sys1 five
times more weight compared to sys2, run the following commands:

hasys -modify sys1 FencingWeight 50

hasys -modify sys2 FencingWeight 10

■ Save the VCS configuration.

haconf -dump -makero

4 To enable group-based race policy, perform the following steps:

■ Make the VCS configuration writable.

haconf -makerw

472Administering Storage Foundation Cluster File System High Availability and its components
Administering I/O fencing

■ Set the value of the cluster-level attribute PreferredFencingPolicy as
Group.

haclus -modify PreferredFencingPolicy Group

■ Set the value of the group-level attribute Priority for each service group.
For example, run the following command:

hagrp -modify service_group Priority 1

Make sure that you assign a parent service group an equal or lower priority
than its child service group. In case the parent and the child service groups
are hosted in different subclusters, then the subcluster that hosts the child
service group gets higher preference.

■ Save the VCS configuration.

haconf -dump -makero

5 To view the fencing node weights that are currently set in the fencing driver,
run the following command:

vxfenconfig -a

To disable preferred fencing for the I/O fencing configuration

1 Make sure that the cluster is running with I/O fencing set up.

vxfenadm -d

2 Make sure that the cluster-level attribute UseFence has the value set to SCSI3.

haclus -value UseFence

3 To disable preferred fencing and use the default race policy, set the value of
the cluster-level attribute PreferredFencingPolicy as Disabled.

haconf -makerw

haclus -modify PreferredFencingPolicy Disabled

haconf -dump -makero

Administering SFCFSHA global clusters
This section provides instructions for the following global cluster administration
tasks:

473Administering Storage Foundation Cluster File System High Availability and its components
Administering SFCFSHA global clusters

■ About setting up a fire drill
See “About setting up a disaster recovery fire drill” on page 474.

■ Configuring the fire drill service group using the wizard
See “About configuring the fire drill service group using the Fire Drill Setup
wizard” on page 475.

■ Verifying a successful fire drill
See “Verifying a successful fire drill” on page 476.

■ Scheduling a fire drill
See “Scheduling a fire drill” on page 477.

About setting up a disaster recovery fire drill
The disaster recovery fire drill procedure tests the fault-readiness of a configuration
by mimicking a failover from the primary site to the secondary site. This procedure
is done without stopping the application at the primary site and disrupting user
access, interrupting the flow of replicated data, or causing the secondary site to
need resynchronization.

The initial steps to create a fire drill service group on the secondary site that closely
follows the configuration of the original application service group and contains a
point-in-time copy of the production data in the Replicated Volume Group (RVG).
Bringing the fire drill service group online on the secondary site demonstrates the
ability of the application service group to fail over and come online at the secondary
site, should the need arise. Fire drill service groups do not interact with outside
clients or with other instances of resources, so they can safely come online even
when the application service group is online.

You must conduct a fire drill only at the secondary site; do not bring the fire drill
service group online on the node hosting the original application.

Before you perform a fire drill in a disaster recovery setup that uses VVR, perform
the following steps:

■ Set the value of the ReuseMntPt attribute to 1 for all Mount resources.

■ Configure the fire drill service group.
See “About configuring the fire drill service group using the Fire Drill Setup
wizard” on page 475.

■ After the fire drill service group is taken offline, reset the value of the ReuseMntPt
attribute to 0 for all Mount resources.

VCS also supports HA fire drills to verify a resource can fail over to another node
in the cluster.

474Administering Storage Foundation Cluster File System High Availability and its components
Administering SFCFSHA global clusters

Note: You can conduct fire drills only on regular VxVM volumes; volume sets (vset)
are not supported.

VCS provides hardware replication agents for array-based solutions, such as Hitachi
Truecopy, EMC SRDF, and so on . If you are using hardware replication agents to
monitor the replicated data clusters, refer to the VCS replication agent documentation
for details on setting up and configuring fire drill.

About configuring the fire drill service group using the Fire Drill Setup
wizard

Use the Fire Drill Setup Wizard to set up the fire drill configuration.

The wizard performs the following specific tasks:

■ Creates a Cache object to store changed blocks during the fire drill, which
minimizes disk space and disk spindles required to perform the fire drill.

■ Configures a VCS service group that resembles the real application group.

The wizard works only with application groups that contain one disk group. The
wizard sets up the first RVG in an application. If the application has more than one
RVG, you must create space-optimized snapshots and configure VCS manually,
using the first RVG as reference.

You can schedule the fire drill for the service group using the fdsched script.

See “Scheduling a fire drill” on page 477.

Running the fire drill setup wizard
To run the wizard

1 Start the RVG Secondary Fire Drill wizard on the VVR secondary site, where
the application service group is offline and the replication group is online as a
secondary:

/opt/VRTSvcs/bin/fdsetup

2 Read the information on the Welcome screen and press the Enter key.

3 The wizard identifies the global service groups. Enter the name of the service
group for the fire drill.

475Administering Storage Foundation Cluster File System High Availability and its components
Administering SFCFSHA global clusters

4 Review the list of volumes in disk group that could be used for a
space-optimized snapshot. Enter the volumes to be selected for the snapshot.
Typically, all volumes used by the application, whether replicated or not, should
be prepared, otherwise a snapshot might not succeed.

Press the Enter key when prompted.

5 Enter the cache size to store writes when the snapshot exists. The size of the
cache must be large enough to store the expected number of changed blocks
during the fire drill. However, the cache is configured to grow automatically if
it fills up. Enter disks on which to create the cache.

Press the Enter key when prompted.

6 The wizard starts running commands to create the fire drill setup.

Press the Enter key when prompted.

The wizard creates the application group with its associated resources. It also
creates a fire drill group with resources for the application (Oracle, for example),
the CFSMount, and the RVGSnapshot types.

The application resources in both service groups define the same application,
the same database in this example. The wizard sets the FireDrill attribute for
the application resource to 1 to prevent the agent from reporting a concurrency
violation when the actual application instance and the fire drill service group
are online at the same time.

About configuring local attributes in the fire drill service
group
The fire drill setup wizard does not recognize localized attribute values for resources.
If the application service group has resources with local (per-system) attribute
values, you must manually set these attributes after running the wizard.

Verifying a successful fire drill
Bring the fire drill service group online on a node that does not have the application
running. Verify that the fire drill service group comes online. This action validates
that your disaster recovery solution is configured correctly and the production service
group will fail over to the secondary site in the event of an actual failure (disaster)
at the primary site.

If the fire drill service group does not come online, review the VCS engine log to
troubleshoot the issues so that corrective action can be taken as necessary in the
production service group.

You can also view the fire drill log, located at /tmp/fd-servicegroup.pid

476Administering Storage Foundation Cluster File System High Availability and its components
Administering SFCFSHA global clusters

Remember to take the fire drill offline once its functioning has been validated. Failing
to take the fire drill offline could cause failures in your environment. For example,
if the application service group were to fail over to the node hosting the fire drill
service group, there would be resource conflicts, resulting in both service groups
faulting.

Scheduling a fire drill
You can schedule the fire drill for the service group using the fdsched script. The
fdsched script is designed to run only on the lowest numbered node that is currently
running in the cluster. The scheduler runs the command hagrp - online

firedrill_group -any at periodic intervals.

To schedule a fire drill

1 Add the file /opt/VRTSvcs/bin/fdsched to your crontab.

2 To make fire drills highly available, add the fdsched file to each node in the
cluster.

477Administering Storage Foundation Cluster File System High Availability and its components
Administering SFCFSHA global clusters

Using Clustered NFS
This chapter includes the following topics:

■ About Clustered NFS

■ Sample use cases

■ Requirements for Clustered NFS

■ Understanding how Clustered NFS works

■ cfsshare manual page

■ Configure and unconfigure Clustered NFS

■ Administering Clustered NFS

■ How to mount an NFS-exported file system on the NFS clients

■ Debugging Clustered NFS

About Clustered NFS
The Clustered NFS (CNFS) feature gracefully handles failure of any node and
reclaim the locks in such a way as to not accidentally lose any existing lock grants
without notification.

This release only supports NFS Version 3.

See “How to mount an NFS-exported file system on the NFS clients” on page 499.

Sample use cases
This section describes two use case scenarios.

16Chapter

■ NFS clients are load balanced across the two CNFS nodes since this is an
Active/Passive configuration. DNS round robin can be used to do this.

■ NFS clients are connected to one of the CNFS nodes, and CNFS VIP failover
(due to server failure) is graceful and transparent to the NFS client. This is better
than Active/Passive NFS clustering using NFS/NFSRestart agents.

Requirements for Clustered NFS
■ Prior knowledge of NFS and NFS locking is a prerequisite.

Understanding how Clustered NFS works
This Clustered NFS feature allows the same file system mounted across multiple
nodes using CFS to be shared over NFS from any combination of those nodes
without any loss of functionality during failover. The failover of NFS lock servers
includes all the locks being released by the old node then reclaimed by clients
talking to the new node during the grace period.

Basic design
The basic design is to have VCS manage virtual IP (VIP) resources that can failover
between nodes and to add extra code into the steps used to handle these resources
to properly handle the NFS level operations. All other involved resources are active
on all nodes participating. The lock data, which is saved into a shared area, is
managed and used in lock-step with the virtual IP resources to ensure that all locks
are reclaimed properly by clients while preventing any inappropriate locks from
being taken at the wrong time. Such interfering locks are prevented through a
combination of stopping services and using new features of the lock handling inside
the VxFS kernel code.

To communicate with the new code in the kernel, the fsclustadm command has
been modified to add command line interfaces to the private ioctl calls.

Note: You must have at least one VIP configured per each CNFS server.

Internal Clustered NFS functionality
This section describes the internal functionality of the triggers and actions scripts
that are a part of the Clustered NFS solution.

479Using Clustered NFS
Requirements for Clustered NFS

preonline trigger
The preonline script copies the lock state files created by the node status monitor
(normally called statd or rpc.statd daemon) during IP failovers and node failures.

The preonline script does the following on IP failover or node failure:

■ Finds the IP and the node it was last online on.

■ Finds the node on which the IP is next going to go online on.

■ Check if the /locks/sm/lastonline/sm/directory is empty. If it is empty, then
exit as there is no lock. There is no need to restart lockd.

■ Calls /opt/VRTS/bin/fsclustadm frlpause_enable and
/opt/VRTS/bin/fsclustadm frlock_pause to ensure that file system does
not give out any new locks during the failover.

■ Stops lock and status services on all nodes to prevent granting locks.

■ Copies all the files from /locks/sm/lastonline/sm/ to
/locks/sm/nextonline/sm/ directory.

where locks is the file system created for storing lock information.
where lastonline is the node on which the VIP resource was previous online.
where nextonline is the node on which the VIP resource will go online next.

■ Calls /opt/VRTS/bin/fsclustadm frlock_resume to resume giving out locks.

Note: At the end of the preonline trigger all lock services have stopped on all
nodes and no NFS locks can be requested until they are restarted.

postonline trigger
The postonline script for each VIP does the following during an IP failover or node
failure:

■ Check if the /locks/sm/lastonline/sm/ directory is empty. If it is empty, then
there is no need to restart the lock service.

■ Starts lock services, triggers reclaim, and grace mode on all nodes.

■ The restarting of status monitor scans all lock status files in the state directory
and contacts all nodes to reclaim their locks. The state files get deleted after
they are processed and reclaim messages sent appropriately.

■ The lock server goes into grace mode and only allows clients to recover their
locks during the grace period. It does not give out any new locks during the
grace period.

480Using Clustered NFS
Understanding how Clustered NFS works

postoffline trigger
The postoffline script does the following on IP failover:

■ Calls /opt/VRTS/bin/fsclustadm frlpause_disable to reduce the internal
usage counter.

■ Each call to /opt/VRTS/bin/fsclustadm frlpause_enable needs to be
matched with a call to /opt/VRTS/bin/fsclustadm frlpause_disable as the
kernel keeps an internal counter to track the number of IP addresses active on
a system. If there are no active IPs on a system, it will be in disabled mode.

Note: This trigger is only called for an administratively initiated failover. An actual
system failure and reboot discards the local state being manipulated in this stage.
This is the one trigger called on the node that was previously hosting the VIP, while
the others are called on the server taking over.

Actions
■ On each node, a /opt/VRTSvcs/bin/IP/actions/nfscfs file is installed. This

file is used to start and stop the NFS locking daemons on a specified node. The
action script is used instead of using rsh, ssh or hacli for remote command
execution from the triggers.

■ On each node, a /opt/VRTSvcs/bin/ApplicationNone/actions/nfscfsapp

file is installed. This file is used while configuring and unconfiguring the Clustered
NFS solution using cfsshare config and cfsshare unconfig commands.

cfsshare manual page
This Clustered NFS feature adds a new configuration utility called cfsshare to the
VRTScavf RPM and several scripts that are added into the VCS configuration to
manage parallel NFS server resources. The cfsshare command modifies VCS
resources that were created by other utilities such as cfsmntadm.

See the cfsshare(1M) manual page.

Configure and unconfigure Clustered NFS
This section describes how to configure and unconfigure Clustered NFS.

481Using Clustered NFS
cfsshare manual page

Configure Clustered NFS

Note: The cfsshare config command fails if the shared_volume specified is
already registered with VCS. Verify that the shared_volume is not registered with
VCS by examining the output from the following command:

/opt/VRTS/bin/cfsmntadm display

The CNFS solution requires a shared file system such as /locks that is mounted
on all cluster nodes. This file system is not a data file system; it contains the lock
state files corresponding to NFS clients holding locks on the CNFS servers.

cfsshare config -p nfs [-n] shared_disk_group shared_volume mount_point

Note: If CIFS is already configured on the cluster, then specify the same
shared_volume and mount_point for configuration of Clustered NFS.

The local state tracking directory contains a file for each NFS client that has a
transaction with the NFS server. The local state tracking directory is:

For Red Hat Enterprise Linux (RHEL):

/var/lib/nfs/statd/sm

For SUSE Linux Enterprise Server (SLES):

/var/lib/nfs/sm

For RHEL:

This creates a symlink from /var/lib/nfs/statd/sm to /locks/sm/nodename/sm

on all the cluster nodes. This allows the lock state files for any cluster node to be
accessed by other nodes in the cluster, even when the node is down.

For SLES:

This creates a symlink from /var/lib/nfs/sm to /locks/sm/nodename/sm on all
the cluster nodes. This allows the lock state files for any cluster node to be accessed
by other nodes in the cluster, even when the node is down.

The -n option can be used if the user does not want cfsshare to create the symlink
to /locks/sm/nodename/sm. If this option is used, then the user needs to manually
create a symlink.

The config option adds this shared file system to VCS configuration; it creates the
corresponding CFSMount resource in a special parallel service group called cfsnfssg.
This also creates an NFS resource in the cfsnfssg service group. In addition to this,

482Using Clustered NFS
Configure and unconfigure Clustered NFS

a separate resource of the new type ApplicationNone is created to monitor lockd
and statd daemons.

If you run the cfsshare config -n option, you need to perform the following
procedure:

1 On each node, create the following directory inside the locks directory, if it does
not already exist:

mkdir -p /locks/sm/nodename/sm.bak

2 For RHEL:

■ On each cluster node, first move the old sm directory and then create a
symlink from /locks/sm/nodename/sm to /var/lib/nfs/statd/sm.

mv /var/lib/nfs/statd/sm /var/lib/nfs/statd/OLD.sm

ln -sf /locks/sm/nodename/sm /var/lib/nfs/statd

■ On each cluster node, first move the old sm.bak directory and then create
a symlink from /locks/sm/nodename/sm.bak to
/var/lib/nfs/statd/sm.bak.

mv /var/lib/nfs/statd/sm.bak

/var/lib/nfs/statd/OLD.sm.bak

ln -sf /locks/sm/nodename/sm.bak /var/lib/nfs/statd

For SLES:

■ On each cluster node, first move the old sm directory and then create a
symlink from /locks/sm/nodename/sm to /var/lib/nfs/statd/sm.

mv /var/lib/nfs/sm

/var/lib/nfs/OLD.sm

ln -sf /locks/sm/nodename/sm /var/lib/nfs

■ On each cluster node, first move the old sm.bak directory and then create
a symlink from /locks/sm/nodename/sm.bak to /var/lib/nfs/sm.bak.

mv /var/lib/nfs/sm.bak

/var/lib/nfs/OLD.sm.bak

483Using Clustered NFS
Configure and unconfigure Clustered NFS

ln -sf /locks/sm/nodename/sm.bak /var/lib/nfs

3 Run the following commands on any one cluster node to set the owner, group,
and permissions of /locks/sm appropriately:

chown -R root:root /locks/sm

chmod -R 755 /locks/sm

You can configure both CNFS and CIFS at the same time by running the cfsshare

config -p all command.

cfsshare config -p all -m user -l /var/run \

-c /etc/samba/smb.conf -t /usr lockdg vollocks /locks

See the Common Internet File System chapter for explanation regarding the various
CIFS-related options.

Service group cfsnfssg_dummy
As part of CNFS configuration, a service group called cfsnfssg_dummy gets created.
This service group is mostly offline.

There is a limit on the number of service groups that can be created in VCS. If this
limit is reached, then cfsnfssg_dummy serves as the service group in which
resources get created during cfsshare unshare and cfsshare delete operations.

See the Veritas Cluster Server Administrator's Guide for information about the
GroupLimit attribute.

Unconfiguring Clustered NFS
This command is used to undo all the steps during the config phase.

cfsshare unconfig -p nfs

Note: If there are any CFS file systems still being shared or any virtual IP is added
the cfsshare unconfig command fails.

Administering Clustered NFS
This section describes Clustered NFS scenarios.

See “Samples for configuring a Clustered NFS” on page 489.

484Using Clustered NFS
Administering Clustered NFS

See “Sample main.cf file” on page 493.

Displaying the NFS shared CFS file systems
This command displays the CFS file systems that are currently being NFS shared
by the cluster nodes.

cfsshare display

Sharing a CFS file system previously added to VCS

Note: You can use the -N option to specify the NFS share options.

You can also use the -p nfs to specify that the protocol to be used is NFS.

See the cfsshare(1M) manual page for more information.

Before running this command, the user should have run cfsmntadm command to
add the shared file system to VCS configuration and the cfsmount command to
mount the shared file system at the mount_point. Once these commands have been
executed, the CFSMount resource corresponding to the mount_point gets created
in either a default service group (with a name similar to
vrts_vea_cfs_int_cfsmountnumber) or in a separate service group, as specified
by the user.

The cfsshare share command moves the CFSMount resource corresponding to
the mount_point and the associated CVMVolDg resource to the cfsnfssg service
group (that was created using the config option). In addition, this command also
creates a share resource on top of the CFSMount resource in the same cfsnfssg
service group.

cfsshare share mount_point [share_options]

Note: VCS does not have the functionality to move resources across service groups.
The cfsshare command creates new CFSMount and CVMVolDg resources in the
cfsnfssg service group and deletes the corresponding resources from the original
service group.

The newly created resource names are different from the original resource names.

485Using Clustered NFS
Administering Clustered NFS

Unsharing the previous shared CFS file system
Before running this command, the user is supposed to have run the cfsshare

share command.

The cfsshare unshare command enables the user to stop sharing the file system
mounted at the mount_point. This command moves the Share, CFSMount, and
CVMVolDg resources corresponding to themount_point from cfsnfssg service group
to a newly created service group. The Share resource is taken offline and then
deleted.

cfsshare unshare mount_point

Note: VCS does not have the functionality to move resources across service groups.
The cfsshare command creates new CFSMount and CVMVolDg resources in the
newly created service group and deletes the corresponding resources from the
original service group.

The newly created resource names are different from the original resource names.

Running the cfsmntadm delete command does not remove the ActivationMode

attribute. If no volumes or vsets in the disk group are in the VCS config, you must
use the cfsdgadm delete to remove this ActivationMode attribute.

Adding an NFS shared CFS file system to VCS
This command adds the CFS file system to the VCS configuration in the cfsnfssg
service group, then mounts the file system at the mount_point, and NFS shares
the CFS file system.

cfsshare add [-D] shared_disk_group shared_volume mount_point \

[share_options] node_name=[mount_options]...

cfsshare add [-D] shared_disk_group shared_volume mount_point \

[share_options] all=[mount_options]

cfsshare add -p nfs [-D] [-N nfs_share_options] shared_disk_group \

shared_volume mount_point <node_name=[mount_point]

cfsshare add -p nfs [-D] [-N nfs_share_options] shared_disk_group \

shared_volume mount_point all=[mount_point]

486Using Clustered NFS
Administering Clustered NFS

Deleting the NFS shared CFS file system from VCS
Before running this command, the user is supposed to have run the cfsshare add

command to create the required resources (Share, CFSMount, and CVMVolDg, if
needed) in the cfsnfssg service group.

This command unshares the CFS file system mounted at themount_point, unmounts
the CFS file system, and removes the CFS file system from the VCS configuration.

cfsshare delete mount_point

Adding a virtual IP address to VCS
This command is used to create a new non-parallel/failover service group that
contains a NIC resource for the given network device and an IP resource for the
virtual IP address.

cfsshare addvip [-a nodename] network_interface address netmask

The cfsshare addvip command lets you specify only one network interface, that
is assumed to be present on all cluster nodes. If you want to specify different network
interfaces for different cluster nodes, then you need to run certain VCS commands.
For example:

haconf -makerw

hares -local vip1 Device

hares -modify vip1 Device eth1 -sys sys1

hares -modify vip1 Device eth2 -sys sys2

hares -local nic1 Device

hares -modify nic1 Device eth1 -sys sys1

hares -modify nic1 Device eth2 -sys sys2

haconf -dump -makero

where vip1 is the virtual IP resource created by the cfsshare addvip command.

where nic1 is the NIC resource respectively created by the cfsshare addvip

command.

where sys1 and sys2 are the cluster nodes.

Deleting a virtual IP address from VCS
This command is used to delete the non-parallel/failover service group corresponding
to the virtual IP address.

cfsshare deletevip address

487Using Clustered NFS
Administering Clustered NFS

Adding an IPv6 virtual IP address to VCS
This command is used to create a new non-parallel/failover service group which
contains a NIC resource for the given network device and an IP resource for the
IPv6 virtual IP address.

cfsshare addvipv6 [-a nodename] network_interface ipv6_address \

prefixlen

Note: For this release the OS versions specified in the system requirements do not
support NFS Version 3 over IPv6.

Deleting an IPv6 virtual IP address from VCS
This command is used to delete the non-parallel/failover service group corresponding
to the IPv6 virtual IP address.

cfsshare deletevipv6 ipv6_address

Note: For this release the OS versions specified in the system requirements do not
support NFS Version 3 over IPv6.

Changing the share options associated with an NFS share
This section describes how to change the share options associated with an NFS
share.

To change the share options associated with an NFS share

1 On any node in the cluster, run cfsshare unshare to unshare the file system:

cfsshare unshare mount_point

2 On any node in the cluster, run cfsshare share to share the file system with
the desired share options:

cfsshare share -p nfs mount_point share_options

Note: The cfsshare unshare operation can affect NFS clients that might have
mounted the mount_point file system.

488Using Clustered NFS
Administering Clustered NFS

Sharing a file system checkpoint
This section describes how to share a file system checkpoint.

To share a file system checkpoint

1 To add the checkpoint to the VCS configuration, enter:

cfsmntadm add ckpt ckptname mntpt_of_fs mntpt_of_checkpoint \

all=cluster,rw

where cktpname is the checkpoint name.

where mntpt_of_fs is the name of the mount point of the file system.

where mntpt_of_checkpoint is the mount point for the checkpoint.

2 To mount the checkpoint, enter:

cfsmount mntpt_of_checkpoint

3 Run the cfsshare share command to share this checkpoint:

cfsshare share -p nfs mntpt_of_checkpoint

Samples for configuring a Clustered NFS
There are two samples for configuring a Clustered NFS.

Note: Ensure that you have setup a shared disk group with shared volumes and
VxFS file system on top.

Sample 1 uses the cfsshare command to configure
This sample is intended to use cfsshare command to configure and control this
feature.

489Using Clustered NFS
Administering Clustered NFS

To configure a Clustered NFS (Sample 1)

1 Configure a VCS configuration for CFS/CVM, enter:

cfscluster config

2 Configure CNFS components, enter:

cfsshare config -p nfs shared_disk_group shared_volume \

mount_point

For example:

cfsshare config -p nfs cfsdg vollocks /locks

3 Add and mount the CFS file system to the VCS configuration, enter:

cfsmntadm add [-D] shared_disk_group shared_volume mount_point \

[service_group] all=[mount_options]

cfsmount mount_point

For example:

cfsmntadm add cfsdg vol1 /mnt1 all=delaylog,largefiles

cfsmount /mnt1

4 Share the CFS file system, enter:

cfsshare share mount_point [share_options]

For example:

cfsshare share /mnt1 rw

5 Run the following command to the display the currently exported file systems:

cfsshare display

CNFS metadata filesystem : /locks

Protocols Configured : NFS

#RESOURCE MOUNTPOINT PROTOCOL OPTIONS

share1 /defragvol NFS rw,no_root_squash

490Using Clustered NFS
Administering Clustered NFS

6 Add the virtual IP addresses for users to access the shared CFS file systems,
enter:

cfsshare addvip [-a nodename] \

network_interface address netmask

For example:

cfsshare addvip eth0 \

10.182.111.161 255.255.240.0

7 Delete a previously added virtual IP address from the configuration, enter:

cfsshare deletevip address

For example:

cfsshare deletevip 10.182.111.161

8 Unshare CFS file system, enter:

cfsshare unshare mount_point

For example:

cfsshare unshare /mnt1

9 Unmount and remove the CFS file system from the VCS configuration, enter

cfsumount mount_point

cfsmntadm delete mount_point

For example:

cfsumount /mnt1

cfsmntadm delete /mnt1

10 Unconfigure NFS shared CFS file systems, enter:

cfsshare unconfig -p nfs

491Using Clustered NFS
Administering Clustered NFS

Sample 2 uses the cfsshare command to add a CFS file
system to VCS configuration
This sample is intended to use the cfsshare command to add a CFS file system
to VCS configuration and mount them. Then share them through NFS, unshare,
unmount, and remove the CFS file systems from VCS configuration.

To configure Clustered NFS (Sample 2)

1 Configure a VCS configuration for CFS/CVM, enter:

cfscluster config

2 Configure the CNFS components, enter:

cfsshare config -p nfs shared_disk_group shared_volume mount_point

For example:

cfsshare config -p nfs cfsdg vollocks /locks

3 Add and mount the NFS shared CFS file system to the VCS configuration,
enter:

cfsshare add [-D] shared_disk_group shared_volume mount_point \

[share_options] all=[mount_options]

For example:

cfsshare add cfsdg vol1 /mnt1 all=rw

4 Add the virtual IP addresses for users to access the shared CFS file systems,
enter:

cfsshare addvip [-a nodename] \

network_interface address netmask

For example:

cfsshare addvip eth0 \

10.182.111.161 255.255.240.0

492Using Clustered NFS
Administering Clustered NFS

5 Delete a previously added virtual IP address from the configuration, enter:

cfsshare deletevip address

For example:

cfsshare deletevip 10.182.111.161

6 Unshare, unmount, and remove the CFS file system from the VCS configuration,
enter:

cfsshare delete mount_point

For example:

cfsshare delete /mnt1

7 Unconfigure CNFS components, enter:

cfsshare unconfig -p nfs

Sample main.cf file
This is a sample main.cf file.

include "OracleASMTypes.cf"

include "types.cf"

include "ApplicationNone.cf"

include "CFSTypes.cf"

include "CVMTypes.cf"

include "Db2udbTypes.cf"

include "OracleTypes.cf"

include "SybaseTypes.cf"

cluster cfs782 (

UserNames = { admin = ghiAhcHeiDiiGqiChf }

Administrators = { admin }

HacliUserLevel = COMMANDROOT

)

system sys1 (

)

system sys2 (

)

493Using Clustered NFS
Administering Clustered NFS

system sys3 (

)

system sys4(

)

group cfsnfssg (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

Application Samba_winbind (

StartProgram = "/opt/VRTSvcs/bin/ApplicationNone/

winbindmonitor.sh start"

StopProgram = "/opt/VRTSvcs/bin/ApplicationNone/

winbindmonitor.sh stop"

PidFiles = { "/var/run/winbindmonitor.pid" }

)

ApplicationNone app (

)

CFSMount cfsmount3 (

Critical = 0

MountPoint = "/mnt2"

BlockDevice = "/dev/vx/dsk/fsp701-704-v03/vol2"

NodeList = { sys1, sys2, sys3,

sys4 }

)

CFSMount cfsnfs_locks (

Critical = 0

MountPoint = "/lock"

BlockDevice = "/dev/vx/dsk/fsp701-704-v03/lock"

NodeList = { sys1, sys2, sys3,

sys4 }

)

494Using Clustered NFS
Administering Clustered NFS

CVMVolDg cvmvoldg3 (

Critical = 0

CVMDiskGroup = fsp701-704-v03

CVMVolume = { lock, vol2 }

CVMActivation @sys1 = sw

CVMActivation @sys2 = sw

CVMActivation @sys3 = sw

CVMActivation @sys4 = sw

)

NFS nfs (

)

NetBios Samba_netbios (

SambaServerRes = SambaServerResource

NetBiosName = cfs782

)

SambaServer SambaServerResource (

ConfFile = "/opt/pware/lib/smb.conf"

SambaTopDir = "/opt/pware"

LockDir = "/opt/pware/var/locks"

)

SambaShare sambashare1 (

Critical = 0

SambaServerRes = SambaServerResource

ShareName = cifs1

ShareOptions = "path=/mnt2;msdfs root=yes;msdfs

'proxy=\\10.209.116.87\\cifs1_dfs\\"

)

requires group cvm online local firm

Samba_winbind requires Samba_netbios

cfsmount3 requires cfsnfs_locks

cfsmount3 requires cvmvoldg3

cfsnfs_locks requires cvmvoldg3

sambashare1 requires SambaServerResource

sambashare1 requires cfsmount3

// resource dependency tree

495Using Clustered NFS
Administering Clustered NFS

//

// group cfsnfssg

// {

// Application Samba_winbind

// {

// NetBios Samba_netbios

// }

// ApplicationNone app

// NFS nfs

// SambaShare sambashare1

// {

// SambaServer SambaServerResource

// CFSMount cfsmount3

// {

// CFSMount cfsnfs_locks

// {

// CVMVolDg cvmvoldg3

// }

// CVMVolDg cvmvoldg3

// }

// }

// }

group cfsnfssg_dummy (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

requires group cvm online local firm

// resource dependency tree

//

// group cfsnfssg_dummy

// {

// }

496Using Clustered NFS
Administering Clustered NFS

group cvm (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

CFSfsckd vxfsckd (

ActivationMode @sys1 = { fsp701-704-v03 = sw }

ActivationMode @sys2 = { fsp701-704-v03 = sw }

ActivationMode @sys3 = { fsp701-704-v03 = sw }

ActivationMode @sys4 = { fsp701-704-v03 = sw }

)

CVMCluster cvm_clus (

CVMClustName = cfs782

CVMNodeId = { sys1 = 0, sys2 = 1,

sys3 = 2,

sys4 = 3 }

CVMTransport = gab

CVMTimeout = 200

)

CVMVxconfigd cvm_vxconfigd (

Critical = 0

CVMVxconfigdArgs = { syslog }

)

cvm_clus requires cvm_vxconfigd

vxfsckd requires cvm_clus

// resource dependency tree

//

// group cvm

// {

// CFSfsckd vxfsckd

// {

// CVMCluster cvm_clus

// {

// CVMVxconfigd cvm_vxconfigd

497Using Clustered NFS
Administering Clustered NFS

// }

// }

// }

group vip1 (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoStartList = { sys1, sys2, sys3,

sys4 }

TriggerPath = "bin/cavftriggers/vip"

TriggersEnabled @sys1 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys2 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys3 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys4 = { PREONLINE, POSTONLINE, POSTOFFLINE }

PreOnline @sys1 = 1

PreOnline @sys2 = 1

PreOnline @sys3 = 1

PreOnline @sys4 = 1

)

IP vip1 (

Device = eth0

Address = "10.209.116.87"

NetMask = "255.255.252.0"

)

NIC nic1 (

Device = eth0

NetworkHosts = { "10.209.113.1" }

)

SambaShare sambashare1_dfs (

Critical = 0

SambaServerRes = SambaServerResource

ShareName = cifs1_dfs

ShareOptions = "path=/mnt2;readonly=no"

)

requires group cfsnfssg online local firm

sambashare1_dfs requires vip1

vip1 requires nic1

498Using Clustered NFS
Administering Clustered NFS

// resource dependency tree

//

// group vip1

// {

// SambaShare sambashare1_dfs

// {

// IP vip1

// {

// NIC nic1

// }

// }

// }

How tomount an NFS-exported file system on the
NFS clients

This section describes how to mount an NFS-exported file system on the NFS
clients.

To mount an NFS-exported file system on the NFS clients

◆ Run the following command:

mount -t nfs -o vers=3 VIP_address:remote_filesystem mount_point

Debugging Clustered NFS
The cfsshare command logs error messages to the VCS logs in the
/var/VRTSvcs/log directory. The fsclustadm frlpause_query command may
be used to display the current local copy of the global state. This may be useful in
debugging any issues with this Clustered NFS feature.

499Using Clustered NFS
How to mount an NFS-exported file system on the NFS clients

Using Common Internet
File System

This chapter includes the following topics:

■ About CIFS

■ Requirements for CIFS

■ Understanding how Samba works

■ Configuring Clustered NFS and CIFS on CFS

■ cfsshare manual page

■ Configuring CIFS in user mode

■ Configuring CIFS in domain mode

■ Configuring CIFS in ads mode

■ Administering CIFS

■ Debugging CIFS

About CIFS
The Common Internet File System (CIFS) feature lets you share CFS file systems
using CIFS protocol that can be accessed by Window clients. Upon node failure or
service group failover, the CIFS shares continue to be served by other cluster nodes.

Use the cfsshare command to configure your CIFS shares.

See “cfsshare manual page” on page 501.

17Chapter

Requirements for CIFS
■ Common Internet File System (CIFS) requires Samba version 3.2 or later.

■ Prior knowledge of Samba is a prerequisite.

Understanding how Samba works
Samba is a networking tool that enables a UNIX server to participate in Windows
networks. There are two parts to Samba, one being the server which shares out
files and printers for other PC's to use, and the other being the client utilities, which
allows a UNIX system to access files and printers on other Windows or Samba
servers.

Configuring Clustered NFS and CIFS on CFS
You can configure CNFS and CIFS on the same cluster. However, any given CFS
file system can be shared using only one of the protocols (NFS or CIFS) at any
given time.

cfsshare manual page
This CIFS feature adds a new functionality to the cfsshare utility in the VRTScavf
RPM and several scripts that are added into the VCS configuration to manage
parallel NFS and CIFS server resources. The cfsshare command modifies VCS
resources that were created by other utilities such as cfsmntadm.

Note: The cfsshare command takes nfs protocol by default if the -p option is not
used.

See the cfsshare(1M) manual page.

man -M /opt/VRTS/man cfsshare

Configuring CIFS in user mode
This section describes how to configure CIFS in user mode.

In this mode, user authentication happens on the cluster nodes itself.

You must have NIS or some other mechanism configured on the cluster nodes to
ensure the same users/groups have the same user/groups IDs on all cluster nodes.

501Using Common Internet File System
Requirements for CIFS

A shared file system needs to be specified during the config operation. This file
system is used to store the smbpasswd file, which contains the encrypted passwords
for users. This way, users for whom passwords have been created on one cluster
node, can authenticate themselves against other cluster nodes as well.

You must backup your existing smb.conf file and ensure that the /var/log/samba

file exists on all cluster nodes, before running the cfsshare config command.

Note: If CNFS is already configured on the cluster, then specify the same
shared_volume and mount_point for configuration of CIFS.

cfsshare config [-n] -p cifs -l samba_lockdir -c \

samba_config_file -t samba_topdir -m user \

shared_disk_group shared_volume mount_point

For example:

cfsshare config -p cifs -m user -l /var/run \

-c /etc/samba/smb.conf -t /usr lockdg vollocks /locks

Note: Check the path of the Samba lock directory and PID directory using the smbd

-b command. Use the path of the PID directory for the -l samba_lock option.

Note: The cfsshare config command fails if the shared_volume specified is
already registered with VCS. Verify that the shared_volume is not registered with
VCS by examining the output from the following command:

/opt/VRTS/bin/cfsmntadm display

If the -n option is specified when using the cfsshare config command, you must
follow the steps to complete the CIFS configuration:

502Using Common Internet File System
Configuring CIFS in user mode

To complete the CIFS configuration when using the -n option

1 Copy the following lines to your smb.conf file:

security = user

passwd backend = smbpasswd

smbpasswd file = pvtdir/smbpasswd

where pvtdir is the private directory of your Samba installation.

2 Run the following command to backup your existing smbpasswd file:

cp -f pvtdir/smbpasswd pvtdir/smbpasswd.OLD

3 Create a symlink in pvtdir, that points to the smbpasswd file created in the locks
file system:

ln -sf mntpt/cifs/smbpasswd pvtdir/smbpasswd

where mntpt is the mount point.

To unconfigure CIFS:

cfsshare unconfig -p cifs

Note: The unconfigure operation fails if any file systems or VIPs are being shared
via CIFS protocol. Use the cfsshare delete command to stop sharing the file
systems via CIFS. Use the cfsshare deletevip command to remove the VIPs.

You can configure both CNFS and CIFS at the same time by running the cfsshare

config -p all command.

cfsshare config -p all -m user -l /var/run \

-c /etc/samba/smb.conf -t /usr lockdg vollocks /locks

Configuring CIFS in domain mode
This section describes how to configure CIFS in domain mode.

In this mode, user authentication happens on the NT4-style Domain controllers.

The cluster nodes act as member servers in the domain. You must have performed
additional steps to make user and group mapping via winbind work.

A shared file system needs to be specified during the config operation. This file
system is used to replicate the secrets.tdb file (machine password file) across all
cluster nodes. Only one of the cluster nodes joins the domain using the cluster

503Using Common Internet File System
Configuring CIFS in domain mode

name. Once you have copied this file to all the cluster nodes, the Domain controller
sees all cluster nodes as one member server.

The shared file system can also be used to store any tdb files that needs to be
shared across all cluster nodes. Appropriate symlinks must be created on all cluster
nodes.

You must backup your existing smb.conf file and ensure that the /var/log/samba

file exists on all cluster nodes, before running the cfsshare config command.

Note: If CNFS is already configured on the cluster, then specify the same
shared_volume and mount_point for configuration of CIFS.

cfsshare config [-n] -p cifs -l samba_lockdir -c \

samba_config_file -t samba_topdir -m domain \

shared_disk_group shared_volume mount_point

For example:

cfsshare config -p cifs -m domain -l \

/var/run -c /etc/samba/smb.conf -t /usr -s sfstest-ad \

-d SFSTEST-AD2 -u Administrator lockdg vollocks /locks

Note: Check the path of the Samba lock directory and PID directory using the smbd

-b command. Use the path of the PID directory for the -l samba_lock option.

Note: The cfsshare config command fails if the shared_volume specified is
already registered with VCS. Verify that the shared_volume is not registered with
VCS by examining the output from the following command:

/opt/VRTS/bin/cfsmntadm display

If the -n option is specified when using the cfsshare config command, you must
follow the steps to complete the CIFS configuration:

504Using Common Internet File System
Configuring CIFS in domain mode

To complete the CIFS configuration when using the -n option

1 Copy the following lines to your smb.conf file:

security = domain

workgroup = domainname

password server = Domain_Controller_of_the_domain

2 Run the following command to backup your existing secrets.tdb file:

mv -f pvtdir/secrets.tdb pvtdir/secrets.tdb.OLD

where pvtdir is the private directory of your Samba installation.

3 Copy the secrets.tdb file created in the locks file system to the private
directory of your Samba installation:

cp -f mntpt/cifs/secrets.tdb pvtdir/secrets.tdb

where mntpt is the mount point.

To unconfigure CIFS:

cfsshare unconfig -p cifs

The unconfigure operation fails if any file systems are being shared via CIFS
protocol.

You can configure both CNFS and CIFS at the same time by running the cfsshare

config -p all command.

cfsshare config -p all -m domain -l \

/var/run -c /etc/samba/smb.conf -t /usr -s sfstest-ad \

-d SFSTEST-AD2 -u Administrator lockdg vollocks /locks

Configuring CIFS in ads mode
This section describes how to configure CIFS in ads mode.

In this mode, user authentication happens on the active directory using Kerberos.
The cluster nodes act as member servers in the domain. You must have performed
additional steps to make user and group mapping via winbind work.

A shared file system needs to be specified during the config operation. This file
system is used to replicate the secrets.tdb file (machine password file) across all
cluster nodes. Only one of the cluster nodes joins the domain using the cluster
name. Once you have copied this file to all the cluster nodes, the domain controller
sees all cluster nodes as one member server.

505Using Common Internet File System
Configuring CIFS in ads mode

You must have configured Kerberos on all cluster nodes. The time on all cluster
nodes needs to be synced up with the AD server/KDC.

The shared file system can also be used to store any tdb file that needs to be
shared across all cluster nodes. Appropriate symlinks must be created on all cluster
nodes.

You must backup your existing smb.conf file and ensure that the /var/log/samba

file exists on all cluster nodes, before running the cfsshare config command.

Note: If CNFS is already configured on the cluster, then specify the same
shared_volume and mount_point for configuration of CIFS.

cfsshare config [-n] -p cifs -l samba_lockdir -c \

samba_config_file -t samba_topdir -m ads \

shared_disk_group shared_volume mount_point

For example:

cfsshare config -p cifs -m ads -l /var/run \

-c /etc/samba/smb.conf -t /usr -s sfstest-ad -d \

SFSTEST-AD2 -r SFSTEST-AD2.LOCAL -u Administrator \

lockdg lockvol /locks

Note: Check the path of the Samba lock directory and PID directory using the smbd

-b command. Use the path of the PID directory for the -l samba_lock option.

Note: The cfsshare config command fails if the shared_volume specified is
already registered with VCS. Verify that the shared_volume is not registered with
VCS by examining the output from the following command:

/opt/VRTS/bin/cfsmntadm display

If the -n option is specified when using the cfsshare config command, you must
follow the steps to complete the CIFS configuration:

506Using Common Internet File System
Configuring CIFS in ads mode

To complete the CIFS configuration when using the -n option

1 Copy the following lines to your smb.conf file:

security = ads

workgroup = domainname

password server = AD_server_of_the_domain

realm = realm_name

2 Run the following command to backup your existing secrets.tdb file:

mv -f pvtdir/secrets.tdb pvtdir/secrets.tdb.OLD

where pvtdir is the private directory of your Samba installation.

3 Copy the secrets.tdb file created in the locks file system to the private
directory of your Samba installation:

cp -f mntpt/cifs/secrets.tdb pvtdir/secrets.tdb

where mntpt is the mount point.

To unconfigure CIFS:

cfsshare unconfig -p cifs

Note: The unconfigure operation fails if any file systems are being shared via CIFS
protocol.

You can configure both CNFS and CIFS at the same time by running the cfsshare

config -p all command.

cfsshare config -p all -m ads -l /var/run \

-c /etc/samba/smb.conf -t /usr -s sfstest-ad -d \

SFSTEST-AD2 -r SFSTEST-AD2.LOCAL -u Administrator \

lockdg lockvol /locks

Administering CIFS
To be able to access a CIFS exported file system from a Windows client you must
first add a virtual IP. You must specify this virtual IP while sharing a file system via
CIFS.

Adding a virtual IP:

cfsshare addvip [-a nodename] device address netmask [networkhosts]

507Using Common Internet File System
Administering CIFS

For example:

cfsshare addvip eth0 10.182.79.216 \

255.255.240.0 10.182.79.215

The cfsshare addvip command lets you specify only one network interface, that
is assumed to be present on all cluster nodes. If you want to specify different network
interfaces for different cluster nodes, then you need to run certain VCS commands.
For example:

haconf -makerw

hares -local vip1 Device

hares -modify vip1 Device eth1 -sys sys1

hares -modify vip1 Device eth2 -sys sys2

hares -local nic1 Device

hares -modify nic1 Device eth1 -sys sys1

hares -modify nic1 Device eth2 -sys sys2

haconf -dump -makero

where vip1 is the virtual IP resource created by the cfsshare addvip command.

where nic1 is the NIC resource respectively created by the cfsshare addvip

command.

where sys1 and sys2 are the cluster nodes.

Adding and sharing a file system via CIFS:

cfsshare add -p cifs [-D] -v address -n cifs_share_name \

shared_disk_group shared_volume mount_point \

share_options all=[mount_options]

For example:

cfsshare add -p cifs -v 10.182.79.216 \

-n sh1 sharedg vol1 /mnt1 "readonly=no" all=

Note: You can also use the -C option to specify the CIFS share options.

See the cfsshare(1M) manual page for more information.

Run the following command to the display the currently exported file systems:

cfsshare display

CNFS metadata filesystem : /locks

Protocols Configured : NFS

508Using Common Internet File System
Administering CIFS

#RESOURCE MOUNTPOINT PROTOCOL OPTIONS

share1 /defragvol NFS rw,no_root_squash

Deleting a previous shared file system:

cfsshare delete -p cifs mount_point

For example:

cfsshare delete -p cifs /mnt1

Deleting the VIP added previously:

cfsshare deletevip address

For example:

cfsshare deletevip 10.182.79.216

Sharing a CFS file system previously added to VCS
Use one of the following commands:

cfsshare share -p cifs -v address -n cifs share name \

[-C cifs_share_options] mount_point

For example:

cfsshare share -p cifs -v 10.182.79.216 -n sh1 -C readonly=no /mnt1

Or

cfsshare share -p cifs -v address -n cifs share name \

mount_point [share_options]

For example:

cfsshare share -p cifs -v 10.182.79.216 -n sh1 /mnt1 readonly=no

Note: You must added the address using the the cfsshare addvip command
before running the cfsshare share command.

See the cfsshare(1M) manual page for more information.

Before running this command, you should have run cfsmntadm command to add
the shared file system to VCS configuration and the cfsmount command to mount
the shared file system at the mount_point. Once these commands have been
executed, the CFSMount resource corresponding to the mount_point gets created

509Using Common Internet File System
Administering CIFS

in either a default service group (with a name similar to
vrts_vea_cfs_int_cfsmountnumber) or in a separate service group, as specified
by the user.

The cfsshare share command moves the CFSMount resource corresponding to
the mount_point and the associated CVMVolDg resource to the cfsnfssg service
group (that was created using the config option). This command also creates a
share resource on top of the CFSMount resource in the same cfsnfssg service
group.

Note: VCS does not have the functionality to move resources across service groups.
The cfsshare command creates new CFSMount and CVMVolDg resources in the
cfsnfssg service group and deletes the corresponding resources from the original
service group.

The newly created resource names are different from the original resource names.

Unsharing the previous shared CFS file system
Before running this command, you should have run the cfsshare share command.

The cfsshare unshare command enables the user to stop sharing the file system
mounted at the mount_point. This command moves the Share, CFSMount, and
CVMVolDg resources corresponding to themount_point from cfsnfssg service group
to a newly created service group. The SambaShare resource is taken offline and
then deleted.

cfsshare unshare mount_point

Note: VCS does not have the functionality to move resources across service groups.
The cfsshare command creates new CFSMount and CVMVolDg resources in the
newly created service group and deletes the corresponding resources from the
original service group.

The newly created resource names are different from the original resource names.

Running the cfsmntadm delete command does not remove the ActivationMode

attribute. If no volumes or vsets in the disk group are in the VCS config, you must
use the cfsdgadm delete to remove this ActivationMode attribute.

Sample main.cf file for CIFS
This is a sample main.cf file.

510Using Common Internet File System
Administering CIFS

include "OracleASMTypes.cf"

include "types.cf"

include "ApplicationNone.cf"

include "CFSTypes.cf"

include "CVMTypes.cf"

include "Db2udbTypes.cf"

include "OracleTypes.cf"

include "SybaseTypes.cf"

cluster cfs782 (

UserNames = { admin = ghiAhcHeiDiiGqiChf }

Administrators = { admin }

HacliUserLevel = COMMANDROOT

UseFence = SCSI3

)

system sys1 (

)

system sys2 (

)

system sys3 (

)

system sys4(

)

group cfsnfssg (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

Application Samba_winbind (

StartProgram = "/opt/VRTSvcs/bin/ApplicationNone/

winbindmonitor.sh start"

StopProgram = "/opt/VRTSvcs/bin/ApplicationNone/

winbindmonitor.sh stop"

511Using Common Internet File System
Administering CIFS

PidFiles = { "/var/run/winbindmonitor.pid" }

)

ApplicationNone app (

)

CFSMount cfsmount3 (

Critical = 0

MountPoint = "/mnt2"

BlockDevice = "/dev/vx/dsk/fsp701-704-v03/vol2"

NodeList = { sys1, sys2, sys3,

sys4 }

)

CFSMount cfsnfs_locks (

Critical = 0

MountPoint = "/lock"

BlockDevice = "/dev/vx/dsk/fsp701-704-v03/lock"

NodeList = { sys1, sys2, sys3,

sys4 }

)

CVMVolDg cvmvoldg3 (

Critical = 0

CVMDiskGroup = fsp701-704-v03

CVMVolume = { lock, vol2 }

CVMActivation @sys1 = sw

CVMActivation @sys2 = sw

CVMActivation @sys3 = sw

CVMActivation @sys4 = sw

)

NFS nfs (

)

NetBios Samba_netbios (

SambaServerRes = SambaServerResource

NetBiosName = cfs782

)

SambaServer SambaServerResource (

ConfFile = "/opt/pware/lib/smb.conf"

SambaTopDir = "/opt/pware"

512Using Common Internet File System
Administering CIFS

LockDir = "/opt/pware/var/locks"

)

SambaShare sambashare1 (

Critical = 0

SambaServerRes = SambaServerResource

ShareName = cifs1

ShareOptions = "path=/mnt2;msdfs root=yes;msdfs

proxy=\\10.209.116.87\\cifs1_dfs\\"

)

requires group cvm online local firm

Samba_winbind requires Samba_netbios

cfsmount3 requires cfsnfs_locks

cfsmount3 requires cvmvoldg3

cfsnfs_locks requires cvmvoldg3

sambashare1 requires SambaServerResource

sambashare1 requires cfsmount3

// resource dependency tree

//

// group cfsnfssg

// {

// Application Samba_winbind

// {

// NetBios Samba_netbios

// }

// ApplicationNone app

// NFS nfs

// SambaShare sambashare1

// {

// SambaServer SambaServerResource

// CFSMount cfsmount3

// {

// CFSMount cfsnfs_locks

// {

// CVMVolDg cvmvoldg3

// }

// CVMVolDg cvmvoldg3

// }

// }

// }

513Using Common Internet File System
Administering CIFS

group cfsnfssg_dummy (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

requires group cvm online local firm

// resource dependency tree

//

// group cfsnfssg_dummy

// {

// }

group cvm (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { sys1, sys2, sys3,

sys4 }

)

CFSfsckd vxfsckd (

ActivationMode @sys1 = { fsp701-704-v03 = sw }

ActivationMode @sys2 = { fsp701-704-v03 = sw }

ActivationMode @sys3 = { fsp701-704-v03 = sw }

ActivationMode @sys4 = { fsp701-704-v03 = sw }

)

CVMCluster cvm_clus (

CVMClustName = cfs782

CVMNodeId = { sys1 = 0, sys2 = 1,

sys3 = 2,

sys4 = 3 }

CVMTransport = gab

514Using Common Internet File System
Administering CIFS

CVMTimeout = 200

)

CVMVxconfigd cvm_vxconfigd (

Critical = 0

CVMVxconfigdArgs = { syslog }

)

cvm_clus requires cvm_vxconfigd

vxfsckd requires cvm_clus

// resource dependency tree

//

// group cvm

// {

// CFSfsckd vxfsckd

// {

// CVMCluster cvm_clus

// {

// CVMVxconfigd cvm_vxconfigd

// }

// }

// }

group vip1 (

SystemList = { sys1 = 0, sys2 = 1, sys3 = 2,

sys4 = 3 }

AutoStartList = { sys1, sys2, sys3,

sys4 }

TriggerPath = "bin/cavftriggers/vip"

TriggersEnabled @sys1 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys2 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys3 = { PREONLINE, POSTONLINE, POSTOFFLINE }

TriggersEnabled @sys4 = { PREONLINE, POSTONLINE, POSTOFFLINE }

PreOnline @sys1 = 1

PreOnline @sys2 = 1

PreOnline @sys3 = 1

PreOnline @sys4 = 1

)

IP vip1 (

515Using Common Internet File System
Administering CIFS

Device = eth0

Address = "10.209.116.87"

NetMask = "255.255.252.0"

)

NIC nic1 (

Device = eth0

NetworkHosts = { "10.209.113.1" }

)

SambaShare sambashare1_dfs (

Critical = 0

SambaServerRes = SambaServerResource

ShareName = cifs1_dfs

ShareOptions = "path=/mnt2;readonly=no"

)

requires group cfsnfssg online local firm

sambashare1_dfs requires vip1

vip1 requires nic1

// resource dependency tree

//

// group vip1

// {

// SambaShare sambashare1_dfs

// {

// IP vip1

// {

// NIC nic1

// }

// }

// }

Debugging CIFS
The cfsshare command logs error messages to the VCS engine logs in the
/var/VRTSvcs/log directory.

516Using Common Internet File System
Debugging CIFS

Administering sites and
remote mirrors

This chapter includes the following topics:

■ About sites and remote mirrors

■ Making an existing disk group site consistent

■ Configuring a new disk group as a Remote Mirror configuration

■ Fire drill — testing the configuration

■ Changing the site name

■ Administering the Remote Mirror configuration

■ Examples of storage allocation by specifying sites

■ Displaying site information

■ Failure and recovery scenarios

About sites and remote mirrors
In a Remote Mirror configuration (also known as a campus cluster or stretch cluster)
the hosts and storage of a cluster that would usually be located in one place, are
instead divided between two or more sites. These sites are typically connected via
a redundant high-capacity network that provides access to storage and private link
communication between the cluster nodes.

Figure 18-1 shows a typical two-site remote mirror configuration.

18Chapter

Figure 18-1 Example of a two-site remote mirror configuration

Cluster
nodes

Disk enclosures Disk enclosures

Site A
Private network

Site B

Fibre Channel
switch

Fibre Channel
switch

Metropolitan or
wide area

network link
(Fibre Channel

or DWDM)

Cluster
nodes

If a disk group is configured across the storage at the sites, and inter-site
communication is disrupted, there is a possibility of a serial split brain condition
arising if each site continues to update the local disk group configuration copies.

See “Handling conflicting configuration copies” on page 911.

VxVM provides mechanisms for dealing with the serial split brain condition,
monitoring the health of a remote mirror, and testing the robustness of the cluster
against various types of failure (also known as fire drill).

For applications and services to function correctly at a site when other sites have
become inaccessible, at least one complete plex of each volume must be configured
at each site (site-based allocation), and the consistency of the data in the plexes
at each site must be ensured (site consistency).

By tagging disks with site names, storage can be allocated from the correct location
when creating, resizing or relocating a volume, and when changing a volume’s
layout.

Figure 18-2 shows an example of a site-consistent volume with two plexes configured
at each of two sites.

518Administering sites and remote mirrors
About sites and remote mirrors

Figure 18-2 Site-consistent volume with two plexes at each of two sites

Site A Site B

Disk group

Volume V

Plex
P1 Plex P2 Plex P3 Plex

P4

The storage for plexes P1 and P2 is allocated storage that is tagged as belonging
to site A, and the storage for plexes P3 and P4 is allocated storage that is tagged
as belonging to site B.

Although not shown in this figure, DCO log volumes are also mirrored across the
sites, and disk group configuration copies are distributed across the sites.

Site consistency means that the data in the plexes for a volume must be consistent
at each site. The site consistency of a volume is ensured by detaching a site when
its last complete plex fails at that site. If a site fails, all its plexes are detached and
the site is said to be detached. If site consistency is not on, only the plex that fails
is detached. The remaining volumes and their plexes on that site are not detached.

To enhance read performance, VxVM will service reads from the plexes at the local
site where an application is running if the siteread read policy is set on a volume.
Writes are written to plexes at all sites.

Figure 18-3 shows a configuration with remote storage only that is also supported.

519Administering sites and remote mirrors
About sites and remote mirrors

Figure 18-3 Example of a two-site configuration with remote storage only

Cluster or
standalone
system

Fibre
Channel

switch Fibre Channel
switch

Disk enclosures Disk enclosures

Site A

Metropolitan
or wide area
network link

(Fibre Channel
or DWDM)

Site B

About site-based allocation
Site-based allocation policies are enforced by default in a site-configured disk group.
Site-based allocation requires that each volume has at least one plex at each site
that is configured in the disk group. When a new volume is created in a
site-configured disk group, the allsites attribute is set to on by default. The
allsites attribute indicates that the volume must have at least one plex on each
configured site in the disk group. For new volumes, the read policy is set to siteread

by default.

If mirroring across sites is not required, or is not possible (as is the case for RAID-5
volumes), specify the allsites=off attribute to the vxassist command. If sites
are configured in the disk group, a plex will always be confined to a site and will
not span across sites. This enforcement cannot be overridden.

Before adding a new site to a disk group, be sure to meet the following requirements:

■ Disks from the site being added (site tagged) are present or added to the disk
group.

■ Each existing volume with allsites set in the disk group must have at least
one plex at the site being added. If this condition is not met, the command to

520Administering sites and remote mirrors
About sites and remote mirrors

add the site to the disk group fails. If the -f option is specified, the command
does not fail, but instead it sets the allsites attribute for the volume to off.

About site consistency
Site consistency means that at any point in time, the data at each site is consistent
with the application for a given set of volumes. A site-consistent volume must have
at least one plex, or mirror, on each configured site in the disk group. The site
consistency is ensured by detaching a site when a site-consistent volume loses its
last complete plex on that site. The site detach detaches all the plexes on that site
and also disallows further configuration updates to the configuration copies on that
site. Turn on this behavior by setting the siteconsistent attribute to on on the
desired volumes.

If you set the siteconsistent attribute to off, only the plex that fails is detached.
The plexes for the remaining volumes on that site are not detached.

The siteconsistent attribute is also present at the disk group level and can be
used to turn on or off the site consistency functionality in the disk group boundary.
In addition, if you turn on the siteconsistent attribute for a disk group, each new
volume created in the disk group inherits the site consistency of the disk group, by
default. Setting the siteconsistent attribute on a disk group does not affect
siteconsistent attributes for existing volumes. You can also control the site
consistency on individual volumes.

By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version 20
DCO volume, and enables Persistent FastResync on the volume. This allows faster
recovery of the volume during the reattachment of a site.

See “Configuring site consistency on a volume” on page 531.

Before setting site consistency on a disk group, be sure to meet the following
requirements:

■ A license enabling the Site Awareness feature must be installed on all the hosts
in the Remote Mirror configuration.

■ At least two sites must be configured in the disk group before site consistency
is turned on.
See “Making an existing disk group site consistent” on page 525.

■ All the disks in a disk group must be registered to one of the sites before you
can set the siteconsistent attribute on the disk group.

521Administering sites and remote mirrors
About sites and remote mirrors

About site tags
In a Remote Mirror configuration, each storage device in the disk group must be
tagged with site information. The site tag indicates to which site the device is
associated. VxVM provides a facility to tag VxVM-initialized disks with an arbitrary
name-value pair. The tag name site is reserved by VxVM and is used to identify
the site information of tagged disks. The command vxdisk settag can be used
to tag multiple disks or all disks from an enclosure or disks from multiple enclosures.
The tagging can be restricted to disks in a disk group by specifying the disk group
with the command.

You can use automatic site tagging to assign site tags to disks when adding them
to a disk group. When automatic site tagging is on, newly added disks or LUNs
inherit the site tag from the site-enclosure mapping stored in the disk group. To use
automatic site tagging, turn on automatic site tagging for a disk group, and then
assign the site names to the enclosures in the disk group. Any disks or LUNs in
that disk group inherit the tag from the enclosure to which they belong.

About the site read policy
To enhance read performance, VxVM will service reads from the plexes at the local
site where an application is running, if the siteread read policy is set on a volume.
Writes are written to plexes at all sites. By tagging hosts with site information, VxVM
identifies which hosts belong to which site. Reads initiated by a host from one site
are then satisfied by disks which are tagged with the same site. Tagging hosts and
disks with correct site information gives you maximum read performance when
siteread read policy is used.

If a license enabling the Site Awareness feature is installed on all the hosts in the
Remote Mirror configuration, the disk group is configured for site consistency with
several sites enabled, and the allsites=on attribute is specified for a volume, the
default read policy is siteread.

If the siteread policy is not set, use the following command to set the read policy
to siteread policy on a volume:

vxvol [-g diskgroup] rdpol siteread volume

This command has no effect if a site name has not been set for the host.

See “Changing the read policy for mirrored volumes” on page 231.

522Administering sites and remote mirrors
About sites and remote mirrors

About disk detach policies for campus clusters
In a campus cluster, the detach policy can be local or global, just as for other CVM
clusters. The behavior of these policies is the same as for other CVM clusters, with
a few exceptions as described in this section.

For local storage connectivity failures, the local detach policy fails I/O locally for the
volume. No plexes are detached. If I/O shipping is enabled, then CVM redirects the
I/O to another node. In a campus cluster, I/O shipping gives preference to a node
in the same site.

For local storage connectivity failures, the global detach policy causes the plex to
be detached. If all plexes located in a site fail on one or more nodes in the cluster,
and I/O shipping is not enabled, CVM detaches the site. A site detach detaches all
the plexes on the site and also disallows further configuration updates to the
configuration copies on that site. If I/O shipping is enabled, CVM redirects the I/O
to another node. I/O shipping gives preference to a node in the same site. CVM
attempts to keep at least one plex available on each site. Therefore, with the global
detach policy, I/O failure on the last plex in a site triggers IO shipping after all other
plexes in the site are detached.

For any storage connectivity failures that affect all plexes of the volume for one or
more nodes, I/O fails on the volume. If I/O shipping is enabled, I/O is redirected to
another node. If all nodes on all sites are affected, all sites are detached except
the last site and I/O fails.

Table 18-1 summarizes the detach policies for campus clusters.

Table 18-1 Detach policies for campus clusters

global
detach
policy
and
ioship=on

global
detach
policy
and
ioship=off

local detach
policy and
ioship=on

local
detach
policy
and
ioship=off

Plexes affectedSites
affected

Detaches
the plex.

Detaches
the plex.

Ships I/O to
another node
with
connectivity,
preferably in the
same site.

I/O fails
locally on
the volume.

One or more
nodes in the site
have I/O failure on
some plexes in the
site.

For example, two
out of three plexes
located in a site
have failed.

One site.

523Administering sites and remote mirrors
About sites and remote mirrors

Table 18-1 Detach policies for campus clusters (continued)

global
detach
policy
and
ioship=on

global
detach
policy
and
ioship=off

local detach
policy and
ioship=on

local
detach
policy
and
ioship=off

Plexes affectedSites
affected

Ships I/O to
another
node with
connectivity,
preferably
in the same
site.

Detaches
the plex.

Ships I/O to
another node
with
connectivity,
preferably in the
same site.

I/O fails
locally on
the volume.

One or more
nodes in the site
have IO failure on
all the plexes
located in the site

For example, all
three plexes
located in a site
have failed.

Ships I/O to
another
node with
connectivity,
preferably
in the same
site.

I/O fails on
the volume.

Ships I/O to
another node
with
connectivity,
preferably in the
same site.

I/O fails
locally on
the volume.

All plexes of the
volume for one or
more nodes in the
site.

Detaches
the plex.

Detaches
the plex.

Detaches the
plex.

Detaches
the plex.

All nodes in the
cluster have I/O
failure on some
plexes

All sites

Detaches
all but one
site. I/O
fails on the
remaining
site.

Detaches
all but one
site. I/O
fails on the
remaining
site.

Detaches all but
one site. I/O fails
on the remaining
site.

Detaches
all but one
site. I/O
fails on the
remaining
site.

All plexes of the
volume for all
nodes in all sites.

Ships I/O.Detaches
the
non-preferred
site.

Ships I/O.Detaches
the
non-preferred
site.

All sites lose
connectivity to the
other sites'
storage.

All sites
-storage
split

See “About disk detach policies” on page 159.

524Administering sites and remote mirrors
About sites and remote mirrors

Making an existing disk group site consistent
The site consistency feature requires that a license enabling the site awareness
feature has been installed on all hosts at all sites that participate in the configuration.

To make an existing disk group site consistent

1 Ensure that the disk group is updated to at least version 140, by running the
vxdg upgrade command on it:

vxdg upgrade diskgroup

2 On each host that can access the disk group, define the site name:

vxdctl set site=sitename

3 Tag all the disks in the disk group with the appropriate site name:

vxdisk [-g diskgroup] settag site=sitename disk1 disk2

Or, to tag all the disks in a specified enclosure, use the following command:

vxdisk [-g diskgroup] settag site=sitename encl:encl_name

4 Use the vxdg move command to move any unsupported RAID-5 volumes to
another disk group. Alternatively, use the vxassist convert commands to
convert the volumes to a supported layout such as mirror or mirror-stripe.
You can use the site and mirror=site storage allocation attribute to ensure
that the plexes are created on the correct storage.

5 Use the vxevac command to ensure that the volumes have at least one plex
at each site. You can use the site and mirror=site storage allocation attribute
to ensure that the plexes are created on the correct storage.

6 Register a site record for each site with the disk group:

vxdg -g diskgroup addsite sitename

7 Turn on site consistency for the disk group:

vxdg -g diskgroup set siteconsistent=on

525Administering sites and remote mirrors
Making an existing disk group site consistent

8 Turn on the allsites flag for the volume which requires data replication to
each site:

vxvol [-g diskgroup] set allsites=on volume

9 Turn on site consistency for each existing volume in the disk group for which
siteconsistency is needed. You also need to attach DCOv20 if it is not attached
already. DCOv20 is required to ensure that site detach and reattach are
instantaneous.

vxvol [-g diskgroup] set siteconsistent=on volume ...

Configuring a new disk group as a Remote Mirror
configuration

Note: The Remote Mirror feature requires that a license enabling the Site Awareness
feature has been installed on all hosts at all sites that participate in the configuration.

This section describes setting up a new disk group. To configure an existing disk
group as a Remote Mirror configuration, additional steps may be required.

See “Making an existing disk group site consistent” on page 525.

Setting up a new disk group for a Remote Mirror configuration

1 Define the site name for each host that can access the disk group.

vxdctl set site=sitename

To verify the site name assigned to the host, use the following command:

vxdctl list

2 Create the disk group with storage from each site.

3 Register a site record to the disk group, for each site.

vxdg -g diskgroup [-f] addsite sitename

4 Do one of the following:

■ To tag all disks regardless of the disk group, do the following:
Assign a site name to the disks or enclosures. You can set site tags at the
disk level, or at the enclosure level. If you specify one or more enclosures,

526Administering sites and remote mirrors
Configuring a new disk group as a Remote Mirror configuration

the site tag applies to the disks in that enclosure that are within the disk
group. Enter the following command:

vxdisk [-g diskgroup] settag site=sitename \

disk disk1... |encl:encl_name encl:encl_name1...

where the disks can be specified either by the disk access name or the disk
media name.

■ To autotag new disks added to the disk group based on the enclosure to
which they belong, perform the following steps in the order presented. These
steps are limited to disks in a single group.

■ Set the autotagging policy to on for the disk group, if required.
Automatic tagging is the default setting, so this step is only required if
the autotagging policy was previously disabled. To turn on autotagging,
enter the following command:

vxdg [-g diskgroup] set autotagging=on

■ Add site-enclosure mapping information to the diskgroup for each
site-enclosure combination. Enter the following command:

vxdg [-g diskgroup] settag encl:encl_name1 site=sitename1

As a result of this command, all disks of enclosure encl_name1 in the
specified disk group are tagged with site information.

5 Turn on the site consistency requirement for a disk group:

vxdg -g diskgroup set siteconsistent=on

Fire drill — testing the configuration

Warning: To avoid potential loss of service or data, it is recommended that you do
not use these procedures on a live system.

After validating the consistency of the volumes and disk groups at your sites, you
should validate the procedures that you will use in the event of the various possible
types of failure. A fire drill lets you test that a site can be brought up cleanly during
recovery from a disaster scenario such as site failure.

527Administering sites and remote mirrors
Fire drill — testing the configuration

Simulating site failure
To simulate the failure of a site, use the following command to detach all the devices
at a specified site:

vxdg -g diskgroup [-f] detachsite sitename

The -f option must be specified if any plexes configured on storage at the site are
currently online.

After the site is detached, the application should run correctly on the available site.
This step verifies that the primary site is fine. Continue the fire drill by verifying the
secondary site.

Verifying the secondary site
After detaching the site from primary site, verify whether the application starts
correctly on a secondary site. The fire drill ensures that the application can run on
the secondary if disaster strikes the primary site. These procedures assume that
the application is running correctly before the fire drill operation begins.

To verify the secondary site, import the detached site on a different host using the
following command:

vxdg -o site=sitename import dgname

Then start the application. If the application runs correctly on the secondary site,
this step verifies the integrity of the secondary site.

Recovery from simulated site failure
After verifying the data on the secondary for a simulated site failure, deport the disk
group from the secondary site. Then reattach the site back to the primary host.

Use the following commands to reattach a site and recover the disk group:

vxdg -g diskgroup [-o overridessb] reattachsite sitename

vxrecover -g diskgroup

It may be necessary to specify the -o overridessb option if a serial split-brain
condition is indicated.

Changing the site name
You can change the site name, or tag, that is used to identify each site in a Remote
Mirror configuration. Renaming the site changes the site record in the disk group.

528Administering sites and remote mirrors
Changing the site name

The site name is also changed for all of the disks and enclosures that are tagged
with the existing site name.

After you rename a site, you need to explicitly change the site name for each host
that belongs to that site.

See “Resetting the site name for a host” on page 529.

To rename the site

◆ Specify the new site name as follows:

vxdg [-g diskgroup] renamesite old_sitename new_sitename

Resetting the site name for a host
If you rename a site, you need to explicitly set each host to refer to the new site
name.

To reset a site name for a host

1 Remove the site name from a host:

vxdctl [-F] unset site

The -F option is required if any imported disk groups are registered to the site.

2 Set the new site name for the host.

vxdctl set site=sitename

The name that has been assigned to a site is stored in the /etc/vx/volboot

file.

Administering the Remote Mirror configuration
After the Remote Mirror site is configured, refer to the following sections for additional
tasks to maintain the configuration.

Configuring site tagging for disks or enclosures
To set up a Remote Mirror configuration, specify to which site each storage device
in the disk group belongs. Assign a site tag to one or more disks or enclosures. If
the disk or enclosure does not belong to a disk group, you must use this method
to assign a site tag.

529Administering sites and remote mirrors
Administering the Remote Mirror configuration

To tag disks or enclosures with a site name

◆ Assign a site name to one or more disks or enclosures, using the following
command:

vxdisk [-g diskgroup] settag site=sitename \

disk disk1...|encl:encl_name encl:encl_name1...

where the disks can be specified either by the disk access name or the disk
media name.

To display the disks or enclosures registered to a site

◆ To check which disks or enclosures are registered to a site, use the following
command:

vxdisk [-g diskgroup] listtag

To remove the site tag from a disk or enclosure

◆ To remove the site tag from a disk or enclosure, use the following command:

vxdisk rmtag site=sitename \

disk disk1...|encl:encl_name encl:encl_name1...

Configuring automatic site tagging for a disk group
Configure automatic site tagging if you want disks or LUNs to inherit the tag from
the enclosure. After you turn on automatic site tagging for a disk group, assign the
site names to the enclosures in the disk group. Any disks or LUNs added to that
disk group inherit the tag from the enclosure to which they belong.

To configure automatic site tagging for a disk group

1 Set the autotagging policy to on for the disk group. Automatic tagging is the
default setting, so this step is only required if the autotagging policy was
previously disabled.

To turn on autotagging, use the following command:

vxdg [-g diskgroup] set autotagging=on

2 Assign the site name to an enclosure within the disk group, using the following
command:

vxdg [-g diskgroup] settag encl:encl_name site=sitename

530Administering sites and remote mirrors
Administering the Remote Mirror configuration

To list the site tags for a disk group

◆ To list the site tags for a disk group, use the following command:

vxdg [-g diskgroup] listtag site=sitename

To remove a site tag from an enclosure or a disk group

◆ To remove a site tag from a disk group, use the following command:

vxdg [-g diskgroup] rmtag [encl:encl_name] site=sitename

Configuring site consistency on a volume
To set the site consistency requirement when creating a volume, specify the
siteconsistent attribute to the vxassist make command, for example:

vxassist [-g diskgroup] make volume size \

nmirror=4 siteconsistent={on|off}

By default, a volume inherits the value that is set on its disk group.

By default, creating a site-consistent volume also creates an associated version 20
DCO volume, and enables Persistent FastResync on the volume. This allows faster
recovery of the volume during the reattachment of a site.

To turn on the site consistency requirement for an existing volume, use the following
form of the vxvol command:

vxvol [-g diskgroup] set siteconsistent=on volume

To turn off the site consistency requirement for a volume, use the following
command:

vxvol [-g diskgroup] set siteconsistent=off volume

The siteconsistent attribute and the allsites attribute must be set to off for
RAID-5 volumes in a site-consistent disk group.

Examples of storage allocation by specifying sites
Table 18-2 shows examples of how to use sites with the vxassist command to
allocate storage. These examples assume that the disk group, ccdg, has been
enabled for site consistency with disks configured at two sites, site1 and site2.
Also, ccdg01, ccdg02, and ccdg03 are dm names of disks tagged with site site1.
ccdg09, ccdg10, and ccdg11 are dm names of disks tagged with site site2.

531Administering sites and remote mirrors
Examples of storage allocation by specifying sites

Table 18-2 Examples of storage allocation by specifying sites

DescriptionCommand

Create a volume with one mirror at
each site. The nmirror keyword is
optional. If the nmirror keyword is
specified, it must equal the number of
sites.

vxassist -g ccdg make vol 2g \
nmirror=2

Create a mirrored-stripe volume
specifying allocation order to validate
redundancy across the sites. The
named disks must be tagged with the
appropriate site name, and there must
be sufficient disks at each site to
create the volume.

vxassist -g ccdg -o ordered \
make vol 2g \
layout=mirror-stripe ncol=3 \
ccdg01 ccdg02 ccdg03 ccdg09 \
ccdg10 ccdg11

Create a volume with one mirror on
each of the named disks. The named
disks must be tagged with the
appropriate site name, and there must
be sufficient disks at each site to
create the volume.

vxassist -g ccdg make vol 2g \
nmirror=2 ccdg01 ccdg09

Create a mirrored volume that is not
site consistent. Both mirrors can be
allocated from any available storage
in the disk group, but the storage for
each mirror is confined to a single site.

vxassist -g ccdg make vol 2g \
nmirror=2 siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as
belonging to site2.

vxassist -g ccdg make vol 2g \
nmirror=2 site:site2 \
siteconsistent=off \
allsites=off

Create a mirrored volume that is not
site consistent. Both mirrors are
allocated from any available storage
in the disk group that is tagged as not
belonging to site1.

Note: The ! character is a special
character in some shells. This
example shows how to escape it in a
bash shell.

vxassist -g ccdg make vol 2g \
nmirror=2 \!site:site1 \
siteconsistent=off \
allsites=off

532Administering sites and remote mirrors
Examples of storage allocation by specifying sites

Table 18-2 Examples of storage allocation by specifying sites (continued)

DescriptionCommand

Add a mirror at a specified site. The
command fails if there is insufficient
storage available at the site. This
command does not affect the
allsites or siteconsistent of a
volume.

vxassist -g ccdg mirror vol \
site:site1

Remove a mirror from a volume at a
specified site. If the volume has the
allsites attribute set to on, the
command fails if this would remove
the last remaining plex at a site.

vxassist -g ccdg remove \
mirror vol site:site1

Grow a volume. Each mirror of a
volume is grown using the same site
storage to which it belongs. If there is
not enough storage to grow a mirror
on each site, the command fails.

vxassist -g ccdg growto vol \
4g

Displaying site information
To display the site name for a host

◆ To determine to which site a host belongs, use the following command on the
host:

vxdctl list | grep siteid

siteid: building1

To display the disks or enclosures registered to a site

◆ To check which disks or enclosures are registered to a site, use the following
command:

vxdisk [-g diskgroup] listtag

To display the setting for automatic site tagging for a disk group

◆ To determine whether automatic site tagging is on for a disk group, use the
following command:

vxprint -g diskgroup -F"%autotagging" diskgroup

533Administering sites and remote mirrors
Displaying site information

To verify whether site consistency has been enabled for a disk group

◆ To verify whether site consistency has been enabled for a disk group, use the
following command:

vxdg list diskgroup | grep siteconsistent

flags: siteconsistent

To verify whether site consistency has been enabled for a volume

◆ To verify whether site consistency has been enabled for a volume, use the
following command:

vxprint -g diskgroup -F"%siteconsistent" vol

To identify which site a plex or mirror is allocated from

◆ To identify which site a plex or mirror is allocated from, use the following
command:

vxprint -g diskgroup -F"%site" plex

To list the site tags for a disk group

◆ To list the site tags for a disk group, use the following command:

vxdg [-g diskgroup] listtag site=sitename

Failure and recovery scenarios
Table 18-3 lists the possible failure scenarios and recovery procedures for the
Remote Mirror feature.

Table 18-3 Failure scenarios and recovery procedures

Recovery procedureFailure scenario

See “Recovering from a loss of site connectivity” on page 535.Disruption of network link
between sites.

See “Recovering from host failure” on page 536.Failure of hosts at a site.

See “Recovering from storage failure” on page 536.Failure of storage at a site.

See “Recovering from site failure” on page 536.Failure of both hosts and
storage at a site.

534Administering sites and remote mirrors
Failure and recovery scenarios

Table 18-3 Failure scenarios and recovery procedures (continued)

Recovery procedureFailure scenario

See “Recovering from disruption of connectivity to storage
at the remote sites from hosts on all sites” on page 537.

Disruption of connectivity to
storage at each others'
remote sites for hosts on all
sites.

See “Recovering from disruption to connectivity to storage
at all sites from the hosts at a site” on page 537.

Disruption of connectivity to
storage at all sites for hosts
at a site

Recovering from a loss of site connectivity

Warning: To avoid a potential loss of data, it is recommended that you configure
Veritas Cluster Server to handle network split-brain.

If the network links between the sites are disrupted, the application environments
may continue to run in parallel, and this may lead to inconsistencies between the
disk group configuration copies at the sites. If the parallel instances of an application
issue writes to volumes, an unrecoverable data loss may occur and manual
intervention is needed. To avoid data loss, it is recommended that you configure
the VCS fencing mechanism to handle network split-brain situations.

If VCS fencing is not used, serial split-brain condition may occur. When connectivity
between the sites is restored, a serial split-brain condition will be detected between
the sites. One site must be chosen as having the preferred version of the data and
the disk group configuration copies. The data from the chosen site is resynchronized
to other the site. If new writes are issued to volumes after the network split, they
are overwritten with the data from the chosen site. The configuration copies at the
other sites are updated from the copies at the chosen site.

At the chosen site, use the following commands to reattach a site and recover the
disk group:

vxdg -g diskgroup -o overridessb reattachsite sitename

vxrecover -g diskgroup

In the case that the host systems are configured at a single site with only storage
at the remote sites, the usual resynchronization mechanism of VxVM is used to
recover the remote plexes when the storage comes back on line.

See “Handling conflicting configuration copies” on page 911.

535Administering sites and remote mirrors
Failure and recovery scenarios

Recovering from host failure
If one or more cluster nodes fail at a site, but the storage remains online, this is
handled either by VCS failover in the case of the Storage Foundation HA product,
or by node takeover in the case that the node was the master for a shared disk
group as supported by the Storage Foundation Cluster File System software.

Recovering from storage failure
If storage fails at a site, the plexes that are configured on that storage are detached
locally if a site-consistent volume still has other mirrors available at the site. The
hot-relocation feature of VxVM will attempt to recreate the failed plexes on other
available storage in the disk group. If no plexes of a site-consistent volume remain
in operation at a site, and hot-relocation cannot recreate the plexes at that site, the
site is detached. Because site connectivity has not been lost, applications running
on hosts at the site can still access data at the other sites.

When the storage comes back online, the vxattachd reattaches the site
automatically.

See “Automatic site reattachment” on page 537.

If the vxattachd is not running, use the following commands to reattach a site and
recover the disk group:

vxdg -g diskgroup reattachsite sitename

vxrecover -g diskgroup

For more information about recovering a disk group, refer to the Veritas Storage
Foundation and High Availability Troubleshooting Guide.

Recovering from site failure
If all the hosts and storage fail at a site, use the following commands to reattach
the site after it comes back online, and to recover the disk group:

vxdg -g diskgroup [-o overridessb] reattachsite sitename

vxrecover -g diskgroup

The -o overridessb option is only required if a serial split-brain condition is
indicated. A serial split-brain condition may happen if the site was brought back up
while the private network link was inoperative. This option updates the configuration
database on the reattached site with the consistent copies at the other sites.

See “Handling conflicting configuration copies” on page 911.

536Administering sites and remote mirrors
Failure and recovery scenarios

For more information about recovering a disk group, refer to the Veritas Storage
Foundation and High Availability Troubleshooting Guide.

Recovering from disruption of connectivity to storage at the remote
sites from hosts on all sites

In this scenario, hosts at the sites lose connectity to the storage at each others'
sites. For example, hosts in Site A lose connectivity to the storage at Site B, and
hosts in site B lose connectivity to the storage at Site A. For example, this might
occur because the link between the fibre channel (FC) switches went down.

In this case, one of the sites is detached. Hosts in the detached site see I/O failures.
Applications on the hosts in the detached site should be failed over to hosts on the
other site.

To recover, reconnect the FC links. If the vxattachd daemon is running, it
automatically reattaches the detached site and initiates recovery. Otherwise,
manually run the vxreattach and vxrecover commands to bring the site back to
ACTIVE.

See “Recovering from storage failure” on page 536.

Recovering from disruption to connectivity to storage at all sites from
the hosts at a site

In this scenario, hosts at a site lose connectivity to the storage at all sites. For
example, hosts in Site A lose connectivity to the storage at both Site A and Site B.

In this case, no site is detached. I/O fails on the hosts that lose connectivity to the
storage at all sites. The application should be failed over to hosts on the other site.

Restore the connectivity to the storage, and then bring the applications online.

Automatic site reattachment
The automatic site reattachment daemon, vxattachd, provides automatic
reattachment of sites. The vxattachd daemon uses the vxnotify mechanism to
monitor storage coming back online on a site after a previous failure, and to restore
redundancy of mirrors across sites.

If the hot-relocation daemon, vxrelocd, is running, vxattachd attempts to reattach
the site, and allows vxrelocd to try to use the available disks in the disk group to
relocate the failed subdisks. If vxrelocd succeeds in relocating the failed subdisks,
it starts the recovery of the plexes at the site. When all the plexes have been
recovered, the plexes are put into the ACTIVE state, and the state of the site is set
to ACTIVE.

537Administering sites and remote mirrors
Failure and recovery scenarios

If vxrelocd is not running, vxattachd reattaches a site only when all the disks at
that site become accessible. After reattachment succeeds, vxattachd sets the site
state to ACTIVE, and initiates recovery of the plexes. When all the plexes have
been recovered, the plexes are put into the ACTIVE state.

Note: vxattachd does not try to reattach a site that you have explicitly detached
by using the vxdg detachsite command.

The automatic site reattachment feature is enabled by default. The vxattachd

daemon uses email to notify root of any attempts to reattach sites and to initiate
recovery of plexes at those sites.

To send mail to other users, add the user name to the line that starts vxattachd

in the /etc/init.d/vxvm-recover startup script, and reboot the system.

If you do not want a site to be recovered automatically, kill the vxattachd daemon,
and prevent it from restarting. If you stop vxattachd, the automatic plex reattachment
also stops. To kill the daemon, run the following command from the command line:

ps -afe

Locate the process table entry for vxattachd, and kill it by specifying its process
ID:

kill -9 PID

If there is no entry in the process table for vxattachd, the automatic site
reattachment feature is disabled.

To prevent the automatic site reattachment feature from being restarted, comment
out the line that starts vxattachd in the /etc/init.d/vxvm-recover startup script.

538Administering sites and remote mirrors
Failure and recovery scenarios

Optimizing I/O performance

■ Chapter 19. Veritas File System I/O

■ Chapter 20. Veritas Volume Manager I/O

5Section

Veritas File System I/O
This chapter includes the following topics:

■ About Veritas File System I/O

■ Buffered and Direct I/O

■ Concurrent I/O

■ Cache advisories

■ Freezing and thawing a file system

■ Getting the I/O size

■ About Storage Foundation and High Availability Solutions products database
accelerators

About Veritas File System I/O
VxFS processes two basic types of file system I/O:

■ Sequential

■ Random or I/O that is not sequential

For sequential I/O, VxFS employs a read-ahead policy by default when the
application is reading data. For writing, it allocates contiguous blocks if possible.
In most cases, VxFS handles I/O that is sequential through buffered I/O. VxFS
handles random or nonsequential I/O using direct I/O without buffering.

VxFS provides a set of I/O cache advisories for use when accessing files.

See the Veritas File System Programmer's Reference Guide.

See the vxfsio(7) manual page.

19Chapter

Buffered and Direct I/O
VxFS responds with read-ahead for sequential read I/O. This results in buffered
I/O. The data is prefetched and retained in buffers for the application. The data
buffers are commonly referred to as VxFS buffer cache. This is the default VxFS
behavior.

On the other hand, direct I/O does not buffer the data when the I/O to the underlying
device is completed. This saves system resources like memory and CPU usage.
Direct I/O is possible only when alignment and sizing criteria are satisfied.

See “Direct I/O requirements” on page 541.

All of the supported platforms have a VxFS buffered cache. Each platform also has
either a page cache or its own buffer cache. These caches are commonly known
as the file system caches.

Direct I/O does not use these caches. The memory used for direct I/O is discarded
after the I/O is complete,

Direct I/O
Direct I/O is an unbuffered form of I/O. If the VX_DIRECT advisory is set, the user is
requesting direct data transfer between the disk and the user-supplied buffer for
reads and writes. This bypasses the kernel buffering of data, and reduces the CPU
overhead associated with I/O by eliminating the data copy between the kernel buffer
and the user's buffer. This also avoids taking up space in the buffer cache that
might be better used for something else. The direct I/O feature can provide significant
performance gains for some applications.

The direct I/O and VX_DIRECT advisories are maintained on a per-file-descriptor
basis.

Direct I/O requirements
For an I/O operation to be performed as direct I/O, it must meet certain alignment
criteria. The alignment constraints are usually determined by the disk driver, the
disk controller, and the system memory management hardware and software.

The requirements for direct I/O are as follows:

■ The starting file offset must be aligned to a 512-byte boundary.

■ The ending file offset must be aligned to a 512-byte boundary, or the length
must be a multiple of 512 bytes.

■ The memory buffer must start on an 8-byte boundary.

541Veritas File System I/O
Buffered and Direct I/O

Direct I/O versus synchronous I/O
Because direct I/O maintains the same data integrity as synchronous I/O, it can be
used in many applications that currently use synchronous I/O. If a direct I/O request
does not allocate storage or extend the file, the inode is not immediately written.

Direct I/O CPU overhead
The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential
I/O to very large files, using direct I/O with large transfer sizes can provide the same
speed as buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the
inode change before returning to the application. This eliminates some of the
performance advantages of direct I/O.

Discovered Direct I/O
Discovered Direct I/O is a file system tunable that is set using the vxtunefs

command. When the file system gets an I/O request larger than the
discovered_direct_iosz, it tries to use direct I/O on the request. For large I/O
sizes, Discovered Direct I/O can perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require
writing the inode changes before returning to the application.

Unbuffered I/O
If the VX_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with
the VX_DIRECT advisory set, so the alignment constraints that apply to direct I/O
also apply to unbuffered I/O. For unbuffered I/O, however, if the file is being
extended, or storage is being allocated to the file, inode changes are not updated
synchronously before the write returns to the user. The VX_UNBUFFERED advisory
is maintained on a per-file-descriptor basis.

Data synchronous I/O
If the VX_DSYNC advisory is set, the user is requesting data synchronous I/O. In
synchronous I/O, the data is written, and the inode is written with updated times
and, if necessary, an increased file size. In data synchronous I/O, the data is
transferred to disk synchronously before the write returns to the user. If the file is
not extended by the write, the times are updated in memory, and the call returns
to the user. If the file is extended by the operation, the inode is written before the
write returns.

542Veritas File System I/O
Buffered and Direct I/O

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor
basis.

Data synchronous I/O vs. synchronous I/O
Like direct I/O, the data synchronous I/O feature can provide significant application
performance gains. Because data synchronous I/O maintains the same data integrity
as synchronous I/O, it can be used in many applications that currently use
synchronous I/O. If the data synchronous I/O does not allocate storage or extend
the file, the inode is not immediately written. The data synchronous I/O does not
have any alignment constraints, so applications that find it difficult to meet the
alignment constraints of direct I/O should use data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must write
the inode change before returning to the application. This case eliminates the
performance advantage of data synchronous I/O.

Concurrent I/O
Concurrent I/O (VX_CONCURRENT) allows multiple processes to read from or write to
the same file without blocking other read(2) or write(2) calls. POSIX semantics
requires read and write calls to be serialized on a file with other read and write

calls. With POSIX semantics, a read call either reads the data before or after the
write call occurred. With the VX_CONCURRENT advisory set, the read and write

operations are not serialized as in the case of a character device. This advisory is
generally used by applications that require high performance for accessing data
and do not perform overlapping writes to the same file. It is the responsibility of the
application or the running threads to coordinate the write activities to the same
file when using Concurrent I/O.

Concurrent I/O can be enabled in the following ways:

■ By specifying the VX_CONCURRENT advisory flag for the file descriptor in the
VX_SETCACHE ioctl command. Only the read(2) and write(2) calls occurring
through this file descriptor use concurrent I/O. The read and write operations
occurring through other file descriptors for the same file will still follow the POSIX
semantics.
See vxfsio(7) manual page.

■ By using the cio mount option. The read(2) and write(2) operations occurring
on all of the files in this particular file system will use concurrent I/O.
See “cio mount option” on page 248.
See the mount_vxfs(1M) manual page.

543Veritas File System I/O
Concurrent I/O

Cache advisories
VxFS allows an application to set cache advisories for use when accessing files.
VxFS cache advisories enable applications to help monitor the buffer cache and
provide information on how better to tune the buffer cache to improve performance
gain.

The basic function of the cache advisory is to let you know whether you could have
avoided a later re-read of block X if the buffer cache had been a little larger.
Conversely, the cache advisory can also let you know that you could safely reduce
the buffer cache size without putting block X into jeopardy.

These advisories are in memory only and do not persist across reboots. Some
advisories are currently maintained on a per-file, not a per-file-descriptor, basis.
Only one set of advisories can be in effect for all accesses to the file. If two conflicting
applications set different advisories, both must use the advisories that were last
set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of
advisories can be obtained with the VX_GETCACHE ioctl command.

See the vxfsio(7) manual page.

Freezing and thawing a file system
Freezing a file system is a necessary step for obtaining a stable and consistent
image of the file system at the volume level. Consistent volume-level file system
images can be obtained and used with a file system snapshot tool. The freeze
operation flushes all buffers and pages in the file system cache that contain dirty
metadata and user data. The operation then suspends any new activity on the file
system until the file system is thawed.

The VX_FREEZE ioctl command is used to freeze a file system. Freezing a file system
temporarily blocks all I/O operations to a file system and then performs a sync on
the file system. When the VX_FREEZE ioctl is issued, all access to the file system is
blocked at the system call level. Current operations are completed and the file
system is synchronized to disk.

When the file system is frozen, any attempt to use the frozen file system, except
for a VX_THAW ioctl command, is blocked until a process executes the VX_THAW ioctl
command or the time-out on the freeze expires.

544Veritas File System I/O
Cache advisories

Getting the I/O size
VxFS provides the VX_GET_IOPARAMETERS ioctl to get the recommended I/O sizes
to use on a file system. This ioctl can be used by the application to make decisions
about the I/O sizes issued to VxFS for a file or file device.

See the vxtunefs(1M) and vxfsio(7) manual pages.

About Storage Foundation and High Availability
Solutions products database accelerators

The major concern in any environment is maintaining respectable performance or
meeting performance service level agreements (SLAs). Veritas Storage Foundation
and High Availability Solutions products improve the overall performance of database
environments in a variety of ways.

Table 19-1 Storage Foundation and High Availability Solutions database
accelerators

Use cases and considerationsSupported
databases

SFHA Solutions
database
accelerator

■ To improve Oracle performance and
manage system bandwidth through an
improved Application Programming
Interface (API) that contains advanced
kernel support for file I/O.

■ To use Oracle Resilvering and turn off
Veritas Volume Manager Dirty Region
Logging (DRL) to increase
performance, use ODM.

■ To reduce the time required to restore
consistency, freeing more I/O
bandwidth for business-critical
applications, use SmartSync recovery
accelerator.

OracleOracle Disk Manager
(ODM)

To enable selected I/O to use caching to
improve ODM I/O performance, use
Cached ODM.

OracleCached Oracle Disk
Manager (Cached OD
M)

545Veritas File System I/O
Getting the I/O size

Table 19-1 Storage Foundation and High Availability Solutions database
accelerators (continued)

Use cases and considerationsSupported
databases

SFHA Solutions
database
accelerator

Concurrent I/O (CIO) is optimized for DB2
and Sybase environments

To achieve improved performance for
databases run on VxFS file systems
without restrictions on increasing file size,
use Veritas Concurrent I/O.

DB2

Sybase

Concurrent I/O

These database accelerator technologies enable database performance equal to
raw disk partitions, but with the manageability benefits of a file system. With the
Dynamic Multi-pathing (DMP) feature of Storage Foundation, performance is
maximized by load-balancing I/O activity across all available paths from server to
array. DMP supports all major hardware RAID vendors, hence there is no need for
third-party multi-pathing software, reducing the total cost of ownership.

Storage Foundation and High Availability Solutions database accelerators enable
you to manage performance for your database with more precision.

For details about using ODM, Cached ODM, QI/O, and Cached QIO for Oracle,
see Veritas Storage Foundation: Storage and Availability Management for Oracle
Databases.

For details about using QIO, Cached QIO, and Concurrent I/O for DB2, see Veritas
Storage Foundation: Storage and Availability Management for DB2 Databases.

546Veritas File System I/O
About Storage Foundation and High Availability Solutions products database accelerators

Veritas Volume Manager
I/O

This chapter includes the following topics:

■ Veritas Volume Manager throttling of administrative I/O

Veritas Volume Manager throttling of
administrative I/O

Veritas Volume Manager (VxVM) provides throttling of administrative I/O. During
heavy I/O loads, VxVM throttles I/O that it creates to do administrative operations.
This behavior ensures that the administrative I/Os do not affect the application I/O
performance. When the application I/O load is lighter, VxVM increases the bandwidth
usage for administrative I/O operations.

VxVM automatically manages the I/O throttling for administrative tasks, based on
its perceived load on the storage. Currently, I/O throttling is supported for the copy
operations which use ATOMIC_COPY and involve one destination mirror. The I/O
throttling is transparent, and does not change the command usage or output. The
following commands are supported:

■ vxassist mirror

■ vxassist snapcreate

■ vxevac

■ vxplex att

■ vxplex cp

■ vxplex mv

■ vxsnap addmir

20Chapter

■ vxsnap reattach

■ vxsd mv

The administrative I/O operations allocate memory for I/O from a separate memory
pool. You can tune the maximum size of this pool with the tunable parameter,
vol_max_adminio_poolsz.

548Veritas Volume Manager I/O
Veritas Volume Manager throttling of administrative I/O

Veritas Extension for Oracle
Disk Manager

■ Chapter 21. Using Veritas Extension for Oracle Disk Manager

6Section

Using Veritas Extension
for Oracle Disk Manager

This chapter includes the following topics:

■ About Oracle Disk Manager

■ About Oracle Disk Manager and Veritas Storage Foundation Cluster File System
High Availability

■ About Oracle Disk Manager and Oracle Managed Files

■ Setting up Veritas Extension for Oracle Disk Manager

■ Configuring Veritas Extension for Oracle Disk Manager

■ Preparing existing database storage for Oracle Disk Manager

■ Verifying that Oracle Disk Manager is configured

■ Disabling the Oracle Disk Manager feature

■ Using Cached ODM

About Oracle Disk Manager
Veritas Extension for Oracle Disk Manager is specifically designed for Oracle10g
or later to enhance file management and disk I/O throughput. The features of Oracle
Disk Manager are best suited for databases that reside in a file system contained
in Veritas File System. Oracle Disk Manager allows Oracle10g or later users to
improve database throughput for I/O intensive workloads with special I/O
optimization.

21Chapter

Veritas Extension for Oracle Disk Manager supports Oracle Resilvering. With Oracle
Resilvering, the storage layer receives information from the Oracle database as to
which regions or blocks of a mirrored datafile to resync after a system crash. Oracle
Resilvering avoids overhead from the VxVM DRL, which increases performance.

Oracle Disk Manager reduces administrative overhead by providing enhanced
support for Oracle Managed Files. Veritas Extension for Oracle Disk Manager is
transparent to the user. Files managed using Veritas Extension for Oracle Disk
Manager do not require special file naming conventions. The Oracle Disk Manager
interface uses regular database files.

Note: Veritas Storage Foundation 4.1 for Oracle was the last major release that
supported Oracle Disk Manager for raw devices.

Database administrators can choose the datafile type used with the Oracle product.
Historically, choosing between file system files and raw devices was based on
manageability and performance. The exception to this is a database intended for
use with Oracle Parallel Server, which requires raw devices on most platforms. If
performance is not as important as administrative ease, file system files are typically
the preferred file type. However, while an application may not have substantial I/O
requirements when it is first implemented, I/O requirements may change. If an
application becomes dependent upon I/O throughput, converting data files from file
system to raw devices is often necessary.

Oracle Disk Manager was designed to work with Oracle10g or later to provide both
performance and manageability. Oracle Disk Manager provides support for Oracle's
file management and I/O calls for database storage on VxFS file systems and on
raw volumes or partitions. This feature is provided as a dynamically-loaded shared
library with which Oracle binds when it is loaded. The Oracle Disk Manager library
works with an Oracle Disk Manager driver that is loaded in the kernel to perform
its functions.

The benefits of using Oracle Disk Manager are as follows:

■ True kernel asynchronous I/O for files and raw devices

■ Reduced system call overhead

■ Improved file system layout by preallocating contiguous files on a VxFS file
system

■ Performance on file system files that is equal to raw devices

■ Transparent to users

■ Contiguous datafile allocation

551Using Veritas Extension for Oracle Disk Manager
About Oracle Disk Manager

How Oracle Disk Manager improves database performance
Oracle Disk Manager improves database I/O performance to VxFS file systems by:

■ Supporting kernel asynchronous I/O
See “About kernel asynchronous I/O support” on page 552.

■ Supporting direct I/O and avoiding double buffering
See “About direct I/O support and avoiding double buffering” on page 552.

■ Avoiding kernel write locks on database files
See “About avoiding kernel write locks on database files” on page 552.

■ Supporting many concurrent I/Os in one system call
See “About supporting many concurrent I/Os in one system call” on page 553.

■ Avoiding duplicate opening of files per Oracle instance
See “About avoiding duplicate file open calls” on page 553.

■ Allocating contiguous data files
See “About allocating contiguous data files” on page 553.

About kernel asynchronous I/O support
Asynchronous I/O performs non-blocking system level reads and writes, allowing
the system to perform multiple I/O requests simultaneously. Kernel asynchronous
I/O is better than library asynchronous I/O because the I/O is queued to the disk
device drivers in the kernel, minimizing context switches to accomplish the work.

About direct I/O support and avoiding double buffering
I/O on files using read() and write() system calls typically results in data being copied
twice: once between the user and kernel space, and the other between kernel space
and the disk. In contrast, I/O on raw devices is copied directly between user space
and disk, saving one level of copying. As with I/O on raw devices, Oracle Disk
Manager I/O avoids the extra copying. Oracle Disk Manager bypasses the system
cache and accesses the files with the same efficiency as raw devices. Avoiding
double buffering reduces the memory overhead on the system. Eliminating the
copies from kernel to user address space significantly reduces kernel mode
processor utilization, freeing more processor cycles to execute the application code.

About avoiding kernel write locks on database files
When database I/O is performed by way of the write() system call, each system
call acquires and releases a kernel write lock on the file. This lock prevents
simultaneous write operations on the same file. Because database systems usually
implement their own locks for managing concurrent access to files, write locks

552Using Veritas Extension for Oracle Disk Manager
About Oracle Disk Manager

unnecessarily serialize I/O writes. Oracle Disk Manager bypasses file system locking
and lets the database server control data access.

About supportingmany concurrent I/Os in one system call
When performing asynchronous I/O, an Oracle process may try to issue additional
I/O requests while collecting completed I/Os, or it may try to wait for particular I/O
requests synchronously, as it can do no other work until the I/O is completed. The
Oracle process may also try to issue requests to different files. All this activity can
be accomplished with one system call when Oracle uses the Oracle Disk Manager
I/O interface. This interface reduces the number of system calls performed to
accomplish the same work, reducing the number of user space/kernel space context
switches.

About avoiding duplicate file open calls
Oracle Disk Manager allows files to be opened once, providing a “file identifier.”
This is called “identifying” the files. The same file identifiers can be used by any
other processes in the Oracle instance. The file status is maintained by the Oracle
Disk Manager driver in the kernel. The reduction in file open calls reduces processing
overhead at process initialization and termination, and it reduces the number of file
status structures required in the kernel.

About allocating contiguous data files
Oracle Disk Manager can improve performance for queries, such as sort and parallel
queries, that use temporary tablespaces. Without Oracle Disk Manager, Oracle
does not initialize the data files for the temporary tablespaces. Therefore, the data
files become sparse files and are generally fragmented. Sparse or fragmented files
lead to poor query performance. When using Oracle Disk Manager, the data files
are initialized for the temporary tablespaces and are allocated in a contiguous
fashion, so that they are not sparse.

About Oracle Disk Manager and Veritas Storage
Foundation Cluster File System High Availability

Oracle Disk Manager (ODM) supports access to clustered files in the SFCFSHA
environment. With a Veritas Storage Foundation Cluster File System High Availability
license, ODM supports SFCFSHA files in a serially-exclusive mode which allows
access to each SFCFSHA file by one node at a time, but does not allow
simultaneous access from multiple nodes.

553Using Veritas Extension for Oracle Disk Manager
About Oracle Disk Manager and Veritas Storage Foundation Cluster File System High Availability

See the mount.vxodmfs(8) man page for more information on its cluster support
modes.

About Oracle Disk Manager and Oracle Managed
Files

Oracle10g or later offers a feature known as Oracle Managed Files (OMF). OMF
manages datafile attributes such as file names, file location, storage attributes, and
whether or not the file is in use by the database. OMF is only supported for
databases that reside in file systems. OMF functionality is greatly enhanced by
Oracle Disk Manager.

OMF is a file management feature that:

■ Eliminates the task of providing unique file names

■ Offers dynamic space management by way of the tablespace auto-extend
functionality of Oracle10g or later

The main requirement for OMF is that the database be placed in file system files.
There are additional prerequisites imposed upon the file system itself.

OMF should only be used in file systems that reside within striped logical volumes,
which support dynamic file system growth. File systems intended for OMF use must
also support large, extensible files in order to facilitate tablespace auto-extension.
Raw partitions cannot be used for OMF.

By default, OMF data files are created with auto-extensibility. This attribute reduces
capacity planning associated with maintaining existing databases and implementing
new applications. Due to disk fragmentation that occurs as the tablespace grows
over time, database administrators have been somewhat cautious when considering
auto-extensible tablespaces. Oracle Disk Manager eliminates this concern.

When Oracle Disk Manager is used in conjunction with OMF, special care is given
within Veritas Extension for Disk Manager to ensure that contiguous disk space is
allocated to data files, including space allocated to a tablespace when it is
auto-extended. The table and index scan throughput does not decay as the
tablespace grows.

How Oracle Disk Manager works with Oracle Managed Files
The following example illustrates the relationship between Oracle Disk Manager
and Oracle Managed Files (OMF). The example shows the init.ora contents and
the command for starting the database instance. To simplify Oracle UNDO
management, the new Oracle10g or later init.ora parameter UNDO_MANAGEMENT
is set to AUTO. This is known as System-Managed Undo.

554Using Veritas Extension for Oracle Disk Manager
About Oracle Disk Manager and Oracle Managed Files

Note: Before building an OMF database, you need the appropriate init.ora default
values. These values control the location of the SYSTEM tablespace, online redo
logs, and control files after the CREATE DATABASE statement is executed.

$ cat initPROD.ora

UNDO_MANAGEMENT = AUTO

DB_CREATE_FILE_DEST = '/PROD'

DB_CREATE_ONLINE_LOG_DEST_1 = '/PROD'

db_block_size = 4096

db_name = PROD

$ sqlplus /nolog

SQL> connect / as sysdba

SQL> startup nomount pfile= initPROD.ora

The Oracle instance starts.

Total System Global Area 93094616 bytes

Fixed Size 279256 bytes

Variable Size 41943040 bytes

Database Buffers 50331648 bytes

Redo Buffers 540672 bytes

To implement a layout that places files associated with the EMP_TABLE tablespace
in a directory separate from the EMP_INDEX tablespace, use the ALTER SYSTEM

statement. This example shows how OMF handles file names and storage clauses
and paths. The layout allows you to think of the tablespaces as objects in a file
system as opposed to a collection of data files. Since OMF uses the Oracle Disk
Manager file resize function, the tablespace files are initially created with the default
size of 100 MB and ODM increases the size as needed. Use the MAXSIZE attribute
to limit growth.

The following example shows the commands for creating an OMF database and
for creating the EMP_TABLE and EMP_INDEX tablespaces in their own locale:

SQL> create database PROD;

Note: The directory must exist for OMF to work, so the SQL*Plus HOST command
is used to create the directories:

The database is created.

SQL> HOST mkdir /PROD/EMP_TABLE;

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/PROD/EMP_TABLE';

555Using Veritas Extension for Oracle Disk Manager
About Oracle Disk Manager and Oracle Managed Files

The system is altered.

SQL> create tablespace EMP_TABLE DATAFILE AUTOEXTEND ON MAXSIZE \

500M;

A tablespace is created.

SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/PROD/EMP_INDEX';

The system is altered.

SQL> create tablespace EMP_INDEX DATAFILE AUTOEXTEND ON MAXSIZE \

100M;

A tablespace is created.

Use the ls command to show the newly created database:

$ ls -lFR

total 638062

drwxr-xr-x 2 oracle10g dba 96 May 3 15:43 EMP_INDEX/

drwxr-xr-x 2 oracle10g dba 96 May 3 15:43 EMP_TABLE/

-rw-r--r-- 1 oracle10g dba 104858112 May 3 17:28 ora_1_BEhYgc0m.log

-rw-r--r-- 1 oracle10g dba 104858112 May 3 17:27 ora_2_BEhYu4NA.log

-rw-r--r-- 1 oracle10g dba 806912 May 3 15:43 ora_BEahlfUX.ctl

-rw-r--r-- 1 oracle10g dba 10489856 May 3 15:43 ora_sys_undo_BEajPSVq.dbf

-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:4 ora_system_BEaiFE8v.dbf

-rw-r--r-- 1 oracle10g dba 186 May 3 15:03 PROD.ora

./EMP_INDEX:

total 204808

-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:43

ora_emp_inde_BEakGfun.dbf

./EMP_TABLE:

total 204808

-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:43

ora_emp_tabl_BEak1LqK.dbf

Setting up Veritas Extension for Oracle Disk
Manager

Veritas Extension for Oracle Disk Manager is part of Veritas Storage Foundation
Cluster File System High Availability. Veritas Extension for Oracle Disk Manager

556Using Veritas Extension for Oracle Disk Manager
Setting up Veritas Extension for Oracle Disk Manager

is enabled once Veritas Storage Foundation Cluster File System High Availability
and Oracle10g or later are installed. The Veritas Extension for Oracle Disk Manager
library is linked to the library in the {ORACLE_HOME}/lib directory.

If you are performing a local Oracle installation, not on the Cluster file system, then
ODM linking needs to be performed on all nodes in the cluster.

Before setting up Veritas Extension for Oracle Disk Manager, the following conditions
must be met:

■ Veritas Storage Foundation Cluster File System High Availability
must be installed on your system.

■ Oracle10g, or later, must be installed on your system.

Prerequisites

■ Oracle uses default file access methods if Oracle10g or later, Veritas
Storage Foundation Cluster File System High Availability is not
installed, or VxFS 5.1 SP1 is not available in the kernel.

Usage Notes

Configuring Veritas Extension for Oracle Disk
Manager

If ORACLE_HOME is on a shared file system, run the following commands from any
node, otherwise run them on each node.

where ORACLE_HOME is the location where Oracle database binaries have been
installed.

To configure Veritas Extension for Oracle Disk Manager

1 Log in as oracle.

2 If the Oracle database is running, then shutdown the Oracle database.

For Oracle RAC, shutdown all the instances.

3 Verify that /opt/VRTSodm/lib64/libodm.so exists.

4 Link Oracle's ODM library present in ORACLE_HOME with Veritas Extension for
Oracle Disk Manager library:

For Oracle10g:

■ Change to the $ORACLE_HOME/lib directory, enter:

cd $ORACLE_HOME/lib

■ Take backup of libodm10.so, enter.

557Using Veritas Extension for Oracle Disk Manager
Configuring Veritas Extension for Oracle Disk Manager

mv libodm10.so libodm10.so.oracle-`date '+%m_%d_%y-%H_%M_%S'`

■ Link libodm10.so with Veritas ODM library, enter:

ln -s /opt/VRTSodm/lib64/libodm.so libodm10.so

For Oracle11g:

■ Change to the $ORACLE_HOME/lib directory, enter:

cd $ORACLE_HOME/lib

■ Take backup of libodm11.so, enter.

mv libodm11.so libodm11.so.oracle-`date '+%m_%d_%y-%H_%M_%S'`

■ Link libodm11.so with Veritas ODM library, enter:

ln -s /opt/VRTSodm/lib64/libodm.so libodm11.so

5 Start the Oracle database.

6 To confirm that the Oracle database starts with Veritas Extension for ODM,
the alert log will contain the following text:

Preparing existing database storage for Oracle
Disk Manager

Files in a VxFS file system work with Oracle Disk Manager without any changes.
The files are found and identified for Oracle Disk Manager I/O by default. To take
full advantage of Oracle Disk Manager data files, files should not be fragmented.

You must be running Oracle10g or later to use Oracle Disk Manager.

Verifying that Oracle Disk Manager is configured
Before verifying that Oracle Disk Manager is configured, make sure that the following
conditions are met:

558Using Veritas Extension for Oracle Disk Manager
Preparing existing database storage for Oracle Disk Manager

■ /opt/VRTSodm/lib64/libodm.so must exist.
■ If you are using Oracle 10g, $ORACLE_HOME/lib/libodm10.so

is linked to /opt/VRTSodm/lib64/libodm.so.
■ If you are using Oracle 11g, $ORACLE_HOME/lib/libodm11.so

is linked to /opt/VRTSodm/lib64/libodm.so.
■ The VRTSdbed license must be valid.
■ The VRTSodm RPM must be installed.

Prerequisites

To verify that Oracle Disk Manager is configured

1 Verify that the ODM feature is included in the license:

/opt/VRTS/bin/vxlicrep | grep ODM

The output verifies that ODM is enabled.

Note: Verify that the license key containing the ODM feature is not expired. If
the license key has expired, you will not be able to use the ODM feature.

2 Check that the VRTSodm RPM is installed:

rpm -qa | grep VRTSodm

VRTSodm-5.1.100.000-SP1_Axx_platform

platform can be SLES10, SLES11, or RHEL5. For example, on a RHEL5
system, the output can be as follows:

rpm -qa | grep VRTSodm

VRTSodm-5.1.100.000-SP1_A37_RHEL5

3 Check that libodm.so is present.

ls -lL /opt/VRTSodm/lib64/libodm.so

-rwxr-xr-x 1 bin bin 49808 Sep 1 18:42

/opt/VRTSodm/lib64/libodm.so

To verify that Oracle Disk Manager is running

1 Start the Oracle database.

2 Check that the instance is using the Oracle Disk Manager function:

cat /dev/odm/stats

echo $?

0

559Using Veritas Extension for Oracle Disk Manager
Verifying that Oracle Disk Manager is configured

3 Verify that the Oracle Disk Manager is loaded:

lsmod | grep odm

vxodm 164480 1

fdd 78976 1 vxodm

4 In the alert log, verify the Oracle instance is running. The log should contain
output similar to the following:

Oracle instance running with ODM: Veritas 5.1.100.00 ODM Library,

Version 2.0

Disabling the Oracle Disk Manager feature
Since the Oracle Disk Manager feature uses regular files, you can access these
files as regular VxFS files as soon as the feature is disabled.

Note: Before disabling the Oracle Disk Manager feature, you may want to back up
your files.

To disable the Oracle Disk Manager feature in an Oracle instance

1 Shut down the database instance.

2 Use the rm and ln commands to remove the link to the Oracle Disk Manager
Library.

For Oracle 11g, enter:

rm ${ORACLE_HOME}/lib/libodm11.so

ln -s ${ORACLE_HOME}/lib/libodmd11.so \

${ORACLE_HOME}/lib/libodm11.so

For Oracle 10g, enter:

rm ${ORACLE_HOME}/lib/libodm10.so

ln -s ${ORACLE_HOME}/lib/libodmd10.so \

${ORACLE_HOME}/lib/libodm10.so

3 Restart the database instance.

560Using Veritas Extension for Oracle Disk Manager
Disabling the Oracle Disk Manager feature

Using Cached ODM
ODM I/O normally bypasses the file system cache and directly reads from and
writes to disk. Cached ODM enables some I/O to use caching and read ahead,
which can improve ODM I/O performance. Cached ODM performs a conditional
form of caching that is based on per-I/O hints from Oracle. The hints indicate what
Oracle does with the data. ODM uses these hints to perform caching and read
ahead for some reads, but ODM avoids caching other reads, even for the same
file.

You can enable cached ODM for local mount files and cluster mount files.

See “Enabling Cached ODM for file systems” on page 561.

Cached ODM can be configured in two ways. The primary configuration method is
to turn caching on or off for all I/O on a per-file basis. The secondary configuration
method is to adjust the ODM cachemap. The cachemap maps file type and I/O type
combinations into caching advisories.

See “Modifying Cached ODM settings for individual files” on page 562.

See “Adding Cached ODM settings via the cachemap” on page 563.

Enabling Cached ODM for file systems
Cached ODM is initially disabled on a file system. You enable Cached ODM for a
file system by setting the odm_cache_enable option of the vxtunefs command
after the file system is mounted.

See the vxtunefs(1M) manual page.

Note: The vxtunefs command enables conditional caching for all of the ODM files
on the file system.

To enable Cached ODM for a file system

1 Enable Cached ODM on the VxFS file system /database01:

vxtunefs -s -o odm_cache_enable=1 /database01

2 Optionally, you can make this setting persistent across mounts by adding a
file system entry in the file /etc/vx/tunefstab:

/dev/vx/dsk/datadg/database01 odm_cache_enable=1

See the tunefstab(4) manual page.

561Using Veritas Extension for Oracle Disk Manager
Using Cached ODM

Modifying Cached ODM settings for individual files
You can use the odmadm setcachefile command to override the cachemap for a
specific file so that ODM caches either all or none of the I/O to the file. The caching
state can be ON, OFF, or DEF (default). The DEF caching state is conditional
caching, meaning that for each I/O, ODM consults the cachemap and determines
whether the specified file type and I/O type combination should be cached. The ON
caching state causes the specified file always to be cached, while the OFF caching
state causes the specified file never to be cached.

See the odmadm(1M) manual page.

Note: The cache advisories operate only if Cached ODM is enabled for the file
system. If the odm_cache_enable flag is zero, Cached ODM is OFF for all of the
files in that file system, even if the individual file cache advisory for a file is ON.

To enable unconditional caching on a file

◆ Enable unconditional caching on the file /mnt1/file1:

odmadm setcachefile /mnt1/file1=on

With this command, ODM caches all reads from file1.

To disable caching on a file

◆ Disable caching on the file /mnt1/file1:

odmadm setcachefile /mnt1/file1=off

With this command, ODM does not cache reads from file1.

To check on the current cache advisory settings for a file

◆ Check the current cache advisory settings of the files /mnt1/file1 and
/mnt2/file2:

odmadm getcachefile /mnt1/file1 /mnt2/file2

/mnt1/file1,ON

/mnt2/file2,OFF

To reset all files to the default cache advisory

◆ Reset all files to the default cache advisory:

odmadm resetcachefiles

562Using Veritas Extension for Oracle Disk Manager
Using Cached ODM

Adding Cached ODM settings via the cachemap
You can use the odmadm setcachemap command to configure the cachemap. The
cachemap maps file type and I/O type combinations to caching advisories. ODM
uses the cachemap for all files that have the default conditional cache setting. Such
files are those for which caching has not been turned on or off by the odmadm

setcachefile command.

See the odmadm(1M) manual page.

By default, the cachemap is empty, but you can add caching advisories by using
the odmadm setcachemap command.

To add caching advisories to the cachemap

◆ Add a caching advisory to the cachemap:

odmadm setcachemap data/data_read_seq=cache,readahead

With this example command, ODM uses caching and readahead for I/O to
online log files (data) that have the data_read_seq I/O type. You can view the
valid file type and I/O type values from the output of the odmadm getcachemap

command.

See the odmadm(1M) manual page.

Making the caching settings persistent across mounts
By default, the Cached ODM settings are not persistent across mounts. You can
make the settings persistent by creating the /etc/vx/odmadm file and listing the
caching advisory settings in the file

To make the caching setting persistent across mounts

◆ Create the /etc/vx/odmadm file to list files and their caching advisories. In the
following example of the /etc/vx/odmadm file, if you mount the
/dev/vx/dsk/rootdg/vol1 device at /mnt1, odmadm turns off caching for
/mnt1/oradata/file1:

setcachemap data/read_data_header=cache

setcachemap all/datapump=cache,readahead

device /dev/vx/dsk/rootdg/vol1

setcachefile oradata/file1=off

563Using Veritas Extension for Oracle Disk Manager
Using Cached ODM

Using Point-in-time copies

■ Chapter 22. Understanding point-in-time copy methods

■ Chapter 23. Administering volume snapshots

■ Chapter 24. Administering Storage Checkpoints

■ Chapter 25. Administering FileSnaps

■ Chapter 26. Administering snapshot file systems

7Section

Understanding
point-in-time copy
methods

This chapter includes the following topics:

■ About point-in-time copies

■ When to use point-in-time copies

■ About Storage Foundation point-in-time copy technologies

■ Volume-level snapshots

■ Storage Checkpoints

■ About FileSnaps

■ About snapshot file systems

About point-in-time copies
Veritas Storage Foundation offers a flexible and efficient means of managing
business-critical data. Storage Foundation lets you capture an online image of an
actively changing database at a given instant, called a point-in-time copy.

More and more, the expectation is that the data must be continuously available
(24x7) for transaction processing, decision making, intellectual property creation,
and so forth. Protecting the data from loss or destruction is also increasingly
important. Formerly, data was taken out of service so that the data did not change
while data backups occured; however, this option does not meet the need for minimal
down time.

22Chapter

A point-in-time copy enables you to maximize the online availability of the data.
You can perform system backup, upgrade, or perform other maintenance tasks on
the point-in-time copies. The point-in-time copies can be processed on the same
host as the active data, or a different host. If required, you can offload processing
of the point-in-time copies onto another host to avoid contention for system resources
on your production server. This method is called off-host processing. If implemented
correctly, off-host processing solutions have almost no impact on the performance
of the primary production system.

When to use point-in-time copies
The following typical activities are suitable for point-in-time copy solutions
implemented using Veritas FlashSnap:

■ Data backup —Many enterprises require 24 x 7 data availability. They cannot
afford the downtime involved in backing up critical data offline. By taking
snapshots of your data, and backing up from these snapshots, your
business-critical applications can continue to run without extended downtime
or impacted performance.

■ Providing data continuity —To provide continuity of service in the event of primary
storage failure, you can use point-in-time copy solutions to recover application
data. In the event of server failure, you can use point-in-time copy solutions in
conjunction with the high availability cluster functionality of Veritas Storage
Foundation™ Cluster File System HA or Veritas Storage Foundation HA.

■ Decision support analysis and reporting—Operations such as decision support
analysis and business reporting may not require access to real-time information.
You can direct such operations to use a replica database that you have created
from snapshots, rather than allow them to compete for access to the primary
database. When required, you can quickly resynchronize the database copy
with the data in the primary database.

■ Testing and training—Development or service groups can use snapshots as
test data for new applications. Snapshot data provides developers, system
testers and QA groups with a realistic basis for testing the robustness, integrity
and performance of new applications.

■ Database error recovery—Logic errors caused by an administrator or an
application program can compromise the integrity of a database. You can recover
a database more quickly by restoring the database files by using Storage
Checkpoints or a snapshot copy than by full restoration from tape or other backup
media.
Use Storage Checkpoints to quickly roll back a database instance to an earlier
point in time.

566Understanding point-in-time copy methods
When to use point-in-time copies

■ Cloning data—You can clone your file system or application data. This
functionality enable you to quickly and efficiently provision virtual desktops.

All of the snapshot solutions mentioned above are also available on the disaster
recovery site, in conjunction with Veritas Volume Replicator.

For more information about snapshots with replication, see the Veritas Storage
Foundation and High Availability Solutions Replication Administrator's Guide.

Veritas Storage Foundation provides several point-in-time copy solutions that support
your needs, including the following use cases:

■ Creating a replica database for decision support.

■ Backing up and recovering a database with snapshots.

■ Backing up and recovering an off-host cluster file system

■ Backing up and recovering an online database.

Implementing point-in time copy solutions on a primary host
Figure 22-1 illustrates the steps that are needed to set up the processing solution
on the primary host.

567Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-1 Using snapshots and FastResync to implement point-in-time copy
solutions on a primary host

Volume

Primary host

If required, create a cache or empty
volume in the disk group, and use vxsnap
prepare to prepare volumes for snapshot
creation.

Cache or
empty
volume

Volume
Snapshot
volume

Apply the desired processing application
to the snapshot volumes.

Volume
Snapshot
volume

Use vxsnap make to create instant
snapshot volumes of one or more
volumes.

Volume
Snapshot
volume

If required, use vxsnap refresh to update the
snapshot volumes and make them ready for
more processing.

Repeat steps
3 and 4 as
required.

1. Prepare the volumes

2. Create instant snapshot volumes

3. Refresh the instant snapshots

4. Apply processing

Note: The Disk Group Split/Join functionality is not used. As all processing takes
place in the same disk group, synchronization of the contents of the snapshots from
the original volumes is not usually required unless you want to prevent disk
contention. Snapshot creation and updating are practically instantaneous.

Figure 22-2 shows the suggested arrangement for implementing solutions where
the primary host is used and disk contention is to be avoided.

568Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-2 Example point-in-time copy solution on a primary host

Disks containing primary
volumes used to hold
production databases or file
systems

Disks containing synchronized
full-sized instant snapshot
volumes

Primary host

1 2
SCSI or Fibre
Channel connectivity

In this setup, it is recommended that separate paths (shown as 1 and 2) from
separate controllers be configured to the disks containing the primary volumes and
the snapshot volumes. This avoids contention for disk access, but the primary host’s
CPU, memory and I/O resources are more heavily utilized when the processing
application is run.

Note: For space-optimized or unsynchronized full-sized instant snapshots, it is not
possible to isolate the I/O pathways in this way. This is because such snapshots
only contain the contents of changed regions from the original volume. If applications
access data that remains in unchanged regions, this is read from the original volume.

Implementing off-host point-in-time copy solutions
Figure 22-3 illustrates that, by accessing snapshot volumes from a lightly loaded
host (shown here as the OHP host), CPU- and I/O-intensive operations for online
backup and decision support are prevented from degrading the performance of the
primary host that is performing the main production activity (such as running a
database).

569Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-3 Example implementation of an off-host point-in-time copy solution

Network

Disks containing primary
volumes used to hold
production databases or file
systems

Disks containing snapshot
volumes

SCSI or Fibre
Channel connectivity

OHP hostPrimary Host

1 2

Also, if you place the snapshot volumes on disks that are attached to host controllers
other than those for the disks in the primary volumes, it is possible to avoid
contending with the primary host for I/O resources. To implement this, paths 1 and
2 shown in the Figure 22-3 should be connected to different controllers.

Figure 22-4 shows an example of how you might achieve such connectivity using
Fibre Channel technology with 4 Fibre Channel controllers in the primary host.

570Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-4 Example connectivity for off-host solution using redundant-loop
access

Network
OHP hostPrimary host

Fibre Channel
hubs or switches

Disk arrays

c1 c2 c3 c4c1 c2 c3 c4

This layout uses redundant-loop access to deal with the potential failure of any
single component in the path between a system and a disk array.

Note: On some operating systems, controller names may differ from what is shown
here.

Figure 22-5 shows how off-host processing might be implemented in a cluster by
configuring one of the cluster nodes as the OHP node.

571Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-5 Example implementation of an off-host point-in-time copy solution
using a cluster node

Disks containing primary
volumes used to hold
production databases or
file systems

Disks containing snapshot
volumes used to implement
off-host processing solutions

SCSI or Fibre Channel
connectivity

Cluster node configured as
OHP host

Cluster

1 2

Figure 22-6 shows an alternative arrangement, where the OHP node could be a
separate system that has a network connection to the cluster, but which is not a
cluster node and is not connected to the cluster’s private network.

Figure 22-6 Example implementation of an off-host point-in-time copy solution
using a separate OHP host

Network

Disks containing primary
volumes used to hold
production databases or
file systems

Disks containing snapshot
volumes used to implement
off-host processing solutions

SCSI or Fibre
Channel connectivity

OHP hostCluster

1 2

572Understanding point-in-time copy methods
When to use point-in-time copies

Note: For off-host processing, the example scenarios in this document assume
that a separate OHP host is dedicated to the backup or decision support role. For
clusters, it may be simpler, and more efficient, to configure an OHP host that is not
a member of the cluster.

Figure 22-7 illustrates the steps that are needed to set up the processing solution
on the primary host.

573Understanding point-in-time copy methods
When to use point-in-time copies

Figure 22-7 Implementing off-host processing solutions

Volume Snapshot
volume

Volume

Volume

Volume

Volume

Snapshot
volume

Snapshot
volume

Snapshot
volume

Snapshot
volume

Snapshot
volume

deport

import

import
deport

2. Create snapshot volumes
Use vxsnap make to create
synchronized snapshot volumes.
(Use vxsnap print to check the
status of synchronization.)

4. Split and deport disk group
Use vxdg split to move the disks
containing the snapshot volumes to
a separate disk group. Use vxdg
deport to deport this disk group.

5. Import disk group
Use vxdg import to import the disk
group containing the snapshot
volumes on the OHP host.

Snapshot
volume

6. Apply off-host processing
Apply the desired off-host
processing application to the
snapshot volume on the OHP host.

Volume

Volume

Volume

7. Deport disk group
Use vxdg deport to deport the disk
group containing the snapshot
volumes from the OHP host.

8. Import disk group
Use vxdg import to import the disk
group containing the snapshot
volumes on the primary host.

9. Join disk groups
Use vxdg join to merge the disk
group containing the snapshot
volumes with the original volumes’
disk group.

3. Refresh snapshot mirrors
If required, use vxsnap refresh to
update the snapshot volumes.
(Use vxsnap print to check the
status of synchronization.)

Snapshot
volume

Repeat steps 3
through 9 as required

Volume

1. Prepare the volumes
If required, create an empty volume
in the disk group, and use vxsnap
prepare to prepare volumes for
snapshot creation.

Empty
volume

OHP hostPrimary host or cluster

574Understanding point-in-time copy methods
When to use point-in-time copies

Disk Group Split/Join is used to split off snapshot volumes into a separate disk
group that is imported on the OHP host.

Note: As the snapshot volumes are to be moved into another disk group and then
imported on another host, their contents must first be synchronized with the parent
volumes. On reimporting the snapshot volumes, refreshing their contents from the
original volume is speeded by using FastResync.

About Storage Foundation point-in-time copy
technologies

This topic introduces the point-in-time copy solutions that you can implement using
the Veritas FlashSnap™ technology. Veritas FlashSnap technology requires a
license.

Veritas FlashSnap offers a flexible and efficient means of managing business critical
data. It allows you to capture an online image of actively changing data at a given
instant: a point-in-time copy. You can perform system backup, upgrade and other
maintenance tasks on point-in-time copies while providing continuous availability
of your critical data. If required, you can offload processing of the point-in-time
copies onto another host to avoid contention for system resources on your production
server.

The following kinds of point-in-time copy solution are supported by the FlashSnap
license:

■ Volume-level solutions. There are several types of volume-level snapshots.
These features are suitable for solutions where separate storage is desirable
to create the snapshot. For example, lower-tier storage. Some of these
techniques provided exceptional offhost processing capabilities.

■ File system-level solutions use the Storage Checkpoint feature of Veritas File
System. Storage Checkpoints are suitable for implementing solutions where
storage space is critical for:

■ File systems that contain a small number of mostly large files.

■ Application workloads that change a relatively small proportion of file system
data blocks (for example, web server content and some databases).

■ Applications where multiple writable copies of a file system are required for
testing or versioning.

See “Storage Checkpoints” on page 581.

■ File level snapshots.
The FileSnap feature provides snapshots at the level of individual files.

575Understanding point-in-time copy methods
About Storage Foundation point-in-time copy technologies

Comparison of Point-in-time copy solutions
The following table shows a side-by-side comparison of the Storage Foundation
Point in time copy solutions.

Table 22-1

AvailabilityCan be
moved
off-host

Exported
content

Internal
content

Snapshot
technique

Location
of
snapped
data

GranularitySolution

ImmediateYes, after
synchronization

Read/Write
volume

Changed
regions >> Full
volume

Copy on write/
Full copy

Separate
volume

VolumeInstant
full-sized
snapshot

ImmediateNoRead/Write
volume

Changed
regions

Copy on writeCache
object
(Separate
cache
volume)

VolumeInstant
space
optimized
snapshot

ImmediateYes, after
synchronization

Read/Write
volume

Changed
regions >> Full
volume

Copy on write/
Full copy

Separate
volume

VolumeLinked plex
break-off

ImmediateYes, after
synchronization

Read/Write
volume

Changed
regions >> Full
volume

Copy on write/
Full copy

Separate
volume

VolumePlex
break-off
using
vxsnap

After full
synch-
ronization

Yes, after
synchronization

Read/Write
volume

Full volumeFull copySeparate
volume

VolumeTraditional
plex
break-off
using
vxassist

ImmediateNoRead/Write
file system

Changed file
system blocks

Copy on writeSpace
within file
system

File systemStorage
Checkpoint

ImmediateNoRead-only file
system

Changed file
system blocks

Copy on writeSeparate
volume

File systemFile system
snapshot

ImmediateNoRead/Write
file system

Changed file
system blocks

Copy on
write/Lazy copy
on write

Space
within file
system

FileFileSnap

576Understanding point-in-time copy methods
About Storage Foundation point-in-time copy technologies

Volume-level snapshots
A volume snapshot is an image of a Veritas Volume Manager (VxVM) volume at a
given point in time. You can also take a snapshot of a volume set.

Volume snapshots allow you to make backup copies of your volumes online with
minimal interruption to users. You can then use the backup copies to restore data
that has been lost due to disk failure, software errors or human mistakes, or to
create replica volumes for the purposes of report generation, application
development, or testing.

Volume snapshots can also be used to implement off-host online backup.

Physically, a snapshot may be a full (complete bit-for-bit) copy of the data set, or
it may contain only those elements of the data set that have been updated since
snapshot creation. The latter are sometimes referred to as allocate-on-first-write
snapshots, because space for data elements is added to the snapshot image only
when the elements are updated (overwritten) for the first time in the original data
set. Storage Foundation allocate-on-first-write snapshots are called space-optimized
snapshots.

Persistent FastResync of volume snapshots
If persistent FastResync is enabled on a volume, VxVM uses a FastResync map
to keep track of which blocks are updated in the volume and in the snapshot.

When snapshot volumes are reattached to their original volumes, persistent
FastResync allows the snapshot data to be quickly refreshed and re-used. Persistent
FastResync uses disk storage to ensure that FastResync maps survive both system
and cluster crashes. If persistent FastResync is enabled on a volume in a private
disk group, incremental resynchronization can take place even if the host is rebooted.

Persistent FastResync can track the association between volumes and their
snapshot volumes after they are moved into different disk groups. After the disk
groups are rejoined, persistent FastResync allows the snapshot plexes to be quickly
resynchronized.

Data integrity in volume snapshots
A volume snapshot captures the data that exists in a volume at a given point in
time. As such, VxVM does not have any knowledge of data that is cached in memory
by the overlying file system, or by applications such as databases that have files
open in the file system. Snapshots are always crash consistent, that is, the snapshot
can be put to use by letting the application perform its recovery. This is similar to
how the application recovery occurs after a server crash. If the fsgen volume usage
type is set on a volume that contains a mounted Veritas File System (VxFS), VxVM

577Understanding point-in-time copy methods
Volume-level snapshots

coordinates with VxFS to flush data that is in the cache to the volume. Therefore,
these snapshots are always VxFS consistent and require no VxFS recovery while
mounting.

For databases, a suitable mechanism must additionally be used to ensure the
integrity of tablespace data when the volume snapshot is taken. The facility to
temporarily suspend file system I/O is provided by most modern database software.
The examples provided in this document illustrate how to perform this operation.
For ordinary files in a file system, which may be open to a wide variety of different
applications, there may be no way to ensure the complete integrity of the file data
other than by shutting down the applications and temporarily unmounting the file
system. In many cases, it may only be important to ensure the integrity of file data
that is not in active use at the time that you take the snapshot. However, in all
scenarios where application coordinate, snapshots are crash-recoverable.

Third-mirror break-off snapshots
A plex break-off snapshot uses an additional mirror to create the snapshot. Although
you can create a plex break-off snapshot for a single plex volume, typically you
take a snapshot of a mirrored volume. A mirrored volume has more than one plex
or mirror, each of which is a copy of the data. The snapshot operation "breaks off"
the plex, which becomes the snapshot volume. You can break off an existing plex
or add a new plex specifically to serve as the snapshot mirror. Generally, you want
to maintain redundancy for the original volume. If the original volume is a mirrored
volume with two plexes, you add a third mirror for the snapshot. Hence, this type
of snapshot is also known as a third-mirror snapshot.

The snapshot plex must be on a different disk from the existing plexes in the volume,
within the same disk group. The disk must have enough disk space to contain the
contents of the existing volume. If you have a one terabyte volume, you must have
an additional one terabyte of disk space.

When you create the snapshot, the plexes are separated into two volumes. The
original volume retains its original plex or plexes. The snapshot volume contains
the snapshot plex. The original volume continues to take on I/O. The snapshot
volume retains the data at the point of time when the snapshot was created, until
you choose to perform processing on that volume.

You can make multiple snapshots, so you can have multiple copies of the original
data.

Third-mirror break-off snapshots are suitable for write-intensive volumes (such as
for database redo logs) where the copy-on-write mechanism of space-optimized or
full-sized instant snapshots might degrade performance.

578Understanding point-in-time copy methods
Volume-level snapshots

Space-optimized instant volume snapshots
Space-optimized snapshots do not contain complete physical images of the original
data objects they represent. Space-optimized instant snapshots record changed
regions in the original volume to a storage cache. As the original volume is written
to, VxVM preserves its data in the cache before the write is committed. As the
storage cache typically requires much less storage than the original volume, it is
referred to as space-optimized. Space-optimized snapshots consume storage and
I/O bandwidth in proportion to how much data on the original volume is updated
during the life of the snapshot.

The benefits of space-optimized instant snapshots include immediate availability
for use, quick refreshment, and easier configuration and administration. Because
space-optimized snapshots consume less storage and I/O bandwidth than full-copy
snapshots, you can take the snapshots much more frequently. This makes them
well-suited for recovering from data corruption.

Space-optimized snapshots naturally tend to grow with age, as more of the data in
the original objects changes, so they are inherently better-suited for shorter lifetimes.

Space-optimized snapshots cannot be taken off-host for auxiliary processing.

How space-optimized instant snapshots work
Space-optimized snapshots use a copy-on-write mechanism to make them
immediately available for use when they are first created, or when their data is
refreshed.

You can configure a single storage cache in a disk group that can be shared by all
the volumes in that disk group. If so, the name of the cache that is declared must
be the same for each volume’s space-optimized snapshot. The cache is stored on
disk and is persistent.

If the cache approaches full, configure VxVM to grow the cache automatically using
any available free space in the disk group.

Figure 22-8 shows the instant space-optimized snapshot model.

579Understanding point-in-time copy methods
Volume-level snapshots

Figure 22-8 Space-optimized instant snapshot creation and usage in a backup
cycle

Start

Original volume

vxsnap prepare vxsnap make
vxsnap refresh

Backup
cycle

Snapshot volume

Back up to disk, tape or
other media

See “Creating and managing space-optimized instant snapshots” on page 611.

Choices for snapshot resynchronization
When a snapshot volume is reattached to its original volume within a shared disk
group, there are two choices for resynchronizing the data in the volume:

■ Resynchronize the snapshot from the original volume—updates the snapshot
with data from the primary volume that has changed since the snapshot was
taken. The snapshot is then again ready to be taken for the purposes of backup
or decision support. This type of resynchronization is also known as refreshing
the snapshot.

■ Resynchronize the original volume from the snapshot—updates the original
volume with data from the snapshot volume that has changed since the snapshot
was taken. This may be necessary to restore the state of a corrupted database
or file system, or to implement upgrades to production software, and is usually
much quicker than using alternative approaches such as full restoration from
backup media. This type of resynchronization is also known as restoring the
snapshot from the copy or replica.

Disk group split/join
One or more volumes, such as snapshot volumes, can be split off into a separate
disk group and deported. They are then ready for importing on another host that is
dedicated to off-host processing. This host need not be a member of a cluster but
it must have access to the disks on which the volumes are configured. At a later
stage, the disk group can be deported, re-imported, and joined with the original disk
group, or with a different disk group.

580Understanding point-in-time copy methods
Volume-level snapshots

Note: As space-optimized instant snapshots only record information about changed
regions in the original volume, they cannot be moved to a different disk group. They
are therefore unsuitable for the off-host processing applications that are described
in this document.

The contents of full-sized instant snapshots must be fully synchronized with the
unchanged regions in the original volume before such snapshots can be moved
into a different disk group and deported from a host.

Storage Checkpoints
A Storage Checkpoint is a persistent image of a file system at a given instance in
time. Storage Checkpoints use a copy-on-write technique to reduce I/O overhead
by identifying and maintaining only those file system blocks that have changed
since a previous Storage Checkpoint was taken. Storage Checkpoints have the
following important features:

■ Storage Checkpoints persist across system reboots and crashes.

■ A Storage Checkpoint can preserve not only file system metadata and the
directory hierarchy of the file system, but also user data as it existed when the
Storage Checkpoint was taken.

■ After creating a Storage Checkpoint of a mounted file system, you can continue
to create, remove, and update files on the file system without affecting the image
of the Storage Checkpoint.

■ Unlike file system snapshots, Storage Checkpoints are writable.

■ To minimize disk space usage, Storage Checkpoints use free space in the file
system.

Storage Checkpoints and the Storage Rollback feature of Veritas Storage Foundation
for Databases enable rapid recovery of databases from logical errors such as
database corruption, missing files and dropped table spaces. You can mount
successive Storage Checkpoints of a database to locate the error, and then roll
back the database to a Storage Checkpoint before the problem occurred.

Symantec NetBackup for Oracle Advanced BLI Agent uses Storage Checkpoints
to enhance the speed of backing up Oracle databases.

See the Symantec NetBackup for Oracle Advanced BLI Agent System
Administrator’s Guide.

581Understanding point-in-time copy methods
Storage Checkpoints

How Storage Checkpoints differ from snapshots
Storage Checkpoints differ from Veritas File System snapshots in the following
ways because they:

■ Allow write operations to the Storage Checkpoint itself.

■ Persist after a system reboot or failure.

■ Share the same pool of free space as the file system.

■ Maintain a relationship with other Storage Checkpoints by identifying changed
file blocks since the last Storage Checkpoint.

■ Can have multiple, read-only Storage Checkpoints that reduce I/O operations
and required storage space because the most recent Storage Checkpoint is the
only one that accumulates updates from the primary file system.

■ Can restore the file system to its state at the time that the Storage Checkpoint
was taken.

Various backup and replication solutions can take advantage of Storage
Checkpoints. The ability of Storage Checkpoints to track the file system blocks that
have changed since the last Storage Checkpoint facilitates backup and replication
applications that only need to retrieve the changed data. Storage Checkpoints
significantly minimize data movement and may promote higher availability and data
integrity by increasing the frequency of backup and replication solutions.

Storage Checkpoints can be taken in environments with a large number of files,
such as file servers with millions of files, with little adverse impact on performance.
Because the file system does not remain frozen during Storage Checkpoint creation,
applications can access the file system even while the Storage Checkpoint is taken.
However, Storage Checkpoint creation may take several minutes to complete
depending on the number of files in the file system.

How a Storage Checkpoint works
The Storage Checkpoint facility freezes the mounted file system (known as the
primary fileset), initializes the Storage Checkpoint, and thaws the file system.
Specifically, the file system is first brought to a stable state where all of its data is
written to disk, and the freezing process momentarily blocks all I/O operations to
the file system. A Storage Checkpoint is then created without any actual data; the
Storage Checkpoint instead points to the block map of the primary fileset. The
thawing process that follows restarts I/O operations to the file system.

You can create a Storage Checkpoint on a single file system or a list of file systems.
A Storage Checkpoint of multiple file systems simultaneously freezes the file
systems, creates a Storage Checkpoint on all of the file systems, and thaws the
file systems. As a result, the Storage Checkpoints for multiple file systems have

582Understanding point-in-time copy methods
Storage Checkpoints

the same creation timestamp. The Storage Checkpoint facility guarantees that
multiple file system Storage Checkpoints are created on all or none of the specified
file systems, unless there is a system crash while the operation is in progress.

Note: The calling application is responsible for cleaning up Storage Checkpoints
after a system crash.

A Storage Checkpoint of the primary fileset initially contains only pointers to the
existing data blocks in the primary fileset, and does not contain any allocated data
blocks of its own.

Figure 22-9 shows the file system /database and its Storage Checkpoint. The
Storage Checkpoint is logically identical to the primary fileset when the Storage
Checkpoint is created, but it does not contain any actual data blocks.

Figure 22-9 Primary fileset and its Storage Checkpoint

Primary fileset Storage Checkpoint

emp.dbf jun.dbfemp.dbf

/database /database

jun.dbf

In Figure 22-10, a square represents each block of the file system. This figure shows
a Storage Checkpoint containing pointers to the primary fileset at the time the
Storage Checkpoint is taken, as in Figure 22-9.

583Understanding point-in-time copy methods
Storage Checkpoints

Figure 22-10 Initializing a Storage Checkpoint

A

B

C

D

E

Primary fileset Storage Checkpoint

The Storage Checkpoint presents the exact image of the file system by finding the
data from the primary fileset. VxFS updates a Storage Checkpoint by using the
copy-on-write technique.

See “Copy-on-write” on page 584.

Copy-on-write
In Figure 22-11, the third data block in the primary fileset originally containing C is
updated.

Before the data block is updated with new data, the original data is copied to the
Storage Checkpoint. This is called the copy-on-write technique, which allows the
Storage Checkpoint to preserve the image of the primary fileset when the Storage
Checkpoint is taken.

Every update or write operation does not necessarily result in the process of copying
data to the Storage Checkpoint because the old data needs to be saved only once.
As blocks in the primary fileset continue to change, the Storage Checkpoint
accumulates the original data blocks. In this example, subsequent updates to the
third data block, now containing C', are not copied to the Storage Checkpoint
because the original image of the block containing C is already saved.

584Understanding point-in-time copy methods
Storage Checkpoints

Figure 22-11 Updates to the primary fileset

A

B

C’

D

E

C

Primary fileset Storage Checkpoint

Storage Checkpoint visibility
With the ckptautomnt mount option, all Storage Checkpoints are made accessible
automatically through a directory in the root directory of the file system that has the
special name .checkpoint, which does not appear in directory listings. Inside this
directory is a directory for each Storage Checkpoint in the file system. Each of these
directories behave as a mount of the corresponding Storage Checkpoint, with the
following exceptions:

■ External applications, such as NFS, see the files as part of the original mount
point. Thus, no additional NFS exports are necessary.

■ Inode numbers exposed to applications can be made unique, depending on a
mount option.

The Storage Checkpoints are automounted internally, but the operating system
does not know about the automounting. This means that Storage Checkpoints
cannot be mounted manually, and they do not apear in the list of mounted file
systems. When Storage Checkpoints are created or deleted, entries in the Storage
Checkpoint directory are automatically updated. If a Storage Checkpoint is removed
with the -f option while a file in the Storage Checkpoint is still in use, the Storage
Checkpoint is force unmounted, and all operations on the file fail with the EIO error.

585Understanding point-in-time copy methods
Storage Checkpoints

If there is already a file or directory named .checkpoint in the root directory of the
file system, such as a directory created with an older version of Veritas File System
(VxFS) or when Storage Checkpoint visibility feature was disabled, the fake directory
providing access to the Storage Checkpoints is not accessible. With this feature
enabled, attempting to create a file or directory in the root directory with the name
.checkpoint fails with the EEXIST error.

Note: If an auto-mounted Storage Checkpoint is in use by an NFS mount, removing
the Storage Checkpoint might succeed even without the forced (-f) option.

Storage Checkpoints and 64-bit inode numbers
The inode number of a file is the same across Storage Checkpoints. For example,
if the file file1 exists in a file system and a Storage Checkpoint is taken of that file
system, running the stat command on file1 in the original file system and in the
Storage Checkpoint returns the same value in st_ino. The combination of st_ino
and st_dev should uniquely identify every file in a system. This is usually not a
problem because Storage Checkpoints get mounted separately, so st_dev is
different. When accessing files in a Storage Checkpoint through the Storage
Checkpoint visibility extension, st_dev is the same for all Storage Checkpoints as
well as for the original file system. This means files can no longer be identified
uniquely by st_ino and st_dev.

In general, uniquely identifying all files in a system is not necessary. However, there
can be some applications that rely on unique identification to function properly. For
example, a backup application might check if a file is hard-linked to another file by
calling stat on both and checking if st_ino and st_dev are the same. If a backup
application were told to back up two clones through the Storage Checkpoint visibility
extension at the same time, the application can erroneously deduce that two files
are the same even though the files contain different data.

By default, Veritas Storage Foundation (SF) does not make inode numbers unique.
However, you can specify the uniqueino mount option to enable the use of unique
64-bit inode numbers. You cannot change this option during a remount.

Types of Storage Checkpoints
You can create the following types of Storage Checkpoints:

■ Data Storage Checkpoints

■ Nodata Storage Checkpoints

■ Removable Storage Checkpoints

■ Non-mountable Storage Checkpoints

586Understanding point-in-time copy methods
Storage Checkpoints

Data Storage Checkpoints
A data Storage Checkpoint is a complete image of the file system at the time the
Storage Checkpoint is created. This type of Storage Checkpoint contains the file
system metadata and file data blocks. You can mount, access, and write to a data
Storage Checkpoint just as you would to a file system. Data Storage Checkpoints
are useful for backup applications that require a consistent and stable image of an
active file system. Data Storage Checkpoints introduce some overhead to the
system and to the application performing the write operation. For best results, limit
the life of data Storage Checkpoints to minimize the impact on system resources.

See “Showing the difference between a data and a nodata Storage Checkpoint”
on page 656.

Nodata Storage Checkpoints
A nodata Storage Checkpoint only contains file system metadata—no file data
blocks. As the original file system changes, the nodata Storage Checkpoint records
the location of every changed block. Nodata Storage Checkpoints use minimal
system resources and have little impact on the performance of the file system
because the data itself does not have to be copied.

In Figure 22-12, the first block originally containing A is updated.

The original data is not copied to the Storage Checkpoint, but the changed block
is marked in the Storage Checkpoint. The marker indicates which data has changed.

587Understanding point-in-time copy methods
Storage Checkpoints

Figure 22-12 Updates to a nodata clone

A’

B

C

D

E

Storage CheckpointPrimary fileset

See “Showing the difference between a data and a nodata Storage Checkpoint”
on page 656.

Removable Storage Checkpoints
A removable Storage Checkpoint can self-destruct under certain conditions when
the file system runs out of space.

See “Storage Checkpoint space management considerations” on page 663.

During user operations such as create or mkdir, if the file system runs out of space,
removable Storage Checkpoints are deleted, even if the Storage Checkpoints are
mounted. This ensures that applications can continue without interruptions due to
lack of disk space. Non-removable Storage Checkpoints are not automatically
removed under such ENOSPC conditions. Symantec recommends that you create
only removable Storage Checkpoints. However, during certain administrative
operations, such as fsadm, even if the file system runs out of space, removable
Storage Checkpoints are not deleted.

Storage Checkpoints are created as non-removable by default. The default behavior
can be changed so that VxFS creates removable Storage Checkpoints by using
the vxtunefs -D ckpt_removable=1 command. With the default set to create

588Understanding point-in-time copy methods
Storage Checkpoints

removable Storage Checkpoints, non-removable Storage Checkpoints can be
created using fsckptadm -R create ckpt_name mount_point command.

See the vxtunefs(1M) and fsckptadm(1M) manual pages.

Non-mountable Storage Checkpoints
You can create Storage Checkpoints that cannot be mounted by using the fsckptadm

set nomount command. The nomount option can be cleared using the fsckptadm

clear nomount command.

Use non-mountable Storage Checkpoints as a security feature. This prevents other
applications from accessing and modifying the Storage Checkpoint.

About FileSnaps
A FileSnap is an atomic space-optimized copy of a file in the same name space,
stored in the same file system. Veritas File System (VxFS) supports snapshots on
file system disk layout Version 8 and later.

FileSnaps provide an ability to snapshot objects that are smaller in granularity than
a file system or a volume. The ability to snapshot parts of a file system name space
is required for application-based or user-based management of data stored in a file
system. This is useful when a file system is shared by a set of users or applications
or the data is classified into different levels of importance in the same file system.

All regular file operations are supported on the FileSnap, and VxFS does not
distinguish the FileSnap in any way.

Properties of FileSnaps
FileSnaps provide non-root users the ability to snapshot data that they own, without
requiring administrator privileges. This enables users and applications to version,
backup, and restore their data by scheduling snapshots at appropriate points of
their application cycle. Restoring from a FileSnap is as simple as specifying a
snapshot as the source file and the original file as the destination file as the
arguments for the vxfilesnap command.

FileSnap creation locks the source file as read-only and locks the destination file
exclusively for the duration of the operation, thus creating the snapshots atomically.
The rest of the files in the file system can be accessed with no I/O pause while
FileSnap creation is in progress. Read access to the source file is also uninterrupted
while the snapshot creation is in progress. This allows for true sharing of a file
system by multiple users and applications in a non-intrusive fashion.

589Understanding point-in-time copy methods
About FileSnaps

The name space relationship between source file and destination file is defined by
the user-issued vxfilesnap command by specifying the destination file path. Veritas
File System (VxFS) neither differentiates between the source file and the destination
file, nor does it maintain any internal relationships between these two files. Once
the snapshot is completed, the only shared property between the source file and
destination file are the data blocks and block map shared by them.

The number of FileSnaps of a file is practically unlimited. The technical limit is the
maximum number of files supported by the VxFS file system, which is one billion
files per file set. When thousands of FileSnaps are created from the same file and
each of these snapshot files is simultaneously read and written to by thousands of
threads, FileSnaps scale very well due to the design that results in no contention
of the shared blocks when unsharing happens due to an overwrite. The performance
seen for the case of unsharing shared blocks due to an overwrite with FileSnaps
is closer to that of an allocating write than that of a traditional copy-on-write.

In disk layout Version 8, to support block or extent sharing between the files,
reference counts are tracked for each shared extent. VxFS processes reference
count updates due to sharing and unsharing of extents in a delayed fashion. Also,
an extent that is marked shared once will not go back to unshared until all the
references are gone. This is to improve the FileSnap creation performance and
performance of data extent unsharing. However, this in effect results in the shared
block statistics for the file system to be only accurate to the point of the processing
of delayed reclamation. In other words, the shared extent statistics on the file system
and a file could be stale, depending on the state of the file system.

Concurrent I/O to FileSnaps
FileSnaps design and implementation ensures that concurrent reads or writes to
different snapshots of the same file perform as if these were independent files.
Even though the extents are shared between snapshots of the same file, the sharing
has no negative impact on concurrent I/O.

Copy-on-write and FileSnaps
Veritas File System (VxFS) supports an option to do lazy copy-on-write when a
region of a file referred to by a shared extent is overwritten. A typical copy-on-write
implementation involves reading the old data, allocating a new block, copying or
writing the old data to the new block synchronously, and writing the new data to
the new block. This results in a worst case possibility of one or more allocating
transactions, followed by a read, followed by a synchronous write and another write
that conforms to the I/O behavior requested for the overwrite. This sequence makes
typical copy-on-write a costly operation. The VxFS lazy copy-on-write implementation
does not copy the old data to the newly allocated block and hence does not have

590Understanding point-in-time copy methods
About FileSnaps

to read the old data either, as long as the new data covers the entire block. This
behavior combined with delayed processing of shared extent accounting makes
the lazy copy-on-write complete in times comparable to that of an allocating write.
However, in the event of a server crash, when the server has not flushed the new
data to the newly allocated blocks, the data seen on the overwritten region would
be similar to what you would find in the case of an allocating write where the server
has crashed before the data is flushed. This is not the default behavior and with
the default behavior the data that you find in the overwritten region will be either
the new data or the old data.

Reading from FileSnaps
For regular read requests, Veritas File System (VxFS) only caches a single copy
of a data page in the page cache for a given shared data block, even though the
shared data block could be accessed from any of the FileSnaps or the source file.
Once the shared data page is cached, any subsequent requests via any of the
FileSnaps or the source file is serviced from the page cache. This eliminates
duplicate read requests to the disk, which results in lower I/O load on the array.
This also reduces the page cache duplication, which results in efficient usage of
system page cache with very little cache churning when thousands of FileSnaps
are accessed.

Block map fragmentation and FileSnaps
The block map of the source file is shared by the snapshot file. When data is
overwritten on a previously shared region, the block map of the file to which the
write happens gets changed. In cases where the shared data extent of a source
file is larger than the size of the overwrite request to the same region, the block
map of the file that is written to becomes more fragmented.

Backup and FileSnaps
A full backup of a VxFS file system that has shared blocks may require as much
space in the target as the number of total logical references to the physical blocks
in the source file system. For example, if you have a 20 GB file from which one
thousand FileSnaps were created, the total number of logical block references is
approximately 20 TB. While the VxFS file system only requires a little over 20 GB
of physical blocks to store the file and the file's one thousand snapshots, the file
system requires over 20 TB of space on the backup target to back up the file system,
assuming the backup target does not have deduplication support.

591Understanding point-in-time copy methods
About FileSnaps

About snapshot file systems
A snapshot file system is an exact image of a VxFS file system, referred to as the
snapped file system, that provides a mechanism for making backups. The snapshot
is a consistent view of the file system “snapped" at the point in time the snapshot
is made. You can select files to back up from the snapshot using a standard utility
such as cpio or cp, or back up the entire file system image using the vxdump or
fscat utilities.

You use the mount command to create a snapshot file system; the mkfs command
is not required. A snapshot file system is always read-only. A snapshot file system
exists only as long as the snapped file system is mounted, and the snapshot file
system ceases to exist when unmounted. A snapped file system cannot be
unmounted until all of its snapshots are unmounted. Although it is possible to have
multiple snapshots of a file system made at different times, it is not possible to make
a snapshot of a snapshot.

Note: A snapshot file system ceases to exist when unmounted. If mounted again,
it is actually a fresh snapshot of the snapped file system. A snapshot file system
must be unmounted before its dependent snapped file system can be unmounted.
Neither the fuser command nor the mount command will indicate that a snapped
file system cannot be unmounted because a snapshot of it exists.

On cluster file systems, snapshots can be created on any node in the cluster, and
backup operations can be performed from that node. The snapshot of a cluster file
system is accessible only on the node where it is created, that is, the snapshot file
system itself cannot be cluster mounted.

See the Veritas Storage Foundation Cluster File System High Availability
Administrator's Guide.

How a snapshot file system works
A snapshot file system is created by mounting an empty disk slice as a snapshot
of a currently mounted file system. The bitmap, blockmap and super-block are
initialized and then the currently mounted file system is frozen. After the file system
to be snapped is frozen, the snapshot is enabled and mounted and the snapped
file system is thawed. The snapshot appears as an exact image of the snapped file
system at the time the snapshot was made.

See “Freezing and thawing a file system” on page 544.

Initially, the snapshot file system satisfies read requests by finding the data on the
snapped file system and returning it to the requesting process. When an inode

592Understanding point-in-time copy methods
About snapshot file systems

update or a write changes the data in block n of the snapped file system, the old
data is first read and copied to the snapshot before the snapped file system is
updated. The bitmap entry for block n is changed from 0 to 1, indicating that the
data for block n can be found on the snapshot file system. The blockmap entry for
block n is changed from 0 to the block number on the snapshot file system containing
the old data.

A subsequent read request for block n on the snapshot file system will be satisfied
by checking the bitmap entry for block n and reading the data from the indicated
block on the snapshot file system, instead of from block n on the snapped file
system. This technique is called copy-on-write. Subsequent writes to block n on
the snapped file system do not result in additional copies to the snapshot file system,
since the old data only needs to be saved once.

All updates to the snapped file system for inodes, directories, data in files, extent
maps, and so forth, are handled in this fashion so that the snapshot can present a
consistent view of all file system structures on the snapped file system for the time
when the snapshot was created. As data blocks are changed on the snapped file
system, the snapshot gradually fills with data copied from the snapped file system.

The amount of disk space required for the snapshot depends on the rate of change
of the snapped file system and the amount of time the snapshot is maintained. In
the worst case, the snapped file system is completely full and every file is removed
and rewritten. The snapshot file system would need enough blocks to hold a copy
of every block on the snapped file system, plus additional blocks for the data
structures that make up the snapshot file system. This is approximately 101 percent
of the size of the snapped file system. Normally, most file systems do not undergo
changes at this extreme rate. During periods of low activity, the snapshot should
only require two to six percent of the blocks of the snapped file system. During
periods of high activity, the snapshot might require 15 percent of the blocks of the
snapped file system. These percentages tend to be lower for larger file systems
and higher for smaller ones.

Warning: If a snapshot file system runs out of space for changed data blocks, it is
disabled and all further attempts to access it fails. This does not affect the snapped
file system.

593Understanding point-in-time copy methods
About snapshot file systems

Administering volume
snapshots

This chapter includes the following topics:

■ About volume snapshots

■ How traditional third-mirror break-off snapshots work

■ How full-sized instant snapshots work

■ Linked break-off snapshot volumes

■ Cascaded snapshots

■ Creating multiple snapshots

■ Restoring the original volume from a snapshot

■ Creating instant snapshots

■ Creating traditional third-mirror break-off snapshots

■ Adding a version 0 DCO and DCO volume

About volume snapshots
VxVM can take an image of a volume at a given point in time. This image is called
a volume snapshot.

See “Volume-level snapshots” on page 577.

You can also take a snapshot of a volume set.

Snapshot creation using the vxsnap command is the preferred mechanism for
implementing point-in-time copy solutions in VxVM. Support for traditional third-mirror

23Chapter

snapshots that are created using the vxassist command may be removed in a
future release.

To recover from the failure of instant snapshot commands, see the Veritas Storage
Foundation and High Availability Troubleshooting Guide.

How traditional third-mirror break-off snapshots
work

The recommended approach to performing volume backup from the command line,
or from a script, is to use the vxsnap command. The vxassist snapstart,

snapwait, and snapshot commands are supported for backward compatibility.

The use of the vxassist command to administer traditional (third-mirror break-off)
snapshots is not supported for volumes that are prepared for instant snapshot
creation. Use the vxsnap command instead.

Figure 23-1 shows the traditional third-mirror break-off volume snapshot model that
is supported by the vxassist command.

Figure 23-1 Third-mirror snapshot creation and usage

Start

Original volume
Snapshot mirror

Original volume

vxsassist snapclear

vxsassist
snapback

vxassist
snapstart

Refresh on snapback

Backup
cycle Snapshot volume

Independent volume

Back up to disk, tape or
other media, or use to

replicate database or file

vxassist
snapshot

The vxassist snapstart command creates a mirror to be used for the snapshot,
and attaches it to the volume as a snapshot mirror. As is usual when creating a
mirror, the process of copying the volume’s contents to the new snapshot plexes
can take some time to complete. (The vxassist snapabort command cancels this
operation and removes the snapshot mirror.)

595Administering volume snapshots
How traditional third-mirror break-off snapshots work

When the attachment is complete, the vxassist snapshot command is used to
create a new snapshot volume by taking one or more snapshot mirrors to use as
its data plexes. The snapshot volume contains a copy of the original volume’s data
at the time that you took the snapshot. If more than one snapshot mirror is used,
the snapshot volume is itself mirrored.

The command, vxassist snapback, can be used to return snapshot plexes to the
original volume from which they were snapped, and to resynchronize the data in
the snapshot mirrors from the data in the original volume. This enables you to
refresh the data in a snapshot after you use it to make a backup. You can use a
variation of the same command to restore the contents of the original volume from
a snapshot previously taken.

The FastResync feature minimizes the time and I/O needed to resynchronize the
data in the snapshot. If FastResync is not enabled, a full resynchronization of the
data is required.

Finally, you can use the vxassist snapclear command to break the association
between the original volume and the snapshot volume. Because the snapshot
relationship is broken, no change tracking occurs. Use this command if you do not
need to reuse the snapshot volume to create a new point-in-time copy.

How full-sized instant snapshots work
Full-sized instant snapshots are a variation on the third-mirror volume snapshot
model that make a snapshot volume available for I/O access as soon as the
snapshot plexes have been created.

Figure 23-2 shows the full-sized instant volume snapshot model.

Figure 23-2 Full-sized instant snapshot creation and usage in a backup cycle

Start

Original volume

vxsnap prepare

vxsnap make

vxsnap reattach
vxsnap dis

or
vxsnap split

vxsnap refresh

Backup
cycle

Snapshot volume

Independent volume

Back up to disk, tape or other media
The snapshot volume can also be used to create a replica

database or file system when synchronization is complete.

596Administering volume snapshots
How full-sized instant snapshots work

To create an instant snapshot, use the vxsnap make command. This command can
either be applied to a suitably prepared empty volume that is to be used as the
snapshot volume, or it can be used to break off one or more synchronized plexes
from the original volume.

You can make a backup of a full-sized instant snapshot, instantly refresh its contents
from the original volume, or attach its plexes to the original volume, without
completely synchronizing the snapshot plexes from the original volume.

VxVM uses a copy-on-write mechanism to ensure that the snapshot volume
preserves the contents of the original volume at the time that the snapshot is taken.
Any time that the original contents of the volume are about to be overwritten, the
original data in the volume is moved to the snapshot volume before the write
proceeds. As time goes by, and the contents of the volume are updated, its original
contents are gradually relocated to the snapshot volume.

If a read request comes to the snapshot volume, yet the data resides on the original
volume (because it has not yet been changed), VxVM automatically and
transparently reads the data from the original volume.

If desired, you can perform either a background (non-blocking) or foreground
(blocking) synchronization of the snapshot volume. This is useful if you intend to
move the snapshot volume into a separate disk group for off-host processing, or
you want to turn the snapshot volume into an independent volume.

The vxsnap refresh command allows you to update the data in a snapshot, for
example, before taking a backup.

The command vxsnap reattach attaches snapshot plexes to the original volume,
and resynchronizes the data in these plexes from the original volume. Alternatively,
you can use the vxsnap restore command to restore the contents of the original
volume from a snapshot that you took at an earlier point in time. You can also
choose whether or not to keep the snapshot volume after restoration of the original
volume is complete.

By default, the FastResync feature of VxVM is used to minimize the time and I/O
needed to resynchronize the data in the snapshot mirror. FastResync must be
enabled to create instant snapshots.

See “Creating and managing full-sized instant snapshots” on page 614.

An empty volume must be prepared for use by full-sized instant snapshots and
linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 609.

597Administering volume snapshots
How full-sized instant snapshots work

Linked break-off snapshot volumes
A variant of third-mirror break-off snapshots are linked break-off snapshots, which
use the vxsnap addmir command to link a specially prepared volume with the data
volume. The volume that is used for the snapshot is prepared in the same way as
for full-sized instant snapshots. However, unlike full-sized instant snapshots, this
volume can be set up in a different disk group from the data volume. This makes
linked break-off snapshots especially suitable for recurring off-host processing
applications as it avoids the disk group split/join administrative step. As with
third-mirror break-off snapshots, you must wait for the contents of the snapshot
volume to be synchronized with the data volume before you can use the vxsnap

make command to take the snapshot.

When a link is created between a volume and the mirror that will become the
snapshot, separate link objects (similar to snap objects) are associated with the
volume and with its mirror. The link object for the original volume points to the mirror
volume, and the link object for the mirror volume points to the original volume. All
I/O is directed to both the original volume and its mirror, and a synchronization of
the mirror from the data in the original volume is started.

You can use the vxprint command to display the state of link objects, which appear
as type ln. Link objects can have the following states:

The mirror volume has been fully synchronized from the original volume.
The vxsnap make command can be run to create a snapshot.

ACTIVE

Synchronization of the mirror volume is in progress. The vxsnap make
command cannot be used to create a snapshot until the state changes
to ACTIVE. The vxsnap snapwait command can be used to wait for
the synchronization to complete.

ATTACHING

The mirror volume has been detached from the original volume because
of an I/O error or an unsuccessful attempt to grow the mirror volume.
The vxrecover command can be used to recover the mirror volume in
the same way as for a DISABLED volume.

BROKEN

If you resize (grow or shrink) a volume, all its ACTIVE linked mirror volumes are also
resized at the same time. The volume and its mirrors can be in the same disk group
or in different disk groups. If the operation is successful, the volume and its mirrors
will have the same size.

If a volume has been grown, a resynchronization of the grown regions in its linked
mirror volumes is started, and the links remain in the ATTACHING state until
resynchronization is complete. The vxsnap snapwait command can be used to
wait for the state to become ACTIVE.

598Administering volume snapshots
Linked break-off snapshot volumes

When you use the vxsnap make command to create the snapshot volume, this
removes the link, and establishes a snapshot relationship between the snapshot
volume and the original volume.

The vxsnap reattach operation re-establishes the link relationship between the
two volumes, and starts a resynchronization of the mirror volume.

See “Creating and managing linked break-off snapshot volumes” on page 619.

An empty volume must be prepared for use by linked break-off snapshots.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 609.

Cascaded snapshots
Figure 23-3 shows a snapshot hierarchy, known as a snapshot cascade, that can
improve write performance for some applications.

Figure 23-3 Snapshot cascade

Most recent
snapshot

Oldest
snapshot

Original volume
V

Snapshot volume
Sn-1

Snapshot volume
Sn

Snapshot volume
S1

Instead of having several independent snapshots of the volume, it is more efficient
to make the older snapshots into children of the latest snapshot.

A snapshot cascade is most likely to be used for regular online backup of a volume
where space-optimized snapshots are written to disk but not to tape.

A snapshot cascade improves write performance over the alternative of several
independent snapshots, and also requires less disk space if the snapshots are
space-optimized. Only the latest snapshot needs to be updated when the original
volume is updated. If and when required, the older snapshots can obtain the changed
data from the most recent snapshot.

A snapshot may be added to a cascade by specifying the infrontof attribute to
the vxsnap make command when the second and subsequent snapshots in the
cascade are created. Changes to blocks in the original volume are only written to
the most recently created snapshot volume in the cascade. If an attempt is made
to read data from an older snapshot that does not exist in that snapshot, it is obtained
by searching recursively up the hierarchy of more recent snapshots.

The following points determine whether it is appropriate to use a snapshot cascade:

599Administering volume snapshots
Cascaded snapshots

■ Deletion of a snapshot in the cascade takes time to copy the snapshot’s data
to the next snapshot in the cascade.

■ The reliability of a snapshot in the cascade depends on all the newer snapshots
in the chain. Thus the oldest snapshot in the cascade is the most vulnerable.

■ Reading from a snapshot in the cascade may require data to be fetched from
one or more other snapshots in the cascade.

For these reasons, it is recommended that you do not attempt to use a snapshot
cascade with applications that need to remove or split snapshots from the cascade.
In such cases, it may be more appropriate to create a snapshot of a snapshot as
described in the following section.

See “Adding a snapshot to a cascaded snapshot hierarchy” on page 625.

Note: Only unsynchronized full-sized or space-optimized instant snapshots are
usually cascaded. It is of little utility to create cascaded snapshots if the infrontof

snapshot volume is fully synchronized (as, for example, with break-off type
snapshots).

Creating a snapshot of a snapshot
Figure 23-4 creation of a snapshot of an existing snapshot.

Figure 23-4 Creating a snapshot of a snapshot

vxsnap make source=V vxsnap make source=S1

Original volume
V

Snapshot volume
S1

Snapshot volume
S2

Even though the arrangement of the snapshots in this figure appears similar to a
snapshot cascade, the relationship between the snapshots is not recursive. When
reading from the snapshot S2, data is obtained directly from the original volume, V,
if it does not exist in S1 itself.

See Figure 23-3 on page 599.

Such an arrangement may be useful if the snapshot volume, S1, is critical to the
operation. For example, S1 could be used as a stable copy of the original volume,
V. The additional snapshot volume, S2, can be used to restore the original volume
if that volume becomes corrupted. For a database, you might need to replay a redo
log on S2 before you could use it to restore V.

600Administering volume snapshots
Cascaded snapshots

Figure 23-5 shows the sequence of steps that would be required to restore a
database.

Figure 23-5 Using a snapshot of a snapshot to restore a database

Original volume
V

Snapshot volume of V:
S1

Create instant snapshot S1 of volume V1

Create instant snapshot S2 of S12

Original volume
V

Snapshot volume of V:
S1

vxsnap make source=S1

Snapshot volume of S1:
S2

Restore contents of V instantly from snapshot S2 and keep S1 as a
stable copy4

Original volume
V

Snapshot volume of V:
S1

vxsnap restore V source=S2

Snapshot volume of S1:
S2

After contents of V have gone bad, apply the database to redo logs to S23

Original volume
V

Snapshot volume of V:
S1

Apply redo logs

Snapshot volume of S1:
S2

If you have configured snapshots in this way, you may wish to make one or more
of the snapshots into independent volumes. There are two vxsnap commands that
you can use to do this:

■ vxsnap dis dissociates a snapshot and turns it into an independent volume.
The snapshot to be dissociated must have been fully synchronized from its
parent. If a snapshot volume has a child snapshot volume, the child must also
have been fully synchronized. If the command succeeds, the child snapshot
becomes a snapshot of the original volume.
Figure 23-6 shows the effect of applying the vxsnap dis command to snapshots
with and without dependent snapshots.

601Administering volume snapshots
Cascaded snapshots

Figure 23-6 Dissociating a snapshot volume

vxsnap dis is applied to snapshot S2, which has no snapshots of its own

Original volume
V

Snapshot volume of V:
S1

vxsnap dis S2

S1 remains owned by V S2 is independent

Snapshot volume of S1:
S2

Original volume
V

Snapshot volume of V:
S1

Volume
S2

vxsnap dis is applied to snapshot S1, which has one snapshot S2

Original volume
V

Snapshot volume of V:
S1

vxsnap dis S1

S1 is independent S2 is adopted by V

Snapshot volume of S1:
S2

Original volume
V

Volume
S1

Snapshot volume of V:
S2

■ vxsnap split dissociates a snapshot and its dependent snapshots from its
parent volume. The snapshot that is to be split must have been fully synchronized
from its parent volume.
Figure 23-7 shows the operation of the vxsnap split command.

Figure 23-7 Splitting snapshots

Original volume
V

Snapshot volume of V:
S1

vxsnap split S1

S1 is independent S2 continues to be a
snapshot of S1

Snapshot volume of S1:
S2

Original volume
V

Volume
S1

Snapshot volume of S1:
S2

Creating multiple snapshots
To make it easier to create snapshots of several volumes at the same time, both
the vxsnap make and vxassist snapshot commands accept more than one volume
name as their argument.

602Administering volume snapshots
Creating multiple snapshots

For traditional snapshots, you can create snapshots of all the volumes in a single
disk group by specifying the option -o allvols to the vxassist snapshot

command.

By default, each replica volume is named SNAPnumber-volume, where number is
a unique serial number, and volume is the name of the volume for which a snapshot
is being taken. This default can be overridden by using the option -o name=pattern.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

You can create a snapshot of all volumes that form a logical group; for example,
all the volumes that conform to a database instance.

Restoring the original volume from a snapshot
For traditional snapshots, the snapshot plex is resynchronized from the data in the
original volume during a vxassist snapback operation.

Figure 23-8 shows an alternative where the snapshot overwrites the original volume.

Figure 23-8 Resynchronizing an original volume from a snapshot

Refresh on snapback

Original volume

Snapshot mirror

-o resyncfromreplica snapback

Snapshot volume

Specifying the option -o resyncfromreplica to vxassist resynchronizes the
original volume from the data in the snapshot.

Warning: The original volume must not be in use during a snapback operation that
specifies the option -o resyncfromreplica to resynchronize the volume from a
snapshot. Stop any application, such as a database, and unmount any file systems
that are configured to use the volume.

For instant snapshots, the vxsnap restore command may be used to restore the
contents of the original volume from an instant snapshot or from a volume derived
from an instant snapshot. The volume that is used to restore the original volume
can either be a true backup of the contents of the original volume at some point in
time, or it may have been modified in some way (for example, by applying a database

603Administering volume snapshots
Restoring the original volume from a snapshot

log replay or by running a file system checking utility such as fsck). All
synchronization of the contents of this backup must have been completed before
the original volume can be restored from it. The original volume is immediately
available for use while its contents are being restored.

See “Restoring a volume from an instant space-optimized snapshot” on page 628.

Creating instant snapshots

Note: You need a Storage Foundation Enterprise license to use this feature.

VxVM allows you to make instant snapshots by using the vxsnap command.

You can also take instant snapshots of RAID-5 volumes that have been converted
to a special layered volume layout by the addition of a DCO and DCO volume.

A plex in a full-sized instant snapshot requires as much space as the original volume.
If you instead make a space-optimized instant snapshot of a volume, this only
requires enough storage to record the original contents of the parent volume as
they are changed during the life of the snapshot.

The recommended approach to perform volume backup from the command line,
or from a script, is to use the vxsnap command. The vxsnap prepare and make

tasks allow you to back up volumes online with minimal disruption to users.

vxsnap prepare creates a DCO and DCO volume and associates this with the
original volume. It also enables Persistent FastResync.

vxsnap make creates an instant snapshot that is immediately available for making
a backup. After the snapshot has been taken, read requests for data in the instant
snapshot volume are satisfied by reading either from a non-updated region of the
original volume, or from the copy of the original contents of an updated region that
have been recorded by the snapshot.

Note: Synchronization of a full-sized instant snapshot from the original volume is
enabled by default. If you specify the syncing=no attribute to vxsnap make, this
disables synchronization, and the contents of the instant snapshot are unlikely ever
to become fully synchronized with the contents of the original volume at the point
in time that the snapshot was taken. In such a case, the snapshot cannot be used
for off-host processing, nor can it become an independent volume.

You can immediately retake a full-sized or space-optimized instant snapshot at any
time by using the vxsnap refresh command. If a fully synchronized instant snapshot
is required, the new resynchronization must first complete.

604Administering volume snapshots
Creating instant snapshots

To create instant snapshots of volume sets, use volume set names in place of
volume names in the vxsnap command.

See “Creating instant snapshots of volume sets” on page 622.

When using the vxsnap prepare or vxassist make commands to make a volume
ready for instant snapshot operations, if the specified region size exceeds half the
value of the tunable voliomem_maxpool_sz , the operation succeeds but gives a
warning such as the following (for a system where voliomem_maxpool_sz is set to
12MB):

VxVM vxassist WARNING V-5-1-0 Specified regionsize is

larger than the limit on the system

(voliomem_maxpool_sz/2=6144k).

If this message is displayed, vxsnap make, refresh and restore operations on
such volumes fail as they might potentially hang the system. Such volumes can be
used only for break-off snapshot operations using the reattach and make operations.

To make the volumes usable for instant snapshot operations, use vxsnap unprepare

on the volume, and then use vxsnap prepare to re-prepare the volume with a
region size that is less than half the size of voliomem_maxpool_sz (in this example,
1MB):

vxsnap -g mydg -f unprepare vol1

vxsnap -g mydg prepare vol1 regionsize=1M

See “Creating instant snapshots of volume sets” on page 622.

See “Creating and managing space-optimized instant snapshots” on page 611.

See “Creating and managing full-sized instant snapshots” on page 614.

See “Creating and managing third-mirror break-off snapshots” on page 616.

See “Creating and managing linked break-off snapshot volumes” on page 619.

Adding an instant snap DCO and DCO volume
To prepare a volume for instant snapshots, an instant snap Data Change Object
(DCO) and DCO volume must be associated with that volume. This procedure also
enables Persistent FastResync on the volume.

The following procedure is required only if the volume does not have an instant
snap DCO volume.

By default, volumes on thin provisioning LUNs are created with an instant snap
DCO volume.

605Administering volume snapshots
Creating instant snapshots

To add an instant snap DCO and DCO volume

1 Verify that the volume has an instant snap data change object (DCO) and DCO
volume, and that FastResync is enabled on the volume:

vxprint -g volumedg -F%instant volume

vxprint -g volumedg -F%fastresync volume

If both commands return a value of on, skip to step 3. Otherwise continue with
step 2.

2 To prepare a volume for instant snapshots, use the following command:

vxsnap [-g diskgroup] prepare volume [regionsize=size] \

[ndcomirs=number] [alloc=storage_attributes]

Run the vxsnap prepare command on a volume only if it does not have an
instant snap DCO volume.

For example, to prepare the volume, myvol, in the disk group, mydg, use the
following command:

vxsnap -g mydg prepare myvol regionsize=128k ndcomirs=2 \

alloc=mydg10,mydg11

This example creates a DCO object and redundant DCO volume with two
plexes located on disks mydg10 and mydg11, and associates them with myvol.
The region size is also increased to 128KB from the default size of 64KB. The
region size must be a power of 2, and be greater than or equal to 16KB. A
smaller value requires more disk space for the change maps, but the finer
granularity provides faster resynchronization.

3 If you need several space-optimized instant snapshots for the volumes in a
disk group, you may find it convenient to create a single shared cache object
in the disk group rather than a separate cache object for each snapshot.

See “Creating a shared cache object” on page 607.

For full-sized instant snapshots and linked break-off snapshots, you must
prepare a volume that is to be used as the snapshot volume. This volume must
be the same size as the data volume for which the snapshot is being created,
and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off
snapshot” on page 609.

606Administering volume snapshots
Creating instant snapshots

Creating a shared cache object
If you need several space-optimized instant snapshots for the volumes in a disk
group, you can create a single shared cache object in the disk group rather than a
separate cache object for each snapshot.

To create a shared cache object

1 Decide on the following characteristics that you want to allocate to the cache
volume that underlies the cache object:

■ The cache volume size should be sufficient to record changes to the parent
volumes during the interval between snapshot refreshes. A suggested value
is 10% of the total size of the parent volumes for a refresh interval of 24
hours.

■ The cache volume can be mirrored for redundancy.

■ If the cache volume is mirrored, space is required on at least as many disks
as it has mirrors. These disks should not be shared with the disks used for
the parent volumes. The disks should not be shared with disks used by
critical volumes to avoid impacting I/O performance for critical volumes, or
hindering disk group split and join operations.

2 Having decided on its characteristics, use the vxassist command to create
the cache volume. The following example creates a mirrored cache volume,
cachevol, with size 1GB in the disk group, mydg, on the disks mydg16 and
mydg17:

vxassist -g mydg make cachevol 1g layout=mirror \

init=active mydg16 mydg17

The attribute init=active makes the cache volume immediately available for
use.

607Administering volume snapshots
Creating instant snapshots

3 Use the vxmake cache command to create a cache object on top of the cache
volume that you created in the previous step:

vxmake [-g diskgroup] cache cache_object \

cachevolname=volume [regionsize=size] [autogrow=on] \

[highwatermark=hwmk] [autogrowby=agbvalue] \

[maxautogrow=maxagbvalue]]

If the region size, regionsize, is specified, it must be a power of 2, and be
greater than or equal to 16KB (16k). If not specified, the region size of the
cache is set to 64KB.

All space-optimized snapshots that share the cache must have a region size
that is equal to or an integer multiple of the region size set on the cache.
Snapshot creation also fails if the original volume’s region size is smaller than
the cache’s region size.

If the region size of a space-optimized snapshot differs from the region size of
the cache, this can degrade the system’s performance compared to the case
where the region sizes are the same.

To prevent the cache from growing automatically, specify autogrow=off. By
default, autogrow=on.

In the following example, the cache object, cobjmydg, is created over the cache
volume, cachevol, the region size of the cache is set to 32KB, and the autogrow

feature is enabled:

vxmake -g mydg cache cobjmydg cachevolname=cachevol \

regionsize=32k autogrow=on

4 Enable the cache object using the following command:

vxcache [-g diskgroup] start cache_object

For example to start the cache object, cobjmydg:

vxcache -g mydg start cobjmydg

See “Removing a cache” on page 636.

608Administering volume snapshots
Creating instant snapshots

Creating a volume for use as a full-sized instant or linked
break-off snapshot
To create an empty volume for use by a full-sized instant snapshot or a linked
break-off snapshot

1 Use the vxprint command on the original volume to find the required size for
the snapshot volume.

LEN=`vxprint [-g diskgroup] -F%len volume`

The command as shown assumes a Bourne-type shell such as sh, ksh or bash.
You may need to modify the command for other shells such as csh or tcsh.

2 Use the vxprint command on the original volume to discover the name of its
DCO:

DCONAME=`vxprint [-g diskgroup] -F%dco_name volume`

609Administering volume snapshots
Creating instant snapshots

3 Use the vxprint command on the DCO to discover its region size (in blocks):

RSZ=`vxprint [-g diskgroup] -F%regionsz $DCONAME`

4 Use the vxassist command to create a volume, snapvol, of the required size
and redundancy, together with an instant snap DCO volume with the correct
region size:

vxassist [-g diskgroup] make snapvol $LEN \

[layout=mirror nmirror=number] logtype=dco drl=off \

dcoversion=20 [ndcomirror=number] regionsz=$RSZ \

init=active [storage_attributes]

Storage attributes give you control over the devices, including disks and
controllers, which vxassist uses to configure a volume.

See “Creating a volume on specific disks” on page 226.

Specify the same number of DCO mirrors (ndcomirror) as the number of
mirrors in the volume (nmirror). The init=active attribute makes the volume
available immediately. You can use storage attributes to specify which disks
should be used for the volume.

As an alternative to creating the snapshot volume and its DCO volume in a
single step, you can first create the volume, and then prepare it for instant
snapshot operations as shown here:

vxassist [-g diskgroup] make snapvol $LEN \

[layout=mirror nmirror=number] init=active \

[storage_attributes]

vxsnap [-g diskgroup] prepare snapvol [ndcomirs=number] \

regionsize=$RSZ []storage_attributes

Upgrading the instant snap Data Change Objects (DCOs)
and DCO volumes for a VxVM volume
Instant snap DCOs, formerly known as version 20 DCOs, support the creation of
instant snapshots for VxVM volumes. Upgrade the instant snap DCOS and DCO
volumes to ensure compatability with the latest version of VxVM. The upgrade
operation can be performed while the volumes are online.

The upgrade operation does not support upgrade from version 0 DCOs.

610Administering volume snapshots
Creating instant snapshots

To upgrade the instant snap DCOs for all volumes in the disk group

1 Make sure that the disk group is at least version 180. To upgrade the disk
group:

vxdg upgrade diskgroup

2 Use the following command to upgrade the instant snap DCOs for all volumes
in the disk group:

vxsnap -g diskgroup upgradeall

Where:diskgroup is the disk group that contains the volumes to be upgraded.

For additional options to the upgradeall operation, see the vxsnap(1M) manual
page.

To upgrade the instant snap DCOs for specified volumes

1 Make sure that the disk group is at least version 180. To upgrade the disk
group:

vxdg upgrade diskgroup

2 To upgrade the DCOs, specify one or more volumes or volume sets to the
following command:

vxsnap [-g diskgroup] upgrade

[volume1|volset1][volume2|volset2...]

Where:diskgroup is the disk group that contains the volumes to be upgraded.

For additional options to the upgrade operation, see the vxsnap(1M) manual
page.

Creating and managing space-optimized instant snapshots
Space-optimized instant snapshots are not suitable for write-intensive volumes
(such as for database redo logs) because the copy-on-write mechanism may
degrade performance.

To split the volume and snapshot into separate disk groups (for example, to perform
off-host processing), you must use a fully synchronized full-sized instant, third-mirror
break-off or linked break-off snapshot (which do not require a cache object). You
cannot use a space-optimized instant snapshot.

Creation of space-optimized snapshots that use a shared cache fails if the region
size specified for the volume is smaller than the region size set on the cache.

611Administering volume snapshots
Creating instant snapshots

If the region size of a space-optimized snapshot differs from the region size of the
cache, this can degrade the system’s performance compared to the case where
the region sizes are the same.

See “Creating a shared cache object” on page 607.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a space-optimized instant snapshot

1 Use the vxsnap make command to create a space-optimized instant snapshot.
This snapshot can be created by using an existing cache object in the disk
group, or a new cache object can be created.

■ To create a space-optimized instant snapshot, snapvol, that uses a named
shared cache object:

vxsnap [-g diskgroup] make source=vol/newvol=snapvol\

/cache=cacheobject [alloc=storage_attributes]

For example, to create the space-optimized instant snapshot, snap3myvol,
of the volume, myvol, in the disk group, mydg, on the disk mydg14, and which
uses the shared cache object, cobjmydg, use the following command:

vxsnap -g mydg make source=myvol/newvol=snap3myvol\

/cache=cobjmydg alloc=mydg14

The DCO is created on the specified allocation.

■ To create a space-optimized instant snapshot, snapvol, and also create a
cache object for it to use:

vxsnap [-g diskgroup] make source=vol/newvol=snapvol\

[/cachesize=size][/autogrow=yes][/ncachemirror=number]\

[alloc=storage_attributes]

The cachesize attribute determines the size of the cache relative to the
size of the volume. The autogrow attribute determines whether VxVM will
automatically enlarge the cache if it is in danger of overflowing. By default,
autogrow=on and the cache is automatically grown.
If autogrow is enabled, but the cache cannot be grown, VxVM disables the
oldest and largest snapshot that is using the same cache, and releases its
cache space for use.

612Administering volume snapshots
Creating instant snapshots

The ncachemirror attribute specifies the number of mirrors to create in the
cache volume. For backup purposes, the default value of 1 should be
sufficient.
For example, to create the space-optimized instant snapshot, snap4myvol,
of the volume, myvol, in the disk group, mydg, on the disk mydg15, and which
uses a newly allocated cache object that is 1GB in size, but which can
automatically grow in size, use the following command:

vxsnap -g mydg make source=myvol/new=snap4myvol\

/cachesize=1g/autogrow=yes alloc=mydg15

If a cache is created implicitly by specifying cachesize, and ncachemirror

is specified to be greater than 1, a DCO is attached to the cache volume
to enable dirty region logging (DRL). DRL allows fast recovery of the cache
backing store after a system crash. The DCO is allocated on the same disks
as those that are occupied by the DCO of the source volume. This is done
to allow the cache and the source volume to remain in the same disk group
for disk group move, split and join operations.

2 Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run fsck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

3 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

4 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 626.

■ Restore the contents of the original volume from the snapshot volume. The
space-optimized instant snapshot remains intact at the end of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 628.

■ Destroy the snapshot.
See “Removing an instant snapshot” on page 629.

613Administering volume snapshots
Creating instant snapshots

Creating and managing full-sized instant snapshots
Full-sized instant snapshots are not suitable for write-intensive volumes (such as
for database redo logs) because the copy-on-write mechanism may degrade the
performance of the volume.

For full-sized instant snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 609.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

To create and manage a full-sized instant snapshot

1 To create a full-sized instant snapshot, use the following form of the vxsnap

make command:

vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\

[/snapdg=snapdiskgroup] [/syncing=off]

The command specifies the volume, snapvol, that you prepared earlier.

For example, to use the prepared volume, snap1myvol, as the snapshot for
the volume, myvol, in the disk group, mydg, use the following command:

vxsnap -g mydg make source=myvol/snapvol=snap1myvol

For full-sized instant snapshots that are created from an empty volume,
background synchronization is enabled by default (equivalent to specifying the
syncing=on attribute). To move a snapshot into a separate disk group, or to
turn it into an independent volume, you must wait for its contents to be
synchronized with those of its parent volume.

You can use the vxsnap syncwait command to wait for the synchronization
of the snapshot volume to be completed, as shown here:

vxsnap [-g diskgroup] syncwait snapvol

For example, you would use the following command to wait for synchronization
to finish on the snapshot volume, snap2myvol:

vxsnap -g mydg syncwait snap2myvol

614Administering volume snapshots
Creating instant snapshots

This command exits (with a return code of zero) when synchronization of the
snapshot volume is complete. The snapshot volume may then be moved to
another disk group or turned into an independent volume.

See “Controlling instant snapshot synchronization” on page 632.

If required, you can use the following command to test if the synchronization
of a volume is complete:

vxprint [-g diskgroup] -F%incomplete snapvol

This command returns the value off if synchronization of the volume, snapvol,
is complete; otherwise, it returns the value on.

You can also use the vxsnap print command to check on the progress of
synchronization.

See “Displaying snapshot information” on page 644.

If you do not want to move the snapshot into a separate disk group, or to turn
it into an independent volume, specify the syncing=off attribute. This avoids
unnecessary system overhead. For example, to turn off synchronization when
creating the snapshot of the volume, myvol, you would use the following form
of the vxsnap make command:

vxsnap -g mydg make source=myvol/snapvol=snap1myvol\

/syncing=off

2 Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run fsck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

3 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

4 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 626.

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.

615Administering volume snapshots
Creating instant snapshots

See “Reattaching an instant full-sized or plex break-off snapshot”
on page 626.

■ Restore the contents of the original volume from the snapshot volume. You
can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 628.

■ Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 628.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 629.

Creating and managing third-mirror break-off snapshots
Break-off snapshots are suitable for write-intensive volumes, such as database
redo logs.

To turn one or more existing plexes in a volume into a break-off instant snapshot
volume, the volume must be a non-layered volume with a mirror or mirror-stripe
layout, or a RAID-5 volume that you have converted to a special layered volume
and then mirrored. The plexes in a volume with a stripe-mirror layout are mirrored
at the subvolume level, and cannot be broken off.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

616Administering volume snapshots
Creating instant snapshots

To create and manage a third-mirror break-off snapshot

1 To create the snapshot, you can either take some of the existing ACTIVE plexes
in the volume, or you can use the following command to add new snapshot
mirrors to the volume:

vxsnap [-b] [-g diskgroup] addmir volume [nmirror=N] \

[alloc=storage_attributes]

By default, the vxsnap addmir command adds one snapshot mirror to a volume
unless you use the nmirror attribute to specify a different number of mirrors.
The mirrors remain in the SNAPATT state until they are fully synchronized. The
-b option can be used to perform the synchronization in the background. Once
synchronized, the mirrors are placed in the SNAPDONE state.

For example, the following command adds 2 mirrors to the volume, vol1, on
disks mydg10 and mydg11:

vxsnap -g mydg addmir vol1 nmirror=2 alloc=mydg10,mydg11

If you specify the -b option to the vxsnap addmir command, you can use the
vxsnap snapwait command to wait for synchronization of the snapshot plexes
to complete, as shown in this example:

vxsnap -g mydg snapwait vol1 nmirror=2

617Administering volume snapshots
Creating instant snapshots

2 To create a third-mirror break-off snapshot, use the following form of the vxsnap

make command.

vxsnap [-g diskgroup] make source=volume[/newvol=snapvol]\

{/plex=plex1[,plex2,...]|/nmirror=number]}

Either of the following attributes may be specified to create the new snapshot
volume, snapvol, by breaking off one or more existing plexes in the original
volume:

Specifies the plexes in the existing volume that are to be broken
off.

plex

Specifies how many plexes are to be broken off. This attribute can
only be used with plexes that are in the SNAPDONE state. (Such
plexes could have been added to the volume by using the vxsnap
addmir command.)

nmirror

Snapshots that are created from one or more ACTIVE or SNAPDONE plexes in
the volume are already synchronized by definition.

For backup purposes, a snapshot volume with one plex should be sufficient.

For example, to create the instant snapshot volume, snap2myvol, of the volume,
myvol, in the disk group, mydg, from a single existing plex in the volume, use
the following command:

vxsnap -g mydg make source=myvol/newvol=snap2myvol/nmirror=1

The next example shows how to create a mirrored snapshot from two existing
plexes in the volume:

vxsnap -g mydg make source=myvol/newvol=snap2myvol/plex=myvol-03,myvol-04

3 Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run fsck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

4 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

5 You now have the following options:

618Administering volume snapshots
Creating instant snapshots

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 626.

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching an instant full-sized or plex break-off snapshot”
on page 626.

■ Restore the contents of the original volume from the snapshot volume. You
can choose whether none, a subset, or all of the plexes of the snapshot
volume are returned to the original volume as a result of the operation.
See “Restoring a volume from an instant space-optimized snapshot”
on page 628.

■ Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 628.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 629.

Creating and managing linked break-off snapshot volumes
Linked break-off snapshots are suitable for write-intensive volumes. Specifically,
they are used for off-host processing, because the snapshot could be in a different
disk group to start with and could avoid disk group split/join operations

For linked break-off snapshots, you must prepare a volume that is to be used as
the snapshot volume. This must be the same size as the volume for which the
snapshot is being created, and it must also have the same region size.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 609.

The attributes for a snapshot are specified as a tuple to the vxsnap make command.
This command accepts multiple tuples. One tuple is required for each snapshot
that is being created. Each element of a tuple is separated from the next by a slash
character (/). Tuples are separated by white space.

619Administering volume snapshots
Creating instant snapshots

To create and manage a linked break-off snapshot

1 Use the following command to link the prepared snapshot volume, snapvol, to
the data volume:

vxsnap [-g diskgroup] [-b] addmir volume mirvol=snapvol \

[mirdg=snapdg]

The optional mirdg attribute can be used to specify the snapshot volume’s
current disk group, snapdg. The -b option can be used to perform the
synchronization in the background. If the -b option is not specified, the
command does not return until the link becomes ACTIVE.

For example, the following command links the prepared volume, prepsnap, in
the disk group, mysnapdg, to the volume, vol1, in the disk group, mydg:

vxsnap -g mydg -b addmir vol1 mirvol=prepsnap mirdg=mysnapdg

If the -b option is specified, you can use the vxsnap snapwait command to
wait for the synchronization of the linked snapshot volume to complete, as
shown in this example:

vxsnap -g mydg snapwait vol1 mirvol=prepsnap mirdg=mysnapvoldg

2 To create a linked break-off snapshot, use the following form of the vxsnap

make command.

vxsnap [-g diskgroup] make source=volume/snapvol=snapvol\

[/snapdg=snapdiskgroup]

The snapdg attribute must be used to specify the snapshot volume’s disk group
if this is different from that of the data volume.

For example, to use the prepared volume, prepsnap, as the snapshot for the
volume, vol1, in the disk group, mydg, use the following command:

vxsnap -g mydg make source=vol1/snapvol=prepsnap/snapdg=mysnapdg

3 Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run fsck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

620Administering volume snapshots
Creating instant snapshots

4 To backup the data in the snapshot, use an appropriate utility or operating
system command to copy the contents of the snapshot to tape, or to some
other backup medium.

5 You now have the following options:

■ Refresh the contents of the snapshot. This creates a new point-in-time
image of the original volume ready for another backup. If synchronization
was already in progress on the snapshot, this operation may result in large
portions of the snapshot having to be resynchronized.
See “Refreshing an instant space-optimized snapshot” on page 626.

■ Reattach the snapshot volume with the original volume.
See “Reattaching a linked break-off snapshot volume” on page 627.

■ Dissociate the snapshot volume entirely from the original volume. This may
be useful if you want to use the copy for other purposes such as testing or
report generation. If desired, you can delete the dissociated volume.
See “Dissociating an instant snapshot” on page 628.

■ If the snapshot is part of a snapshot hierarchy, you can also choose to split
this hierarchy from its parent volumes.
See “Splitting an instant snapshot hierarchy” on page 629.

Creating multiple instant snapshots
You can create multiple instant snapshots for all volumes that form a consistent
group. The vxsnap make command accepts multiple tuples that define the source
and snapshot volumes names as their arguments. For example, to create three
instant snapshots, each with the same redundancy, from specified storage, the
following form of the command can be used:

vxsnap [-g diskgroup] make source=vol1/snapvol=snapvol1\

source=vol2/snapvol=snapvol2 source=vol3/snapvol=snapvol3

The snapshot volumes (snapvol1, snapvol2 and so on) must have been prepared
in advance.

See “Creating a volume for use as a full-sized instant or linked break-off snapshot”
on page 609.

The specified source volumes (vol1, vol2 and so on) may be the same volume or
they can be different volumes.

If all the snapshots are to be space-optimized and to share the same cache, the
following form of the command can be used:

621Administering volume snapshots
Creating instant snapshots

vxsnap [-g diskgroup] make \

source=vol1/newvol=snapvol1/cache=cacheobj \

source=vol2/newvol=snapvol2/cache=cacheobj \

source=vol3/newvol=snapvol3/cache=cacheobj \

[alloc=storage_attributes]

The vxsnap make command also allows the snapshots to be of different types, have
different redundancy, and be configured from different storage, as shown here:

vxsnap [-g diskgroup] make source=vol1/snapvol=snapvol1 \

source=vol2[/newvol=snapvol2]/cache=cacheobj\

[/alloc=storage_attributes2][/nmirror=number2]

source=vol3[/newvol=snapvol3][/alloc=storage_attributes3]\

/nmirror=number3

In this example, snapvol1 is a full-sized snapshot that uses a prepared volume,
snapvol2 is a space-optimized snapshot that uses a prepared cache, and snapvol3
is a break-off full-sized snapshot that is formed from plexes of the original volume.

An example of where you might want to create mixed types of snapshots at the
same time is when taking snapshots of volumes containing database redo logs and
database tables:

vxsnap -g mydg make \

source=logv1/newvol=snplogv1/drl=sequential/nmirror=1 \

source=logv2/newvol=snplogv2/drl=sequential/nmirror=1 \

source=datav1/newvol=snpdatav1/cache=mydgcobj/drl=on \

source=datav2/newvol=snpdatav2/cache=mydgcobj/drl=on

In this example, sequential DRL is enabled for the snapshots of the redo log
volumes, and normal DRL is applied to the snapshots of the volumes that contain
the database tables. The two space-optimized snapshots are configured to share
the same cache object in the disk group. Also note that break-off snapshots are
used for the redo logs as such volumes are write intensive.

Creating instant snapshots of volume sets
Volume set names can be used in place of volume names with the following vxsnap

operations on instant snapshots: addmir, dis, make, prepare, reattach, refresh,
restore, rmmir, split, syncpause, syncresume, syncstart, syncstop, syncwait,
and unprepare.

The procedure for creating an instant snapshot of a volume set is the same as that
for a standalone volume. However, there are certain restrictions if a full-sized instant
snapshot is to be created from a prepared volume set. A full-sized instant snapshot

622Administering volume snapshots
Creating instant snapshots

of a volume set must itself be a volume set with the same number of volumes, and
the same volume sizes and index numbers as the parent. For example, if a volume
set contains three volumes with sizes 1GB, 2GB and 3GB, and indexes 0, 1 and 2
respectively, then the snapshot volume set must have three volumes with the same
sizes matched to the same set of index numbers. The corresponding volumes in
the parent and snapshot volume sets are also subject to the same restrictions as
apply between standalone volumes and their snapshots.

You can use the vxvset list command to verify that the volume sets have identical
characteristics as shown in this example:

vxvset -g mydg list vset1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol_0 0 204800 ENABLED -

vol_1 1 409600 ENABLED -

vol_2 2 614400 ENABLED -

vxvset -g mydg list snapvset1

VOLUME INDEX LENGTH KSTATE CONTEXT

svol_0 0 204800 ENABLED -

svol_1 1 409600 ENABLED -

svol_2 2 614400 ENABLED -

A full-sized instant snapshot of a volume set can be created using a prepared
volume set in which each volume is the same size as the corresponding volume in
the parent volume set. Alternatively, you can use the nmirrors attribute to specify
the number of plexes that are to be broken off provided that sufficient plexes exist
for each volume in the volume set.

The following example shows how to prepare a source volume set, vset1, and an
identical volume set, snapvset1, which is then used to create the snapshot:

vxsnap -g mydg prepare vset1

vxsnap -g mydg prepare snapvset1

vxsnap -g mydg make source=vset1/snapvol=snapvset1

To create a full-sized third-mirror break-off snapshot, you must ensure that each
volume in the source volume set contains sufficient plexes. The following example
shows how to achieve this by using the vxsnap command to add the required
number of plexes before breaking off the snapshot:

623Administering volume snapshots
Creating instant snapshots

vxsnap -g mydg prepare vset2

vxsnap -g mydg addmir vset2 nmirror=1

vxsnap -g mydg make source=vset2/newvol=snapvset2/nmirror=1

See “Adding snapshot mirrors to a volume” on page 624.

To create a space-optimized instant snapshot of a volume set, the commands are
again identical to those for a standalone volume as shown in these examples:

vxsnap -g mydg prepare vset3

vxsnap -g mydg make source=vset3/newvol=snapvset3/cachesize=20m

vxsnap -g mydg prepare vset4

vxsnap -g mydg make source=vset4/newvol=snapvset4/cache=mycobj

Here a new cache object is created for the volume set, vset3, and an existing cache
object, mycobj, is used for vset4.

Adding snapshot mirrors to a volume
If you are going to create a full-sized break-off snapshot volume, you can use the
following command to add new snapshot mirrors to a volume:

vxsnap [-b] [-g diskgroup] addmir volume|volume_set \

[nmirror=N] [alloc=storage_attributes]

The volume must have been prepared using the vxsnap prepare command.

If a volume set name is specified instead of a volume, the specified number of
plexes is added to each volume in the volume set.

By default, the vxsnap addmir command adds one snapshot mirror to a volume
unless you use the nmirror attribute to specify a different number of mirrors. The
mirrors remain in the SNAPATT state until they are fully synchronized. The -b option
can be used to perform the synchronization in the background. Once synchronized,
the mirrors are placed in the SNAPDONE state.

For example, the following command adds 2 mirrors to the volume, vol1, on disks
mydg10 and mydg11:

vxsnap -g mydg addmir vol1 nmirror=2 alloc=mydg10,mydg11

This command is similar in usage to the vxassist snapstart command, and
supports the traditional third-mirror break-off snapshot model. As such, it does not
provide an instant snapshot capability.

624Administering volume snapshots
Creating instant snapshots

Once you have added one or more snapshot mirrors to a volume, you can use the
vxsnap make command with either the nmirror attribute or the plex attribute to
create the snapshot volumes.

Removing a snapshot mirror
To remove a single snapshot mirror from a volume, use this command:

vxsnap [-g diskgroup] rmmir volume|volume_set

For example, the following command removes a snapshot mirror from the volume,
vol1:

vxsnap -g mydg rmmir vol1

This command is similar in usage to the vxassist snapabort command.

If a volume set name is specified instead of a volume, a mirror is removed from
each volume in the volume set.

Removing a linked break-off snapshot volume
To remove a linked break-off snapshot volume from a volume, use this command:

vxsnap [-g diskgroup] rmmir volume|volume_set mirvol=snapvol \

[mirdg=snapdiskgroup]

The mirvol and optional mirdg attributes specify the snapshot volume, snapvol,
and its disk group, snapdiskgroup. For example, the following command removes
a linked snapshot volume, prepsnap, from the volume, vol1:

vxsnap -g mydg rmmir vol1 mirvol=prepsnap mirdg=mysnapdg

Adding a snapshot to a cascaded snapshot hierarchy
To create a snapshot and push it onto a snapshot hierarchy between the original
volume and an existing snapshot volume, specify the name of the existing snapshot
volume as the value of the infrontof attribute to the vxsnap make command. The
following example shows how to place the space-optimized snapshot, thurs_bu,
of the volume, dbvol, in front of the earlier snapshot, wed_bu:

vxsnap -g dbdg make source=dbvol/newvol=thurs_bu/\

infrontof=wed_bu/cache=dbdgcache

Similarly, the next snapshot that is taken, fri_bu, is placed in front of thurs_bu:

625Administering volume snapshots
Creating instant snapshots

vxsnap -g dbdg make source=dbvol/newvol=fri_bu/\

infrontof=thurs_bu/cache=dbdgcache

See “Controlling instant snapshot synchronization” on page 632.

Refreshing an instant space-optimized snapshot
Refreshing an instant snapshot replaces it with another point-in-time copy of a
parent volume. To refresh one or more snapshots and make them immediately
available for use, use the following command:

vxsnap [-g diskgroup] refresh snapvolume|snapvolume_set \

[source=volume|volume_set] [snapvol2 [source=vol2]...] \

If the source volume is not specified, the immediate parent of the snapshot is used.

Warning: The snapshot that is being refreshed must not be open to any application.
For example, any file system configured on the volume must first be unmounted.

Reattaching an instant full-sized or plex break-off snapshot
Using the following command, some or all plexes of an instant snapshot may be
reattached to the specified original volume, or to a source volume in the snapshot
hierarchy above the snapshot volume:

vxsnap [-g diskgroup] reattach snapvolume|snapvolume_set \

source=volume|volume_set [nmirror=number]

By default, all the plexes are reattached, which results in the removal of the
snapshot. If required, the number of plexes to be reattached may be specified as
the value assigned to the nmirror attribute.

Warning: The snapshot that is being reattached must not be open to any application.
For example, any file system configured on the snapshot volume must first be
unmounted.

It is possible to reattach a volume to an unrelated volume provided that their volume
sizes and region sizes are compatible.

For example the following command reattaches one plex from the snapshot volume,
snapmyvol, to the volume, myvol:

vxsnap -g mydg reattach snapmyvol source=myvol nmirror=1

626Administering volume snapshots
Creating instant snapshots

While the reattached plexes are being resynchronized from the data in the parent
volume, they remain in the SNAPTMP state. After resynchronization is complete, the
plexes are placed in the SNAPDONE state. You can use the vxsnap snapwait

command (but not vxsnap syncwait) to wait for the resynchronization of the
reattached plexes to complete, as shown here:

vxsnap -g mydg snapwait myvol nmirror=1

If the volume and its snapshot have both been resized (to an identical smaller or
larger size) before performing the reattachment, a fast resynchronization can still
be performed. A full resynchronization is not required. Instant snap DCO volumes
are resized proportionately when the associated data volume is resized. For version
0 DCO volumes, the FastResync maps stay the same size, but the region size is
recalculated, and the locations of the dirty bits in the existing maps are adjusted.
In both cases, new regions are marked as dirty in the maps.

Reattaching a linked break-off snapshot volume
Unlike other types of snapshot, the reattachment operation for linked break-off
snapshot volumes does not return the plexes of the snapshot volume to the parent
volume. The link relationship is re-established that makes the snapshot volume a
mirror of the parent volume, and this allows the snapshot data to be resynchronized.

To reattach a linked break-off snapshot volume, use the following form of the vxsnap

reattach command:

vxsnap [-g snapdiskgroup] reattach snapvolume|snapvolume_set \

source=volume|volume_set [sourcedg=diskgroup]

The sourcedg attribute must be used to specify the data volume’s disk group if this
is different from the snapshot volume’s disk group, snapdiskgroup.

Warning: The snapshot that is being reattached must not be open to any application.
For example, any file system configured on the snapshot volume must first be
unmounted.

It is possible to reattach a volume to an unrelated volume provided that their sizes
and region sizes are compatible.

For example the following command reattaches the snapshot volume, prepsnap,
in the disk group, snapdg, to the volume, myvol, in the disk group, mydg:

vxsnap -g snapdg reattach prepsnap source=myvol sourcedg=mydg

627Administering volume snapshots
Creating instant snapshots

After resynchronization of the snapshot volume is complete, the link is placed in
the ACTIVE state. You can use the vxsnap snapwait command (but not vxsnap
syncwait) to wait for the resynchronization of the reattached volume to complete,
as shown here:

vxsnap -g snapdg snapwait myvol mirvol=prepsnap

Restoring a volume from an instant space-optimized snapshot
It may sometimes be desirable to reinstate the contents of a volume from a backup
or modified replica in a snapshot volume. The following command may be used to
restore one or more volumes from the specified snapshots:

vxsnap [-g diskgroup] restore volume|volume_set \

source=snapvolume|snapvolume_set \

[[volume2|volume_set2 \

source=snapvolume2|snapvolume_set2]...]\

[syncing=yes|no]

For a space-optimized instant snapshot, the cached data is used to recreate the
contents of the specified volume. The space-optimized instant snapshot remains
unchanged by the restore operation.

Warning: For this operation to succeed, the volume that is being restored and the
snapshot volume must not be open to any application. For example, any file systems
that are configured on either volume must first be unmounted.

It is not possible to restore a volume from an unrelated volume.

The following example demonstrates how to restore the volume, myvol, from the
space-optimized snapshot, snap3myvol.

vxsnap -g mydg restore myvol source=snap3myvol

Dissociating an instant snapshot
The following command breaks the association between a full-sized instant snapshot
volume, snapvol, and its parent volume, so that the snapshot may be used as an
independent volume:

vxsnap [-f] [-g diskgroup] dis snapvolume|snapvolume_set

This operation fails if the snapshot, snapvol, has unsynchronized snapshots. If this
happens, the dependent snapshots must be fully synchronized from snapvol. When

628Administering volume snapshots
Creating instant snapshots

no dependent snapshots remain, snapvol may be dissociated. The snapshot
hierarchy is then adopted by the parent volume of snapvol.

See “Controlling instant snapshot synchronization” on page 632.

See “Removing an instant snapshot” on page 629.

The following command dissociates the snapshot, snap2myvol, from its parent
volume:

vxsnap -g mydg dis snap2myvol

Warning: When applied to a volume set or to a component volume of a volume
set, this operation can result in inconsistencies in the snapshot hierarchy in the
case of a system crash or hardware failure. If the operation is applied to a volume
set, the -f (force) option must be specified.

Removing an instant snapshot
When you have dissociated a full-sized instant snapshot, you can use the vxedit

command to delete it altogether, as shown in this example:

vxedit -g mydg -r rm snap2myvol

You can also use this command to remove a space-optimized instant snapshot
from its cache.

See “Removing a cache” on page 636.

Splitting an instant snapshot hierarchy

Note: This operation is not supported for space-optimized instant snapshots.

The following command breaks the association between a snapshot hierarchy that
has the snapshot volume, snapvol, at its head, and its parent volume, so that the
snapshot hierarchy may be used independently of the parent volume:

vxsnap [-f] [-g diskgroup] split snapvolume|snapvolume_set

The topmost snapshot volume in the hierarchy must have been fully synchronized
for this command to succeed. Snapshots that are lower down in the hierarchy need
not have been fully resynchronized.

See “Controlling instant snapshot synchronization” on page 632.

629Administering volume snapshots
Creating instant snapshots

The following command splits the snapshot hierarchy under snap2myvol from its
parent volume:

vxsnap -g mydg split snap2myvol

Warning: When applied to a volume set or to a component volume of a volume
set, this operation can result in inconsistencies in the snapshot hierarchy in the
case of a system crash or hardware failure. If the operation is applied to a volume
set, the -f (force) option must be specified.

Displaying instant snapshot information
The vxsnap print command may be used to display information about the
snapshots that are associated with a volume.

vxsnap [-g diskgroup] print [vol]

This command shows the percentage progress of the synchronization of a snapshot
or volume. If no volume is specified, information about the snapshots for all the
volumes in a disk group is displayed. The following example shows a volume, vol1,
which has a full-sized snapshot, snapvol1 whose contents have not been
synchronized with vol1:

vxsnap -g mydg print

NAME SNAPOBJECT TYPE PARENT SNAPSHOT %DIRTY %VALID

vol1 -- volume -- -- -- 100

snapvol1_snp1 volume -- snapvol1 1.30 --

snapvol1 vol1_snp1 volume vol1 -- 1.30 1.30

The %DIRTY value for snapvol1 shows that its contents have changed by 1.30%
when compared with the contents of vol1. As snapvol1 has not been synchronized
with vol1, the %VALID value is the same as the %DIRTY value. If the snapshot were
partly synchronized, the %VALID value would lie between the %DIRTY value and
100%. If the snapshot were fully synchronized, the %VALID value would be 100%.
The snapshot could then be made independent or moved into another disk group.

Additional information about the snapshots of volumes and volume sets can be
obtained by using the -n option with the vxsnap print command:

vxsnap [-g diskgroup] -n [-l] [-v] [-x] print [vol]

Alternatively, you can use the vxsnap list command, which is an alias for the
vxsnap -n print command:

630Administering volume snapshots
Creating instant snapshots

vxsnap [-g diskgroup] [-l] [-v] [-x] list [vol]

The following output is an example of using this command on the disk group dg1:

vxsnap -g dg -vx list

NAME DG OBJTYPE SNAPTYPE PARENT PARENTDG SNAPDATE CHANGE_DATA SYNCED_DATA

vol dg1 vol - - - - - 10G (100%)

svol1 dg2 vol fullinst vol dg1 2006/2/1 12:29 20M (0.2%) 60M (0.6%)

svol2 dg1 vol mirbrk vol dg1 2006/2/1 12:29 120M (1.2%) 10G (100%)

svol3 dg2 vol volbrk vol dg1 2006/2/1 12:29 105M (1.1%) 10G (100%)

svol21 dg1 vol spaceopt svol2 dg1 2006/2/1 12:29 52M (0.5%) 52M (0.5%)

vol-02 dg1 plex snapmir vol dg1 - - 56M (0.6%)

mvol dg2 vol mirvol vol dg1 - - 58M (0.6%)

vset1 dg1 vset - - - - - 2G (100%)

v1 dg1 compvol - - - - - 1G (100%)

v2 dg1 compvol - - - - - 1G (100%)

svset1 dg1 vset mirbrk vset dg1 2006/2/1 12:29 1G (50%) 2G (100%)

sv1 dg1 compvol mirbrk v1 dg1 2006/2/1 12:29 512M (50%) 1G (100%)

sv2 dg1 compvol mirbrk v2 dg1 2006/2/1 12:29 512M (50%) 1G (100%)

vol-03 dg1 plex detmir vol dg1 - 20M (0.2%) -

mvol2 dg2 vol detvol vol dg1 - 20M (0.2%) -

This shows that the volume vol has three full-sized snapshots, svol1, svol2 and
svol3, which are of types full-sized instant (fullinst), mirror break-off (mirbrk)
and linked break-off (volbrk). It also has one snapshot plex (snapmir), vol-02,
and one linked mirror volume (mirvol), mvol. The snapshot svol2 itself has a
space-optimized instant snapshot (spaceopt), svol21. There is also a volume set,
vset1, with component volumes v1 and v2. This volume set has a mirror break-off
snapshot, svset1, with component volumes sv1 and sv2. The last two entries show
a detached plex, vol-03, and a detached mirror volume, mvol2, which have vol

as their parent volume. These snapshot objects may have become detached due
to an I/O error, or, in the case of the plex, by running the vxplex det command.

The CHANGE_DATA column shows the approximate difference between the current
contents of the snapshot and its parent volume. This corresponds to the amount
of data that would have to be resynchronized to make the contents the same again.

The SYNCED_DATA column shows the approximate progress of synchronization since
the snapshot was taken.

The -l option can be used to obtain a longer form of the output listing instead of
the tabular form.

The -x option expands the output to include the component volumes of volume
sets.

631Administering volume snapshots
Creating instant snapshots

See the vxsnap(1M) manual page for more information about using the vxsnap

print and vxsnap list commands.

Controlling instant snapshot synchronization
Synchronization of the contents of a snapshot with its original volume is not possible
for space-optimized instant snapshots.

By default, synchronization is enabled for the vxsnap reattach, refresh and
restore operations on instant snapshots. Otherwise, synchronization is disabled
unless you specify the syncing=yes attribute to the vxsnap command.

Table 23-1 shows the commands that are provided for controlling the synchronization
manually.

Table 23-1 Commands for controlling instant snapshot synchronization

DescriptionCommand

Pause synchronization of a
volume.

vxsnap [-g diskgroup] syncpause \
vol|vol_set

Resume synchronization of a
volume.

vxsnap [-g diskgroup] syncresume \

vol|vol_set

Start synchronization of a volume.
The -b option puts the operation
in the background.

vxsnap [-b] [-g diskgroup] syncstart \

vol|vol_set

Stop synchronization of a volume.vxsnap [-g diskgroup] syncstop \
vol|vol_set

Exit when synchronization of a
volume is complete. An error is
returned if the vol or vol_set is
invalid (for example, it is a
space-optimized snapshot), or if
the vol or vol_set is not being
synchronized.

Note: You cannot use this
command to wait for
synchronization of reattached
plexes to complete.

vxsnap [-g diskgroup] syncwait \
vol|vol_set

The commands that are shown in Table 23-1 cannot be used to control the
synchronization of linked break-off snapshots.

632Administering volume snapshots
Creating instant snapshots

The vxsnap snapwait command is provided to wait for the link between new linked
break-off snapshots to become ACTIVE, or for reattached snapshot plexes to reach
the SNAPDONE state following resynchronization.

See “Creating and managing linked break-off snapshot volumes” on page 619.

See “Reattaching an instant full-sized or plex break-off snapshot” on page 626.

See “Reattaching a linked break-off snapshot volume” on page 627.

Improving the performance of snapshot synchronization
The following optional arguments to the -o option are provided to help optimize the
performance of synchronization when using the make, refresh, restore and
syncstart operations with full-sized instant snapshots:

Specifies the size of each I/O request that is used when
synchronizing the regions of a volume. Specifying a larger size
causes synchronization to complete sooner, but with greater impact
on the performance of other processes that are accessing the
volume. The default size of 1m (1MB) is suggested as the minimum
value for high-performance array and controller hardware. The
specified value is rounded to a multiple of the volume’s region size.

iosize=size

Specifies the delay in milliseconds between synchronizing
successive sets of regions as specified by the value of iosize.
This can be used to change the impact of synchronization on system
performance. The default value of iodelay is 0 milliseconds (no
delay). Increasing this value slows down synchronization, and
reduces the competition for I/O bandwidth with other processes
that may be accessing the volume.

slow=iodelay

Options may be combined as shown in the following examples:

vxsnap -g mydg -o iosize=2m,slow=100 make \

source=myvol/snapvol=snap2myvol/syncing=on

vxsnap -g mydg -o iosize=10m,slow=250 syncstart snap2myvol

Note: The iosize and slow parameters are not supported for space-optimized
snapshots.

Listing the snapshots created on a cache
To list the space-optimized instant snapshots that have been created on a cache
object, use the following command:

633Administering volume snapshots
Creating instant snapshots

vxcache [-g diskgroup] listvol cache_object

The snapshot names are printed as a space-separated list ordered by timestamp.
If two or more snapshots have the same timestamp, these snapshots are sorted in
order of decreasing size.

Tuning the autogrow attributes of a cache
The highwatermark, autogrowby and maxautogrow attributes determine how the
VxVM cache daemon (vxcached) maintains the cache if the autogrow feature has
been enabled and vxcached is running:

■ When cache usage reaches the high watermark value, highwatermark (default
value is 90 percent), vxcached grows the size of the cache volume by the value
of autogrowby (default value is 20% of the size of the cache volume in blocks).
The new required cache size cannot exceed the value of maxautogrow (default
value is twice the size of the cache volume in blocks).

■ When cache usage reaches the high watermark value, and the new required
cache size would exceed the value of maxautogrow, vxcached deletes the oldest
snapshot in the cache. If there are several snapshots with the same age, the
largest of these is deleted.

If the autogrow feature has been disabled:

■ When cache usage reaches the high watermark value, vxcached deletes the
oldest snapshot in the cache. If there are several snapshots with the same age,
the largest of these is deleted. If there is only a single snapshot, this snapshot
is detached and marked as invalid.

Note: The vxcached daemon does not remove snapshots that are currently open,
and it does not remove the last or only snapshot in the cache.

If the cache space becomes exhausted, the snapshot is detached and marked as
invalid. If this happens, the snapshot is unrecoverable and must be removed.
Enabling the autogrow feature on the cache helps to avoid this situation occurring.
However, for very small caches (of the order of a few megabytes), it is possible for
the cache to become exhausted before the system has time to respond and grow
the cache. In such cases, you can increase the size of the cache manually.

Alternatively, you can use the vxcache set command to reduce the value of
highwatermark as shown in this example:

vxcache -g mydg set highwatermark=60 cobjmydg

634Administering volume snapshots
Creating instant snapshots

You can use the maxautogrow attribute to limit the maximum size to which a cache
can grow. To estimate this size, consider how much the contents of each source
volume are likely to change between snapshot refreshes, and allow some additional
space for contingency.

If necessary, you can use the vxcache set command to change other autogrow
attribute values for a cache.

See the vxcache(1M) manual page.

Monitoring and displaying cache usage
You can use the vxcache stat command to display cache usage. For example,
to see how much space is used and how much remains available in all cache objects
in the diskgroup mydg, enter the following:

vxcache -g mydg stat

Growing and shrinking a cache
You can use the vxcache command to increase the size of the cache volume that
is associated with a cache object:

vxcache [-g diskgroup] growcacheto cache_object

size

For example, to increase the size of the cache volume associated with the cache
object, mycache, to 2GB, you would use the following command:

vxcache -g mydg growcacheto mycache 2g

To grow a cache by a specified amount, use the following form of the command
shown here:

vxcache [-g diskgroup] growcacheby cache_object

size

For example, the following command increases the size of mycache by 1GB:

vxcache -g mydg growcacheby mycache 1g

You can similarly use the shrinkcacheby and shrinkcacheto operations to reduce
the size of a cache.

See the vxcache(1M) manual page.

635Administering volume snapshots
Creating instant snapshots

Removing a cache
To remove a cache completely, including the cache object, its cache volume
and all space-optimized snapshots that use the cache:

1 Run the following command to find out the names of the top-level snapshot
volumes that are configured on the cache object:

vxprint -g diskgroup -vne \

"v_plex.pl_subdisk.sd_dm_name ~ /cache_object/"

where cache_object is the name of the cache object.

2 Remove all the top-level snapshots and their dependent snapshots (this can
be done with a single command):

vxedit -g diskgroup -r rm snapvol ...

where snapvol is the name of a top-level snapshot volume.

3 Stop the cache object:

vxcache -g diskgroup stop cache_object

4 Finally, remove the cache object and its cache volume:

vxedit -g diskgroup -r rm cache_object

Creating traditional third-mirror break-off
snapshots

VxVM provides third-mirror break-off snapshot images of volume devices using
vxassist and other commands.

To enhance the efficiency and usability of volume snapshots, turn on FastResync.

If Persistent FastResync is required, you must associate a version 0 DCO with the
volume.

See “Adding a version 0 DCO and DCO volume” on page 645.

A plex is required that is large enough to store the complete contents of the volume.
Alternatively, you can use space-optimized instant snapshots.

The recommended approach to performing volume backup from the command line,
or from a script, is to use the vxsnap command. The vxassist snapstart,

snapwait, and snapshot commands are supported for backward compatibility.

636Administering volume snapshots
Creating traditional third-mirror break-off snapshots

The vxassist snapshot procedure consists of two steps:

■ Run vxassist snapstart to create a snapshot mirror.

■ Run vxassist snapshot to create a snapshot volume.

The vxassist snapstart step creates a write-only backup plex which gets attached
to and synchronized with the volume. When synchronized with the volume, the
backup plex is ready to be used as a snapshot mirror. The end of the update
procedure is indicated by the new snapshotmirror changing its state to SNAPDONE.
This change can be tracked by the vxassist snapwait task, which waits until at
least one of the mirrors changes its state to SNAPDONE. If the attach process fails,
the snapshot mirror is removed and its space is released.

Note: If the snapstart procedure is interrupted, the snapshot mirror is automatically
removed when the volume is started.

Once the snapshot mirror is synchronized, it continues being updated until it is
detached. You can then select a convenient time at which to create a snapshot

volume as an image of the existing volume. You can also ask users to refrain from
using the system during the brief time required to perform the snapshot (typically
less than a minute). The amount of time involved in creating the snapshot mirror
is long in contrast to the brief amount of time that it takes to create the snapshot

volume.

The online backup procedure is completed by running the vxassist snapshot

command on a volume with a SNAPDONE mirror. This task detaches the finished
snapshot (which becomes a normal mirror), creates a new normal volume and
attaches the snapshot mirror to the snapshot volume. The snapshot then becomes
a normal, functioning volume and the state of the snapshot is set to ACTIVE.

637Administering volume snapshots
Creating traditional third-mirror break-off snapshots

To back up a volume using the vxassist command

1 Create a snapshot mirror for a volume using the following command:

vxassist [-b] [-g diskgroup] snapstart [nmirror=N] volume

For example, to create a snapshot mirror of a volume called voldef, use the
following command:

vxassist [-g diskgroup] snapstart voldef

The vxassist snapstart task creates a write-only mirror, which is attached
to and synchronized from the volume to be backed up.

By default, VxVM attempts to avoid placing snapshot mirrors on a disk that
already holds any plexes of a data volume. However, this may be impossible
if insufficient space is available in the disk group. In this case, VxVM uses any
available space on other disks in the disk group. If the snapshot plexes are
placed on disks which are used to hold the plexes of other volumes, this may
cause problems when you subsequently attempt to move a snapshot volume
into another disk group.

See “Moving DCO volumes between disk groups” on page 857.

To override the default storage allocation policy, you can use storage attributes
to specify explicitly which disks to use for the snapshot plexes.

See “Creating a volume on specific disks” on page 226.

If you start vxassist snapstart in the background using the -b option, you
can use the vxassist snapwait command to wait for the creation of the mirror
to complete as shown here:

vxassist [-g diskgroup] snapwait volume

If vxassist snapstart is not run in the background, it does not exit until the
mirror has been synchronized with the volume. The mirror is then ready to be
used as a plex of a snapshot volume. While attached to the original volume,
its contents continue to be updated until you take the snapshot.

Use the nmirror attribute to create as many snapshot mirrors as you need for
the snapshot volume. For a backup, you should usually only require the default
of one.

It is also possible to make a snapshot plex from an existing plex in a volume.

See “Converting a plex into a snapshot plex” on page 640.

2 Choose a suitable time to create a snapshot. If possible, plan to take the
snapshot at a time when users are accessing the volume as little as possible.

638Administering volume snapshots
Creating traditional third-mirror break-off snapshots

3 Create a snapshot volume using the following command:

vxassist [-g diskgroup] snapshot [nmirror=N] volume snapshot

If required, use the nmirror attribute to specify the number of mirrors in the
snapshot volume.

For example, to create a snapshot of voldef, use the following command:

vxassist -g mydg snapshot voldef snapvoldef

The vxassist snapshot task detaches the finished snapshot mirror, creates
a new volume, and attaches the snapshot mirror to it. This step should only
take a few minutes. The snapshot volume, which reflects the original volume
at the time of the snapshot, is now available for backing up, while the original
volume continues to be available for applications and users.

If required, you can make snapshot volumes for several volumes in a disk
group at the same time.

See “Creating multiple snapshots with the vxassist command” on page 641.

4 Clean the temporary volume's contents using an appropriate utility such as
fsck for non-VxVM file systems and log replay for databases. Because VxVM
calls VxFS and places VxFS file systems in a constant state immediately before
taking a snapshot, it is not usually necessary to run fsck on a VxFS file system
on the temporary volume. If a VxFS file system contains a database, it will still
be necessary to perform database log replay.

5 If you require a backup of the data in the snapshot, use an appropriate utility
or operating system command to copy the contents of the snapshot to tape,
or to some other backup medium.

6 When the backup is complete, you have the following choices for what to do
with the snapshot volume:

■ Reattach some or all of the plexes of the snapshot volume with the original
volume.
See “Reattaching a snapshot volume” on page 642.

■ If FastResync was enabled on the volume before the snapshot was taken,
this speeds resynchronization of the snapshot plexes before the backup
cycle starts again at step 3.

■ Dissociate the snapshot volume entirely from the original volume
See “Dissociating a snapshot volume” on page 643.

■ This may be useful if you want to use the copy for other purposes such as
testing or report generation.

639Administering volume snapshots
Creating traditional third-mirror break-off snapshots

■ Remove the snapshot volume to save space with this command:

vxedit [-g diskgroup] -rf rm snapshot

Dissociating or removing the snapshot volume loses the advantage of fast
resynchronization if FastResync was enabled. If there are no further snapshot
plexes available, any subsequent snapshots that you take require another
complete copy of the original volume to be made.

Converting a plex into a snapshot plex
For a traditional, third-mirror break-off snapshot, you can convert an existing plex
in a volume into a snapshot plex. Symantec recommends using the instant snapshot
feature rather than converting a plex into a snapshot plex.

Note: A plex cannot be converted into a snapshot plex for layered volumes or for
any volume that has an associated instant snap DCO volume.

In some circumstances, you may find it more convenient to convert an existing plex
in a volume into a snapshot plex rather than running vxassist snapstart. For
example, you may want to do this if you are short of disk space for creating the
snapshot plex and the volume that you want to snapshot contains more than two
plexes.

The procedure can also be used to speed up the creation of a snapshot volume
when a mirrored volume is created with more than two plexes and init=active is
specified.

It is advisable to retain at least two plexes in a volume to maintain data redundancy.

To convert an existing plex into a snapshot plex for a volume on which Persistent
FastResync is enabled, use the following command:

vxplex [-g diskgroup] -o dcoplex=dcologplex convert \

state=SNAPDONE plex

dcologplex is the name of an existing DCO plex that is to be associated with the
new snapshot plex. You can use the vxprint command to find out the name of the
DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 645.

For example, to make a snapshot plex from the plex trivol-03 in the 3-plex volume
trivol, you would use the following command:

640Administering volume snapshots
Creating traditional third-mirror break-off snapshots

vxplex -o dcoplex=trivol_dco-03 convert state=SNAPDONE \

trivol-03

Here the DCO plex trivol_dco_03 is specified as the DCO plex for the new
snapshot plex.

To convert an existing plex into a snapshot plex in the SNAPDONE state for a
volume on which Non-Persistent FastResync is enabled, use the following command:

vxplex [-g diskgroup] convert state=SNAPDONE plex

A converted plex is in the SNAPDONE state, and can be used immediately to create
a snapshot volume.

Note: The last complete regular plex in a volume, an incomplete regular plex, or a
dirty region logging (DRL) log plex cannot be converted into a snapshot plex.

See “Third-mirror break-off snapshots” on page 578.

Creating multiple snapshots with the vxassist command
To make it easier to create snapshots of several volumes at the same time, the
snapshot option accepts more than one volume name as its argument, for example:

vxassist [-g diskgroup] snapshot volume1

volume2 ...

By default, the first snapshot volume is named SNAP-volume, and each subsequent
snapshot is named SNAPnumber-volume, where number is a unique serial number,
and volume is the name of the volume for which the snapshot is being taken. This
default pattern can be overridden by using the option -o name=pattern, as
described on the vxassist(1M) manual page. For example, the pattern SNAP%v-%d

reverses the order of the number and volume components in the name.

To snapshot all the volumes in a single disk group, specify the option -o allvols

to vxassist:

vxassist -g diskgroup -o allvols snapshot

This operation requires that all snapstart operations are complete on the volumes.
It fails if any of the volumes in the disk group do not have a complete snapshot plex
in the SNAPDONE state.

Note: The vxsnap command provides similiar functionality for creating multiple
snapshots.

641Administering volume snapshots
Creating traditional third-mirror break-off snapshots

Reattaching a snapshot volume
The snapback operation merges a snapshot copy of a volume with the original
volume. One or more snapshot plexes are detached from the snapshot volume and
re-attached to the original volume. The snapshot volume is removed if all its snapshot
plexes are snapped back. This task resynchronizes the data in the volume so that
the plexes are consistent.

The snapback operation cannot be applied to RAID-5 volumes unless they have
been converted to a special layered volume layout by the addition of a DCO and
DCO volume.

See “Adding a version 0 DCO and DCO volume” on page 645.

To enhance the efficiency of the snapback operation, enable FastResync on the
volume before taking the snapshot

To merge one snapshot plex with the original volume, use the following command:

vxassist [-g diskgroup] snapback snapshot

where snapshot is the snapshot copy of the volume.

To merge all snapshot plexes in the snapshot volume with the original volume, use
the following command:

vxassist [-g diskgroup] -o allplexes snapback snapshot

To merge a specified number of plexes from the snapshot volume with the original
volume, use the following command:

vxassist [-g diskgroup] snapback nmirror=number snapshot

Here the nmirror attribute specifies the number of mirrors in the snapshot volume
that are to be re-attached.

Once the snapshot plexes have been reattached and their data resynchronized,
they are ready to be used in another snapshot operation.

By default, the data in the original volume is used to update the snapshot plexes
that have been re-attached. To copy the data from the replica volume instead, use
the following command:

vxassist [-g diskgroup] -o resyncfromreplica snapback snapshot

Warning: Always unmount the snapshot volume (if this is mounted) before
performing a snapback. In addition, you must unmount the file system corresponding
to the primary volume before using the resyncfromreplica option.

642Administering volume snapshots
Creating traditional third-mirror break-off snapshots

Adding plexes to a snapshot volume
If you want to retain the existing plexes in a snapshot volume after a snapback
operation, you can create additional snapshot plexes that are to be used for the
snapback.

To add plexes to a snapshot volume

1 Use the following vxprint commands to discover the names of the snapshot
volume’s data change object (DCO) and DCO volume:

DCONAME=`vxprint [-g diskgroup] -F%dco_name snapshot`

DCOVOL=`vxprint [-g diskgroup] -F%log_vol $DCONAME`

2 Use the vxassist mirror command to create mirrors of the existing snapshot
volume and its DCO volume:

vxassist -g diskgroup mirror snapshot

vxassist -g diskgroup mirror $DCOVOL

The new plex in the DCO volume is required for use with the new data plex in
the snapshot.

3 Use the vxprint command to find out the name of the additional snapshot
plex:

vxprint -g diskgroup snapshot

4 Use the vxprint command to find out the record ID of the additional DCO
plex:

vxprint -g diskgroup -F%rid $DCOVOL

5 Use the vxedit command to set the dco_plex_rid field of the new data plex
to the name of the new DCO plex:

vxedit -g diskgroup set dco_plex_rid=dco_plex_rid new_plex

The new data plex is now ready to be used to perform a snapback operation.

Dissociating a snapshot volume
The link between a snapshot and its original volume can be permanently broken
so that the snapshot volume becomes an independent volume. Use the following
command to dissociate the snapshot volume, snapshot:

vxassist snapclear snapshot

643Administering volume snapshots
Creating traditional third-mirror break-off snapshots

Displaying snapshot information
The vxassist snapprintcommand displays the associations between the original
volumes and their respective replicas (snapshot copies):

vxassist snapprint [volume]

Output from this command is shown in the following examples:

vxassist -g mydg snapprint v1

V NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH %DIRTY

DP NAME VOLUME LENGTH %DIRTY

v v1 fsgen 20480

ss SNAP-v1_snp SNAP-v1 20480 4

dp v1-01 v1 20480 0

dp v1-02 v1 20480 0

v SNAP-v1 fsgen 20480

ss v1_snp v1 20480 0

vxassist -g mydg snapprint v2

V NAME USETYPE LENGTH

SS SNAPOBJ NAME LENGTH %DIRTY

DP NAME VOLUME LENGTH %DIRTY

v v2 fsgen 20480

ss -- SNAP-v2 20480 0

dp v2-01 v2 20480 0

v SNAP-v2 fsgen 20480

ss -- v2 20480 0

In this example, Persistent FastResync is enabled on volume v1, and Non-Persistent
FastResync on volume v2. Lines beginning with v, dp and ss indicate a volume,
detached plex and snapshot plex respectively. The %DIRTY field indicates the
percentage of a snapshot plex or detached plex that is dirty with respect to the
original volume. Notice that no snap objects are associated with volume v2 or with
its snapshot volume SNAP-v2.

If a volume is specified, the snapprint command displays an error message if no
FastResync maps are enabled for that volume.

644Administering volume snapshots
Creating traditional third-mirror break-off snapshots

Adding a version 0 DCO and DCO volume
To put Persistent FastResync into effect for a volume, a Data Change Object (DCO)
and DCO volume must be associated with that volume. After you add a DCO object
and DCO volume to a volume, you can enable Persistent FastResync on the volume.

Note: You need a FastResync license key to use the FastResync feature. Even if
you do not have a license, you can configure a DCO object and DCO volume so
that snap objects are associated with the original and snapshot volumes.

The procedure in this section describes adding a version 0 layout DCO. A version
0 DCO layout supports traditional (third-mirror break-off) snapshots that are
administered with the vxassist command. A version 0 DCO layout does not support
full-sized or space-optimized instant snapshots.

To add a DCO object and DCO volume to an existing volume

1 Ensure that the disk group containing the existing volume has at least disk
group version 90. To check the version of a disk group:

vxdg list diskgroup

If required, upgrade the disk group to the latest version:

vxdg upgrade diskgroup

645Administering volume snapshots
Adding a version 0 DCO and DCO volume

2 Turn off Non-Persistent FastResync on the original volume if it is currently
enabled:

vxvol [-g diskgroup] set fastresync=off volume

If you are uncertain about which volumes have Non-Persistent FastResync
enabled, use the following command to obtain a listing of such volumes.

Note: The ! character is a special character in some shells. The following
example shows how to escape it in a bash shell.

vxprint [-g diskgroup] -F "%name" \

-e "v_fastresync=on && \!v_hasdcolog"

3 Add a DCO and DCO volume to the existing volume (which may already have
dirty region logging (DRL) enabled):

vxassist [-g diskgroup] addlog volume logtype=dco \

[ndcomirror=number] [dcolen=size] [storage_attributes]

For non-layered volumes, the default number of plexes in the mirrored DCO
volume is equal to the lesser of the number of plexes in the data volume or 2.
For layered volumes, the default number of DCO plexes is always 2. If required,
use the ndcomirror attribute to specify a different number. It is recommended
that you configure as many DCO plexes as there are existing data and snapshot
plexes in the volume. For example, specify ndcomirror=3when adding a DCO
to a 3-way mirrored volume.

The default size of each plex is 132 blocks. You can use the dcolen attribute
to specify a different size. If specified, the size of the plex must be an integer
multiple of 33 blocks from 33 up to a maximum of 2112 blocks.

You can specify vxassist-style storage attributes to define the disks that can
or cannot be used for the plexes of the DCO volume.

See “Specifying storage for version 0 DCO plexes” on page 646.

Specifying storage for version 0 DCO plexes
If the disks that contain volumes and their snapshots are to be moved or split into
different disk groups, the disks that contain their respective DCO plexes must be
able to accompany them. By default, VxVM attempts to place version 0 DCO plexes
on the same disks as the data plexes of the parent volume. However, this may be
impossible if there is insufficient space available on those disks. In this case, VxVM
uses any available space on other disks in the disk group. If the DCO plexes are

646Administering volume snapshots
Adding a version 0 DCO and DCO volume

placed on disks which are used to hold the plexes of other volumes, this may cause
problems when you subsequently attempt to move volumes into other disk groups.

You can use storage attributes to specify explicitly which disks to use for the DCO
plexes. If possible, specify the same disks as those on which the volume is
configured.

For example, to add a DCO object and DCO volume with plexes on mydg05 and
mydg06, and a plex size of 264 blocks to the volume, myvol, in the disk group, mydg,
use the following command:

vxassist -g mydg addlog myvol logtype=dco dcolen=264 mydg05 mydg06

To view the details of the DCO object and DCO volume that are associated with a
volume, use the vxprint command. The following is partial vxprint output for the
volume named vol1 (the TUTIL0 and PUTIL0 columns are omitted for clarity):

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE ...

v vol1 fsgen ENABLED 1024 - ACTIVE

pl vol1-01 vol1 ENABLED 1024 - ACTIVE

sd disk01-01 vol1-01 ENABLED 1024 0 -

pl vol1-02 vol1 ENABLED 1024 - ACTIVE

sd disk02-01 vol1-02 ENABLED 1024 0 -

dc vol1_dco vol1 - - - -

v vol1_dcl gen ENABLED 132 - ACTIVE

pl vol1_dcl-01 vol1_dcl ENABLED 132 - ACTIVE

sd disk03-01 vol1_dcl-01 ENABLED 132 0 -

pl vol1_dcl-02 vol1_dcl ENABLED 132 - ACTIVE

sd disk04-01 vol1_dcl-02 ENABLED 132 0 -

In this output, the DCO object is shown as vol1_dco, and the DCO volume as
vol1_dcl with 2 plexes, vol1_dcl-01 and vol1_dcl-02.

If required, you can use the vxassist move command to relocate DCO plexes to
different disks. For example, the following command moves the plexes of the DCO
volume, vol1_dcl, for volume vol1 from disk03 and disk04 to disk07 and disk08.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

vxassist -g mydg move vol1_dcl \!disk03 \!disk04 disk07 disk08

See “Moving DCO volumes between disk groups” on page 857.

See the vxassist(1M) manual page.

647Administering volume snapshots
Adding a version 0 DCO and DCO volume

Removing a version 0 DCO and DCO volume
To dissociate a version 0 DCO object, DCO volume and any snap objects from a
volume, use the following command:

vxassist [-g diskgroup] remove log volume logtype=dco

This completely removes the DCO object, DCO volume and any snap objects. It
also has the effect of disabling FastResync for the volume.

Alternatively, you can use the vxdco command to the same effect:

vxdco [-g diskgroup] [-o rm] dis dco_obj

The default name of the DCO object, dco_obj, for a volume is usually formed by
appending the string _dco to the name of the parent volume. To find out the name
of the associated DCO object, use the vxprint command on the volume.

To dissociate, but not remove, the DCO object, DCO volume and any snap objects
from the volume, myvol, in the disk group, mydg, use the following command:

vxdco -g mydg dis myvol_dco

This form of the command dissociates the DCO object from the volume but does
not destroy it or the DCO volume. If the -o rm option is specified, the DCO object,
DCO volume and its plexes, and any snap objects are also removed.

Warning: Dissociating a DCO and DCO volume disables Persistent FastResync
on the volume. A full resynchronization of any remaining snapshots is required
when they are snapped back.

See the vxassist(1M) manual page.

See the vxdco(1M) manual pages.

Reattaching a version 0 DCO and DCO volume
If a version 0 DCO object and DCO volume are not removed by specifying the -o

rm option to vxdco, they can be reattached to the parent volume using the following
command:

vxdco [-g diskgroup] att volume dco_obj

For example, to reattach the DCO object, myvol_dco, to the volume, myvol, use
the following command:

vxdco -g mydg att myvol myvol_dco

648Administering volume snapshots
Adding a version 0 DCO and DCO volume

See the vxdco(1M) manual page.

649Administering volume snapshots
Adding a version 0 DCO and DCO volume

Administering Storage
Checkpoints

This chapter includes the following topics:

■ About Storage Checkpoints

■ Storage Checkpoint administration

■ Storage Checkpoint space management considerations

■ Restoring from a Storage Checkpoint

■ Storage Checkpoint quotas

About Storage Checkpoints
Veritas File System (VxFS) provides a Storage Checkpoint feature that quickly
creates a persistent image of a file system at an exact point in time. Storage
Checkpoints significantly reduce I/O overhead by identifying and maintaining only
the file system blocks that have changed since the last Storage Checkpoint or
backup via a copy-on-write technique.

See “Copy-on-write” on page 584.

Storage Checkpoints provide:

■ Persistence through reboots and crashes.

■ The ability for data to be immediately writeable by preserving the file system
metadata, the directory hierarchy, and user data.

Storage Checkpoints are actually data objects that are managed and controlled by
the file system. You can create, remove, and rename Storage Checkpoints because
they are data objects with associated names.

24Chapter

See “How a Storage Checkpoint works” on page 582.

Unlike a disk-based mirroring technology that requires a separate storage space,
Storage Checkpoints minimize the use of disk space by using a Storage Checkpoint
within the same free space available to the file system.

After you create a Storage Checkpoint of a mounted file system, you can also
continue to create, remove, and update files on the file system without affecting the
logical image of the Storage Checkpoint. A Storage Checkpoint preserves not only
the name space (directory hierarchy) of the file system, but also the user data as
it existed at the moment the file system image was captured.

You can use a Storage Checkpoint in many ways. For example, you can use them
to:

■ Create a stable image of the file system that can be backed up to tape.

■ Provide a mounted, on-disk backup of the file system so that end users can
restore their own files in the event of accidental deletion. This is especially useful
in a home directory, engineering, or email environment.

■ Create a copy of an application's binaries before installing a patch to allow for
rollback in case of problems.

■ Create an on-disk backup of the file system in that can be used in addition to a
traditional tape-based backup to provide faster backup and restore capabilities.

■ Test new software on a point-in-time image of the primary fileset without
jeopardizing the live data in the current primary fileset by mounting the Storage
Checkpoints as writable.

Storage Checkpoint administration
Storage Checkpoint administrative operations require the fsckptadm utility.

See the fsckptadm(1M) manual page.

You can use the fsckptadm utility to create and remove Storage Checkpoints,
change attributes, and ascertain statistical data. Every Storage Checkpoint has an
associated name, which allows you to manage Storage Checkpoints; this name is
limited to 127 characters and cannot contain a colon (:).

See “Creating a Storage Checkpoint” on page 652.

See “Removing a Storage Checkpoint” on page 653.

Storage Checkpoints require some space for metadata on the volume or set of
volumes specified by the file system allocation policy or Storage Checkpoint
allocation policy. The fsckptadm utility displays an error if the volume or set of
volumes does not have enough free space to contain the metadata. You can roughly

651Administering Storage Checkpoints
Storage Checkpoint administration

approximate the amount of space required by the metadata using a method that
depends on the disk layout version of the file system.

For disk layout Version 7, multiply the number of inodes by 1 byte, and add 1 or 2
megabytes to get the approximate amount of space required. You can determine
the number of inodes with the fsckptadm utility.

Use the fsvoladm command to determine if the volume set has enough free space.

See the fsvoladm(1M) manual page.

The following example lists the volume sets and displays the storage sizes in
human-friendly units:

fsvoladm -H list /mnt0

devid size used avail name

0 20 GB 10 GB 10 GB vol1

1 30 TB 10 TB 20 TB vol2

Creating a Storage Checkpoint
The following example shows the creation of a nodata Storage Checkpoint named
thu_7pm on /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -n create thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

The following example shows the creation of a removable Storage Checkpoint
named thu_8pm on /mnt0 and lists all Storage Checkpoints of the /mnt0 file system:

fsckptadm -r create thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_8pm:

ctime = Thu 3 Mar 2005 8:00:19 PM PST

mtime = Thu 3 Mar 2005 8:00:19 PM PST

flags = largefiles, removable

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

652Administering Storage Checkpoints
Storage Checkpoint administration

Removing a Storage Checkpoint
You can delete a Storage Checkpoint by specifying the remove keyword of the
fsckptadm command. Specifically, you can use either the synchronous or
asynchronous method of removing a Storage Checkpoint; the asynchronous method
is the default method. The synchronous method entirely removes the Storage
Checkpoint and returns all of the blocks to the file system before completing the
fsckptadm operation. The asynchronous method simply marks the Storage
Checkpoint for removal and causes fsckptadm to return immediately. At a later
time, an independent kernel thread completes the removal operation and releases
the space used by the Storage Checkpoint.

In this example, /mnt0 is a mounted VxFS file system with a Version 9 disk layout.
This example shows the asynchronous removal of the Storage Checkpoint named
thu_8pm and synchronous removal of the Storage Checkpoint named thu_7pm.
This example also lists all the Storage Checkpoints remaining on the /mnt0 file
system after the specified Storage Checkpoint is removed:

fsckptadm remove thu_8pm /mnt0

fsckptadm list /mnt0

/mnt0

thu_7pm:

ctime = Thu 3 Mar 2005 7:00:17 PM PST

mtime = Thu 3 Mar 2005 7:00:17 PM PST

flags = nodata, largefiles

fsckptadm -s remove thu_7pm /mnt0

fsckptadm list /mnt0

/mnt0

Accessing a Storage Checkpoint
You can mount Storage Checkpoints using the mount command with the mount
option -o ckpt=ckpt_name.

See the mount_vxfs(1M) manual page.

Observe the following rules when mounting Storage Checkpoints:

■ Storage Checkpoints are mounted as read/write Storage Checkpoints by default.

■ If a Storage Checkpoint is currently mounted as a read-only Storage Checkpoint,
you can remount it as a writable Storage Checkpoint using the -o remount

option.

■ To mount a Storage Checkpoint of a file system, first mount the file system itself.

■ To unmount a file system, first unmount all of its Storage Checkpoints.

653Administering Storage Checkpoints
Storage Checkpoint administration

Warning: If you create a Storage Checkpoint for backup purposes, do not mount
it as a writable Storage Checkpoint. You will lose the point-in-time image if you
accidently write to the Storage Checkpoint.

If older Storage Checkpoints already exist, write activity to a writable Storage
Checkpoint can generate copy operations and increased space usage in the older
Storage Checkpoints.

A Storage Checkpoint is mounted on a special pseudo device. This pseudo device
does not exist in the system name space; the device is internally created by the
system and used while the Storage Checkpoint is mounted. The pseudo device is
removed after you unmount the Storage Checkpoint. A pseudo device name is
formed by appending the Storage Checkpoint name to the file system device name
using the colon character (:) as the separator.

For example, if a Storage Checkpoint named may_23 belongs to the file system
residing on the special device /dev/vx/dsk/fsvol/vol1, the Storage Checkpoint
pseudo device name is:

/dev/vx/dsk/fsvol/vol1:may_23

■ To mount the Storage Checkpoint named may_23 as a read-only Storage
Checkpoint on directory /fsvol_may_23, type:

mount -t vxfs -o ckpt=may_23 /dev/vx/dsk/fsvol/vol1:may_23 \

/fsvol_may_23

Note: The vol1 file system must already be mounted before the Storage
Checkpoint can be mounted.

■ To remount the Storage Checkpoint named may_23 as a writable Storage
Checkpoint, type:

mount -t vxfs -o ckpt=may_23,remount,rw \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

■ To mount this Storage Checkpoint automatically when the system starts up, put
the following entries in the /etc/fstab file:

Device-Special-File Mount-Point fstype options backup- pass-

frequency number

/dev/vx/dsk/fsvol/ /fsvol vxfs defaults 0 0

vol1

654Administering Storage Checkpoints
Storage Checkpoint administration

/dev/vx/dsk/fsvol/ /fsvol_may_23 vxfs ckpt=may_23 0 0

vol1:may_23

■ To mount a Storage Checkpoint of a cluster file system, you must also use the
-o cluster option:

mount -t vxfs -o cluster,ckpt=may_23 \

/dev/vx/dsk/fsvol/vol1:may_23 /fsvol_may_23

You can only mount a Storage Checkpoint cluster-wide if the file system that
the Storage Checkpoint belongs to is also mounted cluster-wide. Similarly, you
can only mount a Storage Checkpoint locally if the file system that the Storage
Checkpoint belongs to is mounted locally.

You can unmount Storage Checkpoints using the umount command.

See the umount(1M) manual page.

Storage Checkpoints can be unmounted by the mount point or pseudo device name:

umount /fsvol_may_23

umount /dev/vx/dsk/fsvol/vol1:may_23

Note: You do not need to run the fsck utility on Storage Checkpoint pseudo devices
because pseudo devices are part of the actual file system.

Converting a data Storage Checkpoint to a nodata Storage
Checkpoint

A nodata Storage Checkpoint does not contain actual file data. Instead, this type
of Storage Checkpoint contains a collection of markers indicating the location of all
the changed blocks since the Storage Checkpoint was created.

See “Types of Storage Checkpoints” on page 586.

You can use either the synchronous or asynchronous method to convert a data
Storage Checkpoint to a nodata Storage Checkpoint; the asynchronous method is
the default method. In a synchronous conversion, fsckptadm waits for all files to
undergo the conversion process to “nodata" status before completing the operation.
In an asynchronous conversion, fsckptadm returns immediately and marks the
Storage Checkpoint as a nodata Storage Checkpoint even though the Storage
Checkpoint's data blocks are not immediately returned to the pool of free blocks in
the file system. The Storage Checkpoint deallocates all of its file data blocks in the
background and eventually returns them to the pool of free blocks in the file system.

655Administering Storage Checkpoints
Storage Checkpoint administration

If all of the older Storage Checkpoints in a file system are nodata Storage
Checkpoints, use the synchronous method to convert a data Storage Checkpoint
to a nodata Storage Checkpoint. If an older data Storage Checkpoint exists in the
file system, use the asynchronous method to mark the Storage Checkpoint you
want to convert for a delayed conversion. In this case, the actual conversion will
continue to be delayed until the Storage Checkpoint becomes the oldest Storage
Checkpoint in the file system, or all of the older Storage Checkpoints have been
converted to nodata Storage Checkpoints.

Note: You cannot convert a nodata Storage Checkpoint to a data Storage
Checkpoint because a nodata Storage Checkpoint only keeps track of the location
of block changes and does not save the content of file data blocks.

Showing the difference between a data and a nodata
Storage Checkpoint
The following example shows the difference between data Storage Checkpoints
and nodata Storage Checkpoints.

Note: A nodata Storage Checkpoint does not contain actual file data.

To show the difference between Storage Checkpoints

1 Create a file system and mount it on /mnt0, as in the following example:

mkfs -t vxfs /dev/vx/rdsk/dg1/test0

version 9 layout

134217728 sectors, 67108864 blocks of size 1024, log \

size 65536 blocks, largefiles supported

mount -t vxfs /dev/vx/dsk/dg1/test0 /mnt0

2 Create a small file with a known content, as in the following example:

echo "hello, world" > /mnt0/file

3 Create a Storage Checkpoint and mount it on /mnt0@5_30pm, as in the following
example:

fsckptadm create ckpt@5_30pm /mnt0

mkdir /mnt0@5_30pm

mount -t vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

656Administering Storage Checkpoints
Storage Checkpoint administration

4 Examine the content of the original file and the Storage Checkpoint file:

cat /mnt0/file

hello, world

cat /mnt0@5_30pm/file

hello, world

5 Change the content of the original file:

echo "goodbye" > /mnt0/file

6 Examine the content of the original file and the Storage Checkpoint file. The
original file contains the latest data while the Storage Checkpoint file still
contains the data at the time of the Storage Checkpoint creation:

cat /mnt0/file

goodbye

cat /mnt0@5_30pm/file

hello, world

7 Unmount the Storage Checkpoint, convert the Storage Checkpoint to a nodata
Storage Checkpoint, and mount the Storage Checkpoint again:

umount /mnt0@5_30pm

fsckptadm -s set nodata ckpt@5_30pm /mnt0

mount -t vxfs -o ckpt=ckpt@5_30pm \

/dev/vx/dsk/dg1/test0:ckpt@5_30pm /mnt0@5_30pm

8 Examine the content of both files. The original file must contain the latest data:

cat /mnt0/file

goodbye

You can traverse and read the directories of the nodata Storage Checkpoint;
however, the files contain no data, only markers to indicate which block of the
file has been changed since the Storage Checkpoint was created:

ls -l /mnt0@5_30pm/file

-rw-r--r-- 1 root other 13 Jul 13 17:13 \

cat /mnt0@5_30pm/file

cat: /mnt0@5_30pm/file: Input/output error

657Administering Storage Checkpoints
Storage Checkpoint administration

Converting multiple Storage Checkpoints
You can convert Storage Checkpoints to nodata Storage Checkpoints when dealing
with older Storage Checkpoints on the same file system.

To convert multiple Storage Checkpoints

1 Create a file system and mount it on /mnt0:

mkfs -t vxfs /dev/vx/rdsk/dg1/test0

version 9 layout

13417728 sectors, 67108864 blocks of size 1024, log \

size 65536 blocks largefiles supported

mount -t vxfs /dev/vx/dsk/dg1/test0 /mnt0

2 Create four data Storage Checkpoints on this file system, note the order of
creation, and list them:

fsckptadm create oldest /mnt0

fsckptadm create older /mnt0

fsckptadm create old /mnt0

fsckptadm create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55 2004

flags = largefiles

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

658Administering Storage Checkpoints
Storage Checkpoint administration

3 Try to convert synchronously the latest Storage Checkpoint to a nodata
Storage Checkpoint. The attempt will fail because the Storage Checkpoints
older than the latest Storage Checkpoint are data Storage Checkpoints,
namely the Storage Checkpoints old, older, and oldest:

fsckptadm -s set nodata latest /mnt0

UX:vxfs fsckptadm: ERROR: V-3-24632: Storage Checkpoint

set failed on latest. File exists (17)

4 You can instead convert the latest Storage Checkpoint to a nodata Storage
Checkpoint in a delayed or asynchronous manner.

fsckptadm set nodata latest /mnt0

5 List the Storage Checkpoints, as in the following example. You will see that
the latest Storage Checkpoint is marked for conversion in the future.

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 11:56:55 2004

mtime = Mon 26 Jul 11:56:55

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

Creating a delayed nodata Storage Checkpoint
You can create a Storage Checkpoint as a delayed nodata Storage Checkpoint.
The creation process detects the presence of the older data Storage Checkpoints
and creates the Storage Checkpoint as a delayed nodata Storage Checkpoint. The
following example procedure removes an existing Storage Checkpoint named

659Administering Storage Checkpoints
Storage Checkpoint administration

latest and recreates the Storage Checkpoint as a delayed nodata Storage
Checkpoint.

To create a delayed nodata Storage Checkpoint

1 Remove the latest Storage Checkpoint.

fsckptadm remove latest /mnt0

fsckptadm list /mnt0

/mnt0

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

2 Recreate the latest Storage Checkpoint as a nodata Storage Checkpoint.

fsckptadm -n create latest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = largefiles

660Administering Storage Checkpoints
Storage Checkpoint administration

3 Convert the oldest Storage Checkpoint to a nodata Storage Checkpoint
because no older Storage Checkpoints exist that contain data in the file system.

Note: This step can be done synchronously.

fsckptadm -s set nodata oldest /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles, delayed

old:

ctime = Mon 26 Jul 11:56:51 2004

mtime = Mon 26 Jul 11:56:51 2004

flags = largefiles

older:

ctime = Mon 26 Jul 11:56:46 2004

mtime = Mon 26 Jul 11:56:46 2004

flags = largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles

661Administering Storage Checkpoints
Storage Checkpoint administration

4 Remove the older and old Storage Checkpoints.

fsckptadm remove older /mnt0

fsckptadm remove old /mnt0

fsckptadm list /mnt0

/mnt0

latest:

ctime = Mon 26 Jul 12:06:42 2004

mtime = Mon 26 Jul 12:06:42 2004

flags = nodata, largefiles

oldest:

ctime = Mon 26 Jul 11:56:41 2004

mtime = Mon 26 Jul 11:56:41 2004

flags = nodata, largefiles

Note: After you remove the older and old Storage Checkpoints, the latest

Storage Checkpoint is automatically converted to a nodata Storage Checkpoint
because the only remaining older Storage Checkpoint (oldest) is already a
nodata Storage Checkpoint:

Enabling and disabling Storage Checkpoint visibility
You enable Storage Checkpoint visibility through the ckptautomnt mount option,
which can be set to one of three values: off, ro, or rw. Because enabling Storage
Checkpoint visibility prevents manual mounting of clones, the default value is off.
Setting the option to ro causes all clones to be automounted as read-only, while
rw causes all clones to be automounted as read/write.

If you take a Storage Checkpoint of an existing Storage Checkpoint (instead of the
primary file set), the directory for the source Storage Checkpoint in .checkpoint

functions as the mount point. For example, to take a Storage Checkpoint of the
Storage Checkpoint clone1 in a file system mounted on /mnt, use the following
command:

fsckptadm create clone2 /mnt/.checkpoint/clone1

By default, Veritas Storage Foundation (SF) does not make inode numbers unique.
However, you can specify the uniqueino mount option to enable the use of unique
64-bit inode numbers. You cannot change this option during a remount.

The following example enables Storage Checkpoint visibility by causing all clones
to be automounted as read/write:

662Administering Storage Checkpoints
Storage Checkpoint administration

mount -t vxfs -o ckptautomnt=rw /dev/vx/dsk/dg1/vol1 /mnt1

Storage Checkpoint space management
considerations

Several operations, such as removing or overwriting a file, can fail when a file
system containing Storage Checkpoints runs out of space. If the system cannot
allocate sufficient space, the operation will fail.

Database applications usually preallocate storage for their files and may not expect
a write operation to fail. During user operations such as create or mkdir, if the file
system runs out of space, removable Storage Checkpoints are deleted. This ensures
that applications can continue without interruptions due to lack of disk space.
Non-removable Storage Checkpoints are not automatically removed under such
ENOSPC conditions. Symantec recommends that you create only removable Storage
Checkpoints. However, during certain administrative operations, such as using the
fsadm command, using the qiomkfile command, and creating a Storage Checkpoint
with the fsckptadm command, even if the file system runs out of space, removable
Storage Checkpoints are not deleted.

When the kernel automatically removes the Storage Checkpoints, it applies the
following policies:

■ Remove as few Storage Checkpoints as possible to complete the operation.

■ Never select a non-removable Storage Checkpoint.

■ Select a nodata Storage Checkpoint only when data Storage Checkpoints no
longer exist.

■ Remove the oldest Storage Checkpoint first.

■ Remove a Storage Checkpoint even if it is mounted. New operations on such
a removed Storage Checkpoint fail with the appropriate error codes.

■ If the oldest Storage Checkpoint is non-removable, then the oldest removable
Storage Checkpoint is selected for removal. In such a case, data might be
required to be pushed to a non-removable Storage Checkpoint, which might fail
and result in the file system getting marked for a FULLFSCK. To prevent this
occurrence, Symantec recommends that you only create removable Storage
Checkpoints.

Restoring from a Storage Checkpoint
Mountable data Storage Checkpoints on a consistent and undamaged file system
can be used by backup and restore applications to restore either individual files or

663Administering Storage Checkpoints
Storage Checkpoint space management considerations

an entire file system. Restoration from Storage Checkpoints can also help recover
incorrectly modified files, but typically cannot recover from hardware damage or
other file system integrity problems.

Note: For hardware or other integrity problems, Storage Checkpoints must be
supplemented by backups from other media.

Files can be restored by copying the entire file from a mounted Storage Checkpoint
back to the primary fileset. To restore an entire file system, you can designate a
mountable data Storage Checkpoint as the primary fileset using the fsckpt_restore

command.

See the fsckpt_restore(1M) manual page.

When using the fsckpt_restore command to restore a file system from a Storage
Checkpoint, all changes made to that file system after that Storage Checkpoint's
creation date are permanently lost. The only Storage Checkpoints and data
preserved are those that were created at the same time, or before, the selected
Storage Checkpoint's creation. The file system cannot be mounted at the time that
fsckpt_restore is invoked.

Note: Individual files can also be restored very efficiently by applications using the
fsckpt_fbmap(3) library function to restore only modified portions of a files data.

You can restore from a Storage Checkpoint only to a file system that has disk layout
Version 6 or later.

Examples of restoring a file from a Storage Checkpoint
The following example restores a file, MyFile.txt, which resides in your home
directory, from the Storage Checkpoint CKPT1 to the device
/dev/vx/dsk/dg1/vol-01. The mount point for the device is /home.

To restore a file from a Storage Checkpoint

1 Create the Storage Checkpoint CKPT1 of /home.

$ fckptadm create CKPT1 /home

2 Mount Storage Checkpoint CKPT1 on the directory /home/checkpoints/mar_4.

$ mount -t vxfs -o ckpt=CKPT1 /dev/vx/dsk/dg1/vol- \

01:CKPT1 /home/checkpoints/mar_4

664Administering Storage Checkpoints
Restoring from a Storage Checkpoint

3 Delete the file MyFile.txt from your home directory.

$ cd /home/users/me

$ rm MyFile.txt

4 Go to the /home/checkpoints/mar_4/users/me directory, which contains the
image of your home directory.

$ cd /home/checkpoints/mar_4/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 17:09 MyFile.txt

5 Copy the file MyFile.txt to your home directory.

$ cp MyFile.txt /home/users/me

$ cd /home/users/me

$ ls -l

-rw-r--r-- 1 me staff 14910 Mar 4 18:21 MyFile.txt

The following example restores a file system from the Storage Checkpoint CKPT3.
The filesets listed before the restoration show an unnamed root fileset and six
Storage Checkpoints.

U
N
N
A
M
E
D

C
K
P
T
6

C
K
P
T
5

C
K
P
T
4

C
K
P
T
3

C
K
P
T
1

C
K
P
T
2

665Administering Storage Checkpoints
Restoring from a Storage Checkpoint

To restore a file system from a Storage Checkpoint

1 Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2

/dev/vx/dsk/dg1/vol2:

UNNAMED:

ctime = Thu 08 May 2004 06:28:26 PM PST

mtime = Thu 08 May 2004 06:28:26 PM PST

flags = largefiles, file system root

CKPT6:

ctime = Thu 08 May 2004 06:28:35 PM PST

mtime = Thu 08 May 2004 06:28:35 PM PST

flags = largefiles

CKPT5:

ctime = Thu 08 May 2004 06:28:34 PM PST

mtime = Thu 08 May 2004 06:28:34 PM PST

flags = largefiles, nomount

CKPT4:

ctime = Thu 08 May 2004 06:28:33 PM PST

mtime = Thu 08 May 2004 06:28:33 PM PST

flags = largefiles

CKPT3:

ctime = Thu 08 May 2004 06:28:36 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

666Administering Storage Checkpoints
Restoring from a Storage Checkpoint

2 In this example, select the Storage Checkpoint CKPT3 as the new root fileset:

Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints: CKPT3

CKPT3:

ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles

UX:vxfs fsckpt_restore: WARNING: V-3-24640: Any file system

changes or Storage Checkpoints made after

Thu 08 May 2004 06:28:31 PM PST will be lost.

667Administering Storage Checkpoints
Restoring from a Storage Checkpoint

3 Type y to restore the file system from CKPT3:

Restore the file system from Storage Checkpoint CKPT3 ?

(ynq) y

(Yes)

UX:vxfs fsckpt_restore: INFO: V-3-23760: File system

restored from CKPT3

If the filesets are listed at this point, it shows that the former UNNAMED root
fileset and CKPT6, CKPT5, and CKPT4 were removed, and that CKPT3 is now the
primary fileset. CKPT3 is now the fileset that will be mounted by default.

C
K
P
T
3

C
K
P
T
2

C
K
P
T
1

4 Run the fsckpt_restore command:

fsckpt_restore -l /dev/vx/dsk/dg1/vol2

/dev/vx/dsk/dg1/vol2:

CKPT3:

ctime = Thu 08 May 2004 06:28:31 PM PST

mtime = Thu 08 May 2004 06:28:36 PM PST

flags = largefiles, file system root

CKPT2:

ctime = Thu 08 May 2004 06:28:30 PM PST

mtime = Thu 08 May 2004 06:28:30 PM PST

flags = largefiles

CKPT1:

ctime = Thu 08 May 2004 06:28:29 PM PST

mtime = Thu 08 May 2004 06:28:29 PM PST

flags = nodata, largefiles

Select Storage Checkpoint for restore operation

or <Control/D> (EOF) to exit

or <Return> to list Storage Checkpoints:

668Administering Storage Checkpoints
Restoring from a Storage Checkpoint

Storage Checkpoint quotas
VxFS provides options to the fsckptadm command interface to administer Storage
Checkpoint quotas. Storage Checkpoint quotas set the following limits on the amount
of space used by all Storage Checkpoints of a primary file set:

An absolute limit that cannot be exceeded. If a hard limit is exceeded,
all further allocations on any of the Storage Checkpoints fail, but existing
Storage Checkpoints are preserved.

hard limit

Must be lower than the hard limit. If a soft limit is exceeded, no new
Storage Checkpoints can be created. The number of blocks used must
return below the soft limit before more Storage Checkpoints can be
created. An alert and console message are generated.

soft limit

In case of a hard limit violation, various solutions are possible, enacted by specifying
or not specifying the -f option for the fsckptadm utility.

See the fsckptadm(1M) manual page.

Specifying or not specifying the -f option has the following effects:

■ If the -f option is not specified, one or many removable Storage Checkpoints
are deleted to make space for the operation to succeed. This is the default
solution.

■ If the -f option is specified, all further allocations on any of the Storage
Checkpoints fail, but existing Storage Checkpoints are preserved.

Note: Sometimes if a file is removed while it is opened by another process, the
removal process is deferred until the last close. Because the removal of a file
may trigger pushing data to a “downstream" Storage Checkpoint (that is, the
next older Storage Checkpoint), a fileset hard limit quota violation may occur.
In this scenario, the hard limit is relaxed to prevent an inode from being marked
bad. This is also true for some asynchronous inode operations.

669Administering Storage Checkpoints
Storage Checkpoint quotas

Administering FileSnaps
This chapter includes the following topics:

■ FileSnap creation

■ Using FileSnaps

■ Using FileSnaps to create point-in-time copies of files

■ Comparison of the logical size output of the fsadm -S shared, du, and df
commands

FileSnap creation
A single thread creating FileSnaps of the same file can create over ten thousand
snapshots per minute. FileSnaps can be used for fast provisioning of new virtual
machines by cloning a virtual machine golden image, where the golden image is
stored as a file in a VxFS file system or Veritas Storage Foundation Cluster File
System (SFCFS) file system, which is used as a data store for a virtual environment.

FileSnap creation over Network File System
You can create a FileSnap over Network File System (NFS) by creating a hard link
from an existing file to a new file with the extension “::snap:vxfs:”. For example, the
following command creates a new file named file1, but instead of making file1

a hard link of file2, file1 will be a FileSnap so that the link count of file2 will
not change:

ln file1 file2::snap:vxfs:

This is the equivalent of using the following command:

vxfilesnap -p file1 file2

25Chapter

The new file has the same attributes as the old file and shares all of the old file's
extents.

An application that uses this namespace extension should check if the file created
has the namespace extension, such as file1::snap:vxfs: instead of file1. This
indicates the namespace extension is not supported, either because the file system
exported over NFS is not VxFS, the file system is an older version of VxFS, or the
file system does not have a license for FileSnaps.

As with the vxfilesnap command, FileSnaps must be made within a single file set.

Using FileSnaps
Table 25-1 provides a list of Veritas File System (VxFS) commands that enable
you to administer FileSnaps.

Table 25-1

FunctionalityCommand

The fiostat command has the -S shared option to display statistics
for each interval. Otherwise, the command displays the accumulated
statistics for the entire time interval.

fiostat

The fsadm command has the -S option to report shared block usage
in the file system. You can use this option to find out the storage savings
achieved through FileSnaps and how much real storage is required if
all of the files are full copies.

See the fsadm_vxfs(1M) manual page.

fsadm

The fsmap command has the -c option to report the count of the total
number of physical blocks consumed by a file, and how many of those
blocks might not be private to a given file.

See the fsmap(1) manual page.

fsmap

Use the mkfs command to make a disk layout Version 9 file system by
specifying -o version=9. VxFS internally maintains a list of delayed
operations on shared extent references and the size of this list
(rcqsize) defaults to a value that is a function of the file system size,
but can be changed when the file system is made.

See the mkfs_vxfs(1M) manual page.

mkfs

671Administering FileSnaps
Using FileSnaps

Table 25-1 (continued)

FunctionalityCommand

Use the vxfilesnap command to create a snapshot of a file or set of
files or files in a directory. You can also use the vxfilesnap command
to restore a older version of the file to the current file.

See the vxfilesnap(1) manual page.

vxfilesnap

The vxtunefs command supports an option to enable lazy
copy-on-write tuneable, lazy_copyonwrite, on the file system, for
better performance.

See the vxtunefs(1M) manual page.

vxtunefs

Using FileSnaps to create point-in-time copies of
files

The key to obtaining maximum performance with FileSnaps is to minimize the
copy-on-write overhead. You can achieved this by enabling lazy copy-on-write.
Lazy copy-on-write is easy to enable and usually results in significantly better
performance. If lazy copy-on-write is not a viable option for the use case under
consideration, an efficient allocation of the source file can reduce the need of
copy-on-write.

Using FileSnaps to provision virtual desktops
Virtual desktop infrastructure (VDI) operating system boot images are a good use
case for FileSnaps. The parts of the boot images that can change are user profile,
page files (or swap for UNIX/Linux) and application data. You should separate such
data from boot images to minimize unsharing. You should allocate a single extent
to the master boot image file.

Example of using FileSnaps to provision a virtual desktop
The following example uses a 4 GB master boot image that has a single extent that
will be shared by all snapshots.

touch /vdi_images/master_image

/opt/VRTS/bin/setext -r 4g -f chgsize /vdi_images/master_image

The master_image file can be presented as a disk device to the virtual machine for
installing the operating system. Once the operating system is installed and
configured, the file is ready for snapshots.

672Administering FileSnaps
Using FileSnaps to create point-in-time copies of files

Using FileSnaps to optimize write intensive applications for virtual
machines

When virtual machines are spawned to perform certain tasks that are write intensive,
a significant amount of unsharing can take place. Symantec recommends that you
optimize performance by enabling lazy copy-on-write. If the use case does not allow
enabling lazy copy-on-write, with careful planning, you can reduce the occurrence
of unsharing. The easiest way to reduce unsharing is to separate the application
data to a file other than the boot image. If you cannot do this due to the nature of
your applications, then you can take actions similar to the following example.

Example of using FileSnaps to optimize write intensive
applications
Assume that the disk space required for a boot image and the application data is
20 GB. Out of this, only 4 GB is used by the operating system and the remaining
16 GB is the space for applications to write. Any data or binaries that are required
by each instance of the virtual machine can still be part of the first 4 GB of the
shared extent. Since most of the writes are expected to take place on the 16 GB
portion, you should allocate the master image in such a way that the 16 GB of space
is not shared, as shown in the following commands:

touch /vdi_images/master_image

/opt/VRTS/bin/setext -r 4g -f chgsize /vdi_images/master_image

dd if=/dev/zero of=/vdi_images/master_image seek=16777215 \

bs=1024 count=1

The last command creates a 16 GB hole at the end of the file. Since holes do not
have any extents allocated, the writes to hole do not need to be unshared.

Using FileSnaps to create multiple copies of data instantly
It is common to create one or more copies of production data for the purpose of
generating reports, mining, and testing. These cases frequently update the copies
of the data with the most current data, and one or more copies of the data always
exists. FileSnaps can be used to create multiple copies instantly. The application
that uses the original data can see a slight performance hit due to the unsharing of
data that can take place during updates. This slight impact on performance can still
be present even when all FileSnaps have been deleted. However, you rarely see
all FileSnaps being deleted since these use cases usually have one or more copies
at any given time.

673Administering FileSnaps
Using FileSnaps to create point-in-time copies of files

Comparison of the logical size output of the fsadm
-S shared, du, and df commands

The fsadm -S shared, du, and df commands report different values for the size
of a FileSnap. The fsadm -S shared command displays this size as the "logical
size," which is the logical space consumed, in kilobytes, and accounts for both
exclusive blocks and shared blocks. This value represents the actual disk space
needed if the file system did not have any shared blocks. The value from the fsadm

-S shared command differs from the output of du -sk command since the du

command does not track the blocks consumed by VxFS structural files. As a result,
the output of the du -sk command is less than the logical size output reported by
the fsadm -S shared command.

The following examples show output from the fsadm -S shared, du, and df

commands:

mkfs -t vxfs -o version=9 /dev/vx/rdsk/dg/vol3

version 9 layout

104857600 sectors, 52428800 blocks of size 1024, log size 65536 blocks

rcq size 4096 blocks

largefiles supported

mount -t vxfs /dev/vx/dsk/dg/vol3 /mnt

df -k /mnt

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vx/dsk/dg1/vol3 52428800 83590 49073642 1% /mnt

/opt/VRTS/bin/fsadm -S shared /mnt

Mountpoint Size(KB) Available(KB) Used(KB) Logical_Size(KB) Space_Saved(KB)

/mnt 52428800 49073642 83590 83590 0

du -sk /mnt

0 /mnt

dd if=/dev/zero of=/mnt/foo bs=1024 count=10

10+0 records in

10+0 records out

10240 bytes (10 kB) copied, 0.018901 seconds, 542 kB/s

vxfilesnap /mnt/foo /mnt/foo.snap

df -k /mnt

674Administering FileSnaps
Comparison of the logical size output of the fsadm -S shared, du, and df commands

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/vx/dsk/dg1/vol3 52428800 83600 49073632 1% /mnt

/opt/VRTS/bin/fsadm -S shared /mnt

Mountpoint Size(KB) Available(KB) Used(KB) Logical_Size(KB) Space_Saved(KB)

/mnt 52428800 49073632 83600 83610 10

du -sk /mnt

20 /mnt

675Administering FileSnaps
Comparison of the logical size output of the fsadm -S shared, du, and df commands

Administering snapshot file
systems

This chapter includes the following topics:

■ Snapshot file system backups

■ Snapshot file system performance

■ About snapshot file system disk structure

■ Differences between snapshots and Storage Checkpoints

■ Creating a snapshot file system

■ Examples of creating snapshot file systems

Snapshot file system backups
After a snapshot file system is created, the snapshot maintains a consistent backup
of data in the snapped file system.

Backup programs, such as cpio, that back up a standard file system tree can be
used without modification on a snapshot file system because the snapshot presents
the same data as the snapped file system. Backup programs, such as vxdump, that
access the disk structures of a file system require some modifications to handle a
snapshot file system.

VxFS utilities recognize snapshot file systems and modify their behavior so that
they operate the same way on snapshots as they do on standard file systems. Other
backup programs that typically read the raw disk image cannot work on snapshots
without altering the backup procedure.

26Chapter

These other backup programs can use the fscat command to obtain a raw image
of the entire file system that is identical to an image obtainable by running a dd

command on the disk device containing the snapped file system at the exact moment
the snapshot was created. The snapread ioctl takes arguments similar to those of
the read system call and returns the same results that are obtainable by performing
a read on the disk device containing the snapped file system at the exact time the
snapshot was created. In both cases, however, the snapshot file system provides
a consistent image of the snapped file system with all activity complete—it is an
instantaneous read of the entire file system. This is much different than the results
that would be obtained by a dd or read command on the disk device of an active
file system.

Snapshot file system performance
Snapshot file systems maximize the performance of the snapshot at the expense
of writes to the snapped file system. Reads from a snapshot file system typically
perform at nearly the throughput rates of reads from a standard VxFS file system.

The performance of reads from the snapped file system are generally not affected.
However, writes to the snapped file system, typically average two to three times as
long as without a snapshot. This is because the initial write to a data block requires
reading the old data, writing the data to the snapshot, and then writing the new data
to the snapped file system. If there are multiple snapshots of the same snapped
file system, writes are even slower. Only the initial write to a block experiences this
delay, so operations such as writes to the intent log or inode updates proceed at
normal speed after the initial write.

Reads from the snapshot file system are impacted if the snapped file system is
busy because the snapshot reads are slowed by the disk I/O associated with the
snapped file system.

The overall impact of the snapshot is dependent on the read to write ratio of an
application and the mixing of the I/O operations. For example, a database application
running an online transaction processing (OLTP) workload on a snapped file system
was measured at about 15 to 20 percent slower than a file system that was not
snapped.

About snapshot file system disk structure
A snapshot file system consists of:

■ A super-block

■ A bitmap

677Administering snapshot file systems
Snapshot file system performance

■ A blockmap

■ Data blocks copied from the snapped file system

The following figure shows the disk structure of a snapshot file system.

Figure 26-1 The Snapshot Disk Structure

super-block

bitmap

blockmap

data block

The super-block is similar to the super-block of a standard VxFS file system, but
the magic number is different and many of the fields are not applicable.

The bitmap contains one bit for every block on the snapped file system. Initially, all
bitmap entries are zero. A set bit indicates that the appropriate block was copied
from the snapped file system to the snapshot. In this case, the appropriate position
in the blockmap references the copied block.

The blockmap contains one entry for each block on the snapped file system. Initially,
all entries are zero. When a block is copied from the snapped file system to the
snapshot, the appropriate entry in the blockmap is changed to contain the block
number on the snapshot file system that holds the data from the snapped file system.

The data blocks are filled by data copied from the snapped file system, starting
from the beginning of the data block area.

Differences between snapshots and Storage
Checkpoints

While snapshots and Storage Checkpoints both create a point-in-time image of a
file system and only the changed data blocks are updated, there are significant
differences between the two technologies:

678Administering snapshot file systems
Differences between snapshots and Storage Checkpoints

Table 26-1 Differences between snapshots and Storage Checkpoints

Storage CheckpointsSnapshots

Reside on the same device as the original file
system

Require a separate device for storage

Can be read-only or read-writeAre read-only

Are persistentAre transient

Can exist and be mounted on their ownCease to exist after being unmounted

Track changed blocks on each file in the file
system

Track changed blocks on the file system level

Storage Checkpoints also serve as the enabling technology for two other Veritas
features: Block-Level Incremental Backups and Storage Rollback, which are used
extensively for backing up databases.

See “About Storage Checkpoints” on page 650.

Creating a snapshot file system
You create a snapshot file system by using the -o snapof= option of the mount

command. The -o snapsize= option may also be required if the device you are
mounting does not identify the device size in its disk label, or if you want a size
smaller than the entire device.

You must make the snapshot file system large enough to hold any blocks on the
snapped file system that may be written to while the snapshot file system exists. If
a snapshot runs out of blocks to hold copied data, the snapshot is disabled and
further attempts to access the snapshot file system fail.

During periods of low activity (such as nights and weekends), a snapshot typically
requires about two to six percent of the blocks of the snapped file system. During
a period of high activity, the snapshot of a typical file system may require 15 percent
of the blocks of the snapped file system. Most file systems do not turn over 15
percent of data in a single day. These approximate percentages tend to be lower
for larger file systems and higher for smaller file systems. You can allocate blocks
to a snapshot based on characteristics such as file system usage and duration of
backups.

Warning: Any existing data on the device used for the snapshot is overwritten.

679Administering snapshot file systems
Creating a snapshot file system

To create a snapshot file system

◆ Mount the file system with the -o snapof= option:

mount -t vxfs -o ro,snapof=/ \

snapped_mount_point_mnt, snapsize=snapshot_size \

snapshot_special snapshot_mount_point

Examples of creating snapshot file systems
In the following examples, the vxdump utility is used to ascertain whether
/dev/rdsk/fsvol/vol1 is a snapshot mounted as /backup/home and does the
appropriate work to get the snapshot data through the mount point.

These are typical examples of making a backup of a 300,000 block file system
named /home using a snapshot file system on a Volume Manager volume with a
snapshot mount point of /backup/home.

To create a backup using a snapshop file system

1 To back up files changed within the last week using cpio:

mount -t vxfs -o snapof=/home,snapsize=100000 \

/dev/vx/dsk/fsvol/vol1 /backup/home

cd /backup

find home -ctime -7 -depth -print | cpio -oc > /dev/st1

umount /backup/home

2 To do a level 3 backup of /dev/vx/rdsk/fsvol/vol1 and collect those files
that have changed in the current directory:

vxdump 3f - /dev/vx/rdsk/fsvol/vol1 | vxrestore -xf -

3 To do a full backup of /home, which exists on disk /dev/vx/rdsk/fsvol/vol1,
and use dd to control blocking of output onto tape device using vxdump:

mount -t vxfs -o snapof=/home,snapsize=100000 \

/dev/vx/dsk/fsvol/vol1 /backup/home

vxdump f - /dev/vx/rdsk/fsvol/vol1 | dd bs=128k > /dev/st1

680Administering snapshot file systems
Examples of creating snapshot file systems

Optimizing storage with
Storage Foundation Cluster
File System High Availability

■ Chapter 27. Understanding storage optimization solutions in Storage Foundation
Cluster File System High Availability

■ Chapter 28. Migrating data from thick storage to thin storage

■ Chapter 29. Maintaining Thin Storage with Thin Reclamation

8Section

Understanding storage
optimization solutions in
Storage Foundation
Cluster File System High
Availability

This chapter includes the following topics:

■ About thin provisioning

■ About thin optimization solutions in Storage Foundation Cluster File System
High Availability

■ About SmartMove

■ About the Thin Reclamation feature

■ About reclaiming space on Solid State Devices (SSDs) with the TRIM operation

■ Determining when to reclaim space on a thin reclamation LUN

■ How automatic reclamation works

About thin provisioning
Thin provisioning is a storage array feature that optimizes storage use by allocating
and reclaiming the storage on demand. With thin provisioning, the array allocates
storage to applications only when the storage is needed, from a pool of free storage.

27Chapter

Thin provisioning solves the problem of under-utilization of available array capacity.
Administrators do not have to estimate how much storage an application requires.
Instead, thin provisioning lets administrators provision large thin or thin reclaim
capable LUNs to a host. When the application writes data, the physical storage is
allocated from the free pool on the array to the thin-provisioned LUNs.

The two types of thin provisioned LUNs are thin-capable or thin-reclaim capable.
Both types of LUNs provide the capability to allocate storage as needed from the
free pool. For example, storage is allocated when a file system creates or changes
a file. However, this storage is not released to the free pool when files get deleted.
Therefore, thin-provisioned LUNs can become 'thick' over time, as the file system
starts to include unused free space where the data was deleted. Thin-reclaim
capable LUNs address this problem with the ability to release the once-used storage
to the pool of free storage. This operation is called thin storage reclamation.

The thin-reclaim capable LUNs do not perform the reclamation automatically. The
server using the LUNs must initiate the reclamation. The administrator can initiate
a reclamation manually, or with a scheduled reclamation operation.

Storage Foundation Cluster File System High Availability provides several features
to support thin provisioning and thin reclamation, and to optimize storage use on
thin provisioned arrays.

See “About SmartMove” on page 684.

About thin optimization solutions in Storage
Foundation Cluster File System High Availability

Array-based options like Thin Storage and Thin Provisioning help storage
administrators to meet the challenges in managing their storage. These challenges
include provisioning the storage, migrating data to maximize storage utilization, and
maintaining the optimum storage utilization. Several features of Storage Foundation
Cluster File System High Availability work together with the array functionality to
solve these challenges.

Table 27-1 lists the Storage Foundation Cluster File System High Availability features
and benefits relating to thin storage.

683Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
About thin optimization solutions in Storage Foundation Cluster File System High Availability

Table 27-1 Thin storage solutions in Storage Foundation Cluster File System
High Availability

BenefitsDescriptionFeature

Maximizes use of thin
storage.

See “About SmartMove”
on page 684.

Improves performance for
copy operations.

Enables migration from thick
LUNs to thin provisioned
LUNs.

See “Migrating to thin
provisioning” on page 689.

The SmartMove feature
moves or copies only blocks
in use by the Veritas File
System

SmartMove

Recognizes and displays thin
attributes for thin disks.

Storage Foundation Cluster
File System High Availability
provides discovery for thin
storage devices.

Thin disk discovery

Improves storage utilization
and savings.

See “About the Thin
Reclamation feature”
on page 685.

Thin reclamation commands
enable you to reclaim space
on a file system, disk, disk
group, or enclosure level.

Thin Reclamation

About SmartMove
Storage Foundation Cluster File System High Availability provides the SmartMove
utility to optimize move and copy operations. The SmartMove utility leverages the
knowledge that Veritas File System (VxFS) has of the Veritas Volume Manager
(VxVM) storage. VxFS lets VxVM know which blocks have data. When VxVM
performs an operation that copies or moves data, SmartMove enables the operation
to only copy or move the blocks used by the file system. This capability improves
performance for synchronization, mirroring, and copying operations because it
reduces the number of blocks that are copied. SmartMove only works with VxFS
file systems that are mounted on VxVM volumes. If a file system is not mounted,
the utility has no visibility into the usage on the file system.

SmartMove is not used for volumes that have instant snapshots.

684Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
About SmartMove

The SmartMove operation also can be used to migrate data from thick storage to
thin-provisioned storage. Because SmartMove copies only blocks that are in use
by the file system, the migration process results in a thin-provisioned LUN.

SmartMove for thin provisioning
Storage Foundation Cluster File System High Availability uses the SmartMove
feature for thin provisioning. SmartMove enables you to migrate storage from thick
storage to thin storage. SmartMove provides the ability to maintain the intent of thin
provisioning.

Without SmartMove, synchronization between disks copies the entire storage that
is allocated to Veritas File System (VxFS) and Veritas Volume Manager (VxVM).
Synchronizing or resynchronizing a volume, plex, or subdisk can lead to unused
space being allocated on the thin disk. Over time, normal operations cause the
storage to become thick. With SmartMove, the disk synchronization copies only
blocks that are actually in use at the file system level. This behavior prevents unused
space from being allocated when a disk is synchronized or resynchronized. The
disks stay thin.

The SmartMove feature is enabled for all disks by default. To take advantage of
thin provisioning, SmartMove must be enabled at least for thin disks.

About the Thin Reclamation feature
Veritas Storage Foundation Cluster File System High Availability supports
reclamation of the unused storage on thin-reclamation capable arrays. Storage
Foundation Cluster File System High Availability automatically discovers LUNs that
support thin reclamation.

A Veritas File System (VxFS) file system can be mounted on a Veritas Volume
Manager (VxVM) volume that is backed by a thin-capable array. The size of the
VxVM volume is a virtual size, that is backed by the free storage pool. When files
are created or changed, storage is physically allocated to the file system from the
array. If the files on the file system are deleted or shrunk in size, the space is freed
from the file system usage. However, the space is not removed from the physical
allocation. Over time, the physical space allocated to the file system is greater than
the actual space used by the file system. The thin LUN eventually becomes 'thick',
as the physical space allocated nears the size of the LUN.

The Thin Reclamation feature provides the ability to release this unused space
back to the thin pool. Storage Foundation Cluster File System High Availability uses
the VxFS allocation tables to identify unused blocks. VxVM maps this information
about unused blocks down to the disk, enabling VxVM to return those blocks to the
free pool. If the VxFS file system is not mounted, VxVM has no visibility into the file

685Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
About the Thin Reclamation feature

system usage. Therefore, it is critical that the file system is mounted when you
perform a reclamation. The operation of reclamation can be done on a disk group,
LUN, enclosure, or file system.

VxVM reclaims space automatically when you delete a volume or remove a plex.
The automatic reclamation is asynchronous, so that the space is not reclaimed at
the array level immediately. The disk is marked as pending reclamation. You cannot
remove a disk from VxVM until the reclamation completes. You can control the
timing and frequency of the automatic reclamation.

About reclaiming space on Solid State Devices
(SSDs) with the TRIM operation

File systems that create and remove files often reuse storage blocks by overwriting
a storage block with new contents. A Solid State Drive (SSD) device cannot overwrite
a block of storage without erasing it first. This behavior causes a performance cost
for writes to the previously used blocks, when compared to writes to unused or
erased blocks. To avoid this cost, the TRIM operation informs the SSD which blocks
of data are no longer in use and can be erased. The SSDs erase the unused blocks
before the blocks are required for reuse, which improves the performance of the
future write I/Os to the SSD. The TRIM operation also reduces wear leveling and
fragmentation, because unused blocks are erased. The unused data does not get
moved during a garbage collection or a cleaning cycle.

In this release, SFCFSHA supports the TRIM operation for Fusion-io devices for
Red Hat Linux 6.0 (RHEL6) and SUSE Linux Enterprise Server 11 (SLES11).

See the Fusion-io documentation for the firmware version requirements for TRIM
support.

The SFCFSHA components, Veritas File System (VxFS) and Veritas Volume
Manager (VxVM), use the TRIM operation to free up the blocks that do not contain
valid data. The TRIM capability is similar to thin reclamation, and is performed with
the same commands. The default SFCFSHA reclamation commands perform TRIM
for SSDs and thin reclamation for Thin Reclaimable LUNs. For file systems and
volumes that use both SSDs and Thin Reclaimable LUNs, you can choose whether
SFCFSHA performs only a TRIM operation, only a thin reclamation, or both.

See “Reclaiming space on a disk, disk group, or enclosure” on page 701.

See “Reclaiming space on a file system” on page 699.

To display information about SSDs, use the vxdisk -o ssd list command.
SFCFSHA can also discover and display the disk space usage for Veritas File
System (VxFS) file systems on SSDs. The VxFS file systems must be mounted on

686Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
About reclaiming space on Solid State Devices (SSDs) with the TRIM operation

Veritas Volume Manager (VxVM) volumes. Use the vxdisk -o ssd -o fssize

list command.

See the vxdisk(1M) manual page.

Determining when to reclaim space on a thin
reclamation LUN

When a thin LUN is used as a Veritas Volume Manager disk, the space is allocated
only on an application write. Storage space is allocated from the free pool when
files are created and written to in the file system. However, this storage is not
automatically released to the free pool when data is deleted from a file system. As
a result, all thin LUNs have a tendency to become thicker over time, with increased
amounts of wasted storage (storage that is allocated but does not support application
data).

As a storage administrator, you need to determine when to trigger the thin
reclamation. The thin reclamation process can be time consuming, depending on
various factors such as the size and fragmentation of the file system. The decision
is a balance between how much space can be reclaimed, and how much time the
reclaim operation will take.

The following considerations may apply:

■ For a VxFS file system mounted on a VxVM volume, compare the file system
usage to the actual physical allocation size to determine if a reclamation is
desirable. If the file system usage is much smaller than the physical allocation
size, it indicates that a lot of space can potentially be reclaimed. You may want
to trigger a file system reclamation. If the file system usage is close to the
physical allocation size, it indicates that the physical allocation is being used
well. You may not want to trigger a reclamation.
See “Displaying VxFS file system usage on thin reclamation LUNs” on page 696.

■ The array may provide notification when the storage pool usage has reached a
certain threshold. You can evaluate whether you can reclaim space with Storage
Foundation Cluster File System High Availability to free more space in the
storage pool.

■ Deleted volumes are reclaimed automatically. You can customize the schedule
for automatic reclamation.
See “Configuring automatic reclamation” on page 705.

687Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
Determining when to reclaim space on a thin reclamation LUN

How automatic reclamation works
On thin-reclamable arrays, storage that is no longer in use needs to be reclaimed
by the array. Storage Foundation Cluster File System High Availability automatically
reclaims the space on the array for certain admimistrative operations, as follows:

■ Deleting a volume.

■ Removing a mirror.

■ Shrinking a volume.

■ Removing a log.

■ Creating or growing a volume with the init=zero option.

The process of reclaiming storage on an array can be intense on the array. To avoid
any effect on regular I/O's to the array, Storage Foundation Cluster File System
High Availability performs the reclaim operation asynchronously. The disk is flagged
as pending reclamation. The vxrelocd (or recovery) daemon asynchronously
reclaims the disks marked for reclamation at a future time. By default, the vxrelocd

daemon runs every day at 22:10 hours, and reclaims storage on the deleted volumes
or plexes that are one day old.

To display the disks that are pending reclamation, use the following command:

vxprint -z

You can configure the automatic reclamation to reclaim immediately, or to schedule
the asynchronous reclamation.

See “Configuring automatic reclamation” on page 705.

You can also trigger a reclamation manually for a disk, disk group or enclosure.
This operation also reclaims any disks flagged as pending reclamation.

See “Reclaiming space on a disk, disk group, or enclosure” on page 701.

688Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
How automatic reclamation works

Migrating data from thick
storage to thin storage

This chapter includes the following topics:

■ About using SmartMove to migrate to Thin Storage

■ Migrating to thin provisioning

About using SmartMove to migrate to Thin
Storage

If you have existing data on a thick LUN, the SmartMove feature enables you to
migrate the data to a thin LUN. The migration process copies only the blocks in use
by the Veritas File System (VxFS) to the thin LUN. The SmartMove feature leverages
the Veritas File System (VxFS) information about which blocks in a Veritas Volume
Manager (VxVM) volume contain data. Therefore, the migration functionality is
available only when a VxVM volume is on a mounted VxFS file system.

To migrate the data to the thin LUN, follow the recommended procedure.

See “Migrating to thin provisioning” on page 689.

Migrating to thin provisioning
The SmartMove™ feature enables migration from traditional LUNs to thinly
provisioned LUNs, removing unused space in the process.

28Chapter

To migrate to thin provisioning

1 Check if the SmartMove feature is enabled.

vxdefault list

KEYWORD CURRENT-VALUE DEFAULT-VALUE

usefssmartmove all all

...

If the output shows that the current value is none, configure SmartMove for all
disks or thin disks.

See “Configuring SmartMove ” on page 877.

2 Add the new, thin LUNs to the existing disk group. Enter the following
commands:

vxdisksetup -i da_name

vxdg -g datadg adddisk da_name

where da_name is the disk access name in VxVM.

3 To identify LUNs with the thinonly or thinrclm attributes, enter:

vxdisk -o thin list

4 Add the new, thin LUNs as a new plex to the volume.

NOTE: The VxFS file system must be mounted to get the benefits of the
SmartMove feature.

The following methods are available to add the LUNs:

■ Use the default settings for the vxassist command:

vxassist -g datadg mirror datavol da_name

■ Specify the vxassist command options for faster completion. The -b option
copies blocks in the background. The following command improves I/O
throughput:

vxassist -b -oiosize=1m -t thinmig -g datadg mirror \

datavol da_name

To view the status of the command, use the vxtask command:

vxtask list

TASKID PTID TYPE/STATE PCT PROGRESS

211 ATCOPY/R 10.64% 0/20971520/2232320 PLXATT vol1 vol1-02 xivdg smartmove

690Migrating data from thick storage to thin storage
Migrating to thin provisioning

212 ATCOPY/R 09.88% 0/20971520/2072576 PLXATT vol1 vol1-03 xivdg smartmove

219 ATCOPY/R 00.27% 0/20971520/57344 PLXATT vol1 vol1-04 xivdg smartmove

vxtask monitor 211

TASKID PTID TYPE/STATE PCT PROGRESS

211 ATCOPY/R 50.00% 0/20971520/10485760 PLXATT vol1 vol1-02 xivdg smartmove

211 ATCOPY/R 50.02% 0/20971520/10489856 PLXATT vol1 vol1-02 xivdg smartmove

211 ATCOPY/R 50.04% 0/20971520/10493952 PLXATT vol1 vol1-02 xivdg smartmove

211 ATCOPY/R 50.06% 0/20971520/10498048 PLXATT vol1 vol1-02 xivdg smartmove

211 ATCOPY/R 50.08% 0/20971520/10502144 PLXATT vol1 vol1-02 xivdg smartmove

211 ATCOPY/R 50.10% 0/20971520/10506240 PLXATT vol1 vol1-02 xivdg smartmove

■ Specify the vxassist command options to reduce the effect on system
performance. The following command takes longer to complete:

vxassist -oslow -g datadg mirror datavol da_name

5 Optionally, test the performance of the new LUNs before removing the old
LUNs.

To test the performance, use the following steps:

■ Determine which plex corresponds to the thin LUNs:

vxprint -g datadg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg datadg datadg - - - - - -

dm THINARRAY0_02 THINARRAY0_02 - 83886080 - - - -

dm STDARRAY1_01 STDARRAY1_01 - 41943040 - -OHOTUSE - -

v datavol fsgen ENABLED 41943040 - ACTIVE - -

pl datavol-01 datavol ENABLED 41943040 - ACTIVE - -

sd STDARRAY1_01-01 datavol-01 ENABLED 41943040 0 - - -

pl datavol-02 datavol ENABLED 41943040 - ACTIVE - -

sd THINARRAY0_02-01 datavol-02 ENABLED 41943040 0 - - -

The example output indicates that the thin LUN corresponds to plex
datavol-02.

■ Direct all reads to come from those LUNs:

vxvol -g datadg rdpol prefer datavol datavol-02

691Migrating data from thick storage to thin storage
Migrating to thin provisioning

6 Remove the original non-thin LUNs.

Note: The ! character is a special character in some shells. This example
shows how to escape it in a bash shell.

vxassist -g datadg remove mirror datavol \!STDARRAY1_01

vxdg -g datadg rmdisk STDARRAY1_01

vxdisk rm STDARRAY1_01

7 Grow the file system and volume to use all of the larger thin LUN:

vxresize -g datadg -x datavol 40g da_name

692Migrating data from thick storage to thin storage
Migrating to thin provisioning

Maintaining Thin Storage
with Thin Reclamation

This chapter includes the following topics:

■ Reclamation of storage on thin reclamation arrays

■ Identifying thin and thin reclamation LUNs

■ Displaying VxFS file system usage on thin reclamation LUNs

■ Reclaiming space on a file system

■ Reclaiming space on a disk, disk group, or enclosure

■ About the reclamation log file

■ Monitoring Thin Reclamation using the vxtask command

■ Configuring automatic reclamation

Reclamation of storage on thin reclamation arrays
Veritas Storage Foundation Cluster File System High Availability supports
reclamation of the unused storage on thin-reclamation capable arrays and LUNs.
Storage Foundation Cluster File System High Availability can reclaim blocks in a
Veritas File System (VxFS) file system that is mounted on a Veritas Volume Manager
(VxVM) volume.

The thin reclamation feature is supported only for LUNs that have the thinrclm

attribute. VxVM automatically discovers LUNs that support thin reclamation from
thin capable storage arrays. You can list devices that are known to have the thin

or thinrclm attributes on the host.

See “Identifying thin and thin reclamation LUNs ” on page 695.

29Chapter

For a list of the storage arrays that support thin reclamation, see the Symantec
Hardware Compatibility List (HCL):

http://www.symantec.com/docs/TECH170013

Thin reclamation is not supported for boot devices.

You can use the thin reclamation feature in the following ways:

■ Space is reclaimed automatically when a volume is deleted. Because it is
asynchronous, you may not see the reclaimed space immediately.

■ Perform the reclamation operation on a disk group, LUN, or enclosure using the
vxdisk command.
See “Reclaiming space on a disk, disk group, or enclosure” on page 701.

■ Perform the reclamation operation on a Veritas File System (VxFS) file system
using the fsadm command.
See “Reclaiming space on a file system” on page 699.

About Thin Reclamation of a disk, a disk group, or an enclosure
Storage Foundation Cluster File System High Availability provides the ability to
reclaim unused space on thin-provisioned arrays, without needing to stop application
I/O. The Veritas File System (VxFS) file system must be mounted.

You can trigger thin reclamation on one or more disks, disk groups, or enclosures.
The reclamation process scans the specified storage for the VxVM volumes that
have a mounted VxFS file system. Each volume is analyzed for any previously
allocated space that the VxFS file system no longer uses. The unused space is
released to the free storage pool on the thin array. The reclamation skips any
volumes that do not have a mounted VxFS file system. The reclamation process
also releases the space for any volumes or plexes that are marked as pending
reclamation.

By default, the reclamation command also performs the TRIM operation if the
specified storage is on Solid State Devices (SSDs).

See “About reclaiming space on Solid State Devices (SSDs) with the TRIM
operation” on page 686.

A full reclamation process also scans the specified storage for free space that is
outside of the VxVM volumes.

Thin Reclamation takes a considerable amount of time when you reclaim thin storage
on a large number of LUNs or an enclosure or disk group. As with other long-running
operations, VxVM creates a task for a reclaim operation. You can monitor the reclaim
operation with the vxtask command.

See “Monitoring Thin Reclamation using the vxtask command” on page 704.

694Maintaining Thin Storage with Thin Reclamation
Reclamation of storage on thin reclamation arrays

http://www.symantec.com/docs/TECH170013

About Thin Reclamation of a file system
Veritas File System (VxFS) supports reclamation of free storage on a Thin Storage
LUN. Free storage is reclaimed using the fsadm command. You can perform the
default reclamation or aggressive reclamation. If you used a file system for a long
time and must perform reclamation on the file system, Symantec recommends that
you run aggressive reclamation. Aggressive reclamation compacts the allocated
blocks, which creates larger free blocks that can potentially be reclaimed.

See the fsadm_vxfs(1M) manual page.

Thin Reclamation is only supported on file systems mounted on a VxVM volume.

Thin Reclamation is not supported for file systems mounted on RAID5 volumes.

Veritas File System also supports reclamation of a portion of the file system using
the vxfs_ts_reclaim() API.

See the vxfs_ts_reclaim(3) manual page and the Veritas File System
Programmer's Reference Guide.

Note: Thin Reclamation is a slow process and may take several hours to complete,
depending on the file system size. Thin Reclamation is not guaranteed to reclaim
100% of the free space.

You can track the progress of the Thin Reclamation process by using the vxtask

list command when using the Veritas Volume Manager (VxVM) command vxdisk

reclaim.

See the vxtask(1M) and vxdisk(1M) manual pages.

You can administer Thin Reclamation using VxVM commands.

Identifying thin and thin reclamation LUNs
Using Veritas Dynamic Multi-Pathing (DMP), Storage Foundation Cluster File System
High Availability automatically discovers thin devices that have been recognized
on the host as thin or thinrclm. DMP uses the Veritas array support libraries
(ASLs) to recognize vendor-specific thin attributes and claim devices accordingly
as thin or thinclm.

Thin devices that are classified as thin are capable of thin provisioning. Veritas
Thin Reclamation only works on devices with the thinrclm attribute set. Before
performing thin reclamation, determine whether the system recognizes the LUN as
a thinrclm host.

695Maintaining Thin Storage with Thin Reclamation
Identifying thin and thin reclamation LUNs

To identify devices on a host that are known to have the thin or thinrclm attributes,
use the vxdisk -o thin list command. The vxdisk -o thin list command
also reports on the size of the disk, and the physical space that is allocated on the
array.

To identify thin and thinrclm LUNs

◆ To identify all of the thin or thinrclm LUNs that are known to a host, use the
following command:

vxdisk -o thin list

DEVICE SIZE(mb) PHYS_ALLOC(mb) GROUP TYPE

hitachi_usp0_065a 10000 84 - thinrclm

hitachi_usp0_065b 10000 110 - thinrclm

hitachi_usp0_065c 10000 74 - thinrclm

hitachi_usp0_065d 10000 50 - thinrclm

.

.

.

hitachi_usp0_0660 10000 672 thindg thinrclm

emc_clariion0_48 30720 N/A - thin

emc_clariion0_49 30720 N/A - thin

emc_clariion0_50 30720 N/A - thin

emc_clariion0_51 30720 N/A - thin

In the output, the SIZE column shows the size of the disk. The PHYS_ALLOC
column shows the physical allocation on the array side. The TYPE indicates
whether the array is thin or thinrclm.

See the vxdisk(1m) manual page.

Displaying VxFS file system usage on thin
reclamation LUNs

Storage Foundation Cluster File System High Availability can discover and display
the disk space usage for Veritas File System (VxFS) file systems on thin or
thinrclm devices. The VxFS file systems must be mounted on Veritas Volume
Manager (VxVM) volumes. The usage information can help you decide when to
perform thin reclamation of a file system.

See “Determining when to reclaim space on a thin reclamation LUN” on page 687.

To report the disk space usage for mounted VxFS file systems on VxVM volumes,
use the vxdisk -o thin -o fssize list command. The command displays the
amount of disk space that currently contains files and is actively in use by the VxFS

696Maintaining Thin Storage with Thin Reclamation
Displaying VxFS file system usage on thin reclamation LUNs

file system. The usage does not include any space that is allocated to the file system
but was freed by deleting files. If more than one mounted VxFS file system uses
the device, the file system usage column displays the consolidated space usage.

The following limitations apply to the command to display file system usage:

■ The -o fssize option does not display the space used by cache objects or
instant snapshots.

■ RAID5 format is not supported.

■ If the VxFS file system is not mounted, or if the device has both mounted and
unmounted VxFS file systems, no information is displayed. The file system
usage (FS_USAGE) column displays a dash (-).

You can display the size and usage for all thin or thinrclm LUNs, or specify an
enclosure name or a device name. If you specify one or more devices or enclosures,
the command displays only the space usage on the specified devices. If the specified
device is not a thin device or thinrclm device, the device is listed but the
FS_USAGE column displays a dash (-).

If a VxFS file system spans multiple devices, you must specify all of the devices to
display the entire file system usage. If you specify only some of the devices, the
file system usage is incomplete. The command ignores the file system usage on
any devices that are not specified.

Note: The command can potentially take a long time to complete depending on the
file system size, the level of fragmentation, and other factors. The command creates
a task that you can monitor with the vxtask command.

The command output displays the following information.

The size of the disk; that is, the size that is presented to the
file system. This size represents the virtual size rather than
the actual physical space used on the device.

SIZE

The physical allocation on the array side. This size represents
the physical space that is allocated as the application writes
to the file system. When the files are deleted or changed, the
physical space remains allocated until a reclamation is
performed. In this case, the physical size includes some
unused space.

PHYS_ALLOC

697Maintaining Thin Storage with Thin Reclamation
Displaying VxFS file system usage on thin reclamation LUNs

The physical space Veritas File System (VxFS) file systems
are using. The VxFS file systems must be mounted on VxVM
volumes. The information is displayed only for thin
provisioning capable (thin) or thin reclamation capable
(thinrclm) LUNs.

FS_USAGE

The disk group that contains the disk.GROUP

The type of thin devices – thin provisioning capable (thin) or
thin reclamation capable (thinrclm). The vxdisk -o thin
list command displays thick disks only if you explicitly
specify the disk name on the command line.

TYPE

698Maintaining Thin Storage with Thin Reclamation
Displaying VxFS file system usage on thin reclamation LUNs

To display file system usage on all thin LUNs

◆ To display the file system usage on all thin or thinrclm LUNs known to the
system, use the following command:

$ vxdisk -o thin,fssize [-u unit] list

Where unit is a size unit for the display. For example:

$ vxdisk -o thin,fssize -u m list

DEVICE SIZE PHYS_ALLOC FS_USAGE GROUP TYPE

emc0_428a 16384.00m 6335.00m 610.00m mydg thinrclm

emc0_428b 16384.00m 3200.00m 22.00m mydg thinrclm

emc0_4287 16384.00m 6233.00m 617.00m mydg thinrclm

emc0_4288 16384.00m 1584.00m 1417.00m mydg thinrclm

emc0_4289 16384.00m 2844.00m 1187.00m mydg thinrclm

xiv0_030f 16384.00m 2839.00m 1223.00m xivdg thinrclm

xiv0_0307 16384.00m 666.00m 146.00m xivdg thinrclm

xiv0_0308 16384.00m 667.00m 147.00m xivdg thinrclm

xiv0_0309 16384.00m 3.00m - - thinrclm

xiv0_0310 16384.00m 30.00m - - thinrclm

Or, to display the file system usage on a specific LUN or enclosure, use the
following form of the command:

$ vxdisk -o thin,fssize list [-u unit] disk|enclosure

For example:

$ vxdisk -o thin,fssize list emc0

DEVICE SIZE(mb) PHYS_ALLOC(mb) FS_USAGE(mb) GROUP TYPE

emc0_428a 16384 6335 610 mydg thinrclm

emc0_428b 16384 6335 624 mydg thinrclm

emc0_4287 16384 6335 617 mydg thinrclm

emc0_4288 16384 1584 617 mydg thinrclm

emc0_4289 16384 2844 1187 mydg thinrclm

Reclaiming space on a file system
Table 29-1 lists the fsadm command options that administer thin reclamation.

699Maintaining Thin Storage with Thin Reclamation
Reclaiming space on a file system

Table 29-1 fsadm options for administering thin reclamation

DescriptionOption

Initiates Thin Storage aggressive reclamation.
Aggressive reclamation is not supported on
SSD devices.

-o aggressive | -A

Initiates the analyze reclaim option.-o analyse|analyze

Initiates the auto reclaim option.-o auto

Initiates the TRIM command on an underlying
SSD trim-capable device.

-o ssd

Initiates thin reclamation on the underlying
Thin Reclaim-capable device.

-o thin

Performs multi-threaded Thin Storage
reclamation. By default, the fsadm command
performs single-threaded Thin Storage
reclamation. To use multi-threaded Thin
Storage Reclamation, the array must support
multiple concurrent reclaim operations.

-P

Performs reclamation of free storage to the
Thin Storage LUN on a VxFS file system .

-R

See the fsadm_vxfs(1M) manual page.

To perform aggressive space reclamation

1 Ensure you mounted the VxFS file system.

See the mount(1M) manual page.

If you must mount the VxFS file system, see the mount_vxfs(1M) manual page.

2 Perform aggressive reclamation of free storage to the Thin Storage LUN on
the VxFS file system that is mounted at /mnt1:

/opt/VRTS/bin/fsadm -R -o aggressive /mnt1

700Maintaining Thin Storage with Thin Reclamation
Reclaiming space on a file system

To perform space reclamation

1 Ensure you mounted the VxFS file system.

See the mount(1M) manual page.

If you must mount the VxFS file system, see the mount_vxfs(1M) manual page.

2 Perform space reclamation on the VxFS file system that is mounted at /mnt1:

/opt/VRTS/bin/fsadm -t vxfs -R /mnt1

Reclaiming space on a disk, disk group, or
enclosure

Use the vxdisk reclaim command to trigger online Thin Reclamation on one or
more disks, disk groups, or enclosures. By default, the vxdisk reclaim command
performs Thin Reclamation on the disks where the VxVM volume is on a “mounted”
VxFS file system. The reclamation skips disks that do not have a VxFS file system
mounted. Thin reclamation is not supported for RAID-5 volumes, or for instant
snapshots.

Storage Foundation Cluster File System High Availability logs the statistics for
reclamation events in the /etc/vx/log/reclaim_log file.

See “About the reclamation log file” on page 703.

By default, the commands below also perform TRIM reclamation if the specified
disks are Solid State Devices (SSDs). In this release, the TRIM operation is
supported only for Fusion-io devices on Red Hat Linux 6 (RHEL6) and SUSE Linux
Enterprise Server 11 (SLES11).

Reclaiming space on a disk

◆ Use the following command to trigger reclamation:

vxdisk reclaim [disk...]

For example, to trigger reclamation on LUNs hitachi_usp0_065a and
hitachi_usp0_065b:

vxdisk reclaim hitachi_usp0_065a hitachi_usp0_065b

In the above example, suppose the hitachi_usp0_065a contains a VxVM volume
vol1 with a VxFS file system. If the VxFS file system is not mounted, the
command skips reclamation for hitachi_usp0_065a. The command scans
hitachi_usp0_065b, and reclaims any unused space.

701Maintaining Thin Storage with Thin Reclamation
Reclaiming space on a disk, disk group, or enclosure

Performing an aggressive space reclamation on a disk

◆ Use the following command to trigger reclamation:

vxdisk -o full reclaim [disk...]

For example, to trigger reclamation on LUNs hitachi_usp0_065a:

vxdisk -o full reclaim hitachi_usp0_065a

In the above example, suppose the hitachi_usp0_065a contains a VxVM volume
vol1 with a VxFS file system mounted. With the -o full option, the above
command scans hitachi_usp0_065a for unused space outside of the vol1, and
reclaims any unused space found. For example, if there is space between
subdisks, it is reclaimed.

Reclaiming space on an SSD disk

◆ Use the following command to trigger TRIM operation:

vxdisk [-o ssd] reclaim [disk...]

For example, to trigger TRIM on fusionio0_0 and fusionio0_2:

vxdisk reclaim fusionio0_0 fusionio0_2

Reclaiming space on a disk group

◆ Use the following command to trigger reclamation:

vxdisk [-o ssd | -o thin] reclaim diskgroup

For example, to trigger reclamation on the disk group oradg:

vxdisk reclaim oradg

If the disk group contains both SSDs and Thin Reclamation LUNs, you can
use the -o ssd option to perform only the TRIM operation. Use the -o thin

option to perform only the thin reclamation.

Reclaiming space on an enclosure

◆ Use the following command to trigger reclamation:

vxdisk reclaim enclosure

For example, to trigger reclamation on the enclosure=EMC_CLARiiON0:

vxdisk reclaim EMC_CLARiiON0

702Maintaining Thin Storage with Thin Reclamation
Reclaiming space on a disk, disk group, or enclosure

You can turn off TRIM functionalty or thin reclamation for a specific device with the
following command:

vxdisk set reclaim=off disk

See the vxdisk(1M) manual page.

About the reclamation log file
Storage Foundation Cluster File System High Availability logs the statistics for
reclamation events in the /etc/vx/log/reclaim_log file. Table 29-2 describes
the fields in the reclamation log file.

For Veritas Volume Replicator (VVR), reclamation logging only happens for the
local node.

Table 29-2 The reclamation log file fields

DescriptionLOG fields

The start time of the reclamation task.START_TIME

The time taken to complete the reclamation task.DURATION

The disk group name associated with the subdisk. For TYPE=GAP, the
disk group value may be NULL value.

DISKGROUP

The volume associated with the subdisk. If a volume is not associated
with the subdisk, the value is NULL.

VOLUME

The disk associated with the subdisk.DISK

The subdisk name for which the reclamation operation is performed.SUBDISK

The starting offset of the subdisk.OFFSET

The total length of the subdisk.LEN

The physical allocation before the reclamation task.PA_BEFORE

The physical allocation after the reclamation task.PA_AFTER

The type for the reclamation operation. The value is one of the following:

■ GAP: reclaim the gap between the subdisks
■ SD: reclaim the subdisk
■ FULL: reclaim the full LUN on disk with no DG present
■ VXFS: reclaim a mounted VxFS file system.

TYPE

703Maintaining Thin Storage with Thin Reclamation
About the reclamation log file

Table 29-2 The reclamation log file fields (continued)

DescriptionLOG fields

Whether the reclamation operation succeeded or not.

In case of failure, the STATUS also displays the error code.

When an object such as a volume or plex is removed, the status is
logged as "Pending."

STATUS

Monitoring Thin Reclamation using the vxtask
command

The thin reclamation can be an intensive operation that may be time consuming,
depending on the size of the disk and the amount of space to be reclaimed. As with
other long-running tasks, you can monitor the operation with the vxtask command.

To monitor thin reclamation

1 Initiate the thin reclamation as usual, for a disk, disk group, or enclosure.

vxdisk reclaim diskgroup| disk| enclosure

For example:

vxdisk reclaim dg100

2 To monitor the reclamation status, run the following command in another
session:

vxtask monitor

TASKID PTID TYPE/STATE PCT PROGRESS

1258 - RECLAIM/R 17.28% 65792/33447328/5834752 RECLAIM vol4 dg100

1259 - RECLAIM/R 25.98% 0/20971520/5447680 RECLAIM vol2 dg100

1263 - RECLAIM/R 25.21% 0/20971520/5287936 RECLAIM vol3 dg100

1258 - RECLAIM/R 25.49% 0/20971520/3248128 RECLAIM vol4 dg100

1258 - RECLAIM/R 27.51% 0/20971520/3252224 RECLAIM vol4 dg100

1263 - RECLAIM/R 25.23% 0/20971520/5292032 RECLAIM vol3 dg100

1259 - RECLAIM/R 26.00% 0/20971520/5451776 RECLAIM vol2 dg100

704Maintaining Thin Storage with Thin Reclamation
Monitoring Thin Reclamation using the vxtask command

3 If you have multiple tasks, you can use the following command to display the
tasks.

vxtask list

TASKID PTID TYPE/STATE PCT PROGRESS

1258 - RECLAIM/R 17.28% 65792/33447328/5834752 RECLAIM vol4 dg100

1259 - RECLAIM/R 25.98% 0/20971520/5447680 RECLAIM vol2 dg100

1263 - RECLAIM/R 25.21% 0/20971520/5287936 RECLAIM vol3 dg100

4 Use the task id from the above output to monitor the task:

vxtask monitor 1258

TASKID PTID TYPE/STATE PCT PROGRESS

1258 - RECLAIM/R 17.28% 65792/33447328/5834752 RECLAIM vol4 dg100

1258 - RECLAIM/R 32.99% 65792/33447328/11077632 RECLAIM vol4 dg100

1258 - RECLAIM/R 45.55% 65792/33447328/15271936 RECLAIM vol4 dg100

1258 - RECLAIM/R 50.00% 0/20971520/10485760 RECLAIM vol4 dg100

.

.

.

The vxdisk reclaim command runs in another session while you run the
vxtask list command.

See the vxtask(1m) manual page.

Configuring automatic reclamation
The vxrelocd daemon tracks the disks that require reclamation. By default, the
vxrelocd daemon runs everyday at 22:10 hours and reclaims storage on the deleted
volume that are one day old.

To control the schedule for reclamation, use the following tunable parameters:

705Maintaining Thin Storage with Thin Reclamation
Configuring automatic reclamation

Specifies the number of days after a volume
or plex is deleted when VxVM reclaims the
storage space. The value is an integer
between -1 and 367.

The default value is 1, which means the
volume is deleted the next day.

A value of -1 indicates that the storage is
reclaimed immediately.

A value of 367 indicates that the storage
space is not reclaimed automatically. Storage
space can only be reclaimed manually using
the vxdisk reclaim command.

reclaim_on_delete_wait_period

The time of day when VxVM starts the
reclamation for deleted volumes. The value
is any time of day in 24 hour format. (hh:mm)

The default time is 22:10.

reclaim_on_delete_start_time

Change the tunables using the vxdefault command. See the vxdefault(1m)
manual page.

706Maintaining Thin Storage with Thin Reclamation
Configuring automatic reclamation

Maximizing storage
utilization

■ Chapter 30. Understanding storage tiering with SmartTier

■ Chapter 31. Creating and administering volume sets

■ Chapter 32. Multi-volume file systems

■ Chapter 33. Administering SmartTier

■ Chapter 34. Administering hot-relocation

■ Chapter 35. Deduplicating data

■ Chapter 36. Compressing files

9Section

Understanding storage
tiering with SmartTier

This chapter includes the following topics:

■ About SmartTier

■ How the SmartTier policy works with the shared extents

■ SmartTier in a High Availability (HA) environment

About SmartTier
SmartTier matches data storage with data usage requirements. After data matching,
the data can then be relocated based upon data usage and other requirements
determined by the storage or database administrator (DBA).

As more and more data is retained over a period of time, eventually, some of that
data is needed less frequently. The data that is needed less frequently still requires
a large amount of disk space. SmartTier enables the database administrator to
manage data so that less frequently used data can be moved to slower, less
expensive disks. This also permits the frequently accessed data to be stored on
faster disks for quicker retrieval.

Tiered storage is the assignment of different types of data to different storage types
to improve performance and reduce costs. With SmartTier, storage classes are
used to designate which disks make up a particular tier. There are two common
ways of defining storage classes:

■ Performance, or storage, cost class: The most-used class consists of fast,
expensive disks. When data is no longer needed on a regular basis, the data
can be moved to a different class that is made up of slower, less expensive
disks.

30Chapter

■ Resilience class: Each class consists of non-mirrored volumes, mirrored volumes,
and n-way mirrored volumes.
For example, a database is usually made up of data, an index, and logs. The
data could be set up with a three-way mirror because data is critical. The index
could be set up with a two-way mirror because the index is important, but can
be recreated. The redo and archive logs are not required on a daily basis but
are vital to database recovery and should also be mirrored.

SmartTier is a VxFS feature that enables you to allocate file storage space from
different storage tiers according to rules you create. SmartTier provides a more
flexible alternative compared to current approaches for tiered storage. Static storage
tiering involves a manual one- time assignment of application files to a storage
class, which is inflexible over a long term. Hierarchical Storage Management
solutions typically require files to be migrated back into a file system name space
before an application access request can be fulfilled, leading to latency and run-time
overhead. In contrast, SmartTier allows organizations to:

■ Optimize storage assets by dynamically moving a file to its optimal storage tier
as the value of the file changes over time

■ Automate the movement of data between storage tiers without changing the
way users or applications access the files

■ Migrate data automatically based on policies set up by administrators, eliminating
operational requirements for tiered storage and downtime commonly associated
with data movement

Note:SmartTier is the expanded and renamed feature previously known as Dynamic
Storage Tiering (DST).

SmartTier policies control initial file location and the circumstances under which
existing files are relocated. These policies cause the files to which they apply to be
created and extended on specific subsets of a file systems's volume set, known as
placement classes. The files are relocated to volumes in other placement classes
when they meet specified naming, timing, access rate, and storage capacity-related
conditions.

In addition to preset policies, you can manually move files to faster or slower storage
with SmartTier, when necessary. You can also run reports that list active policies,
display file activity, display volume usage, or show file statistics.

SmartTier leverages two key technologies included with Veritas Storage Foundation
Cluster File System High Availability: support for multi-volume file systems and
automatic policy-based placement of files within the storage managed by a file
system. A multi-volume file system occupies two or more virtual storage volumes
and thereby enables a single file system to span across multiple, possibly

709Understanding storage tiering with SmartTier
About SmartTier

heterogeneous, physical storage devices. For example the first volume could reside
on EMC Symmetrix DMX spindles, and the second volume could reside on EMC
CLARiiON spindles. By presenting a single name space, multi-volumes are
transparent to users and applications. This multi-volume file system remains aware
of each volume’s identity, making it possible to control the locations at which
individual files are stored. When combined with the automatic policy-based
placement of files, the multi-volume file system provides an ideal storage tiering
facility, which moves data automatically without any downtime requirements for
applications and users alike.

In a database environment, the access age rule can be applied to some files.
However, some data files, for instance are updated every time they are accessed
and hence access age rules cannot be used. SmartTier provides mechanisms to
relocate portions of files as well as entire files to a secondary tier.

To use SmartTier, your storage must be managed using the following features:

■ VxFS multi-volume file system

■ VxVM volume set

■ Volume tags

■ SmartTier management at the file level

■ SmartTier management at the sub-file level

About VxFS multi-volume file systems
Multi-volume file systems are file systems that occupy two or more virtual volumes.
The collection of volumes is known as a volume set, and is made up of disks or
disk array LUNs belonging to a single Veritas Volume Manager (VxVM) disk group.
A multi-volume file system presents a single name space, making the existence of
multiple volumes transparent to users and applications. Each volume retains a
separate identity for administrative purposes, making it possible to control the
locations to which individual files are directed.

See “About multi-volume file systems” on page 722.

This feature is available only on file systems meeting the following requirements:

■ The minimum disk group version is 140.

■ The minimum file system layout version is 7 for file level SmartTier.

■ The minimum file system layout version is 8 for sub-file level SmartTier.

To convert your existing VxFS system to a VxFS multi-volume file system, you must
convert a single volume to a volume set.

710Understanding storage tiering with SmartTier
About SmartTier

The VxFS volume administration utility (fsvoladm utility) can be used to administer
VxFS volumes. The fsvoladm utility performs administrative tasks, such as adding,
removing, resizing, encapsulating volumes, and setting, clearing, or querying flags
on volumes in a specified Veritas File System.

See the fsvoladm (1M) manual page for additional information about using this
utility.

About VxVM volume sets
Volume sets allow several volumes to be represented by a single logical object.
Volume sets cannot be empty. All I/O from and to the underlying volumes is directed
via the I/O interfaces of the volume set. The volume set feature supports the
multi-volume enhancement to Veritas File System (VxFS). This feature allows file
systems to make best use of the different performance and availability characteristics
of the underlying volumes. For example, file system metadata could be stored on
volumes with higher redundancy, and user data on volumes with better performance.

About volume tags
You make a VxVM volume part of a placement class by associating a volume tag
with it. For file placement purposes, VxFS treats all of the volumes in a placement
class as equivalent, and balances space allocation across them. A volume may
have more than one tag associated with it. If a volume has multiple tags, the volume
belongs to multiple placement classes and is subject to allocation and relocation
policies that relate to any of the placement classes.

Warning: Multiple tagging should be used carefully.

A placement class is a SmartTier attribute of a given volume in a volume set of a
multi-volume file system. This attribute is a character string, and is known as a
volume tag.

SmartTier file management
SmartTier enables administrators of multi-volume VxFS file systems to manage the
placement of files on individual volumes in a volume set by defining placement
policies that control both initial file location and the circumstances under which
existing files are relocated. These placement policies cause the files to which they
apply to be created and extended on specific subsets of a file system's volume set,
known as placement classes. The files are relocated to volumes in other placement
classes when they meet the specified naming, timing, access rate, and storage
capacity-related conditions.

711Understanding storage tiering with SmartTier
About SmartTier

File-based movement:

■ The administrator can create a file allocation policy based on filename extension
before new files are created, which will create the datafiles on the appropriate
tier during database creation.

■ The administrator can also create a file relocation policy for database files or
any types of files, which would relocate files based on how frequently a file is
used.

SmartTier sub-file object management
SmartTier enables administrators of multi-volume VxFS file systems to manage the
placement of file objects as well as entire files on individual volumes.

Using sub-file based movement you can:

■ Move a set of ranges of a specified set of files of a specified set of mounts to a
desired set of tiers on command.

■ Move segments of files using automation to:

■ Monitor a set of files for collecting I/O statistics

■ Periodically collect and persist the statistics, cluster-wide if applicable

■ Periodically enforce the ranges of the registered sets of files based on their
relative frequency of access to a desired set of tiers

■ Track the historical movements of those ranges

How the SmartTier policy works with the shared
extents

The SmartTier enforcement operation ignores moving the shared extents. For
example, consider a file A that contains some shared and private extents that belong
to device 1. If the user sets a policy that states that all the extents of the file A must
be allocated to device 2, the SmartTier enforcement operation moves all the
non-shared extents from device 1 to device 2. However, the SmartTier enforcement
operation ignores moving the shared extents. As a result, the file A still contains
shared extents that belong to device 1. This occurs even after the successful
execution of the SmartTier enforcement operation.

On the other hand, any subsequent new allocation on behalf of the file A adheres
to the preset SmartTier policy. Since the copy-on-write or unshare operation requires
a new allocation, the SmartTier enforcement operation complies with the preset
policy. If a write operation on the file A writes to shared extents, new allocations as

712Understanding storage tiering with SmartTier
How the SmartTier policy works with the shared extents

part of copy-on-write operation is done from device 2. This behaviour adheres to
the preset SmartTier policy.

SmartTier in a High Availability (HA) environment
Veritas Cluster Server does not provide a bundled agent for volume sets. If issues
arise with volumes or volume sets, the issues can only be detected at the DiskGroup
and Mount resource levels.

The DiskGroup agent brings online, takes offline, and monitors a Veritas Volume
Manager (VxVM) disk group. This agent uses VxVM commands. When the value
of the StartVolumes and StopVolumes attributes are both 1, the DiskGroup agent
onlines and offlines the volumes during the import and deport operations of the disk
group. When using volume sets, set StartVolumes and StopVolumes attributes of
the DiskGroup resource that contains the volume are set to 1. If a file system is
created on the volume set, use a Mount resource to mount the volume set.

The Mount agent brings online, takes offline, and monitors a file system or NFS
client mount point.

For additional information, see the Veritas Cluster Server Bundled Agents Reference
Guide.

713Understanding storage tiering with SmartTier
SmartTier in a High Availability (HA) environment

Creating and administering
volume sets

This chapter includes the following topics:

■ About volume sets

■ Creating a volume set

■ Adding a volume to a volume set

■ Removing a volume from a volume set

■ Listing details of volume sets

■ Stopping and starting volume sets

■ Managing raw device nodes of component volumes

About volume sets
Veritas File System (VxFS) uses volume sets to implement its Multi-Volume Support
and SmartTier features.

See “About SmartTier” on page 708.

Veritas Volume Manager (VxVM) provides the vxvset command to create and
administer volume sets.

See the vxvset(1M) manual page.

Volume sets have the following limitations:

■ A maximum of 2048 volumes can be configured in a volume set.

■ Only a Veritas File System is supported on a volume set.

31Chapter

■ The first volume (index 0) in a volume set must be larger than the sum of the
total volume size divided by 4000, the size of the VxFS intent log, and 1MB.
Volumes 258 MB or larger should always suffice.

■ Raw I/O from and to a volume set is not supported.

■ Raw I/O from and to the component volumes of a volume set is supported under
certain conditions.
See “Managing raw device nodes of component volumes” on page 718.

■ Volume sets can be used in place of volumes with the following vxsnap

operations on instant snapshots: addmir, dis, make, prepare, reattach,
refresh, restore, rmmir, split, syncpause, syncresume, syncstart, syncstop,
syncwait, and unprepare. The third-mirror break-off usage model for full-sized
instant snapshots is supported for volume sets provided that sufficient plexes
exist for each volume in the volume set.
For more information about snapshots, see the Veritas Storage Foundation and
High Availability Solutions Solutions Guide.

■ A full-sized snapshot of a volume set must itself be a volume set with the same
number of volumes and the same volume index numbers as the parent. The
corresponding volumes in the parent and snapshot volume sets are also subject
to the same restrictions as apply between standalone volumes and their
snapshots.

Creating a volume set
To create a volume set for use by Veritas File System (VxFS), use the following
command:

vxvset [-g diskgroup] -t vxfs make volset

volume

Here volset is the name of the volume set, and volume is the name of the first
volume in the volume set. The -t vxfs option creates the volume set configured
for use by VxFS. You must create the volume before running the command. vxvset
will not automatically create the volume.

For example, to create a volume set named myvset that contains the volume vol1,
in the disk group mydg, you would use the following command:

vxvset -g mydg -t vxfs make myvset vol1

715Creating and administering volume sets
Creating a volume set

Adding a volume to a volume set
Having created a volume set containing a single volume, you can use the following
command to add further volumes to the volume set:

vxvset [-g diskgroup] [-f] addvol volset

volume

For example, to add the volume vol2, to the volume set myvset, use the following
command:

vxvset -g mydg addvol myvset vol2

Warning: The -f (force) option must be specified if the volume being added, or
any volume in the volume set, is either a snapshot or the parent of a snapshot.
Using this option can potentially cause inconsistencies in a snapshot hierarchy if
any of the volumes involved in the operation is already in a snapshot chain.

Removing a volume from a volume set
To remove a component volume from a volume set, use the following command:

vxvset [-g diskgroup] [-f] rmvol volset

volume

For example, the following commands remove the volumes, vol1 and vol2, from
the volume set myvset:

vxvset -g mydg rmvol myvset vol1

vxvset -g mydg rmvol myvset vol2

Removing the final volume deletes the volume set.

Warning: The -f (force) option must be specified if the volume being removed, or
any volume in the volume set, is either a snapshot or the parent of a snapshot.
Using this option can potentially cause inconsistencies in a snapshot hierarchy if
any of the volumes involved in the operation is already in a snapshot chain.

Listing details of volume sets
To list the details of the component volumes of a volume set, use the following
command:

716Creating and administering volume sets
Adding a volume to a volume set

vxvset [-g diskgroup] list [volset]

If the name of a volume set is not specified, the command lists the details of all
volume sets in a disk group, as shown in the following example:

vxvset -g mydg list

NAME GROUP NVOLS CONTEXT

set1 mydg 3 -

set2 mydg 2 -

To list the details of each volume in a volume set, specify the name of the volume
set as an argument to the command:

vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 ENABLED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

The context field contains details of any string that the application has set up for
the volume or volume set to tag its purpose.

Stopping and starting volume sets
Under some circumstances, you may need to stop and restart a volume set. For
example, a volume within the set may have become detached, as shown here:

vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 DETACHED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

To stop and restart one or more volume sets, use the following commands:

vxvset [-g diskgroup] stop volset ...

vxvset [-g diskgroup] start volset ...

For the example given previously, the effect of running these commands on the
component volumes is shown below:

717Creating and administering volume sets
Stopping and starting volume sets

vxvset -g mydg stop set1

vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 DISABLED -

vol2 1 12582912 DISABLED -

vol3 2 12582912 DISABLED -

vxvset -g mydg start set1

vxvset -g mydg list set1

VOLUME INDEX LENGTH KSTATE CONTEXT

vol1 0 12582912 ENABLED -

vol2 1 12582912 ENABLED -

vol3 2 12582912 ENABLED -

Managing raw device nodes of component
volumes

To guard against accidental file system and data corruption, the device nodes of
the component volumes are configured by default not to have raw and block entries
in the /dev/vx/rdsk/diskgroup and /dev/vx/dsk/diskgroup directories. As a
result, applications are prevented from directly reading from or writing to the
component volumes of a volume set.

If some applications, such as the raw volume backup and restore feature of the
Symantec NetBackup™ software, need to read from or write to the component
volumes by accessing raw device nodes in the /dev/vx/rdsk/diskgroup directory,
this is supported by specifying additional command-line options to the vxvset

command. Access to the block device nodes of the component volumes of a volume
set is unsupported.

Warning: Writing directly to or reading from the raw device node of a component
volume of a volume set should only be performed if it is known that the volume's
data will not otherwise change during the period of access.

All of the raw device nodes for the component volumes of a volume set can be
created or removed in a single operation. Raw device nodes for any volumes added

718Creating and administering volume sets
Managing raw device nodes of component volumes

to a volume set are created automatically as required, and inherit the access mode
of the existing device nodes.

Access to the raw device nodes for the component volumes can be configured to
be read-only or read-write. This mode is shared by all the raw device nodes for the
component volumes of a volume set. The read-only access mode implies that any
writes to the raw device will fail, however writes using the ioctl interface or by
VxFS to update metadata are not prevented. The read-write access mode allows
direct writes via the raw device. The access mode to the raw device nodes of a
volume set can be changed as required.

The presence of raw device nodes and their access mode is persistent across
system reboots.

Note the following limitations of this feature:

■ The disk group version must be 140 or greater.

■ Access to the raw device nodes of the component volumes of a volume set is
only supported for private disk groups; it is not supported for shared disk groups
in a cluster.

Enabling raw device access when creating a volume set
To enable raw device access when creating a volume set, use the following form
of the vxvset make command:

vxvset [-g diskgroup] -o makedev=on \

[-o compvol_access={read-only|read-write}] \

[-o index] [-c "ch_addopt"] make vset

vol [index]

The -o makedev=on option enables the creation of raw device nodes for the
component volumes at the same time that the volume set is created. The default
setting is off.

If the -o compvol_access=read-write option is specified, direct writes are allowed
to the raw device of each component volume. If the value is set to read-only, only
reads are allowed from the raw device of each component volume.

If the -o makedev=on option is specified, but -o compvol_access is not specified,
the default access mode is read-only.

If the vxvset addvol command is subsequently used to add a volume to a volume
set, a new raw device node is created in /dev/vx/rdsk/diskgroup if the value of
the makedev attribute is currently set to on. The access mode is determined by the
current setting of the compvol_access attribute.

719Creating and administering volume sets
Managing raw device nodes of component volumes

The following example creates a volume set, myvset1, containing the volume,
myvol1, in the disk group, mydg, with raw device access enabled in read-write mode:

vxvset -g mydg -o makedev=on -o compvol_access=read-write \

make myvset1 myvol1

Displaying the raw device access settings for a volume set
You can use the vxprint -m command to display the current settings for a volume
set. If the makedev attribute is set to on, one of the following strings is displayed in
the output:

Raw device nodes in read-only mode.vset_devinfo=on:read-only

Raw device nodes in read-write mode.vset_devinfo=on:read-write

A string is not displayed if makedev is set to off.

If the output from the vxprint -m command is fed to the vxmake command to
recreate a volume set, the vset_devinfo attribute must set to off. Use the vxvset
set command to re-enable raw device access with the desired access mode.

See “Controlling raw device access for an existing volume set” on page 720.

Controlling raw device access for an existing volume set
To enable or disable raw device node access for an existing volume set, use the
following command:

vxvset [-g diskgroup] [-f] set makedev={on|off} vset

The makedev attribute can be specified to the vxvset set command to create
(makedev=on) or remove (makedev=off) the raw device nodes for the component
volumes of a volume set. If any of the component volumes are open, the -f (force)
option must be specified to set the attribute to off.

Specifying makedev=off removes the existing raw device nodes from the
/dev/vx/rdsk/diskgroup directory.

If the makedev attribute is set to off, and you use the mknod command to create
the raw device nodes, you cannot read from or write to those nodes unless you set
the value of makedev to on.

The syntax for setting the compvol_access attribute on a volume set is:

vxvset [-g diskgroup] [-f] set \

compvol_access={read-only|read-write} vset

720Creating and administering volume sets
Managing raw device nodes of component volumes

The compvol_access attribute can be specified to the vxvset set command to
change the access mode to the component volumes of a volume set. If any of the
component volumes are open, the -f (force) option must be specified to set the
attribute to read-only.

The following example sets the makedev=on and compvol_access=read-only

attributes on a volume set, myvset2, in the disk group, mydg:

vxvset -g mydg set makedev=on myvset2

The next example sets the compvol_access=read-write attribute on the volume
set, myvset2:

vxvset -g mydg set compvol_access=read-write myvset2

The final example removes raw device node access for the volume set, myvset2:

vxvset -g mydg set makedev=off myvset2

721Creating and administering volume sets
Managing raw device nodes of component volumes

Multi-volume file systems
This chapter includes the following topics:

■ About multi-volume file systems

■ About volume types

■ Features implemented using multi-volume support

■ Creating multi-volume file systems

■ Converting a single volume file system to a multi-volume file system

■ Adding a volume to and removing a volume from a multi-volume file system

■ Volume encapsulation

■ Reporting file extents

■ Load balancing

■ Converting a multi-volume file system to a single volume file system

About multi-volume file systems
Veritas File System (VxFS) provides support for multi-volume file systems when
used in conjunction with the Veritas Volume Manager. Using multi-volume support
(MVS), a single file system can be created over multiple volumes, each volume
having its own properties. For example, it is possible to place metadata on mirrored
storage while placing file data on better-performing volume types such as RAID-1+0
(striped and mirrored). The volume must be in the same disk group as the volume
set, and it cannot already be a member of another volume set.

The MVS feature also allows file systems to reside on different classes of devices,
so that a file system can be supported from both inexpensive disks and from

32Chapter

expensive arrays. Using the MVS administrative interface, you can control which
data goes on which volume types.

Note: Multi-volume file system support is available only on file systems using disk
layout Version 7 or later.

About volume types
Veritas File System (VxFS) utilizes two types of volumes, one of which contains
only data, referred to as dataonly, and the other of which can contain metadata
or data, referred to as metadataok.

Data refers to direct extents, which contain user data, of regular files and named
data streams in a file system.

Metadata refers to all extents that are not regular file or named data stream extents.
This includes certain files that appear to be regular files, but are not, such as the
File Change Log file.

A volume availability flag is set to specify if a volume is dataonly or metadataok.
The volume availability flag can be set, cleared, and listed with the fsvoladm

command.

See the fsvoladm(1M) manual page.

Features implementedusingmulti-volumesupport
The following features can be implemented using multi-volume support:

■ Controlling where files are stored can be selected at multiple levels so that
specific files or file hierarchies can be assigned to different volumes. This
functionality is available in the Veritas File System SmartTier feature.

■ Placing the VxFS intent log on its own volume to minimize disk head movement
and thereby increase performance.

■ Separating Storage Checkpoints so that data allocated to a Storage Checkpoint
is isolated from the rest of the file system.

■ Separating metadata from file data.

■ Encapsulating volumes so that a volume appears in the file system as a file.
This is particularly useful for databases that are running on raw volumes.

■ Guaranteeing that a dataonly volume being unavailable does not cause a
metadataok volume to be unavailable.

723Multi-volume file systems
About volume types

See “Volume availability” on page 724.

To use the multi-volume file system features, Veritas Volume Manager must be
installed and the volume set feature must be accessible. The volume set feature is
separately licensed.

Volume availability
MVS guarantees that a dataonly volume being unavailable does not cause a
metadataok volume to be unavailable. This allows you to mount a multi-volume file
system even if one or more component dataonly volumes are missing.

The volumes are separated by whether metadata is allowed on the volume. An I/O
error on a dataonly volume does not affect access to any other volumes. All VxFS
operations that do not access the missing dataonly volume function normally.

Some VxFS operations that do not access the missing dataonly volume and
function normally include the following:

■ Mounting the multi-volume file system, regardless if the file system is read-only
or read/write.

■ Kernel operations.

■ Performing a fsck replay. Logged writes are converted to normal writes if the
corresponding volume is dataonly.

■ Performing a full fsck.

■ Using all other commands that do not access data on a missing volume.

Some operations that could fail if a dataonly volume is missing include:

■ Reading or writing file data if the file's data extents were allocated from the
missing dataonly volume.

■ Using the vxdump command.

Volume availability is supported only on a file system with disk layout Version 7 or
later.

Note: Do not mount a multi-volume system with the ioerror=disable or
ioerror=wdisablemount options if the volumes have different availability properties.
Symantec recommends the ioerror=mdisablemount option both for cluster mounts
and for local mounts.

724Multi-volume file systems
Features implemented using multi-volume support

Creating multi-volume file systems
When a multi-volume file system is created, all volumes are dataonly, except
volume zero, which is used to store the file system's metadata. The volume
availability flag of volume zero cannot be set to dataonly.

As metadata cannot be allocated from dataonly volumes, enough metadata space
should be allocated using metadataok volumes. The "file system out of space" error
occurs if there is insufficient metadata space available, even if the df command
shows that there is free space in the file system. The fsvoladm command can be
used to see the free space in each volume and set the availability flag of the volume.

Unless otherwise specified, VxFS commands function the same on multi-volume
file systems as the commands do on single-volume file systems.

Example of creating a multi-volume file system
The following procedure is an example of creating a multi-volume file system.

To create a multi-volume file system

1 After a volume set is created, create a VxFS file system by specifying the
volume set name as an argument to mkfs:

mkfs -t vxfs /dev/vx/rdsk/dg1/myvset

version 9 layout

327680 sectors, 163840 blocks of size 1024,

log size 1024 blocks largefiles supported

After the file system is created, VxFS allocates space from the different volumes
within the volume set.

2 List the component volumes of the volume set using of the fsvoladm command:

mount -t vxfs /dev/vx/dsk/dg1/myvset /mnt1

fsvoladm -H list /mnt1

devid size used avail name

0 20 GB 10 GB 10 GB vol1

1 30 TB 10 TB 20 TB vol2

725Multi-volume file systems
Creating multi-volume file systems

3 Add a new volume by adding the volume to the volume set, then adding the
volume to the file system:

vxassist -g dg1 make vol5 50m

vxvset -g dg1 addvol myvset vol5

fsvoladm add /mnt1 vol5 50m

fsvoladm -H list /mnt1

devid size used avail name

0 20 GB 10 GB 10 GB vol1

1 30 TB 10 TB 20 TB vol2

4 List the volume availability flags using the fsvoladm command:

fsvoladm queryflags /mnt1

volname flags

vol1 metadataok

vol2 dataonly

vol3 dataonly

vol4 dataonly

vol5 dataonly

5 Increase the metadata space in the file system using the fsvoladm command:

fsvoladm clearflags dataonly /mnt1 vol2

fsvoladm queryflags /mnt1

volname flags

vol1 metadataok

vol2 metadataok

vol3 dataonly

vol4 dataonly

vol5 dataonly

Converting a single volume file system to a
multi-volume file system

The following procedure converts a traditional, single volume file system, /mnt1,
on a single volume vol1 in the diskgroup dg1 to a multi-volume file system.

726Multi-volume file systems
Converting a single volume file system to a multi-volume file system

To convert a single volume file system

1 Determine the version of the volume's diskgroup:

vxdg list dg1 | grep version: | awk '{ print $2 }'

105

2 If the version is less than 110, upgrade the diskgroup:

vxdg upgrade dg1

3 Determine the disk layout version of the file system:

vxupgrade /mnt1

Version 7

4 If the disk layout version is 7, upgrade to Version 8:

vxupgrade -n 7 /mnt1

5 Unmount the file system:

umount /mnt1

6 Convert the volume into a volume set:

vxvset -g dg1 make vset1 vol1

7 Edit the /etc/fstab file to replace the volume device name, vol1, with the
volume set name, vset1.

8 Mount the file system:

mount -t vxfs /dev/vx/dsk/dg1/vset1 /mnt1

9 As necessary, create and add volumes to the volume set:

vxassist -g dg1 make vol2 256M

vxvset -g dg1 addvol vset1 vol2

10 Set the placement class tags on all volumes that do not have a tag:

vxassist -g dg1 settag vol1 vxfs.placement_class.tier1

vxassist -g dg1 settag vol2 vxfs.placement_class.tier2

727Multi-volume file systems
Converting a single volume file system to a multi-volume file system

Adding a volume to and removing a volume from
a multi-volume file system

Use the fsvoladm command to perform the following functions:

■ Adding a volume to a multi-volume file system

■ Removing a volume from a multi-volume file system

Use the fsck command to perform the following function:

■ Forcibly removing a volume in a multi-volume file system

Use the vxassist command to perform the following function:

■ Moving volume 0 in a multi-volume file system

Adding a volume to a multi-volume file system
Use the fsvoladm add command to add a volume to a multi-volume file system.

To add a volume to a multi-volume file system

◆ Add a new volume to a multi-volume file system:

fsvoladm add /mnt1 vol2 256m

Removing a volume from a multi-volume file system
Use the fsvoladm remove command to remove a volume from a multi-volume file
system. The fsvoladm remove command fails if the volume being removed is the
only volume in any allocation policy.

To remove a volume from a multi-volume file system

◆ Remove a volume from a multi-volume file system:

fsvoladm remove /mnt1 vol2

Forcibly removing a volume in a multi-volume file system
If you must forcibly remove a volume from a file system, such as if a volume is
permanently destroyed and you want to clean up the dangling pointers to the lost
volume, use the fsck -o zapvol=volname command. The zapvol option performs
a full file system check and zaps all inodes that refer to the specified volume. The
fsck command prints the inode numbers of all files that the command destroys;
the file names are not printed. The zapvol option only affects regular files if used

728Multi-volume file systems
Adding a volume to and removing a volume from a multi-volume file system

on a dataonly volume. However, it could destroy structural files if used on a
metadataok volume, which can make the file system unrecoverable. Therefore, the
zapvol option should be used with caution on metadataok volumes.

Moving volume 0 in a multi-volume file system
Volume 0 in a multi-volume file system cannot be removed from the file system,
but you can move volume 0 to different storage using the vxassist move command.
The vxassist command creates any necessary temporary mirrors and cleans up
the mirrors at the end of the operation.

To move volume 0

◆ Move volume 0:

vxassist -g mydg move vol1 \!mydg

Volume encapsulation
Multi-volume file system support enables the ability to encapsulate an existing raw
volume and make the volume contents appear as a file in the file system.

Encapsulating a volume involves the following actions:

■ Adding the volume to an existing volume set.

■ Adding the volume to the file system using fsvoladm.

Encapsulating a volume
The following example illustrates how to encapsulate a volume.

729Multi-volume file systems
Volume encapsulation

To encapsulate a volume

1 List the volumes:

vxvset -g dg1 list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

The volume set has two volumes.

2 Create a third volume and copy the passwd file to the third volume:

vxassist -g dg1 make dbvol 100m

dd if=/etc/passwd of=/dev/vx/rdsk/dg1/dbvol count=1

1+0 records in

1+0 records out

The third volume will be used to demonstrate how the volume can be accessed
as a file, as shown later.

3 Create a file system on the volume set:

mkfs -t vxfs /dev/vx/rdsk/dg1/myvset

version 9 layout

204800 sectors, 102400 blocks of size 1024,

log size 1024 blocks

largefiles supported

4 Mount the volume set:

mount -t vxfs /dev/vx/dsk/dg1/myvset /mnt1

5 Add the new volume to the volume set:

vxvset -g dg1 addvol myvset dbvol

730Multi-volume file systems
Volume encapsulation

6 Encapsulate dbvol:

fsvoladm encapsulate /mnt1/dbfile dbvol 100m

ls -l /mnt1/dbfile

-rw------- 1 root other 104857600 May 22 11:30 /mnt1/dbfile

7 Examine the contents of dbfile to see that it can be accessed as a file:

head -2 /mnt1/dbfile

root:x:0:1:Super-User:/:/sbin/sh

daemon:x:1:1::/:

The passwd file that was written to the raw volume is now visible in the new
file.

Note: If the encapsulated file is changed in any way, such as if the file is
extended, truncated, or moved with an allocation policy or resized volume, or
the volume is encapsulated with a bias, the file cannot be de-encapsulated.

Deencapsulating a volume
The following example illustrates how to deencapsulate a volume.

To deencapsulate a volume

1 List the volumes:

vxvset -g dg1 list myvset

VOLUME INDEX LENGTH STATE CONTEXT

vol1 0 102400 ACTIVE -

vol2 1 102400 ACTIVE -

dbvol 2 102400 ACTIVE -

The volume set has three volumes.

2 Deencapsulate dbvol:

fsvoladm deencapsulate /mnt1/dbfile

Reporting file extents
Multi-volume file system feature provides the capability for file-to-volume mapping
and volume-to-file mapping via the fsmap and fsvmap commands. The fsmap

731Multi-volume file systems
Reporting file extents

command reports the volume name, logical offset, and size of data extents, or the
volume name and size of indirect extents associated with a file on a multi-volume
file system. The fsvmap command maps volumes to the files that have extents on
those volumes.

See the fsmap(1M) and fsvmap(1M) manual pages.

The fsmap command requires open() permission for each file or directory specified.
Root permission is required to report the list of files with extents on a particular
volume.

Examples of reporting file extents
The following examples show typical uses of the fsmap and fsvmap commands.

Using the fsmap command

◆ Use the find command to descend directories recursively and run fsmap on
the list of files:

find . | fsmap -

Volume Extent Type File

vol2 Data ./file1

vol1 Data ./file2

732Multi-volume file systems
Reporting file extents

Using the fsvmap command

1 Report the extents of files on multiple volumes:

fsvmap /dev/vx/rdsk/fstest/testvset vol1 vol2

vol1 /.

vol1 /ns2

vol1 /ns3

vol1 /file1

vol2 /file1

vol2 /file2

2 Report the extents of files that have either data or metadata on a single volume
in all Storage Checkpoints, and indicate if the volume has file system metadata:

fsvmap -mvC /dev/vx/rdsk/fstest/testvset vol1

Meta Structural vol1 //volume has filesystem metadata//

Data UNNAMED vol1 /.

Data UNNAMED vol1 /ns2

Data UNNAMED vol1 /ns3

Data UNNAMED vol1 /file1

Meta UNNAMED vol1 /file1

Load balancing
An allocation policy with the balance allocation order can be defined and assigned
to files that must have their allocations distributed at random between a set of
specified volumes. Each extent associated with these files are limited to a maximum
size that is defined as the required chunk size in the allocation policy. The distribution
of the extents is mostly equal if none of the volumes are full or disabled.

Load balancing allocation policies can be assigned to individual files or for all files
in the file system. Although intended for balancing data extents across volumes, a
load balancing policy can be assigned as a metadata policy if desired, without any
restrictions.

733Multi-volume file systems
Load balancing

Note: If a file has both a fixed extent size set and an allocation policy for load
balancing, certain behavior can be expected. If the chunk size in the allocation
policy is greater than the fixed extent size, all extents for the file are limited by the
chunk size. For example, if the chunk size is 16 MB and the fixed extent size is 3
MB, then the largest extent that satisfies both the conditions is 15 MB. If the fixed
extent size is larger than the chunk size, all extents are limited to the fixed extent
size. For example, if the chunk size is 2 MB and the fixed extent size is 3 MB, then
all extents for the file are limited to 3 MB.

Defining and assigning a load balancing allocation policy
The following example defines a load balancing policy and assigns the policy to
the file, /mnt/file.db.

To define and assign the policy

1 Define the policy by specifying the -o balance and -c options:

fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol3 vol4

2 Assign the policy:

fsapadm assign /mnt/filedb loadbal meta

Rebalancing extents
Extents can be rebalanced by strictly enforcing the allocation policy. Rebalancing
is generally required when volumes are added or removed from the policy or when
the chunk size is modified. When volumes are removed from the volume set, any
extents on the volumes being removed are automatically relocated to other volumes
within the policy.

The following example redefines a policy that has four volumes by adding two new
volumes, removing an existing volume, and enforcing the policy for rebalancing.

To rebalance extents

1 Define the policy by specifying the -o balance and -c options:

fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol4 \

vol5 vol6

2 Enforce the policy:

fsapadm enforcefile -f strict /mnt/filedb

734Multi-volume file systems
Load balancing

Converting a multi-volume file system to a single
volume file system

Because data can be relocated among volumes in a multi-volume file system, you
can convert a multi-volume file system to a traditional, single volume file system by
moving all file system data onto a single volume. Such a conversion is useful to
users who would like to try using a multi-volume file system or SmartTier, but are
not committed to using a multi-volume file system permanently.

See “About SmartTier” on page 737.

There are three restrictions to this operation:

■ The single volume must be the first volume in the volume set

■ The first volume must have sufficient space to hold all of the data and file system
metadata

■ The volume cannot have any allocation policies that restrict the movement of
data

The following procedure converts an existing multi-volume file system, /mnt1, of
the volume set vset1, to a single volume file system, /mnt1, on volume vol1 in
diskgroup dg1.

Note: Steps 5, 6, 7, and 8 are optional, and can be performed if you prefer to remove
the wrapper of the volume set object.

Converting to a single volume file system

1 Determine if the first volume in the volume set, which is identified as device
number 0, has the capacity to receive the data from the other volumes that will
be removed:

df /mnt1

/mnt1 (/dev/vx/dsk/dg1/vol1):16777216 blocks 3443528 files

2 If the first volume does not have sufficient capacity, grow the volume to a
sufficient size:

fsvoladm resize /mnt1 vol1 150g

3 Remove all existing allocation policies:

fsppadm unassign /mnt1

735Multi-volume file systems
Converting a multi-volume file system to a single volume file system

4 Remove all volumes except the first volume in the volume set:

fsvoladm remove /mnt1 vol2

vxvset -g dg1 rmvol vset1 vol2

fsvoladm remove /mnt1 vol3

vxvset -g dg1 rmvol vset1 vol3

Before removing a volume, the file system attempts to relocate the files on that
volume. Successful relocation requires space on another volume, and no
allocation policies can be enforced that pin files to that volume. The time for
the command to complete is proportional to the amount of data that must be
relocated.

5 Unmount the file system:

umount /mnt1

6 Remove the volume from the volume set:

vxvset -g dg1 rmvol vset1 vol1

7 Edit the /etc/fstab file to replace the volume set name, vset1, with the volume
device name, vol1.

8 Mount the file system:

mount -t vxfs /dev/vx/dsk/dg1/vol1 /mnt1

736Multi-volume file systems
Converting a multi-volume file system to a single volume file system

Administering SmartTier
This chapter includes the following topics:

■ About SmartTier

■ Supported SmartTier document type definitions

■ Placement classes

■ Administering placement policies

■ File placement policy grammar

■ File placement policy rules

■ Calculating I/O temperature and access temperature

■ Multiple criteria in file placement policy rule statements

■ File placement policy rule and statement ordering

■ File placement policies and extending files

■ Using SmartTier with solid state disks

■ Sub-file relocation

About SmartTier
Veritas File System (VxFS) uses multi-tier online storage by way of the SmartTier
feature, which functions on top of multi-volume file systems. Multi-volume file
systems are file systems that occupy two or more virtual volumes. The collection
of volumes is known as a volume set. A volume set is made up of disks or disk
array LUNs belonging to a single Veritas Volume Manager (VxVM) disk group. A
multi-volume file system presents a single name space, making the existence of
multiple volumes transparent to users and applications. Each volume retains a

33Chapter

separate identity for administrative purposes, making it possible to control the
locations to which individual files are directed.

See “About multi-volume file systems” on page 722.

Note: Some of the commands have changed or been removed between the 4.1
release and the current release to make placement policy management more
user-friendly. The following commands have been removed: fsrpadm, fsmove, and
fssweep. The output of the queryfile, queryfs, and list options of the fsapadm

command now print the allocation order by name instead of number.

In the previous VxFS 5.x releases, SmartTier was known as Dynamic Storage
Tiering.

SmartTier allows administrators of multi-volume VxFS file systems to manage the
placement of files and the placement of portions of files on individual volumes in a
volume set by defining placement policies. Placement policies control both initial
file location and the circumstances under which existing files are relocated. These
placement policies cause the files to which they apply to be created and extended
on specific subsets of a file system's volume set, known as placement classes. The
files are relocated to volumes in other placement classes when they meet the
specified naming, timing, access rate, and storage capacity-related conditions.

You make a VxVM volume part of a placement class by associating a volume tag
with it. For file placement purposes, VxFS treats all of the volumes in a placement
class as equivalent, and balances space allocation across them. A volume may
have more than one tag associated with it. If a volume has multiple tags, the volume
belongs to multiple placement classes and is subject to allocation and relocation
policies that relate to any of the placement classes. Multiple tagging should be used
carefully.

See “Placement classes” on page 740.

VxFS imposes no capacity, performance, availability, or other constraints on
placement classes. Any volume may be added to any placement class, no matter
what type the volume has nor what types other volumes in the class have. However,
a good practice is to place volumes of similar I/O performance and availability in
the same placement class.

The Using SmartTier Symantec Yellow Book provides additional information
regarding the SmartTier feature, including the value of SmartTier and best practices
for using SmartTier. You can download Using SmartTier from the following Web
page:

http://www.symantec.com/enterprise/yellowbooks/index.jsp

738Administering SmartTier
About SmartTier

http://www.symantec.com/enterprise/yellowbooks/index.jsp

About compressing files with SmartTier
You can use the SmartTier feature to compress and uncompress files automatically
based on the rules defined in a placement policy. SmartTier performs the allocation
for compressed or uncompressed extents of the selected files directly from the tier
that is specified in the policy. The selected files get compressed or uncompressed
while relocating to the specified tier of storage.

You can perform in-place compressing of an entire tier, which compresses all of
the uncompressed extents of all of the files on the tier. This operation is useful if a
write or append was performed on a file on this tier, which results in the file having
some uncompressed extents.

SmartTier uses gzip as the default compression algorithm, and 1 MB is the default
block size for compression. These default values are not configurable through an
XML policy file.

SmartTier can compress and uncompress files as specified by a placement policy
in the following ways:

■ Compress while relocating files from one tier to another in a multi-volume file
system

■ Uncompress while relocating files from one tier to another in a multi-volume file
system

■ Compress in-place in a multi-volume file system

■ Uncompress in-place in multi-volume file system

■ Compress in-place in single volume file system

■ Uncompress in-place in single volume file system

■ Compress an entire tier in multi-volume file system

■ Uncompress an entire tier in multi-volume file system

See “About compressing files” on page 835.

Supported SmartTier document type definitions
Table 33-1 describes which releases of Veritas File System (VxFS) support specific
SmartTier document type definitions (DTDs).

739Administering SmartTier
Supported SmartTier document type definitions

Table 33-1 Supported SmartTier document type definitions

DTD Version

VxFS Version 1.11.0

Not supportedSupported5.0

SupportedSupported5.1

SupportedSupported5.1 SP1

SupportedSupported6.0

SupportedSupported6.0.1

Placement classes
A placement class is a SmartTier attribute of a given volume in a volume set of a
multi-volume file system. This attribute is a character string, and is known as a
volume tag. A volume can have different tags, one of which can be the placement
class. The placement class tag makes a volume distinguishable by SmartTier.

Volume tags are organized as hierarchical name spaces in which periods separate
the levels of the hierarchy . By convention, the uppermost level in the volume tag
hierarchy denotes the Veritas Storage Foundation Cluster File System High
Availability component or application that uses a tag, and the second level denotes
the tag’s purpose. SmartTier recognizes volume tags of the form
vxfs.placement_class.class_name. The prefix vxfs identifies a tag as being
associated with VxFS. The placement_class string identifies the tag as a file
placement class that SmartTier uses. The class_name string represents the name
of the file placement class to which the tagged volume belongs. For example, a
volume with the tag vxfs.placement_class.tier1 belongs to placement class tier1.
Administrators use the vxassist command to associate tags with volumes.

See the vxassist(1M) manual page.

SmartTier policy rules specify file placement in terms of placement classes rather
than in terms of individual volumes. All volumes that belong to a particular placement
class are interchangeable with respect to file creation and relocation operations.
Specifying file placement in terms of placement classes rather than in terms of
specific volumes simplifies the administration of multi-tier storage.

The administration of multi-tier storage is simplified in the following ways:

■ Adding or removing volumes does not require a file placement policy change.
If a volume with a tag value of vxfs.placement_class.tier2 is added to a file

740Administering SmartTier
Placement classes

system’s volume set, all policies that refer to tier2 immediately apply to the
newly added volume with no administrative action. Similarly, volumes can be
evacuated, that is, have data removed from them, and be removed from a file
system without a policy change. The active policy continues to apply to the file
system’s remaining volumes.

■ File placement policies are not specific to individual file systems. A file placement
policy can be assigned to any file system whose volume set includes volumes
tagged with the tag values (placement classes) named in the policy. This property
makes it possible for data centers with large numbers of servers to define
standard placement policies and apply them uniformly to all servers with a single
administrative action.

Tagging volumes as placement classes
The following example tags the vsavola volume as placement class tier1, vsavolb
as placement class tier2, vsavolc as placement class tier3, and vsavold as
placement class tier4 using the vxassist settag command.

To tag volumes

◆ Tag the volumes as placement classes:

vxassist -g cfsdg settag vsavola vxfs.placement_class.tier1

vxassist -g cfsdg settag vsavolb vxfs.placement_class.tier2

vxassist -g cfsdg settag vsavolc vxfs.placement_class.tier3

vxassist -g cfsdg settag vsavold vxfs.placement_class.tier4

Listing placement classes
Placement classes are listed using the vxassist listtag command.

See the vxassist(1M) manual page.

The following example lists all volume tags, including placment classes, set on a
volume vsavola in the diskgroup cfsdg.

To list placement classes

◆ List the volume tags, including placement classes:

vxassist -g cfsdg listtag vsavola

741Administering SmartTier
Placement classes

Administering placement policies
A VxFS file placement policy document contains rules by which VxFS creates,
relocates, and deletes files, but the placement policy does not refer to specific file
systems or volumes. You can create a file system's active file placement policy by
assigning a placement policy document to the file system via the fsppadm command
or the GUI.

See the fsppadm(1M) manual page.

Note: Do not run the fsppadm command simultaneously from different terminals.

The lost+found must exist before you can use the fsppadm command.

At most, one file placement policy can be assigned to a VxFS file system at any
time. A file system may have no file placement policy assigned to it, in which case
VxFS allocates space for new files according to its own internal algorithms.

In systems with Storage Foundation Management Server (SFMS) software installed,
file placement policy information is stored in the SFMS database. The SFMS
database contains both XML policy documents and lists of hosts and file systems
for which each document is the current active policy. When a policy document is
updated, SFMS can assign the updated document to all file systems whose current
active policies are based on that document. By default, SFMS does not update file
system active policies that have been created or modified locally, that is by the
hosts that control the placement policies' file systems. If a SFMS administrator
forces assignment of a placement policy to a file system, the file system's active
placement policy is overwritten and any local changes that had been made to the
placement policy are lost.

You can view sample placement policies in the /opt/VRTSvxfs/etc directory.
These sample placement policies are installed as part of the VxFS RPM installation.

Assigning a placement policy
The following example uses the fsppadm assign command to assign the file
placement policy represented in the XML policy document /tmp/policy1.xml for
the file system at mount point /mnt1.

To assign a placement policy

◆ Assign a placement policy to a file system:

fsppadm assign /mnt1 /tmp/policy1.xml

742Administering SmartTier
Administering placement policies

Unassigning a placement policy
The following example uses the fsppadm unassign command to unassign the
active file placement policy from the file system at mount point /mnt1.

To unassign a placement policy

◆ Unassign the placement policy from a file system:

fsppadm unassign /mnt1

Analyzing the space impact of enforcing a placement policy
The following example uses the fsppadm analyze command to analyze the impact
if the enforce operation is performed on the file placement policy represented in
the XML policy document /tmp/policy1.xml for the mount point /mnt1. The
command builds the I/O temperature database if necessary.

To analyze the space impact of enforcing a placement policy

◆ Analyze the impact of enforcing the file placement policy represented in the
XML policy document /tmp/policy1.xml for the mount point /mnt1:

fsppadm analyze -F /tmp/policy1.xml -i /mnt1

Querying which files will be affected by enforcing a placement policy
The following example uses the fsppadm query command to generate a list of files
that will be affected by enforcing a placement policy. The command provides details
about where the files currently reside, to where the files will be relocated, and which
rule in the placement policy applies to the files.

To query which files will be affected by enforcing a placement policy

◆ Query the files that will be affected:

fsppadm query /mnt1/dir1/dir2 /mnt2 /mnt1/dir3

Enforcing a placement policy
Enforcing a placement policy for a file system requires that the policy be assigned
to the file system. You must assign a placement policy before it can be enforced.

See “Assigning a placement policy” on page 742.

Enforce operations are logged in a hidden file, .__fsppadm_enforce.log, in the
lost+found directory of the mount point. This log file contains details such as files'

743Administering SmartTier
Administering placement policies

previous locations, the files' new locations, and the reasons for the files' relocations.
The enforce operation creates the .__fsppadm_enforce.log file if the file does not
exist. The enforce operation appends the file if the file already exists. The
.__fsppadm_enforce.log file can be backed up or removed as with a normal file.

You can specify the -F option to specify a placement policy other than the existing
active placement policy. This option can be used to enforce the rules given in the
specified placement policy for maintenance purposes, such as for reclaiming a LUN
from the file system.

You can specify the -p option to specify the number of concurrent threads to be
used to perform the fsppadm operation. You specify the io_nice parameter as an
integer between 1 and 100, with 50 being the default value. A value of 1 specifies
1 slave and 1 master thread per mount. A value of 50 specifies 16 slaves and 1
master thread per mount. A value of 100 specifies 32 slaves and 1 master thread
per mount.

You can specify the -C option so that the fsppadm command processes only those
files that have some activity stats logged in the File Change Log (FCL) file during
the period specified in the placement policy. You can use the -C option only if the
policy’s ACCESSTEMP or IOTEMP elements use the Prefer criteria.

You can specify the -T option to specify the placement classes that contain files
for the fsppadm command to sweep and relocate selectively. You can specify the
-T option only if the policy uses the Prefer criteria forIOTEMP.

See the fsppadm(1M) manual page.

The following example uses the fsppadm enforce command to enforce the file
placement policy for the file system at mount point /mnt1, and includes the access
time, modification time, and file size of the specified paths in the report, /tmp/report.

744Administering SmartTier
Administering placement policies

To enforce a placement policy

◆ Enforce a placement policy for a file system:

fsppadm enforce -a -r /tmp/report /mnt1

Current Current Relocated Relocated

Class Volume Class Volume Rule File

tier3 vole tier3 vole a_to_z /mnt1/mds1/d1/file1

tier3 vole tier3 vole a_to_z /mnt1/mds1/d1/file2

tier3 vole tier3 vole a_to_z /mnt1/mds1/d1/d2/file3

tier3 volf tier3 volf a_to_z /mnt1/mds1/d1/d2/file4

.

.

.

Sweep path : /mnt1

Files moved : 42

KB moved : 1267

Tier Name Size (KB) Free Before (KB) Free After (KB)

tier4 524288 524256 524256

tier3 524288 522968 522968

tier2 524288 524256 524256

tier1 524288 502188 501227

Validating a placement policy
The following example uses the fsppadm validate command to validate the
placement policy policy.xml against all mounted file systems.

To validate a placement policy against all mounted file systems

◆ Validate the placement policy:

fsppadm validate /tmp/policy.xml

File placement policy grammar
VxFS allocates and relocates files within a multi-volume file system based on
properties in the file system metadata that pertains to the files. Placement decisions
may be based on file name, directory of residence, time of last access, access
frequency, file size, and ownership. An individual file system's criteria for allocating
and relocating files are expressed in the file system's file placement policy.

745Administering SmartTier
File placement policy grammar

A VxFS file placement policy defines the desired placement of sets of files on the
volumes of a VxFS multi-volume file system. A file placement policy specifies the
placement classes of volumes on which files should be created, and where and
under what conditions the files should be relocated to volumes in alternate placement
classes or deleted. You can create file placement policy documents, which are XML
text files, using an XML editor, a text editor, or Veritas Operations Manager (VOM).

See the /opt/VRTSvxfs/etc/placement_policy.dtd file for the overall structure
of a placement policy.

File placement policy rules
A VxFS file placement policy consists of one or more rules. Each rule applies to
one or more files. The files to which a rule applies are designated in one or more
SELECT statements. A SELECT statement designates files according to one or more
of four properties: their names or naming patterns, the directories in which they
reside, their owners' user names, and their owners' group names.

A file may be designated by more than one rule. For example, if one rule designates
files in directory /dir, and another designates files owned by user1, a file in /dir

that is owned by user1 is designated by both rules. Only the rule that appears first
in the placement policy applies to the file; subsequent rules are ignored.

You can define placement policies that do not encompass the entire file system
name space. When a file that is not designated by any rule in its file system's active
placement policy is created, VxFS places the file according to its own internal
algorithms. To maintain full control over file placement, include a catchall rule at
the end of each placement policy document with a SELECT statement that designates
files by the naming pattern *. Such a rule designates all files that have not been
designated by the rules appearing earlier in the placement policy document.

Two types of rules exist: data and ckpt. The data rule type allows SmartTier to
relocate normal data files. The ckpt rule type allows SmartTier to relocate Storage
Checkpoints. You specify the rule type by setting the Flags attribute for the rule.

SELECT statement
The VxFS placement policy rule SELECT statement designates the collection of files
to which a rule applies.

The following XML snippet illustrates the general form of the SELECT statement:

<SELECT>

<DIRECTORY Flags="directory_flag_value"> value

</DIRECTORY>

746Administering SmartTier
File placement policy rules

<PATTERN Flags="pattern_flag_value"> value </PATTERN>

<USER> value </USER>

<GROUP> value </GROUP>

</SELECT>

A SELECT statement may designate files by using the following selection criteria:

A full path name relative to the file system mount point. The
Flags="directory_flag_value" XML attribute must have a value
of nonrecursive, denoting that only files in the specified directory
are designated, or a value of recursive, denoting that files in all
subdirectories of the specified directory are designated. The Flags
attribute is mandatory.

The <DIRECTORY> criterion is optional, and may be specified more
than once.

<DIRECTORY>

Either an exact file name or a pattern using a single wildcard character
(*). For example, the pattern “abc*" denotes all files whose names begin
with “abc". The pattern “abc.*" denotes all files whose names are exactly
"abc" followed by a period and any extension. The pattern “*abc"
denotes all files whose names end in “abc", even if the name is all or
part of an extension. The pattern “*.abc" denotes files of any name
whose name extension (following the period) is “abc". The pattern “ab*c"
denotes all files whose names start with “ab" and end with “c". The first
"*" character is treated as a wildcard, while any subsequent "*"
characters are treated as literal text. The pattern cannot contain "/".

The wildcard character matches any character, including ".", "?", and
"[", unlike using the wildcard in a shell.

The Flags="pattern_flag_value" XML attribute is optional, and
if specified can only have a value of recursive. Specify
Flags="recursive" only if the pattern is a directory. If Flags is not
specified, the default attribute value is nonrecursive. If
Flags="recursive" is specified, the enclosing selection criteria
selects all files in any component directory that is anywhere below the
directory specified by <DIRECTORY> if the component directory matches
the pattern and either of the following is true:

■ <DIRECTORY> is specified and has the recursive flag.
■ <DIRECTORY> is not specified and the directory is anywhere in the

file system.

If the pattern contains the wildcard character (*), wildcard character
matching is performed.

The <PATTERN> criterion is optional, and may be specified more than
once. Only one value can be specified per <PATTERN> element.

<PATTERN>

747Administering SmartTier
File placement policy rules

User name of the file's owner. The user number cannot be specified in
place of the name.

The <USER> criterion is optional, and may be specified more than once.

<USER>

Group name of the file's owner. The group number cannot be specified
in place of the group name.

The <GROUP> criterion is optional, and may be specified more than
once.

<GROUP>

One or more instances of any or all of the file selection criteria may be specified
within a single SELECT statement. If two or more selection criteria of different types
are specified in a single statement, a file must satisfy one criterion of each type to
be selected.

In the following example, only files that reside in either the ora/db or the crash/dump

directory, and whose owner is either user1 or user2 are selected for possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>

<USER>user1</USER>

<USER>user2</USER>

</SELECT>

A rule may include multiple SELECT statements. If a file satisfies the selection criteria
of one of the SELECT statements, it is eligible for action.

In the following example, any files owned by either user1 or user2, no matter in
which directories they reside, as well as all files in the ora/db or crash/dump
directories, no matter which users own them, are eligible for action:

<SELECT>

<DIRECTORY Flags="nonrecursive">ora/db</DIRECTORY>

<DIRECTORY Flags="nonrecursive">crash/dump</DIRECTORY>

</SELECT>

<SELECT>

<USER>user1</USER>

<USER>user2</USER>

</SELECT>

When VxFS creates new files, VxFS applies active placement policy rules in the
order of appearance in the active placement policy's XML source file. The first rule
in which a SELECT statement designates the file to be created determines the file's
placement; no later rules apply. Similarly, VxFS scans the active policy rules on
behalf of each file when relocating files, stopping the rules scan when it reaches

748Administering SmartTier
File placement policy rules

the first rule containing a SELECT statement that designates the file. This behavior
holds true even if the applicable rule results in no action. Take for example a policy
rule that indicates that .dat files inactive for 30 days should be relocated, and a
later rule indicates that .dat files larger than 10 megabytes should be relocated.
A 20 megabyte .dat file that has been inactive for 10 days will not be relocated
because the earlier rule applied. The later rule is never scanned.

A placement policy rule's action statements apply to all files designated by any of
the rule's SELECT statements. If an existing file is not designated by a SELECT

statement in any rule of a file system's active placement policy, then SmartTier
does not relocate or delete the file. If an application creates a file that is not
designated by a SELECT statement in a rule of the file system's active policy, then
VxFS places the file according to its own internal algorithms. If this behavior is
inappropriate, the last rule in the policy document on which the file system's active
placement policy is based should specify <PATTERN>*</PATTERN> as the only
selection criterion in its SELECT statement, and a CREATE statement naming the
desired placement class for files not selected by other rules.

CREATE statement
A CREATE statement in a file placement policy rule specifies one or more placement
classes of volumes on which VxFS should allocate space for new files to which the
rule applies at the time the files are created. You can specify only placement classes,
not individual volume names, in a CREATE statement.

A file placement policy rule may contain at most one CREATE statement. If a rule
does not contain a CREATE statement, VxFS places files designated by the rule's
SELECT statements according to its internal algorithms. However, rules without
CREATE statements can be used to relocate or delete existing files that the rules'
SELECT statements designate.

The following XML snippet illustrates the general form of the CREATE statement:

<CREATE>

<ON Flags="flag_value">

<DESTINATION>

<CLASS> placement_class_name </CLASS>

<BALANCE_SIZE Units="units_specifier"> chunk_size

</BALANCE_SIZE>

</DESTINATION>

<DESTINATION> additional_placement_class_specifications

</DESTINATION>

</ON>

</CREATE>

749Administering SmartTier
File placement policy rules

A CREATE statement includes a single <ON> clause, in which one or more
<DESTINATION> XML elements specify placement classes for initial file allocation
in order of decreasing preference. VxFS allocates space for new files to which a
rule applies on a volume in the first class specified, if available space permits. If
space cannot be allocated on any volume in the first class, VxFS allocates space
on a volume in the second class specified if available space permits, and so forth.

If space cannot be allocated on any volume in any of the placement classes
specified, file creation fails with an ENOSPC error, even if adequate space is available
elsewhere in the file system's volume set. This situation can be circumvented by
specifying a Flags attribute with a value of "any" in the <ON> clause. If <ON
Flags="any"> is specified in a CREATE statement, VxFS first attempts to allocate
space for new files to which the rule applies on the specified placement classes.
Failing that, VxFS resorts to its internal space allocation algorithms, so file allocation
does not fail unless there is no available space any-where in the file system's volume
set.

The Flags="any" attribute differs from the catchall rule in that this attribute applies
only to files designated by the SELECT statement in the rule, which may be less
inclusive than the <PATTERN>*</PATTERN> file selection specification of the catchall
rule.

In addition to the placement class name specified in the <CLASS> sub-element, a
<DESTINATION> XML element may contain a <BALANCE_SIZE> sub-element.
Presence of a <BALANCE_SIZE> element indicates that space allocation should be
distributed across the volumes of the placement class in chunks of the indicated
size. For example, if a balance size of one megabyte is specified for a placement
class containing three volumes, VxFS allocates the first megabyte of space for a
new or extending file on the first (lowest indexed) volume in the class, the second
megabyte on the second volume, the third megabyte on the third volume, the fourth
megabyte on the first volume, and so forth. Using the Units attribute in the
<BALANCE_SIZE> XML tag, the balance size value may be specified in the following
units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

The <BALANCE_SIZE> element distributes the allocation of database files across
the volumes in a placement class. In principle, distributing the data in each file
across multiple volumes distributes the I/O load across the volumes as well.

750Administering SmartTier
File placement policy rules

The CREATE statement in the following example specifies that files to which the rule
applies should be created on the tier1 volume if space is available, and on one
of the tier2 volumes if not. If space allocation on tier1 and tier2 volumes is not
possible, file creation fails, even if space is available on tier3 volumes.

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier2</CLASS>

<BALANCE_SIZE Units="MB">1</BALANCE_SIZE>

</DESTINATION>

</ON>

</CREATE>

The <BALANCE_SIZE> element with a value of one megabyte is specified for
allocations on tier2 volumes. For files allocated on tier2 volumes, the first
megabyte would be allocated on the first volume, the second on the second volume,
and so forth.

RELOCATE statement
The RELOCATE action statement of file placement policy rules specifies an action
that VxFS takes on designated files during periodic scans of the file system, and
the circumstances under which the actions should be taken. The fsppadm enforce

command is used to scan all or part of a file system for files that should be relocated
based on rules in the active placement policy at the time of the scan.

See the fsppadm(1M) manual page.

The fsppadm enforce command scans file systems in path name order. For each
file, VxFS identifies the first applicable rule in the active placement policy, as
determined by the rules' SELECT statements. If the file resides on a volume specified
in the <FROM> clause of one of the rule's RELOCATE statements, and if the file meets
the criteria for relocation specified in the statement's <WHEN> clause, the file is
scheduled for relocation to a volume in the first placement class listed in the <TO>

clause that has space available for the file. The scan that results from issuing the
fsppadm enforce command runs to completion before any files are relocated.

The following XML snippet illustrates the general form of the RELOCATE statement:

<RELOCATE>

<FROM>

751Administering SmartTier
File placement policy rules

<SOURCE>

<CLASS> placement_class_name </CLASS>

</SOURCE>

<SOURCE> additional_placement_class_specifications

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS> placement_class_name </CLASS>

<BALANCE_SIZE Units="units_specifier">

chunk_size

</BALANCE_SIZE>

</DESTINATION>

<DESTINATION>

additional_placement_class_specifications

</DESTINATION>

</TO>

<WHEN> relocation_conditions </WHEN>

</RELOCATE>

A RELOCATE statement contains the following clauses:

■ <FROM> – An optional clause that contains a list of placement classes from whose
volumes designated files should be relocated if the files meet the conditions
specified in the <WHEN> clause. No priority is associated with the ordering of
placement classes listed in a <FROM> clause. If a file to which the rule applies is
located on a volume in any specified placement class, the file is considered for
relocation.
If a RELOCATE statement contains a <FROM> clause, VxFS only considers files
that reside on volumes in placement classes specified in the clause for relocation.
If no <FROM> clause is present, qualifying files are relocated regardless of where
the files reside.

■ <TO> – Indicates the placement classes to which qualifying files should be
relocated. Unlike the source placement class list in a FROM clause, placement
classes in a <TO>clause are specified in priority order. Files are relocated to
volumes in the first specified placement class if possible, to the second if not,
and so forth.
The <TO> clause of the RELOCATE statement contains a list of <DESTINATION>
XML elements specifying placement classes to whose volumes VxFS relocates
qualifying files. Placement classes are specified in priority order. VxFS relocates
qualifying files to volumes in the first placement class specified as long as space
is available. A <DESTINATION> element may contain an optional <BALANCE_SIZE>
modifier sub-element. The <BALANCE_SIZE> modifier indicates that relocated

752Administering SmartTier
File placement policy rules

files should be distributed across the volumes of the destination placement class
in chunks of the indicated size. For example, if a balance size of one megabyte
is specified for a placement class containing three volumes, VxFS relocates the
first megabyte the file to the first (lowest indexed) volume in the class, the second
megabyte to the second volume, the third megabyte to the third volume, the
fourth megabyte to the first volume, and so forth. Using the Units attribute in the
<BALANCE_SIZE> XML tag, the chunk value may be specified in the balance size
value may be specified in bytes (Units="bytes"), kilobytes (Units="KB"),
megabytes (Units="MB"), or gigabytes (Units="GB").
The <BALANCE_SIZE> element distributes the allocation of database files across
the volumes in a placement class. In principle, distributing the data in each file
across multiple volumes distributes the I/O load across the volumes as well.
For a multi-volume file system, you can specify the compress flag or the
uncompress flag with the <TO> clause. The compress flag causes SmartTier to
compress a file's extents while relocating the file to the tier specified by the
<DESTINATION> element. SmartTier compresses the entire file and relocates
the file to the destination tier, even if the file spans multiple tiers. The uncompress

flag causes SmartTier to uncompress a file's extents while relocating the file to
the tier specified by the <DESTINATION> element.
The following XML snippet specifies the compress flag:

<TO Flags="compress">

<DESTINATION>

<CLASS> tier4 </CLASS>

</DESTINATION>

</TO>

The following XML snippet specifies the uncompress flag:

<TO Flags="uncompress">

<DESTINATION>

<CLASS> tier4 </CLASS>

</DESTINATION>

</TO>

■ <WHEN> – An optional clause that indicates the conditions under which files to
which the rule applies should be relocated. Files that have been unaccessed or
unmodified for a specified period, reached a certain size, or reached a specific
I/O temperature or access temperature level may be relocated. If a RELOCATE

statement does not contain a <WHEN> clause, files to which the rule applies are
relocated unconditionally.

753Administering SmartTier
File placement policy rules

A <WHEN>clause may be included in a RELOCATE statement to specify that files
should be relocated only if any or all of four types of criteria are met. Files can
be specified for relocation if they satisfy one or more criteria.

The following are the criteria that can be specified for the <WHEN> clause:

This criterion is met when files are inactive for a designated period
or during a designated period relative to the time at which the
fsppadm enforce command was issued.

<ACCAGE>

This criterion is met when files are unmodified for a designated
period or during a designated period relative to the time at which
the fsppadm enforce command was issued.

<MODAGE>

This criterion is met when files exceed or drop below a designated
size or fall within a designated size range.

<SIZE>

This criterion is met when files exceed or drop below a designated
I/O temperature, or fall within a designated I/O temperature range.
A file's I/O temperature is a measure of the I/O activity against it
during the period designated by the <PERIOD>element prior to the
time at which the fsppadm enforce command was issued.

See “Calculating I/O temperature and access temperature”
on page 787.

<IOTEMP>

This criterion is met when files exceed or drop below a specified
average access temperature, or fall within a specified access
temperature range. A file's access temperature is similar to its I/O
temperature, except that access temperature is computed using the
number of I/O requests to the file, rather than the number of bytes
transferred.

<ACCESSTEMP>

Note: The use of <IOTEMP> and <ACCESSTEMP> for data placement on VxFS servers
that are used as NFS servers may not be very effective due to NFS caching. NFS
client side caching and the way that NFS works can result in I/O initiated from an
NFS client not producing NFS server side I/O. As such, any temperature
measurements in place on the server side will not correctly reflect the I/O behavior
that is specified by the placement policy.

If the server is solely used as an NFS server, this problem can potentially be
mitigated by suitably adjusting or lowering the temperature thresholds. However,
adjusting the thresholds may not always create the desired effect. In addition, if the
same mount point is used both as an NFS export as well as a local mount, the
temperature-based placement decisions will not be very effective due to the NFS
cache skew.

754Administering SmartTier
File placement policy rules

The following XML snippet illustrates the general form of the <WHEN> clause in a
RELOCATE statement:

<WHEN>

<ACCAGE Units="units_value">

<MIN Flags="comparison_operator">

min_access_age</MIN>

<MAX Flags="comparison_operator">

max_access_age</MAX>

</ACCAGE>

<MODAGE Units="units_value">

<MIN Flags="comparison_operator">

min_modification_age</MIN>

<MAX Flags="comparison_operator">

max_modification_age</MAX>

</MODAGE>

<SIZE " Units="units_value">

<MIN Flags="comparison_operator">

min_size</MIN>

<MAX Flags="comparison_operator">

max_size</MAX>

</SIZE>

<IOTEMP Type="read_write_preference" Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_I/O_temperature</MIN>

<MAX Flags="comparison_operator">

max_I/O_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</IOTEMP>

<ACCESSTEMP Type="read_write_preference"

Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_access_temperature</MIN>

<MAX Flags="comparison_operator">

max_access_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</ACCESSTEMP>

</WHEN>

The access age (<ACCAGE>) element refers to the amount of time since a file was
last accessed. VxFS computes access age by subtracting a file's time of last access,
atime, from the time when the fsppadm enforce command was issued. The <MIN>

and <MAX>XML elements in an <ACCAGE> clause, denote the minimum and maximum

755Administering SmartTier
File placement policy rules

access age thresholds for relocation, respectively. These elements are optional,
but at least one must be included. Using the Units XML attribute, the <MIN> and
<MAX> elements may be specified in the following units:

Hourshours

Days. A day is considered to be 24 hours prior to the time that the
fsppadm enforce command was issued.

days

Both the <MIN> and <MAX> elements require Flags attributes to direct their operation.

For <MIN>, the following Flags attributes values may be specified:

The time of last access must be greater than the specified interval.gt

The time of last access must be equal to the specified interval.eq

The time of last access must be greater than or equal to the specified
interval.

gteq

For <MAX>, the following Flags attributes values may be specified.

The time of last access must be less than the specified interval.lt

The time of last access must be less than or equal to the specified
interval.

lteq

Including a <MIN> element in a <WHEN> clause causes VxFS to relocate files to which
the rule applies that have been inactive for longer than the specified interval. Such
a rule would typically be used to relocate inactive files to less expensive storage
tiers. Conversely, including <MAX> causes files accessed within the specified interval
to be relocated. It would typically be used to move inactive files against which activity
had recommenced to higher performance or more reliable storage. Including both
<MIN> and <MAX> causes VxFS to relocate files whose access age lies between
the two.

The modification age relocation criterion, <MODAGE>, is similar to access age, except
that files' POSIX mtime values are used in computations. You would typically specify
the <MODAGE> criterion to cause relocation of recently modified files to higher
performance or more reliable storage tiers in anticipation that the files would be
accessed recurrently in the near future.

The file size relocation criterion, <SIZE>, causes files to be relocated if the files are
larger or smaller than the values specified in the <MIN> and <MAX> relocation criteria,
respectively, at the time that the fsppadm enforce command was issued. Specifying
both criteria causes VxFS to schedule relocation for files whose sizes lie between

756Administering SmartTier
File placement policy rules

the two. Using the Units attribute, threshold file sizes may be specified in the
following units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

Specifying the I/O temperature relocation criterion
The I/O temperature relocation criterion, <IOTEMP>, causes files to be relocated if
their I/O temperatures rise above or drop below specified values over a specified
period immediately prior to the time at which the fsppadm enforce command was
issued. A file's I/O temperature is a measure of the read, write, or total I/O activity
against it normalized to the file's size. Higher I/O temperatures indicate higher levels
of application activity; lower temperatures indicate lower levels. VxFS computes a
file's I/O temperature by dividing the number of bytes transferred to or from it (read,
written, or both) during the specified period by its size at the time that the fsppadm

enforce command was issued.

See “Calculating I/O temperature and access temperature” on page 787.

As with the other file relocation criteria, <IOTEMP> may be specified with a lower
threshold by using the <MIN> element, an upper threshold by using the <MAX>

element, or as a range by using both. However, I/O temperature is dimensionless
and therefore has no specification for units.

VxFS computes files' I/O temperatures over the period between the time when the
fsppadm enforce command was issued and the number of days or hours in the
past specified in the <PERIOD> element, where a day is a 24 hour period. The default
unit of time is days. You can specify hours as the time unit by setting the Units

attribute of the <PERIOD> element to hours. Symantec recommends that you specify
hours only if you are using solid state disks (SSDs).

See “Frequent SmartTier scans with solid state disks” on page 799.

For example, if you issued the fsppadm enforce command at 2 PM on Wednesday
and you want VxFS to look at file I/O activity for the period between 2 PM on Monday
and 2 PM on Wednesday, which is a period of 2 days, you would specify the
following <PERIOD> element:

<PERIOD> 2 </PERIOD>

757Administering SmartTier
File placement policy rules

If you instead want VxFS to look at file I/O activity between 3 hours prior to running
the fsppadm enforce command and the time that you ran the command, you specify
the following <PERIOD> element:

<PERIOD Units="hours"> 3 </PERIOD>

The amount of time specified in the <PERIOD> element should not exceed one or
two weeks due to the disk space used by the File Change Log (FCL) file.

See “About the File Change Log file” on page 973.

I/O temperature is a softer measure of I/O activity than access age. With access
age, a single access to a file resets the file's atime to the current time. In contrast,
a file's I/O temperature decreases gradually as time passes without the file being
accessed, and increases gradually as the file is accessed periodically. For example,
if a new 10 megabyte file is read completely five times on Monday and fsppadm

enforce runs at midnight, the file's two-day I/O temperature will be five and its
access age in days will be zero. If the file is read once on Tuesday, the file's access
age in days at midnight will be zero, and its two-day I/O temperature will have
dropped to three. If the file is read once on Wednesday, the file's access age at
midnight will still be zero, but its two-day I/O temperature will have dropped to one,
as the influence of Monday's I/O will have disappeared.

If the intention of a file placement policy is to keep files in place, such as on top-tier
storage devices, as long as the files are being accessed at all, then access age is
the more appropriate relocation criterion. However, if the intention is to relocate
files as the I/O load on them decreases, then I/O temperature is more appropriate.

The case for upward relocation is similar. If files that have been relocated to
lower-tier storage devices due to infrequent access experience renewed application
activity, then it may be appropriate to relocate those files to top-tier devices. A policy
rule that uses access age with a low <MAX> value, that is, the interval between
fsppadm enforce runs, as a relocation criterion will cause files to be relocated that
have been accessed even once during the interval. Conversely, a policy that uses
I/O temperature with a <MIN> value will only relocate files that have experienced a
sustained level of activity over the period of interest.

Prefer attribute
You can specify a value for the Prefer attribute for the <IOTEMP> and <ACCESSTEMP>

criteria, which gives preference to relocating files. The Prefer attribute can take
two values: low or high. If you specify low, Veritas File System (VxFS) relocates
the files with the lower I/O temperature before relocating the files with the higher
I/O temperature. If you specify high, VxFS relocates the files with the higher I/O
temperature before relocating the files with the lower I/O temperature. Symantec

758Administering SmartTier
File placement policy rules

recommends that you specify a Prefer attribute value only if you are using solid
state disks (SSDs).

See “Prefer mechanism with solid state disks” on page 798.

Different <PERIOD> elements may be used in the <IOTEMP> and <ACCESSTEMP>

criteria of different RELOCATE statements within the same policy.

The following placement policy snippet gives an example of the Prefer criteria:

<RELOCATE>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high">

<MIN Flags="gteq"> 3.4 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

If there are a number of files whose I/O temperature is greater than the given
minimum value, the files with the higher temperature are first subject to the RELOCATE

operation before the files with the lower temperature.

Average I/O activity criteria
The Average criteria allows you to specify the value of the I/O temperature as a
ratio of per-file activity that occurs over the time specified by the <PERIOD> element
compared to the overall file system activity that occurs over a longer period of time.
The <PERIOD> element in the RELOCATE criteria specifies the a number of hours or
days immediately before the time of the scan. During that time, the I/O statistics
that are collected are used to process the files that are being scanned. Since I/O
activity can change over time, collect the average I/O activity over a longer duration
than the <PERIOD> value itself, which is by default 24 hours. Doing so lets you
compute an average temperature of the whole file system. Symantec recommends
that you specify an Average attribute value only if you are using solid state disks
(SSDs).

See “Average I/O activity with solid state disks” on page 799.

The following placement policy snippet gives an example of the Average criteria:

<RELOCATE>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high" Average="*">

<MIN Flags="gteq"> 1.5 </MIN>

759Administering SmartTier
File placement policy rules

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

In the snippet, VxFS relocates any file whose read IOTEMP over the last 6 hours
is 1.5 times that of all the active files in the whole file system over the last 24 hours.
This Average criteria is more intuitive and easier to specify than the absolute values.

The following formula computes the read IOTEMP of a given file:

IOTEMP = (bytes of the file that are read in the PERIOD) /

(PERIOD in hours * size of the file in bytes)

The write and read/write IOTEMP are also computed accordingly.

The following formula computes the average read IOTEMP:

Average IOTEMP = (bytes read of all active files in the last h hours) /

(h * size of all the active files in bytes)

h is 24 hours by default. The average write and read/write IOTEMP are also
computed accordingly.

In the example snippet, the value 1.5 is the multiple of average read IOTEMP over
the last 24 hours across the whole file system, or rather across all of the active
inodes whose activity is still available in the File Change Log (FCL) file at the time
of the scan. Thus, the files’ read IOTEMP activity over the last 6 hours is compared
against 1.5 times that of the last 24 hours average activity to make the relocation
decision. Using this method eliminates the need to give a specific number for the
<IOTEMP> or <ACCESSTEMP> criteria, and instead lets you specify a multiple of the
Average temperature. Keeping this averaging period longer than the specified
<PERIOD> value normalizes the effects of any spikes and lulls in the file activity.

You can also use the Average criteria with the <ACCESSTEMP> criteria. The purpose
and usage are the same.

You determine the type of the average by whether you specify the Average criteria
with the <IOTEMP> or with the <ACCESSTEMP> criteria. The Average criteria can be
any of the following types, depending on the criteria used:

■ read Average IOTEMP

■ write Average IOTEMP

■ rw Average IOTEMP

■ read Average ACCESSTEMP

■ write Average ACCESSTEMP

760Administering SmartTier
File placement policy rules

■ rw Average ACCESSTEMP

The default Average is a 24 hour average temperature, which is the total of all of
the temperatures available up to the last 24 hours in the FCL file, divided by the
number of files for which such I/O statistics still exist in the FCL file. You can override
the number of hours by specifying the AveragePeriod attribute in the
<PLACEMENT_POLICY> element. Symantec recommends that you specify an
AveragePeriod attribute value only if you are using solid state disks (SSDs).

The following example statement causes the average file system activity be collected
and computed over a period of 30 hours instead of the default 24 hours:

<PLACEMENT_POLICY Name="Policy1" Version="5.1" AveragePeriod="30">

RELOCATE statement examples
The following example illustrates an unconditional relocation statement, which is
the simplest form of the RELOCATE policy rule statement:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

</RELOCATE>

The files designated by the rule's SELECT statement that reside on volumes in
placement class tier1 at the time the fsppadm enforce command executes would
be unconditionally relocated to volumes in placement class tier2 as long as space
permitted. This type of rule might be used, for example, with applications that create
and access new files but seldom access existing files once they have been
processed. A CREATE statement would specify creation on tier1 volumes, which
are presumably high performance or high availability, or both. Each instantiation of
fsppadm enforce would relocate files created since the last run to tier2 volumes.

The following example illustrates a more comprehensive form of the RELOCATE

statement that uses access age as the criterion for relocating files from tier1

volumes to tier2 volumes. This rule is designed to maintain free space on tier1

volumes by relocating inactive files to tier2 volumes:

761Administering SmartTier
File placement policy rules

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gt">1</MIN>

<MAX Flags="lt">1000</MAX>

</SIZE>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

Files designated by the rule's SELECT statement are relocated from tier1 volumes
to tier2 volumes if they are between 1 MB and 1000 MB in size and have not been
accessed for 30 days. VxFS relocates qualifying files in the order in which it
encounters them as it scans the file system's directory tree. VxFS stops scheduling
qualifying files for relocation when when it calculates that already-scheduled
relocations would result in tier2 volumes being fully occupied.

The following example illustrates a possible companion rule that relocates files from
tier2 volumes to tier1 ones based on their I/O temperatures. This rule might be
used to return files that had been relocated to tier2 volumes due to inactivity to
tier1 volumes when application activity against them increases. Using I/O
temperature rather than access age as the relocation criterion reduces the chance
of relocating files that are not actually being used frequently by applications. This
rule does not cause files to be relocated unless there is sustained activity against
them over the most recent two-day period.

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

762Administering SmartTier
File placement policy rules

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes">

<MIN Flags="gt">5</MIN>

<PERIOD>2</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

This rule relocates files that reside on tier2 volumes to tier1 volumes if their I/O
temperatures are above 5 for the two day period immediately preceding the issuing
of the fsppadm enforce command. VxFS relocates qualifying files in the order in
which it encounters them during its file system directory tree scan. When tier1

volumes are fully occupied, VxFS stops scheduling qualifying files for relocation.

VxFS file placement policies are able to control file placement across any number
of placement classes. The following example illustrates a rule for relocating files
with low I/O temperatures from tier1 volumes to tier2 volumes, and to tier3

volumes when tier2 volumes are fully occupied:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier3</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes">

<MAX Flags="lt">4</MAX>

<PERIOD>3</PERIOD>

</IOTEMP>

763Administering SmartTier
File placement policy rules

</WHEN>

</RELOCATE>

This rule relocates files whose 3-day I/O temperatures are less than 4 and which
reside on tier1 volumes. When VxFS calculates that already-relocated files would
result in tier2 volumes being fully occupied, VxFS relocates qualifying files to
tier3 volumes instead. VxFS relocates qualifying files as it encounters them in its
scan of the file system directory tree.

The <FROM> clause in the RELOCATE statement is optional. If the clause is not present,
VxFS evaluates files designated by the rule's SELECT statement for relocation no
matter which volumes they reside on when the fsppadm enforce command is
issued. The following example illustrates a fragment of a policy rule that relocates
files according to their sizes, no matter where they reside when the fsppadm

enforce command is issued:

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MAX Flags="lt">10</MAX>

</SIZE>

</WHEN>

</RELOCATE>

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gteq">10</MIN>

<MAX Flags="lt">100</MAX>

</SIZE>

</WHEN>

</RELOCATE>

<RELOCATE>

<TO>

<DESTINATION>

764Administering SmartTier
File placement policy rules

<CLASS>tier3</CLASS>

</DESTINATION>

</TO>

<WHEN>

<SIZE Units="MB">

<MIN Flags="gteq">100</MIN>

</SIZE>

</WHEN>

</RELOCATE>

This rule relocates files smaller than 10 megabytes to tier1 volumes, files between
10 and 100 megabytes to tier2 volumes, and files larger than 100 megabytes to
tier3 volumes. VxFS relocates all qualifying files that do not already reside on
volumes in their DESTINATION placement classes when the fsppadm enforce

command is issued.

The following example compresses while relocating all of the files from tier2 with
the extension dbf to tier4 if the file was accessed over 30 days ago:

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

<RELOCATE>

<FROM>

<SOURCE>

<CLASS> tier2 </CLASS>

</SOURCE>

</FROM>

<TO Flags="compress">

<DESTINATION>

<CLASS> tier4 </CLASS>

</DESTINATION>

</TO>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

The following example uncompresses while relocating all of the files from tier3

with the extension dbf to tier1 if the file was accessed over 1 hour ago:

765Administering SmartTier
File placement policy rules

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

<RELOCATE>

<FROM>

<SOURCE>

<CLASS> tier3 </CLASS>

</SOURCE>

</FROM>

<TO Flags="uncompress">

<DESTINATION>

<CLASS> tier1 </CLASS>

</DESTINATION>

</TO>

<WHEN>

<ACCAGE Units="hours">

<MIN Flags="gt">1</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

DELETE statement
The DELETE file placement policy rule statement is very similar to the RELOCATE

statement in both form and function, lacking only the <TO> clause. File placement
policy-based deletion may be thought of as relocation with a fixed destination.

Note: Use DELETE statements with caution.

The following XML snippet illustrates the general form of the DELETE statement:

<DELETE>

<FROM>

<SOURCE>

<CLASS> placement_class_name </CLASS>

</SOURCE>

<SOURCE>

additional_placement_class_specifications

</SOURCE>

</FROM>

<WHEN> relocation_conditions </WHEN>

</DELETE>

766Administering SmartTier
File placement policy rules

A DELETE statement contains the following clauses:

An optional clause that contains a list of placement classes from whose
volumes designated files should be deleted if the files meet the
conditions specified in the <WHEN> clause. No priority is associated
with the ordering of placement classes in a <FROM> clause. If a file to
which the rule applies is located on a volume in any specified placement
class, the file is deleted. If a DELETE statement does not contain a
<FROM> clause, VxFS deletes qualifying files no matter on which of a
file system's volumes the files reside.

<FROM>

An optional clause specifying the conditions under which files to which
the rule applies should be deleted. The form of the <WHEN> clause in
a DELETE statement is identical to that of the <WHEN> clause in a
RELOCATE statement. If a DELETE statement does not contain a <WHEN>
clause, files designated by the rule's SELECT statement, and the
<FROM> clause if it is present, are deleted unconditionally.

<WHEN>

DELETE statement examples
The following example illustrates the use of the DELETE statement:

<DELETE>

<FROM>

<SOURCE>

<CLASS>tier3</CLASS>

</SOURCE>

</FROM>

</DELETE>

<DELETE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">120</MIN>

</ACCAGE>

</WHEN>

</DELETE>

The first DELETE statement unconditionally deletes files designated by the rule's
SELECT statement that reside on tier3 volumes when the fsppadm enforce

767Administering SmartTier
File placement policy rules

command is issued. The absence of a <WHEN> clause in the DELETE statement
indicates that deletion of designated files is unconditional.

The second DELETE statement deletes files to which the rule applies that reside on
tier2 volumes when the fsppadm enforce command is issued and that have not
been accessed for the past 120 days.

COMPRESS statement
The COMPRESS statement in a file placement policy rule specifies in-place file
compression on multi-volume or single-volume file systems. The placement policy
becomes assigned to the selected file, and allocation for the compressed extents
is done from the same tier specified in the <SOURCE> element of the <FROM> clause.
SmartTier performs in-place compression of the entire file, even if the file spans
across multiple tiers.

Note: SmartTier does not schedule compression activity. If you did not integrate
your Veritas Storage Foundation product with the Veritas Operations Manager
(VOM), then you must automate compression activity by using techniques such as
scheduling through cron jobs.

The following XML snippet illustrates the general form of the COMPRESS statement:

<COMPRESS>

<FROM>

<SOURCE>

<CLASS> placement_class_name </CLASS>

</SOURCE>

<SOURCE> additional_placement_class_specifications

</SOURCE>

</FROM>

<WHEN> compression_conditions </WHEN>

</COMPRESS>

A COMPRESS statement contains the following clauses:

768Administering SmartTier
File placement policy rules

An optional clause that contains a list of placement classes from whose
volumes designated files should be compressed if the files meet the
conditions specified in the <WHEN> clause. No priority is associated
with the ordering of placement classes listed in a <FROM> clause. If a
file to which the rule applies is located on a volume in any specified
placement class, the file is considered for compression.

If a COMPRESS statement contains a <FROM> clause, VxFS only
considers files that reside on volumes in placement classes specified
in the clause for compression. If no <FROM> clause is present, qualifying
files are compressed regardless of where the files reside.

<FROM>

An optional clause that indicates the conditions under which files to
which the rule applies should be compressed. Files that have been
unaccessed or unmodified for a specified period, reached a certain
size, or reached a specific I/O temperature or access temperature level
may be compressed. If a COMPRESS statement does not contain a
<WHEN> clause, files to which the rule applies are compressed
unconditionally.

A <WHEN> clause may be included in a COMPRESS statement to specify
that files should be compressed only if any or all of four types of criteria
are met. Files can be specified for compression if they satisfy one or
more criteria.

<WHEN>

The following are the criteria that can be specified for the <WHEN> clause:

This criterion is met when files are inactive for a designated period
or during a designated period relative to the time at which the
fsppadm enforce command was issued.

<ACCAGE>

This criterion is met when files are unmodified for a designated
period or during a designated period relative to the time at which
the fsppadm enforce command was issued.

<MODAGE>

This criterion is met when files exceed or drop below a designated
size or fall within a designated size range.

<SIZE>

This criterion is met when files exceed or drop below a designated
I/O temperature, or fall within a designated I/O temperature range.
A file's I/O temperature is a measure of the I/O activity against it
during the period designated by the <PERIOD>element prior to the
time at which the fsppadm enforce command was issued.

See “Calculating I/O temperature and access temperature”
on page 787.

<IOTEMP>

769Administering SmartTier
File placement policy rules

This criterion is met when files exceed or drop below a specified
average access temperature, or fall within a specified access
temperature range. A file's access temperature is similar to its I/O
temperature, except that access temperature is computed using the
number of I/O requests to the file, rather than the number of bytes
transferred.

<ACCESSTEMP>

Note: The use of <IOTEMP> and <ACCESSTEMP> for data placement on VxFS servers
that are used as NFS servers may not be very effective due to NFS caching. NFS
client side caching and the way that NFS works can result in I/O initiated from an
NFS client not producing NFS server side I/O. As such, any temperature
measurements in place on the server side will not correctly reflect the I/O behavior
that is specified by the placement policy.

If the server is solely used as an NFS server, this problem can potentially be
mitigated by suitably adjusting or lowering the temperature thresholds. However,
adjusting the thresholds may not always create the desired effect. In addition, if the
same mount point is used both as an NFS export as well as a local mount, the
temperature-based placement decisions will not be very effective due to the NFS
cache skew.

The following XML snippet illustrates the general form of the <WHEN> clause in a
COMPRESS statement:

<WHEN>

<ACCAGE Units="units_value">

<MIN Flags="comparison_operator">

min_access_age</MIN>

<MAX Flags="comparison_operator">

max_access_age</MAX>

</ACCAGE>

<MODAGE Units="units_value">

<MIN Flags="comparison_operator">

min_modification_age</MIN>

<MAX Flags="comparison_operator">

max_modification_age</MAX>

</MODAGE>

<SIZE " Units="units_value">

<MIN Flags="comparison_operator">

min_size</MIN>

<MAX Flags="comparison_operator">

max_size</MAX>

</SIZE>

770Administering SmartTier
File placement policy rules

<IOTEMP Type="read_write_preference" Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_I/O_temperature</MIN>

<MAX Flags="comparison_operator">

max_I/O_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</IOTEMP>

<ACCESSTEMP Type="read_write_preference"

Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_access_temperature</MIN>

<MAX Flags="comparison_operator">

max_access_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</ACCESSTEMP>

</WHEN>

The access age (<ACCAGE>) element refers to the amount of time since a file was
last accessed. VxFS computes access age by subtracting a file's time of last access,
atime, from the time when the fsppadm enforce command was issued. The <MIN>

and <MAX>XML elements in an <ACCAGE> clause, denote the minimum and maximum
access age thresholds for compression, respectively. These elements are optional,
but at least one must be included. Using the Units XML attribute, the <MIN> and
<MAX> elements may be specified in the following units:

Hourshours

Days. A day is considered to be 24 hours prior to the time that the
fsppadm enforce command was issued.

days

Both the <MIN> and <MAX> elements require Flags attributes to direct their operation.

For <MIN>, the following Flags attributes values may be specified:

The time of last access must be greater than the specified interval.gt

The time of last access must be equal to the specified interval.eq

The time of last access must be greater than or equal to the specified
interval.

gteq

For <MAX>, the following Flags attributes values may be specified.

The time of last access must be less than the specified interval.lt

771Administering SmartTier
File placement policy rules

The time of last access must be less than or equal to the specified
interval.

lteq

Including a <MIN> element in a <WHEN> clause causes VxFS to compress files to
which the rule applies that have been inactive for longer than the specified interval.
Such a rule would typically be used to compress inactive files to less expensive
storage tiers. Conversely, including <MAX> causes files accessed within the specified
interval to be compressed. It would typically be used to move inactive files against
which activity had recommenced to higher performance or more reliable storage.
Including both <MIN> and <MAX> causes VxFS to compress files whose access age
lies between the two.

The modification age compression criterion, <MODAGE>, is similar to access age,
except that files' POSIX mtime values are used in computations. You would typically
specify the <MODAGE> criterion to cause compression of recently modified files to
higher performance or more reliable storage tiers in anticipation that the files would
be accessed recurrently in the near future.

The file size compression criterion, <SIZE>, causes files to be compressed if the
files are larger or smaller than the values specified in the <MIN> and <MAX>

compression criteria, respectively, at the time that the fsppadm enforce command
was issued. Specifying both criteria causes VxFS to schedule compression for files
whose sizes lie between the two. Using the Units attribute, threshold file sizes may
be specified in the following units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

Specifying the I/O temperature compression criterion
The I/O temperature compression criterion, <IOTEMP>, causes files to be compressed
if their I/O temperatures rise above or drop below specified values over a specified
period immediately prior to the time at which the fsppadm enforce command was
issued. A file's I/O temperature is a measure of the read, write, or total I/O activity
against it normalized to the file's size. Higher I/O temperatures indicate higher levels
of application activity; lower temperatures indicate lower levels. VxFS computes a
file's I/O temperature by dividing the number of bytes transferred to or from it (read,
written, or both) during the specified period by its size at the time that the fsppadm

enforce command was issued.

772Administering SmartTier
File placement policy rules

See “Calculating I/O temperature and access temperature” on page 787.

As with the other file compression criteria, <IOTEMP> may be specified with a lower
threshold by using the <MIN> element, an upper threshold by using the <MAX>

element, or as a range by using both. However, I/O temperature is dimensionless
and therefore has no specification for units.

VxFS computes files' I/O temperatures over the period between the time when the
fsppadm enforce command was issued and the number of days or hours in the
past specified in the <PERIOD> element, where a day is a 24 hour period. The default
unit of time is days. You can specify hours as the time unit by setting the Units

attribute of the <PERIOD> element to hours. Symantec recommends that you specify
hours only if you are using solid state disks (SSDs).

See “Frequent SmartTier scans with solid state disks” on page 799.

For example, if you issued the fsppadm enforce command at 2 PM on Wednesday
and you want VxFS to look at file I/O activity for the period between 2 PM on Monday
and 2 PM on Wednesday, which is a period of 2 days, you would specify the
following <PERIOD> element:

<PERIOD> 2 </PERIOD>

If you instead want VxFS to look at file I/O activity between 3 hours prior to running
the fsppadm enforce command and the time that you ran the command, you specify
the following <PERIOD> element:

<PERIOD Units="hours"> 3 </PERIOD>

The amount of time specified in the <PERIOD> element should not exceed one or
two weeks due to the disk space used by the File Change Log (FCL) file.

See “About the File Change Log file” on page 973.

I/O temperature is a softer measure of I/O activity than access age. With access
age, a single access to a file resets the file's atime to the current time. In contrast,
a file's I/O temperature decreases gradually as time passes without the file being
accessed, and increases gradually as the file is accessed periodically. For example,
if a new 10 megabyte file is read completely five times on Monday and fsppadm

enforce runs at midnight, the file's two-day I/O temperature will be five and its
access age in days will be zero. If the file is read once on Tuesday, the file's access
age in days at midnight will be zero, and its two-day I/O temperature will have
dropped to three. If the file is read once on Wednesday, the file's access age at
midnight will still be zero, but its two-day I/O temperature will have dropped to one,
as the influence of Monday's I/O will have disappeared.

If the intention of a file placement policy is to keep files in place, such as on top-tier
storage devices, as long as the files are being accessed at all, then access age is

773Administering SmartTier
File placement policy rules

the more appropriate compression criterion. However, if the intention is to compress
files as the I/O load on them decreases, then I/O temperature is more appropriate.

The case for upward compression is similar. If files that have been compressed to
lower-tier storage devices due to infrequent access experience renewed application
activity, then it may be appropriate to compress those files to top-tier devices. A
policy rule that uses access age with a low <MAX> value, that is, the interval between
fsppadm enforce runs, as a compression criterion will cause files to be compressed
that have been accessed even once during the interval. Conversely, a policy that
uses I/O temperature with a <MIN> value will only compress files that have
experienced a sustained level of activity over the period of interest.

Prefer attribute
You can specify a value for the Prefer attribute for the <IOTEMP> and <ACCESSTEMP>

criteria, which gives preference to compressing files. The Prefer attribute can take
two values: low or high. If you specify low, Veritas File System (VxFS) compresss
the files with the lower I/O temperature before compressing the files with the higher
I/O temperature. If you specify high, VxFS compresss the files with the higher I/O
temperature before compressing the files with the lower I/O temperature. Symantec
recommends that you specify a Prefer attribute value only if you are using solid
state disks (SSDs).

See “Prefer mechanism with solid state disks” on page 798.

Different <PERIOD> elements may be used in the <IOTEMP> and <ACCESSTEMP>

criteria of different COMPRESS statements within the same policy.

The following placement policy snippet gives an example of the Prefer criteria:

<COMPRESS>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high">

<MIN Flags="gteq"> 3.4 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</COMPRESS>

If there are a number of files whose I/O temperature is greater than the given
minimum value, the files with the higher temperature are first subject to the COMPRESS

operation before the files with the lower temperature.

774Administering SmartTier
File placement policy rules

Average I/O activity criteria
The Average criteria allows you to specify the value of the I/O temperature as a
ratio of per-file activity that occurs over the time specified by the <PERIOD> element
compared to the overall file system activity that occurs over a longer period of time.
The <PERIOD> element in the COMPRESS criteria specifies the a number of hours or
days immediately before the time of the scan. During that time, the I/O statistics
that are collected are used to process the files that are being scanned. Since I/O
activity can change over time, collect the average I/O activity over a longer duration
than the <PERIOD> value itself, which is by default 24 hours. Doing so lets you
compute an average temperature of the whole file system. Symantec recommends
that you specify an Average attribute value only if you are using solid state disks
(SSDs).

See “Average I/O activity with solid state disks” on page 799.

The following placement policy snippet gives an example of the Average criteria:

<COMPRESS>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high" Average="*">

<MIN Flags="gteq"> 1.5 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</COMPRESS>

In the snippet, VxFS compresss any file whose read IOTEMP over the last 6 hours
is 1.5 times that of all the active files in the whole file system over the last 24 hours.
This Average criteria is more intuitive and easier to specify than the absolute values.

The following formula computes the read IOTEMP of a given file:

IOTEMP = (bytes of the file that are read in the PERIOD) /

(PERIOD in hours * size of the file in bytes)

The write and read/write IOTEMP are also computed accordingly.

The following formula computes the average read IOTEMP:

Average IOTEMP = (bytes read of all active files in the last h hours) /

(h * size of all the active files in bytes)

h is 24 hours by default. The average write and read/write IOTEMP are also
computed accordingly.

775Administering SmartTier
File placement policy rules

In the example snippet, the value 1.5 is the multiple of average read IOTEMP over
the last 24 hours across the whole file system, or rather across all of the active
inodes whose activity is still available in the File Change Log (FCL) file at the time
of the scan. Thus, the files’ read IOTEMP activity over the last 6 hours is compared
against 1.5 times that of the last 24 hours average activity to make the compression
decision. Using this method eliminates the need to give a specific number for the
<IOTEMP> or <ACCESSTEMP> criteria, and instead lets you specify a multiple of the
Average temperature. Keeping this averaging period longer than the specified
<PERIOD> value normalizes the effects of any spikes and lulls in the file activity.

You can also use the Average criteria with the <ACCESSTEMP> criteria. The purpose
and usage are the same.

You determine the type of the average by whether you specify the Average criteria
with the <IOTEMP> or with the <ACCESSTEMP> criteria. The Average criteria can be
any of the following types, depending on the criteria used:

■ read Average IOTEMP

■ write Average IOTEMP

■ rw Average IOTEMP

■ read Average ACCESSTEMP

■ write Average ACCESSTEMP

■ rw Average ACCESSTEMP

The default Average is a 24 hour average temperature, which is the total of all of
the temperatures available up to the last 24 hours in the FCL file, divided by the
number of files for which such I/O statistics still exist in the FCL file. You can override
the number of hours by specifying the AveragePeriod attribute in the
<PLACEMENT_POLICY> element. Symantec recommends that you specify an
AveragePeriod attribute value only if you are using solid state disks (SSDs).

The following example statement causes the average file system activity be collected
and computed over a period of 30 hours instead of the default 24 hours:

<PLACEMENT_POLICY Name="Policy1" Version="5.1" AveragePeriod="30">

COMPRESS statement examples
The following example compresses all of the files with the extension dbf on the
multi-volume file system tier2 that have not been accessed for last 30 days:

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

776Administering SmartTier
File placement policy rules

<COMPRESS>

<FROM>

<SOURCE>

<CLASS> tier2 </CLASS>

</SOURCE>

</FROM>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</COMPRESS>

The files designated by the rule's SELECT statement that reside on volumes in
placement class tier2 at the time the fsppadm enforce command executes are
compressed in place. Each instantiation of fsppadm enforce compresses files
created since the last run on the tier2 volumes.

The following example compresses all of the files with the extension dbf on a single
volume if the file was not accessed for one minute.

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

<COMPRESS>

<WHEN>

<ACCAGE Units="minutes">

<MIN Flags="gt">1</MIN>

</ACCAGE>

</WHEN>

</COMPRESS>

No <FROM> clause is required for single volume. The files designated by the rule's
SELECT statement at the time the fsppadm enforce command executes are
compressed in place. Each instantiation of fsppadm enforce compresses files
created since the last run on the volume.

The following example compresses all of the files on tier3:

<SELECT Flags="Data">

<PATTERN> * </PATTERN>

</SELECT>

777Administering SmartTier
File placement policy rules

<COMPRESS>

<FROM>

<SOURCE>

<CLASS> tier3 </CLASS>

</SOURCE>

</FROM>

</COMPRESS>

This rule compresses in place all files that reside on tier3 at the time the fsppadm

enforce command executes.

UNCOMPRESS statement
The UNCOMPRESS statement in a file placement policy rule specifies in-place file
uncompression on multi-volume and single-volume file systems. The placement
policy becomes assigned to the selected file, and allocation for the uncompressed
extents is done from the tier specified in the <SOURCE> element of the <FROM> clause.

If a file is partially compressed, then the file can be picked only for in-place
compression, after which in next enforcement the file will be uncompressed before
being relocated.

Note: SmartTier does not schedule uncompression activity. If you did not integrate
your Veritas Storage Foundation product with the Veritas Operations Manager
(VOM), then you must automate uncompression activity by using techniques such
as scheduling through cron jobs.

The following XML snippet illustrates the general form of the UNCOMPRESS statement:

<UNCOMPRESS>

<FROM>

<SOURCE>

<CLASS> placement_class_name </CLASS>

</SOURCE>

<SOURCE> additional_placement_class_specifications

</SOURCE>

</FROM>

<WHEN> uncompression_conditions </WHEN>

</UNCOMPRESS>

A UNCOMPRESS statement contains the following clauses:

778Administering SmartTier
File placement policy rules

An optional clause that contains a list of placement classes from whose
volumes designated files should be uncompressed if the files meet the
conditions specified in the <WHEN> clause. No priority is associated
with the ordering of placement classes listed in a <FROM> clause. If a
file to which the rule applies is located on a volume in any specified
placement class, the file is considered for uncompression.

If a UNCOMPRESS statement contains a <FROM> clause, VxFS only
considers files that reside on volumes in placement classes specified
in the clause for uncompression. If no <FROM> clause is present,
qualifying files are uncompressed regardless of where the files reside.

<FROM>

An optional clause that indicates the conditions under which files to
which the rule applies should be uncompressed. Files that have been
unaccessed or unmodified for a specified period, reached a certain
size, or reached a specific I/O temperature or access temperature level
may be uncompressed. If a UNCOMPRESS statement does not contain
a <WHEN> clause, files to which the rule applies are uncompressed
unconditionally.

A <WHEN> clause may be included in a UNCOMPRESS statement to
specify that files should be uncompressed only if any or all of four types
of criteria are met. Files can be specified for uncompression if they
satisfy one or more criteria.

<WHEN>

The following are the criteria that can be specified for the <WHEN> clause:

This criterion is met when files are inactive for a designated period
or during a designated period relative to the time at which the
fsppadm enforce command was issued.

<ACCAGE>

This criterion is met when files are unmodified for a designated
period or during a designated period relative to the time at which
the fsppadm enforce command was issued.

<MODAGE>

This criterion is met when files exceed or drop below a designated
size or fall within a designated size range.

<SIZE>

This criterion is met when files exceed or drop below a designated
I/O temperature, or fall within a designated I/O temperature range.
A file's I/O temperature is a measure of the I/O activity against it
during the period designated by the <PERIOD>element prior to the
time at which the fsppadm enforce command was issued.

See “Calculating I/O temperature and access temperature”
on page 787.

<IOTEMP>

779Administering SmartTier
File placement policy rules

This criterion is met when files exceed or drop below a specified
average access temperature, or fall within a specified access
temperature range. A file's access temperature is similar to its I/O
temperature, except that access temperature is computed using the
number of I/O requests to the file, rather than the number of bytes
transferred.

<ACCESSTEMP>

Note: The use of <IOTEMP> and <ACCESSTEMP> for data placement on VxFS servers
that are used as NFS servers may not be very effective due to NFS caching. NFS
client side caching and the way that NFS works can result in I/O initiated from an
NFS client not producing NFS server side I/O. As such, any temperature
measurements in place on the server side will not correctly reflect the I/O behavior
that is specified by the placement policy.

If the server is solely used as an NFS server, this problem can potentially be
mitigated by suitably adjusting or lowering the temperature thresholds. However,
adjusting the thresholds may not always create the desired effect. In addition, if the
same mount point is used both as an NFS export as well as a local mount, the
temperature-based placement decisions will not be very effective due to the NFS
cache skew.

The following XML snippet illustrates the general form of the <WHEN> clause in a
UNCOMPRESS statement:

<WHEN>

<ACCAGE Units="units_value">

<MIN Flags="comparison_operator">

min_access_age</MIN>

<MAX Flags="comparison_operator">

max_access_age</MAX>

</ACCAGE>

<MODAGE Units="units_value">

<MIN Flags="comparison_operator">

min_modification_age</MIN>

<MAX Flags="comparison_operator">

max_modification_age</MAX>

</MODAGE>

<SIZE " Units="units_value">

<MIN Flags="comparison_operator">

min_size</MIN>

<MAX Flags="comparison_operator">

max_size</MAX>

</SIZE>

780Administering SmartTier
File placement policy rules

<IOTEMP Type="read_write_preference" Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_I/O_temperature</MIN>

<MAX Flags="comparison_operator">

max_I/O_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</IOTEMP>

<ACCESSTEMP Type="read_write_preference"

Prefer="temperature_preference">

<MIN Flags="comparison_operator">

min_access_temperature</MIN>

<MAX Flags="comparison_operator">

max_access_temperature</MAX>

<PERIOD Units="days_or_hours"> days_or_hours_of_interest </PERIOD>

</ACCESSTEMP>

</WHEN>

The access age (<ACCAGE>) element refers to the amount of time since a file was
last accessed. VxFS computes access age by subtracting a file's time of last access,
atime, from the time when the fsppadm enforce command was issued. The <MIN>

and <MAX>XML elements in an <ACCAGE> clause, denote the minimum and maximum
access age thresholds for uncompression, respectively. These elements are optional,
but at least one must be included. Using the Units XML attribute, the <MIN> and
<MAX> elements may be specified in the following units:

Hourshours

Days. A day is considered to be 24 hours prior to the time that the
fsppadm enforce command was issued.

days

Both the <MIN> and <MAX> elements require Flags attributes to direct their operation.

For <MIN>, the following Flags attributes values may be specified:

The time of last access must be greater than the specified interval.gt

The time of last access must be equal to the specified interval.eq

The time of last access must be greater than or equal to the specified
interval.

gteq

For <MAX>, the following Flags attributes values may be specified.

The time of last access must be less than the specified interval.lt

781Administering SmartTier
File placement policy rules

The time of last access must be less than or equal to the specified
interval.

lteq

Including a <MIN> element in a <WHEN> clause causes VxFS to uncompress files to
which the rule applies that have been inactive for longer than the specified interval.
Such a rule would typically be used to uncompress inactive files to less expensive
storage tiers. Conversely, including <MAX> causes files accessed within the specified
interval to be uncompressed. It would typically be used to move inactive files against
which activity had recommenced to higher performance or more reliable storage.
Including both <MIN> and <MAX> causes VxFS to uncompress files whose access
age lies between the two.

The modification age uncompression criterion, <MODAGE>, is similar to access age,
except that files' POSIX mtime values are used in computations. You would typically
specify the <MODAGE> criterion to cause uncompression of recently modified files to
higher performance or more reliable storage tiers in anticipation that the files would
be accessed recurrently in the near future.

The file size uncompression criterion, <SIZE>, causes files to be uncompressed if
the files are larger or smaller than the values specified in the <MIN> and <MAX>

uncompression criteria, respectively, at the time that the fsppadm enforce command
was issued. Specifying both criteria causes VxFS to schedule uncompression for
files whose sizes lie between the two. Using the Units attribute, threshold file sizes
may be specified in the following units:

Bytesbytes

KilobytesKB

MegabytesMB

GigabytesGB

Specifying the I/O temperature uncompression criterion
The I/O temperature uncompression criterion, <IOTEMP>, causes files to be
uncompressed if their I/O temperatures rise above or drop below specified values
over a specified period immediately prior to the time at which the fsppadm enforce

command was issued. A file's I/O temperature is a measure of the read, write, or
total I/O activity against it normalized to the file's size. Higher I/O temperatures
indicate higher levels of application activity; lower temperatures indicate lower
levels. VxFS computes a file's I/O temperature by dividing the number of bytes
transferred to or from it (read, written, or both) during the specified period by its
size at the time that the fsppadm enforce command was issued.

782Administering SmartTier
File placement policy rules

See “Calculating I/O temperature and access temperature” on page 787.

As with the other file uncompression criteria, <IOTEMP> may be specified with a
lower threshold by using the <MIN> element, an upper threshold by using the <MAX>

element, or as a range by using both. However, I/O temperature is dimensionless
and therefore has no specification for units.

VxFS computes files' I/O temperatures over the period between the time when the
fsppadm enforce command was issued and the number of days or hours in the
past specified in the <PERIOD> element, where a day is a 24 hour period. The default
unit of time is days. You can specify hours as the time unit by setting the Units

attribute of the <PERIOD> element to hours. Symantec recommends that you specify
hours only if you are using solid state disks (SSDs).

See “Frequent SmartTier scans with solid state disks” on page 799.

For example, if you issued the fsppadm enforce command at 2 PM on Wednesday
and you want VxFS to look at file I/O activity for the period between 2 PM on Monday
and 2 PM on Wednesday, which is a period of 2 days, you would specify the
following <PERIOD> element:

<PERIOD> 2 </PERIOD>

If you instead want VxFS to look at file I/O activity between 3 hours prior to running
the fsppadm enforce command and the time that you ran the command, you specify
the following <PERIOD> element:

<PERIOD Units="hours"> 3 </PERIOD>

The amount of time specified in the <PERIOD> element should not exceed one or
two weeks due to the disk space used by the File Change Log (FCL) file.

See “About the File Change Log file” on page 973.

I/O temperature is a softer measure of I/O activity than access age. With access
age, a single access to a file resets the file's atime to the current time. In contrast,
a file's I/O temperature decreases gradually as time passes without the file being
accessed, and increases gradually as the file is accessed periodically. For example,
if a new 10 megabyte file is read completely five times on Monday and fsppadm

enforce runs at midnight, the file's two-day I/O temperature will be five and its
access age in days will be zero. If the file is read once on Tuesday, the file's access
age in days at midnight will be zero, and its two-day I/O temperature will have
dropped to three. If the file is read once on Wednesday, the file's access age at
midnight will still be zero, but its two-day I/O temperature will have dropped to one,
as the influence of Monday's I/O will have disappeared.

If the intention of a file placement policy is to keep files in place, such as on top-tier
storage devices, as long as the files are being accessed at all, then access age is

783Administering SmartTier
File placement policy rules

the more appropriate uncompression criterion. However, if the intention is to
uncompress files as the I/O load on them decreases, then I/O temperature is more
appropriate.

The case for upward uncompression is similar. If files that have been uncompressed
to lower-tier storage devices due to infrequent access experience renewed
application activity, then it may be appropriate to uncompress those files to top-tier
devices. A policy rule that uses access age with a low <MAX> value, that is, the
interval between fsppadm enforce runs, as a uncompression criterion will cause
files to be uncompressed that have been accessed even once during the interval.
Conversely, a policy that uses I/O temperature with a <MIN> value will only
uncompress files that have experienced a sustained level of activity over the period
of interest.

Prefer attribute
You can specify a value for the Prefer attribute for the <IOTEMP> and <ACCESSTEMP>

criteria, which gives preference to uncompressing files. The Prefer attribute can
take two values: low or high. If you specify low, Veritas File System (VxFS)
uncompresss the files with the lower I/O temperature before uncompressing the
files with the higher I/O temperature. If you specify high, VxFS uncompresss the
files with the higher I/O temperature before uncompressing the files with the lower
I/O temperature. Symantec recommends that you specify a Prefer attribute value
only if you are using solid state disks (SSDs).

See “Prefer mechanism with solid state disks” on page 798.

Different <PERIOD> elements may be used in the <IOTEMP> and <ACCESSTEMP>

criteria of different UNCOMPRESS statements within the same policy.

The following placement policy snippet gives an example of the Prefer criteria:

<UNCOMPRESS>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high">

<MIN Flags="gteq"> 3.4 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</UNCOMPRESS>

If there are a number of files whose I/O temperature is greater than the given
minimum value, the files with the higher temperature are first subject to the
UNCOMPRESS operation before the files with the lower temperature.

784Administering SmartTier
File placement policy rules

Average I/O activity criteria
The Average criteria allows you to specify the value of the I/O temperature as a
ratio of per-file activity that occurs over the time specified by the <PERIOD> element
compared to the overall file system activity that occurs over a longer period of time.
The <PERIOD> element in the UNCOMPRESS criteria specifies the a number of hours
or days immediately before the time of the scan. During that time, the I/O statistics
that are collected are used to process the files that are being scanned. Since I/O
activity can change over time, collect the average I/O activity over a longer duration
than the <PERIOD> value itself, which is by default 24 hours. Doing so lets you
compute an average temperature of the whole file system. Symantec recommends
that you specify an Average attribute value only if you are using solid state disks
(SSDs).

See “Average I/O activity with solid state disks” on page 799.

The following placement policy snippet gives an example of the Average criteria:

<UNCOMPRESS>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high" Average="*">

<MIN Flags="gteq"> 1.5 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</UNCOMPRESS>

In the snippet, VxFS uncompresss any file whose read IOTEMP over the last 6
hours is 1.5 times that of all the active files in the whole file system over the last 24
hours. This Average criteria is more intuitive and easier to specify than the absolute
values.

The following formula computes the read IOTEMP of a given file:

IOTEMP = (bytes of the file that are read in the PERIOD) /

(PERIOD in hours * size of the file in bytes)

The write and read/write IOTEMP are also computed accordingly.

The following formula computes the average read IOTEMP:

Average IOTEMP = (bytes read of all active files in the last h hours) /

(h * size of all the active files in bytes)

h is 24 hours by default. The average write and read/write IOTEMP are also
computed accordingly.

785Administering SmartTier
File placement policy rules

In the example snippet, the value 1.5 is the multiple of average read IOTEMP over
the last 24 hours across the whole file system, or rather across all of the active
inodes whose activity is still available in the File Change Log (FCL) file at the time
of the scan. Thus, the files’ read IOTEMP activity over the last 6 hours is compared
against 1.5 times that of the last 24 hours average activity to make the
uncompression decision. Using this method eliminates the need to give a specific
number for the <IOTEMP> or <ACCESSTEMP> criteria, and instead lets you specify a
multiple of the Average temperature. Keeping this averaging period longer than the
specified <PERIOD> value normalizes the effects of any spikes and lulls in the file
activity.

You can also use the Average criteria with the <ACCESSTEMP> criteria. The purpose
and usage are the same.

You determine the type of the average by whether you specify the Average criteria
with the <IOTEMP> or with the <ACCESSTEMP> criteria. The Average criteria can be
any of the following types, depending on the criteria used:

■ read Average IOTEMP

■ write Average IOTEMP

■ rw Average IOTEMP

■ read Average ACCESSTEMP

■ write Average ACCESSTEMP

■ rw Average ACCESSTEMP

The default Average is a 24 hour average temperature, which is the total of all of
the temperatures available up to the last 24 hours in the FCL file, divided by the
number of files for which such I/O statistics still exist in the FCL file. You can override
the number of hours by specifying the AveragePeriod attribute in the
<PLACEMENT_POLICY> element. Symantec recommends that you specify an
AveragePeriod attribute value only if you are using solid state disks (SSDs).

The following example statement causes the average file system activity be collected
and computed over a period of 30 hours instead of the default 24 hours:

<PLACEMENT_POLICY Name="Policy1" Version="5.1" AveragePeriod="30">

UNCOMPRESS statement examples
The following example uncompresses in place all of the files with the extension dbf

on the multi-volume file system tier3 that have been accessed over 60 minutes
ago:

786Administering SmartTier
File placement policy rules

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

<UNCOMPRESS>

<FROM>

<SOURCE>

<CLASS> tier3 </CLASS>

</SOURCE>

</FROM>

<WHEN>

<ACCAGE Units="minutes">

<MIN Flags="gt">60</MIN>

</ACCAGE>

</WHEN>

</UNCOMPRESS>

The following example uncompresses in place all of the files with the extension dbf

on a single volume that have been accessed over 1 minute ago:

<SELECT Flags="Data">

<PATTERN> *.dbf </PATTERN>

</SELECT>

<UNCOMPRESS>

<WHEN>

<ACCAGE Units="minutes">

<MIN Flags="gt">1</MIN>

</ACCAGE>

</WHEN>

</UNCOMPRESS>

Calculating I/O temperature and access
temperature

An important application of VxFS SmartTier is automating the relocation of inactive
files to lower cost storage. If a file has not been accessed for the period of time
specified in the <ACCAGE> element, a scan of the file system should schedule the
file for relocation to a lower tier of storage. But, time since last access is inadequate
as the only criterion for activity-based relocation.

Why time since last access is inadequate as the only criterion for activity-based
relocation:

787Administering SmartTier
Calculating I/O temperature and access temperature

■ Access age is a binary measure. The time since last access of a file is computed
by subtracting the time at which the fsppadm enforce command is issued from
the POSIX atime in the file's metadata. If a file is opened the day before the
fsppadm enforce command, its time since last access is one day, even though
it may have been inactive for the month preceding. If the intent of a policy rule
is to relocate inactive files to lower tier volumes, it will perform badly against
files that happen to be accessed, however casually, within the interval defined
by the value of the <ACCAGE> pa-rameter.

■ Access age is a poor indicator of resumption of significant activity. Using ACCAGE,
the time since last access, as a criterion for relocating inactive files to lower tier
volumes may fail to schedule some relocations that should be performed, but
at least this method results in less relocation activity than necessary. Using
ACCAGE as a criterion for relocating previously inactive files that have become
active is worse, because this method is likely to schedule relocation activity that
is not warranted. If a policy rule's intent is to cause files that have experienced
I/O activity in the recent past to be relocated to higher performing, perhaps more
failure tolerant storage, ACCAGE is too coarse a filter. For example, in a rule
specifying that files on tier2 volumes that have been accessed within the last
three days should be relocated to tier1 volumes, no distinction is made between
a file that was browsed by a single user and a file that actually was used
intensively by applications.

SmartTier implements the concept of I/O temperature and access temperature to
overcome these deficiencies. A file's I/O temperature is equal to the number of
bytes transferred to or from it over a specified period of time divided by the size of
the file. For example, if a file occupies one megabyte of storage at the time of an
fsppadm enforce operation and the data in the file has been completely read or
written 15 times within the last three days, VxFS calculates its 3-day average I/O
temperature to be 5 (15 MB of I/O ÷ 1 MB file size ÷ 3 days).

Similarly, a file's average access temperature is the number of read or write requests
made to it over a specified number of 24-hour periods divided by the number of
periods. Unlike I/O temperature, access temperature is unrelated to file size. A large
file to which 20 I/O requests are made over a 2-day period has the same average
access temperature as a small file accessed 20 times over a 2-day period.

If a file system's active placement policy includes any <IOTEMP> or <ACCESSTEMP>
clauses, VxFS begins policy enforcement by using information in the file system's
FCL file to calculate average I/O activity against all files in the file system during
the longest <PERIOD> specified in the policy. Shorter specified periods are ignored.
VxFS uses these calculations to qualify files for I/O temperature-based relocation
and deletion.

See “About the File Change Log file” on page 973.

788Administering SmartTier
Calculating I/O temperature and access temperature

Note: If FCL is turned off, I/O temperature-based relocation will not be accurate.
When you invoke the fsppadm enforce command, the command displays a warning
if the FCL is turned off.

As its name implies, the File Change Log records information about changes made
to files in a VxFS file system. In addition to recording creations, deletions, extensions,
the FCL periodically captures the cumulative amount of I/O activity (number of bytes
read and written) on a file-by-file basis. File I/O activity is recorded in the FCL each
time a file is opened or closed, as well as at timed intervals to capture information
about files that remain open for long periods.

If a file system's active file placement policy contains <IOTEMP> clauses, execution
of the fsppadm enforce command begins with a scan of the FCL to extract I/O
activity information over the period of interest for the policy. The period of interest
is the interval between the time at which the fsppadm enforce command was
issued and that time minus the largest interval value specified in any <PERIOD>

element in the active policy.

For files with I/O activity during the largest interval, VxFS computes an approximation
of the amount of read, write, and total data transfer (the sum of the two) activity by
subtracting the I/O levels in the oldest FCL record that pertains to the file from those
in the newest. It then computes each file's I/O temperature by dividing its I/O activity
by its size at Tscan. Dividing by file size is an implicit acknowledgement that
relocating larger files consumes more I/O resources than relocating smaller ones.
Using this algorithm requires that larger files must have more activity against them
in order to reach a given I/O temperature, and thereby justify the resource cost of
relocation.

While this computation is an approximation in several ways, it represents an easy
to compute, and more importantly, unbiased estimate of relative recent I/O activity
upon which reasonable relocation decisions can be based.

File relocation and deletion decisions can be based on read, write, or total I/O
activity.

The following XML snippet illustrates the use of IOTEMP in a policy rule to specify
relocation of low activity files from tier1 volumes to tier2 volumes:

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier1</CLASS>

</SOURCE>

</FROM>

<TO>

789Administering SmartTier
Calculating I/O temperature and access temperature

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrwbytes}">

<MAX Flags="lt">3</MAX>

<PERIOD Units="days">4</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

This snippet specifies that files to which the rule applies should be relocated from
tier1 volumes to tier2 volumes if their I/O temperatures fall below 3 over a period
of 4 days. The Type="nrwbytes}" XML attribute specifies that total data transfer
activity, which is the the sum of bytes read and bytes written, should be used in the
computation. For example, a 50 megabyte file that experienced less than 150
megabytes of data transfer over the 4-day period immediately preceding the fsppadm

enforce scan would be a candidate for relocation. VxFS considers files that
experience no activity over the period of interest to have an I/O temperature of zero.
VxFS relocates qualifying files in the order in which it encounters the files in its scan
of the file system directory tree.

Using I/O temperature or access temperature rather than a binary indication of
activity, such as the POSIX atime or mtime, minimizes the chance of not relocating
files that were only accessed occasionally during the period of interest. A large file
that has had only a few bytes transferred to or from it would have a low I/O
temperature, and would therefore be a candidate for relocation to tier2 volumes,
even if the activity was very recent.

But, the greater value of I/O temperature or access temperature as a file relocation
criterion lies in upward relocation: detecting increasing levels of I/O activity against
files that had previously been relocated to lower tiers in a storage hierarchy due to
inactivity or low temperatures, and relocating them to higher tiers in the storage
hierarchy.

The following XML snippet illustrates relocating files from tier2 volumes to tier1

when the activity level against them increases.

<RELOCATE>

<FROM>

<SOURCE>

<CLASS>tier2</CLASS>

</SOURCE>

</FROM>

790Administering SmartTier
Calculating I/O temperature and access temperature

<TO>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes">

<MAX Flags="gt">5</MAX>

<PERIOD Units="days">2</PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

The <RELOCATE> statement specifies that files on tier2 volumes whose I/O
temperature as calculated using the number of bytes read is above 5 over a 2-day
period are to be relocated to tier1 volumes. Bytes written to the file during the
period of interest are not part of this calculation.

Using I/O temperature rather than a binary indicator of activity as a criterion for file
relocation gives administrators a granular level of control over automated file
relocation that can be used to attune policies to application requirements. For
example, specifying a large value in the <PERIOD> element of an upward relocation
statement prevents files from being relocated unless I/O activity against them is
sustained. Alternatively, specifying a high temperature and a short period tends to
relocate files based on short-term intensity of I/O activity against them.

I/O temperature and access temperature utilize the sqlite3 database for building
a temporary table indexed on an inode. This temporary table is used to filter files
based on I/O temperature and access temperature. The temporary table is stored
in the database file .__fsppadm_fcliotemp.db, which resides in the lost+found

directory of the mount point.

Multiple criteria in file placement policy rule
statements

In certain cases, file placement policy rule statements may contain multiple clauses
that affect their behavior. In general, when a rule statement contains multiple clauses
of a given type, all clauses must be satisfied in order for the statement to be effective.
There are four cases of note in which multiple clauses may be used.

791Administering SmartTier
Multiple criteria in file placement policy rule statements

Multiple file selection criteria in SELECT statement clauses
Within a single SELECT statement, all the selection criteria clauses of a single type
are treated as a selection list. A file need only satisfy a single criterion of a given
type to be designated.

In the following example, files in any of the db/datafiles, db/indexes, and db/logs

directories, all relative to the file system mount point, would be selected:

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>

This example is in direct contrast to the treatment of selection criteria clauses of
different types. When a SELECT statement includes multiple types of file selection
criteria, a file must satisfy one criterion of each type in order for the rule's action
statements to apply.

In the following example, a file must reside in one of db/datafiles, db/indexes,
or db/logs and be owned by one of DBA_Manager, MFG_DBA, or HR_DBA to be
designated for possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

<USER>DBA_Manager</USER>

<USER>MFG_DBA</USER>

<USER>HR_DBA</USER>

</SELECT>

If a rule includes multiple SELECT statements, a file need only satisfy one of them
to be selected for action. This property can be used to specify alternative conditions
for file selection.

In the following example, a file need only reside in one of db/datafiles,
db/indexes, or db/logs or be owned by one of DBA_Manager, MFG_DBA, or HR_DBA
to be designated for possible action:

<SELECT>

<DIRECTORY Flags="nonrecursive">db/datafiles</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/indexes</DIRECTORY>

<DIRECTORY Flags="nonrecursive">db/logs</DIRECTORY>

</SELECT>

792Administering SmartTier
Multiple criteria in file placement policy rule statements

<SELECT>

<USER>DBA_Manager</USER>

<USER>MFG_DBA</USER>

<USER>HR_DBA</USER>

</SELECT>

Multiple placement classes in <ON> clauses of CREATE statements
and in <TO> clauses of RELOCATE statements

Both the <ON> clause of the CREATE statement and the <TO> clause of the RELOCATE

statement can specify priority ordered lists of placement classes using multiple
<DESTINATION> XML elements. VxFS uses a volume in the first placement class
in a list for the designated purpose of file creation or relocation, if possible. If no
volume in the first listed class has sufficient free space or if the file system's volume
set does not contain any volumes with that placement class, VxFS uses a volume
in the second listed class if possible. If no volume in the second listed class can be
used, a volume in the third listed class is used if possible, and so forth.

The following example illustrates of three placement classes specified in the <ON>

clause of a CREATE statement:

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

<DESTINATION>

<CLASS>tier3</CLASS>

</DESTINATION>

</ON>

</CREATE>

In this statement, VxFS would allocate space for newly created files designated by
the rule's SELECT statement on tier1 volumes if space was available. If no tier1

volume had sufficient free space, VxFS would attempt to allocate space on a tier2

volume. If no tier2 volume had sufficient free space, VxFS would attempt allocation
on a tier3 volume. If sufficient space could not be allocated on a volume in any
of the three specified placement classes, allocation would fail with an ENOSPC error,
even if the file system's volume set included volumes in other placement classes
that did have sufficient space.

793Administering SmartTier
Multiple criteria in file placement policy rule statements

The <TO> clause in the RELOCATE statement behaves similarly. VxFS relocates
qualifying files to volumes in the first placement class specified if possible, to volumes
in the second specified class if not, and so forth. If none of the destination criteria
can be met, such as if all specified classes are fully occupied, qualifying files are
not relocated, but no error is signaled in this case.

Multiple placement classes in <FROM> clauses of RELOCATE and
DELETE statements

The <FROM> clause in RELOCATE and DELETE statements can include multiple source
placement classes. However, unlike the <ON> and <TO> clauses, no order or priority
is implied in <FROM> clauses. If a qualifying file resides on a volume in any of the
placement classes specified in a <FROM> clause, it is relocated or deleted regardless
of the position of its placement class in the <FROM> clause list of classes.

Multiple conditions in <WHEN> clauses of RELOCATE and DELETE
statements

The <WHEN> clause in RELOCATE and DELETE statements may include multiple
relocation criteria. Any or all of <ACCAGE>, <MODAGE>, <SIZE>, and <IOTEMP> can
be specified. When multiple conditions are specified, all must be satisfied in order
for a selected file to qualify for relocation or deletion.

In the following example, a selected file would have to be both inactive, that is, not
accessed, for more than 30 days and larger than 100 megabytes to be eligible for
relocation or deletion:

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

<SIZE Units="MB">

<MIN Flags="gt">100</MIN>

</SIZE>

</WHEN>

You cannot write rules to relocate or delete a single designated set of files if the
files meet one of two or more relocation or deletion criteria.

File placement policy rule and statement ordering
You can use the SmartTier graphical user interface (GUI) to create any of four types
of file placement policy documents. Alternatively, you can use a text editor or XML

794Administering SmartTier
File placement policy rule and statement ordering

editor to create XML policy documents directly. The GUI places policy rule
statements in the correct order to achieve the desired behavior. If you use a text
editor, it is your responsibility to order policy rules and the statements in them so
that the desired behavior results.

The rules that comprise a placement policy may occur in any order, but during both
file allocation and fsppadm enforce relocation scans, the first rule in which a file
is designated by a SELECT statement is the only rule against which that file is
evaluated. Thus, rules whose purpose is to supersede a generally applicable
behavior for a special class of files should precede the general rules in a file
placement policy document.

The following XML snippet illustrates faulty rule placement with potentially unintended
consequences:

<?xml version="1.0"?>

<!DOCTYPE FILE_PLACEMENT_POLICY SYSTEM "placement.dtd">

<FILE_PLACEMENT_POLICY Version="5.0">

<RULE Name="GeneralRule">

<SELECT>

<PATTERN>*</PATTERN>

</SELECT>

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</ON>

</CREATE>

other_statements

</RULE>

<RULE Name="DatabaseRule">

<SELECT>

<PATTERN>*.db</PATTERN>

</SELECT>

<CREATE>

<ON>

<DESTINATION>

<CLASS>tier1</CLASS>

</DESTINATION>

</ON>

</CREATE>

other_statements

795Administering SmartTier
File placement policy rule and statement ordering

</RULE>

</FILE_PLACEMENT_POLICY>

The GeneralRule rule specifies that all files created in the file system, designated
by <PATTERN>*</PATTERN>, should be created on tier2 volumes. The DatabaseRule

rule specifies that files whose names include an extension of .db should be created
on tier1 volumes. The GeneralRule rule applies to any file created in the file
system, including those with a naming pattern of *.db, so the DatabaseRule rule
will never apply to any file. This fault can be remedied by exchanging the order of
the two rules. If the DatabaseRule rule occurs first in the policy document, VxFS
encounters it first when determining where to new place files whose names follow
the pattern *.db, and correctly allocates space for them on tier1 volumes. For
files to which the DatabaseRule rule does not apply, VxFS continues scanning the
policy and allocates space according to the specification in the CREATE statement
of the GeneralRule rule.

A similar consideration applies to statements within a placement policy rule. VxFS
processes these statements in order, and stops processing on behalf of a file when
it encounters a statement that pertains to the file. This can result in unintended
behavior.

The following XML snippet illustrates a RELOCATE statement and a DELETE statement
in a rule that is intended to relocate if the files have not been accessed in 30 days,
and delete the files if they have not been accessed in 90 days:

<RELOCATE>

<TO>

<DESTINATION>

<CLASS>tier2</CLASS>

</DESTINATION>

</TO>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">30</MIN>

</ACCAGE>

</WHEN>

</RELOCATE>

<DELETE>

<WHEN>

<ACCAGE Units="days">

<MIN Flags="gt">90</MIN>

</ACCAGE>

</WHEN>

</DELETE>

796Administering SmartTier
File placement policy rule and statement ordering

As written with the RELOCATE statement preceding the DELETE statement, files will
never be deleted, because the <WHEN> clause in the RELOCATE statement applies
to all selected files that have not been accessed for at least 30 days. This includes
those that have not been accessed for 90 days. VxFS ceases to process a file
against a placement policy when it identifies a statement that applies to that file,
so the DELETE statement would never occur. This example illustrates the general
point that RELOCATE and DELETE statements that specify less inclusive criteria should
precede statements that specify more inclusive criteria in a file placement policy
document. The GUI automatically produce the correct statement order for the
policies it creates.

File placement policies and extending files
In a VxFS file system with an active file placement policy, the placement class on
whose volume a file resides is part of its metadata, and is attached when it is created
and updated when it is relocated. When an application extends a file, VxFS allocates
the incremental space on the volume occupied by the file if possible. If not possible,
VxFS allocates the space on another volume in the same placement class. For
example, if a file is created on a tier1 volume and later relocated to a tier2 volume,
extensions to the file that occur before the relocation have space allocated on a
tier1 volume, while those occurring after to the relocation have their space allocated
on tier2 volumes. When a file is relocated, all of its allocated space, including the
space acquired by extension, is relocated to tier2 volumes in this case.

Using SmartTier with solid state disks
The SmartTier placement policies support SSD-based tiers with the following
features:

■ Allowance of fine grained temperatures, such as allowing hours as units for the
<IOTEMP> and <ACCESSTEMP> criteria
See “Fine grain temperatures with solid state disks” on page 798.

■ Support of the Prefer attribute for the <IOTEMP> and <ACCESSTEMP> criteria
See “Prefer mechanism with solid state disks” on page 798.

■ Provision of a mechanism to relocate based on average I/O activity
See “Average I/O activity with solid state disks” on page 799.

■ Reduction of the intensity and duration of scans to minimize the impact on
resources, such as memory, CPU, and I/O bandwidth
See “Frequent SmartTier scans with solid state disks” on page 799.

■ Quick identification of cold files

797Administering SmartTier
File placement policies and extending files

See “Quick identification of cold files with solid state disks” on page 800.

To gain these benefits, you must modify the existing placement policy as per the
latest version of the DTD and assign the policy again. However, existing placement
policies continue to function as before. You do not need to update the placement
policies if you do not use the new features.

Fine grain temperatures with solid state disks
Before the solid state disk (SSD) enhancements, the SmartTier feature computed
temperature values on a day granularity. Day granularity is the I/O activity per day
over at least one day. As such, the <PERIOD> element had to be in days for the
<IOTEMP> and <ACCESSTEMP> criteria. With SSDs, relocation decisions might need
to happen within the day itself, based on I/O activity that Veritas File System (VxFS)
measured over a shorter duration. As such, you can now specify "hours" for the
Units attribute value for the <IOTEMP> and <ACCESSTEMP> criteria.

See “Specifying the I/O temperature relocation criterion” on page 757.

The following placement policy snippet gives an example of specifying 4 hours as
the period of time:

<RELOCATE>

...

<WHEN>

<IOTEMP Type="nwbytes">

<MIN Flags="gteq"> 2 </MIN>

<PERIOD Units="hours"> 4 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

Prefer mechanism with solid state disks
You can now specify a value for the Prefer attribute for the <IOTEMP> and
<ACCESSTEMP> criteria, which gives preference to relocating files.

See “Prefer attribute” on page 758.

In case of a solid state disk (SSD)-based tier, you might want to relocate a file to
an SSD as soon as there is a marked increase in the I/O activity. However, once
Veritas File System (VxFS) has relocated the file to an SSD, it may be beneficial
to keep the file on the SSD as long as the activity remains high to avoid frequent
thrashing. You want to watch the activity for some time longer than the time that
you watched the activity when you relocated the file to the SSD before you decide
to move the file off of the SSD.

798Administering SmartTier
Using SmartTier with solid state disks

The following placement policy snippet gives an example of the Prefer criteria:

<RELOCATE>

...

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high">

<MIN Flags="gteq"> 3.4 </MIN>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

If there are a number of files whose I/O temperature is greater than the given
minimum value, the files with the higher temperature are first subject to the RELOCATE

operation before the files with the lower temperature. This is particularly useful in
case of SSDs, which are limited in size and are expensive. As such, you generally
want to use SSDs for the most active files.

Average I/O activity with solid state disks
Before the solid state disk (SSD) enhancements, you were required to specify an
absolute value of the temperature when you used the ACCESSTEMP criteria and
IOTEMP criteria in the SmartTier placement policies. However, arriving at such
absolute numbers is difficult and requires you to experiment and observe data
access patterns over a period of time. Moreover, over a period of time, you might
have to change this value due to changing access patterns. As such, you might
need to repeat the experiment. To ease constructing ACCESSTEMP and IOTEMP-based
policies, a new criteria has been introduced: Average.

See “Average I/O activity criteria” on page 759.

Frequent SmartTier scans with solid state disks
You can specify "hours" for the Units attribute value, and as such the I/O stats
collection PERIOD can be much shorter than in previous releases. When not using
solid state disks (SSDs), you can only specify "days" for the Units attribute value,
which might be sufficient for your needs. However, a PERIOD shorter than a day
is required in the context of using SSDs since the candidate files and their activity
levels can change during the day. As a result, SmartTier must scan more frequently,
which leads to a higher scan load on the host systems.

You must satisfy the following conflicting requirements simultaneously:

■ Bring down the temperature collection windows to hourly levels.

799Administering SmartTier
Using SmartTier with solid state disks

■ Reduce the impact of more frequent scans on resources, such as CPU, I/O,
and memory.

The following scheme is an example of one way to reduce the impact of frequent
scans:

■ Confine the scan to only active files during the PERIOD by focusing only on the
files that showed any activity in the File Change Log (FCL) by running the
fsppadm command with the -C option.
See “Quick identification of cold files with solid state disks” on page 800.

■ Scan frequently, such as every few hours. Frequent scans potentially reduce
the number of inodes that VxFS touches and logs in the File Change Log (FCL)
file, thereby limiting the duration of each scan. As such, the changes that VxFS
collects in the FCL file since the last scan provide details on fewer active files.

■ Use the <IOTEMP> and <ACCESSTEMP> criteria to promote files to SSDs more
aggressively, which leaves cold files sitting in SSDs.

Quick identification of cold files with solid state disks
The placement mechanism generally leaves the cold files in solid state disks (SSDs)
if the files continue to remain inactive. This results in a lack of room for active files
if the active files need to be moved into SSDs, and thus results in ineffective use
of storage. An SSD enhancement for identifying cold files quickly solves this problem.

The enhancement is a method for quickly identifying files on a particular tier of the
SmartTier file system so that the files can be relocated if necessary. The method
consists of a map that associates storage devices with the inodes of files residing
on the storage devices.

Veritas File System (VxFS) updates the file location map during the following times:

■ SmartTier’s own file relocations

■ On examination of the file system’s File Change Log (FCL) for changes that are
made outside of SmartTier’s scope.

Both of these updates occur during SmartTier’s relocation scans, which are typically
scheduled to occur periodically. But, you can also update the file location map
anytime by running the fsppadm command with the -T option.

The -C option is useful to process active files before any other files. For best results,
specify the -T option in conjunction with the -C option. Specifying both the -T option
and -C option causes the fsppadm command to evacuate any cold files first to create
room in the SSD tier to accommodate any active files that will be moved into the
SSD tier via the -C option. Specifying -C in conjunction with -T confines the scope

800Administering SmartTier
Using SmartTier with solid state disks

of the scan, which consumes less time and resources, and thus allows frequent
scans to meet the dynamic needs of data placement.

See “Enforcing a placement policy” on page 743.

See the fsppadm(1M) manual page.

With the help of the map, instead of scanning the full file system, you can confine
the scan to only the files on the SSD tiers in addition to the active files that VxFS
recorded in the FCL. This scheme potentially achieves the dual purpose of reducing
the temperature time granularity and at the same time reducing the scan load.

Example placement policy when using solid state disks
The following snippet is one possible placement policy for use with solid state disk
(SSD)-based tiers.

<?xml version="1.0"?>

<!DOCTYPE PLACEMENT_POLICY SYSTEM "/opt/VRTSvxfs/etc/placement_policy.dtd">

<PLACEMENT_POLICY Version="5.0" Name="SSD_policy">

<RULE Flags="data" Name="all_files">

<COMMENT>

The first two RELOCATEs will do the evacuation

out of SSDs to create room for any relocations

into the SSDs by the third RELOCATE. The parameters

that can be tuned are basically values for PERIOD and

the values of MIN and/or MAX as the per the case.

The values for MIN and MAX are treated as multiples of

average activity over past 24 hour period.

</COMMENT>

<SELECT>

<PATTERN> * </PATTERN>

</SELECT>

<CREATE>

<COMMENT>

create files on ssdtier, failing which

create them on other tiers

</COMMENT>

<ON>

<DESTINATION Flags="any">

<CLASS> ssdtier </CLASS>

</DESTINATION>

</ON>

</CREATE>

801Administering SmartTier
Using SmartTier with solid state disks

<RELOCATE>

<COMMENT>

Move the files out of SSD if their last 3 hour

write IOTEMP is more than 1.5 times the last

24 hour average write IOTEMP. The PERIOD is

purposely shorter than the other RELOCATEs

because we want to move it out as soon as

write activity starts peaking. This criteria

could be used to reduce SSD wear outs.

</COMMENT>

<FROM>

<SOURCE>

<CLASS> ssdtier </CLASS>

</SOURCE>

</FROM>

<TO>

<DESTINATION>

<CLASS> nonssd_tier </CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nwbytes" Average="*">

<MIN Flags="gt"> 1.5 </MIN>

<PERIOD Units="hours"> 3 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

<RELOCATE>

<COMMENT>

OR move the files out of SSD if their last 6 hour

read IOTEMP is less than half the last 24 hour

average read IOTEMP. The PERIOD is longer,

we may want to observe longer periods

having brought the file in. This avoids quickly

sending the file out of SSDs once in.

</COMMENT>

<FROM>

<SOURCE>

<CLASS> ssdtier </CLASS>

</SOURCE>

</FROM>

802Administering SmartTier
Using SmartTier with solid state disks

<TO>

<DESTINATION>

<CLASS> nonssd_tier </CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes" Average="*">

<MAX Flags="lt"> 0.5 </MAX>

<PERIOD Units="hours"> 6 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

<RELOCATE>

<COMMENT>

OR move the files into SSD if their last 3 hour

read IOTEMP is more than or equal to 1.5 times

the last 24 hour average read IOTEMP AND

their last 6 hour write IOTEMP is less than

half of the last 24 hour average write IOTEMP

</COMMENT>

<TO>

<DESTINATION>

<CLASS> ssd_tier </CLASS>

</DESTINATION>

</TO>

<WHEN>

<IOTEMP Type="nrbytes" Prefer="high" Average="*">

<MIN Flags="gteq"> 1.5 </MIN>

<PERIOD Units="hours"> 3 </PERIOD>

</IOTEMP>

<IOTEMP Type="nwbytes" Average="*">

<MAX Flags="lt"> 0.5 </MAX>

<PERIOD Units="hours"> 3 </PERIOD>

</IOTEMP>

</WHEN>

</RELOCATE>

</RULE>

</PLACEMENT_POLICY>

In this placement policy, new files are created on the SSD tiers if space is available,
or elsewhere if space is not available. When enforce is performed, the files that are
currently in SSDs whose write activity is increased above a threshold or whose

803Administering SmartTier
Using SmartTier with solid state disks

read activity fell below a threshold over a given period are moved out of the SSDs.
The first two RELOCATEs capture this intent. However, the files whose read activity
intensified above a threshold and whose write activity does not exceed a threshold
over the given period are moved into SSDs, while giving preference to files with
higher read activity.

The following figure illustrates the behavior of the example placement policy:

The files whose I/O activity falls in the light gray area are good candidates for moving
in to SSD storage. These files have less write activity such that they have less
impact on wear leveling, and the slower write times to SSDs is less of a factor.
These files have intense read activity, which also makes the files ideal for placement
on SSDs since read activity does not cause any wear leveling side effects, and
reads are faster from SSDs. In contrast, the files whose I/O activity falls in the dark
gray area are good candidates to be moved out of SSD storage, since they have
more write activity or less read activity. Greater write activity leads to greater wear
leveling of the SSDs, and your file system's performance suffers from the slower
write times of SSDs. Lesser read activity means that you are not benefitting from
the faster read times of SSDs with these files.

804Administering SmartTier
Using SmartTier with solid state disks

Sub-file relocation
The sub-file relocation functionality relocates the data ranges of the specified files
to the specified target tier. Only one instance is allowed at a time on a given node
for a given mount.

You can move sub-file data by using the fsppadm subfilemove command. The
application using this framework calls the fsppadm subfilemove command
periodically via some external scheduling mechanism at desired intervals, to effect
relocations. The application might need to call subfilemove on each node of a
cluster, in case of a cluster file system, if you want to distribute the load. The
application also must arrange for initiating this relocation for new mounts and
reboots, if the application needs sub−file relocations on those nodes or mounts.

In a cluster situation, since enforcement can happen from multiple nodes even if
each node is scheduled to collect statistics at the same intervals, each node’s
persistence into the database can be slightly out of sync with each other on each
node. Since enforcement should follow statistics collection, Symantec recommends
that you schedule enforcements on each node with a few minutes of lag so that all
nodes can complete the statistics synchronizing by that time. A lag time of 5 minutes
suffices in most cases.

Note: You cannot use SmartTier to compress files while using the sub-file relocation
functionality.

Moving sub-file data of files to specific target tiers
See the fsppadm(1M) manual page.

The following example moves a total of 32 MB in the file test.dbf from the offset
64 MB through 96 MB from its existing tier to tier2:

cat /var/tmp/list

test.dbf 67108864 100663296 tier2

fsppadm subfilemove -f /var/tmp/list /mount1

805Administering SmartTier
Sub-file relocation

Administering
hot-relocation

This chapter includes the following topics:

■ About hot-relocation

■ How hot-relocation works

■ Configuring a system for hot-relocation

■ Displaying spare disk information

■ Marking a disk as a hot-relocation spare

■ Removing a disk from use as a hot-relocation spare

■ Excluding a disk from hot-relocation use

■ Making a disk available for hot-relocation use

■ Configuring hot-relocation to use only spare disks

■ Moving relocated subdisks

■ Modifying the behavior of hot-relocation

About hot-relocation
If a volume has a disk I/O failure (for example, the disk has an uncorrectable error),
Veritas Volume Manager (VxVM) can detach the plex involved in the failure. I/O
stops on that plex but continues on the remaining plexes of the volume.

34Chapter

If a disk fails completely, VxVM can detach the disk from its disk group. All plexes
on the disk are disabled. If there are any unmirrored volumes on a disk when it is
detached, those volumes are also disabled.

Apparent disk failure may not be due to a fault in the physical disk media or the
disk controller, but may instead be caused by a fault in an intermediate or ancillary
component such as a cable, host bus adapter, or power supply.

The hot-relocation feature in VxVM automatically detects disk failures, and notifies
the system administrator and other nominated users of the failures by electronic
mail. Hot-relocation also attempts to use spare disks and free disk space to restore
redundancy and to preserve access to mirrored and RAID-5 volumes.

See “How hot-relocation works” on page 807.

If hot-relocation is disabled or you miss the electronic mail, you can use the vxprint

command or the graphical user interface to examine the status of the disks. You
may also see driver error messages on the console or in the system messages file.

Failed disks must be removed and replaced manually.

See “Removing and replacing disks” on page 930.

For more information about recovering volumes and their data after hardware failure,
see the Veritas Storage Foundation and High Availability Solutions Troubleshooting
Guide.

How hot-relocation works
Hot-relocation allows a system to react automatically to I/O failures on redundant
(mirrored or RAID-5) VxVM objects, and to restore redundancy and access to those
objects. VxVM detects I/O failures on objects and relocates the affected subdisks
to disks designated as spare disks or to free space within the disk group. VxVM
then reconstructs the objects that existed before the failure and makes them
redundant and accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks on
a disk), redundant data on the failed portion of the disk is relocated. Existing volumes
on the unaffected portions of the disk remain accessible.

Hot-relocation is only performed for redundant (mirrored or RAID-5) subdisks on a
failed disk. Non-redundant subdisks on a failed disk are not relocated, but the
system administrator is notified of their failure.

Hot-relocation is enabled by default and takes effect without the intervention of the
system administrator when a failure occurs.

The hot-relocation daemon, vxrelocd, detects and reacts to VxVM events that
signify the following types of failures:

807Administering hot-relocation
How hot-relocation works

This is normally detected as a result of an I/O failure from a VxVM
object. VxVM attempts to correct the error. If the error cannot be
corrected, VxVM tries to access configuration information in the private
region of the disk. If it cannot access the private region, it considers the
disk failed.

Disk failure

This is normally detected as a result of an uncorrectable I/O error in
the plex (which affects subdisks within the plex). For mirrored volumes,
the plex is detached.

Plex failure

This is normally detected as a result of an uncorrectable I/O error. The
subdisk is detached.

RAID-5 subdisk
failure

When vxrelocd detects such a failure, it performs the following steps:

■ vxrelocd informs the system administrator (and other nominated users) by
electronic mail of the failure and which VxVM objects are affected.
See “Partial disk failure mail messages” on page 810.
See “Complete disk failure mail messages” on page 811.
See “Modifying the behavior of hot-relocation” on page 821.

■ vxrelocd next determines if any subdisks can be relocated. vxrelocd looks for
suitable space on disks that have been reserved as hot-relocation spares
(marked spare) in the disk group where the failure occurred. It then relocates
the subdisks to use this space.

■ If no spare disks are available or additional space is needed, vxrelocd uses
free space on disks in the same disk group, except those disks that have been
excluded for hot-relocation use (marked nohotuse). When vxrelocd has
relocated the subdisks, it reattaches each relocated subdisk to its plex.

■ Finally, vxrelocd initiates appropriate recovery procedures. For example,
recovery includes mirror resynchronization for mirrored volumes or data recovery
for RAID-5 volumes. It also notifies the system administrator of the hot-relocation
and recovery actions that have been taken.

If relocation is not possible, vxrelocd notifies the system administrator and takes
no further action.

Warning: Hot-relocation does not guarantee the same layout of data or the same
performance after relocation. An administrator should check whether any
configuration changes are required after hot-relocation occurs.

Relocation of failing subdisks is not possible in the following cases:

808Administering hot-relocation
How hot-relocation works

■ The failing subdisks are on non-redundant volumes (that is, volumes of types
other than mirrored or RAID-5).

■ There are insufficient spare disks or free disk space in the disk group.

■ The only available space is on a disk that already contains a mirror of the failing
plex.

■ The only available space is on a disk that already contains the RAID-5 log plex
or one of its healthy subdisks. Failing subdisks in the RAID-5 plex cannot be
relocated.

■ If a mirrored volume has a dirty region logging (DRL) log subdisk as part of its
data plex, failing subdisks belonging to that plex cannot be relocated.

■ If a RAID-5 volume log plex or a mirrored volume DRL log plex fails, a new log
plex is created elsewhere. There is no need to relocate the failed subdisks of
the log plex.

See the vxrelocd(1M) manual page.

Figure 34-1 shows the hot-relocation process in the case of the failure of a single
subdisk of a RAID-5 volume.

809Administering hot-relocation
How hot-relocation works

Figure 34-1 Example of hot-relocation for a subdisk in a RAID-5 volume

mydg01

mydg01-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Disk group contains five disks. Two RAID-5 volumes are configured
across four of the disks. One spare disk is availavle for hot-relocation.

a

mydg01

mydg01-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Subdisk mydg02-01 in one RAID-5 volume fails. Hot-relocation replaces it with
subdisk mydg05-01 that it has created on the spare disk, and then initiates
recovery on the RAID-5 volume.

b

mydg01

mydg01-01 mydg05-01

mydg05-01

mydg02

mydg02-01

mydg02-02

mydg03

mydg03-01

mydg03-02

mydg04

mydg04-01

mydg05

Spare disk

RAID-5 recovery recreates subdisk mydg02-01's data and parity on subdisk
mygd05-01 from the data and parity information remaining on subdisks
mydg01-01 and mydg03-01.

c

Partial disk failure mail messages
If hot-relocation is enabled when a plex or disk is detached by a failure, mail
indicating the failed objects is sent to root. If a partial disk failure occurs, the mail
identifies the failed plexes. For example, if a disk containing mirrored volumes fails,
you can receive mail information as shown in the following example:

To: root

Subject: Volume Manager failures on host teal

Failures have been detected by the Veritas Volume Manager:

failed plexes:

home-02

src-02

810Administering hot-relocation
How hot-relocation works

Mail can be sent to users other than root.

See “Modifying the behavior of hot-relocation” on page 821.

You can determine which disk is causing the failures in the above example message
by using the following command:

vxstat -g mydg -s -ff home-02 src-02

The -s option asks for information about individual subdisks, and the -ff option
displays the number of failed read and write operations. The following output display
is typical:

FAILED

TYP NAME READS WRITES

sd mydg01-04 0 0

sd mydg01-06 0 0

sd mydg02-03 1 0

sd mydg02-04 1 0

This example shows failures on reading from subdisks mydg02-03 and mydg02-04

of disk mydg02.

Hot-relocation automatically relocates the affected subdisks and initiates any
necessary recovery procedures. However, if relocation is not possible or the
hot-relocation feature is disabled, you must investigate the problem and attempt to
recover the plexes. Errors can be caused by cabling failures, so check the cables
connecting your disks to your system. If there are obvious problems, correct them
and recover the plexes using the following command:

vxrecover -b -g mydg home src

This starts recovery of the failed plexes in the background (the command prompt
reappears before the operation completes). If an error message appears later, or
if the plexes become detached again and there are no obvious cabling failures,
replace the disk.

See “Removing and replacing disks” on page 930.

Complete disk failure mail messages
If a disk fails completely and hot-relocation is enabled, the mail message lists the
disk that failed and all plexes that use the disk. For example, you can receive mail
as shown in this example display:

To: root

Subject: Volume Manager failures on host teal

811Administering hot-relocation
How hot-relocation works

Failures have been detected by the Veritas Volume Manager:

failed disks:

mydg02

failed plexes:

home-02

src-02

mkting-01

failing disks:

mydg02

This message shows that mydg02 was detached by a failure. When a disk is
detached, I/O cannot get to that disk. The plexes home-02, src-02, and mkting-01

were also detached (probably because of the failure of the disk).

One possible cause of the problem could be a cabling error.

See “Partial disk failure mail messages” on page 810.

If the problem is not a cabling error, replace the disk.

See “Removing and replacing disks” on page 930.

How space is chosen for relocation
A spare disk must be initialized and placed in a disk group as a spare before it can
be used for replacement purposes. If no disks have been designated as spares
when a failure occurs, VxVM automatically uses any available free space in the
disk group in which the failure occurs. If there is not enough spare disk space, a
combination of spare space and free space is used.

When selecting space for relocation, hot-relocation preserves the redundancy
characteristics of the VxVM object to which the relocated subdisk belongs. For
example, hot-relocation ensures that subdisks from a failed plex are not relocated
to a disk containing a mirror of the failed plex. If redundancy cannot be preserved
using any available spare disks and/or free space, hot-relocation does not take
place. If relocation is not possible, the system administrator is notified and no further
action is taken.

From the eligible disks, hot-relocation attempts to use the disk that is “closest” to
the failed disk. The value of “closeness” depends on the controller and disk number
of the failed disk. A disk on the same controller as the failed disk is closer than a
disk on a different controller.

812Administering hot-relocation
How hot-relocation works

Hot-relocation tries to move all subdisks from a failing drive to the same destination
disk, if possible.

When hot-relocation takes place, the failed subdisk is removed from the configuration
database, and VxVM ensures that the disk space used by the failed subdisk is not
recycled as free space.

Configuring a system for hot-relocation
By designating spare disks and making free space on disks available for use by
hot relocation, you can control how disk space is used for relocating subdisks in
the event of a disk failure. If the combined free space and space on spare disks is
not sufficient or does not meet the redundancy constraints, the subdisks are not
relocated.

Find out which disks are spares or are excluded from hot-relocation.

See “Displaying spare disk information” on page 813.

You can prepare for hot-relocation by designating one or more disks per disk group
as hot-relocation spares.

See “Marking a disk as a hot-relocation spare” on page 814.

If required, you can remove a disk from use as a hot-relocation spare

See “Removing a disk from use as a hot-relocation spare” on page 815.

If no spares are available at the time of a failure or if there is not enough space on
the spares, free space on disks in the same disk group as where the failure occurred
is automatically used, unless it has been excluded from hot-relocation use.

See “Excluding a disk from hot-relocation use” on page 816.

See “Making a disk available for hot-relocation use” on page 817.

Depending on the locations of the relocated subdisks, you can choose to move
them elsewhere after hot-relocation occurs.

See “Configuring hot-relocation to use only spare disks” on page 817.

After a successful relocation, remove and replace the failed disk.

See “Removing and replacing disks” on page 930.

Displaying spare disk information
Use the following command to display information about spare disks that are
available for relocation:

813Administering hot-relocation
Configuring a system for hot-relocation

vxdg [-g diskgroup] spare

The following is example output:

GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg mydg02 sdc sdc 0 658007 s

Here mydg02 is the only disk designated as a spare in the mydg disk group. The
LENGTH field indicates how much spare space is currently available on mydg02 for
relocation.

The following commands can also be used to display information about disks that
are currently designated as spares:

■ vxdisk list lists disk information and displays spare disks with a spare flag.

■ vxprint lists disk and other information and displays spare disks with a SPARE

flag.

■ The list menu item on the vxdiskadm main menu lists all disks including spare
disks.

Marking a disk as a hot-relocation spare
Hot-relocation allows the system to react automatically to I/O failure by relocating
redundant subdisks to other disks. Hot-relocation then restores the affected VxVM
objects and data. If a disk has already been designated as a spare in the disk group,
the subdisks from the failed disk are relocated to the spare disk. Otherwise, any
suitable free space in the disk group is used.

To designate a disk as a hot-relocation spare, enter the following command:

vxedit [-g diskgroup] set spare=on diskname

where diskname is the disk media name.

For example, to designate mydg01 as a spare in the disk group, mydg, enter the
following command:

vxedit -g mydg set spare=on mydg01

You can use the vxdisk list command to confirm that this disk is now a spare;
mydg01 should be listed with a spare flag.

Any VM disk in this disk group can now use this disk as a spare in the event of a
failure. If a disk fails, hot-relocation automatically occurs (if possible). You are
notified of the failure and relocation through electronic mail. After successful
relocation, you may want to replace the failed disk.

814Administering hot-relocation
Marking a disk as a hot-relocation spare

To use vxdiskadm to designate a disk as a hot-relocation spare

1 Select Mark a disk as a spare for a disk group from the vxdiskadm

main menu.

2 At the following prompt, enter a disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following notice is displayed when the disk has been marked as spare:

VxVM NOTICE V-5-2-219 Marking of mydg01 in mydg as a spare disk

is complete.

3 At the following prompt, indicate whether you want to add more disks as spares
(y) or return to the vxdiskadm main menu (n):

Mark another disk as a spare? [y,n,q,?] (default: n)

Any VM disk in this disk group can now use this disk as a spare in the event
of a failure. If a disk fails, hot-relocation should automatically occur (if possible).
You should be notified of the failure and relocation through electronic mail.
After successful relocation, you may want to replace the failed disk.

Removing a disk from use as a hot-relocation
spare

While a disk is designated as a spare, the space on that disk is not used for the
creation of VxVM objects within its disk group. If necessary, you can free a spare
disk for general use by removing it from the pool of hot-relocation disks.

To remove a spare from the hot-relocation pool, use the following command:

vxedit [-g diskgroup] set spare=off diskname

where diskname is the disk media name.

For example, to make mydg01 available for normal use in the disk group, mydg, use
the following command:

vxedit -g mydg set spare=off mydg01

815Administering hot-relocation
Removing a disk from use as a hot-relocation spare

To use vxdiskadm to remove a disk from the hot-relocation pool

1 Select Turn off the spare flag on a disk from the vxdiskadm main menu.

2 At the following prompt, enter the disk media name of a spare disk (such as
mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

VxVM NOTICE V-5-2-143 Disk mydg01 in mydg no longer marked as

a spare disk.

3 At the following prompt, indicate whether you want to disable more spare disks
(y) or return to the vxdiskadm main menu (n):

Turn off spare flag on another disk? [y,n,q,?] (default: n)

Excluding a disk from hot-relocation use
To exclude a disk from hot-relocation use, use the following command:

vxedit [-g diskgroup] set nohotuse=on diskname

where diskname is the disk media name.

To use vxdiskadm to exclude a disk from hot-relocation use

1 Select Exclude a disk from hot-relocation use from the vxdiskadm

main menu.

2 At the following prompt, enter the disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

VxVM INFO V-5-2-925 Excluding mydg01 in mydg from hot-

relocation use is complete.

3 At the following prompt, indicate whether you want to add more disks to be
excluded from hot-relocation (y) or return to the vxdiskadm main menu (n):

Exclude another disk from hot-relocation use? [y,n,q,?]

(default: n)

816Administering hot-relocation
Excluding a disk from hot-relocation use

Making a disk available for hot-relocation use
Free space is used automatically by hot-relocation in case spare space is not
sufficient to relocate failed subdisks. You can limit this free space usage by
hot-relocation by specifying which free disks should not be touched by hot-relocation.
If a disk was previously excluded from hot-relocation use, you can undo the exclusion
and add the disk back to the hot-relocation pool.

To make a disk available for hot-relocation use, use the following command:

vxedit [-g diskgroup] set nohotuse=off diskname

To use vxdiskadm to make a disk available for hot-relocation use

1 Select Make a disk available for hot-relocation use from the vxdiskadm

main menu.

2 At the following prompt, enter the disk media name (such as mydg01):

Enter disk name [<disk>,list,q,?] mydg01

The following confirmation is displayed:

V-5-2-932 Making mydg01 in mydg available for hot-relocation

use is complete.

3 At the following prompt, indicate whether you want to add more disks to be
excluded from hot-relocation (y) or return to the vxdiskadm main menu (n):

Make another disk available for hot-relocation use? [y,n,q,?]

(default: n)

Configuring hot-relocation to use only spare disks
If you want VxVM to use only spare disks for hot-relocation, add the following line
to the file /etc/default/vxassist:

spare=only

If not enough storage can be located on disks marked as spare, the relocation fails.
Any free space on non-spare disks is not used.

817Administering hot-relocation
Making a disk available for hot-relocation use

Moving relocated subdisks
When hot-relocation occurs, subdisks are relocated to spare disks and/or available
free space within the disk group. The new subdisk locations may not provide the
same performance or data layout that existed before hot-relocation took place. You
can move the relocated subdisks (after hot-relocation is complete) to improve
performance.

You can also move the relocated subdisks of the spare disks to keep the spare disk
space free for future hot-relocation needs. Another reason for moving subdisks is
to recreate the configuration that existed before hot-relocation occurred.

During hot-relocation, one of the electronic mail messages sent to root is shown
in the following example:

To: root

Subject: Volume Manager failures on host teal

Attempting to relocate subdisk mydg02-03 from plex home-02.

Dev_offset 0 length 1164 dm_name mydg02 da_name sdh.

The available plex home-01 will be used to recover the data.

This message has information about the subdisk before relocation and can be used
to decide where to move the subdisk after relocation.

Here is an example message that shows the new location for the relocated subdisk:

To: root

Subject: Attempting VxVM relocation on host teal

Volume home Subdisk mydg02-03 relocated to mydg05-01,

but not yet recovered.

Before you move any relocated subdisks, fix or replace the disk that failed.

See “Removing and replacing disks” on page 930.

Once this is done, you can move a relocated subdisk back to the original disk as
described in the following sections.

Warning: During subdisk move operations, RAID-5 volumes are not redundant.

Moving relocated subdisks using vxunreloc
VxVM hot-relocation allows the system to automatically react to I/O failures on a
redundant VxVM object at the subdisk level and then take necessary action to make

818Administering hot-relocation
Moving relocated subdisks

the object available again. This mechanism detects I/O failures in a subdisk,
relocates the subdisk, and recovers the plex associated with the subdisk. After the
disk has been replaced, vxunreloc allows you to restore the system back to the
configuration that existed before the disk failure. vxunreloc allows you to move
the hot-relocated subdisks back onto a disk that was replaced due to a failure.

When vxunreloc is invoked, you must specify the disk media name where the
hot-relocated subdisks originally resided. When vxunreloc moves the subdisks, it
moves them to the original offsets. If you try to unrelocate to a disk that is smaller
than the original disk that failed,vxunreloc does nothing except return an error.

vxunreloc provides an option to move the subdisks to a different disk from where
they were originally relocated. It also provides an option to unrelocate subdisks to
a different offset as long as the destination disk is large enough to accommodate
all the subdisks.

If vxunreloc cannot replace the subdisks back to the same original offsets, a force
option is available that allows you to move the subdisks to a specified disk without
using the original offsets.

See the vxunreloc(1M) manual page.

The examples in the following sections demonstrate the use of vxunreloc.

Moving hot-relocated subdisks back to their original disk
Assume that mydg01 failed and all the subdisks were relocated. After mydg01 is
replaced, vxunreloc can be used to move all the hot-relocated subdisks back to
mydg01.

vxunreloc -g mydg mydg01

Moving hot-relocated subdisks back to a different disk
The vxunreloc utility provides the -n option to move the subdisks to a different
disk from where they were originally relocated.

Assume that mydg01 failed, and that all of the subdisks that resided on it were
hot-relocated to other disks. vxunreloc provides an option to move the subdisks
to a different disk from where they were originally relocated. After the disk is repaired,
it is added back to the disk group using a different name, for example, mydg05. If
you want to move all the hot-relocated subdisks back to the new disk, the following
command can be used:

vxunreloc -g mydg -n mydg05 mydg01

819Administering hot-relocation
Moving relocated subdisks

The destination disk should have at least as much storage capacity as was in use
on the original disk. If there is not enough space, the unrelocate operation will fail
and none of the subdisks will be moved.

Forcing hot-relocated subdisks to accept different offsets
By default, vxunreloc attempts to move hot-relocated subdisks to their original
offsets. However, vxunreloc fails if any subdisks already occupy part or all of the
area on the destination disk. In such a case, you have two choices:

■ Move the existing subdisks somewhere else, and then re-run vxunreloc.

■ Use the -f option provided by vxunreloc to move the subdisks to the destination
disk, but leave it to vxunreloc to find the space on the disk. As long as the
destination disk is large enough so that the region of the disk for storing subdisks
can accommodate all subdisks, all the hot-relocated subdisks will be unrelocated
without using the original offsets.

Assume that mydg01 failed and the subdisks were relocated and that you want to
move the hot-relocated subdisks to mydg05 where some subdisks already reside.
You can use the force option to move the hot-relocated subdisks to mydg05, but not
to the exact offsets:

vxunreloc -g mydg -f -n mydg05 mydg01

Examiningwhich subdiskswere hot-relocated from a disk
If a subdisk was hot relocated more than once due to multiple disk failures, it can
still be unrelocated back to its original location. For instance, if mydg01 failed and
a subdisk named mydg01-01 was moved to mydg02, and then mydg02 experienced
disk failure, all of the subdisks residing on it, including the one which was
hot-relocated to it, will be moved again. When mydg02 was replaced, a vxunreloc

operation for mydg02 will do nothing to the hot-relocated subdisk mydg01-01.
However, a replacement of mydg01 followed by a vxunreloc operation, moves
mydg01-01 back to mydg01 if vxunreloc is run immediately after the replacement.

After the disk that experienced the failure is fixed or replaced, vxunreloc can be
used to move all the hot-relocated subdisks back to the disk. When a subdisk is
hot-relocated, its original disk-media name and the offset into the disk are saved
in the configuration database. When a subdisk is moved back to the original disk
or to a new disk using vxunreloc, the information is erased. The original disk-media
name and the original offset are saved in the subdisk records. To print all of the
subdisks that were hot-relocated from mydg01 in the mydg disk group, use the
following command:

vxprint -g mydg -se 'sd_orig_dmname="mydg01"'

820Administering hot-relocation
Moving relocated subdisks

Restarting vxunreloc after errors
vxunreloc moves subdisks in three phases:

■ vxunreloc creates as many subdisks on the specified destination disk as there
are subdisks to be unrelocated. The string UNRELOC is placed in the comment

field of each subdisk record.
Creating the subdisk is an all-or-nothing operation. If vxunreloc cannot create
all the subdisks successfully, none are created, and vxunreloc exits.

■ vxunrelocmoves the data from each subdisk to the corresponding newly created
subdisk on the destination disk.

■ When all subdisk data moves have been completed successfully, vxunreloc
sets the comment field to the null string for each subdisk on the destination disk
whose comment field is currently set to UNRELOC.

The comment fields of all the subdisks on the destination disk remain marked as
UNRELOC until phase 3 completes. If its execution is interrupted, vxunreloc can
subsequently re-use subdisks that it created on the destination disk during a previous
execution, but it does not use any data that was moved to the destination disk.

If a subdisk data move fails, vxunreloc displays an error message and exits.
Determine the problem that caused the move to fail, and fix it before re-executing
vxunreloc.

If the system goes down after the new subdisks are created on the destination disk,
but before all the data has been moved, re-execute vxunreloc when the system
has been rebooted.

Warning:Do not modify the string UNRELOC in the comment field of a subdisk record.

Modifying the behavior of hot-relocation
Hot-relocation is turned on as long as the vxrelocd process is running. You should
normally leave hot-relocation turned on so that you can take advantage of this
feature if a failure occurs. However, if you choose to disable hot-relocation (perhaps
because you do not want the free space on your disks to be used for relocation),
you can prevent vxrelocd from starting at system startup time by editing the
/etc/init.d/vxvm-recover startup file that invokes vxrelocd.

If the hot-relocation daemon is disabled, then automatic storage reclamation on
deleted volumes is also disabled.

You can alter the behavior of vxrelocd as follows:

821Administering hot-relocation
Modifying the behavior of hot-relocation

1 To prevent vxrelocd starting, comment out the entry that invokes it in the
startup file:

nohup vxrelocd root &

2 By default, vxrelocd sends electronic mail to root when failures are detected
and relocation actions are performed. You can instruct vxrelocd to notify
additional users by adding the appropriate user names as shown here:

nohup vxrelocd root user1 user2 &

3 To reduce the impact of recovery on system performance, you can instruct
vxrelocd to increase the delay between the recovery of each region of the
volume, as shown in the following example:

nohup vxrelocd -o slow[=IOdelay] root &

where the optional IOdelay value indicates the desired delay in milliseconds.
The default value for the delay is 250 milliseconds.

822Administering hot-relocation
Modifying the behavior of hot-relocation

Deduplicating data
This chapter includes the following topics:

■ About deduplicating data

■ Deduplicating data

■ Deduplication results

■ Deduplication supportability

■ Deduplication use cases

■ Deduplication limitations

About deduplicating data
The data deduplication feature eliminates duplicate blocks used by your data by
comparing blocks across the file system. When the data deduplication feature finds
a duplicate block, it removes the space used and instead creates a pointer to the
common block. If you change the duplicate file, thus making the files no longer
share the same block, then that changed block is saved to disk instead of the pointer.
You can perform post-process periodic deduplication in a file system to eliminate
duplicate data without any continuous cost in CPU overhead. You can verify whether
data is duplicated on demand, and then efficiently and securely eliminate the
duplicates. The deduplication process performs the following tasks:

■ Scans the file system for changes

■ Fingerprints the data

■ Identifies duplicates

■ Eliminates duplicates after verifying the duplicates

35Chapter

The amount of space savings that you get from deduplicating depends on your
data. Deduplicating different data gives different space savings.

You deduplicate data using the fsdedupadm command.

See the fsdedupadm(1M) manual page.

Deduplication requires an Enterprise license.

About deduplication chunk size
The deduplication chunk size, which is also referred to as deduplication granularity,
is the unit at which fingerprints are computed. A valid chunk size is between 4k and
128k and power of two. Once set, the only way to change the chunk size is to
remove and re-enable deduplication on the file system.

You should carefully select the chunk size, as the size has significant impact on
deduplication as well as resource requirements. The size directly affects the number
of fingerprint records in the deduplication database as well as temporary space
required for sorting these records. A smaller chunk size results in a large number
of fingerprints and hence requires a significant amount of space for the deduplication
database.

While the amount of storage that you save after deduplication depends heavily on
the dataset and distribution of duplicates within the dataset, the chunk size can also
affect the savings significantly. You must understand your dataset to get the best
results after deduplication. A general rule of thumb is that a smaller chunk size
saves more storage. A smaller chunk size results in more granular fingerprints and
in general results in identifying more duplicates. However, smaller chunks have
additional costs in terms of database size, deduplication time, and, more importantly,
fragmentation. The deduplication database size can be significantly large for small
chunk sizes. Higher fragmentation normally results in more file system metadata
and hence can require more storage. The space consumed by the deduplication
database and the increased file system metadata can reduce the savings achieved
via deduplication. Additionally, fragmentation can also have a negative effect on
performance. The Veritas File System (VxFS) deduplication algorithms try to reduce
fragmentation by coalescing multiple contiguous duplicate chunks.

Larger chunk sizes normally result in a smaller deduplication database size, faster
deduplication, and less fragmentation. These benefits sometimes come at the cost
of less storage savings. If you have a large number duplicate files that are small in
size, you still can choose a chunk size that is larger than the file size. A larger chunk
size does not affect the deduplication of files that are smaller than the chunk size.
In such cases, the fingerprint is calculated on the whole file, and the files are still
deduplicated.

824Deduplicating data
About deduplicating data

Symantec recommends a chunk size of 4k for Symantec VirtualStore, where multiple
copies of virtual machine images are accessed over NFS. For all other datasets,
Symantec recommends a chunk size of 16k or higher.

The space consumed by the deduplication database is a function of the amount of
data in the file system and the deduplication chunk size. The space consumed by
the deduplication database grows with time as new data is added to file system.
Additional storage is required for temporary use, such as sorting fingerprints. The
temporary storage may be freed after the work completes. Ensure that sufficient
free space is available for deduplication to complete successfully. The deduplication
might not start if the file system free space is less than approximately 15%. The
deduplication sometimes needs more than 15% free space for smaller chunk sizes.
In general, the space consumed reduces significantly with larger chunk sizes.
Symantec recommends that you have approximately 20% free space for 4k chunks.

Deduplication and file system performance
Veritas File System (VxFS) deduplication uses shared extents to save storage when
duplicate data is identified. Shared extents can significantly boost read performance
for certain types of applications. These benefits are the result of the innovative use
of file system page cache for data that resides in shared extents.

Symantec VirtualStore, which serves a large number of virtual machine images,
sees significant performance benefits from using shared extents.

The description of the FileSnaps feature contains more information about shared
extents.

See “About FileSnaps” on page 589.

In general, any application or set of applications that read data residing in shared
extents via multiple files are expected to have better read performance.

About the deduplication scheduler
The deduplication scheduler is a daemon that runs on all nodes and is responsible
for deduplicating data as per the user-specified schedule. The scheduler is started
on a node when you enable deduplication on the file system, but thereafter you
must start the scheduler manually if you previously stopped the scheduler. Each
file system can have its own schedule. The schedule and other configuration
information for a given file system is stored within the file system. The location of
the configuration file is lost+found/dedup/local_config.

The scheduler checks the configuration file every 30 minutes for changes and
incorporates the changes if there are any. This periodic check also looks for newly

825Deduplicating data
About deduplicating data

mounted file systems. You can incorporate configuration changes immediately by
restarting the scheduler.

When using the scheduler to deduplicate a file system's data automatically, the
evaluation of changes in the file system is done by the File Change Log (FCL)
feature. Scheduling deduplication to occur too infrequently in terms of days can
cause the FCL to roll over, and thus the FCL feature can miss changes to the file
system.

Symantec recommends that you schedule deduplication when the system activity
is low. This ensures that the scheduler does not interfere with the regular workload
of the system.

Deduplicating data
You deduplicate data using the fsdedupadm command. The fsdedupadm command
performs the following functions:

Command syntaxFunctionality

fsdedupadm enable [-c chunk_size] [-q] mount_pointEnable the deduplication of a
file system.

fsdedupadm disable [-q] mount_pointDisable the deduplication of
a file system.

fsdedupadm list mount_point|allQuery the deduplication
configuration of a file system.

fsdedupadm start [-s] [-q] mount_pointStart a deduplication run on a
file system.

fsdedupadm stop [-q] mount_pointStop a deduplication run on a
file system.

fsdedupadm status mount_point|allQuery the deduplication
status of a file system.

fsdedupadm skipshared {true|false} mount_pointEnable or disable the skipping
of shared extents.

fsdedupadm setnodelist nodelist mount_point|allSet the node on which the
scheduled deduplication job
will run.

fsdedupadm setschedule time mount_pointSet the deduplication
schedule for a file system.

826Deduplicating data
Deduplicating data

Command syntaxFunctionality

fsdedupadm dryrun [-o threshold=#] mount_pointInitiate a deduplication dry run
on a file system.

fsdedupadm remove mount_pointRemove the deduplication
configuration file and
deduplication database on a
file system.

For more information about the keywords, see the fsdedupadm(1M) manual page.

Enabling and disabling deduplication on a file system
You must enable deduplication on a file system by using the fsdedupadm enable

command before you can use any of the deduplication functionality.

The following example enables deduplication on the file system mounted at /mnt1,
and specifies a chunk size of 4096 bytes for deduplication:

/opt/VRTS/bin/fsdedupadm enable -c 4096 /mnt1

You can disable deduplication on a file system by using the fsdedupadm disable

command.

The following example disables deduplication on the file system mounted at /mnt1:

/opt/VRTS/bin/fsdedupadm disable /mnt1

Scheduling deduplication of a file system
You can set a schedule to deduplicate a file system automatically by using the
fsdedupadm setschedule command. You can specify two categories of schedule
options: run periodicity, and type periodicity. The granularity of schedule is limited
to the time of day and the day of the month. The fsdedupadm command applies
any relevant File Change Log tunables when setting the schedule.

See “File Change Log administrative interface” on page 973.

You must enable deduplication on the file system before you can set a schedule.

See “Enabling and disabling deduplication on a file system” on page 827.

You can schedule the deduplication run every hour or every specified number of
hours, and every day or every specified number of days. You can also schedule
the actual deduplication run to occur each time, or every specified number of times
that the scheduled time elapses. During times that deduplication does not occur,
the deduplication run only updates the fingerprints in the database.

827Deduplicating data
Deduplicating data

The schedule commands are not cumulative. If a deduplication schedule comes
up while the previous deduplication process is running for any reason, the upcoming
deduplication is discarded and an warning message displays.

You can remove a schedule by specifying an empty string enclosed by double
quotes ("") for the schedule.

See the fsdedupadm(1M) manual page.

You must start the fsdedupschd daemon before scheduling the task:

/sbin/init.d/fsdedupschd start

In the following example, deduplication for the file system /vx/fs1 will be done at
midnight, every other day:

fsdedupadm setschedule "0 */2" /vx/fs1

In the following example, deduplication for the file system /vx/fs1 will be done
twice every day, once at midnight and once at noon:

fsdedupadm setschedule "0,12 *" /vx/fs1

In the following example, deduplication for the file system /vx/fs1 will be done four
times every day, but only the fourth deduplication run will actually deduplicate the
file system. The other runs will do the scanning and processing. This option achieves
load distribution not only in a system, but also across the cluster.

fsdedupadm setschedule "0,6,12,18 * 4" /vx/fs1

The following example removes the deduplication schedule from the file system
/vx/fs1:

fsdedupadm setschedule "" /vx/fs1

Performing a deduplication dry run
You can perform a dry run to determine the space savings of deduplication without
actually modifying the file system. You must enable deduplication on the file system
before you can perform a dry run. You can perform a dry run only on a file system
that has not been deduplicated previously.

See “Enabling and disabling deduplication on a file system” on page 827.

The following command initiates a deduplication dry run on the file system /mnt1:

fsdedupadm dryrun /mnt1

828Deduplicating data
Deduplicating data

You can specify fsdedupadm to perform the actual deduplication by specifying the
-o threshold option. In this case, the fsdedupadm command performs an actual
deduplication run if the expected space savings meets the specified threshold.

The following command initiates a deduplication dry run on the file system /mnt1,
and performs the actual deduplication if the expected space savings crosses the
threshold of 60 percent:

fsdedupadm dryrun -o threshold=60 /mnt1

Specifying the -o threshold option causes the fsdedupadm command to take
Storage Checkpoints and enable the File Change Log for the file system.

Querying the deduplication status of a file system
You can query the deduplication status of a file system by using the fsdedupadm

status command.

You must enable deduplication on the file system before you can query the
deduplication status.

See “Enabling and disabling deduplication on a file system” on page 827.

The following command queries the deduplication status of the file system /mnt1:

fsdedupadm status /mnt1

The following command queries the deduplication status of all running deduplication
jobs:

fsdedupadm status all

Starting and stopping the deduplication scheduler daemon
The state of the deduplication scheduler daemon, fsdedupschd, is maintained
across reboots. If you started the fsdedupschd daemon prior to a reboot, the daemon
is automatically restarted after the reboot. If you stopped the fsdedupschd daemon
prior to a reboot, it remains stopped after the reboot. The default fsdedupschd
daemon state is stopped.

You must enable deduplication on the file system before you can start or stop the
scheduler daemon.

See “Enabling and disabling deduplication on a file system” on page 827.

The following command starts the fsdedupschd daemon:

829Deduplicating data
Deduplicating data

chkconfig --add fsdedupschd

service fsdedupschd start

The following command stops the fsdedupschd daemon:

service fsdedupschd stop

chkconfig --del fsdedupschd

Example of deduplicating a file system
The following example creates a file system, creates duplicate data on the file
system, and deduplicates the file system.

To deduplicate a file system

1 Create the file system fsvol1:

mkfs -t vxfs -o /dev/vx/rdsk/fsdg/fsvol1

2 Mount the file system as /mnt1:

mount -t vxfs /dev/vx/dsk/fsdg/fsvol1 /mnt1

3 Make a temporary directory, temp1, on /mnt1 and copy the file1 file into the
directory:

mkdir /mnt1/temp1

cd /mnt1/temp1

cp /root/file1 .

/opt/VRTS/bin/fsadm -S shared /mnt1

Mountpoint Size(KB) Available(KB) Used(KB) Logical_Size(KB) Space_Shared(KB)

/mnt1 4194304 3849468 283852 283852 0%

The file1 file is approximately 250 MB, as shown by the output of the fsadm

command.

830Deduplicating data
Deduplicating data

4 Make another temporary directory, temp2, and copy the same file, file1, into
the new directory:

mkdir /mnt1/temp2

cd /mnt1/temp2

cp /root/file1 .

/opt/VRTS/bin/fsadm -S shared /mnt1

Mountpoint Size(KB) Available(KB) Used(KB) Logical_Size(KB) Space_Shared(KB)

/mnt1 4194304 3588700 548740 548740 0%

By copying the same file into temp2, you now have duplicate data. The output
of the fsadm command show that you are now using twice the amount of space.

5 Enable deduplication on the mount point /mnt1:

/opt/VRTS/bin/fsdedupadm enable -c 4096 /mnt1

/opt/VRTS/bin/fsdedupadm list /mnt1

Chunksize Enabled Schedule NodeList Priority Filesystem

4096 YES NONE node1.company1.com low /mnt1

6 Start a deduplication run on the mount point /mnt1:

/opt/VRTS/bin/fsdedupadm start /mnt1

UX:vxfs fsdedupadm: INFO: V-3-20: 0000: deduplication is started

on /mnt1.

831Deduplicating data
Deduplicating data

7 Check status of deduplication:

/opt/VRTS/bin/fsdedupadm status /mnt1

Saving Status Node Type Filesystem

74% COMPLETED node1.company1.com MANUAL /mnt1

2011/07/04 10:56:05 End detecting duplicates and filesystem changes.

Status 0

8 Verify that the file system was deduplicated by checking how much space you
are using:

/opt/VRTS/bin/fsadm -S shared /mnt1

Mountpoint Size(KB) Available(KB) Used(KB) Logical_Size(KB) Space_Shared(KB)

/mnt1 4194304 3834364 299136 566176 47%

The output shows that the used space is nearly identical to when you had only
one copy of the file1 file on the file system.

Deduplication results
The nature of the data is very important for deciding whether to enable deduplication.
Databases or media files, such as JPEG, MP3, and MOV, might not be the best
candidates for deduplication, as they have very little or no duplicate data. Virtual
machine boot image files (vmdk files), user home directories, and file system with
multiple copies of files are good candidates for deduplication. While smaller
deduplication chunk size normally results into higher storage saving, it takes longer
to deduplicate and requires a larger deduplication database.

Deduplication supportability
Veritas File System (VxFS) supports deduplication in the 6.0 release and later, and
on file system disk layout version 9 and later. Deduplication is available on Linux
(Red Hat and SuSE), Solaris SPARC, AIX and HP-UX Itanium.

Deduplication use cases
The following list includes several cases for which you would want to use the
deduplication feature:

832Deduplicating data
Deduplication results

User home directories often have multiple versions of the same
files or file that have similar content, and therefore have
redundant data that you can deduplicate.

Home directories

Source code repositories usually have multiple files with
incremental changes. The data that does not change from one
file to the next can be deduplicated.

Source code directories

Once several virtual machines are cloned by using the FileSnap
feature, the cloned virtual machines are subjected to operating
system and security patches over their lifetime. As individual
virtual machines cloned from a common source–the golden
image–deviate from the source as a result of such activity,
there is large amount of common content between them. Over
time, this results in the loss of the initial storage savings.
Deduplication of the new blocks added to these files restores
the storage savings.

vmdk files

Deduplication limitations
The deduplication feature has the following limitations:

■ A full backup of a deduplicated Veritas File System (VxFS) file system can
require as much space in the target as a file system that has not been
deduplicated. For example, if you have 2 TB of data that occupies 1 TB worth
of disk space in the file system after deduplication, this data requires 2 TB of
space on the target to back up the file system, assuming that the backup target
does not do any deduplication. Similarly, when you restore such a file system,
you must have 2 TB on the file system to restore the complete data. However,
this freshly restored file system can be deduplicated again to regain the space
savings. After a full file system restore, Symantec recommends that you remove
any existing deduplication configuration using the fsdedupadm remove command
and that you reconfigure deduplication using the fsdedupadm enable command.

■ Deduplication is limited to a volume's primary fileset.

■ Deduplication does not support mounted clone and snapshot mounted file
system.

■ After you restore data from a backup, you must deduplicate the restored data
to regain any space savings provided by deduplication.

■ If you use the cross-platform data sharing feature to convert data from one
platform to another, you must remove the deduplication configuration file and
database, re-enable deduplication, and restart deduplication after the conversion.

833Deduplicating data
Deduplication limitations

The following example shows the commands that you must run, and you must
run the commands in the order shown:

/opt/VRTS/bin/fsdedupadm remove /mnt1

/opt/VRTS/bin/fsdedupadm enable /mnt1

/opt/VRTS/bin/fsdedupadm start /mnt1

■ You cannot use the FlashBackup feature of NetBackup in conjunction with the
data deduplication feature, because FlashBackup does not support disk layout
Version 8 and 9.

834Deduplicating data
Deduplication limitations

Compressing files
This chapter includes the following topics:

■ About compressing files

■ Compressing files with the vxcompress command

■ Interaction of compressed files and other commands

■ Interaction of compressed files and other features

■ Interaction of compressed files and applications

■ Use cases for compressing files

About compressing files
Compressing files reduces the space used, while retaining the accessibility of the
files and being transparent to applications. Compressed files look and behave
almost exactly like uncompressed files: the compressed files have the same name,
and can be read and written as with uncompressed files. Reads cause data to be
uncompressed in memory, only; the on-disk copy of the file remains compressed.
In contrast, after a write, the new data is uncompressed on disk.

Only user data is compressible. You cannot compress Veritas File System (VxFS)
metadata.

After you compress a file, the inode number does not change, and file descriptors
opened before the compression are still valid after the compression.

Compression is a property of a file. Thus, if you compress all files in a directory, for
example, any files that you later copy into that directory do not automatically get
compressed. You can compress the new files at any time by compressing the files
in the directory again.

You compress files with the vxcompress command.

36Chapter

See “Compressing files with the vxcompress command” on page 837.

See the vxcompress(1) manual page.

To compress files, you must have VxFS file systems with disk layout Version 9 or
later.

Note: When you back up compressed files to tape, the backup program stores the
data in an uncompressed format. The files are uncompressed in memory and
subsequently written to the tape. This results in increased CPU and memory usage
when you back up compressed files.

About the compressed file format
A compressed file is a file with compressed extents. A vxcompress call compresses
all extents of a file. However, writes to the file cause the affected extents to get
uncompressed; the result can be files with both compressed and uncompressed
extents.

About the file compression attributes
When you compress a file with the vxcompress command, vxcompress attaches
the following information to the inode:

■ Compression algorithm

■ Compression strength, which is a number from 1 to 9

■ Compression block size

This information is referred to as the file compression attributes. The purpose of
the attributes are to collect the parameters used to create the compressed file. The
information can then be read by a backup program.

The file compression attributes guarantee that a particular compressed file can only
use one type and strength of compression. Recompressing a file using different
attributes fails. To change the file compression attributes, you must explicitly
uncompress first, and then recompress with the new options, even in the case
where all extents are already uncompressed.

The file compression attributes do not indicate if all extents are compressed. Some
extents might be incompressible, and other extents or even all extents might be
uncompressed due to writes, but the file compression attributes remain. Only an
explicit file uncompression can remove the attributes.

836Compressing files
About compressing files

About the file compression block size
The file compression algorithm compresses data in the specified block size, which
defaults to 1MB. Each compression block has its own extent descriptor in the inode.
If the file or the last extent is smaller than the compression block size, then that
smaller size gets compressed. The maximum block size is 1MB.

Extents with data that cannot be compressed are still marked as compressed
extents. Even though such extents could not be compressed, marking these extents
as compressed allows successive compression runs to skip these extents to save
time. Shared extents cannot be compressed and do not get marked as compressed.
Since the file compression algorithm looks at fixed-size blocks, the algorithm finds
these incompressible extents in units of the file compression block size.

Compressing fileswith the vxcompress command
You can compress files with the vxcompress command. The vxcompress command
performs the following functions:

Command syntaxFunctionality

vxcompress [-r] file_or_dir ...Compress files or directory trees

vxcompress -u [-r] file_or_dir ...Uncompress files or directory trees

vxcompress {-l|-L} [-r] file_or_dir ...Report the compression savings in a file or
directory tree

vxcompress -aList the supported compression algorithms

See the vxcompress(1) manual page.

You can specify one or more filenames. If you specify the -r option, then you can
specify directories, and the vxcompress command operates recursively on the
directories.

You can specify the file compression algorithm and strength with the vxcompress

-t command. The default algorithm is gzip, which is currently the only supported
algorithm. The strength is a number from 1 to 9, with a default of 6. Strength 1 gives
the fastest performance with least compression, while strength 9 gives the slowest
performance with the greatest compression. For example, you specify strength 3
gzip compression as "gzip-3".

837Compressing files
Compressing files with the vxcompress command

When reporting the compression details for a file, the vxcompress -l command or
vxcompress -L command displays the following information:

■ Compression algorithm

■ Strength

■ Compression block size

■ % of file data saved by compression

■ % of extents that are compressed
This is the percentage of extents in the file that are compressed, without regard
to the size of the extents. This percentage provides an idea of whether it is
worthwhile to recompress the file. After recompression, the percentage is always
100%. However, shared extents are counted as uncompressed, and thus the
percentage will be less than 100% if the file has shared extents.

If you attempt to compress a file with the vxcompress command and the extents
have data that cannot be compressed, the command still marks the file as
compressed and replaces the extents with compressed extent descriptors.

If you recompress a file, you do not need to specify any options with the vxcompress

command. The command automatically uses the options that you used to compress
the file previously.

Examples of using the vxcompress command
The following command compresses the file1 file, using the default algorithm and
strength of gzip-6:

$ vxcompress file1

The following command recursively compresses all files below the dir1 directory,
using the gzip algorithm at the highest strength (9):

$ vxcompress -r -t gzip-9 dir1

The following command compresses the file2 file and all files below the dir2

directory, using the gzip algorithm at strength 3, while limiting the vxcompress

command to a single thread and reducing the scheduling priority:

$ vxcompress -r -t gzip-3 file2 dir1

The following command displays the results of compressing the file1 file in
human-friendly units:

838Compressing files
Compressing files with the vxcompress command

$ vxcompress -L file1

%Comp Physical Logical %Exts Alg-Str BSize Filename

99% 1 KB 159 KB 100% gzip-6 1024k file1

The following command uncompresses the file1 file:

$ vxcompress -u file1

Interaction of compressed files and other
commands

Table 36-1 describes how compressed files interact with other Veritas Storage
Foundation commands and base operating system commands.

Table 36-1

Interaction with compressed filesCommand

The df command shows the actual blocks in use by the file system.
This number includes the compression savings, but the command
does not display the savings explicitly.

See the df(1) manual page.

df

The du command usually uses the block count and thus implicitly
shows the results of compression, but the GNU du command has an
option to use the file size instead, which is not changed by
compression.

See the du(1) manual page.

du

The fsadm -S compressed command reports the space savings
due to compressed files.

See the fsadm_vxfs(1) manual page.

fsadm -S

The fsmap command can report information on compressed and
uncompressed extents with the -p option. The reported logical size
is the size of the uncompressed data, while the reported extent size
is the size of the compressed data on disk. For compressed extents,
the two sizes might differ.

See the fsmap(1) manual page.

fsmap -p

839Compressing files
Interaction of compressed files and other commands

Table 36-1 (continued)

Interaction with compressed filesCommand

The inode size reported by a stat call is the logical size, as shown by
the ls -l command. This size is not affected by compression. On
the other hand, the block count reflects the actual blocks used. As
such, the ls -s command shows the result of compression.

See the ls(1) manual page.

ls -l

ls -s

The vxdump command uncompresses compressed extents as it
encounters them, meaning that compression is not preserved across
a backup or restore operation.

vxdump

Your quota usage decreases based on the space saved due to
compression.

See the vxquota(1M) manual page.

vxquota

Interaction of compressed files and other features
Table 36-2 describes how compressed files interact with other Veritas Storage
Foundation features.

Table 36-2

Interaction with compressed filesFeature

If you convert a disk or file system from one platform that
supports compression to a platform that does not support
compression and the file system contains compressed files,
the fscdsconv command displays a message that some
files violate the CDS limits and prompts you to confirm if you
want to continue the conversion. If you continue, the
conversion completes successfully, but the compressed files
will not be accessible on the new platform.

Cross-Platform Data Sharing

The File Change Log feature does not detect file
compressions nor uncompressions.

File Change Log

Shared extents do not get compressed.

Compressed files may be shared with the vxfilesnap
command, though this results in a performance impact when
accessing those files.

Shared extents (FileSnap and
deduplication)

840Compressing files
Interaction of compressed files and other features

Table 36-2 (continued)

Interaction with compressed filesFeature

The SmartTier feature does not support compression. A
placement policy cannot move existing compressed extents.
Newly-allocated compressed extents follow the existing
placement policy.

SmartTier

When a file is compressed, any space reserved via the
setext -r command beyond the end-of-file is discarded,
and is not restored when the file is uncompressed. The
setext -r command cannot be used to reserve space for
files that are compressed.

Space reservation (setext
-r)

If a file system contains compressed files and you create a
Storage Checkpoint of that file system, you can access those
files normally through the Storage Checkpoint. However,
you cannot compress nor uncompress a file that is already
in a mounted Storage Checkpoint.

Storage Checkpoints

Interaction of compressed files and applications
In general, applications notice no difference between compressed and
uncompressed files, although reads and writes to compressed extents are slower
than reads and writes to uncompressed extents. When an application reads a
compressed file, the file system does not perform its usual readahead to avoid the
CPU load that this can require. However, when reading from the primary fileset,
the file system uncompresses an entire compression block (default 1 MB) and
leaves these pages in the page cache. Thus, sequential reads of the file usually
only incur an extra cost when crossing a compression block boundary. The situation
is different when reading from a file in a Storage Checkpoint; in this case, nothing
goes into the page cache beyond the data actually requested. For optimal read
performance of a compressed file accessed through a Storage Checkpoint, the
application should use a read size that matches the compression block size.

When writing to compressed extents, ensure that you have sufficient disk space
and disk quota limits for the new uncompressed extents since the write
uncompresses the extents. If you do not have sufficient disk space, the write can
fail with the ENOSPC error. If you do not have enough disk quota, the write can fail
with the EDQUOT error.

An application that reads data from a compressed file and then copies the file
elsewhere, such as tar, cpio, cp, or vi, does not preserve compression in the new
data. The same is true of some backup programs.

841Compressing files
Interaction of compressed files and applications

Backup programs that read file data through the name space do not notice that the
file is compressed. The backup program receives uncompressed data, and the
compression is lost.

You cannot use the FlashBackup feature of NetBackup in conjunction with the file
compression feature, because FlashBackup does not support disk layout Version
8 and 9.

Use cases for compressing files
The following list contains common use case categories:

■ Compressed files and databases

■ Compressing all files that meet the specified criteria

Compressed files and databases
Compressing files helps to reduce the storage cost in a database environment. For
Oracle databases, compression provides an excellent value add to reduce storage
cost for archived logs, partitioned tables, and infrequently accessed tablespaces
and datafiles. The compression ratio of database files depends on the type of object
stored in the datafiles. Oracle traditionally stores TABLES and INDEXES in datafiles,
in which case the compression ratio depends on type of columns associated with
the TABLE and the type of keys in the INDEXES. Oracle also has the ability to store
unstructured data, such as XML, spreadsheets, MS Word documents, and pictures,
within a TABLE via the Secured Files feature. These types of unstructured data are
very good candidates for compression. You can achieve up to 90% compression
for archived logs, and about 50% to 65% compression for Oracle datafiles and
indexes.

Oracle database files can be compressed and uncompressed as needed while the
database is active, although this can have a significant performance impact on the
database. Other than reduced I/O response time, compression runs seamlessly
while the Oracle database is online and actively doing transactions to the files.
Compression works seamlessly with advanced I/O methods, such as direct I/O,
asychronous I/O, concurrent I/O, ODM, and Cached ODM. Any updates and new
inserts to the datafile result in uncompressing the portion of the file associated with
the write. The queries get uncompressed data in memory and the file remains
compressed.

Note: You can run the vxcompress command as a DBA user.

The following use cases apply to databases:

842Compressing files
Use cases for compressing files

■ Supported database versions and environment

■ Compressing archive logs

■ Compressing read-only tablespaces

■ Compressing infrequently accessed table partitions

■ Compressing infrequently accessed datafiles

■ Best practices for compressing files in an Oracle database

Supported database versions and environment
You can use compressed files with Oracle versions 10gR2, 11gR1, and 11gR2.
Compression is supported in Veritas Storage Foundation (SF), Veritas Storage
Foundation and High Availability (SFHA), Veritas Storage Foundation for Oracle
RAC (SFRAC), and Veritas Storage Foundation Cluster File System High Availability
(SFCFSHA). In a clustered environment, such as SFRAC and SFCFSHA, Symantec
recommends that you compress files on a node that has minimal load. In a Fast
Failover SFCFSHA environment, Symantec recommends that you compress files
on a passive node where the database is offline.

Compressing archive logs
Archive logs are critical files required for database recovery. In a busy online
transaction processing (OLTP) database, several gigabytes of archive logs are
generated each day. Company guidelines often mandate preserving archive logs
for several days. The Oracle archive logs are read-only files and are never updated
after they are generated. During recovery, Oracle reads archive logs sequentially.
As such, archive logs are very good candidates for compression, and archive logs
are highly compressible.

The following example procedure compresses all archive logs that are older than
a day.

To compress all archive logs that are older than a day

1 As an Oracle DBA, run the following query and get the archive log location:

SQL> select destination from v$archive_dest where status = 'VALID'

and valid_now = 'YES';

Assume /oraarch/MYDB is the archive log destination.

2 Compress all of the archive logs that are older than a day:

$ find /oraarch/MYDB -mtime +1 -exec /opt/VRTS/bin/vxcompress {} \;

You can run this step daily via a scheduler, such as cron.

843Compressing files
Use cases for compressing files

Compressing read-only tablespaces
In a large database environment, it is a common practice to keep static tablespaces
that do not have any changes in read-only mode. The primary purpose of read-only
tablespaces is to eliminate the need to perform backup and recovery of large, static
portions of a database. Read-only tablespaces also provide a way to protecting
historical data so that users cannot modify it. Making a tablespace read-only prevents
updates on all tables and objects residing in the tablespace, regardless of a user's
update privilege level. These kinds of read-only tablespaces are excellent candidates
for compression. In some cases such as month end reports, there may be large
queries executed against these read-only tablespaces. To make the report run
faster, you can uncompress the tablespace on demand before running the monthly
reports.

In the following example, a sporting goods company has its inventory divided into
two tablespaces: winter_items and summer_items. In the end of the Spring season,
you can compress the winter_item tablespace and uncompress the summer_item

tablespace. You can do the reverse actions at end of the Summer season. The
following example procedure performs these tasks.

To compress and uncompress tablespaces depending on the season

1 Using SQL, get a list of files in each tablespace and store the result in the files
summer_files and winter_files:

SQL> select file_name from dba_data_files where

tablespace_name = 'WINTER_ITEM';

Store the result in the winter_files file.

SQL> select file_name from dba_data_files where

tablespace_name = 'SUMMER_ITEM';

Store the result in the summer_files file.

2 Compress the winter_files file:

$ /opt/VRTS/bin/vxcompress `/bin/cat winter_files`

3 Uncompress the summer_files file:

$ /opt/VRTS/bin/vxcompress -u `/bin/cat summer_files`

Compressing infrequently accessed table partitions
Partitioned tables is a frequently used feature for large Oracle databases. Table
partitioning improves database queries and updates because partitioning helps

844Compressing files
Use cases for compressing files

parallelizing transactions that use Parallel Queries. Partitioning also makes
maintenance of database easy and improves the availability of TABLES. If a partition
is down, only the corresponding portion of the TABLE goes offline and the rest of
the TABLE remains online. In a telecommunications environment, a common practice
is to partition a 'call_details' table by month or quarter. The contents in the partition
are less active as the partition gets older. The new records are added to a new
partition, and previous quarter records do not get updated. Since telecommunications
databases are generally very large, compressing last year’s data provides great
savings.

In the following example, assume that the table ‘CALL_DETAIL’ is partitioned by
quarters, and the partition names are CALL_2010_Q1, CALL_2010_Q2, and
CALL_2011_Q1, and so on. In the first Quarter of 2011, you can compress the
CALL_2010_Q1 data.

To compress the CALL_2010_Q1 partition

1 Use SQL to retrieve the filenames belonging to the CALL_2010_Q1 partition:

SQL> select tablespace_name from dba_tab_partitions

where table_name = 'CALL_DETAIL' and partition_name = 'CALL_2010_Q1';

Assume that the query returns "TBS_2010_Q1".

2 Store the names in the my_compress_files file:

SQL> select file_name from dba_data_files where

tablespace_name = 'TBS_2010_Q1';

Store the result in the my_compress_files file.

3 Compress the files:

$ /opt/VRTS/bin/vxcompress `/bin/cat my_compress_files`

Compressing infrequently accessed datafiles
Many customer databases do not use the Oracle partitioning feature. If partitioning
is not used, then you can use Oracle catalog queries to identify datafiles that are
not very active. Periodically, you can query the catalog tables and identify the least
active datafiles and compress those files, as illustrated in the following example
procedure.

845Compressing files
Use cases for compressing files

To identify the least active datafiles and compress those files

1 Query v$filestat and identify the least active datafiles:

SQL> select name, phyrds + phywrts 'TOT_IO' from v$datafile d

and v$filestat f where d.file# = f.file# order by TOT_IO;

2 Select files that have the least I/O activity from the report and compress those
files:

$ /opt/VRTS/bin/vxcompress file1 file2 file3 ...

3 Periodically run the query again to ensure that the compressed files do not
have increased I/O activity. If I/O activity increases, uncompress the files:

$ /opt/VRTS/bin/vxcompress -u file1 file2 file3 ...

Best practices for compressing files in an Oracle database
Even though an Oracle database runs without any errors when files are compressed,
increased I/O to compressed files decreases database performance. Use the
following guidelines for compressing Oracle datafiles:

■ Do not compress database control files.

■ Do not compress files belonging to TEMPORARY tablespaces.

■ Do not compress files belonging to SYSTEM and SYSAUX tablespace.

■ Monitor the I/O activity on compressed files periodically and uncompress the
files if I/O activity increases.

Compressing all files that meet the specified criteria
You can find all files that meet the specified criteria and pipe the results to the
vxcompress command to compress all of those files. The following example
compresses all files in /mnt that have not been modified for more than 30 days:

$ find /mnt -mtime +30 | xargs /opt/VRTS/bin/vxcompress

846Compressing files
Use cases for compressing files

Administering storage

■ Chapter 37. Managing volumes and disk groups

■ Chapter 38. Rootability

■ Chapter 39. Quotas

■ Chapter 40. File Change Log

10Section

Managing volumes and
disk groups

This chapter includes the following topics:

■ Rules for determining the default disk group

■ Moving volumes or disks

■ Monitoring and controlling tasks

■ Using vxnotify to monitor configuration changes

■ Performing online relayout

■ Adding a mirror to a volume

■ Configuring SmartMove

■ Removing a mirror

■ Setting tags on volumes

■ Managing disk groups

■ Managing plexes and subdisks

■ Decommissioning storage

Rules for determining the default disk group
You should use the -g option to specify a disk group to Veritas Volume Manager
(VxVM) commands that accept this option. If you do not specify the disk group,
VxVM applies rules in the following order until it determines a disk group name:

37Chapter

■ Use the default disk group name that is specified by the environment variable
VXVM_DEFAULTDG. This variable can also be set to one of the reserved
system-wide disk group names: bootdg, defaultdg, or nodg.
See “Displaying the system-wide boot disk group” on page 849.
If the variable is undefined, the following rule is applied.

■ Use the disk group that has been assigned to the system-wide default disk group
alias, defaultdg.
See “Displaying and specifying the system-wide default disk group” on page 849.
If this alias is undefined, the following rule is applied.

■ If the operation can be performed without requiring a disk group name (for
example, an edit operation on disk access records), do so.

If none of these rules succeeds, the requested operation fails.

Warning: In releases of VxVM prior to 4.0, a subset of commands tried to determine
the disk group by searching for the object name that was being operated upon by
a command. This functionality is no longer supported. Scripts that rely on determining
the disk group from an object name may fail.

Displaying the system-wide boot disk group
To display the currently defined system-wide boot disk group, use the following
command:

vxdg bootdg

See the vxdg(1M) manual page.

Displaying and specifying the system-wide default disk group
Veritas Volume Manager (VxVM) enables you to define a system-wide default disk
group.

To display the currently defined system-wide default disk group, use the following
command:

vxdg defaultdg

If a default disk group has not been defined, nodg is displayed.

See the vxdg(1M) manual page.

You can also use the following command to display the default disk group:

vxprint -Gng defaultdg 2>/dev/null

849Managing volumes and disk groups
Rules for determining the default disk group

In this case, if there is no default disk group, nothing is displayed.

See the vxprint(1M) manual page.

Use the following command to specify the name of the disk group that is aliased
by defaultdg:

vxdctl defaultdg diskgroup

Where diskgroup is one of the following:

■ A specified disk group name.
The specified disk group is not required to exist on the system.

■ bootdg

Sets the default disk group to be the same as the currently defined system-wide
boot disk group.

■ nodg

Specifies that the default disk group is undefined.

See the vxdctl(1M) manual page.

Moving volumes or disks
This section describes moving volumes or disks.

Moving volumes from a VM disk
Before you disable or remove a disk, you can move the data from that disk to other
disks on the system that have sufficient space.

To move volumes from a disk

1 From the vxdiskadm main menu, select Move volumes from a disk .

2 At the following prompt, enter the disk name of the disk whose volumes you
want to move, as follows:

Enter disk name [<disk>,list,q,?] mydg01

You can now optionally specify a list of disks to which the volume(s) should be
moved. At the prompt, do one of the following:

■ Press Enter to move the volumes onto available space in the disk group.

■ Specify the disks in the disk group that should be used, as follows:

Enter disks [<disk ...>,list]

VxVM NOTICE V-5-2-283 Requested operation is to move all

850Managing volumes and disk groups
Moving volumes or disks

volumes from disk mydg01 in group mydg.

NOTE: This operation can take a long time to complete.

Continue with operation? [y,n,q,?] (default: y)

As the volumes are moved from the disk, the vxdiskadm program displays the
status of the operation:

VxVM vxevac INFO V-5-2-24 Move volume voltest ...

When the volumes have all been moved, the vxdiskadm program displays the
following success message:

VxVM INFO V-5-2-188 Evacuation of disk mydg02 is complete.

3 At the following prompt, indicate whether you want to move volumes from
another disk (y) or return to the vxdiskadm main menu (n):

Move volumes from another disk? [y,n,q,?] (default: n)

Moving disks between disk groups
To move an unused disk between disk groups, remove the disk from one disk group
and add it to the other. For example, to move the physical disk sdc (attached with
the disk name salesdg04) from disk group salesdg and add it to disk group mktdg,
use the following commands:

vxdg -g salesdg rmdisk salesdg04

vxdg -g mktdg adddisk mktdg02=sdc

Warning: This procedure does not save the configurations nor data on the disks.

You can also move a disk by using the vxdiskadm command. Select Remove a

disk from the main menu, and then select Add or initialize a disk.

To move disks and preserve the data on these disks, along with VxVM objects,
such as volumes:

See “Moving objects between disk groups” on page 859.

851Managing volumes and disk groups
Moving volumes or disks

Reorganizing the contents of disk groups
There are several circumstances under which you might want to reorganize the
contents of your existing disk groups:

■ To group volumes or disks differently as the needs of your organization change.
For example, you might want to split disk groups to match the boundaries of
separate departments, or to join disk groups when departments are merged.

■ To isolate volumes or disks from a disk group, and process them independently
on the same host or on a different host. This allows you to implement off-host
processing solutions for the purposes of backup or decision support.

■ To reduce the size of a disk group’s configuration database in the event that its
private region is nearly full. This is a much simpler solution than the alternative
of trying to grow the private region.

■ To perform online maintenance and upgrading of fault-tolerant systems that can
be split into separate hosts for this purpose, and then rejoined.

Use the vxdg command to reorganize your disk groups.

The vxdg command provides the following operations for reorganizing disk groups:

■ The move operation moves a self-contained set of VxVM objects between
imported disk groups. This operation fails if it would remove all the disks from
the source disk group. Volume states are preserved across the move.
Figure 37-1 shows the move operation.

852Managing volumes and disk groups
Moving volumes or disks

Figure 37-1 Disk group move operation

Source Disk Group

Move

After move

Target Disk Group

Source Disk Group Target Disk Group

■ The split operation removes a self-contained set of VxVM objects from an
imported disk group, and moves them to a newly created target disk group. This
operation fails if it would remove all the disks from the source disk group, or if
an imported disk group exists with the same name as the target disk group. An
existing deported disk group is destroyed if it has the same name as the target
disk group (as is the case for the vxdg init command).

Figure 37-2 shows the split operation.

853Managing volumes and disk groups
Moving volumes or disks

Figure 37-2 Disk group split operation

Source disk group

Disks to be split into new disk group

After splitSource disk group New target disk group

■ The join operation removes all VxVM objects from an imported disk group and
moves them to an imported target disk group. The source disk group is removed
when the join is complete.
Figure 37-3 shows the join operation.

854Managing volumes and disk groups
Moving volumes or disks

Figure 37-3 Disk group join operation

Source disk group

Join

After join

Target disk group

Target disk group

These operations are performed on VxVM objects such as disks or top-level
volumes, and include all component objects such as sub-volumes, plexes and
subdisks. The objects to be moved must be self-contained, meaning that the disks
that are moved must not contain any other objects that are not intended for the
move.

For site-consistent disk groups, any of the move operations (move, split, and join)
fail if the VxVM objects that are moved would not meet the site consistency
conditions after the move. For example, a volume that is being moved may not
have a plex on one of the sites configured in the target disk group. The volume
would not meet the conditions for the allsites flag in the target disk group. Use the
-f (force) option to enable the operation to succeed, by turning off the allsites flag
on the object.

If you specify one or more disks to be moved, all VxVM objects on the disks are
moved. You can use the -o expand option to ensure that vxdg moves all disks on
which the specified objects are configured. Take care when doing this as the result
may not always be what you expect. You can use the listmove operation with vxdg

to help you establish what is the self-contained set of objects that corresponds to
a specified set of objects.

855Managing volumes and disk groups
Moving volumes or disks

Warning: Before moving volumes between disk groups, stop all applications that
are accessing the volumes, and unmount all file systems that are configured on
these volumes.

If the system crashes or a hardware subsystem fails, VxVM attempts to complete
or reverse an incomplete disk group reconfiguration when the system is restarted
or the hardware subsystem is repaired, depending on how far the reconfiguration
had progressed. If one of the disk groups is no longer available because it has been
imported by another host or because it no longer exists, you must recover the disk
group manually.

See the Veritas Storage Foundation and High Availability Troubleshooting Guide.

Limitations of disk group split and join
The disk group split and join feature has the following limitations:

■ Disk groups involved in a move, split or join must be version 90 or greater.
See “Upgrading the disk group version” on page 885.

■ The reconfiguration must involve an integral number of physical disks.

■ Objects to be moved must not contain open volumes.

■ Disks cannot be moved between CDS and non-CDS compatible disk groups.

■ By default, VxVM automatically recovers and starts the volumes following a disk
group move, split or join. If you have turned off the automatic recovery feature,
volumes are disabled after a move, split, or join. Use the vxrecover -m and
vxvol startall commands to recover and restart the volumes.
See “Setting the automatic recovery of volumes” on page 892.

■ Data change objects (DCOs) and snap objects that have been dissociated by
Persistent FastResync cannot be moved between disk groups.

■ Veritas Volume Replicator (VVR) objects cannot be moved between disk groups.

■ For a disk group move to succeed, the source disk group must contain at least
one disk that can store copies of the configuration database after the move.

■ For a disk group split to succeed, both the source and target disk groups must
contain at least one disk that can store copies of the configuration database
after the split.

■ For a disk group move or join to succeed, the configuration database in the
target disk group must be able to accommodate information about all the objects
in the enlarged disk group.

856Managing volumes and disk groups
Moving volumes or disks

■ Splitting or moving a volume into a different disk group changes the volume’s
record ID.

■ The operation can only be performed on the master node of a cluster if either
the source disk group or the target disk group is shared.

■ In a cluster environment, disk groups involved in a move or join must both be
private or must both be shared.

■ If a cache object or volume set that is to be split or moved uses ISP volumes,
the storage pool that contains these volumes must also be specified.

Listing objects potentially affected by a move
To display the VxVM objects that would be moved for a specified list of objects,
use the following command:

vxdg [-o expand] listmove sourcedg targetdg object ...

The following example lists the objects that would be affected by moving volume
vol1 from disk group mydg to newdg:

vxdg listmove mydg newdg vol1

mydg01 sda mydg05 sde vol1 vol1-01 vol1-02 mydg01-01 mydg05-01

However, the following command produces an error because only a part of the
volume vol1 is configured on the disk mydg01:

vxdg listmove mydg newdg mydg01

VxVM vxdg ERROR V-5-2-4597 vxdg listmove mydg newdg failed

VxVM vxdg ERROR V-5-2-3091 mydg05 : Disk not moving, but

subdisks on it are

Specifying the -o expand option, as shown below, ensures that the list of objects
to be moved includes the other disks (in this case, mydg05) that are configured in
vol1:

vxdg -o expand listmove mydg newdg mydg01

mydg01 sda mydg05 sde vol1 vol1-01 vol1-02 mydg01-01

mydg05-01

Moving DCO volumes between disk groups
When you move the parent volume (such as a snapshot volume) to a different disk
group, its DCO volume must accompany it. If you use the vxassist addlog, vxmake
or vxdco commands to set up a DCO for a volume, you must ensure that the disks
that contain the plexes of the DCO volume accompany their parent volume during

857Managing volumes and disk groups
Moving volumes or disks

the move. You can use the vxprint command on a volume to examine the
configuration of its associated DCO volume.

If you use the vxassist command to create both a volume and its DCO, or the
vxsnap prepare command to add a DCO to a volume, the DCO plexes are
automatically placed on different disks from the data plexes of the parent volume.
In previous releases, version 0 DCO plexes were placed on the same disks as the
data plexes for convenience when performing disk group split and move operations.
As version 20 DCOs support dirty region logging (DRL) in addition to Persistent
FastResync, it is preferable for the DCO plexes to be separated from the data
plexes. This improves the performance of I/O from/to the volume, and provides
resilience for the DRL logs.

Figure 37-4 shows some instances in which it is not be possible to split a disk group
because of the location of the DCO plexes on the disks of the disk group.

See “Volume snapshots” on page 132.

858Managing volumes and disk groups
Moving volumes or disks

Figure 37-4 Examples of disk groups that can and cannot be split

Volume
data plexes

Snapshot
plex

Volume DCO
plexes

Snapshot
DCO plex

The disk group can be split as the DCO
plexes are on dedicated disks, and can
therefore accompany the disks that
contain the volume data

Split

Split

Volume 1
data plexes

Volume 2
data plexes

Volume 1
DCO plexes

The disk group cannot be split as the DCO
plexes cannot accompany their volumes.
One solution is to relocate the DCO plexes. In
this example, use an additional disk in the
disk group as an intermediary to swap the
misplaced DCO plexes. Alternatively, to
improve DRL performance and resilience,
allocate the DCO plexes to dedicated disks.

The disk group can be split as the DCO
plexes can accompany their volumes.
However, you may not wish the data in
the portions of the disks marked “?” to
be moved as well.

The disk group cannot be
split as this would separate
the disks containing
Volume 2’s data plexes.
Possible solutions are to
relocate the snapshot DCO
plex to the snapshot plex
disk, or to another suitable
disk that can be moved.

?

?
?

?

Snapshot
plex

Snapshot
plex

Snapshot
plex

Volume
data plexes

Volume
data plexes

Snapshot
DCO plex

Snapshot
DCO plex

Snapshot
DCO plex

Volume
DCO plexes

Volume
DCO plex

Volume
DCO plex

Moving objects between disk groups
To move a self-contained set of VxVM objects from an imported source disk group
to an imported target disk group, use the following command:

859Managing volumes and disk groups
Moving volumes or disks

vxdg [-o expand] [-o override|verify] move sourcedg targetdg \

object ...

The -o expand option ensures that the objects that are actually moved include all
other disks containing subdisks that are associated with the specified objects or
with objects that they contain.

The default behavior of vxdg when moving licensed disks in an EMC array is to
perform an EMC disk compatibility check for each disk involved in the move. If the
compatibility checks succeed, the move takes place. vxdg then checks again to
ensure that the configuration has not changed since it performed the compatibility
check. If the configuration has changed, vxdg attempts to perform the entire move
again.

Note: You should only use the -o override and -o verify options if you are
using an EMC array with a valid timefinder license. If you specify one of these
options and do not meet the array and license requirements, a warning message
is displayed and the operation is ignored.

The -o override option enables the move to take place without any EMC checking.

The -o verify option returns the access names of the disks that would be moved
but does not perform the move.

The following output from vxprint shows the contents of disk groups rootdg and
mydg.

The output includes two utility fields, TUTIL0 and PUTIL0. VxVM creates these fields
to manage objects and communications between different commands and Symantec
products. The TUTIL0 values are temporary; they are not maintained on reboot.
The PUTIL0 values are persistent; they are maintained on reboot.

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 csdd - 17678493 - - - -

dm rootdg06 sdf - 17678493 - - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

dm mydg01 sda - 17678493 - - - -

860Managing volumes and disk groups
Moving volumes or disks

dm mydg05 sde - 17678493 - - - -

dm mydg07 sdg - 17678493 - - - -

dm mydg08 sdh - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

The following command moves the self-contained set of objects implied by specifying
disk mydg01 from disk group mydg to rootdg:

vxdg -o expand move mydg rootdg mydg01

By default, VxVM automatically recovers and starts the volumes following a disk
group move. If you have turned off the automatic recovery feature, volumes are
disabled after a move. Use the following commands to recover and restart the
volumes in the target disk group:

vxrecover -g targetdg -m [volume ...]

vxvol -g targetdg startall

The output from vxprint after the move shows that not only mydg01 but also volume
vol1 and mydg05 have moved to rootdg, leaving only mydg07 and mydg08 in disk
group mydg:

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm mydg01 sda - 17678493 - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 sdd - 17678493 - - - -

dm mydg05 sde - 17678493 - - - -

dm rootdg06 sdf - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

861Managing volumes and disk groups
Moving volumes or disks

dm mydg07 sdg - 17678493 - - - -

dm mydg08 sdh - 17678493 - - - -

The following commands would also achieve the same result:

vxdg move mydg rootdg mydg01 mydg05

vxdg move mydg rootdg vol1

See “Moving objects between shared disk groups” on page 396.

Splitting disk groups
To remove a self-contained set of VxVM objects from an imported source disk group
to a new target disk group, use the following command:

vxdg [-o expand] [-o override|verify] split sourcedg targetdg \

object ...

See “Moving objects between disk groups” on page 859.

The following output from vxprint shows the contents of disk group rootdg.

The output includes two utility fields, TUTIL0 and PUTIL0.. VxVM creates these
fields to manage objects and communications between different commands and
Symantec products. The TUTIL0 values are temporary; they are not maintained on
reboot. The PUTIL0 values are persistent; they are maintained on reboot.

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 sda - 17678493 - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 sdd - 17678493 - - - -

dm rootdg05 sde - 17678493 - - - -

dm rootdg06 sdf - 17678493 - - - -

dm rootdg07 sdg - 17678493 - - - -

dm rootdg08 sdh - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg05-01 vol1-02 ENABLED 3591 0 - - -

862Managing volumes and disk groups
Moving volumes or disks

The following command removes disks rootdg07 and rootdg08 from rootdg to
form a new disk group, mydg:

vxdg -o expand split rootdg mydg rootdg07 rootdg08

By default, VxVM automatically recovers and starts the volumes following a disk
group split. If you have turned off the automatic recovery feature, volumes are
disabled after a split. Use the following commands to recover and restart the volumes
in the target disk group:

vxrecover -g targetdg -m [volume ...]

vxvol -g targetdg startall

The output from vxprint after the split shows the new disk group, mydg:

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 sda - 17678493 - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 sdd - 17678493 - - - -

dm rootdg05 sde - 17678493 - - - -

dm rootdg06 sdf - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd rootdg05-01 vol1-02 ENABLED 3591 0 - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

dm rootdg07 sdg - 17678493 - - - -

dm rootdg08 sdh - 17678493 - - - -

See “Splitting shared disk groups” on page 397.

Joining disk groups
To remove all VxVM objects from an imported source disk group to an imported
target disk group, use the following command:

vxdg [-o override|verify] join sourcedg targetdg

See “Moving objects between disk groups” on page 859.

863Managing volumes and disk groups
Moving volumes or disks

Note: You cannot specify rootdg as the source disk group for a join operation.

The following output from vxprint shows the contents of the disk groups rootdg

and mydg.

The output includes two utility fields, TUTIL0 and PUTIL0.. VxVM creates these
fields to manage objects and communications between different commands and
Symantec products. The TUTIL0 values are temporary; they are not maintained on
reboot. The PUTIL0 values are persistent; they are maintained on reboot.

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm rootdg01 sda - 17678493 - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 sdd - 17678493 - - - -

dm rootdg07 sdg - 17678493 - - - -

dm rootdg08 sdh - 17678493 - - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - - - -

dm mydg05 sde - 17678493 - - - -

dm mydg06 sdf - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

The following command joins disk group mydg to rootdg:

vxdg join mydg rootdg

By default, VxVM automatically recovers and starts the volumes following a disk
group join. If you have turned off the automatic recovery feature, volumes are
disabled after a join. Use the following commands to recover and restart the volumes
in the target disk group:

vxrecover -g targetdg -m [volume ...]

vxvol -g targetdg startall

864Managing volumes and disk groups
Moving volumes or disks

The output from vxprint after the join shows that disk group mydg has been
removed:

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm mydg01 sda - 17678493 - - - -

dm rootdg02 sdb - 17678493 - - - -

dm rootdg03 sdc - 17678493 - - - -

dm rootdg04 sdd - 17678493 - - - -

dm mydg05 sde - 17678493 - - - -

dm rootdg06 sdf - 17678493 - - - -

dm rootdg07 sdg - 17678493 - - - -

dm rootdg08 sdh - 17678493 - - - -

v vol1 fsgen ENABLED 2048 - ACTIVE - -

pl vol1-01 vol1 ENABLED 3591 - ACTIVE - -

sd mydg01-01 vol1-01 ENABLED 3591 0 - - -

pl vol1-02 vol1 ENABLED 3591 - ACTIVE - -

sd mydg05-01 vol1-02 ENABLED 3591 0 - - -

See “Joining shared disk groups” on page 397.

Monitoring and controlling tasks
The VxVM task monitor tracks the progress of system recovery by monitoring task
creation, maintenance, and completion. The task monitor lets you monitor task
progress and modify characteristics of tasks, such as pausing and recovery rate
(for example, to reduce the impact on system performance).

Note: VxVM supports this feature only for private disk groups, not for shared disk
groups in a CVM environment.

Specifying task tags
Every task is given a unique task identifier. This is a numeric identifier for the task
that can be specified to the vxtask utility to specifically identify a single task. Several
VxVM utilities also provide a -t option to specify an alphanumeric tag of up to 16
characters in length. This allows you to group several tasks by associating them
with the same tag.

The following utilities accept the -t option:

865Managing volumes and disk groups
Monitoring and controlling tasks

■ vxassist

■ vxevac

■ vxmirror

■ vxplex

■ vxrecover

■ vxrelayout

■ vxresize

■ vxsd

■ vxvol

For example, to execute a vxrecover command and track the resulting tasks as a
group with the task tag myrecovery, use the following command:

vxrecover -g mydg -t myrecovery -b mydg05

To track the resulting tasks, use the following command:

vxtask monitor myrecovery

Any tasks started by the utilities invoked by vxrecover also inherit its task ID and
task tag, establishing a parent-child task relationship.

For more information about the utilities that support task tagging, see their respective
manual pages.

Managing tasks with vxtask
You can use the vxtask command to administer operations on VxVM tasks.
Operations include listing tasks, modifying the task state (pausing, resuming,
aborting) and modifying the task's progress rate.

VxVM tasks represent long-term operations in progress on the system. Every task
gives information on the time the operation started, the size and progress of the
operation, and the state and rate of progress of the operation. You can change the
state of a task, giving coarse-grained control over the progress of the operation.
For those operations that support it, you can change the rate of progress of the
task, giving more fine-grained control over the task.

New tasks take time to be set up, and so may not be immediately available for use
after a command is invoked. Any script that operates on tasks may need to poll for
the existence of a new task.

See the vxtask(1M) manual page.

866Managing volumes and disk groups
Monitoring and controlling tasks

vxtask operations
The vxtask command supports the following operations:

Stops the specified task. In most cases, the operations “back out” as if
an I/O error occurred, reversing what has been done so far to the largest
extent possible.

abort

Displays a one-line summary for each task running on the system. The
-l option prints tasks in long format. The -h option prints tasks
hierarchically, with child tasks following the parent tasks. By default, all
tasks running on the system are printed. If you include a taskid
argument, the output is limited to those tasks whose taskid or task
tag match taskid. The remaining arguments filter tasks and limit which
ones are listed.

In this release, the vxtask list command supports SmartMove and
thin reclamation operation.

■ If you use SmartMove to resync or sync the volume, plex, or subdisk,
the vxtask list displays whether the operations is using
SmartMove or not.

■ In a LUN level reclamation, the vxtask list command provides
information on the amount of the reclaim performed on each LUN.

■ The init=zero on the thin volume may trigger the reclaim on the
thin volume and the progress is seen in the vxtask list
command.

list

Prints information continuously about a task or group of tasks as task
information changes. This lets you track task progress. Specifying -l
prints a long listing. By default, one-line listings are printed. In addition
to printing task information when a task state changes, output is also
generated when the task completes. When this occurs, the state of the
task is printed as EXITED.

monitor

Pauses a running task, causing it to suspend operation.pause

Causes a paused task to continue operation.resume

Changes a task's modifiable parameters. Currently, there is only one
modifiable parameter, slow[=iodelay] , which can be used to reduce
the impact that copy operations have on system performance. If you
specify slow, this introduces a delay between such operations with a
default value for iodelay of 250 milliseconds. The larger iodelay
value you specify, the slower the task progresses and the fewer system
resources that it consumes in a given time. (The vxplex, vxvol and
vxrecover commands also accept the slow attribute.)

set

867Managing volumes and disk groups
Monitoring and controlling tasks

Using the vxtask command
To list all tasks running on the system, use the following command:

vxtask list

To print tasks hierarchically, with child tasks following the parent tasks, specify the
-h option, as follows:

vxtask -h list

To trace all paused tasks in the disk group mydg, as well as any tasks with the tag
sysstart, use the following command:

vxtask -g mydg -p -i sysstart list

To list all paused tasks, use the vxtask -p list command. To continue execution
(the task may be specified by its ID or by its tag), use vxtask resume :

vxtask -p list

vxtask resume 167

To monitor all tasks with the tag myoperation, use the following command:

vxtask monitor myoperation

To cause all tasks tagged with recovall to exit, use the following command:

vxtask abort recovall

This command causes VxVM to try to reverse the progress of the operation so far.
For example, aborting an Online Relayout results in VxVM returning the volume to
its original layout.

See “Controlling the progress of a relayout” on page 874.

Using vxnotify to monitor configuration changes
You can use the vxnotify utility to display events relating to disk and configuration
changes that are managed by the vxconfigd configuration daemon. If vxnotify
is running on a system where the VxVM clustering feature is active, it displays
events that are related to changes in the cluster state of the system on which it is
running. The vxnotify utility displays the requested event types until you kill it,
until it has received a specified number of events, or until a specified period of time
has elapsed.

868Managing volumes and disk groups
Using vxnotify to monitor configuration changes

Examples of configuration events that can be detected include disabling and enabling
of controllers, paths and DMP nodes, RAID-5 volumes entering degraded mode,
detachment of disks, plexes and volumes, and nodes joining and leaving a cluster.

For example, the following vxnotify command displays information about all disk,
plex, and volume detachments as they occur:

vxnotify -f

The following command provides information about cluster configuration changes,
including the import and deport of shared disk groups:

vxnotify -s -i

See the vxnotify(1M) manual page.

Performing online relayout
You can use the vxassist relayout command to reconfigure the layout of a
volume without taking it offline. The general form of this command is as follows:

vxassist [-b] [-g diskgroup] relayout volume [layout=layout] \

[relayout_options]

If you specify the -b option, relayout of the volume is a background task.

The following destination layout configurations are supported.

Concatenated-mirrorconcat-mirror

Concatenatedconcat

Concatenatednomirror

Concatenatednostripe

RAID-5 (not supported for shared disk groups)raid5

Concatenatedspan

Stripedstripe

See “Permitted relayout transformations” on page 870.

For example, the following command changes the concatenated volume vol02, in
disk group mydg, to a striped volume. By default, the striped volume has 2 columns
and a 64 KB striped unit size.:

869Managing volumes and disk groups
Performing online relayout

vxassist -g mydg relayout vol02 layout=stripe

Sometimes, you may need to perform a relayout on a plex rather than on a volume.

See “Specifying a plex for relayout” on page 873.

Permitted relayout transformations
Table 37-1 shows the supported relayout transformations for concatenated volumes.

Table 37-1 Supported relayout transformations for concatenated volumes

From concatRelayout to

No.concat

No. Add a mirror, and then use vxassist convert instead.concat-mirror

No. Add a mirror instead.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

Yes. The stripe width and number of columns may be defined.raid5

Yes. The stripe width and number of columns may be defined.stripe

Yes. The stripe width and number of columns may be defined.stripe-mirror

Table 37-2 shows the supported relayout transformations for concatenated-mirror
volumes.

Table 37-2 Supported relayout transformations for concatenated-mirror
volumes

From concat-mirrorRelayout to

No. Use vxassist convert, and then remove the unwanted mirrors
from the resulting mirrored-concatenated volume instead.

concat

No.concat-mirror

No. Use vxassist convert instead.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

Yes.raid5

870Managing volumes and disk groups
Performing online relayout

Table 37-2 Supported relayout transformations for concatenated-mirror
volumes (continued)

From concat-mirrorRelayout to

Yes. This relayout removes a mirror and adds striping. The stripe width
and number of columns may be defined.

stripe

Yes. The stripe width and number of columns may be defined.stripe-mirror

Table 37-3 shows the supported relayout transformations for RAID-5 volumes.

Table 37-3 Supported relayout transformations for mirrored-stripe volumes

From mirror-stripeRelayout to

Yes.concat

Yes.concat-mirror

No. Use vxassist convert after relayout to the concatenated-mirror
volume instead.

mirror-concat

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.
Otherwise, use vxassist convert.

stripe-mirror

Table 37-4 shows the supported relayout transformations for mirror-concatenated
volumes.

Table 37-4 Supported relayout transformations for mirrored-concatenated
volumes

From mirror-concatRelayout to

No. Remove the unwanted mirrors instead.concat

No. Use vxassist convert instead.concat-mirror

No.mirror-concat

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

871Managing volumes and disk groups
Performing online relayout

Table 37-4 Supported relayout transformations for mirrored-concatenated
volumes (continued)

From mirror-concatRelayout to

Yes. The stripe width and number of columns may be defined. Choose
a plex in the existing mirrored volume on which to perform the relayout.
The other plexes are removed at the end of the relayout operation.

raid5

Yes.stripe

Yes.stripe-mirror

Table 37-5 shows the supported relayout transformations for mirrored-stripe volumes.

Table 37-5 Supported relayout transformations for mirrored-stripe volumes

From mirror-stripeRelayout to

Yes.concat

Yes.concat-mirror

No. Use vxassist convert after relayout to the concatenated-mirror
volume instead.

mirror-concat

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.
Otherwise, use vxassist convert.

stripe-mirror

Table 37-6 shows the supported relayout transformations for unmirrored stripe and
layered striped-mirror volumes.

Table 37-6 Supported relayout transformations for unmirrored stripe and
layered striped-mirror volumes

From stripe or stripe-mirrorRelayout to

Yes.concat

Yes.concat-mirror

No. Use vxassist convert after relayout to the concatenated-mirror
volume instead.

mirror-concat

872Managing volumes and disk groups
Performing online relayout

Table 37-6 Supported relayout transformations for unmirrored stripe and
layered striped-mirror volumes (continued)

From stripe or stripe-mirrorRelayout to

No. Use vxassist convert after relayout to the striped-mirror volume
instead.

mirror-stripe

Yes. The stripe width and number of columns may be changed.raid5

Yes. The stripe width or number of columns must be changed.stripe

Yes. The stripe width or number of columns must be changed.stripe-mirror

Specifying a non-default layout
You can specify one or more of the following relayout options to change the default
layout configuration:

Specifies the number of columns.ncol=number

Specifies the number of columns to add.ncol=+number

Specifies the number of columns to remove.ncol=-number

Specifies the stripe width.stripeunit=size

The following examples use vxassist to change the stripe width and number of
columns for a striped volume in the disk group dbasedg:

vxassist -g dbasedg relayout vol03 stripeunit=64k ncol=6

vxassist -g dbasedg relayout vol03 ncol=+2

vxassist -g dbasedg relayout vol03 stripeunit=128k

The following example changes a concatenated volume to a RAID-5 volume with
four columns:

vxassist -g dbasedg relayout vol04 layout=raid5 ncol=4

Specifying a plex for relayout
If you have enough disks and space in the disk group, you can change any layout
to RAID-5 . To convert a mirrored volume to RAID-5, you must specify which plex
is to be converted. When the conversion finishes, all other plexes are removed,
releasing their space for other purposes. If you convert a mirrored volume to a
layout other than RAID-5, the unconverted plexes are not removed. Specify the
plex to be converted by naming it in place of a volume as follows:

873Managing volumes and disk groups
Performing online relayout

vxassist [-g diskgroup] relayout plex [layout=layout] \

[relayout_options]

Tagging a relayout operation
To control the progress of a relayout operation, for example to pause or reverse it,
use the -t option to vxassist to specify a task tag for the operation. For example,
the following relayout is performed as a background task and has the tag myconv:

vxassist -b -g dbasedg -t myconv relayout vol04 layout=raid5 \

ncol=4

See “Viewing the status of a relayout” on page 874.

See “Controlling the progress of a relayout” on page 874.

Viewing the status of a relayout
Online relayout operations take time to perform. You can use the vxrelayout

command to obtain information about the status of a relayout operation. For example,
the following command:

vxrelayout -g mydg status vol04

might display output similar to the following:

STRIPED, columns=5, stwidth=128--> STRIPED, columns=6,

stwidth=128

Relayout running, 68.58% completed.

In this example, the reconfiguration is in progress for a striped volume from 5 to 6
columns, and is over two-thirds complete.

See the vxrelayout(1M) manual page.

If you specify a task tag to vxassist when you start the relayout, you can use this
tag with the vxtask command to monitor the progress of the relayout. For example,
to monitor the task that is tagged as myconv, enter the following:

vxtask monitor myconv

Controlling the progress of a relayout
You can use the vxtask command to stop (pause) the relayout temporarily, or to
cancel it (abort). If you specify a task tag to vxassist when you start the relayout,

874Managing volumes and disk groups
Performing online relayout

you can use this tag to specify the task to vxtask. For example, to pause the relayout
operation that is tagged as myconv, enter:

vxtask pause myconv

To resume the operation, use the vxtask command as follows:

vxtask resume myconv

For relayout operations that have not been stopped using the vxtask pause

command (for example, the vxtask abort command was used to stop the task,
the transformation process died, or there was an I/O failure), resume the relayout
by specifying the start keyword to vxrelayout, as follows:

vxrelayout -g mydg -o bg start vol04

If you use the vxrelayout start command to restart a relayout that you previously
suspended using the vxtask pause command, a new untagged task is created to
complete the operation. You cannot then use the original task tag to control the
relayout.

The -o bg option restarts the relayout in the background. You can also specify the
slow and iosize option modifiers to control the speed of the relayout and the size
of each region that is copied. For example, the following command inserts a delay
of 1000 milliseconds (1 second) between copying each 10 MB region:

vxrelayout -g mydg -o bg,slow=1000,iosize=10m start vol04

The default delay and region size values are 250 milliseconds and 1 MB respectively.

To reverse the direction of relayout operation that is stopped, specify the reverse

keyword to vxrelayout as follows:

vxrelayout -g mydg -o bg reverse vol04

This undoes changes made to the volume so far, and returns it to its original layout.

If you cancel a relayout using vxtask abort, the direction of the conversion is also
reversed, and the volume is returned to its original configuration.

See “Managing tasks with vxtask” on page 866.

See the vxrelayout(1M) manual page.

See the vxtask(1M) manual page.

875Managing volumes and disk groups
Performing online relayout

Adding a mirror to a volume
You can add a mirror to a volume with the vxassist command, as follows:

vxassist [-b] [-g diskgroup] mirror volume

Specifying the -b option makes synchronizing the new mirror a background task.

For example, to create a mirror of the volume voltest in the disk group, mydg, use
the following command:

vxassist -b -g mydg mirror voltest

You can also mirror a volume by creating a plex and then attaching it to a volume
using the following commands:

vxmake [-g diskgroup] plex plex sd=subdisk ...

vxplex [-g diskgroup] att volume plex

Mirroring all volumes
To mirror all volumes in a disk group to available disk space, use the following
command:

/etc/vx/bin/vxmirror -g diskgroup -a

To configure VxVM to create mirrored volumes by default, use the following
command:

vxmirror -d yes

If you make this change, you can still make unmirrored volumes by specifying
nmirror=1 as an attribute to the vxassist command. For example, to create an
unmirrored 20-gigabyte volume named nomirror in the disk group mydg, use the
following command:

vxassist -g mydg make nomirror 20g nmirror=1

Mirroring volumes on a VM disk
Mirroring volumes creates one or more copies of your volumes on another disk. By
creating mirror copies of your volumes, you protect your volumes against loss of
data if a disk fails.

You can use this task on your root disk to make a second copy of the boot
information available on an alternate disk. This lets you boot your system even if
your root disk fails.

876Managing volumes and disk groups
Adding a mirror to a volume

Note: This task only mirrors concatenated volumes. Volumes that are already
mirrored or that contain subdisks that reside on multiple disks are ignored

To mirror volumes on a disk

1 Make sure that the target disk has an equal or greater amount of space as the
source disk.

2 From the vxdiskadm main menu, select Mirror volumes on a disk .

3 At the prompt, enter the disk name of the disk that you wish to mirror:

Enter disk name [<disk>,list,q,?] mydg02

4 At the prompt, enter the target disk name (this disk must be the same size or
larger than the originating disk):

Enter destination disk [<disk>,list,q,?] (default: any) mydg01

5 At the prompt, press Return to make the mirror:

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm program displays the status of the mirroring operation, as
follows:

VxVM vxmirror INFO V-5-2-22 Mirror volume voltest-bk00

.

.

.

VxVM INFO V-5-2-674 Mirroring of disk mydg01 is complete.

6 At the prompt, indicate whether you want to mirror volumes on another disk
(y) or return to the vxdiskadm main menu (n):

Mirror volumes on another disk? [y,n,q,?] (default: n)

Configuring SmartMove
By default, the SmartMove utility is enabled for all volumes. Configuring the
SmartMove feature is only required if you want to change the default behavior, or
if you have modified the behavior previously.

SmartMove has three values where SmartMove can be applied or not. The three
values are:

877Managing volumes and disk groups
Configuring SmartMove

MeaningValue

Do not use SmartMove at all.none

Use SmartMove for thin aware LUNs only.thinonly

Use SmartMove for all types of LUNs.

This is the default value.

all

To configure the SmartMove value

1 To display the current and default SmartMove values, type the following
command:

vxdefault list

KEYWORD CURRENT-VALUE DEFAULT-VALUE

usefssmartmove all all

...

2 To set the SmartMove value, type the following command:

vxdefault set usefssmartmove value

where value is either none, thinonly, or all.

Removing a mirror
When you no longer need a mirror, you can remove it to free disk space.

Note: VxVM will not allow you to remove the last valid plex associated with a volume.

To remove a mirror from a volume, use the following command:

vxassist [-g diskgroup] remove mirror volume

You can also use storage attributes to specify the storage to be removed. For
example, to remove a mirror on disk mydg01 from volume vol01, enter the following.

Note: The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

vxassist -g mydg remove mirror vol01 \!mydg01

See “Creating a volume on specific disks” on page 226.

878Managing volumes and disk groups
Removing a mirror

Alternatively, use the following command to dissociate and remove a mirror from
a volume:

vxplex [-g diskgroup] -o rm dis mirror

For example, to dissociate and remove a mirror named vol01-02 from the disk
group mydg, use the following command:

vxplex -g mydg -o rm dis vol01-02

This command removes the mirror vol01-02 and all associated subdisks. This is
equivalent to entering the following commands separately:

vxplex -g mydg dis vol01-02

vxedit -g mydg -r rm vol01-02

Setting tags on volumes
Volume tags implement the SmartTier feature. You can also apply tags to vsets
using the same vxvm command syntax as shown below.

The following forms of the vxassist command let you do the following:

■ Set a named tag and optional tag value on a volume.

■ Replace a tag.

■ Remove a tag from a volume.

vxassist [-g diskgroup] settag volume|vset tagname[=tagvalue]

vxassist [-g diskgroup] replacetag volume|vset oldtag newtag

vxassist [-g diskgroup] removetag volume|vset tagname

To list the tags that are associated with a volume, use the following command:

vxassist [-g diskgroup] listtag [volume|vset]

If you do not specify a volume name, all the volumes and vsets in the disk group
are displayed. The acronym vt in the TY field indicates a vset.

The following is a sample listtag command:

vxassist -g dg1 listtag vol

To list the volumes that have a specified tag name, use the following command:

vxassist [-g diskgroup] list tag=tagname volume

879Managing volumes and disk groups
Setting tags on volumes

Tag names and tag values are case-sensitive character strings of up to 256
characters. Tag names can consist of the following ASCII characters:

■ Letters (A through Z and a through z)

■ Numbers (0 through 9)

■ Dashes (-)

■ Underscores (_)

■ Periods (.)

A tag name must start with either a letter or an underscore. A tag name must not
be the same as the name of a disk in the disk group.

The tag names site, udid, and vdid are reserved. Do not use them. To avoid
possible clashes with future product features, do not start tag names with any of
the following strings: asl, be, nbu, sf, symc, or vx.

Tag values can consist of any ASCII character that has a decimal value from 32
through 127. If a tag value includes spaces, quote the specification to protect it from
the shell, as follows:

vxassist -g mydg settag myvol "dbvol=table space 1"

The list operation understands dotted tag hierarchies. For example, the listing for
tag=a.b includes all volumes that have tag names starting with a.b.

Managing disk groups
This section describes managing disk groups.

Disk group versions
All disk groups have a version number associated with them. Each major Veritas
Volume Manager (VxVM) release introduces a disk group version. To support the
new features in the release, the disk group must be the latest disk group version.
By default, VxVM creates disk groups with the latest disk group version. For example,
Veritas Volume Manager 6.0 creates disk groups with version 170.

Each VxVM release supports a specific set of disk group versions. VxVM can import
and perform operations on a disk group of any supported version. However, the
operations are limited by what features and operations the disk group version
supports. If you import a disk group from a previous version, the latest features may
not be available. If you attempt to use a feature from a newer version of VxVM, you
receive an error message similar to this:

880Managing volumes and disk groups
Managing disk groups

VxVM vxedit ERROR V-5-1-2829 Disk group version doesn't support

feature

You must explicitly upgrade the disk group to the appropriate disk group version to
use the feature.

See “Upgrading the disk group version” on page 885.

Table 37-7 summarizes the Veritas Volume Manager releases that introduce and
support specific disk group versions. It also summarizes the features that are
supported by each disk group version.

Table 37-7 Disk group version assignments

Supports disk
group versions

New features
supported

Introduces disk
group version

VxVM release

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130,
140, 150, 160, 170

■ TRIM support for
Solid State
Devices (SSDs)

■ CVM availability
enhancements

1806.0.1

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130,
140, 150, 160

■ VVR compression
■ VVR Secondary

logging
■ CVM availability

enhancements
■ DCO version 30
■ Recovery for

synchronization
tasks.

1706.0

881Managing volumes and disk groups
Managing disk groups

Table 37-7 Disk group version assignments (continued)

Supports disk
group versions

New features
supported

Introduces disk
group version

VxVM release

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130,
140, 150, 160

■ Automated bunker
replay as part of
GCO failover

■ Ability to elect
primary during
GCO takeover

■ CVM support for
more than 32
nodes and up to
64 nodes

■ CDS layout
support for large
luns (> 1 TB)

■ vxrootadm
enhancements

1605.1SP1

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130,
140, 150

SSD device support,
migration of ISP dg

1505.1

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130,
140

Data migration,
Remote Mirror,
coordinator disk
groups (used by
VCS), linked
volumes, snapshot
LUN import.

1405.0

20, 30, 40, 50, 60, 70,
80, 90, 110, 120, 130

■ VVR
Enhancements

1305.0

20, 30, 40, 50, 60, 70,
80, 90, 110, 120

■ Automatic
Cluster-wide
Failback for A/P
arrays

■ Persistent DMP
Policies

■ Shared Disk
Group Failure
Policy

1204.1

882Managing volumes and disk groups
Managing disk groups

Table 37-7 Disk group version assignments (continued)

Supports disk
group versions

New features
supported

Introduces disk
group version

VxVM release

20, 30, 40, 50, 60, 70,
80, 90, 110

■ Cross-platform
Data Sharing
(CDS)

■ Device Discovery
Layer (DDL) 2.0

■ Disk Group
Configuration
Backup and
Restore

■ Elimination of
rootdg as a
Special Disk
Group

■ Full-Sized and
Space-Optimized
Instant Snapshots

■ Intelligent Storage
Provisioning (ISP)

■ Serial Split Brain
Detection

■ Volume Sets
(Multiple Device
Support for VxFS)

1104.0

20, 30, 40, 50, 60, 70,
80, 90

■ Cluster Support
for Oracle
Resilvering

■ Disk Group Move,
Split and Join

■ Device Discovery
Layer (DDL) 1.0

■ Layered Volume
Support in
Clusters

■ Ordered
Allocation

■ OS Independent
Naming Support

■ Persistent
FastResync

903.2, 3.5

883Managing volumes and disk groups
Managing disk groups

Table 37-7 Disk group version assignments (continued)

Supports disk
group versions

New features
supported

Introduces disk
group version

VxVM release

20, 30, 40, 50, 60, 70,
80

■ VVR
Enhancements

803.1.1

20, 30, 40, 50, 60, 70■ Non-Persistent
FastResync

■ Sequential DRL
■ Unrelocate
■ VVR

Enhancements

703.1

20, 30, 40, 60■ Online Relayout
■ Safe RAID-5

Subdisk Moves

603.0

20, 30, 40, 50■ SRVM (now
known as Veritas
Volume Replicator
or VVR)

502.5

20, 30, 40■ Hot-Relocation402.3

20, 30■ VxSmartSync
Recovery
Accelerator

302.2

20■ Dirty Region
Logging (DRL)

■ Disk Group
Configuration
Copy Limiting

■ Mirrored Volumes
Logging

■ New-Style Stripes
■ RAID-5 Volumes
■ Recovery

Checkpointing

202.0

15151.3

10101.2

884Managing volumes and disk groups
Managing disk groups

If you need to import a disk group on a system running an older version of Veritas
Volume Manager, you can create a disk group with an earlier disk group version.

See “Creating a disk group with an earlier disk group version” on page 885.

Upgrading the disk group version
All Veritas Volume Manager disk groups have an associated version number. Each
VxVM release supports a specific set of disk group versions and can import and
perform tasks on disk groups with those versions. Some new features and tasks
work only on disk groups with the current disk group version.

When you upgrade, VxVM does not automatically upgrade the versions of existing
disk groups. If the disk group is a supported version, the disk group can be used
“as is”, as long as you do not attempt to use the features of the current version.
Until the disk group is upgraded, it may still be deported back to the release from
which it was imported.

To use the features in the upgraded release, you must explicitly upgrade the existing
disk groups. There is no "downgrade" facility. After you upgrade a disk group, the
disk group is incompatible with earlier releases of VxVM that do not support the
new version. For disk groups that are shared among multiple servers for failover
or for off-host processing, verify that the VxVM release on all potential hosts that
may use the disk group supports the disk group version to which you are upgrading.

After upgrading to Storage Foundation Cluster File System High Availability , you
must upgrade any existing disk groups that are organized by ISP. Without the
version upgrade, configuration query operations continue to work fine. However,
configuration change operations will not function correctly.

To list the version of a disk group, use this command:

vxdg list dgname

You can also determine the disk group version by using the vxprint command
with the -l format option.

To upgrade a disk group to the highest version supported by the release of VxVM
that is currently running, use this command:

vxdg upgrade dgname

Creating a disk group with an earlier disk group version
You may sometimes need to create a disk group that can be imported on a system
running an older version of Veritas Volume Manager. You must specify the disk
group version when you create the disk group, since you cannot downgrade a disk
group version.

885Managing volumes and disk groups
Managing disk groups

For example, the default disk group version for a disk group created on a system
running Veritas Volume Manager 6.0 is 170. Such a disk group cannot be imported
on a system running Veritas Volume Manager 4.1, as that release only supports
up to version 120. Therefore, to create a disk group on a system running Veritas
Volume Manager 6.0 that can be imported by a system running Veritas Volume
Manager 4.1, the disk group must be created with a version of 120 or less.

To create a disk group with a previous version, specify the -T version option to
the vxdg init command.

Displaying disk group information
To display information on existing disk groups, enter the following command:

vxdg list

NAME STATE ID

rootdg enabled 730344554.1025.tweety

newdg enabled 731118794.1213.tweety

To display more detailed information on a specific disk group, use the following
command:

vxdg list diskgroup

When you apply this command to a disk group named mydg, the output is similar
to the following:

vxdg list mydg

Group: mydg

dgid: 962910960.1025.bass

import-id: 0.1

flags:

version: 160

local-activation: read-write

alignment: 512 (bytes)

ssb: on

detach-policy: local

copies: nconfig=default nlog=default

config: seqno=0.1183 permlen=3448 free=3428 templen=12 loglen=522

config disk sda copy 1 len=3448 state=clean online

config disk sdb copy 1 len=3448 state=clean online

log disk sdc copy 1 len=522

log disk sdd copy 1 len=522

886Managing volumes and disk groups
Managing disk groups

To verify the disk group ID and name that is associated with a specific disk (for
example, to import the disk group), use the following command:

vxdisk -s list devicename

This command provides output that includes the following information for the
specified disk. For example, output for disk sdc as follows:

Disk: sdc

type: simple

flags: online ready private autoconfig autoimport imported

diskid: 963504891.1070.bass

dgname: newdg

dgid: 963504895.1075.bass

hostid: bass

info: privoffset=128

Displaying free space in a disk group
Before you add volumes and file systems to your system, make sure that you have
enough free disk space to meet your needs.

To display free space in the system, use the following command:

vxdg free

The following is example output:

GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg mydg01 sda sda 0 4444228 -

mydg mydg02 sdb sdb 0 4443310 -

newdg znewdg01 sdc sdc 0 4443310 -

newdg newdg02 sdd sdd 0 4443310 -

oradg oradg01 sde sde 0 4443310 -

To display free space for a disk group, use the following command:

vxdg -g diskgroup free

where -g diskgroup optionally specifies a disk group.

For example, to display the free space in the disk group, mydg, use the following
command:

vxdg -g mydg free

The following example output shows the amount of free space in sectors:

887Managing volumes and disk groups
Managing disk groups

DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg01 sda sda 0 4444228 -

mydg02 sdb sdb 0 4443310 -

Creating a disk group
You must associate a disk group with at least one disk. You can create a new disk
group when you select Add or initialize one or more disks from the main
menu of the vxdiskadm command to add disks to VxVM control. The disks to be
added to a disk group must not belong to an existing disk group. A disk group name
cannot include a period (.) character.

You can create a shared disk group.

You can also use the vxdiskadd command to create a new disk group. The
command dialog is similar to that described for the vxdiskadm command.

In the following example, sdd is the device name of a disk that is not currently
assigned to a disk group.

vxdiskadd sdd

See “Adding a disk to VxVM” on page 348.

You can also create disk groups using the following vxdg init command:

vxdg init diskgroup [cds=on|off] diskname=devicename

For example, to create a disk group named mktdg on device sdc, enter the following:

vxdg init mktdg mktdg01=sdc

The disk that is specified by the device name, sdc, must have been previously
initialized with vxdiskadd or vxdiskadm. The disk must not currently belong to a
disk group.

You can use the cds attribute with the vxdg init command to specify whether a
new disk group is compatible with the Cross-platform Data Sharing (CDS) feature.
Newly created disk groups are compatible with CDS by default (equivalent to
specifying cds=on). If you want to change this behavior, edit the file
/etc/default/vxdg and set the attribute-value pair cds=off in this file before
creating a new disk group.

You can also use the following command to set this attribute for a disk group:

vxdg -g diskgroup set cds=on|off

888Managing volumes and disk groups
Managing disk groups

Removing a disk from a disk group
Before you can remove the last disk from a disk group, you must disable the disk
group.

See “Disabling a disk group” on page 918.

As an alternative to disabling the disk group, you can destroy it.

See “Destroying a disk group” on page 918.

If a disk contains no subdisks, you can remove it from its disk group with the following
command:

vxdg [-g diskgroup] rmdisk diskname

For example, to remove mydg02 from the disk group mydg, enter the following:

vxdg -g mydg rmdisk mydg02

If the disk has subdisks on it when you try to remove it, the following error message
is displayed:

VxVM vxdg ERROR V-5-1-552 Disk diskname is used by one or more

subdisks

Use -k to remove device assignment.

Using the -k option lets you remove the disk even if it has subdisks.

See the vxdg(1M) manual page.

Warning: Use of the -k option to vxdg can result in data loss.

After you remove the disk from its disk group, you can (optionally) remove it from
VxVM control completely. Enter the following:

vxdiskunsetup devicename

For example, to remove the disk sdc from VxVM control, enter the following:

vxdiskunsetup sdc

You can remove a disk on which some subdisks of volumes are defined. For
example, you can consolidate all the volumes onto one disk. If you use vxdiskadm

to remove a disk, you can choose to move volumes off that disk. To do this, run
vxdiskadm and select Remove a disk from the main menu.

If the disk is used by some volumes, this message is displayed:

889Managing volumes and disk groups
Managing disk groups

VxVM ERROR V-5-2-369 The following volumes currently use part of

disk mydg02:

home usrvol

Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

If you choose y, all volumes are moved off the disk, if possible. Some volumes may
not be movable. The most common reasons why a volume may not be movable
are as follows:

■ There is not enough space on the remaining disks.

■ Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If vxdiskadm cannot move some volumes, you may need to remove some plexes
from some disks to free more space before proceeding with the disk removal
operation.

Deporting a disk group
Deporting a disk group disables access to a disk group that is enabled (imported)
by the system. Deport a disk group if you intend to move the disks in a disk group
to another system.

To deport a disk group

1 Stop all activity by applications to volumes that are configured in the disk group
that is to be deported. Unmount file systems and shut down databases that
are configured on the volumes.

If the disk group contains volumes that are in use (for example, by mounted
file systems or databases), deportation fails.

2 To stop the volumes in the disk group, use the following command

vxvol -g diskgroup stopall

3 From the vxdiskadm main menu, select Remove access to (deport) a disk

group .

890Managing volumes and disk groups
Managing disk groups

4 At prompt, enter the name of the disk group to be deported. In the following
example it is newdg):

Enter name of disk group [<group>,list,q,?] (default: list)

newdg

5 At the following prompt, enter y if you intend to remove the disks in this disk
group:

Disable (offline) the indicated disks? [y,n,q,?] (default: n) y

6 At the following prompt, press Return to continue with the operation:

Continue with operation? [y,n,q,?] (default: y)

After the disk group is deported, the vxdiskadm utility displays the following
message:

VxVM INFO V-5-2-269 Removal of disk group newdg was

successful.

7 At the following prompt, indicate whether you want to disable another disk
group (y) or return to the vxdiskadm main menu (n):

Disable another disk group? [y,n,q,?] (default: n)

You can use the following vxdg command to deport a disk group:

vxdg deport diskgroup

Importing a disk group
Importing a disk group enables access by the system to a disk group. To move a
disk group from one system to another, first disable (deport) the disk group on the
original system, and then move the disk between systems and enable (import) the
disk group.

By default, VxVM recovers and starts any disabled volumes in the disk group when
you import the disk group. To prevent VxVM from recovering the disabled volumes,
turn off the automatic recovery feature. For example, after importing the disk group,
you may want to do some maintenance before starting the volumes.

See “Setting the automatic recovery of volumes” on page 892.

891Managing volumes and disk groups
Managing disk groups

To import a disk group

1 To ensure that the disks in the deported disk group are online, use the following
command:

vxdisk -s list

2 From the vxdiskadm main menu, select Enable access to (import) a disk

group.

3 At the following prompt, enter the name of the disk group to import (in this
example, newdg):

Select disk group to import [<group>,list,q,?] (default: list)

newdg

When the import finishes, the vxdiskadm utility displays the following success
message:

VxVM INFO V-5-2-374 The import of newdg was successful.

4 At the following prompt, indicate whether you want to import another disk group
(y) or return to the vxdiskadm main menu (n):

Select another disk group? [y,n,q,?] (default: n)

You can also use the following vxdg command to import a disk group:

vxdg import diskgroup

You can also import the disk group as a shared disk group.

See “Importing disk groups as shared” on page 395.

Setting the automatic recovery of volumes
By default, VxVM recovers and starts any disabled volumes in the disk group when
you import the disk group. To prevent VxVM from recovering the disabled volumes,
turn off the automatic volume recovery. For example, after importing the disk group,
you may want to do some maintenance before starting the volumes.

To turn off the automatic volume recovery feature

◆ Use the following vxdefault command to turn off automatic volume recovery.

vxdefault set autostartvolumes off

892Managing volumes and disk groups
Managing disk groups

Handling of minor number conflicts
The volume device minor numbers in a disk group to be imported may conflict with
existing volume devices. In releases of VxVM before release 5.1, the conflicts
resulted in failures. Either the disk group import operation failed, or the slave node
failed to join for a shared disk group. When this situation happened, you had to run
the vxdg reminor command manually to resolve the minor conflicts. Starting in
release 5.1, VxVM can automatically resolve minor number conflicts.

If a minor conflict exists when a disk group is imported, VxVM automatically assigns
a new base minor to the disk group, and reminors the volumes in the disk group,
based on the new base minor. You do not need to run the vxdg reminor command
to resolve the minor conflicts.

To avoid any conflicts between shared and private disk groups, the minor numbers
are divided into shared and private pools. VxVM allocates minor numbers of shared
disk groups only from the shared pool, and VxVM allocates minor numbers of private
disk groups only from the private pool. If you import a private disk group as a shared
disk group or vice versa, the device minor numbers are re-allocated from the correct
pool. The disk group is dynamically reminored.

By default, private minor numbers range from 0-32999, and shared minor numbers
start from 33000. You can change the division if required. For example, you can
set the range for shared minor numbers to start from a lower number. This range
provides more minor numbers for shared disk groups and fewer minor numbers for
private disk groups.

Normally the minor numbers in private and shared pools are sufficient, so there is
no need to make changes to the division.

Note: To make the new division take effect, you must run vxdctl enable or restart
vxconfigd after the tunable is changed in the defaults file. The division on all the
cluster nodes must be exactly the same, to prevent node failures for node join,
volume creation, or disk group import operations.

893Managing volumes and disk groups
Managing disk groups

To change the division between shared and private minor numbers

1 Add the tunable sharedminorstart to the defaults file /etc/default/vxsf .
For example, to change the shared minor numbers so that the range starts
from 20000, set the following line in the /etc/default/vxsf file.

sharedminorstart=20000

You cannot set the shared minor numbers to start at less than 1000. If
sharedminorstart is set to values between 0 to 999, the division of private
minor numbers and shared disk group minor numbers is set to 1000. The value
of 0 disables dynamic renumbering.

2 Run the following command:

vxdctl enable

In certain scenarios, you may need to disable the division of between shared minor
numbers and private minor numbers. For example, to prevent the device minor
numbers from being changed when you upgrade from a previous release. In this
case, disable the dynamic reminoring before you install the new VxVM RPM.

To disable the division between shared and private minor numbers

1 Set the tunable sharedminorstart in the defaults file /etc/default/vxsf

to 0 (zero). Set the following line in the /etc/default/vxsf file.

sharedminorstart=0

2 Run the following command:

vxdctl enable

Moving disk groups between systems
An important feature of disk groups is that they can be moved between systems.
If all disks in a disk group are moved from one system to another, then the disk
group can be used by the second system. You do not have to re-specify the
configuration.

894Managing volumes and disk groups
Managing disk groups

To move a disk group between systems

1 Confirm that all disks in the diskgroup are visible on the target system. This
may require masking and zoning changes.

2 On the source system, stop all volumes in the disk group, then deport (disable
local access to) the disk group with the following command:

vxdg deport diskgroup

3 Move all the disks to the target system and perform the steps necessary
(system-dependent) for the target system and VxVM to recognize the new
disks.

This can require a reboot, in which case the vxconfigd daemon is restarted
and recognizes the new disks. If you do not reboot, use the command vxdctl

enable to restart the vxconfigd program so VxVM also recognizes the disks.

4 Import (enable local access to) the disk group on the target system with this
command:

vxdg import diskgroup

Warning: All disks in the disk group must be moved to the other system. If
they are not moved, the import fails.

5 By default, VxVM enables and starts any disabled volumes after the disk group
is imported.

See “Setting the automatic recovery of volumes” on page 892.

If the automatic volume recovery feature is turned off, start all volumes with
the following command:

vxrecover -g diskgroup -sb

You can also move disks from a system that has crashed. In this case, you
cannot deport the disk group from the source system. When a disk group is
created or imported on a system, that system writes a lock on all disks in the
disk group.

Warning: The purpose of the lock is to ensure that SAN-accessed disks are
not used by both systems at the same time. If two systems try to access the
same disks at the same time, this must be managed using software such as
the clustering functionality of VxVM. Otherwise, data and configuration
information stored on the disk may be corrupted, and may become unusable.

895Managing volumes and disk groups
Managing disk groups

Handling errors when importing disks
When you move disks from a system that has crashed or that failed to detect the
group before the disk was moved, the locks stored on the disks remain and must
be cleared. The system returns the following error message:

VxVM vxdg ERROR V-5-1-587 disk group groupname: import failed:

Disk is in use by another host

The next message indicates that the disk group does not contains any valid disks
(not that it does not contains any disks):

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

No valid disk found containing disk group

The disks may be considered invalid due to a mismatch between the host ID in
their configuration copies and that stored in the /etc/vx/volboot file.

To clear locks on a specific set of devices, use the following command:

vxdisk clearimport devicename ...

To clear the locks during import, use the following command:

vxdg -C import diskgroup

Warning: Be careful when using the vxdisk clearimport or vxdg -C import

command on systems that see the same disks via a SAN. Clearing the locks allows
those disks to be accessed at the same time from multiple hosts and can result in
corrupted data.

A disk group can be imported successfully if all the disks are accessible that were
visible when the disk group was last imported successfully. However, sometimes
you may need to specify the -f option to forcibly import a disk group if some disks
are not available. If the import operation fails, an error message is displayed.

The following error message indicates a fatal error that requires hardware repair
or the creation of a new disk group, and recovery of the disk group configuration
and data:

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

Disk group has no valid configuration copies

The following error message indicates a recoverable error.

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:

Disk for disk group not found

896Managing volumes and disk groups
Managing disk groups

If some of the disks in the disk group have failed, you can force the disk group to
be imported by specifying the -f option to the vxdg import command:

vxdg -f import diskgroup

Warning: Be careful when using the -f option. It can cause the same disk group
to be imported twice from different sets of disks. This can cause the disk group
configuration to become inconsistent.

See “Handling conflicting configuration copies” on page 911.

As using the -f option to force the import of an incomplete disk group counts as a
successful import, an incomplete disk group may be imported subsequently without
this option being specified. This may not be what you expect.

You can also import the disk group as a shared disk group.

See “Importing disk groups as shared” on page 395.

These operations can also be performed using the vxdiskadm utility. To deport a
disk group using vxdiskadm, select Remove access to (deport) a disk group

from the main menu. To import a disk group, select Enable access to (import)

a disk group. The vxdiskadm import operation checks for host import locks and
prompts to see if you want to clear any that are found. It also starts volumes in the
disk group.

Reserving minor numbers for disk groups
A device minor number uniquely identifies some characteristic of a device to the
device driver that controls that device. It is often used to identify some characteristic
mode of an individual device, or to identify separate devices that are all under the
control of a single controller. VxVM assigns unique device minor numbers to each
object (volume, plex, subdisk, disk, or disk group) that it controls.

When you move a disk group between systems, it is possible for the minor numbers
that it used on its previous system to coincide with those of objects known to VxVM
on the new system. To get around this potential problem, you can allocate separate
ranges of minor numbers for each disk group. VxVM uses the specified range of
minor numbers when it creates volume objects from the disks in the disk group.
This guarantees that each volume has the same minor number across reboots or
reconfigurations. Disk groups may then be moved between machines without
causing device number collisions.

VxVM chooses minor device numbers for objects created from this disk group
starting at the base minor number base_minor. Minor numbers can range from this
value up to 65,535 on 2.6 and later kernels. Try to leave a reasonable number of

897Managing volumes and disk groups
Managing disk groups

unallocated minor numbers near the top of this range to allow for temporary device
number remapping in the event that a device minor number collision may still occur.

VxVM reserves the range of minor numbers from 0 to 999 for use with volumes in
the boot disk group. For example, the rootvol volume is always assigned minor
number 0.

If you do not specify the base of the minor number range for a disk group, VxVM
chooses one at random. The number chosen is at least 1000, is a multiple of 1000,
and yields a usable range of 1000 device numbers. The chosen number also does
not overlap within a range of 1000 of any currently imported disk groups, and it
does not overlap any currently allocated volume device numbers.

Note: The default policy ensures that a small number of disk groups can be merged
successfully between a set of machines. However, where disk groups are merged
automatically using failover mechanisms, select ranges that avoid overlap.

To view the base minor number for an existing disk group, use the vxprint

command as shown in the following examples for the disk group, mydg:

vxprint -l mydg | grep minors

minors: >=45000

vxprint -g mydg -m | egrep base_minor

base_minor=45000

To set a base volume device minor number for a disk group that is being created,
use the following command:

vxdg init diskgroup minor=base_minor disk_access_name ...

For example, the following command creates the disk group, newdg, that includes
the specified disks, and has a base minor number of 30000:

vxdg init newdg minor=30000 sdc sdd

If a disk group already exists, you can use the vxdg reminor command to change
its base minor number:

vxdg -g diskgroup reminor new_base_minor

For example, the following command changes the base minor number to 30000 for
the disk group, mydg:

vxdg -g mydg reminor 30000

898Managing volumes and disk groups
Managing disk groups

If a volume is open, its old device number remains in effect until the system is
rebooted or until the disk group is deported and re-imported. If you close the open
volume, you can run vxdg reminor again to allow the renumbering to take effect
without rebooting or re-importing.

An example of where it is necessary to change the base minor number is for a
cluster-shareable disk group. The volumes in a shared disk group must have the
same minor number on all the nodes. If there is a conflict between the minor numbers
when a node attempts to join the cluster, the join fails. You can use the reminor

operation on the nodes that are in the cluster to resolve the conflict. In a cluster
where more than one node is joined, use a base minor number which does not
conflict on any node.

See the vxdg(1M) manual page.

See “Handling of minor number conflicts” on page 893.

Compatibility of disk groups between platforms
For disk groups that support the Cross-platform Data Sharing (CDS) feature, the
upper limit on the minor number range is restricted on AIX, HP-UX, Linux (with a
2.6 or later kernel) and Solaris to 65,535 to ensure portability between these
operating systems.

On a Linux platform with a pre-2.6 kernel, the number of minor numbers per major
number is limited to 256 with a base of 0. This has the effect of limiting the number
of volumes and disks that can be supported system-wide to a smaller value than
is allowed on other operating system platforms. The number of disks that are
supported by a pre-2.6 Linux kernel is typically limited to a few hundred. With the
extended major numbering scheme that was implemented in VxVM 4.0 on Linux,
a maximum of 4079 volumes could be configured, provided that a contiguous block
of 15 extended major numbers was available.

VxVM 4.1 and later releases run on a 2.6 version Linux kernel, which increases the
number of minor devices that are configurable from 256 to 65,536 per major device
number. This allows a large number of volumes and disk devices to be configured
on a system. The theoretical limit on the number of DMP and volume devices that
can be configured on such a system are 65,536 and 1,048,576 respectively.
However, in practice, the number of VxVM devices that can be configured in a
single disk group is limited by the size of the private region.

When a CDS-compatible disk group is imported on a Linux system with a pre-2.6
kernel, VxVM attempts to reassign the minor numbers of the volumes, and fails if
this is not possible.

899Managing volumes and disk groups
Managing disk groups

To help ensure that a CDS-compatible disk group is portable between operating
systems, including Linux with a pre-2.6 kernel, use the following command to set
the maxdev attribute on the disk group:

vxdg -g diskgroup set maxdev=4079

Note: Such a disk group may still not be importable by VxVM 4.0 on Linux with a
pre-2.6 kernel if it would increase the number of minor numbers on the system that
are assigned to volumes to more than 4079, or if the number of available extended
major numbers is smaller than 15.

You can use the following command to discover the maximum number of volumes
that are supported by VxVM on a Linux host:

cat /proc/sys/vxvm/vxio/vol_max_volumes

4079

See the vxdg(1M) manual page.

Handling cloned disks with duplicated identifiers
A disk may be copied by creating a hardware snapshot (such as an EMC BCV™
or Hitachi ShadowCopy™) or clone, by using dd or a similar command to replicate
the disk, or by building a new LUN from the space that was previously used by a
deleted LUN. To avoid the duplicate disk ID condition, the default action of VxVM
is to prevent such duplicated disks from being imported.

Advanced disk arrays provide hardware tools that you can use to create clones of
existing disks outside the control of VxVM. For example, these disks may have
been created as hardware snapshots or mirrors of existing disks in a disk group.
As a result, the VxVM private region is also duplicated on the cloned disk. When
the disk group containing the original disk is subsequently imported, VxVM detects
multiple disks that have the same disk identifier that is defined in the private region.
In releases prior to 5.0, if VxVM could not determine which disk was the original, it
would not import such disks into the disk group. The duplicated disks would have
to be re-initialized before they could be imported.

From release 5.0, a unique disk identifier (UDID) is added to the disk’s private region
when the disk is initialized or when the disk is imported into a disk group (if this
identifier does not already exist). Whenever a disk is brought online, the current
UDID value that is known to the Device Discovery Layer (DDL) is compared with
the UDID that is set in the disk’s private region. If the UDID values do not match,
the udid_mismatch flag is set on the disk. This flag can be viewed with the vxdisk

list command. This allows a LUN snapshot to be imported on the same host as

900Managing volumes and disk groups
Managing disk groups

the original LUN. It also allows multiple snapshots of the same LUN to be
simultaneously imported on a single server, which can be useful for off-host backup
and processing.

A new set of vxdisk and vxdg operations are provided to handle such disks; either
by writing the DDL value of the UDID to a disk’s private region, or by tagging a disk
and specifying that it is a cloned disk to the vxdg import operation.

The following is sample output from the vxdisk list command showing that disks
sdg, sdh and sdi are marked with the udid_mismatch flag:

vxdisk list

DEVICE TYPE DISK GROUP STATUS

sda auto:cdsdisk - - online

sdb auto:cdsdisk - - online

.

.

.

sde auto:cdsdisk - - online

sdf auto:cdsdisk - - online

sdg auto:cdsdisk - - online udid_mismatch

sdh auto:cdsdisk - - online udid_mismatch

sdi auto:cdsdisk - - online udid_mismatch

Writing a new UDID to a disk
You can use the following command to update the unique disk identifier (UDID) for
one or more disks. This is useful when building a new LUN from space previously
used by a deleted LUN, for example.

vxdisk [-f] [-g diskgroup] updateudid disk ...

This command uses the current value of the UDID that is stored in the Device
Discovery Layer (DDL) database to correct the value in the private region. The -f

option must be specified if VxVM has not set the udid_mismatch flag for a disk.

For example, the following command updates the UDIDs for the disks sdg and sdh:

vxdisk updateudid sdg sdh

Importing a disk group containing cloned disks
By default, disks on which the udid_mismatch flag or the clone_disk flag has been
set are not imported by the vxdg import command unless all disks in the disk
group have at least one of these flags set, and no two of the disks have the same

901Managing volumes and disk groups
Managing disk groups

UDID. You can then import the cloned disks by specifying the -o useclonedev=on

option to the vxdg import command, as shown in this example:

vxdg -o useclonedev=on [-o updateid] import mydg

This form of the command allows only cloned disks to be imported. All non-cloned
disks remain unimported.

If the clone_disk flag is set on a disk, this indicates the disk was previously imported
into a disk group with the udid_mismatch flag set.

The -o updateid option can be specified to write new identification attributes to
the disks, and to set the clone_disk flag on the disks. (The vxdisk set clone=on

command can also be used to set the flag.) However, the import fails if multiple
copies of one or more cloned disks exist. In this case, you can use the following
command to tag all the disks in the disk group that are to be imported:

vxdisk [-g diskgroup] settag tagname disk ...

where tagname is a string of up to 128 characters, not including spaces or tabs.

For example, the following command sets the tag, my_tagged_disks, on several
disks that are to be imported together:

vxdisk settag my_tagged_disks sdg sdh

Alternatively, you can update the UDIDs of the cloned disks.

See “Writing a new UDID to a disk” on page 901.

To check which disks are tagged, use the vxdisk listtag command:

vxdisk listtag

DEVICE NAME VALUE

sda - -

sdb - -

.

.

.

sde my_tagged_disks -

sdf my_tagged_disks -

sdg my_tagged_disks -

sdh my_tagged_disks -

sdi - -

The configuration database in a VM disk’s private region contains persistent
configuration data (or metadata) about the objects in a disk group. This database

902Managing volumes and disk groups
Managing disk groups

is consulted by VxVM when the disk group is imported. At least one of the cloned
disks that are being imported must contain a copy of the current configuration
database in its private region.

You can use the following command to ensure that a copy of the metadata is placed
on a disk, regardless of the placement policy for the disk group:

vxdisk [-g diskgroup] set disk keepmeta=always

Alternatively, use the following command to place a copy of the configuration
database and kernel log on all disks in a disk group that share a given tag:

vxdg [-g diskgroup] set tagmeta=on tag=tagname nconfig=all \

nlog=all

To check which disks in a disk group contain copies of this configuration information,
use the vxdg listmeta command:

vxdg [-q] listmeta diskgroup

The -q option can be specified to suppress detailed configuration information from
being displayed.

The tagged disks in the disk group may be imported by specifying the tag to the
vxdg import command in addition to the -o useclonedev=on option:

vxdg -o useclonedev=on -o tag=my_tagged_disks import mydg

If you have already imported the non-cloned disks in a disk group, you can use the
-n and -t option to specify a temporary name for the disk group containing the
cloned disks:

vxdg -t -n clonedg -o useclonedev=on -o tag=my_tagged_disks \

import mydg

See “Renaming a disk group” on page 909.

To remove a tag from a disk, use the vxdisk rmtag command, as shown in the
following example:

vxdisk rmtag tag=my_tagged_disks sdh

See the vxdisk(1M) and vxdg(1M) manual pages.

Sample cases of operations on cloned disks
The following sections contain examples of operations that can be used with cloned
disks:

903Managing volumes and disk groups
Managing disk groups

See “Enabling configuration database copies on tagged disks” on page 904.

See “Importing cloned disks without tags” on page 905.

See “Importing cloned disks with tags” on page 907.

Enabling configuration database copies on tagged disks
In this example, the following commands have been used to tag some of the disks
in an Hitachi TagmaStore array:

vxdisk settag TagmaStore-USP0_28 t1=v1

vxdisk settag TagmaStore-USP0_28 t2=v2

vxdisk settag TagmaStore-USP0_24 t2=v2

vxdisk settag TagmaStore-USP0_25 t1=v1

These tags can be viewed by using the vxdisk listtag command:

vxdisk listtag

DEVICE NAME VALUE

TagmaStore-USP0_24 t2 v2

TagmaStore-USP0_25 t1 v1

TagmaStore-USP0_28 t1 v1

TagmaStore-USP0_28 t2 v2

The following command ensures that configuration database copies and kernel log
copies are maintained for all disks in the disk group mydg that are tagged as t1:

vxdg -g mydg set tagmeta=on tag=t1 nconfig=all nlog=all

The disks for which such metadata is maintained can be seen by using this
command:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_10 auto:cdsdisk - - online

TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online tagmeta

TagmaStore-USP0_26 auto:cdsdisk - - online

TagmaStore-USP0_27 auto:cdsdisk - - online

TagmaStore-USP0_28 auto:cdsdisk mydg01 mydg online tagmeta

Alternatively, the following command can be used to ensure that a copy of the
metadata is kept with a disk:

904Managing volumes and disk groups
Managing disk groups

vxdisk set TagmaStore-USP0_25 keepmeta=always

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_10 auto:cdsdisk - - online

TagmaStore-USP0_22 auto:cdsdisk - - online

TagmaStore-USP0_23 auto:cdsdisk - - online

TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online keepmeta

TagmaStore-USP0_28 auto:cdsdisk mydg01 mydg online

Importing cloned disks without tags
In the first example, cloned disks (ShadowImage™ devices) from an Hitachi
TagmaStore array will be imported. The primary (non-cloned) disks, mydg01, mydg02
and mydg03, are already imported, and the cloned disks are not tagged.

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online

TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_32 auto:cdsdisk mydg01 mydg online

To import the cloned disks, they must be assigned a new disk group name, and
their UDIDs must be updated:

vxdg -n snapdg -o useclonedev=on -o updateid import mydg

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk mydg03 snapdg online clone_disk

TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online

TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online

TagmaStore-USP0_30 auto:cdsdisk mydg02 snapdg online clone_disk

TagmaStore-USP0_31 auto:cdsdisk mydg01 snapdg online clone_disk

TagmaStore-USP0_32 auto:cdsdisk mydg01 mydg online

Note that the state of the imported cloned disks has changed from online

udid_mismatch to online clone_disk.

905Managing volumes and disk groups
Managing disk groups

In the next example, none of the disks (neither cloned nor non-cloned) have been
imported:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_23 auto:cdsdisk - (mydg) online

TagmaStore-USP0_25 auto:cdsdisk - (mydg) online

TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

To import only the cloned disks into the mydg disk group:

vxdg -o useclonedev=on -o updateid import mydg

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_3 auto:cdsdisk mydg03 mydg online clone_disk

TagmaStore-USP0_23 auto:cdsdisk - (mydg) online

TagmaStore-USP0_25 auto:cdsdisk - (mydg) online

TagmaStore-USP0_30 auto:cdsdisk mydg02 mydg online clone_disk

TagmaStore-USP0_31 auto:cdsdisk mydg01 mydg online clone_disk

TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

In the next example, a cloned disk (BCV device) from an EMC Symmetrix DMX
array is to be imported. Before the cloned disk, EMC0_27, has been split off from
the disk group, the vxdisk list command shows that it is in the error

udid_mismatch state:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto - - error udid_mismatch

The symmir command is used to split off the BCV device:

/usr/symcli/bin/symmir -g mydg split DEV001

After updating VxVM’s information about the disk by running the vxdisk scandisks

command, the cloned disk is in the online udid_mismatch state:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

906Managing volumes and disk groups
Managing disk groups

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto:cdsdisk - - online udid_mismatch

The following command imports the cloned disk into the new disk group newdg, and
updates the disk’s UDID:

vxdg -n newdg -o useclonedev=on -o updateid import mydg

The state of the cloned disk is now shown as online clone_disk:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_1 auto:cdsdisk EMC0_1 mydg online

EMC0_27 auto:cdsdisk EMC0_1 newdg online clone_disk

Importing cloned disks with tags
In this example, cloned disks (BCV devices) from an EMC Symmetrix DMX array
will be imported. The primary (non-cloned) disks, mydg01, mydg02 and mydg03, are
already imported, and the cloned disks with the tag t1 are to be imported.

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk - (mydg) online udid_mismatch

The disks are tagged as follows:

vxdisk listtag

DEVICE NAME VALUE

EMC0_4 t2 v2

EMC0_4 t1 v1

EMC0_6 t2 v2

EMC0_8 t1 v1

EMC0_15 t2 v2

EMC0_18 t1 v1

EMC0_24 t1 v1

EMC0_24 t2 v2

907Managing volumes and disk groups
Managing disk groups

To import the cloned disks that are tagged as t1, they must be assigned a new
disk group name, and their UDIDs must be updated:

vxdg -n bcvdg -o useclonedev=on -o tag=t1 -o updateid import mydg

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk mydg03 bcvdg online clone_disk

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk mydg01 bcvdg online clone_disk

As the cloned disk EMC0_15 is not tagged as t1, it is not imported. Note that the
state of the imported cloned disks has changed from online udid_mismatch to
online clone_disk.

By default, the state of imported cloned disks is shown as online clone_disk.
This can be removed by using the vxdisk set command as shown here:

vxdisk set EMC0_8 clone=off

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk mydg01 mydg online

EMC0_6 auto:cdsdisk mydg02 mydg online

EMC0_8 auto:cdsdisk mydg03 bcvdg online

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk mydg03 mydg online

EMC0_24 auto:cdsdisk mydg01 bcvdg online clone_disk

In the next example, none of the disks (neither cloned nor non-cloned) have been
imported:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk - (mydg) online

EMC0_6 auto:cdsdisk - (mydg) online

EMC0_8 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk - (mydg) online

EMC0_24 auto:cdsdisk - (mydg) online udid_mismatch

908Managing volumes and disk groups
Managing disk groups

To import only the cloned disks that have been tagged as t1 into the mydg disk
group:

vxdg -o useclonedev=on -o tag=t1 -o updateid import mydg

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMC0_4 auto:cdsdisk - (mydg) online

EMC0_6 auto:cdsdisk - (mydg) online

EMC0_8 auto:cdsdisk mydg03 mydg online clone_disk

EMC0_15 auto:cdsdisk - (mydg) online udid_mismatch

EMC0_18 auto:cdsdisk - (mydg) online

EMC0_24 auto:cdsdisk mydg01 mydg online clone_disk

As in the previous example, the cloned disk EMC0_15 is not tagged as t1, and so it
is not imported.

Considerations when using EMC CLARiiON SNAPSHOT
LUNs
If you need to import the Snapshot LUN of a primary LUN to the same host as the
original LUN, be aware of the following limitation.

If you are using Enclosure-based naming (EBN) with the Array Volume id (AVID)
enabled, turn off name persistence during device discovery before importing the
snapshot LUN to the original host.

To turn off name persistence, use the following command:

vxddladm set namingscheme=ebn persistence=no use_avid=yes

After DDL recognizes the LUN, turn on name persistence using the following
command:

vxddladm set namingscheme=ebn persistence=yes use_avid=yes

Renaming a disk group
Only one disk group of a given name can exist per system. It is not possible to
import or deport a disk group when the target system already has a disk group of
the same name. To avoid this problem, VxVM allows you to rename a disk group
during import or deport.

To rename a disk group during import, use the following command:

vxdg [-t] -n newdg import diskgroup

909Managing volumes and disk groups
Managing disk groups

If the -t option is included, the import is temporary and does not persist across
reboots. In this case, the stored name of the disk group remains unchanged on its
original host, but the disk group is known by the name specified by newdg to the
importing host. If the -t option is not used, the name change is permanent.

For example, this command temporarily renames the disk group, mydg, as mytempdg
on import:

vxdg -t -n mytempdg import mydg

To rename a disk group during deport, use the following command:

vxdg [-h hostname] -n newdg deport diskgroup

When renaming on deport, you can specify the -h hostname option to assign a
lock to an alternate host. This ensures that the disk group is automatically imported
when the alternate host reboots.

For example, this command renames the disk group, mydg, as myexdg, and deports
it to the host, jingo:

vxdg -h jingo -n myexdg deport mydg

You cannot use this method to rename the boot disk group because it contains
volumes that are in use by mounted file systems (such as /). To rename the boot
disk group, you must first unmirror and unencapsulate the root disk, and then
re-encapsulate and remirror the root disk in a different disk group. This disk group
becomes the new boot disk group.

See “Rootability” on page 942.

To temporarily move the boot disk group, bootdg, from one host to another
(for repair work on the root volume, for example) and then move it back

1 On the original host, identify the disk group ID of the bootdg disk group to be
imported with the following command:

vxdisk -g bootdg -s list

dgname: rootdg

dgid: 774226267.1025.tweety

In this example, the administrator has chosen to name the boot disk group as
rootdg. The ID of this disk group is 774226267.1025.tweety.

This procedure assumes that all the disks in the boot disk group are accessible
by both hosts.

2 Shut down the original host.

910Managing volumes and disk groups
Managing disk groups

3 On the importing host, import and rename the rootdg disk group with this
command:

vxdg -tC -n newdg import diskgroup

The -t option indicates a temporary import name, and the -C option clears
import locks. The -n option specifies an alternate name for the rootdg being
imported so that it does not conflict with the existing rootdg. diskgroup is the
disk group ID of the disk group being imported (for example,
774226267.1025.tweety).

If a reboot or crash occurs at this point, the temporarily imported disk group
becomes unimported and requires a reimport.

4 After the necessary work has been done on the imported disk group, deport it
back to its original host with this command:

vxdg -h hostname deport diskgroup

Here hostname is the name of the system whose rootdg is being returned
(the system name can be confirmed with the command uname -n).

This command removes the imported disk group from the importing host and
returns locks to its original host. The original host can then automatically import
its boot disk group at the next reboot.

Handling conflicting configuration copies
If an incomplete disk group is imported on several different systems, this can create
inconsistencies in the disk group configuration copies that you may need to resolve
manually. This section and following sections describe how such a condition can
occur, and how to correct it. (When the condition occurs in a cluster that has been
split, it is usually referred to as a serial split brain condition).

Example of a serial split brain condition in a cluster
This section presents an example of how a serial split brain condition might occur
for a shared disk group in a cluster. Conflicts between configuration copies can
also occur for private disk groups in clustered and non-clustered configurations
where the disk groups have been partially imported on different systems.

A campus cluster (also known as a stretch cluster or remote mirror configuration)
typically consists of a 2-node cluster where each component (server, switch and
storage) of the cluster exists in a separate building.

911Managing volumes and disk groups
Managing disk groups

Figure 37-5 shows a 2-node cluster with node 0, a fibre channel switch and disk
enclosure enc0 in building A, and node 1, another switch and enclosure enc1 in
building B.

Figure 37-5 Typical arrangement of a 2-node campus cluster

Fibre Channel switches

Disk enclosures

enc1enc0

Node 0

Redundant private
network

Node 1

Building A Building B

The fibre channel connectivity is multiply redundant to implement redundant-loop
access between each node and each enclosure. As usual, the two nodes are also
linked by a redundant private network.

A serial split brain condition typically arises in a cluster when a private (non-shared)
disk group is imported on Node 0 with Node 1 configured as the failover node.

If the network connections between the nodes are severed, both nodes think that
the other node has died. (This is the usual cause of the split brain condition in
clusters). If a disk group is spread across both enclosure enc0 and enc1, each
portion loses connectivity to the other portion of the disk group. Node 0 continues
to update to the disks in the portion of the disk group that it can access. Node 1,
operating as the failover node, imports the other portion of the disk group (with the
-f option set), and starts updating the disks that it can see.

When the network links are restored, attempting to reattach the missing disks to
the disk group on Node 0, or to re-import the entire disk group on either node, fails.

912Managing volumes and disk groups
Managing disk groups

VxVM increments the serial ID in the disk media record of each imported disk in all
the disk group configuration databases on those disks, and also in the private region
of each imported disk. The value that is stored in the configuration database
represents the serial ID that the disk group expects a disk to have. The serial ID
that is stored in a disk’s private region is considered to be its actual value. VxVM
detects the serial split brain when the actual serial ID of the disks that are being
attached mismatches with the serial ID in the disk group configuration database of
the imported disk group.

If some disks went missing from the disk group (due to physical disconnection or
power failure) and those disks were imported by another host, the serial IDs for the
disks in their copies of the configuration database, and also in each disk’s private
region, are updated separately on that host. When the disks are subsequently
re-imported into the original shared disk group, the actual serial IDs on the disks
do not agree with the expected values from the configuration copies on other disks
in the disk group.

Depending on what happened to the different portions of the split disk group, there
are two possibilities for resolving inconsistencies between the configuration
databases:

■ If the other disks in the disk group were not imported on another host, VxVM
resolves the conflicting values of the serial IDs by using the version of the
configuration database from the disk with the greatest value for the updated ID
(shown as update_id in the output from the vxdg list diskgroup command).
Figure 37-6 shows an example of a serial split brain condition that can be
resolved automatically by VxVM.

913Managing volumes and disk groups
Managing disk groups

Figure 37-6 Example of a serial split brain condition that can be resolved
automatically

Partial disk group
imported on host X

1. Disk A is imported on a separate
host. Disk B is not imported. The
actual and expected serial IDs are
updated only on Disk A.

2. The disk group is re-imported
on the cluster. The configuration
copy on Disk A is used to correct
the configuration copy on Disk B
as the actual value of the updated
ID on Disk A is the greatest.

Imported shared disk group

Disk A

Disk A = 1

Configuration
database

Expected A = 1
Expected B = 0

Disk B not imported

Disk B

Disk B = 0

Expected A = 0
Expected B = 0

Disk A

Disk A = 1

Expected A = 1
Expected B = 0

Disk B

Disk B = 0

Expected A = 1
Expected B = 0

Configuration
database

Configuration
database

Configuration
database

■ If the other disks were also imported on another host, no disk can be considered
to have a definitive copy of the configuration database.
Figure 37-7 shows an example of a true serial split brain condition that cannot
be resolved automatically by VxVM.

914Managing volumes and disk groups
Managing disk groups

Figure 37-7 Example of a true serial split brain condition that cannot be
resolved automatically

Partial disk group
imported on host X

Partial disk group
imported on host Y

1. Disks A and B are imported
independently on separate hosts.
The actual and expected serial IDs
are updated independently on each
disk.

2. The disk group cannot be re-
imported on the cluster. This is
because the databases to not agree
on the actual and expected serial
IDs. You must choose which
configuration database to use.

Shared disk group fails to import

Disk A

Disk A = 1
Configuration

database
Expected A = 1
Expected B = 0

Disk B

Disk B = 1

Expected A = 0
Expected B = 1

Disk A

Disk A = 1

Expected A = 1
Expected B = 0

Disk B

Disk B = 1

Expected A = 0
Expected B = 1

Configuration
database

Configuration
database

Configuration
database

In this case, the disk group import fails, and the vxdg utility outputs error messages
similar to the following before exiting:

VxVM vxconfigd NOTICE V-5-0-33 Split Brain. da id is 0.1, while dm id

is 0.0 for DM mydg01

VxVM vxdg ERROR V-5-1-587 Disk group newdg: import failed: Serial

Split Brain detected. Run vxsplitlines

The import does not succeed even if you specify the -f flag to vxdg.

Although it is usually possible to resolve this conflict by choosing the version of the
configuration database with the highest valued configuration ID (shown as the value
of seqno in the output from the vxdg list diskgroup| grep config command),
this may not be the correct thing to do in all circumstances.

See “Correcting conflicting configuration information” on page 916.

See “About sites and remote mirrors” on page 517.

915Managing volumes and disk groups
Managing disk groups

Correcting conflicting configuration information
To resolve conflicting configuration information, you must decide which disk contains
the correct version of the disk group configuration database. To assist you in doing
this, you can run the vxsplitlines command to show the actual serial ID on each
disk in the disk group and the serial ID that was expected from the configuration
database. For each disk, the command also shows the vxdg command that you
must run to select the configuration database copy on that disk as being the definitive
copy to use for importing the disk group.

Note: The disk group must have a version number of at least 110.

The following is sample output from running vxsplitlines on the disk group newdg:

vxsplitlines -v -g newdg

VxVM. vxsplitlines NOTICE V-0-0-0 There are 2 pools

All the disks in the first pool have the same config copies

All the disks in the second pool may not have the same config copies

To see the configuration copy from a disk, enter the following command:

/etc/vx/diag.d/vxprivutil dumpconfig private path

To import the disk group with the configuration copy from a disk, enter the following
command:

/usr/sbin/vxdg (-s) -o selectcp=diskid import newdg

Pool 0

DEVICE DISK DISK ID DISK PRIVATE PATH

newdg1 sdp 1215378871.300.vm2850lx13 /dev/vx/rdmp/sdp5

newdg2 sdq 1215378871.300.vm2850lx13 /dev/vx/rdmp/sdp5

Pool 1

DEVICE DISK DISK ID DISK PRIVATE PATH

newdg3 sdo 1215378871.294.vm2850lx13 /dev/vx/rdmp/sdo5

If you do not specify the -v option, the command has the following output:

vxsplitlines -g mydg listssbinfo

VxVM vxdg listssbinfo NOTICE V-0-0-0 There are 2 pools

All the disks in the first pool have the same config copies

All the disks in the second pool may not have the same config copies

916Managing volumes and disk groups
Managing disk groups

Number of disks in the first pool: 1

Number of disks in the second pool: 1

To import the disk group with the configuration copy from the first pool, enter the
following command:

/usr/sbin/vxdg (-s) -o selectcp=1221451925.395.vm2850lx13 import mydg

To import the disk group with the configuration copy from the second pool, enter
the following command:

/usr/sbin/vxdg (-s) -o selectcp=1221451927.401.vm2850lx13 import mydg

In this example, the disk group has four disks, and is split so that two disks appear
to be on each side of the split.

You can specify the -c option to vxsplitlines to print detailed information about
each of the disk IDs from the configuration copy on a disk specified by its disk
access name:

vxsplitlines -g newdg -c sde

DANAME(DMNAME) || Actual SSB || Expected SSB

sdd(sdd) || 0.1 || 0.0 ssb ids don’t match

sde(sde) || 0.1 || 0.1 ssb ids match

sdf(sdf) || 0.1 || 0.1 ssb ids match

sdg(sdg) || 0.1 || 0.0 ssb ids don’t match

Please note that even though some disks ssb ids might match

that does not necessarily mean that those disks’ config copies

have all the changes. From some other configuration copies,

those disks’ ssb ids might not match. To see the configuration

from this disk, run

/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/sde

Based on your knowledge of how the serial split brain condition came about, you
must choose one disk’s configuration to be used to import the disk group. For
example, the following command imports the disk group using the configuration
copy that is on side 0 of the split:

/usr/sbin/vxdg -o selectcp=1045852127.32.olancha import newdg

When you have selected a preferred configuration copy, and the disk group has
been imported, VxVM resets the serial IDs to 0 for the imported disks. The actual
and expected serial IDs for any disks in the disk group that are not imported at this
time remain unaltered.

917Managing volumes and disk groups
Managing disk groups

Disabling a disk group
To disable a disk group, unmount and stop any volumes in the disk group, and then
use the following command to deport it:

vxdg deport diskgroup

Deporting a disk group does not actually remove the disk group. It disables use of
the disk group by the system. Disks in a deported disk group can be reused,
reinitialized, added to other disk groups, or imported for use on other systems. Use
the vxdg import command to re-enable access to the disk group.

Destroying a disk group
The vxdg command provides a destroy option that removes a disk group from the
system and frees the disks in that disk group for reinitialization:

vxdg destroy diskgroup

Warning: This command destroys all data on the disks.

When a disk group is destroyed, the disks that are released can be re-used in other
disk groups.

Recovering a destroyed disk group
If a disk group has been accidentally destroyed, you can recover it, provided that
the disks that were in the disk group have not been modified or reused elsewhere.

To recover a destroyed disk group

1 Enter the following command to find out the disk group ID (dgid) of one of the
disks that was in the disk group:

vxdisk -s list disk_access_name

The disk must be specified by its disk access name, such as sdc. Examine the
output from the command for a line similar to the following that specifies the
disk group ID.

dgid: 963504895.1075.bass

2 Use the disk group ID to import the disk group:

vxdg import dgid

918Managing volumes and disk groups
Managing disk groups

Backing up and restoring disk group configuration data
The disk group configuration backup and restoration feature allows you to back up
and restore all configuration data for disk groups, and for VxVM objects such as
volumes that are configured within the disk groups. The vxconfigbackupd daemon
monitors changes to the VxVM configuration and automatically records any
configuration changes that occur. By default, vxconfigbackup stores 5 copies of
the configuration backup and restoration (cbr) data. You can customize the number
of cbr copies, between 1 to 5 copies.

See the vxconfigbackupd(1M) manual page.

VxVM provides the utilities, vxconfigbackup and vxconfigrestore, for backing
up and restoring a VxVM configuration for a disk group.

See the Veritas Storage Foundation and High Availability Solutions Troubleshooting
Guide.

See the vxconfigbackup(1M) manual page.

See the vxconfigrestore(1M) manual page.

Working with existing ISP disk groups
The Intelligent Storage Provisioning (ISP) feature of Veritas Volume Manager
(VxVM) has been deprecated. This release does not support creating ISP disk
groups. If you have existing ISP disk groups, you can import the disk groups without
upgrading the disk group version. In this case, you cannot perform any operations
on ISP volumes that would result in a configuration change. In addition, you cannot
use any of the current release functionality that requires the upgraded disk group
version.

You can upgrade an ISP disk group to the current disk group version. This operation
converts all ISP volumes to standard (non-ISP) volumes and deletes ISP-specific
objects. The ISP-specific objects include st pool, volume template, capability, and
rules. This operation does not affect non–ISP volumes.

Note:When you upgrade the ISP disk group, all intent and storage pools information
is lost. Only upgrade the disk group when this condition is acceptable.

919Managing volumes and disk groups
Managing disk groups

To determine whether a disk group is an ISP disk group

◆ Check for the presence of storage pools, using the following command:

vxprint

Sample output:

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg mydg mydg - - - ALLOC_SUP - -

dm mydg2 ams_wms0_359 - 4120320 - - - -

dm mydg3 ams_wms0_360 - 4120320 - - - -

st mypool - - - - DATA - -

dm mydg1 ams_wms0_358 - 4120320 - - - -

v myvol0 fsgen ENABLED 20480 - ACTIVE - -

pl myvol0-01 myvol0 ENABLED 20480 - ACTIVE - -

sd mydg1-01 myvol0-01 ENABLED 20480 0 - - -

v myvol1 fsgen ENABLED 20480 - ACTIVE - -

pl myvol1-01 myvol1 ENABLED 20480 - ACTIVE - -

sd mydg1-02 myvol1-01 ENABLED 20480 0 - - -

In the sample output, st mypool indicates that mydg is an ISP disk group.

To upgrade an ISP disk group

◆ Upgrade the ISP disk group using the following command:

vxdg upgrade ISP_diskgroup

To use an ISP disk group as is

◆ To import an ISP disk group, use the following command:

vxdg import ISP_diskgroup

The ISP volumes in the disk group are not allowed to make any configuration
changes until the disk group is upgraded. Attempting any operations such as grow
shrink, add mirror, disk group split join, etc, on ISP volumes would give the following
error:

920Managing volumes and disk groups
Managing disk groups

This disk group is a ISP disk group. Dg needs to be migrated to

non-ISP dg to allow any configuration changes. Please upgrade

the dg to perform the migration.

Note: Non-ISP or VxVM volumes in the ISP disk group are not affected.

Operations that still work on ISP disk group without upgrading:

■ Setting, removing, and replacing volume tags.

■ Renaming of any VxVM objects such as volume, dg, plex, etc.

■ Plex attach and detach.

■ The vxconfigbackup and vxconfigrestore command can be used at the cost
of losing any intent information

Managing plexes and subdisks
This section describes managing plexes and subdisks.

A subdisk is a set of contiguous disk blocks. VxVM allocates disk space using
subdisks.

A plex is a logical groupings of subdisks that creates an area of disk space
independent of physical disk size or other restrictions. Replication (mirroring) of
disk data is set up by creating multiple data plexes for a single volume. Each data
plex in a mirrored volume contains an identical copy of the volume data.

A plex becomes a participating plex for a volume when it is attached to a volume.
Attaching a plex associates it with the volume and enables the plex for use.

Reattaching plexes
When a mirror plex encounters irrecoverable errors, Veritas Volume Manager
(VxVM) detaches the plex from the mirrored volume. An administrator may also
detach a plex manually using a utility such as vxplex or vxassist. In order to use a
plex that was previously attached to a volume, the plex must be reattached to the
volume. The reattach operation also ensures that the plex mirror is resynchronized
to the other plexes in the volume.

See “Plex synchronization” on page 924.

The following methods are available for reattaching plexes:

■ By default, VxVM automatically reattaches the affected mirror plexes when the
underlying failed disk or LUN becomes visible. When VxVM detects that the

921Managing volumes and disk groups
Managing plexes and subdisks

device is online, VxVM automatically recovers the volume components on the
involved LUN. VxVM resynchronizes the plex and the mirror becomes available.
See “Automatic plex reattachment” on page 922.

■ If the automatic reattachment feature is disabled, you need to reattach the plexes
manually. You may also need to manually reattach the plexes for devices that
are not automatically reattached. For example, VxVM does not automatically
reattach plexes on site-consistent volumes.
See “Reattaching a plex manually” on page 923.

Automatic plex reattachment
When a mirror plex encounters irrecoverable errors, Veritas Volume Manager
(VxVM) detaches the plex from the mirrored volume. By default, VxVM automatically
reattaches the affected mirror plexes when the underlying failed disk or LUN
becomes visible. When VxVM detects that the device is online, the VxVM volume
components on the involved LUN are automatically recovered, and the mirrors
become usable.

VxVM uses the DMP failed LUN probing to detect when the device has come online.
The timing for a reattach depends on the dmp_restore_interval, which is a tunable
parameter. The number of LUNs that have reconnected may also affect the time
required before the plex is reattached.

VxVM does not automatically reattach plexes on site-consistent volumes.

When VxVM is installed or the system reboots, VxVM starts the vxattachd daemon.
The vxattachd daemon handles automatic reattachment for both plexes and sites.
Thevxattachd daemon also initiates the resynchronization process for a plex. After
a plex is successfully reattached, vxattachd notifies root.

To disable automatic plex attachment, remove vxattachd from the start up scripts.
Disabling vxattachd disables the automatic reattachment feature for both plexes
and sites.

In a Cluster Volume Manager (CVM) the following considerations apply:

■ If the global detach policy is set, a storage failure from any node causes all
plexes on that storage to be detached globally. When the storage is connected
back to any node, the vxattachd daemon triggers reattaching the plexes on
the master node only.

■ The automatic reattachment functionality is local to a node. When enabled on
a node, all of the disk groups imported on the node are monitored. If the
automatic reattachment functionality is disabled on a master node, the feature
is disable on all shared disk groups and private disk groups imported on the
master node.

922Managing volumes and disk groups
Managing plexes and subdisks

■ The vxattachd daemon listens for "dmpnode online" events using vxnotify to
trigger its operation. Therefore, an automatic reattachment is not triggered if the
dmpnode online event is not generated when vxattachd is running. The following
are typical examples:

■ Storage is reconnected before vxattachd is started; for example, during
reboot.

■ In CVM, with active/passive arrays, if all nodes cannot agree on a common
path to an array controller, a plex can get detached due to I/O failure. In
these cases, the dmpnode will not get disabled. Therefore, after the
connections are restored, a dmpnode online event is not generated and
automatic plex reattachment is not triggered.

These CVM considerations also apply to automatic site reattachment.

See “Automatic site reattachment” on page 537.

Reattaching a plex manually
This section describes how to reattach plexes manually if automatic reattachment
feature is disabled. This procedure may also be required for devices that are not
automatically reattached. For example, VxVM does not automatically reattach plexes
on site-consistent volumes.

When a disk has been repaired or replaced and is again ready for use, the plexes
must be put back online (plex state set to ACTIVE). To set the plexes to ACTIVE,
use one of the following procedures depending on the state of the volume.

■ If the volume is currently ENABLED, use the following command to reattach the
plex:

vxplex [-g diskgroup] att volume plex ...

For example, for a plex named vol01-02 on a volume named vol01 in the disk
group, mydg, use the following command:

vxplex -g mydg att vol01 vol01-02

As when returning an OFFLINE plex to ACTIVE, this command starts to recover
the contents of the plex and, after the recovery is complete, sets the plex utility
state to ACTIVE.

■ If the volume is not in use (not ENABLED), use the following command to re-enable
the plex for use:

vxmend [-g diskgroup] on plex

For example, to re-enable a plex named vol01-02 in the disk group, mydg, enter:

923Managing volumes and disk groups
Managing plexes and subdisks

vxmend -g mydg on vol01-02

In this case, the state of vol01-02 is set to STALE. When the volume is next
started, the data on the plex is revived from another plex, and incorporated into
the volume with its state set to ACTIVE.
If the vxinfo command shows that the volume is unstartable, set one of the
plexes to CLEAN using the following command:

vxmend [-g diskgroup] fix clean plex

Start the volume using the following command:

vxvol [-g diskgroup] start volume

See the Veritas Storage Foundation High Availability Solutions Troubleshooting
Guide.

Plex synchronization
Each plex or mirror of a volume is a complete copy of the data. When a plex is
attached to a volume, the data in the plex must be synchronized with the data in
the other plexes in the volume. The plex that is attached may be a new mirror or a
formerly attached plex. A new mirror must be fully synchronized. A formerly attached
plex only requires the changes that were applied since the plex was detached.

The following operations trigger a plex synchronization:

■ Moving or copying a subdisk with the vxsd command. The operation creates a
temporary plex that is synchronized with the original subdisk.

■ Adding a mirror with the vxassist mirror command.

■ Creating a volume with a mirror with the vxassist make command.

■ Manually reattaching a plex with the vxplex att command.

■ Recovering a volume with the vxrecover command.

■ Adding a mirror to a snapshot with the vxsnap addmir command.

■ Reattaching or restoring a snapshot with the vxsnap command.

Plex synchronization can be a long-running operation, depending on the size of the
volume and the amount of data that needs to be synchronized. Veritas Volume
Manager provides several features to improve the efficiency of synchronizing the
plexes.

■ FastResync
If the FastResync feature is enabled, VxVM maintains a FastResync map on
the volume. VxVM uses the FastResync map to apply only the updates that the

924Managing volumes and disk groups
Managing plexes and subdisks

mirror has missed. This behavior provides an efficient way to resynchronize the
plexes.

■ SmartMove
The SmartMove™ feature reduces the time and I/O required to attach or reattach
a plex to a VxVM volume with a mounted VxFS file system. The SmartMove
feature uses the VxFS information to detect free extents and avoid copying
them.
When the SmartMove feature is on, less I/O is sent through the host, through
the storage network and to the disks or LUNs. The SmartMove feature can be
used for faster plex creation and faster array migrations.

■ Recovery for synchronization tasks
In this release, VxVM tracks the plex synchronization for the following commands:
vxplex att, vxassist mirror, vxsnap addmir, vxsnap reattach, and vxsnap

restore. If the system crashes or the vxconfigd daemon fails, VxVM provides
automatic recovery for the synchronization task. When the system is recovered,
VxVM restarts the synchronization from the point where it failed. The
synchronization occurs in the background, so the volume is available without
delay.

Decommissioning storage
This section describes how you remove disks and volumes from VxVM.

Removing a volume
If a volume is inactive or its contents have been archived, you may no longer need
it. In that case, you can remove the volume and free up the disk space for other
uses.

To remove a volume

1 Remove all references to the volume by application programs, including shells,
that are running on the system.

2 If the volume is mounted as a file system, unmount it with the following
command:

umount /dev/vx/dsk/diskgroup/volume

3 If the volume is listed in the /etc/fstab file, edit this file and remove its entry.
For more information about the format of this file and how you can modify it,
see your operating system documentation.

925Managing volumes and disk groups
Decommissioning storage

4 Stop all activity by VxVM on the volume with the following command:

vxvol [-g diskgroup] stop volume

5 Remove the volume using the vxassist command as follows:

vxassist [-g diskgroup] remove volume volume

You can also use the vxedit command to remove the volume as follows:

vxedit [-g diskgroup] [-r] [-f] rm volume

The -r option to vxedit indicates recursive removal. This command removes
all the plexes that are associated with the volume and all subdisks that are
associated with the plexes. The -f option to vxedit forces removal. If the
volume is still enabled, you must specify this option.

Removing a disk from VxVM control
After removing a disk from a disk group, you can permanently remove it from Veritas
Volume Manager control.

Warning: The vxdiskunsetup command removes a disk from Veritas Volume
Manager control by erasing the VxVM metadata on the disk. To prevent data loss,
any data on the disk should first be evacuated from the disk. The vxdiskunsetup

command should only be used by a system administrator who is trained and
knowledgeable about Veritas Volume Manager.

To remove a disk from VxVM control

◆ Type the following command:

/usr/lib/vxvm/bin/vxdiskunsetup sdx

See the vxdiskunsetup(1m) manual page.

About shredding data
When you decommission a disk that contained sensitive data, you may need to
destroy any remaining data on the disk. Simply deleting the data may not adequately
protect the confidential and secure data. In addition to deleting the data, you want
to prevent the possibility that hackers can recover any information that is stored on
the disks. Regulatory standards require that the confidential and secure data is
sanitized or erased using a method such as overwriting the data with a digital
pattern. Veritas Volume Manager (VxVM) provides the disk shred operation, which

926Managing volumes and disk groups
Decommissioning storage

overwrites all of the addressable blocks with a digital pattern in one, three, or seven
passes.

Caution: All data in the volume will be lost when you shred it. Make sure that the
information has been backed up onto another storage medium and verified, or that
it is no longer needed.

VxVM provides the ability to shred the data on the disk to minimize the chance that
the data is recoverable. When you specify the disk shred operation, VxVM shreds
the entire disk, including any existing disk labels. After the shred operation, VxVM
writes a new empty label on the disk to prevent the disk from going to the error
state. The VxVM shred operation provides the following methods of overwriting a
disk:

■ One-pass algorithm
VxVM overwrites the disk with a randomly-selected digital pattern. This option
takes the least amount of time. The default type is the one-pass algorithm.

■ Three-pass algorithm
VxVM overwrites the disk a total of three times. In the first pass, VxVM overwrites
the data with a pre-selected digital pattern. The second time, VxVM overwrites
the data with the binary complement of the pattern. In the last pass, VxVM
overwrites the disk with a randomly-selected digital pattern.

■ Seven-pass algorithm
VxVM overwrites the disk a total of seven times. In each pass, VxVM overwrites
the data with a randomly-selected digital pattern or with the binary complement
of the previous pattern.

VxVM does not currently support shredding of thin-reclaimable LUNs. If you attempt
to start the shred operation on a thin-reclaimable disk, VxVM displays a warning
message and skips the disk.

Shredding a VxVM disk
When you decommission a Veritas Volume Manager (VxVM) disk that contains
sensitive data, VxVM provides the ability to shred the data on the disk.

Note the following requirements:

■ VxVM does not shred a disk that is in use by VxVM on this system or in a shared
disk group.

■ VxVM does not currently support shredding of thin-reclaimable LUNs. If you
attempt to start the shred operation on a thin-reclaimable disk, VxVM displays
a warning message and skips the disk.

927Managing volumes and disk groups
Decommissioning storage

■ VxVM does not shred a disk that is not a VxVM disk.

■ VxVM does not shred a disk that is mounted.

■ Symantec does not recommend shredding solid state drives (SSDs). To shred
SSD devices, use the shred operation with the force (-f) option.

See “About shredding data” on page 926.

Caution: All data on the disk will be lost when you shred the disk. Make sure that
the information has been backed up onto another storage medium and verified, or
that it is no longer needed.

928Managing volumes and disk groups
Decommissioning storage

To shred a VxVM disk

1 To shred the disk:

/etc/vx/bin/vxdiskunsetup [-Cf] -o shred[=1|3|7] disk...

Where:

The force option (-f) permits you to shred Solid State Drives (SSDs).

1, 3 and 7 are the shred options corresponding to the number of passes. The
default number of passes is 1.

disk... represents one or more disk names. If you specify multiple disk names,
the vxdiskunsetup command processes them sequentially, one at a time.

For example:

/etc/vx/bin/vxdiskunsetup -o shred=3 hds9970v0_14

disk_shred: Shredding disk hds9970v0_14 with type 3

disk_shred: Disk raw size 2097807360 bytes

disk_shred: Writing 32010 (65536 byte size) pages and 0 bytes

to disk

disk_shred: Wipe Pass 0: Pattern 0x3e

disk_shred: Wipe Pass 1: Pattern 0xca

disk_shred: Wipe Pass 2: Pattern 0xe2

disk_shred: Shred passed random verify of 131072 bytes at

offset 160903168

The vxdiskunsetup shred command sets up a new task.

2 You can monitor the progress of the shred operation with the vxtask command.

For example:

vxtask list

TASKID PTID TYPE/STATE PCT PROGRESS

203 - DISKSHRED/R 90.16% 0/12291840/11081728 DISKSHRED

nodg nodg

You can pause, abort, or resume the shred task. You cannot throttle the shred
task.

See vxtask(1m)

3 If the disk shred operation fails, the disk may go into an error state with no
label.

See “Failed disk shred operation results in a disk with no label” on page 930.

929Managing volumes and disk groups
Decommissioning storage

Failed disk shred operation results in a disk with no label
The disk shred operation destroys the label for the disk and recreates the label. If
the shred operation aborts in the middle or the system crashes, the disk might go
in an error state with no label.

To correct the error state of the disk

1 Create a new label manually or reinitialize the disk under VxVM using the
following command:

/etc/vx/bin/vxdisksetup -i disk

2 Start the shred operation. If the disk shows as a non-VxVM disk, reinitialize
the disk with the vxdisksetup command in step 1, then restart the shred
operation.

/etc/vx/bin/vxdiskunsetup [-Cf] -o shred[=1|3|7] disk...

Removing and replacing disks
A replacement disk should have the same disk geometry as the disk that failed.
That is, the replacement disk should have the same bytes per sector, sectors per
track, tracks per cylinder and sectors per cylinder, same number of cylinders, and
the same number of accessible cylinders.

Note: You may need to run commands that are specific to the operating system or
disk array before removing a physical disk.

If failures are starting to occur on a disk, but the disk has not yet failed completely,
you can replace the disk. This involves detaching the failed or failing disk from its
disk group, followed by replacing the failed or failing disk with a new one. Replacing
the disk can be postponed until a later date if necessary.

If removing a disk causes a volume to be disabled, you can restart the volume so
that you can restore its data from a backup.

See the Storage Foundation High Availability Solutions Troubleshooting Guide.

To replace a disk

1 Select Remove a disk for replacement from the vxdiskadm main menu.

2 At the following prompt, enter the name of the disk to be replaced (or enter
list for a list of disks):

Enter disk name [<disk>,list,q,?] mydg02

930Managing volumes and disk groups
Decommissioning storage

3 When you select a disk to remove for replacement, all volumes that are affected
by the operation are displayed, for example:

VxVM NOTICE V-5-2-371 The following volumes will lose mirrors

as a result of this operation:

home src

No data on these volumes will be lost.

The following volumes are in use, and will be disabled as a

result of this operation:

mkting

Any applications using these volumes will fail future

accesses. These volumes will require restoration from backup.

Are you sure you want do this? [y,n,q,?] (default: n)

To remove the disk, causing the named volumes to be disabled and data to
be lost when the disk is replaced, enter y or press Return.

To abandon removal of the disk, and back up or move the data associated with
the volumes that would otherwise be disabled, enter n or q and press Return.

For example, to move the volume mkting to a disk other than mydg02, use the
following command.

The ! character is a special character in some shells. The following example
shows how to escape it in a bash shell.

vxassist move mkting \!mydg02

After backing up or moving the data in the volumes, start again from step 1.

931Managing volumes and disk groups
Decommissioning storage

4 At the following prompt, either select the device name of the replacement disk
(from the list provided), press Return to choose the default disk, or enter none
if you are going to replace the physical disk:

The following devices are available as replacements:

sdb

You can choose one of these disks now, to replace mydg02.

Select none if you do not wish to select a replacement disk.

Choose a device, or select none

[<device>,none,q,?] (default: sdb)

Do not choose the old disk drive as a replacement even though it appears in
the selection list. If necessary, you can choose to initialize a new disk.

You can enter none if you intend to replace the physical disk.

See “Replacing a failed or removed disk” on page 933.

5 If you chose to replace the disk in step 4, press Return at the following prompt
to confirm this:

VxVM NOTICE V-5-2-285 Requested operation is to remove mydg02

from group mydg. The removed disk will be replaced with disk device

sdb. Continue with operation? [y,n,q,?] (default: y)

vxdiskadm displays the following messages to indicate that the original disk is
being removed:

VxVM NOTICE V-5-2-265 Removal of disk mydg02 completed

successfully.

VxVM NOTICE V-5-2-260 Proceeding to replace mydg02 with device

sdb.

6 You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

932Managing volumes and disk groups
Decommissioning storage

7 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32 MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

8 If one of more mirror plexes were moved from the disk, you are now prompted
whether FastResync should be used to resynchronize the plexes:

Use FMR for plex resync? [y,n,q,?] (default: n) y

vxdiskadm displays the following success message:

VxVM NOTICE V-5-2-158 Disk replacement completed successfully.

9 At the following prompt, indicate whether you want to remove another disk (y)
or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

It is possible to move hot-relocate subdisks back to a replacement disk.

See “Configuring hot-relocation to use only spare disks” on page 817.

Replacing a failed or removed disk
The following procedure describes how to replace a failed or removed disk.

To specify a disk that has replaced a failed or removed disk

1 Select Replace a failed or removed disk from the vxdiskadm main menu.

2 At the following prompt, enter the name of the disk to be replaced (or enter list
for a list of disks):

Select a removed or failed disk [<disk>,list,q,?] mydg02

933Managing volumes and disk groups
Decommissioning storage

3 The vxdiskadm program displays the device names of the disk devices available
for use as replacement disks. Your system may use a device name that differs
from the examples. Enter the device name of the disk or press Return to select
the default device:

The following devices are available as replacements:

sdb sdk

You can choose one of these disks to replace mydg02.

Choose "none" to initialize another disk to replace mydg02.

Choose a device, or select "none"

[<device>,none,q,?] (default: sdb)

4 Depending on whether the replacement disk was previously initialized, perform
the appropriate step from the following:

■ If the disk has not previously been initialized, press Return at the following
prompt to replace the disk:

VxVM INFO V-5-2-378 The requested operation is to initialize

disk device sdb and to then use that device to

replace the removed or failed disk mydg02 in disk group mydg.

Continue with operation? [y,n,q,?] (default: y)

■ If the disk has already been initialized, press Return at the following prompt
to replace the disk:

VxVM INFO V-5-2-382 The requested operation is to use the

initialized device sdb to replace the removed or

failed disk mydg02 in disk group mydg.

Continue with operation? [y,n,q,?] (default: y)

5 You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

934Managing volumes and disk groups
Decommissioning storage

6 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32 MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

7 The vxdiskadm program then proceeds to replace the disk, and returns the
following message on success:

VxVM NOTICE V-5-2-158 Disk replacement completed successfully.

At the following prompt, indicate whether you want to replace another disk (y)
or return to the vxdiskadm main menu (n):

Replace another disk? [y,n,q,?] (default: n)

935Managing volumes and disk groups
Decommissioning storage

Rootability
This chapter includes the following topics:

■ Encapsulating a disk

■ Rootability

■ Administering an encapsulated boot disk

■ Unencapsulating the root disk

Encapsulating a disk

Warning: Encapsulating a disk requires that the system be rebooted several times.
Schedule performance of this procedure for a time when this does not inconvenience
users.

This section describes how to encapsulate a disk for use in VxVM. Encapsulation
preserves any existing data on the disk when the disk is placed under VxVM control.

A root disk can be encapsulated and brought under VxVM control. However, there
are restrictions on the layout and configuration of root disks that can be
encapsulated.

See “Restrictions on using rootability with Linux” on page 943.

See “Rootability” on page 942.

Use the format or fdisk commands to obtain a printout of the root disk partition
table before you encapsulate a root disk. For more information, see the appropriate
manual pages. You may need this information should you subsequently need to
recreate the original root disk.

38Chapter

You cannot grow or shrink any volume (rootvol, usrvol, varvol, optvol, swapvol,
and so on) that is associated with an encapsulated root disk. This is because these
volumes map to physical partitions on the disk, and these partitions must be
contiguous.

Disks with msdos disk labels can be encapsulated as auto:sliced disks provided
that they have at least one spare primary partition that can be allocated to the public
region, and one spare primary or logical partition that can be allocated to the private
region.

Disks with sun disk labels can be encapsulated as auto:sliced disks provided
that they have at least two spare slices that can be allocated to the public and
private regions.

Extensible Firmware Interface (EFI) disks with gpt (GUID Partition Table) labels
can be encapsulated as auto:sliced disks provided that they have at least two
spare slices that can be allocated to the public and private regions.

The entry in the partition table for the public region does not require any additional
space on the disk. Instead it is used to represent (or encapsulate) the disk space
that is used by the existing partitions.

Unlike the public region, the partition for the private region requires a small amount
of space at the beginning or end of the disk that does not belong to any existing
partition or slice. By default, the space required for the private region is 32MB, which
is rounded up to the nearest whole number of cylinders. On most modern disks,
one cylinder is usually sufficient.

937Rootability
Encapsulating a disk

To encapsulate a disk for use in VxVM

1 Before encapsulating a root disk, set the device naming scheme used by VxVM
to be persistent.

vxddladm set namingscheme={osn|ebn} persistence=yes

For example, to use persistent naming with enclosure-based naming:

vxddladm set namingscheme=ebn persistence=yes

2 Select Encapsulate one or more disks from the vxdiskadm main menu.

Your system may use device names that differ from the examples shown here.

At the following prompt, enter the disk device name for the disks to be
encapsulated:

Select disk devices to encapsulate:

[<pattern-list>,all,list,q,?] device name

The pattern-list can be a single disk, or a series of disks. If pattern-list consists
of multiple items, those items must be separated by white space.

If you do not know the address (device name) of the disk to be encapsulated,
enter l or list at the prompt for a complete listing of available disks.

3 To continue the operation, enter y (or press Return) at the following prompt:

Here is the disk selected. Output format: [Device]

device name

Continue operation? [y,n,q,?] (default: y) y

4 Select the disk group to which the disk is to be added at the following prompt:

You can choose to add this disk to an existing disk group or to

a new disk group. To create a new disk group, select a disk

group name that does not yet exist.

Which disk group [<group>,list,q,?]

5 At the following prompt, either press Return to accept the default disk name
or enter a disk name:

Use a default disk name for the disk? [y,n,q,?] (default: y)

938Rootability
Encapsulating a disk

6 To continue with the operation, enter y (or press Return) at the following prompt:

The selected disks will be encapsulated and added to the

disk group name disk group with default disk names.

device name

Continue with operation? [y,n,q,?] (default: y) y

7 To confirm that encapsulation should proceed, enter y (or press Return) at the
following prompt:

The following disk has been selected for encapsulation.

Output format: [Device]

device name

Continue with encapsulation? [y,n,q,?] (default: y) y

A message similar to the following confirms that the disk is being encapsulated
for use in VxVM:

The disk device device name will be encapsulated and added to

the disk group diskgroup with the disk name diskgroup01.

8 For non-root disks, you can now choose whether the disk is to be formatted
as a CDS disk that is portable between different operating systems, or as a
non-portable sliced disk:

Enter the desired format [cdsdisk,sliced,simple,q,?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk. Note that only the sliced format is suitable for use
with root, boot or swap disks.

9 At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q,?]

(default: 65536)

939Rootability
Encapsulating a disk

10 If you entered cdsdisk as the format in step 8, you are prompted for the action
to be taken if the disk cannot be converted this format:

Do you want to use sliced as the format should cdsdisk

fail? [y,n,q,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

11 vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

shutdown -r now

The /etc/fstab file is updated to include the volume devices that are used to
mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/fstab file is saved as /etc/fstab.b4vxvm

12 At the following prompt, indicate whether you want to encapsulate more disks
(y) or return to the vxdiskadm main menu (n):

Encapsulate other disks? [y,n,q,?] (default: n) n

The default layout that is used to encapsulate disks can be changed.

Failure of disk encapsulation
Under some circumstances, encapsulation of a disk can fail because there is not
enough free space available on the disk to accommodate the private region. If there
is insufficient free space , the encapsulation process ends abruptly with an error
message similar to the following:

VxVM ERROR V-5-2-338 The encapsulation operation failed with the

following error:

It is not possible to encapsulate device, for the following

reason:

<VxVM vxslicer ERROR V-5-1-1108 Unsupported disk layout.>

One solution is to configure the disk with the nopriv format.

See “Using nopriv disks for encapsulation” on page 941.

940Rootability
Encapsulating a disk

Using nopriv disks for encapsulation
Encapsulation converts existing partitions on a specified disk to volumes. If any
partitions contain file systems, their /etc/fstab entries are modified so the file
systems are mounted on volumes instead.

Disk encapsulation requires that enough free space be available on the disk (by
default, 32 megabytes) for storing the private region that VxVM uses for disk
identification and configuration information. This free space cannot be included in
any other partitions.

See the vxencap(1M) manual page.

You can encapsulate a disk that does not have space available for the VxVM private
region partition by using the vxdisk utility. To do this, configure the disk as a nopriv

device that does not have a private region.

The drawback with using nopriv devices is that VxVM cannot track changes in the
address or controller of the disk. Normally, VxVM uses identifying information stored
in the private region on the physical disk to track changes in the location of a physical
disk. Because nopriv devices do not have private regions and have no identifying
information stored on the physical disk, tracking cannot occur.

One use of nopriv devices is to encapsulate a disk so that you can use VxVM to
move data off the disk. When space has been made available on the disk, remove
the nopriv device, and encapsulate the disk as a standard disk device.

A disk group cannot be formed entirely from nopriv devices. This is because nopriv

devices do not provide space for storing disk group configuration information.
Configuration information must be stored on at least one disk in the disk group.

Creating a nopriv disk for encapsulation

Warning: Do not use nopriv disks to encapsulate a root disk. If insufficient free
space exists on the root disk for the private region, part of the swap area can be
used instead.

941Rootability
Encapsulating a disk

To create a nopriv disk for encapsulation

1 If it does not exist already, set up a partition on the disk for the area that you
want to access using VxVM.

2 Use the following command to map a VM disk to the partition:

vxdisk define partition-device type=nopriv

where partition-device is the basename of the device in the /dev/dsk directory.

For example, to map partition 3 of disk device sdc, use the following command:

vxdisk define sdc3 type=nopriv

Creating volumes for other partitions on a nopriv disk
To create volumes for other partitions on a nopriv disk

1 Add the partition to a disk group.

2 Determine where the partition resides within the encapsulated partition.

3 If no data is to be preserved on the partition, use vxassist to create a volume
with the required length.

Warning: By default, vxassist re-initializes the data area of a volume that it
creates. If there is data to be preserved on the partition, do not use vxassist.
Instead, create the volume with vxmake and start the volume with the command
vxvol init active.

Rootability
VxVM can place various files from the root file system, swap device, and other file
systems on the root disk under VxVM control. This is called rootability. The root
disk (that is, the disk containing the root file system) can be put under VxVM control
through the process of encapsulation.

Encapsulation converts existing partitions on that disk to volumes. Once under
VxVM control, the root and swap devices appear as volumes and provide the same
characteristics as other VxVM volumes. A volume that is configured for use as a
swap area is referred to as a swap volume, and a volume that contains the root file
system is referred to as a root volume.

942Rootability
Rootability

Note: Only encapsulate your root disk if you also intend to mirror it. There is no
benefit in root-disk encapsulation for its own sake.

You can mirror the rootvol, and swapvol volumes, as well as other parts of the
root disk that are required for a successful boot of the system (for example, /usr).
This provides complete redundancy and recovery capability in the event of disk
failure. Without mirroring, the loss of the root, swap, or usr partition prevents the
system from being booted from surviving disks.

Mirroring disk drives that are critical to booting ensures that no single disk failure
renders the system unusable. A suggested configuration is to mirror the critical disk
onto another available disk (using the vxdiskadm command). If the disk containing
root and swap partitions fails, the system can be rebooted from a disk containing
mirrors of these partitions.

Recovering a system after the failure of an encapsulated root disk requires the
application of special procedures.

See the Veritas Volume Manager Troubleshooting Guide.

Restrictions on using rootability with Linux
Bootable root disks with msdos disk labels can contain up to four primary partitions:
/dev/sdx1 through /dev/sdx4 for SCSI disks, and /dev/hdx1 through /dev/hdx4

for IDE disks. If more than four partitions are required, a primary partition can be
configured as an extended partition that contains up to 11 logical partitions
(/dev/sdx5 through/dev/sdx15) for SCSI disks and 12 logical partitions (/dev/hdx5
through/dev/sdx16) for IDE disks.

Note: Extensible Firmware Interface (EFI) disks with GUID Partition Table (GPT)
labels are not supported for root encapsulation.

To encapsulate a root disk, VxVM requires one unused primary partition entry to
represent the public region, plus one unused primary partition or one unused logical
partition for the private region.

The entry in the partition table for the public region does not require any additional
space on the disk. Instead it is used to represent (or encapsulate) the disk space
that is used by the existing partitions.

Unlike the public region, the partition for the private region requires a relatively small
amount of disk space. By default, the space required for the private region is 32MB,
which is rounded up to the nearest whole number of cylinders. On most modern
disks, one cylinder is usually sufficient.

943Rootability
Rootability

To summarize, the requirements for the partition layout of a root disk that can be
encapsulated are:

■ One unused primary partition entry for the public region.

■ Free disk space or a swap partition, from which space can be allocated to the
private region. If the free space or swap partition is not located within an extended
partition, one unused primary partition entry is required for the private region.
Otherwise, one unused logical partition entry is required.

The following error message is displayed by the vxencap or vxdiskadm commands
if you attempt to encapsulate a root disk that does not have the required layout:

Cannot find appropriate partition layout to allocate space

for VxVM public/private partitions.

The following sections show examples of root disk layouts for which encapsulation
is either supported or not supported.

■ See “Sample supported root disk layouts for encapsulation” on page 945.

■ See “Sample unsupported root disk layouts for encapsulation” on page 948.

Note the following additional important restrictions on using rootability with Linux:

■ Root disk encapsulation is only supported for devices with standard SCSI or
IDE interfaces. It is not supported for most devices with vendor-proprietary
interfaces, except the COMPAQ SMART and SMARTII controllers, which use
device names of the form /dev/ida/cXdXpX and /dev/cciss/cXdXpX.

■ Root disk encapsulation is only supported for disks with msdos or gpt labels. It
is not supported for disks with sun labels.

■ The root, boot, and swap partitions must be on the same disk.

■ Either the GRUB or the LILO boot loader must be used as the boot loader for
SCSI and IDE disks.

■ The menu entries in the boot loader configuration file must be valid.

■ The boot loader configuration file must not be edited during the root encapsulation
process.

■ The /boot partition must be on the first disk as seen by the BIOS, and this
partition must be a primary partition.
Some systems cannot be configured to ignore local disks. The local disk needs
to be removed when encapsulating. Multi-pathing configuration changes (for
multiple HBA systems) can have the same effect. VxVM supports only those
systems where the initial bootstrap installation configuration has not been
changed for root encapsulation.

944Rootability
Rootability

■ The boot loader must be located in the master boot record (MBR) on the root
disk or any root disk mirror.

■ If the GRUB boot loader is used, the root device location of the /boot directory
must be set to the first disk drive, sd0 or hd0, to allow encapsulation of the root
disk.

■ If the LILO or ELILO boot loader is used, do not use the FALLBACK, LOCK or -R
options after encapsulating the root disk.

Warning: Using the FALLBACK, LOCK or -R options with LILO may render your
system unbootable because LILO does not understand the layout of VxVM
volumes.

■ Booting from an encapsulated root disk which is connected only to the secondary
controller in an A/P (Active/Passive) array is not supported.

■ The default Red Hat installation layout is not valid for implementing rootability.
If you change the layout of your root disk, ensure that the root disk is still bootable
before attempting to encapsulate it.
See “Example 1: unsupported root disk layouts for encapsulation” on page 948.

■ Do not allocate volumes from the root disk after it has been encapsulated. Doing
so may destroy partition information that is stored on the disk.

■ The device naming scheme must be set to persistent.

Sample supported root disk layouts for encapsulation
The following examples show root disk layouts that support encapsulation.

Example 1: supported root disk layouts for encapsulation
Figure 38-1 shows an example of a supported layout with root and swap configured
on two primary partitions, and some existing free space on the disk.

945Rootability
Rootability

Figure 38-1 Root and swap configured on two primary partitions, and free
space on the disk

Before root disk encapsulation

/ (root) swap

After root disk encapsulation

Public region

/ (root) swap Private
region

Primary partition Primary partition Free
space

Two primary partitions are in use by / and swap. There are two unused primary
partitions, and free space exists on the disk that can be assigned to a primary
partition for the private region.

Example 2: supported root disk layouts for encapsulation
Figure 38-2 shows an example of a supported layout with root and swap configured
on two primary partitions, and no existing free space on the disk.

Figure 38-2 Root and swap configured on two primary partitions, and no free
space

Before root disk encapsulation

/ (root) swap

After root disk encapsulation

Public region

/ (root) swap Private
region

Primary partition Primary partition

Two primary partitions are in use by / and swap. There are two unused primary
partitions, and the private region can be allocated to a new primary partition by
taking space from the end of the swap partition.

946Rootability
Rootability

Example 3: supported root disk layouts for encapsulation
Figure 38-3 shows an example of a supported layout with boot and swap configured
on two primary partitions, and some existing free space in the extended partition.

Figure 38-3 Boot and swap configured on two primary partitions, and free
space in the extended partition

Before root disk encapsulation

/ (root) /var /home /home1swap/boot

/ (root) /var /home /home1swap/boot

Primary
partitions

After root disk encapsulation

Public region

Logical
partitions

Extended
partition

Free space in
extended partition

Private
region

Three primary partitions are in use by /boot, swap and an extended partition that
contains four file systems including root. There is free space at the end of the
extended primary partition that can be used to create a new logical partition for the
private region.

Example 4: supported root disk layouts for encapsulation
Figure 38-4 shows an example of a supported layout with boot configured on a
primary partition, and root and swap configured in the extended partition.

947Rootability
Rootability

Figure 38-4 Boot configured on a primary partition, and root and swap
configured in the extended partition

Before root disk encapsulation

swap/boot

/boot

After root disk encapsulation

Public region

Extended
partition

Primary
partitions

Private
region

/ (root)

swap/ (root)

Logical
partitions

Two primary partitions are in use by /boot and an extended partition that contains
the root file system and swap area. A new logical partition can be created for the
private region by taking space from the end of the swap partition.

Sample unsupported root disk layouts for encapsulation
The following examples show root disk layouts that do not support encapsulation.

Example 1: unsupported root disk layouts for
encapsulation
Figure 38-5 shows an example of an unsupported layout with boot, swap and root

configured on three primary partitions, and some existing free space on the disk.

Figure 38-5 Boot, swap and root configured on three primary partitions, and
free space on the disk

/ (root) swap/boot

Primary partitions Free space

This layout, which is similar to the default Red Hat layout, cannot be encapsulated
because only one spare primary partition is available, and neither the swap partition
nor the free space lie within an extended partition.

Figure 38-6 shows a workaround by configuring the swap partition or free space
as an extended partition, and moving the swap area to a logical partition (leaving
enough space for a logical partition to hold the private region).

948Rootability
Rootability

Figure 38-6 Workaround by reconfiguring swap as a logical partition

/ (root)/boot

Primary partitions

Logical partition

Extended partition
Free space in

extended partition

swap

The original swap partition should be deleted. After reconfiguration, this root disk
can be encapsulated.

See “Example 3: supported root disk layouts for encapsulation” on page 947.

Figure 38-7 shows another possible workaround by recreating /boot as a directory
under /, deleting the /boot partition, and reconfiguring LILO or GRUB to use the
new/boot location.

Figure 38-7 Workaround by reconfiguring /boot as a directory

/ with /boot as a directory swap

Primary partitions
Free spaceFree space

Warning: If the start of the root file system does not lie within the first 1024 cylinders,
moving /boot may render your system unbootable.

After reconfiguration, this root disk can be encapsulated.

See “Example 1: supported root disk layouts for encapsulation” on page 945.

Example 2: unsupported root disk layouts for
encapsulation
Figure 38-8 shows an example of an unsupported layout with boot and swap

configured on two primary partitions, and no existing free space in the extended
partition.

949Rootability
Rootability

Figure 38-8 Boot and swap configured on two primary partitions, and no free
space in the extended partition

/ (root)swap/boot

Primary
partitions

Logical
partition

Extended
partition

Free space

This layout cannot be encapsulated because only one spare primary partition is
available, and neither the swap partition nor the free space lie within the extended
partition.

Figure 38-9 shows a simple workaround that uses a partition configuration tool to
grow the extended partition into the free space on the disk.

Figure 38-9 Workaround by growing the extended partition

/ (root)swap/boot

Primary
partitions

Logical
partition

Extended
partition

Free space in
extended partition

Care should be taken to preserve the boundaries of the logical partition that contains
the root file system. After reconfiguration, this root disk can be encapsulated.

See “Example 3: supported root disk layouts for encapsulation” on page 947.

Example 3: unsupported root disk layouts for
encapsulation
Figure 38-10 shows an example of an unsupported layout with boot and swap

configured on two primary partitions, and no existing free space on the disk.

Figure 38-10 Boot and swap configured on two primary partitions, and no free
space

/ (root) /var /homeswap/boot

Primary
partitions

Logical
partitions

Extended
partition

This layout cannot be encapsulated because only one spare primary partition is
available, the swap partition does not lie in the extended partition, and there is no
free space in the extended partition for an additional logical partition.

950Rootability
Rootability

Figure 38-11 shows a possible workaround by shrinking one or more of the existing
file systems and the corresponding logical partitions.

Figure 38-11 Workaround by shrinking existing logical partitions

/ (root) /var /homeswap/boot

Primary
partitions

Logical
partitions

Extended
partition Free space in

extended partition

Shrinking existing logical partitions frees up space in the extended partition for the
private region. After reconfiguration, this root disk can be encapsulated.

See “Example 3: supported root disk layouts for encapsulation” on page 947.

Example 4: unsupported root disk layouts for
encapsulation
Figure 38-12 shows an example of an unsupported layout with boot and root

configured on two primary partitions, and no more available logical partitions.

Figure 38-12 Boot and swap configured on two primary partitions, and no more
available logical partitions

/ (root)/boot

Primary
partitions

swap (One of
11 logical
partitions)

Extended
partition Free space in

extended partition

If this layout exists on a SCSI disk, it cannot be encapsulated because only one
spare primary partition is available, and even though swap is configured on a logical
partition and there is free space in the extended partition, no more logical partitions
can be created. The same problem arises with IDE disks when 12 logical partitions
have been created.

A suggested workaround is to evacuate any data from one of the existing logical
partitions, and then delete this logical partition. This makes one logical partition
available for use by the private region. The root disk can then be encapsulated.

See “Example 3: supported root disk layouts for encapsulation” on page 947.

See “Example 4: supported root disk layouts for encapsulation” on page 947.

951Rootability
Rootability

Booting root volumes
When the operating system is booted, the root file system and swap area must be
available for use before the vxconfigd daemon can load the VxVM configuration
or start any volumes. During system startup, the operating system must see the
rootvol and swapvol volumes as regular partitions so that it can access them as
ordinary disk partitions.

Due to this restriction, each of the rootvol and swapvol plexes must be created
from contiguous space on a disk that is mapped to a single partition. It is not possible
to stripe, concatenate or span the plex of a rootvol or swapvol volume that is used
for booting. Any mirrors of these plexes that are potentially bootable also cannot
be striped, concatenated or spanned.

For information on how to configure your system BIOS to boot from a disk other
than the default boot disk, refer to the documentation from your hardware vendor.

Boot-time volume restrictions
Volumes on the root disk differ from other volumes in that they have very specific
restrictions on their configuration:

■ The root volume (rootvol) must exist in the default disk group, bootdg. Although
other volumes named rootvol can be created in disk groups other than bootdg,
only the volume rootvol in bootdg can be used to boot the system.

■ The rootvol and swapvol volumes always have minor device numbers 0 and
1 respectively. Other volumes on the root disk do not have specific minor device
numbers.

■ Restricted mirrors of volumes on the root disk device have overlay partitions
created for them. An overlay partition is one that exactly includes the disk space
occupied by the restricted mirror. During boot, before the rootvol, varvol,
usrvol and swapvol volumes are fully configured, the default volume
configuration uses the overlay partition to access the data on the disk.

■ Although it is possible to add a striped mirror to a rootvol device for performance
reasons, you cannot stripe the primary plex or any mirrors of rootvol that may
be needed for system recovery or booting purposes if the primary plex fails.

■ rootvol and swapvol cannot be spanned or contain a primary plex with multiple
noncontiguous subdisks. You cannot grow or shrink any volume associated with
an encapsulated boot disk (rootvol, usrvol, varvol, optvol, swapvol, and
so on) because these map to a physical underlying partition on the disk and
must be contiguous. A workaround is to unencapsulate the boot disk, repartition
the boot disk as desired (growing or shrinking partitions as needed), and then
re-encapsulating.

952Rootability
Rootability

■ When mirroring parts of the boot disk, the disk being mirrored to must be large
enough to hold the data on the original plex, or mirroring may not work.

■ The volumes on the root disk cannot use dirty region logging (DRL).

In addition to these requirements, it is a good idea to have at least one contiguous,
(cylinder-aligned if appropriate) mirror for each of the volumes for root, usr, var,
opt and swap. This makes it easier to convert these from volumes back to regular
disk partitions (during an operating system upgrade, for example).

Creating redundancy for the root disk
You can create an active backup of the root disk, in case of a single disk failure.
Use the vxrootadm command to create a mirror of the booted root disk, and other
volumes in the root disk group.

To create a back-up root disk

◆ Create a mirror with the vxrootadm addmirror command.

vxrootadm [-v] [-Y] addmirror targetdisk

Creating an archived back-up root disk for disaster recovery
In addition to having an active backup of the root disk, you can keep an archived
back-up copy of the bootable root disk. Use the vxrootadm command to create a
snapshot of the booted root disk, which creates a mirror and breaks it off into a
separate disk group.

To create an archived back-up root disk

1 Add a disk to the booted root disk group.

2 Create a snapshot of the booted root disk.

vxrootadm [-v] mksnap targetdisk targetdg

3 Archive the back-up root disk group for disaster recovery.

Encapsulating and mirroring the root disk
VxVM lets you mirror the root volume and other areas needed for booting onto
another disk. This makes it possible to recover from failure of your root disk by
replacing it with one of its mirrors.

Use the fdisk or sfdisk commands to obtain a printout of the root disk partition
table before you encapsulate the root disk. For more information, see the appropriate

953Rootability
Rootability

manual pages. You may need this information should you subsequently need to
recreate the original root disk.

See the Veritas Storage Foundation and High Availability Solutions Troubleshooting
Guide.

See “Restrictions on using rootability with Linux” on page 943.

You can use the vxdiskadm command to encapsulate the root disk.

See “Encapsulating a disk” on page 936.

You can also use the vxencap command, as shown in this example where the root
disk is sda:

vxencap -c -g diskgroup rootdisk=sda

where diskgroup must be the name of the current boot disk group. If no boot disk
group currently exists, one is created with the specified name. The name bootdg

is reserved as an alias for the name of the boot disk group, and cannot be used.
You must reboot the system for the changes to take effect.

Both the vxdiskadm and vxencap procedures for encapsulating the root disk also
update the /etc/fstab file and the boot loader configuration file
(/boot/grub/menu.lst or /etc/grub.conf (as appropriate for the platform) for
GRUB or /etc/lilo.conf for LILO):

■ Entries are changed in /etc/fstab for the rootvol, swapvol and other volumes
on the encapsulated root disk.

■ A special entry, vxvm_root, is added to the boot loader configuration file to allow
the system to boot from an encapsulated root disk.

The contents of the original /etc/fstab and boot loader configuration files are
saved in the files /etc/fstab.b4vxvm, /boot/grub/menu.lst.b4vxvm or
/etc/grub.conf.b4vxvm for GRUB, and /etc/lilo.conf.b4vxvm for LILO.

Warning: When modifying the /etc/fstab and the boot loader configuration files,
take care not to corrupt the entries that have been added by VxVM. This can prevent
your system from booting correctly.

954Rootability
Rootability

To mirror the root disk onto another disk after encapsulation

955Rootability
Rootability

◆ Choose a disk to use for the mirror that is at least as large as the existing root

disk, whose geometry is seen by Linux to be the same as the existing root disk,
and which is not already in use by VxVM or any other subsystem (such as a
mounted partition or swap area). The disk should be visible to the Basic Input
Output System (BIOS) and to the bootloader of the operating system.

Select Mirror Volumes on a Disk from the vxdiskadm main menu to create
a mirror of the root disk. (These automatically invoke the vxrootmir command
if the mirroring operation is performed on the root disk.)

The disk that is used for the root mirror must not be under Volume Manager
control already.

Alternatively, to mirror all file systems on the root disk, run the following
command:

vxrootmir mirror_da_name mirror_dm_name

mirror_da_name is the disk access name of the disk that is to mirror the root
disk, and mirror_dm_name is the disk media name that you want to assign to
the mirror disk. The alternate root disk is configured to allow the system to be
booted from it in the event that the primary root disk fails. For example, to mirror
the root disk, sda, onto disk sdb, and give this the disk name rootmir, you
would use the following command:

vxrootmir sdb rootmir

The operations to set up the root disk mirror take some time to complete.

The following is example output from the vxprint command after the root disk
has been encapsulated and its mirror has been created (the TUTIL0 and PUTIL0

fields and the subdisk records are omitted for clarity):

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE ...

dg rootdg rootdg - - - -

dm rootdisk sda - 16450497 - -

dm rootmir sdb - 16450497 - -

v rootvol root ENABLED 12337857 - ACTIVE

pl mirrootvol-01 rootvol ENABLED 12337857 - ACTIVE

pl rootvol-01 rootvol ENABLED 12337857 - ACTIVE

v swapvol swap ENABLED 4112640 - ACTIVE

956Rootability
Rootability

pl mirswapvol-01 swapvol ENABLED 4112640 - ACTIVE

pl swapvol-01 swapvol ENABLED 4112640 - ACTIVE

Allocation of METADATA Subdisks During Root Disk
Encapsulation
METADATA subdisks are created during root disk encapsulation to protect partitioning
information. These subdisks are deleted automatically when a root disk is
unencapsulated.

The following example fdisk output shows the original partition table for a system’s
root disk:

fdisk -ul /dev/hda

Disk /dev/hda: 255 heads, 63 sectors, 2431 cylinders

Units = sectors of 1 * 512 bytes

Device Boot Start End Blocks Id System

/dev/hda1 63 2104514 1052226 83 Linux

/dev/hda2 2104515 6297479 2096482+ 83 Linux

/dev/hda3 6329610 39054014 16362202+ 5 Extended

/dev/hda5 6329673 10522574 2096451 83 Linux

/dev/hda6 10522638 14715539 2096451 83 Linux

/dev/hda7 14715603 18908504 2096451 83 Linux

/dev/hda8 18908568 23101469 2096451 83 Linux

/dev/hda9 23101533 25205984 1052226 82 Linux swap

Notice that there is a gap between start of the extended partition (hda3) and the
start of the first logical partition (hda5). For the logical partitions (hda5 through hda9),
there are also gaps between the end of one logical partition and the start of the
next logical partition. These gaps contain metadata for partition information. Because
these metadata regions lie inside the public region, VxVM allocates subdisks over
them to prevent accidental allocation of this space to volumes.

After the root disk has been encapsulated, the output from the vxprint command
appears similar to the following:

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTIL0 PUTIL0

dg rootdg rootdg - - - - - -

dm disk01 sdh - 17765181 - - - -

dm rootdisk hda - 39053952 - - - -

957Rootability
Rootability

sd meta-rootdisk05 - ENABLED 63 - - - METADATA

sd meta-rootdisk06 - ENABLED 63 - - - METADATA

sd meta-rootdisk07 - ENABLED 63 - - - METADATA

sd meta-rootdisk08 - ENABLED 63 - - - METADATA

sd meta-rootdisk09 - ENABLED 63 - - - METADATA

sd meta-rootdisk10 - ENABLED 63 - - - METADATA

sd rootdiskPriv - ENABLED 2049 - - - PRIVATE

v bootvol fsgen ENABLED 2104452 - ACTIVE - -

pl bootvol-01 bootvol ENABLED 2104452 - ACTIVE - -

sd rootdisk-07 bootvol-01 ENABLED 2104452 0 - - -

v homevol fsgen ENABLED 4192902 - ACTIVE - -

pl homevol-01 homevol ENABLED 4192902 - ACTIVE - -

sd rootdisk-05 homevol-01 ENABLED 4192902 0 - - -

v optvol fsgen ENABLED 4192902 - ACTIVE - -

pl optvol-01 optvol ENABLED 4192902 - ACTIVE - -

sd rootdisk-04 optvol-01 ENABLED 4192902 0 - - -

v rootvol root ENABLED 4192902 - ACTIVE - -

pl rootvol-01 rootvol ENABLED 4192902 - ACTIVE - -

sd rootdisk-02 rootvol-01 ENABLED 4192902 0 - - -

v swapvol swap ENABLED 2104452 - ACTIVE - -

pl swapvol-01 swapvol ENABLED 2104452 - ACTIVE - -

sd rootdisk-01 swapvol-01 ENABLED 2104452 0 - - -

v usrvol fsgen ENABLED 4192965 - ACTIVE - -

pl usrvol-01 usrvol ENABLED 4192965 - ACTIVE - -

sd rootdisk-06 usrvol-01 ENABLED 4192965 0 - - -

v varvol fsgen ENABLED 4192902 - ACTIVE - -

pl varvol-01 varvol ENABLED 4192902 - ACTIVE - -

sd rootdisk-03 varvol-01 ENABLED 4192902 0 - - -

The new partition table for the root disk appears similar to the following:

fdisk -ul /dev/hda

Disk /dev/hda: 255 heads, 63 sectors, 2431 cylinders

Units = sectors of 1 * 512 bytes

Device Boot Start End Blocks Id System

/dev/hda1 63 2104514 1052226 83 Linux

958Rootability
Rootability

/dev/hda2 2104515 6297479 2096482+ 83 Linux

/dev/hda3 6329610 39054014 16362202+ 5 Extended

/dev/hda4 63 39054014 19526976 7e Unknown

/dev/hda5 6329673 10522574 2096451 83 Linux

/dev/hda6 10522638 14715539 2096451 83 Linux

/dev/hda7 14715603 18908504 2096451 83 Linux

/dev/hda8 18908568 23101469 2096451 83 Linux

/dev/hda9 23101533 25205984 1052226 82 Linux swap

/dev/hda10 39051966 39054014 1024+ 7f Unknown

In this example, primary partition hda4 and logical partition hda10 have been created
to represent the VxVM public and private regions respectively.

Upgrading the kernel on a root encapsulated system
OS vendors often release maintenance patches to their products to address security
issues and other minor product defects. They may require customers to regularly
apply these patches to conform with maintenance contracts or to be eligible for
vendor support. Prior to this release, it was not possible to install a kernel patch or
upgrade on a root encapsulated system: it was necessary to unencapsulate the
system, apply the upgrade, then reencapsulate the root disk. It is now possible to
upgrade the OS kernel on a root encapsulated system.

Note: The procedures in this section only apply to minor kernel upgrades or patches.
These procedures do not apply to a full upgrade of the Linux operating system.

959Rootability
Rootability

To upgrade the OS kernel on a root encapsulated system

1 Apply the minor upgrade or patch to the system.

2 After applying the upgrade, run the commands:

. /etc/vx/modinst-vxvm

upgrade_encapped_root

The above commands determine if the kernel upgrade can be applied to the
encapsulated system. If the upgrade is successful, the command displays the
following message:

upgrade_encapped_root

The VxVM root encapsulation upgrade has succeeded.

Please reboot the machine to load the new kernel.

After the next reboot, the system restarts with the patched kernel and a VxVM
encapsulated root volume.

Some patches may be completely incompatible with the installed version of VxVM.
In this case the script fails, with the following message:

upgrade_encapped_root

FATAL ERROR: Unencapsulate the root disk manually.

VxVM cannot re-encapsulate the upgraded system.

The upgrade script saves a system configuration file that can be used to boot the
system with the previous configuration. If the upgrade fails, follow the steps to
restore the previous configuration.

Note: The exact steps may vary depending on the operating system.

960Rootability
Rootability

To restore the previous configuration

1 Interrupt the GRuB bootloader at bootstrap time by pressing the space bar.

The system displays a series of potential boot configurations, named after the
various installed kernel versions and VxVM root encapsulation versions.

For example:

Red Hat Enterprise Linux Server (2.6.18-53.el5)

Red Hat Enterprise Linux Server (2.6.18-8.el5)

vxvm_root_backup

vxvm_root

2 Select the vxvm_root_backup option to boot the previous kernel version with
the VxVM encapsulated root disk.

To upgrade the OS kernel on a root encapsulated system using manual steps

1 If the upgrade script fails, you can manually unencapsulate the root disk to
allow it to boot.

See “Unencapsulating the root disk” on page 962.

2 Upgrade the kernel and reboot the system.

3 If the reboot succeeds, you can re-encapsulate and remirror the root disk.

See “Encapsulating and mirroring the root disk” on page 953.

However, after the next reboot, VxVM may not be able to run correctly, making
all VxVM volumes unavailable. To restore the VxVM volumes, you must remove
the kernel upgrade, as follows:

rpm -e upgrade_kernel_package_name

For example:

rpm -e kernel-2.6.18-53.el5

Administering an encapsulated boot disk
The vxrootadm command lets you make a bootable snapshot of an encapsulated
boot disk.

The vxrootadm command has the following format:

vxrootadm [-v] [-g dg] [-s srcdisk] ... keyword arg ...

The mksnap keyword must have the following format:

961Rootability
Administering an encapsulated boot disk

vxrootadm -s srcdisk mksnap destdisk newdg

vxrootadm includes the following options:

These are verbose and debug message
options and are optional.

vxrootadm [-v] [-D]

The disk group argument is optional.vxrootadm [-g dg]

Specifies the source disk.vxrootadm -s srcdisk

See the vxrootadm(1m) manual page.

Creating a snapshot of an encapsulated boot disk
To create a snapshot of an encapsulated boot disk, use the vxrootadm command.
The target disk for the snapshot must be as large (or bigger) than the source disk
(boot disk). You must use a new disk group name to associate the target disk.

To create a snapshot of an encapsulated boot disk

◆ Enter the following command:

vxrootadm -s srcdisk [-g dg] mksnap destdisk newdg

For example:

vxrootadm -s disk_0 -g rootdg mksnap disk_1 snapdg

In this example, disk_0 is the encapsulated boot disk, and rootdg is the
associate boot disk group. disk_1 is the target disk, and snapdg is the new
disk group name

Unencapsulating the root disk
You can use the vxunroot utility to remove rootability support from a system. This
makes root, swap, home and other file systems on the root disk directly accessible
through disk partitions, instead of through volume devices.

The vxunroot utility also makes the necessary configuration changes to allow the
system to boot without any dependency on VxVM.

Only the volumes that were present on the root disk when it was encapsulated can
be unencapsulated using vxunroot. Before running vxunroot, evacuate all other
volumes that were created on the root disk after it was encapsulated.

962Rootability
Unencapsulating the root disk

Do not remove the plexes on the root disk that correspond to the original disk
partitions.

Warning: This procedure requires a reboot of the system.

To remove rootability from a system

1 Use the vxplex command to remove all the plexes of the volumes rootvol,
swapvol, usr, var, opt and home on the disks other than the root disk.

For example, the following command removes the plexes mirrootvol-01 and
mirswapvol-01 that are configured on the disk rootmir:

vxplex -g bootdg -o rm dis mirrootvol-01 mirswapvol-01

2 Run the vxunroot utility:

vxunroot

vxunroot does not perform any conversion to disk partitions if any plexes
remain on other disks.

If the device naming scheme has changed since the root disk was encapsulated,
the vxunroot command fails with the following error:

VxVM vxunroot ERROR V-5-2-4101 The root disk name does not match

the name of the original disk that was encapsulated.

If this message displays, use the vxddladm assign names command to
regenerate the persistent device name for the encapsulated root disk, then
retry the vxunroot command.

See “Regenerating persistent device names” on page 344.

963Rootability
Unencapsulating the root disk

Quotas
This chapter includes the following topics:

■ About quota limits

■ About quota files on Veritas File System

■ About quota commands

■ About quota checking with Veritas File System

■ Using quotas

About quota limits
Veritas File System (VxFS) supports user and group quotas. The quota system
limits the use of two principal resources of a file system: files and data blocks. For
each of these resources, you can assign quotas to individual users and groups to
limit their usage.

You can set the following kinds of limits for each of the two resources:

An absolute limit that cannot be exceeded under any circumstances.hard limit

Must be lower than the hard limit, and can be exceeded, but only for a
limited time. The time limit can be configured on a per-file system basis
only. The VxFS default limit is seven days.

soft limit

Soft limits are typically used when a user must run an application that could generate
large temporary files. In this case, you can allow the user to exceed the quota limit
for a limited time. No allocations are allowed after the expiration of the time limit.
Use the vxedquota command to set limits.

See “Using quotas” on page 967.

39Chapter

Although file and data block limits can be set individually for each user and group,
the time limits apply to the file system as a whole. The quota limit information is
associated with user and group IDs and is stored in a user or group quota file.

See “About quota files on Veritas File System” on page 965.

The quota soft limit can be exceeded when VxFS preallocates space to a file.

See “About extent attributes” on page 258.

About quota files on Veritas File System
A quotas file (named quotas) must exist in the root directory of a file system for
any of the quota commands to work. For group quotas to work, there must be a
quotas.grp file. The files in the file system's mount point are referred to as the
external quotas file. VxFS also maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to
obtain or change usage limits. VxFS uses the internal file to maintain counts of data
blocks and inodes used by each user. When quotas are turned on, the quota limits
are copied from the external quotas file into the internal quotas file. While quotas
are on, all the changes in the usage information and changes to quotas are
registered in the internal quotas file. When quotas are turned off, the contents of
the internal quotas file are copied into the external quotas file so that all data between
the two files is synchronized.

VxFS supports group quotas in addition to user quotas. Just as user quotas limit
file system resource (disk blocks and the number of inodes) usage on individual
users, group quotas specify and limit resource usage on a group basis. As with
user quotas, group quotas provide a soft and hard limit for file system resources.
If both user and group quotas are enabled, resource utilization is based on the most
restrictive of the two limits for a given user.

To distinguish between group and user quotas, VxFS quota commands use a -g

and -u option. The default is user quotas if neither option is specified. One exception
to this rule is when you specify the -o quota option as a mount command option.
In this case, both user and group quotas are enabled. Support for group quotas
also requires a separate group quotas file. The VxFS group quota file is named
quotas.grp. The VxFS user quotas file is named quotas. This name was used to
distinguish it from the quotas.user file used by other file systems under Linux.

965Quotas
About quota files on Veritas File System

About quota commands

Note: The quotacheck command is an exception—VxFS does not support an
equivalent command.

See “About quota checking with Veritas File System” on page 967.

Quota support for various file systems is implemented using the generic code
provided by the Linux kernel. However, VxFS does not use this generic interface.
VxFS instead supports a similar set of commands that work only for VxFS file
systems.

VxFS supports the following quota-related commands:

Edits quota limits for users and groups. The limit changes made by
vxedquota are reflected both in the internal quotas file and the external
quotas file.

vxedquota

Provides a summary of quotas and disk usage.vxrepquota

Provides file ownership and usage summaries.vxquot

Views quota limits and usage.vxquota

Turns quotas on for a mounted VxFS file system.vxquotaon

Turns quotas off for a mounted VxFS file system.vxquotaoff

The vxquota, vxrepquota, vxquot, and vxedquota commands support the -H

option for human friendly input and output. When the -H option is used, the storage
size is displayed in the following human−friendly units: bytes (B), kilobytes (KB),
megabytes (MB), gigabytes (GB), terabyte (TB), petabytes (PB), and exabytes
(EB). The quota soft and hard limits, quota usage, and the total storage consumed
by a specific user or group or all users or groups can be obtained in human-friendly
units using the -H option.

In addition to these commands, the VxFS mount command supports a special mount
option (-o quota|userquota|groupquota), which can be used to turn on quotas
at mount time. You can also selectively enable or disable user or group quotas on
a VxFS file system during remount or on a mounted file system.

For additional information on the quota commands, see the vxedquota(1M),
vxrepquota(1M), vxquot(1M), vxquota(1M), vxquotaon(1M), and vxquotaoff(1M)
manual pages.

966Quotas
About quota commands

Note: When VxFS file systems are exported via NFS, the VxFS quota commands
on the NFS client cannot query or edit quotas. You can use the VxFS quota
commands on the server to query or edit quotas.

About quota checking with Veritas File System
The standard practice with most quota implementations is to mount all file systems
and then run a quota check on each one. The quota check reads all the inodes on
disk and calculates the usage for each user and group. This can be time consuming,
and because the file system is mounted, the usage can change while quotacheck
is running.

VxFS does not support a quotacheck command. With VxFS, quota checking is
performed automatically (if necessary) at the time quotas are turned on. A quota
check is necessary if the file system has changed with respect to the usage
information as recorded in the internal quotas file. This happens only if the file
system was written with quotas turned off, or if there was structural damage to the
file system that required a full file system check.

See the fsck_vxfs(1M) manual page.

A quota check generally reads information for each inode on disk and rebuilds the
internal quotas file. It is possible that while quotas were not on, quota limits were
changed by the system administrator. These changes are stored in the external
quotas file. As part of enabling quotas processing, quota limits are read from the
external quotas file into the internal quotas file.

Using quotas
The VxFS quota commands are used to perform the following quota functions:

■ Turning on quotas

■ Turning on quotas at mount time

■ Editing user and group quotas

■ Modifying time limits

■ Viewing disk quotas and usage

■ Displaying blocks owned by users or groups

■ Turning off quotas

967Quotas
About quota checking with Veritas File System

Turning on quotas
To use the quota functionality on a file system, quotas must be turned on. You can
turn quotas on at mount time or after a file system is mounted.

Note: Before turning on quotas, the root directory of the file system must contain
a file for user quotas named quotas, and a file for group quotas named quotas.grp

owned by root.

To turn on quotas

1 To turn on user and group quotas for a VxFS file system, enter:

vxquotaon /mount_point

2 To turn on only user quotas for a VxFS file system, enter:

vxquotaon -u /mount_point

3 To turn on only group quotas for a VxFS file system, enter:

vxquotaon -g /mount_point

Turning on quotas at mount time
Quotas can be turned on with the mount command when you mount a file system.

To turn on quotas at mount time

1 To turn on user or group quotas for a file system at mount time, enter:

mount -t vxfs -o quota special /mount_point

2 To turn on only user quotas, enter:

mount -t vxfs -o usrquota special /mount_point

3 To turn on only group quotas, enter:

mount -t vxfs -o grpquota special /mount_point

968Quotas
Using quotas

Editing user and group quotas
You can set up user and group quotas using the vxedquota command. You must
have superuser privileges to edit quotas.

vxedquota creates a temporary file for the given user; this file contains on-disk
quotas for each mounted file system that has a quotas file. It is not necessary that
quotas be turned on for vxedquota to work. However, the quota limits are applicable
only after quotas are turned on for a given file system.

To edit quotas

1 Specify the -u option to edit the quotas of one or more users specified by
username:

vxedquota [-u] username

Editing the quotas of one or more users is the default behavior if the -u option
is not specified.

2 Specify the -g option to edit the quotas of one or more groups specified by
groupname:

vxedquota -g groupname

Modifying time limits
The soft and hard limits can be modified or assigned values with the vxedquota

command. For any user or group, usage can never exceed the hard limit after
quotas are turned on.

Modified time limits apply to the entire file system and cannot be set selectively for
each user or group.

To modify time limits

1 Specify the -t option to modify time limits for any user:

vxedquota [-u] -t

2 Specify the -g and -t options to modify time limits for any group:

vxedquota -g -t

969Quotas
Using quotas

Viewing disk quotas and usage
Use the vxquota command to view a user's or group's disk quotas and usage on
VxFS file systems.

To display disk quotas and usage

1 To display a user's quotas and disk usage on all mounted VxFS file systems
where the quotas file exists, enter:

vxquota -v [-u] username

2 To display a group's quotas and disk usage on all mounted VxFS file systems
where the quotas.grp file exists, enter:

vxquota -v -g groupname

Displaying blocks owned by users or groups
Use the vxquot command to display the number of blocks owned by each user or
group in a file system.

To display the number of blocks owned by users or groups

1 To display the number of files and the space owned by each user, enter:

vxquot [-u] -f filesystem

2 To display the number of files and the space owned by each group, enter:

vxquot -g -f filesystem

Turning off quotas
Use the vxquotaoff command to turn off quotas.

970Quotas
Using quotas

To turn off quotas

1 To turn off quotas for a mounted file system, enter:

vxquotaoff /mount_point

2 To turn off only user quotas for a VxFS file system, enter:

vxquotaoff -u /mount_point

3 To turn off only group quotas for a VxFS file system, enter:

vxquotaoff -g /mount_point

971Quotas
Using quotas

File Change Log
This chapter includes the following topics:

■ About File Change Log

■ About the File Change Log file

■ File Change Log administrative interface

■ File Change Log programmatic interface

■ Summary of API functions

About File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file
system.

Applications that typically use the FCL are usually required to:

■ scan an entire file system or a subset

■ discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines, and
replication programs.

Note: The FCL tracks when the data has changed and records the change type,
but does not track the actual data changes. It is the responsibility of the application
to examine the files to determine the changed data.

FCL functionality is a separately licensable feature.

See the Veritas Storage Foundation Cluster File System High Availability Release
Notes.

40Chapter

About the File Change Log file
File Change Log records file system changes such as creates, links, unlinks,
renaming, data appended, data overwritten, data truncated, extended attribute
modifications, holes punched, and miscellaneous file property updates.

FCL stores changes in a sparse file in the file system namespace. The FCL file is
located in mount_point/lost+found/changelog. The FCL file behaves like a
regular file, but some operations are prohibited. The standard system calls open(2),
lseek(2), read(2) and close(2) can access the data in the FCL, while the write(2),
mmap(2) and rename(2) calls are not allowed.

Warning: Although some standard system calls are currently supported, the FCL
file might be pulled out of the namespace in future VxFS release and these system
calls may no longer work. It is recommended that all new applications be developed
using the programmatic interface.

The FCL log file contains both the information about the FCL, which is stored in the
FCL superblock, and the changes to files and directories in the file system, which
is stored as FCL records.

See “File Change Log programmatic interface” on page 976.

In the 4.1 release, the structure of the File Change Log file was exposed through
the /opt/VRTS/include/sys/fs/fcl.h header file. In this release, the internal
structure of the FCL file is opaque. The recommended mechanism to access the
FCL is through the API described by the
/opt/VRTSfssdk/5.1.100.000/include/vxfsutil.h header file.

The /opt/VRTS/include/sys/fs/fcl.h header file is included in this release to
ensure that applications accessing the FCL with the 4.1 header file do not break.
New applications should use the new FCL API described in
/opt/VRTSfssdk/6.0.000.000/include/vxfsutil.h. Existing applications should
also be modified to use the new FCL API.

To provide backward compatibility for the existing applications, this release supports
multiple FCL versions. Users have the flexibility of specifying the FCL version for
new FCLs. The default FCL version is 4.

See the fcladm(1M) man page.

File Change Log administrative interface
The FCL can be set up and tuned through the fcladm and vxtunefs VxFS
administrative commands.

973File Change Log
About the File Change Log file

See the fcladm(1M) and vxtunefs(1M) manual pages.

The FCL keywords for fcladm are as follows:

Disables the recording of the audit, open, close, and statistical
events after it has been set.

clear

Creates a regular file image of the FCL file that can be downloaded
to an off-host processing system. This file has a different format
than the FCL file.

dump

Activates the FCL on a mounted file system. VxFS 5.0 and later
releases support either FCL Versions 3 or 4. If no version is
specified, the default is Version 4. Use fcladm on to specify the
version.

on

Prints the contents of the FCL file starting from the specified offset.print

Restores the FCL file from the regular file image of the FCL file
created by the dump keyword.

restore

Removes the FCL file. You must first deactivate the FCL with the
off keyword, before you can remove the FCL file.

rm

Enables the recording of events specified by the 'eventlist' option.

See the fcladm(1M) manual page.

set

Writes the current state of the FCL to the standard output.state

Brings the FCL to a stable state by flushing the associated data of
an FCL recording interval.

sync

The FCL tunable parameters for vxtunefs are as follows:

Specifies the duration in seconds that FCL records stay in the FCL
file before they can be purged. The first records to be purged are
the oldest ones, which are located at the beginning of the file.
Additionally, records at the beginning of the file can be purged if
allocation to the FCL file exceeds fcl_maxalloc bytes. The
default value of fcl_keeptime is 0. If the fcl_maxalloc
parameter is set, records are purged from the FCL file if the amount
of space allocated to the FCL file exceeds fcl_maxalloc. This
is true even if the elapsed time the records have been in the log is
less than the value of fcl_keeptime.

fcl_keeptime

974File Change Log
File Change Log administrative interface

Specifies the maximum number of spaces in bytes to be allocated
to the FCL file. When the space allocated exceeds fcl_maxalloc,
a hole is punched at the beginning of the file. As a result, records
are purged and the first valid offset (fc_foff) is updated. In
addition, fcl_maxalloc may be violated if the oldest record has
not reached fcl_keeptime.

The minimum value of fcl_maxalloc is 4 MB. The default value
is fs_size/33.

fcl_maxalloc

Specifies the time in seconds that must elapse before the FCL
records an overwrite, extending write, or a truncate. This helps to
reduce the number of repetitive records in the FCL. The
fcl_winterval timeout is per inode. If an inode happens to go
out of cache and returns, its write interval is reset. As a result, there
could be more than one write record for that file in the same write
interval. The default value is 3600 seconds.

fcl_winterval

The time interval in seconds within which subsequent opens of a
file do not produce an additional FCL record. This helps to reduce
the number of repetitive records logged in the FCL file. If the tracking
of access information is also enabled, a subsequent file open even
within the fcl_ointerval may produce a record, if it is opened
by a different user. Similarly, if the inode is bumped out of cache,
this may also produce more than one record within the same open
interval.

The default value is 600 sec.

fcl_ointerval

Either or both fcl_maxalloc and fcl_keeptime must be set to activate the FCL
feature. The following are examples of using the fcladm command.

To activate FCL for a mounted file system, type the following:

fcladm on mount_point

To deactivate the FCL for a mounted file system, type the following:

fcladm off mount_point

To remove the FCL file for a mounted file system, on which FCL must be turned
off, type the following:

fcladm rm mount_point

To obtain the current FCL state for a mounted file system, type the following:

fcladm state mount_point

975File Change Log
File Change Log administrative interface

To enable tracking of the file opens along with access information with each event
in the FCL, type the following:

fcladm set fileopen,accessinfo mount_point

To stop tracking file I/O statistics in the FCL, type the following:

fcladm clear filestats mount_point

Print the on-disk FCL super-block in text format to obtain information about the FCL
file by using offset 0. Because the FCL on-disk super-block occupies the first block
of the FCL file, the first and last valid offsets into the FCL file can be determined
by reading the FCL super-block and checking the fc_foff field. Enter:

fcladm print 0 mount_point

To print the contents of the FCL in text format, of which the offset used must be
32-byte aligned, enter:

fcladm print offset mount_point

File Change Log programmatic interface
VxFS provides an enhanced API to simplify reading and parsing the FCL file in two
ways:

The API simplifies user tasks by reducing additional code needed
to parse FCL file entries. In 4.1, to obtain event information such
as a remove or link, the user was required to write additional code
to get the name of the removed or linked file. In this release, the
API allows the user to directly read an assembled record. The API
also allows the user to specify a filter to indicate a subset of the
event records of interest.

Simplified reading

Providing API access for the FCL feature allows backward
compatibility for applications. The API allows applications to parse
the FCL file independent of the FCL layout changes. Even if the
hidden disk layout of the FCL changes, the API automatically
translates the returned data to match the expected output record.
As a result, the user does not need to modify or recompile the
application due to changes in the on-disk FCL layout.

Backward compatibility

The following sample code fragment reads the FCL superblock, checks that the
state of the FCL is VX_FCLS_ON, issues a call to vxfs_fcl_sync to obtain a finishing
offset to read to, determines the first valid offset in the FCL file, then reads the

976File Change Log
File Change Log programmatic interface

entries in 8K chunks from this offset. The section process fcl entries is what an
application developer must supply to process the entries in the FCL file.

#include <stdint.h>

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/fcntl.h>

#include <errno.h>

#include <fcl.h>

#include <vxfsutil.h>

#define FCL_READSZ 8192

char* fclname = "/mnt/lost+found/changelog";

int read_fcl(fclname) char* fclname;

{

struct fcl_sb fclsb;

uint64_t off, lastoff;

size_t size;

char buf[FCL_READSZ], *bufp = buf;

int fd;

int err = 0;

if ((fd = open(fclname, O_RDONLY)) < 0) {

return ENOENT;

}

if ((off = lseek(fd, 0, SEEK_SET)) != 0) {

close(fd);

return EIO;

}

size = read(fd, &fclsb, sizeof (struct fcl_sb));

if (size < 0) {

close(fd);

return EIO;

}

if (fclsb.fc_state == VX_FCLS_OFF) {

close(fd);

return 0;

}

if (err = vxfs_fcl_sync(fclname, &lastoff)) {

close(fd);

return err;

}

if ((off = lseek(fd, off_t, uint64_t)) != uint64_t) {

close(fd);

977File Change Log
File Change Log programmatic interface

return EIO;

}

while (off < lastoff) {

if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {

close(fd);

return errno;

}

/* process fcl entries */

off += size;

}

close(fd);

return 0;

}

Summary of API functions
The following is a brief summary of File Change Log API functions:

Closes the FCL file and cleans up resources associated with the
handle.

vxfs_fcl_close()

Returns an opaque structure that embeds the current FCL activation
time and the current offset. This cookie can be saved and later
passed to vxfs_fcl_seek() function to continue reading from
where the application last stopped.

vxfs_fcl_cookie()

Returns information such as the state and version of the FCL file.vxfs_fcl_getinfo()

Opens the FCL file and returns a handle that can be used for further
operations.

vxfs_fcl_open()

Reads FCL records of interest into a buffer specified by the user.vxfs_fcl_read()

Extracts data from the specified cookie and then seeks to the
specified offset.

vxfs_fcl_seek()

Seeks to the first record in the FCL after the specified time.vxfs_fcl_seektime()

978File Change Log
Summary of API functions

Reference

■ Chapter 41. Reverse path name lookup

■ Appendix A. Tunable parameters

■ Appendix B. Veritas File System disk layout

■ Appendix C. Command reference

■ Appendix D. Creating a starter database

11Section

Reverse path name lookup
This chapter includes the following topics:

■ About reverse path name lookup

About reverse path name lookup
The reverse path name lookup feature obtains the full path name of a file or directory
from the inode number of that file or directory. The inode number is provided as an
argument to the vxlsino administrative command, or the vxfs_inotopath_gen(3)
application programming interface library function.

The reverse path name lookup feature can be useful for a variety of applications,
such as for clients of the VxFS File Change Log feature, in backup and restore
utilities, and for replication products. Typically, these applications store information
by inode numbers because a path name for a file or directory can be very long,
thus the need for an easy method of obtaining a path name.

An inode is a unique identification number for each file in a file system. An inode
contains the data and metadata associated with that file, but does not include the
file name to which the inode corresponds. It is therefore relatively difficult to
determine the name of a file from an inode number. The ncheck command provides
a mechanism for obtaining a file name from an inode identifier by scanning each
directory in the file system, but this process can take a long period of time. The
VxFS reverse path name lookup feature obtains path names relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path
name lookup feature cannot track symbolic links to files.

Because of the possibility of errors with processes renaming or unlinking and creating
new files, it is advisable to perform a lookup or open with the path name and verify
that the inode number matches the path names obtained.

41Chapter

See the vxlsino(1M), vxfs_inotopath_gen(3), and vxfs_inotopath(3) manual
pages.

981Reverse path name lookup
About reverse path name lookup

Tunable parameters
This appendix includes the following topics:

■ About tuning Veritas Storage Foundation Cluster File System High Availability

■ Tuning the VxFS file system

■ DMP tunable parameters

■ Methods to change Veritas Dynamic Multi-Pathing tunable parameters

■ Tunable parameters for VxVM

■ Methods to change Veritas Volume Manager tunable parameters

■ About LLT tunable parameters

■ About GAB tunable parameters

■ About VXFEN tunable parameters

■ About AMF tunable parameters

About tuning Veritas Storage Foundation Cluster
File System High Availability

Veritas Storage Foundation Cluster File System High Availability (SFCFSHA) is
widely used in a range of environments where performance plays a critical role.
SFCFSHA has a number of tunable parameters and configuration options that are
meant to enable customization of the stack for the particular environment and
workload in which SFCFSHA is used. This guide helps administrators understand
how some of these options affect performance, and provides guidelines for tuning
the options.

AAppendix

Warning: Symantec recommends that you do not change the tunable VCS kernel
parameters without assistance from Symantec support personnel. Several of the
tunable parameters preallocate memory for critical data structures, and a change
in their values could increase memory use or degrade performance.

Tuning the VxFS file system
This section describes the following kernel tunable parameters in VxFS:

■ Tuning inode table size

■ Tuning performance optimization of inode allocation

■ Tuning file system parallel direct I/O

■ Veritas Volume Manager maximum I/O size

■ Partitioned directories

Tuning inode table size
VxFS caches inodes in an inode table. The tunable for VxFS to determine the
number of entries in its inode table is vxfs_ninode.

VxFS uses the value of vxfs_ninode in /etc/modprobe.conf as the number of
entries in the VxFS inode table. By default, the file system uses a value of
vxfs_ninode, which is computed based on system memory size. To increase the
value, make the following change in /etc/modprobe.conf and reboot:

options vxfs vxfs_ninode=new_value

The new parameters take affect after a reboot or after the VxFS module is unloaded
and reloaded. The VxFS module can be loaded using the modprobe command or
automatically when a file system is mounted.

See the modprobe(8) manual page.

Note: New parameters in the /etc/modprobe.conf file are not read by the insmod

vxfs command.

Tuning performance optimization of inode allocation
The delicache_enable tunable parameter specifies whether performance
optimization of inode allocation and inode reuse during a new file creation is turned

983Tunable parameters
Tuning the VxFS file system

on or off. The delicache_enable tunable is not supported for cluster file systems.
You can specify the following values fordelicache_enable:

■ 0 – Disables delicache optimization.

■ 1 – Enables delicache optimization.

The default value of delicache_enable is 1 for local mounts and 0 for cluster file
systems.

Tuning file system parallel direct I/O
OnVxFS, each iovec is performed synchronously for the readv(2) call and writev(2)
call. For both readv(2) and writev(2), the Single Unix Specification states, "The
readv/writev() function shall always fill an area completely before proceeding to the
next." However, for direct I/O, Linux ignores this requirement and submits a number
of iovecs in parallel before waiting for completion. Veritas File System (VxFS)
performs parallel direct I/O for both reads and writes, which improves VxFS
performance. This support for parallel direct I/O can be enabled by setting the VxFS
module load tunable vx_parallel_dio.

To enable parallel direct I/O, make the following change in the /etc/modprobe.conf

file and reboot the system:

options vxfs vx_parallel_dio=1

Partitioned directories
You can enable or disable the partitioned directories feature by setting the
pdir_enable tunable. Specifying a value of 1 enables partitioned directories, while
specifying a value of 0 disables partitioned directories. The default value is 1.

You can set the pdir_threshold tunable to specify the threshold value in terms of
directory size in bytes beyond which VxFS will partition a directory if you enabled
partitioned directories. The default value is 32768.

The -d option of the fsadm command removes empty hidden directories from
partitioned directories. If you disabled partitioned directories, the fsadm -d command
also converts partitioned directories to regular directories.

The partitioned directories feature operates only on disk layout Version 8 or later
file systems.

984Tunable parameters
Tuning the VxFS file system

Warning: If the directories are huge, conversion between partitioned directories
and regular directories or vice versa needs some time. If you enable the feature
when the root directory already contains a large number of files, the conversion
can occur at file system mount time, and can cause the mount to take a long time.
Symantec recommends that the conversion is performed when directories are
slightly or not populated.

Veritas Volume Manager maximum I/O size
When using VxFS with Veritas Volume Manager (VxVM), VxVM by default breaks
up I/O requests larger than 256K. When using striping, to optimize performance,
the file system issues I/O requests that are up to a full stripe in size. If the stripe
size is larger than 256K, those requests are broken up.

To avoid undesirable I/O breakup, you can increase the maximum I/O size by
changing the value of the vol_maxio parameter in the /etc/modprobe.conf file.

Native asynchronous I/O with cloned processes
You can enable or disable native asynchronous I/O with cloned processes by setting
the vx_allow_cloned_naio tunable. Specifying a value of 1 enables native
asynchronous I/O with cloned processes, while specifying a value of 0 disables
native asynchronous I/O with cloned processes. The default value is 0.

Processes that are cloned by using the CLONE_VM flag share an address space with
their parent. When such threads issue native asynchronous I/O by using the
io_submit() call, the system can panic if those threads return and exit before the
I/O completes. You can avoid this issue by setting the vx_allow_cloned_naio

tunable to 0, which causes such threads to issue the I/O synchronously.

Well-behaved applications that do not have threads exiting with pending
asynchronous I/O do not have this restriction. When using such applications, such
as Sybase, you can set the vx_allow_cloned_naio tunable to 1, which avoids the
performance impact of such threads having asynchronous I/O become synchronous.

DMP tunable parameters
DMP provides various parameters that you can use to tune your environment.

Table A-1 shows the DMP parameters that can be tuned. You can set a tunable
parameter online, without a reboot.

985Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable

DescriptionParameter

If this parameter is set to on, the first open of a device
that is performed by an array support library (ASL) is
cached. This caching enhances the performance of
device discovery by minimizing the overhead that is
caused by subsequent opens by ASLs. If this
parameter is set to off, caching is not performed.

The default value is on.

dmp_cache_open

The number of kernel threads that are available for
servicing path error handling, path restoration, and
other DMP administrative tasks.

The default number of threads is 10.

dmp_daemon_count

How long DMP should wait before retrying I/O after an
array fails over to a standby path. Some disk arrays
are not capable of accepting I/O requests immediately
after failover.

The default value is 15 seconds.

dmp_delayq_interval

Whether DMP should try to obtain SCSI error
information directly from the HBA interface. Setting the
value to on can potentially provide faster error
recovery, if the HBA interface supports the error enquiry
feature. If this parameter is set to off, the HBA
interface is not used.

The default setting is on.

dmp_fast_recovery

DMP detects intermittently failing paths, and prevents
I/O requests from being sent on them. The value of
dmp_health_time represents the time in seconds
for which a path must stay healthy. If a path’s state
changes back from enabled to disabled within this time
period, DMP marks the path as intermittently failing,
and does not re-enable the path for I/O until
dmp_path_age seconds elapse.

The default value is 60 seconds.

A value of 0 prevents DMP from detecting intermittently
failing paths.

dmp_health_time

986Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

The level of detail that is displayed for DMP console
messages. The following level values are defined:

1 — Displays all DMP log messages that existed in
releases before 5.0.

2 — Displays level 1 messages plus messages that
relate to path or disk addition or removal, SCSI errors,
IO errors and DMP node migration.

3 — Displays level 1 and 2 messages plus messages
that relate to path throttling, suspect path, idle path and
insane path logic.

4 — Displays level 1, 2 and 3 messages plus messages
that relate to setting or changing attributes on a path
and tunable related changes.

The default value is 1.

dmp_log_level

Determines if the path probing by restore daemon is
optimized or not. Set it to on to enable optimization
and off to disable. Path probing is optimized only
when restore policy is check_disabled or during
check_disabled phase of check_periodic policy.

The default value is on.

dmp_low_impact_probe

987Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

Specifies a retry period for handling transient errors
that are not handled by the HBA and the SCSI driver.

In general, no such special handling is required.
Therefore, the default value of the
dmp_lun_retry_timeout tunable parameter is 0.
When all paths to a disk fail, DMP fails the I/Os to the
application. The paths are checked for connectivity
only once.

In special cases when DMP needs to handle the
transient errors, configure DMP to delay failing the I/Os
to the application for a short interval. Set the
dmp_lun_retry_timeout tunable parameter to a
non-zero value to specify the interval. If all of the paths
to the LUN fail and I/Os need to be serviced, then DMP
probes the paths every five seconds for the specified
interval. If the paths are restored within the interval,
DMP detects this and retries the I/Os. DMP does not
fail I/Os to a disk with all failed paths until the specified
dmp_lun_retry_timeout interval or until the I/O
succeeds on one of the paths, whichever happens first.

dmp_lun_retry_timeout

Determines whether the Event Source daemon (vxesd)
uses the Storage Networking Industry Association
(SNIA) HBA API. This API allows DDL to improve the
performance of failover by collecting information about
the SAN topology and by monitoring fabric events.

If this parameter is set to on, DDL uses the SNIA HBA
API. Note that the HBA vendor specific HBA-API library
should be available to use this feature.

If this parameter is set to off, the SNIA HBA API is
not used.

The default setting is off for releases before 5.0 that
have been patched to support this DDL feature. The
default setting is on for 5.0 and later releases.

dmp_monitor_fabric

988Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

Determines whether the Event Source daemon (vxesd)
monitors operating system events such as
reconfiguration operations.

If this parameter is set to on, vxesd monitors
operations such as attaching operating system devices.

If this parameter is set to off, vxesd does not monitor
operating system operations. When DMP co-exists
with EMC PowerPath, Symantec recommends setting
this parameter to off to avoid any issues.

The default setting is on, unless EMC PowerPath is
installed. If you install DMP on a system that already
has PowerPath installed, DMP sets the
dmp_monitor_osevent to off.

dmp_monitor_osevent

Determines whether the ownership monitoring is
enabled for ALUA arrays. When this tunable is set to
on, DMP polls the devices for LUN ownership changes.
The polling interval is specified by the
dmp_restore_interval tunable. The default value is on.

When the dmp_monitor_ownership tunable is off,
DMP does not poll the devices for LUN ownership
changes.

dmp_monitor_ownership

Determines whether DMP will do multi-pathing for
native devices.

Set the tunable to on to have DMP do multi-pathing
for native devices.

When Dynamic Multi-Pathing is installed as a
component of Storage Foundation Cluster File System
High Availability, the default value is off.

When Veritas Dynamic Multi-Pathing is installed as a
stand-alone product, the default value is on.

dmp_native_support

The time for which an intermittently failing path needs
to be monitored as healthy before DMP again tries to
schedule I/O requests on it.

The default value is 300 seconds.

A value of 0 prevents DMP from detecting intermittently
failing paths.

dmp_path_age

989Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

The default number of contiguous I/O blocks that are
sent along a DMP path to an array before switching to
the next available path. The value is expressed as the
integer exponent of a power of 2; for example 9
represents 512 blocks.

The default value of is 9. In this case, 512 blocks (256k)
of contiguous I/O are sent over a DMP path before
switching. For intelligent disk arrays with internal data
caches, better throughput may be obtained by
increasing the value of this tunable. For example, for
the HDS 9960 A/A array, the optimal value is between
15 and 17 for an I/O activity pattern that consists mostly
of sequential reads or writes.

This parameter only affects the behavior of the
balanced I/O policy. A value of 0 disables
multi-pathing for the policy unless the vxdmpadm
command is used to specify a different partition size
for an array.

See “Specifying the I/O policy” on page 312.

dmp_pathswitch_blks_shift

If DMP statistics gathering is enabled, set this tunable
to on (default) to have the DMP path restoration thread
probe idle LUNs. Set this tunable to off to turn off this
feature. (Idle LUNs are VM disks on which no I/O
requests are scheduled.) The value of this tunable is
only interpreted when DMP statistics gathering is
enabled. Turning off statistics gathering also disables
idle LUN probing.

The default value is on.

dmp_probe_idle_lun

If the dmp_low_impact_probe is turned on,
dmp_probe_threshold determines the number of paths
to probe before deciding on changing the state of other
paths in the same subpath failover group.

The default value is 5.

dmp_probe_threshold

990Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

If the DMP restore policy is check_periodic, the
number of cycles after which the check_all policy
is called.

The default value is 10.

See “Configuring DMP path restoration policies”
on page 325.

dmp_restore_cycles

The interval attribute specifies how often the path
restoration thread examines the paths. Specify the time
in seconds.

The default value is 300.

The value of this tunable can also be set using the
vxdmpadm start restore command.

See “Configuring DMP path restoration policies”
on page 325.

dmp_restore_interval

The DMP restore policy, which can be set to one of
the following values:

■ check_all

■ check_alternate

■ check_disabled

■ check_periodic

The default value is check_disabled

The value of this tunable can also be set using the
vxdmpadm start restore command.

See “Configuring DMP path restoration policies”
on page 325.

dmp_restore_policy

991Tunable parameters
DMP tunable parameters

Table A-1 DMP parameters that are tunable (continued)

DescriptionParameter

If this parameter is set to enabled, it enables the path
restoration thread to be started.

See “Configuring DMP path restoration policies”
on page 325.

If this parameter is set to disabled, it stops and
disables the path restoration thread.

If this parameter is set to stopped, it stops the path
restoration thread until the next device discovery cycle.

The default is enabled.

See “Stopping the DMP path restoration thread”
on page 327.

dmp_restore_state

When I/O fails on a path with a path busy error, DMP
marks the path as busy and avoids using it for the next
15 seconds. If a path reports a path busy error for
dmp_retry_count number of times consecutively, DMP
marks the path as failed. The default value of
dmp_retry_count is 5.

dmp_retry_count

Determines the timeout value to be set for any SCSI
command that is sent via DMP. If the HBA does not
receive a response for a SCSI command that it has
sent to the device within the timeout period, the SCSI
command is returned with a failure error code.

The default value is 20 seconds.

dmp_scsi_timeout

Determines the minimum number of paths that should
be failed in a failover group before DMP starts
suspecting other paths in the same failover group. The
value of 0 disables the failover logic based on subpath
failover groups.

The default value is 1.

dmp_sfg_threshold

The time interval between gathering DMP statistics.

The default and minimum value are 1 second.

dmp_stat_interval

992Tunable parameters
DMP tunable parameters

Methods to change Veritas DynamicMulti-Pathing
tunable parameters

Veritas Dynamic Multi-Pathing (DMP) provides a variety of parameters that you
can use to tune your configuration.

See “DMP tunable parameters” on page 985.

Change the DMP tunable parameters with one of the following methods:

See “Changing the values of DMP parameters
with the vxdmpadm settune command line”
on page 993.

Use the vxdmpadm settune command to
display or modify the values.

See “About tuning Veritas Dynamic
Multi-Pathing (DMP) with templates”
on page 993.

Use the template method of the vxdmpadm
command.

Changing the values of DMP parameters with the vxdmpadm settune
command line

To set a DMP timable parameter, use the following command:

vxdmpadm settune dmp_tunable=value

To display the values of the DMP tunable parameters, use the following command:

vxdmpadm gettune [dmp_tunable]

You can also use the template method to view or change DMP tunable parameters.

See “About tuning Veritas Dynamic Multi-Pathing (DMP) with templates” on page 993.

About tuning Veritas Dynamic Multi-Pathing (DMP) with templates
Veritas Dynamic Multi-Pathing has multiple tunable parameters and attributes that
you can configure for optimal performance. DMP provides a template method to
update several tunable parameters and attributes with a single operation. The
template represents a full or partial DMP configuration, showing the values of the
parameters and attributes of the host.

To view and work with the tunable parameters, you can dump the configuration
values of the DMP tunable parameters to a file. Edit the parameters and attributes,
if required. Then, load the template file to a host to update all of the values in a
single operation.

993Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

You can load the configuration file to the same host, or to another similar host. The
template method is useful for the following scenarios:

■ Configure multiple similar hosts with the optimal performance tuning values.
Configure one host for optimal performance. After you have configured the host,
dump the tunable parameters and attributes to a template file. You can then
load the template file to another host with similar requirements. Symantec
recommends that the hosts that use the same configuration template have the
same operating system and similar I/O requirements.

■ Define multiple specialized templates to handle different I/O load requirements.
When the load changes on a host, you can load a different template for the best
performance. This strategy is appropriate for predictable, temporary changes
in the I/O load. As the system administrator, after you define the system's I/O
load behavior, you can customize tuning templates for particular loads. You can
then automate the tuning, since there is a single load command that you can
use in scripts or cron jobs.

At any time, you can reset the configuration, which reverts the values of the tunable
parameters and attributes to the DMP default values.

You can manage the DMP configuration file with the vxdmpadm config commands.

See the vxdmpadm(1m) man page.

DMP tuning templates
The template mechanism enables you to tune DMP parameters and attributes by
dumping the configuration values to a file, or to standard output.

DMP supports tuning the following types of information with template files:

■ DMP tunable parameters.

■ DMP attributes defined for an enclosure, array name, or array type.

■ Veritas naming scheme parameters.

The template file is divided into sections, as follows:

Applied to all enclosures and arrays.DMP Tunables

Applied to all enclosures and arrays.Namingscheme

Use to customize array types. Applied to all
of the enclosures of the specified array type.

Arraytype

994Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

Use if particular arrays need customization;
that is, if the tunables vary from those applied
for the array type.

Attributes in this section are applied to all of
the enclosures of the specified array name.

Arrayname

Applied to the enclosures of the specified Cab
serial number and array name.

Use if particular enclosures need
customization; that is, if the tunables vary
from those applied for the array type and
array name.

Enclosurename

Loading is atomic for the section. DMP loads each section only if all of the attributes
in the section are valid. When all sections have been processed, DMP reports the
list of errors and warns the user. DMP does not support a partial rollback. DMP
verifies the tunables and attributes during the load process. However, Symantec
recommends that you check the configuration template file before you attempt to
load the file. Make any required corrections until the configuration file validates
correctly.

The attributes are given priority in the following order when a template is loaded:

Enclosure Section > Array Name Section > Array Type Section

If all enclosures of the same array type need the same settings, then remove the
corresponding array name and enclosure name sections from the template. Define
the settings only in the array type section. If some of the enclosures or array names
need customized settings, retain the attribute sections for the array names or
enclosures. You can remove the entries for the enclosures or the array names if
they use the same settings that are defined for the array type.

When you dump a configuration file from a host, that host may contain some arrays
which are not visible on the other hosts. When you load the template to a target
host that does not include the enclosure, array type, or array name, DMP ignores
the sections.

You may not want to apply settings to non-shared arrays or some host-specific
arrays on the target hosts. Be sure to define an enclosure section for each of those
arrays in the template. When you load the template file to the target host, the
enclosure section determines the settings. Otherwise, DMP applies the settings
from the respective array name or array type sections.

Example DMP tuning template
This section shows an example of a DMP tuning template.

995Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

DMP Tunables

dmp_cache_open=on

dmp_daemon_count=10

dmp_delayq_interval=15

dmp_restore_state=enabled

dmp_fast_recovery=on

dmp_health_time=60

dmp_log_level=1

dmp_low_impact_probe=on

dmp_lun_retry_timeout=0

dmp_path_age=300

dmp_pathswitch_blks_shift=9

dmp_probe_idle_lun=on

dmp_probe_threshold=5

dmp_restore_cycles=10

dmp_restore_interval=300

dmp_restore_policy=check_disabled

dmp_retry_count=5

dmp_scsi_timeout=20

dmp_sfg_threshold=1

dmp_stat_interval=1

dmp_monitor_ownership=on

dmp_monitor_fabric=on

dmp_monitor_osevent=off

dmp_native_support=off

Namingscheme

namingscheme=ebn

persistence=yes

lowercase=yes

use_avid=yes

Arraytype

arraytype=CLR-A/PF

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

Arraytype

arraytype=ALUA

iopolicy=adaptive

partitionsize=512

use_all_paths=no

recoveryoption=nothrottle

996Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

recoveryoption=timebound iotimeout=300

redundancy=0

Arraytype

arraytype=Disk

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

Arrayname

arrayname=EMC_CLARiiON

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

Arrayname

arrayname=EVA4K6K

iopolicy=adaptive

partitionsize=512

use_all_paths=no

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

Arrayname

arrayname=Disk

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

Enclosure

serial=CK200051900278

arrayname=EMC_CLARiiON

arraytype=CLR-A/PF

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

dmp_lun_retry_timeout=0

Enclosure

serial=50001FE1500A8F00

997Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

arrayname=EVA4K6K

arraytype=ALUA

iopolicy=adaptive

partitionsize=512

use_all_paths=no

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

dmp_lun_retry_timeout=0

Enclosure

serial=50001FE1500BB690

arrayname=EVA4K6K

arraytype=ALUA

iopolicy=adaptive

partitionsize=512

use_all_paths=no

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

dmp_lun_retry_timeout=0

Enclosure

serial=DISKS

arrayname=Disk

arraytype=Disk

iopolicy=minimumq

partitionsize=512

recoveryoption=nothrottle

recoveryoption=timebound iotimeout=300

redundancy=0

dmp_lun_retry_timeout=0

Tuning a DMP host with a configuration attribute template
You can use a template file to upload a series of changes to the DMP configuration
to the same host or to another similar host.

Symantec recommends that you load the DMP template to a host that is similar to
the host that was the source of the tunable values.

998Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

To configure DMP on a host with a template

1 Dump the contents of the current host configuration to a file.

vxdmpadm config dump file=filename

2 Edit the file to make any required changes to the tunable parameters in the
template.

The target host may include non-shared arrays or host-specific arrays. To avoid
updating these with settings from the array name or array type, define an
enclosure section for each of those arrays in the template. When you load the
template file to the target host, the enclosure section determines the settings.
Otherwise, DMP applies the settings from the respective array name or array
type sections.

3 Validate the values of the DMP tunable parameters.

vxdmpadm config check file=filename

DMP displays no output if the configuration check is successful. If the file
contains errors, DMP displays the errors. Make any required corrections until
the configuration file is valid. For example, you may see errors such as the
following:

VxVM vxdmpadm ERROR V-5-1-0 Template file 'error.file' contains

following errors:

Line No: 22 'dmp_daemon_count' can not be set to 0 or less

Line No: 44 Specified value for 'dmp_health_time' contains

non-digits

Line No: 64 Specified value for 'dmp_path_age' is beyond

the limit of its value

Line No: 76 'dmp_probe_idle_lun' can be set to either on or off

Line No: 281 Unknown arraytype

4 Load the file to the target host.

vxdmpadm config load file=filename

During the loading process, DMP validates each section of the template. DMP
loads all valid sections. DMP does not load any section that contains errors.

Managing the DMP configuration files
You can display the name of the template file most recently loaded to the host. The
information includes the date and time when DMP loaded the template file.

999Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

To display the name of the template file that the host currently uses

◆ # vxdmpadm config show

TEMPLATE_FILE DATE TIME

==

/tmp/myconfig Feb 09, 2011 11:28:59

Resetting the DMP tunable parameters and attributes to
the default values
DMP maintains the default values for the DMP tunable parameters and attributes.
At any time, you can restore the default values to the host. Any changes that you
applied to the host with template files are discarded.

To reset the DMP tunables to the default values

◆ Use the following command:

vxdmpadm config reset

DMP tunable parameters and attributes that are supported
for templates
DMP supports tuning the following tunable parameters and attributes with a
configuration template.

See “DMP tunable parameters” on page 985.DMP tunable parameters

■ iopolicy
■ partitionsize
■ use_all_paths
■ recoveryoption attributes (retrycount or

iotimeout)
■ redundancy
■ dmp_lun_retry_timeout

DMP attributes defined for an enclosure, array
name, or array type.

■ naming scheme
■ persistence
■ lowercase
■ use_avid

Naming scheme attributes:

The following tunable parameters are NOT supported with templates:

■ OS tunables

1000Tunable parameters
Methods to change Veritas Dynamic Multi-Pathing tunable parameters

■ TPD mode

■ Failover attributes of enclosures (failovermode)

Tunable parameters for VxVM
Veritas Volume Manager (VxVM) has several parameters that you can use to tune
the environment. The VxVM tunable parameters comprise several components.

The VxVM components for tunable parameters are as follows:

■ basevm
Parameters to tune the core functionality of VxVM.
See “Tunable parameters for core VxVM” on page 1001.

■ cvm
Parameters to tune Cluster Volume Manager (CVM).
See “Tunable parameters for CVM” on page 1012.

■ fmr
Parameters to tune the FlashSnap functionality (FMR).
See “Tunable parameters for FlashSnap (FMR)” on page 1007.

■ vvr
Parameters to tune Veritas Volume Replicator (VVR).
See “Tunable parameters for VVR” on page 1012.

Tunable parameters for core VxVM
Table A-2 lists the kernel tunable parameters for VxVM.

You can tune the parameters using the vxtune command or the operating system
method, unless otherwise noted.

1001Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM

DescriptionParameter

The interval at which utilities performing recoveries or
resynchronization operations load the current offset into
the kernel as a checkpoint. A system failure during such
operations does not require a full recovery, but can
continue from the last reached checkpoint.

The default value is 20480 sectors (10MB).

Increasing this size reduces the overhead of checkpoints
on recovery operations at the expense of additional
recovery following a system failure during a recovery.

vol_checkpt_default

The count in clock ticks for which utilities pause if they
have been directed to reduce the frequency of issuing
I/O requests, but have not been given a specific delay
time. This tunable is used by utilities performing
operations such as resynchronizing mirrors or rebuilding
RAID-5 columns.

The default value is 50 ticks.

Increasing this value results in slower recovery
operations and consequently lower system impact while
recoveries are being performed.

vol_default_iodelay

The maximum size of the memory pool that is used for
administrative I/O operations. VxVM uses this pool when
throttling administrative I/O.

The default value is 64MB. The maximum size must not
be greater than the value of the
voliomem_maxpool_sz parameter.

vol_max_adminio_poolsz

This parameter cannot be tuned with the vxtune
command. The maximum number of volumes that can
be created on the system. The minimum permitted value
is 1. The maximum permitted value is the maximum
number of minor numbers representable on the system.

The default value is 65534.

vol_max_vol

1002Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM (continued)

DescriptionParameter

The maximum size of logical I/O operations that can be
performed without breaking up the request. I/O requests
to VxVM that are larger than this value are broken up
and performed synchronously. Physical I/O requests
are broken up based on the capabilities of the disk
device and are unaffected by changes to this maximum
logical request limit.

The default value is 2048 sectors (1MB).

The value of voliomem_maxpool_szmust be at least
10 times greater than the value of vol_maxio.

If DRL sequential logging is configured, the value of
voldrl_min_regionsz must be set to at least half
the value of vol_maxio.

vol_maxio

The maximum size of data that can be passed into
VxVM via an ioctl call. Increasing this limit allows
larger operations to be performed. Decreasing the limit
is not generally recommended, because some utilities
depend upon performing operations of a certain size
and can fail unexpectedly if they issue oversized ioctl
requests.

The default value is 32768 bytes (32KB).

vol_maxioctl

The number of I/O operations that the vxconfigd
daemon is permitted to request from the kernel in a
single VOL_VOLDIO_READ per VOL_VOLDIO_WRITE
ioctl call.

The default value is 256. This value should not be
changed.

vol_maxparallelio

1003Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM (continued)

DescriptionParameter

The maximum size of an I/O request that can be issued
by an ioctl call. Although the ioctl request itself can
be small, it can request that a large I/O request be
performed. This tunable limits the size of these I/O
requests. If necessary, a request that exceeds this value
can be failed, or the request can be broken up and
performed synchronously.

The default value is 2048 sectors.

Raising this limit can cause difficulties if the size of an
I/O request causes the process to take more memory
or kernel virtual mapping space than exists and thus
deadlock. The maximum limit for this tunable is 20% of
the smaller of physical memory or kernel virtual memory.
It is inadvisable to go over this limit, because deadlock
is likely to occur.

If stripes are larger than the value of this tunable, full
stripe I/O requests are broken up, which prevents
full-stripe read/writes. This throttles the volume I/O
throughput for sequential I/O or larger I/O requests.

This tunable limits the size of an I/O request at a higher
level in VxVM than the level of an individual disk. For
example, for an 8 by 64KB stripe, a value of 256KB only
allows I/O requests that use half the disks in the stripe;
thus, it cuts potential throughput in half. If you have more
columns or you have used a larger interleave factor,
then your relative performance is worse.

This tunable must be set, as a minimum, to the size of
your largest stripe (RAID-0 or RAID-5).

vol_maxspecialio

Enables or disables the I/O stat collection for Veritas
Volume manager objects. The default value is 1, since
this functionality is enabled by default.

vol_stats_enable

The maximum number of subdisks that can be attached
to a single plex. The default value of this tunable is 4096.

vol_subdisk_num

1004Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM (continued)

DescriptionParameter

The granularity of memory chunks used by VxVM when
allocating or releasing system memory. A larger
granularity reduces CPU overhead by allowing VxVM
to retain hold of a larger amount of memory.

The value of this tunable parameter depends on the
page size of the system. You cannot specify a value
larger than the default value. If you change the value,
VxVM aligns the values to the page size when the
system reboots.

The default value is 32KB for 512 Byte page size.

voliomem_chunk_size

The maximum memory requested from the system by
VxVM for internal purposes. This tunable has a direct
impact on the performance of VxVM as it prevents one
I/O operation from using all the memory in the system.

VxVM allocates two pools that can grow up to this size,
one for RAID-5 and one for mirrored volumes. Additional
pools are allocated if instant (Copy On Write) snapshots
are present.

A write request to a RAID-5 volume that is greater than
one fourth of the pool size is broken up and performed
in chunks of one tenth of the pool size.

A write request to a mirrored volume that is greater than
the pool size is broken up and performed in chunks of
the pool size.

The default value is 134217728 (128MB).

The value of voliomem_maxpool_szmust be greater
than the value of volraid_minpool_size.

The value of voliomem_maxpool_szmust be at least
10 times greater than the value of vol_maxio.

voliomem_maxpool_sz

1005Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM (continued)

DescriptionParameter

The default size of the buffer maintained for error tracing
events. This buffer is allocated at driver load time and
is not adjustable for size while VxVM is running.

The default value is 16384 bytes (16KB).

Increasing this buffer can provide storage for more error
events at the expense of system memory. Decreasing
the size of the buffer can result in an error not being
detected via the tracing device. Applications that depend
on error tracing to perform some responsive action are
dependent on this buffer.

voliot_errbuf_dflt

The default size for the creation of a tracing buffer in
the absence of any other specification of desired kernel
buffer size as part of the trace ioctl.

The default value is 8192 bytes (8KB).

If trace data is often being lost due to this buffer size
being too small, then this value can be increased.

voliot_iobuf_default

The upper limit to the size of memory that can be used
for storing tracing buffers in the kernel. Tracing buffers
are used by the VxVM kernel to store the tracing event
records. As trace buffers are requested to be stored in
the kernel, the memory for them is drawn from this pool.

Increasing this size can allow additional tracing to be
performed at the expense of system memory usage.
Setting this value to a size greater than can readily be
accommodated on the system is inadvisable.

The default value is 131072 bytes (128KB).

voliot_iobuf_limit

The maximum buffer size that can be used for a single
trace buffer. Requests of a buffer larger than this size
are silently truncated to this size. A request for a
maximal buffer size from the tracing interface results
(subject to limits of usage) in a buffer of this size.

The default value is 65536 bytes (64KB).

Increasing this buffer can provide for larger traces to be
taken without loss for very heavily used volumes.

Do not increase this value above the value for the
voliot_iobuf_limit tunable value.

voliot_iobuf_max

1006Tunable parameters
Tunable parameters for VxVM

Table A-2 Kernel tunable parameters for core VxVM (continued)

DescriptionParameter

The maximum number of tracing channels that can be
open simultaneously. Tracing channels are clone entry
points into the tracing device driver. Each vxtrace
process running on a system consumes a single trace
channel.

The default number of channels is 32.

The allocation of each channel takes up approximately
20 bytes even when the channel is not in use.

voliot_max_open

This parameter cannot be tuned with the vxtune
command. The initial amount of memory that is
requested from the system by VxVM for RAID-5
operations. The maximum size of this memory pool is
limited by the value of voliomem_maxpool_sz.

The default value is 8192 sectors (4MB).

volraid_minpool_size

The maximum number of transient reconstruct
operations that can be performed in parallel for RAID-5.
A transient reconstruct operation is one that occurs on
a non-degraded RAID-5 volume that has not been
predicted. Limiting the number of these operations that
can occur simultaneously removes the possibility of
flooding the system with many reconstruct operations,
and so reduces the risk of causing memory starvation.

The default value is 1.

Increasing this size improves the initial performance on
the system when a failure first occurs and before a
detach of a failing object is performed, but can lead to
memory starvation.

volraid_rsrtransmax

Tunable parameters for FlashSnap (FMR)
Table A-3 lists the kernel tunable parameters for FlashSnap. The vxtune command
classifies these parameters under the FMR component.

You can tune the parameters using the vxtune command or the operating system
method, unless otherwise noted.

1007Tunable parameters
Tunable parameters for VxVM

Table A-3 Kernel tunable parameters for FlashSnap (FMR)

DescriptionParameter

The maximum size in kilobytes of the bitmap that
Non-Persistent FastResync uses to track changed
blocks in a volume. The number of blocks in a volume
that are mapped to each bit in the bitmap depends on
the size of the volume, and this value changes if the
size of the volume is changed.

For example, if the volume size is 1 gigabyte and the
system block size is 512 bytes, a value for this tunable
of 4 yields a map that contains 16,384 bits, each bit
representing one region of 128 blocks.

The larger the bitmap size, the fewer the number of
blocks that are mapped to each bit. This can reduce
the amount of reading and writing required on
resynchronization, at the expense of requiring more
non-pageable kernel memory for the bitmap.
Additionally, on clustered systems, a larger bitmap size
increases the latency in I/O performance, and it also
increases the load on the private network between the
cluster members. This is because every other member
of the cluster must be informed each time a bit in the
map is marked.

Since the region size must be the same on all nodes
in a cluster for a shared volume, the value of this
tunable on the master node overrides the tunable
values on the slave nodes, if these values are different.
Because the value of a shared volume can change,
the value of this tunable is retained for the life of the
volume.

In configurations which have thousands of mirrors with
attached snapshot plexes, the total memory overhead
can represent a significantly higher overhead in
memory consumption than is usual for VxVM.

The default value is 4KB. The maximum and minimum
permitted values are 1KB and 8KB.

Specify a value to vxtune in Kilobytes.

Note: The value of this tunable does not have any
effect on Persistent FastResync.

vol_fmr_logsz

1008Tunable parameters
Tunable parameters for VxVM

Table A-3 Kernel tunable parameters for FlashSnap (FMR) (continued)

DescriptionParameter

This parameter applies to enhanced DCO layout
(version 30) only.

Represents the number of dirty regions to cache before
another write to the same region causes a DRL update.
A smaller number results in more frequent updates to
the DRL, which decreases performance. A larger
number results in better I/O performance, but requires
that the DRL uses more memory.

The default value is 1024.

voldrl_dirty_regions

The maximum number of dirty regions that can exist
on the system for non-sequential DRL on volumes. A
larger value may result in improved system
performance at the expense of recovery time. This
tunable can be used to regulate the worse-case
recovery time for the system following a failure.

The default value is 2048.

voldrl_max_drtregs

The maximum number of dirty regions allowed for
sequential DRL. This is useful for volumes that are
usually written to sequentially, such as database logs.
Limiting the number of dirty regions allows for faster
recovery if a crash occurs.

The default value is 3.

voldrl_max_seq_dirty

The minimum number of sectors for a dirty region
logging (DRL) volume region. With DRL, VxVM logically
divides a volume into a set of consecutive regions.
Larger region sizes tend to cause the cache hit-ratio
for regions to improve. This improves the write
performance, but it also prolongs the recovery time.

The default value is 512 sectors.

If DRL sequential logging is configured, the value of
voldrl_min_regionsz must be set to at least half
the value of vol_maxio.

Specify the value in sectors.

voldrl_min_regionsz

1009Tunable parameters
Tunable parameters for VxVM

Table A-3 Kernel tunable parameters for FlashSnap (FMR) (continued)

DescriptionParameter

Maximum per-volume limit on dirty regions for a
mirrored volume using traditional DRL. For heavily-used
volumes, increase the value of this parameter to
improve performance.

The default value is 256.

voldrl_volumemax_drtregs

Maximum per-volume limit on dirty regions for a
mirrored volume using version 20 DCO. For
heavily-used volumes, increase the value of this
parameter to improve performance. The default value
is 1024.

voldrl_volumemax_drtregs_20

1010Tunable parameters
Tunable parameters for VxVM

Table A-3 Kernel tunable parameters for FlashSnap (FMR) (continued)

DescriptionParameter

The amount of memory that is allocated for caching
FastResync and cache object metadata. The memory
allocated for this cache is exclusively dedicated and is
not available for other processes or applications.

The default value is 6144KB (6MB).

If cache objects or volumes that are prepared for instant
snapshot operations are present on the system, setting
the value below 512KB fails. If you do not use the
FastResync or DRL features that are implemented
using a version 20 DCO volume, you can set the value
to 0. If you subsequently decide to enable these
features, change the value to an appropriate one.

Specify the value in kilobytes. The new value is
page-aligned automatically; however the actual value
specified is made persistent.

Determine the value based on the region size and the
number of volumes for which instant snapshots are
taken. The paging module size must be at least twice
the size required for the largest size volume, as
calculated with the following formula:

size_in_KB = 6 * (total_volume_size_in_GB) *
(64/region_size_in_KB)

For example, a single 1TB volume requires around
6MB of paging memory if the region size is 64KB. The
minimum value for the tunable parameter is at least
twice that, or 12 MB.

If there are multiple volumes, all volumes share the
same paging module. The maximum requirement is
calculated by multiplying the above formula by the
number of volumes. However, a more reasonable value
depends on the average load to each volume. For
example, if only 20% of the data on each volume is
updated, the paging module size can be reduced
proportionally without compromising the performance.
The minimum requirement for the largest volume still
must be met. For example, if there are 10 volumes of
1TB each, the initial calculation is 60MB of paging
memory. If only 20% of the data is updated, calculate
the revised value as 12MB.

volpagemod_max_memsz

1011Tunable parameters
Tunable parameters for VxVM

Tunable parameters for CVM
Table A-4 lists the kernel tunable parameter for CVM. This tunable cannot be tuned
with the vxtune command.

You can tune the parameters using the vxtune command or the operating system
method, unless otherwise noted.

Table A-4 Kernel tunable parameter for CVM

If set to 0, volcvm_smartsync disables
SmartSync on shared disk groups. If set to
1, this parameter enables the use of
SmartSync with shared disk groups.

The default value is 1.

See “SmartSync recovery accelerator”
on page 130.

volcvm_smartsync

Tunable parameters for VVR
Table A-5 lists the tunable parameters for VVR.

You can tune the parameters using the vxtune command or the operating system
method, unless otherwise noted.

Table A-5 VVR Tunables

DescriptionTunable Name

A per-system tunable parameter that enables or disables
compression globally. The default value is 0, since
compression is disabled by default.

vol_cmpres_enabled

A per-system tunable that lets you set the number of
compression threads on the Primary host or the number
of decompression threads on the Secondary host
between 1 and 64. The default value is 10. You can tune
this setting dependent on your CPU usage.

vol_cmpres_threads

This tunable cannot be changed using the vxtune
command.

The size of the DCM replay blocks. The default value is
256KB.

vol_dcm_replay_size

The amount of buffer space available for requests coming
in to the Secondary over the network. The default value
is 64MB.

vol_max_nmpool_sz

1012Tunable parameters
Tunable parameters for VxVM

Table A-5 VVR Tunables (continued)

DescriptionTunable Name

The amount of buffer space available for readbacks. The
default value is 128MB.

vol_max_rdback_sz

The write ship buffer space, which is the amount of buffer
space that can be allocated on the logowner to receive
writes sent by the non-logowner. The default value is
64MB.

vol_max_wrspool_sz

The minimum buffer space. VVR frees the write if the
amount of buffer space available is below this threshold.
The default value is 4MB (4194304 bytes).

This value is auto-tunable. The value that you specify is
used as an initial value and could change depending on
the application write behavior.

vol_min_lowmem_sz

The heartbeat timeout value. The default value is 10
seconds.

vol_nm_hb_timeout

The amount of buffer space that can be allocated within
the operating system to handle incoming writes. The
default value is 128MB.

vol_rvio_maxpool_sz

This tunable cannot be changed using the vxtune
command.

This tunable parameter directs VVR to use the translated
address from the received message so that VVR can
communicate over a NAT-based firewall. Set this tunable
to 1 only if there is a NAT-based firewall in the
configuration.

vol_vvr_use_nat

Points to note when changing the values of the VVR tunables
Note the following points when changing the values of the tunables:

■ When decreasing the value of the vol_rvio_maxpool_sz tunable, all the RVGs
on the host must be stopped.

■ When decreasing the size of the tunables vol_max_rdback_sz and
vol_max_nmpool_sz pause the RLINKs.

■ The vol_min_lowmem_sz tunable is auto-tunable; depending on the incoming
writes VVR increases or decreases the tunable value.
Auto-tuning is only supported for the tunable vol_min_lowmem_sz.

1013Tunable parameters
Tunable parameters for VxVM

In a shared disk group environment, you may choose to set only those tunables
that are required on each host. However, we recommend that you configure the
tunables appropriately even if the tunables are currently not being used. This is
because if the logowner changes, then tunables on the new logowner will be used.
The following list of tunables are required to be set only on the logowner and not
the other hosts:

■ vol_max_rdback_sz

■ vol_max_nmpool_sz

■ vol_max_wrspool_sz

■ vol_dcm_replay_size

■ vol_nm_hb_timeout

■ vol_vvr_use_nat

The tunable changes that are done using the vxtune command affect only the
tunable values on the host on which it is run. Therefore, in a shared disk group
environment, you must run the command separately on each host for which you
want to change the tunable values.

Methods to change Veritas Volume Manager
tunable parameters

Veritas Volume Manager (VxVM) provides a variety of parameters that you can use
to tune your configuration.

See “Tunable parameters for VxVM” on page 1001.

Change the VxVM tunable parameters with one of the following methods:

See “Changing the values of the Veritas
Volume Manager tunable parameters using
the vxtune command line” on page 1014.

Use the vxtune command to display or
modify the values of the VxVM tunable
parameters.

See “Changing the value of the Veritas
Volume Manager tunable parameters using
templates” on page 1017.

Use the template method of the vxtune
command.

Changing the values of the Veritas Volume Manager tunable
parameters using the vxtune command line

Use the vxtune command to display or change the values of the VxVM tunable
parameters. The changes are persistent so that the value is retained after

1014Tunable parameters
Methods to change Veritas Volume Manager tunable parameters

subsequent reboots. Before setting a new value, VxVM validates the value to ensure
that it is within the permissible range for the tunable. If the value is valid, VxVM
updates the tunable. Some tunables require a reboot before the changed value
takes effect. VxVM prompts you to reboot the system, if required.

VxVM stores the tunable values in the /etc/vx/vxtunables file.

Caution: The recommended method to change the tunable values is with the vxtune

command. Do not edit the tunable values directly in the vxtunables file.

For most tunables, specify the value of the tunable with a suffix to indicate the units:
K, M, or G. If no unit is specified, vxtune assumes the value is bytes.

Note: The default unit for entering a value may differ from the default display unit.

1015Tunable parameters
Methods to change Veritas Volume Manager tunable parameters

To change the values of the VxVM tunable parameters

1 Find the name and current value of the tunable you want to change. Use the
-l option to display a description.

vxtune -l

The following example shows a truncated output, that shows the format.

Tunable Current Value Default Value Reboot Description

------------------- ------------- ------------- ------ -----------

vol_checkpt_default 20480 20480 Y Size of VxVM checkpoints (sectors)

vol_cmpres_enabled 0 0 N Allow enabling compression for

VERITAS Volume Replicator

vol_cmpres_threads 10 10 N Maximum number of compression

threads for VERITAS Volume Replicator

vol_default_iodelay 50 50 Y Time to pause between I/O requests

from VxVM utilities (10ms units)

vol_fmr_logsz 4 4 Y Maximum size of bitmap Fast Mirror

Resync uses to track changed

blocks (KBytes)

vol_max_adminio_poolsz 67108864 67108864 Y Maximum amount of memory used by

VxVM admin IO's (bytes)

.

.

.

The output displays the default value and the current value. The Reboot field
indicates whether or not a reboot is required before the tunable value takes
effect.

See the vxtune(1M) manual page.

1016Tunable parameters
Methods to change Veritas Volume Manager tunable parameters

2 Set the new value for a specific tunable. Specify the value with a suffix to
indicate the units: K, M, or G. If not unit is specified, the vxtune command uses
the default unit for the tunable parameter. For most tunables, the default value
is bytes. The description in the vxtune output displays the default units for
each tunable.

vxtune tunable_name tunable_value

For example, to change the value of vol_cmpres_enabled to 1, use the
following command:

vxtune vol_cmpres_enabled 1

For example, to change the default value of the vol_rvio_maxpool_sz tunable
to 160MB, use the following command.

vxtune vol_rvio_maxpool_sz 160M

3 Verify the new value.

vxtune tunable_name

For example, to view the changed value for vol_cmpres_enabled, use the
following command:

vxtune vol_cmpres_enabled

Tunable Current Value Default Value Reboot

-------------------- ------------- ------------- ------

vol_cmpres_enabled 1 0 N

For example, to view the changed value for the vol_rvio_maxpool_sz tunable
parameter, use the following command:

vxtune vol_rvio_maxpool_sz

Tunable Current Value Default Value Reboot

-------------------- ------------- ------------- ------

vol_rvio_maxpool_sz 167772160 134217728 N

Changing the value of the Veritas Volume Manager tunable
parameters using templates

VxVM provides a template method to change the tunable parameters. With this
method, you export the tunable parameters to a file, modify the file, then import the
file. The tunable template must be strictly of the format that export provides. In case
of discrepencies observe that particular value will be discarded.

1017Tunable parameters
Methods to change Veritas Volume Manager tunable parameters

To change the values of the VxVM tunable parameters using templates

1 Export the tunable parameters and their values to a tunable template file. You
can export all of the tunable parameters or specify a component.

vxtune export file=file_name [component]

For example:

vxtune export file=vxvm-tunables

vxtune export file=vvr-tunables vvr

2 Modify the template as required. You must retain the file format that the export
operation provides.

3 Import the tunable template file to the sytem. The import operation only applies
valid values. If a value is not valid for a specific parameter, that particular value
is discarded.

vxtune import file=file_name

For example:

vxtune import file=vxvm-tunables

About LLT tunable parameters
LLT provides various configuration and tunable parameters to modify and control
the behavior of the LLT module. This section describes some of the LLT tunable
parameters that can be changed at run-time and at LLT start-time.

The tunable parameters are classified into two categories:

■ LLT timer tunable parameters
See “About LLT timer tunable parameters” on page 1018.

■ LLT flow control tunable parameters
See “About LLT flow control tunable parameters” on page 1022.

See “Setting LLT timer tunable parameters” on page 1025.

About LLT timer tunable parameters
Table A-6 lists the LLT timer tunable parameters. The timer values are set in .01
sec units. The command lltconfig –T query can be used to display current timer
values.

1018Tunable parameters
About LLT tunable parameters

Table A-6 LLT timer tunable parameters

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

The timer value should
always be higher than the
peertrouble timer value.

■ Change this value for
delaying or speeding up
node/link inactive
notification mechanism as
per client’s notification
processing logic.

■ Increase the value for
planned replacement of
faulty network cable
/switch.

■ In some circumstances,
when the private networks
links are very slow or the
network traffic becomes
very bursty, increase this
value so as to avoid false
notifications of peer death.
Set the value to a high
value for planned
replacement of faulty
network cable or faulty
switch.

1600LLT marks a link of a peer
node as “inactive," if it does
not receive any packet on that
link for this timer interval.
Once a link is marked as
"inactive," LLT will not send
any data on that link.

peerinact

This timer value should
always be lower than
peerinact timer value. Also, It
should be close to its default
value.

■ In some circumstances,
when the private networks
links are very slow or
nodes in the cluster are
very busy, increase the
value.

■ Increase the value for
planned replacement of
faulty network cable /faulty
switch.

200LLT marks a high-pri link of a
peer node as "troubled", if it
does not receive any packet
on that link for this timer
interval. Once a link is
marked as "troubled", LLT will
not send any data on that link
till the link is up.

peertrouble

1019Tunable parameters
About LLT tunable parameters

Table A-6 LLT timer tunable parameters (continued)

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

This timer value should
always be lower than
peerinact timer value. Also, It
should be close to its default
value.

■ In some circumstances,
when the private networks
links are very slow or
nodes in the cluster are
very busy, increase the
value.

■ Increase the value for
planned replacement of
faulty network cable /faulty
switch.

400LLT marks a low-pri link of a
peer node as "troubled", if it
does not receive any packet
on that link for this timer
interval. Once a link is
marked as "troubled", LLT will
not send any data on that link
till the link is available.

peertroublelo

This timer value should be
lower than peertrouble timer
value. Also, it should not be
close to peertrouble timer
value.

In some circumstances, when
the private networks links are
very slow (or congested) or
nodes in the cluster are very
busy, increase the value.

50LLT sends heartbeat packets
repeatedly to peer nodes after
every heartbeat timer interval
on each highpri link.

heartbeat

This timer value should be
lower than peertroublelo timer
value. Also, it should not be
close to peertroublelo timer
value.

In some circumstances, when
the networks links are very
slow or nodes in the cluster
are very busy, increase the
value.

100LLT sends heartbeat packets
repeatedly to peer nodes after
every heartbeatlo timer
interval on each low pri link.

heartbeatlo

This timer is set to ‘peerinact
- 200’ automatically every
time when the peerinact timer
is changed.

Decrease the value of this
tunable for speeding up
node/link inactive notification
mechanism as per client’s
notification processing logic.

Disable the request heartbeat
mechanism by setting the
value of this timer to 0 for
planned replacement of faulty
network cable /switch.

In some circumstances, when
the private networks links are
very slow or the network
traffic becomes very bursty,
don’t change the value of this
timer tunable.

1400If LLT does not receive any
packet from the peer node on
a particular link for
"timetoreqhb" time period, it
attempts to request
heartbeats (sends 5 special
heartbeat requests (hbreqs)
to the peer node on the same
link) from the peer node. If the
peer node does not respond
to the special heartbeat
requests, LLT marks the link
as “expired” for that peer
node. The value can be set
from the range of 0 to
(peerinact -200). The value 0
disables the request
heartbeat mechanism.

timetoreqhb

1020Tunable parameters
About LLT tunable parameters

Table A-6 LLT timer tunable parameters (continued)

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

Not applicableSymantec does not
recommend to change this
value

40This value specifies the time
interval between two
successive special heartbeat
requests. See the
timetoreqhb parameter for
more information on special
heartbeat requests.

reqhbtime

This timer value should not
be more than peerinact timer
value. Also, it should not be
close to the peerinact timer
value.

Disable the out of timer
context heart-beating
mechanism by setting the
value of this timer to 0 for
planned replacement of faulty
network cable /switch.

In some circumstances, when
the private networks links are
very slow or nodes in the
cluster are very busy,
increase the value

200LLT sends out of timer
context heartbeats to keep
the node alive when LLT
timer does not run at regular
interval. This option specifies
the amount of time to wait
before sending a heartbeat in
case of timer not running.

If this timer tunable is set to
0, the out of timer context
heartbeating mechanism is
disabled.

timetosendhb

NASymantec does not
recommend this value.

18000This value specifies the
maximum time for which LLT
will send contiguous out of
timer context heartbeats.

sendhbcap

Not applicableDo not change this value for
performance reasons.
Lowering the value can result
in unnecessary
retransmissions/negative
acknowledgement traffic.

You can increase the value
of oos if the round trip time is
large in the cluster (for
example, campus cluster).

10If the out-of-sequence timer
has expired for a node, LLT
sends an appropriate NAK to
that node. LLT does not send
a NAK as soon as it receives
an oos packet. It waits for the
oos timer value before
sending the NAK.

oos

1021Tunable parameters
About LLT tunable parameters

Table A-6 LLT timer tunable parameters (continued)

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

Not applicableDo not change this value.
Lowering the value can result
in unnecessary
retransmissions.

You can increase the value
of retrans if the round trip time
is large in the cluster (for
example, campus cluster).

10LLT retransmits a packet if it
does not receive its
acknowledgement for this
timer interval value.

retrans

Not applicableDo not change this value for
performance reasons.

100LLT calls its service routine
(which delivers messages to
LLT clients) after every
service timer interval.

service

Not applicableThis feature is disabled by
default.

0LLT flushes stored address
of peer nodes when this timer
expires and relearns the
addresses.

arp

Not applicableDo not change this value for
performance reasons.

3000LLT sends an arp request
when this timer expires to
detect other peer nodes in the
cluster.

arpreq

About LLT flow control tunable parameters
Table A-7 lists the LLT flow control tunable parameters. The flow control values are
set in number of packets. The command lltconfig -F query can be used to
display current flow control settings.

1022Tunable parameters
About LLT tunable parameters

Table A-7 LLT flow control tunable parameters

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

This flow control value should
always be higher than the
lowwater flow control value.

If a client generates data in
bursty manner, increase this
value to match the incoming
data rate. Note that
increasing the value means
more memory consumption
so set an appropriate value
to avoid wasting memory
unnecessarily.

Lowering the value can result
in unnecessary flow
controlling the client.

200When the number of packets
in transmit queue for a node
reaches highwater, LLT is
flow controlled.

highwater

This flow control value should
be lower than the highwater
flow control value. The value
should not be close the
highwater flow control value.

Symantec does not
recommend to change this
tunable.

100When LLT has flow controlled
the client, it will not start
accepting packets again till
the number of packets in the
port transmit queue for a
node drops to lowwater.

lowwater

This flow control value should
always be higher than the
rportlowwater flow control
value.

If a client generates data in
bursty manner, increase this
value to match the incoming
data rate. Note that
increasing the value means
more memory consumption
so set an appropriate value
to avoid wasting memory
unnecessarily.

Lowering the value can result
in unnecessary flow
controlling the client on peer
node.

200When the number of packets
in the receive queue for a port
reaches highwater, LLT is
flow controlled.

rporthighwater

This flow control value should
be lower than the
rpothighwater flow control
value. The value should not
be close the rporthighwater
flow control value.

Symantec does not
recommend to change this
tunable.

100When LLT has flow controlled
the client on peer node, it will
not start accepting packets
for that client again till the
number of packets in the port
receive queue for the port
drops to rportlowwater.

rportlowwater

1023Tunable parameters
About LLT tunable parameters

Table A-7 LLT flow control tunable parameters (continued)

Dependency with other
LLT tunable parameters

When to changeDefaultDescriptionLLT
parameter

This flow control value should
not be higher than the
difference between the
highwater flow control value
and the lowwater flow control
value.

The value of this parameter
(window) should be aligned
with the value of the
bandwidth delay product.

Change the value as per the
private networks speed.
Lowering the value
irrespective of network speed
may result in unnecessary
retransmission of out of
window sequence packets.

50This is the maximum number
of un-ACKed packets LLT will
put in flight.

window

This flow control value should
not be higher than the
difference between the
highwater flow control value
and the lowwater flow control
value.

For performance reasons, its
value should be either 0 or at
least 32.

32It represents the number of
back-to-back packets that
LLT sends on a link before
the next link is chosen.

linkburst

Not applicableDo not change this value for
performance reasons.
Increasing the value can
result in unnecessary
retransmissions.

10LLT sends acknowledgement
of a packet by piggybacking
an ACK packet on the next
outbound data packet to the
sender node. If there are no
data packets on which to
piggyback the ACK packet,
LLT waits for ackval number
of packets before sending an
explicit ACK to the sender.

ackval

Its value should be lower than
that of window. Its value
should be close to the value
of window tunable.

For performance reason, its
value should be changed
whenever the value of the
window tunable is changed
as per the formula given
below: sws = window *4/5.

40To avoid Silly Window
Syndrome, LLT transmits
more packets only when the
count of un-acked packet
goes to below of this tunable
value.

sws

Not applicableSymantec does not
recommend to change this
tunable.

1024When LLT has packets to
delivers to multiple ports, LLT
delivers one large packet or
up to five small packets to a
port at a time. This parameter
specifies the size of the large
packet.

largepktlen

1024Tunable parameters
About LLT tunable parameters

Setting LLT timer tunable parameters
You can set the LLT tunable parameters either with the lltconfig command or in
the /etc/llttab file. You can use the lltconfig command to change a parameter
on the local node at run time. Symantec recommends you run the command on all
the nodes in the cluster to change the values of the parameters. To set an LLT
parameter across system reboots, you must include the parameter definition in the
/etc/llttab file. Default values of the parameters are taken if nothing is specified
in /etc/llttab. The parameters values specified in the /etc/llttab file come into effect
at LLT start-time only. Symantec recommends that you specify the same definition
of the tunable parameters in the /etc/llttab file of each node.

To get and set a timer tunable:

■ To get the current list of timer tunable parameters using lltconfig command:

lltconfig -T query

■ To set a timer tunable parameter using the lltconfig command:

lltconfig -T timer tunable:value

■ To set a timer tunable parameter in the /etc/llttab file:

set-timer timer tunable:value

To get and set a flow control tunable

■ To get the current list of flow control tunable parameters using lltconfig command:

lltconfig -F query

■ To set a flow control tunable parameter using the lltconfig command:

lltconfig -F flowcontrol tunable:value

■ To set a flow control tunable parameter in the /etc/llttab file:

set-flow flowcontrol tunable:value

See the lltconfig(1M) and llttab(1M) manual pages.

About GAB tunable parameters
GAB provides various configuration and tunable parameters to modify and control
the behavior of the GAB module.

1025Tunable parameters
About GAB tunable parameters

These tunable parameters not only provide control of the configurations like
maximum possible number of nodes in the cluster, but also provide control on how
GAB behaves when it encounters a fault or a failure condition. Some of these
tunable parameters are needed when the GAB module is loaded into the system.
Any changes to these load-time tunable parameters require either unload followed
by reload of GAB module or system reboot. Other tunable parameters (run-time)
can be changed while GAB module is loaded, configured, and cluster is running.
Any changes to such a tunable parameter will have immediate effect on the tunable
parameter values and GAB behavior.

These tunable parameters are defined in the following file:

/etc/sysconfig/gab

See “About GAB load-time or static tunable parameters” on page 1026.

See “About GAB run-time or dynamic tunable parameters” on page 1028.

About GAB load-time or static tunable parameters
Table A-8 lists the static tunable parameters in GAB that are used during module
load time. Use the gabconfig -e command to list all such GAB tunable parameters.

You can modify these tunable parameters only by adding new values in the GAB
configuration file. The changes take effect only on reboot or on reload of the GAB
module.

Table A-8 GAB static tunable parameters

Values (default
and range)

DescriptionGAB parameter

Default: 64

Range: 1-64

Maximum number of nodes in the clustergab_numnids

Default: 32

Range: 1-32

Maximum number of ports in the clustergab_numports

Default: 128

Range: 1-1024

Number of pending messages in GAB
queues (send or receive) before GAB
hits flow control.

This can be overwritten while cluster is
up and running with the gabconfig
-Q option. Use the gabconfig
command to control value of this
tunable.

gab_flowctrl

1026Tunable parameters
About GAB tunable parameters

Table A-8 GAB static tunable parameters (continued)

Values (default
and range)

DescriptionGAB parameter

Default: 48100

Range:
8100-65400

GAB internal log buffer size in bytesgab_logbufsize

Default: 256

Range: 128-4096

Maximum messages in internal
message log

gab_msglogsize

Default: 120000
msec (2 minutes)

Range:
160000-240000 (in
msec)

Maximum time to wait for isolated client

Can be overridden at runtime

See “About GAB run-time or dynamic
tunable parameters” on page 1028.

gab_isolate_time

Default: 5

Range: 3-10

Number of times to attempt to kill client

Can be overridden at runtime

See “About GAB run-time or dynamic
tunable parameters” on page 1028.

gab_kill_ntries

Default: 12

Range: 1-256

Maximum number of wait periods (as
defined in the stable timeout parameter)
before GAB disconnects the node from
the cluster during cluster reconfiguration

gab_conn_wait

Default: 8

Range: 0-32

Determines whether the GAB logging
daemon is enabled or disabled

The GAB logging daemon is enabled by
default. To disable, change the value of
gab_ibuf_count to 0.

The disable login to the gab daemon
while cluster is up and running with the
gabconfig -K option. Use the
gabconfig command to control value
of this tunable.

gab_ibuf_count

Default: 60

Range: 0 - 240

Number of system statistics to maintain
in GAB

gab_kstat_size

1027Tunable parameters
About GAB tunable parameters

About GAB run-time or dynamic tunable parameters
You can change the GAB dynamic tunable parameters while GAB is configured
and while the cluster is running. The changes take effect immediately on running
the gabconfig command. Note that some of these parameters also control how
GAB behaves when it encounters a fault or a failure condition. Some of these
conditions can trigger a PANIC which is aimed at preventing data corruption.

You can display the default values using the gabconfig -l command. To make
changes to these values persistent across reboots, you can append the appropriate
command options to the /etc/gabtab file along with any existing options. For
example, you can add the -k option to an existing /etc/gabtab file that might read
as follows:

gabconfig -c -n4

After adding the option, the /etc/gabtab file looks similar to the following:

gabconfig -c -n4 -k

Table A-9 describes the GAB dynamic tunable parameters as seen with the
gabconfig -l command, and specifies the command to modify them.

Table A-9 GAB dynamic tunable parameters

Description and commandGAB parameter

This option defines the minimum number of nodes that can form the
cluster. This option controls the forming of the cluster. If the number of
nodes in the cluster is less than the number specified in the gabtab
file, then the cluster will not form. For example: if you type gabconfig
-c -n4, then the cluster will not form until all four nodes join the cluster.
If this option is enabled using the gabconfig -x command then the
node will join the cluster even if the other nodes in the cluster are not
yet part of the membership.

Use the following command to set the number of nodes that can form
the cluster:

gabconfig -n count

Use the following command to enable control port seed. Node can form
the cluster without waiting for other nodes for membership:

gabconfig -x

Control port seed

1028Tunable parameters
About GAB tunable parameters

Table A-9 GAB dynamic tunable parameters (continued)

Description and commandGAB parameter

Default: Disabled

This option controls GAB's ability to halt (panic) the system on user
process death. If _had and _hashadow are killed using kill -9, the
system can potentially lose high availability. If you enable this option,
then the GAB will PANIC the system on detecting the death of the client
process. The default behavior is to disable this option.

Use the following command to enable halt system on process death:

gabconfig -p

Use the following command to disable halt system on process death:

gabconfig -P

Halt on process
death

Default: Disabled

If this option is enabled then the system will panic on missing the first
heartbeat from the VCS engine or the vxconfigd daemon in a CVM
environment. The default option is to disable the immediate panic.

This GAB option controls whether GAB can panic the node or not when
the VCS engine or the vxconfigd daemon miss to heartbeat with GAB.
If the VCS engine experiences a hang and is unable to heartbeat with
GAB, then GAB will NOT PANIC the system immediately. GAB will first
try to abort the process by sending SIGABRT (kill_ntries - default value
5 times) times after an interval of "iofence_timeout" (default value 15
seconds). If this fails, then GAB will wait for the "isolate timeout" period
which is controlled by a global tunable called isolate_time (default value
2 minutes). If the process is still alive, then GAB will PANIC the system.

If this option is enabled GAB will immediately HALT the system in case
of missed heartbeat from client.

Use the following command to enable system halt when process
heartbeat fails:

gabconfig -b

Use the following command to disable system halt when process
heartbeat fails:

gabconfig -B

Missed heartbeat
halt

1029Tunable parameters
About GAB tunable parameters

Table A-9 GAB dynamic tunable parameters (continued)

Description and commandGAB parameter

Default: Disabled

This option allows the user to configure the behavior of the VCS engine
or any other user process when one or more nodes rejoin a cluster after
a network partition. By default GAB will not PANIC the node running
the VCS engine. GAB kills the userland process (the VCS engine or
the vxconfigd process). This recycles the user port (port h in case of
the VCS engine) and clears up messages with the old generation
number programmatically. Restart of the process, if required, must be
handled outside of GAB control, e.g., for hashadow process restarts
_had.

When GAB has kernel clients (such as fencing, VxVM, or VxFS), then
the node will always PANIC when it rejoins the cluster after a network
partition. The PANIC is mandatory since this is the only way GAB can
clear ports and remove old messages.

Use the following command to enable system halt on rejoin:

gabconfig -j

Use the following command to disable system halt on rejoin:

gabconfig -J

Halt on rejoin

Default: Disabled

If this option is enabled, then GAB prevents the system from
PANICKING when the VCS engine or the vxconfigd process fail to
heartbeat with GAB and GAB fails to kill the VCS engine or the vxconfigd
process. GAB will try to continuously kill the VCS engine and will not
panic if the kill fails.

Repeat attempts to kill process if it does not die

gabconfig -k

Keep on killing

1030Tunable parameters
About GAB tunable parameters

Table A-9 GAB dynamic tunable parameters (continued)

Description and commandGAB parameter

Default: Disabled

This is an option in GAB which allows a node to IOFENCE (resulting
in a PANIC) if the new membership set is < 50% of the old membership
set. This option is typically disabled and is used when integrating with
other products

Enable iofence quorum

gabconfig -q

Disable iofence quorum

gabconfig -d

Quorum flag

Default: Send queue limit: 128

Default: Recv queue limit: 128

GAB queue limit option controls the number of pending message before
which GAB sets flow. Send queue limit controls the number of pending
message in GAB send queue. Once GAB reaches this limit it will set
flow control for the sender process of the GAB client. GAB receive
queue limit controls the number of pending message in GAB receive
queue before GAB send flow control for the receive side.

Set the send queue limit to specified value

gabconfig -Q sendq:value

Set the receive queue limit to specified value

gabconfig -Q recvq:value

GAB queue limit

Default: 15000(ms)

This parameter specifies the timeout (in milliseconds) for which GAB
will wait for the clients to respond to an IOFENCE message before
taking next action. Based on the value of kill_ntries , GAB will attempt
to kill client process by sending SIGABRT signal. If the client process
is still registered after GAB attempted to kill client process for the value
of kill_ntries times, GAB will halt the system after waiting for additional
isolate_timeout value.

Set the iofence timeout value to specified value in milliseconds.

gabconfig -f value

IOFENCE timeout

1031Tunable parameters
About GAB tunable parameters

Table A-9 GAB dynamic tunable parameters (continued)

Description and commandGAB parameter

Default: 5000(ms)

Specifies the time GAB waits to reconfigure membership after the last
report from LLT of a change in the state of local node connections for
a given port. Any change in the state of connections will restart GAB
waiting period.

Set the stable timeout to specified value

gabconfig -t stable

Stable timeout

Default: 120000(ms)

This tunable specifies the timeout value for which GAB will wait for
client process to unregister in response to GAB sending SIGKILL signal.
If the process still exists after isolate timeout GAB will halt the system

gabconfig -S isolate_time:value

Isolate timeout

Default: 5

This tunable specifies the number of attempts GAB will make to kill the
process by sending SIGABRT signal.

gabconfig -S kill_ntries:value

Kill_ntries

This parameter shows whether GAB is configured. GAB may not have
seeded and formed any membership yet.

Driver state

This parameter shows whether GAB is asked to specifically ignore
jeopardy.

See the gabconfig (1M) manual page for details on the -s flag.

Partition arbitration

About VXFEN tunable parameters
The section describes the VXFEN tunable parameters and how to reconfigure the
VXFEN module.

Table A-10 describes the tunable parameters for the VXFEN driver.

1032Tunable parameters
About VXFEN tunable parameters

Table A-10 VXFEN tunable parameters

Description and Values: Default, Minimum, and
Maximum

vxfen Parameter

Size of debug log in bytes

■ Values
Default: 131072 (128 KB)
Minimum: 65536 (64 KB)
Maximum: 524288 (512 KB)

dbg_log_size

Specifies the maximum number of seconds that the smaller
sub-cluster waits before racing with larger sub-clusters for control
of the coordinator disks when a network partition occurs.

This value must be greater than the vxfen_min_delay value.

■ Values
Default: 60
Minimum: 1
Maximum: 600

vxfen_max_delay

Specifies the minimum number of seconds that the smaller
sub-cluster waits before racing with larger sub-clusters for control
of the coordinator disks when a network partition occurs.

This value must be smaller than or equal to the vxfen_max_delay
value.

■ Values
Default: 1
Minimum: 1
Maximum: 600

vxfen_min_delay

Specifies the time in seconds that the I/O fencing driver VxFEN
waits for the I/O fencing daemon VXFEND to return after
completing a given task.

■ Values
Default: 60
Minimum: 10
Maximum: 600

vxfen_vxfnd_tmt

1033Tunable parameters
About VXFEN tunable parameters

Table A-10 VXFEN tunable parameters (continued)

Description and Values: Default, Minimum, and
Maximum

vxfen Parameter

Specifies the time in seconds based on which the I/O fencing
driver VxFEN computes the delay to pass to the GAB module to
wait until fencing completes its arbitration before GAB implements
its decision in the event of a split-brain. You can set this parameter
in the vxfenmode file and use the vxfenadm command to check
the value. Depending on the vxfen_mode, the GAB delay is
calculated as follows:

■ For scsi3 mode: 1000 * (panic_timeout_offst +
vxfen_max_delay)

■ For customized mode: 1000 * (panic_timeout_offst + max
(vxfen_vxfnd_tmt, vxfen_loser_exit_delay))

■ Default: 10

panic_timeout_offst

In the event of a network partition, the smaller sub-cluster delays before racing for
the coordinator disks. The time delay allows a larger sub-cluster to win the race for
the coordinator disks. The vxfen_max_delay and vxfen_min_delay parameters
define the delay in seconds.

Configuring the VXFEN module parameters
After adjusting the tunable kernel driver parameters, you must reconfigure the VXFEN

module for the parameter changes to take effect.

The following example procedure changes the value of the vxfen_min_delay
parameter.

On each Linux node, edit the file /etc/sysconfig/vxfen to change the value of
the vxfen driver tunable global parameters, vxfen_max_delay and vxfen_min_delay.

Note: You must restart the VXFEN module to put any parameter change into effect.

To configure the VxFEN parameters and reconfigure the VxFEN module

1 Stop all the applications that are not configured under VCS. Use native
application commands to stop the application.

2 Stop VCS on all the nodes. Run the following command on each node:

hastop -local

1034Tunable parameters
About VXFEN tunable parameters

3 Stop the VxFEN driver.

/etc/init.d/vxfen stop

4 Edit the /etc/sysconfig/vxfen file.

For example, change the entry from:

vxfen_min_delay=1

to:

vxfen_min_delay=30

5 Start the VXFEN module.

/etc/init.d/vxfen start

6 Start all the applications that are not configured under VCS. Use native
application commands to start the applications.

About AMF tunable parameters
You can set the Asynchronous Monitoring Framework (AMF) kernel module tunable
using the following command:

amfconfig -T tunable_name=tunable_value,

tunable_name=tunable_value...

Table A-11 lists the possible tunable parameters for the AMF kernel:

Table A-11 AMF tunable parameters

ValueDescriptionAMFparameter

Min - 4

Max - 512

Default - 256

AMF maintains an in-memory debug log.
This parameter (specified in units of KBs)
controls the amount of kernel memory
allocated for this log.

dbglogsz

Min - 64

Max - 8192

Default - 2048

AMF stores registered events in an event
type specific hash table. This parameter
controls the number of buckets allocated
for the hash table used to store
process-related events.

processhashsz

1035Tunable parameters
About AMF tunable parameters

Table A-11 AMF tunable parameters (continued)

ValueDescriptionAMFparameter

Min - 64

Max - 8192

Default - 512

AMF stores registered events in an event
type specific hash table. This parameter
controls the number of buckets allocated
for the hash table used to store
mount-related events.

mnthashsz

Min - 1

Max - 64

Default - 32

AMF stores registered events in an event
type specific hash table. This parameter
controls the number of buckets allocated
for the hash table used to store
container-related events.

conthashsz

Min - 1

Max - 64

Default - 32

AMF stores registered events in an event
type specific hash table. This parameter
controls the number of buckets allocated
for the hash table used to store file-related
events.

filehashsz

Min - 1

Max - 64

Default - 32

AMF stores registered events in an event
type specific hash table. This parameter
controls the number of buckets allocated
for the hash table used to store
directory-related events.

dirhashsz

The parameter values that you update are reflected after you reconfigure AMF
driver. Note that if you unload the module, the updated values are lost. You must
unconfigure the module using the amfconfig -U or equivalent command and then
reconfigure using the amfconfig -c command for the updated tunables to be
effective. If you want to set the tunables at module load time, you can write these
amfconfig commands in the amftab file.

See the amftab(4) manual page for details.

1036Tunable parameters
About AMF tunable parameters

Veritas File System disk
layout

This appendix includes the following topics:

■ About Veritas File System disk layouts

■ VxFS Version 7 disk layout

■ VxFS Version 8 disk layout

■ VxFS Version 9 disk layout

About Veritas File System disk layouts
The disk layout is the way file system information is stored on disk. On VxFS, several
different disk layout versions were created to take advantage of evolving
technological developments.

The disk layout versions used on VxFS are:

BAppendix

DeprecatedVersion 6 disk layout enables features such as
multi-volume support, cross-platform data sharing, named
data streams, and File Change Log.

A disk layout Version 6 file system can still be mounted,
but this will be disallowed in future releases. Symantec
recommends that you upgrade from Version 6 to the
latest default disk layout version. In this release, disk
layout Version 6 cannot be cluster mounted. You cannot
create new file systems with disk layout Version 6. The
only operation that you can perform on a file system with
disk layout Version 6 is to upgrade the disk layout to a
supported version. If you upgrade a file system from disk
layout Version 6 to a later version, once the upgrade
operation finishes, you must unmount the file system
cleanly, then re-mount the file system.

Version 6

SupportedVersion 7 disk layout enables support for variable and
large size history log records, more than 2048 volumes,
large directory hash, and SmartTier.

Version 7

SupportedVersion 8 disk layout enables support for file-level
snapshots.

Version 8

SupportedVersion 9 disk layout enables support for file
compression, file replication, and data deduplication.

Version 9

Some of the disk layout versions were not supported on all UNIX operating systems.
Currently, only the Version 7, 8, and 9 disk layouts can be created and mounted.
The Version 6 disk layout can be mounted, but only for upgrading to a supported
version. Disk layout Version 6 cannot be cluster mounted. To cluster mount such
a file system, you must first mount the file system on one node and then upgrade
to a supported disk layout version using the vxupgrade command. No other versions
can be created or mounted. Version 9 is the default disk layout version.

The vxupgrade command is provided to upgrade an existing VxFS file system to
the Version 7 layout while the file system remains online.

See the vxupgrade(1M) manual page.

The vxfsconvert command is provided to upgrade ext2 and ext3 file systems to
the Version 7 disk layout while the file system is not mounted.

See the vxfsconvert(1M) manual page.

1038Veritas File System disk layout
About Veritas File System disk layouts

VxFS Version 7 disk layout
Disk layout Version 7 enables support for variable and large size history log records,
more than 2048 volumes, large directory hash, and SmartTier. The Version 7 disk
layout can theoretically support files and file systems up to 8 exabytes (263). The
maximum file system size that can be created is currently restricted to 235 blocks.
For a file system to take advantage of greater than 1 terabyte support, it must be
created on a Veritas Volume Manager volume. For 64-bit kernels, the maximum
size of the file system you can create depends on the block size:

Currently-Supported Theoretical Maximum File System
Size

Block Size

68,719,472,624 sectors (≈32 TB)1024 bytes

137,438,945,248 sectors (≈64 TB)2048 bytes

274,877,890,496 sectors (≈128 TB)4096 bytes

549,755,780,992 sectors (≈256 TB)8192 bytes

The Version 7 disk layout supports group quotas.

See “About quota files on Veritas File System” on page 965.

VxFS Version 8 disk layout
VxFS disk layout Version 8 is similar to Version 7, except that Version 8 enables
support for file-level snapshots. The Version 8 disk layout can theoretically support
files and file systems up to 8 exabytes (263). The maximum file system size that
can be created is currently restricted to 235 blocks. For a file system to take
advantage of greater than 1 terabyte support, it must be created on a Veritas Volume
Manager volume. For 64-bit kernels, the maximum size of the file system you can
create depends on the block size:

Currently-Supported Theoretical Maximum File System
Size

Block Size

68,719,472,624 sectors (≈32 TB)1024 bytes

137,438,945,248 sectors (≈64 TB)2048 bytes

274,877,890,496 sectors (≈128 TB)4096 bytes

549,755,780,992 sectors (≈256 TB)8192 bytes

1039Veritas File System disk layout
VxFS Version 7 disk layout

VxFS Version 9 disk layout
VxFS disk layout Version 9 is similar to Version 8, except that Version 9 enables
support for data deduplication, file replication, and file compression. The Version
9 disk layout can theoretically support files and file systems up to 8 exabytes (263).
The maximum file system size that can be created is currently restricted to 235

blocks. For a file system to take advantage of greater than 1 terabyte support, it
must be created on a Veritas Volume Manager volume. For 64-bit kernels, the
maximum size of the file system you can create depends on the block size:

Currently-Supported Theoretical Maximum File System
Size

Block Size

68,719,472,624 sectors (≈32 TB)1024 bytes

137,438,945,248 sectors (≈64 TB)2048 bytes

274,877,890,496 sectors (≈128 TB)4096 bytes

549,755,780,992 sectors (≈256 TB)8192 bytes

1040Veritas File System disk layout
VxFS Version 9 disk layout

Command reference
This appendix includes the following topics:

■ Command completion for Veritas commands

■ Veritas Volume Manager command reference

■ CVM commands supported for executing on the slave node

■ Veritas Volume Manager manual pages

■ Veritas File System command summary

■ Veritas File System manual pages

Command completion for Veritas commands
Veritas Storage Foundation Cluster File System High Availability supports command
completion for Veritas Volume Manager (VxVM) commands and Dynamic
Multi-Pathing (DMP) commands.

In this release, command completion is supported only on the bash shell. The shell
must be bash version 2.4 or later.

To use this feature, press Tab while entering a supported VxVM or DMP command.
The command is completed as far as possible. When there is a choice, the command
completion displays the next valid options for the command. Enter one of the
displayed values. A value in brackets indicates a user-specified value.

Note: Platform-specific options are not supported with command completion.

By default, you can use the command completion feature by invoking the bash shell
on every log in. If you want to permanently enable the command completion, use
the following command:

CAppendix

vxdctl cmdcompletion enable

The enable command completion creates the .bash_profile file, if it is not present.

To permanently disable the command completion, use the following command:

vxdctl cmdcompletion disable

See the vxdctl(1M) manual page.

The following commands support command completion:

■ vxassist

■ vxdisk

■ vxplex

■ vxprint

■ vxsnap

■ vxstat

■ vxtune

■ vxcache

■ vxconfigd

■ vxtask

■ vxreattach

■ vxdmpadm

■ vxddladm

■ vxvol

■ vxcdsconvert

■ vxresize

■ vxdctl

■ vxsd

■ vxdisksetup

■ vxdiskunsetup

■ vxrecover

■ vxedit

■ vxdg

1042Command reference
Command completion for Veritas commands

■ vxclustadm

Veritas Volume Manager command reference
Most Veritas Volume Manager (VxVM) commands (excepting daemons, library
commands and supporting scripts) are linked to the /usr/sbin directory from the
/opt/VRTS/bin directory. It is recommended that you add the following directories
to your PATH environment variable:

■ If you are using the Bourne or Korn shell (sh or ksh), use the commands:

$ PATH=$PATH:/usr/sbin:/opt/VRTS/bin:/opt/VRTSvxfs/sbin:\

/opt/VRTSdbed/bin:/opt/VRTSob/bin

$ MANPATH=/usr/share/man:/opt/VRTS/man:$MANPATH

$ export PATH MANPATH

■ If you are using a C shell (csh or tcsh), use the commands:

% set path = ($path /usr/sbin /opt/VRTSvxfs/sbin \

/opt/VRTSdbed/bin /opt/VRTSob/bin /opt/VRTS/bin)

% setenv MANPATH /usr/share/man:/opt/VRTS/man:$MANPATH

VxVM library commands and supporting scripts are located under the
/usr/lib/vxvm directory hierarchy. You can include these directories in your path
if you need to use them on a regular basis.

For detailed information about an individual command, refer to the appropriate
manual page in the 1M section.

See “Veritas Volume Manager manual pages” on page 1071.

Commands and scripts that are provided to support other commands and scripts,
and which are not intended for general use, are not located in /opt/VRTS/bin and
do not have manual pages.

Commonly-used commands are summarized in the following tables:

■ Table C-1 lists commands for obtaining information about objects in VxVM.

■ Table C-2 lists commands for administering disks.

■ Table C-3 lists commands for creating and administering disk groups.

■ Table C-4 lists commands for creating and administering subdisks.

■ Table C-5 lists commands for creating and administering plexes.

■ Table C-6 lists commands for creating volumes.

1043Command reference
Veritas Volume Manager command reference

■ Table C-7 lists commands for administering volumes.

■ Table C-8 lists commands for monitoring and controlling tasks in VxVM.

Table C-1 Obtaining information about objects in VxVM

DescriptionCommand

List licensed features of VxVM.

The init parameter is required when a
license has been added or removed
from the host for the new license to take
effect.

vxdctl license [init]

Lists disks under control of VxVM.

See “Displaying disk information”
on page 339.

Example:

vxdisk -g mydg list

vxdisk [-g diskgroup] list [diskname]

Lists information about disk groups.

See “Displaying disk group information”
on page 886.

Example:

vxdg list mydg

vxdg list [diskgroup]

Lists information about shared disk
groups.

See “Listing shared disk groups”
on page 393.

Example:

vxdg -s list

vxdg -s list

Lists all diskgroups on the disks. The
imported diskgroups are shown as
standard, and additionally all other
diskgroups are listed in single quotes.

vxdisk -o alldgs list

1044Command reference
Veritas Volume Manager command reference

Table C-1 Obtaining information about objects in VxVM (continued)

DescriptionCommand

Displays information about the
accessibility and usability of volumes.

See the Veritas Storage Foundation and
High Availability Troubleshooting Guide.

Example:

vxinfo -g mydg myvol1 \
myvol2

vxinfo [-g diskgroup] [volume ...]

Prints single-line information about
objects in VxVM.

Example:

vxprint -g mydg myvol1 \
myvol2

vxprint -hrt [-g diskgroup] [object
...]

Provides a consolidated view of the SF
configuration, including information from
Veritas Volume Manager (VxVM) and
Veritas File System (VxFS).

See vxlist(1m) manual page.

vxlist

Displays information about subdisks.

Example:

vxprint -st -g mydg

vxprint -st [-g diskgroup] [subdisk
...]

Displays information about plexes.

Example:

vxprint -pt -g mydg

vxprint -pt [-g diskgroup] [plex ...]

Table C-2 Administering disks

DescriptionCommand

Performs storage reclamation on thin
provision LUNs.

vxdisk [-o full] reclaim
{disk|enclosure|diskgroup}...

1045Command reference
Veritas Volume Manager command reference

Table C-2 Administering disks (continued)

DescriptionCommand

Administers disks in VxVM using a
menu-based interface.

vxdiskadm

Adds a disk specified by device name.

See “Using vxdiskadd to put a disk
under VxVM control” on page 358.

Example:

vxdiskadd sde

vxdiskadd [devicename ...]

Renames a disk under control of VxVM.

See “Renaming a disk” on page 361.

Example:

vxedit -g mydg rename \
mydg03 mydg02

vxedit [-g diskgroup] rename \
olddisk newdisk

Sets aside/does not set aside a disk
from use in a disk group.

Examples:

vxedit -g mydg set \
reserve=on mydg02

vxedit -g mydg set \
reserve=off mydg02

vxedit [-g diskgroup] set \
reserve=on|off diskname

Does not/does allow free space on a
disk to be used for hot-relocation.

See “Excluding a disk from
hot-relocation use” on page 816.

See “Making a disk available for
hot-relocation use” on page 817.

Examples:

vxedit -g mydg set \
nohotuse=on mydg03

vxedit -g mydg set \
nohotuse=off mydg03

vxedit [-g diskgroup] set \
nohotuse=on|off diskname

1046Command reference
Veritas Volume Manager command reference

Table C-2 Administering disks (continued)

DescriptionCommand

Adds/removes a disk from the pool of
hot-relocation spares.

See “Marking a disk as a hot-relocation
spare” on page 814.

See “Removing a disk from use as a
hot-relocation spare” on page 815.

Examples:

vxedit -g mydg set \
spare=on mydg04

vxedit -g mydg set \
spare=off mydg04

vxedit [-g diskgroup] set \
spare=on|off diskname

Takes a disk offline.

Example:

vxdisk offline sde

vxdisk offline devicename

Removes a disk from its disk group.

See “Removing a disk from a disk group”
on page 889.

Example:

vxdg -g mydg rmdisk mydg02

vxdg -g diskgroup rmdisk diskname

Removes a disk from control of VxVM.

See “Removing a disk from a disk group”
on page 889.

Example:

vxdiskunsetup sdg

vxdiskunsetup devicename

1047Command reference
Veritas Volume Manager command reference

Table C-3 Creating and administering disk groups

DescriptionCommand

Creates a disk group using a
pre-initialized disk.

See “Creating a disk group” on page 888.

See “Creating a shared disk group”
on page 394.

Example:

vxdg init mydg \
mydg01=sde

vxdg [-s] init diskgroup \
[diskname=]devicename

Reports conflicting configuration
information.

See “Handling conflicting configuration
copies” on page 911.

Example:

vxdg -g mydg listssbinfo

vxdg -g diskgroup listssbinfo

Deports a disk group and optionally
renames it.

See “Deporting a disk group”
on page 890.

Example:

vxdg -n newdg deport mydg

vxdg [-n newname] deport diskgroup

Imports a disk group and optionally
renames it.

See “Importing a disk group”
on page 891.

Example:

vxdg -n newdg import mydg

vxdg [-n newname] import diskgroup

1048Command reference
Veritas Volume Manager command reference

Table C-3 Creating and administering disk groups (continued)

DescriptionCommand

Imports a disk group as shared by a
cluster, and optionally renames it.

See “Importing disk groups as shared”
on page 395.

Example:

vxdg -n newsdg -s import \
mysdg

vxdg [-n newname] -s import diskgroup

Lists the objects potentially affected by
moving a disk group.

See “Listing objects potentially affected
by a move” on page 857.

Example:

vxdg -o expand listmove \
mydg newdg myvol1

vxdg [-o expand] listmove sourcedg \
targetdg object ...

Moves objects between disk groups.

See “Moving objects between disk
groups” on page 859.

Example:

vxdg -o expand move mydg \
newdg myvol1

vxdg [-o expand] move sourcedg \
targetdg object ...

Splits a disk group and moves the
specified objects into the target disk
group.

See “Splitting disk groups” on page 862.

Example:

vxdg -o expand split mydg \
newdg myvol2 myvol3

vxdg [-o expand] split sourcedg \
targetdg object ...

1049Command reference
Veritas Volume Manager command reference

Table C-3 Creating and administering disk groups (continued)

DescriptionCommand

Joins two disk groups.

See “Joining disk groups” on page 863.

Example:

vxdg join newdg mydg

vxdg join sourcedg targetdg

Sets the activation mode of a shared
disk group in a cluster.

See “Changing the activation mode on
a shared disk group” on page 397.

Example:

vxdg -g mysdg set \
activation=sw

vxdg -g diskgroup set \
activation=ew|ro|sr|sw|off

Starts all volumes in an imported disk
group.

See “Moving disk groups between
systems” on page 894.

Example:

vxrecover -g mydg -sb

vxrecover -g diskgroup -sb

Destroys a disk group and releases its
disks.

See “Destroying a disk group”
on page 918.

Example:

vxdg destroy mydg

vxdg destroy diskgroup

1050Command reference
Veritas Volume Manager command reference

Table C-4 Creating and administering subdisks

DescriptionCommand

Creates a subdisk.

Example:

vxmake -g mydg sd \
mydg02-01 mydg02,0,8000

vxmake [-g diskgroup] sd subdisk \
diskname,offset,length

Associates subdisks with an existing
plex.

Example:

vxsd -g mydg assoc home-1 \
mydg02-01 mydg02-00 \
mydg02-01

vxsd [-g diskgroup] assoc plex \
subdisk...

Adds subdisks to the ends of the
columns in a striped or RAID-5 volume.

Example:

vxsd -g mydg assoc \
vol01-01 mydg10-01:0 \
mydg11-01:1 mydg12-01:2

vxsd [-g diskgroup] assoc plex \
subdisk1:0 ... subdiskM:N-1

Replaces a subdisk.

Example:

vxsd -g mydg mv mydg01-01 \
mydg02-01

vxsd [-g diskgroup] mv oldsubdisk \
newsubdisk ...

Splits a subdisk in two.

Example:

vxsd -g mydg -s 1000m \
split mydg03-02 mydg03-02 \
mydg03-03

vxsd [-g diskgroup] -s size split \
subdisk sd1 sd2

1051Command reference
Veritas Volume Manager command reference

Table C-4 Creating and administering subdisks (continued)

DescriptionCommand

Joins two or more subdisks.

Example:

vxsd -g mydg join \
mydg03-02 mydg03-03 \
mydg03-02

vxsd [-g diskgroup] join \
sd1 sd2 ... subdisk

Relocates subdisks in a volume between
disks.

Example:

vxassist -g mydg move \
myvol \!mydg02 mydg05

Note: The ! character is a special
character in some shells. This example
shows how to escape it in a bash shell.

vxassist [-g diskgroup] move \
volume \!olddisk newdisk

Relocates subdisks to their original
disks.

See “Moving relocated subdisks using
vxunreloc” on page 818.

Example:

vxunreloc -g mydg mydg01

vxunreloc [-g diskgroup] original_disk

Dissociates a subdisk from a plex.

Example:

vxsd -g mydg dis mydg02-01

vxsd [-g diskgroup] dis subdisk

Removes a subdisk.

Example:

vxedit -g mydg rm mydg02-01

vxedit [-g diskgroup] rm subdisk

1052Command reference
Veritas Volume Manager command reference

Table C-4 Creating and administering subdisks (continued)

DescriptionCommand

Dissociates and removes a subdisk from
a plex.

Example:

vxsd -g mydg -o rm dis \
mydg02-01

vxsd [-g diskgroup] -o rm dis subdisk

Table C-5 Creating and administering plexes

DescriptionCommand

Creates a concatenated plex.

Example:

vxmake -g mydg plex \
vol01-02 \
sd=mydg02-01,mydg02-02

vxmake [-g diskgroup] plex plex \
sd=subdisk1[,subdisk2,...]

Creates a striped or RAID-5 plex.

Example:

vxmake -g mydg plex pl-01 \
layout=stripe stwidth=32 \
ncolumn=2 \
sd=mydg01-01,mydg02-01

vxmake [-g diskgroup] plex plex \
layout=stripe|raid5 stwidth=W \
ncolumn=N \
sd=subdisk1[,subdisk2,...]

Attaches a plex to an existing volume.

See “Reattaching a plex manually”
on page 923.

Example:

vxplex -g mydg att vol01 \
vol01-02

vxplex [-g diskgroup] att volume plex

Detaches a plex.

Example:

vxplex -g mydg det vol01-02

vxplex [-g diskgroup] det plex

1053Command reference
Veritas Volume Manager command reference

Table C-5 Creating and administering plexes (continued)

DescriptionCommand

Takes a plex offline for maintenance.

Example:

vxmend -g mydg off vol02-02

vxmend [-g diskgroup] off plex

Re-enables a plex for use.

See “Reattaching a plex manually”
on page 923.

Example:

vxmend -g mydg on vol02-02

vxmend [-g diskgroup] on plex

Replaces a plex.

Example:

vxplex -g mydg mv \
vol02-02 vol02-03

vxplex [-g diskgroup] mv oldplex \
newplex

Copies a volume onto a plex.

Example:

vxplex -g mydg cp vol02 \
vol03-01

vxplex [-g diskgroup] cp volume \
newplex

Sets the state of a plex in an unstartable
volume to CLEAN.

See “Reattaching a plex manually”
on page 923.

Example:

vxmend -g mydg fix clean \
vol02-02

vxmend [-g diskgroup] fix clean plex

1054Command reference
Veritas Volume Manager command reference

Table C-5 Creating and administering plexes (continued)

DescriptionCommand

Dissociates and removes a plex from a
volume.

Example:

vxplex -g mydg -o rm dis \
vol03-01

vxplex [-g diskgroup] -o rm dis plex

Table C-6 Creating volumes

DescriptionCommand

Displays the maximum size of volume
that can be created.

Example:

vxassist -g mydg maxsize \
layout=raid5 nlog=2

vxassist [-g diskgroup] maxsize \
layout=layout [attributes]

Creates a volume.

See “Creating a volume on specific
disks” on page 226.

Example:

vxassist -b -g mydg make \
myvol 20g layout=concat \
mydg01 mydg02

vxassist -b [-g diskgroup] make \
volume length [layout=layout] \
[attributes]

Creates a mirrored volume.

See “Creating a mirrored volume”
on page 221.

Example:

vxassist -b -g mydg make \
mymvol 20g layout=mirror \
nmirror=2

vxassist -b [-g diskgroup] make \
volume length layout=mirror \
[nmirror=N][attributes]

1055Command reference
Veritas Volume Manager command reference

Table C-6 Creating volumes (continued)

DescriptionCommand

Creates a volume that may be opened
exclusively by a single node in a cluster.

See “Creating volumes with exclusive
open access by a node” on page 399.

Example:

vxassist -b -g mysdg make \
mysmvol 20g layout=mirror \
exclusive=on

vxassist -b [-g diskgroup] make \
volume length layout=layout \
exclusive=on [attributes]

Creates a striped or RAID-5 volume.

See “Creating a striped volume”
on page 223.

See “Creating a RAID-5 volume”
on page 224.

Example:

vxassist -b -g mydg make \
mysvol 20g layout=stripe \
stripeunit=32 ncol=4

vxassist -b [-g diskgroup] make \
volume length layout={stripe|raid5} \
[stripeunit=W] [ncol=N] \
[attributes]

Creates a volume with mirrored data
plexes on separate controllers.

Example:

vxassist -b -g mydg make \
mymcvol 20g layout=mirror \
mirror=ctlr

vxassist -b [-g diskgroup] make \
volume length layout=mirror \
mirror=ctlr [attributes]

Creates a volume from existing plexes.

Example:

vxmake -g mydg -Uraid5 \
vol r5vol \
plex=raidplex,raidlog1,\
raidlog2

vxmake -b [-g diskgroup] \
-Uusage_type vol volume \
[len=length] plex=plex,...

1056Command reference
Veritas Volume Manager command reference

Table C-6 Creating volumes (continued)

DescriptionCommand

Initializes and starts a volume for use.

Example:

vxvol -g mydg start r5vol

vxvol [-g diskgroup] start volume

Initializes and zeros out a volume for
use.

Example:

vxvol -g mydg init zero \
myvol

vxvol [-g
diskgroup] init zero \
volume

Table C-7 Administering volumes

DescriptionCommand

Adds a mirror to a volume.

See “Adding a mirror to a volume ”
on page 876.

Example:

vxassist -g mydg mirror \
myvol mydg10

vxassist [-g diskgroup] mirror \
volume [attributes]

Removes a mirror from a volume.

See “Removing a mirror ” on page 878.

Example:

vxassist -g mydg remove \
mirror myvol \!mydg11

Note: The ! character is a special
character in some shells. This example
shows how to escape it in a bash shell.

vxassist [-g diskgroup] remove \
mirror volume [attributes]

1057Command reference
Veritas Volume Manager command reference

Table C-7 Administering volumes (continued)

DescriptionCommand

Grows a volume to a specified size or
by a specified amount.

Example:

vxassist -g mydg growby \
myvol 10g

vxassist [-g diskgroup] \
{growto|growby} volume length

Shrinks a volume to a specified size or
by a specified amount.

Example:

vxassist -g mydg shrinkto \
myvol 20g

vxassist [-g diskgroup] \
{shrinkto|shrinkby} volume length

Resizes a volume and the underlying
Veritas File System.

Example:

vxresize -b -F vxfs \
-g mydg myvol 20g mydg10 \
mydg11

vxresize -b -F vxfs [-g diskgroup] \
volume length diskname ...

Prepares a volume for instant snapshots
and for DRL logging.

See “Adding an instant snap DCO and
DCO volume” on page 605.

Example:

vxsnap -g mydg prepare \
myvol drl=on

vxsnap [-g diskgroup] prepare volume \
[drl=on|sequential|off]

1058Command reference
Veritas Volume Manager command reference

Table C-7 Administering volumes (continued)

DescriptionCommand

Takes a full-sized instant snapshot of a
volume by breaking off plexes of the
original volume.

See “Creating instant snapshots”
on page 604.

Example:

vxsnap -g mydg make \
source=myvol/\
newvol=mysnpvol/\
nmirror=2

vxsnap [-g diskgroup] make \
source=volume\
/newvol=snapvol\
[/nmirror=number]

Takes a full-sized instant snapshot of a
volume using a prepared empty volume.

See “Creating a volume for use as a
full-sized instant or linked break-off
snapshot” on page 609.

See “Creating instant snapshots”
on page 604.

Example:

vxsnap -g mydg make \
source=myvol/snapvol=snpvol

vxsnap [-g diskgroup] make \
source=volume/snapvol=snapvol

1059Command reference
Veritas Volume Manager command reference

Table C-7 Administering volumes (continued)

DescriptionCommand

Creates a cache object for use by
space-optimized instant snapshots.

See “Creating a shared cache object”
on page 607.

A cache volume must have already been
created. After creating the cache object,
enable the cache object with the
vxcache start command.

For example:

vxassist -g mydg make \
cvol 1g layout=mirror \
init=active mydg16 mydg17

vxmake -g mydg cache cobj \
cachevolname=cvol

vxcache -g mydg start cobj

vxmake [-g diskgroup] cache \
cache_object cachevolname=volume \
[regionsize=size]

Takes a space-optimized instant
snapshot of a volume.

See “Creating instant snapshots”
on page 604.

Example:

vxsnap -g mydg make \
source=myvol/\
newvol=mysosvol/\
cache=cobj

vxsnap [-g diskgroup] make \
source=volume/newvol=snapvol\
/cache=cache_object

Refreshes a snapshot from its original
volume.

See “Refreshing an instant
space-optimized snapshot” on page 626.

Example:

vxsnap -g mydg refresh \
mysnpvol

vxsnap [-g diskgroup] refresh snapshot

1060Command reference
Veritas Volume Manager command reference

Table C-7 Administering volumes (continued)

DescriptionCommand

Turns a snapshot into an independent
volume.

See “Dissociating an instant snapshot”
on page 628.

Example:

vxsnap -g mydg dis mysnpvol

vxsnap [-g diskgroup] dis snapshot

Removes support for instant snapshots
and DRL logging from a volume.

Example:

vxsnap -g mydg unprepare \
myvol

vxsnap [-g diskgroup] unprepare \
volume

Performs online relayout of a volume.

See “Performing online relayout”
on page 869.

Example:

vxassist -g mydg relayout \
vol2 layout=stripe

vxassist [-g diskgroup] relayout \
volume [layout=layout] \
[relayout_options]

Relays out a volume as a RAID-5
volume with stripe width W and N
columns.

See “Performing online relayout”
on page 869.

Example:

vxassist -g mydg relayout \
vol3 layout=raid5 \
stripeunit=16 ncol=4

vxassist [-g diskgroup] relayout \
volume layout=raid5 \
stripeunit=W \
ncol=N

1061Command reference
Veritas Volume Manager command reference

Table C-7 Administering volumes (continued)

DescriptionCommand

Reverses the direction of a paused
volume relayout.

See “Volume sets” on page 144.

Example:

vxrelayout -g mydg -o bg \
reverse vol3

vxrelayout [-g diskgroup] -o bg \
reverse volume

Converts between a layered volume and
a non-layered volume layout.

Example:

vxassist -g mydg convert \
vol3 layout=stripe-mirror

vxassist [-g diskgroup] convert \
volume [layout=layout] \
[convert_options]

Removes a volume.

See “Removing a volume” on page 925.

Example:

vxassist -g mydg remove \
myvol

vxassist [-g diskgroup] remove \
volume volume

Table C-8 Monitoring and controlling tasks

DescriptionCommand

Specifies a task tag to a VxVM
command.

See “Specifying task tags” on page 865.

Example:

vxrecover -g mydg \
-t mytask -b mydg05

command [-g diskgroup] -t tasktag \
[options] [arguments]

1062Command reference
Veritas Volume Manager command reference

Table C-8 Monitoring and controlling tasks (continued)

DescriptionCommand

Lists tasks running on a system.

See “Using the vxtask command”
on page 868.

Example:

vxtask -h -g mydg list

vxtask [-h] [-g diskgroup] list

Monitors the progress of a task.

See “Using the vxtask command”
on page 868.

Example:

vxtask monitor mytask

vxtask monitor task

Suspends operation of a task.

See “Using the vxtask command”
on page 868.

Example:

vxtask pause mytask

vxtask pause task

Lists all paused tasks.

See “Using the vxtask command”
on page 868.

Example:

vxtask -p -g mydg list

vxtask -p [-g diskgroup] list

Resumes a paused task.

See “Using the vxtask command”
on page 868.

Example:

vxtask resume mytask

vxtask resume task

1063Command reference
Veritas Volume Manager command reference

Table C-8 Monitoring and controlling tasks (continued)

DescriptionCommand

Cancels a task and attempts to reverse
its effects.

See “Using the vxtask command”
on page 868.

Example:

vxtask abort mytask

vxtask abort task

CVM commands supported for executing on the
slave node

Table C-9 shows the complete list of commands that are supported for executing
on the slave node.

1064Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node

Supported operationsCommand

vxdg

1065Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxdg -s init <shared_dg> [cds=on|off]

vxdg -T < different_versions> -s init <shared_dg> [minor=base-minor]
[cds=on|off]

vxdg [-n newname] [-h new-host-id] deport <shared_dg>

vxdg [-Cfst] [-n newname] [-o clearreserve] [-o useclonedev={on|off}] [-o
updateid] [-o noreonline] [-o selectcp=diskid] [-o dgtype=shared] import
<shared_dg>

vxdg destroy <shared_dg>

vxdg -g <shared_dg> [-o overridessb] [-f] adddisk [disk=]device

vxdg-g <shared_dg>addsite site

vxdg -g <shared_dg> reattachsite site

vxdg -g <shared_dg> detachsite site

vxdg -g <shared_dg> rmsite site

vxdg -g <shared_dg> renamesite oldname newname

vxdg flush <shared_dg>

vxdg [-qa] -g <shared_dg> free [medianame...]

vxdg join sourcedg targetdg (both dgs are shared)

vxdg split sourcedg targetdg

vxdg [-q] [-s] [-o listreserve] list [diskgroup...]

vxdg [-o expand] move sourcedg targetdg object (both dgs are shared)

vxdg -g shared_dg recover

vxdg -g <shared_dg> [-f] reminor <shared_dg> new-minor-number

vxdg -g <shared_dg> rmdisk medianame...

vxdg -g <shared_dg>[-q] spare [medianame...]

vxdg -g <shared_dg> [-f] [-o retain|replace] settag [encl:<enclosure>]
name[=value name[=value]

vxdg [-q] listtag <shared_dg>

vxdg -g <shared_dg> rmtag [encl:<enclosure>] name=value

vxdg -g <shared_dg> set siteconsistent=on

vxdg upgrade <shared_dg>

1066Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxdg -g <shared_dg>set attr=value ...

vxassist -g <shared_dg> [-b] convert volume layout=<type>

vxassist -g <shared_dg> [-b] addlog volume

vxassist -g <shared_dg> [-b] mirror volume

vxassist [-b]-g <shared_dg>make volume length [layout=layout] diskname
...

vxassist -g <shared_dg> [-b] growby volume lengthchange [attribute ...]

vxassist [-b] -g <shared_dg> growto volume newlength

vxassist -g <shared_dg> shrinkby volume lengthchange

vxassist -g <shared_dg> shrinkto volume newlength

vxassist -g <shared_dg> settag volume|vset tagname[=tagvalue]

vxassist -g <shared_dg>replacetag volume|vset oldtag newtag

vxassist -g <shared_dg> removetag volume|vset tagname

vxassist -g <shared_dg> move volume-name storage-spec

vxassist -g <shared_dg> relayout {volume-name} layout=<type>

vxassist -g <shared_dg> remove {volume|mirror|log} volume-name

vxassist -g <shared_dg> snapshot volume-name [snapshot-name]
[comment=<comment>]

vxassist -g <shared_dg> snapstart volume

vxassist -g <shared_dg> maxsize layout=<> nmirror=<> / nlog=<>

vxassist -g <shared_dg> maxgrow volume

vxassist -g <shared_dg> snapback snapvol

vxassist -g <shared_dg> snapclear snapvol1

vxassist

1067Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxcache -g <shared_dg> start cacheobject

vxcache -g <shared_dg> stop cacheobject

vxcache -g <shared_dg> att volume cacheobject

vxcache -g <shared_dg> dis cachevol

vxcache -g <shared_dg> shrinkcacheto cacheobject newlength

vxcache -g <shared_dg> shrinkcacheby cacheobject lengthchange

vxcache -g <shared_dg> growcacheto cacheobject newlength

vxcache -g <shared_dg> growcacheby cacheobject lengthchange

vxcache

vxdco -g <shared_dg> dis dco

vxdco -g <shared_dg> att volume dco

vxdco -g <shared_dg>[-o force] enable dco

vxdco

vxedit -g <shared_dg> set comment="plex comment" plex1

vxedit -g <shared_dg> -rf rm volume

vxedit -g <shared_dg>rename oldname newname

vxedit -g <shared_dg> set what=value

vxedit-g <shared_dg> set user=value mode=value medianame

vxedit -g <shared_dg> set failing=off <disk name>

vxedit -g <shared_dg> set fstype volumename

vxedit -g <shared_dg> set len subdisk

vxedit -g <shared_dg> set orig_dmname subdisk

vxedit -g <shared_dg> set orig_dmoffset subdisk

vxedit -g <shared_dg> set diskdetpolicy diskgroup

vxedit

vxmake -g <shared_dg> sd name [attr...]

vxmake-g <shared_dg>plex plex sd=subdisk1[,subdisk2,...]

vxmake -g <shared_dg> -U fsgen vol homevol1 plex=plex-1

vxmake -g <shared_dg> -U fsgen vol volume1 plex=plex1,plex2

vxmake -g <shared_dg> cache name regionsize=<size>

vxmake -g <shared_dg> dco volume log=dco

vxmake

1068Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxmend -g <shared_dg> on plex

vxmend -g <shared_dg> off plex

vxmend

vxmirror -g <shared_dg>medianame

vxmirror -g <shared_dg> -d [yes|no]

vxmirror

vxplex -g <shared_dg> att volume plex

vxplex -g <shared_dg> cp volume new_plex

vxplex -g <shared_dg> dis plex1

vxplex -g <shared_dg>mv original_plex new_plex

vxplex -g <shared_dg> snapstart vol snapplex

vxplex -g <shared_dg> snaphot snapplex

vxplex -g <shared_dg> snapback vol snapplex

vxplex -g <shared_dg> plex

vxplex

vxrelayout -g <shared_dg> status volume

vxrelayout -g <shared_dg> start volume

vxrelayout -g <shared_dg> reverse volname

vxrelayout

vxsd -g <shared_dg> assoc plex subdisk1 [subdisk2 subdisk3 ...]

vxsd -g <shared_dg> [-o force] dis subdisk

vxsd -g <shared_dg> mv old_subdisk new_subdisk [new_subdisk ...]

vxsd -g <shared_dg> aslog plex2 sdisk3

vxsd -g <shared_dg> join subdisk1 subdisk2 ... new_subdisk

vxsd -g <shared_dg> [-o force] dis subdisk

vxsd -g <shared_dg> split subdisk newsd [newsd2]...

vxsd

1069Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxsnap -g <shared_dg> addmir volume [nmirror=N]

vxsnap -g <shared_dg> prepare volume

vxsnap -g <shared_dg> rmmir volume

vxsnap -g <shared_dg>unprepare volume

vxsnap -g <shared_dg> make snapshot_tuple [snapshot_tuple]...
[alloc=storage_attributes]

vxsnap [-f] -g <shared_dg> dis volume

vxsnap -g <shared_dg> addmap volumename count

vxsnap -g <shared_dg> print volumename

vxsnap -g <shared_dg> list volumename

vxsnap -g <shared_dg> syncwait snapvol

vxsnap -g <shared_dg> snapwait

vxsnap -g <shared_dg> refresh snapvol source=volume

vxsnap -g <shared_dg> restore target source=volname

vxsnap -g <shared_dg> split volumename

vxsnap -g <shared_dg> reattach volname source=volname

vxsnap

vxsnptadm -g <shared_dg> create vol [snptname=snpt]
[snapvolname=snapvol] [data={yes|no}]

vxsnptadm -g <shared_dg> info vol [snptname=snpt]

vxsnptadm -g <shared_dg> remove vol snptname=snpt

vxsnptadm -g <shared_dg> removeall vol [cookie=cookie]

vxsnptadm -g <shared_dg> rename vol snptname=snpt newname=snpt2

vxsnptadm

1070Command reference
CVM commands supported for executing on the slave node

Table C-9 List of CVM commands supported for executing on the slave
node (continued)

Supported operationsCommand

vxvol -g <shared_dg> set logtype=drl | drlseq volume

vxvol -g <shared_dg> start volume

vxvol -g <shared_dg> stop volume

vxvol -g <shared_dg> {startall|stopall} volume

vxvol -g <shared_dg> init enable volume

vxvol -g <shared_dg> init active volume

vxvol -g <shared_dg> maint volumename

vxvol -g <shared_dg> set len volumename

vxvol -g <shared_dg> set logtype volumename

vxvol -g <shared_dg> set loglen volumename

vxvol

vxvset -g <shared_dg> make volume-set-name volume-name

vxvset -g <shared_dg> addvol volume-set-name volume-name

vxvset -g <shared_dg> list volume-set-name

vxvset -g <shared_dg> rmvol volume-set-name volume-name

vxvset -g <shared_dg> stop volume-set-name

vxvset -g <shared_dg> start volume-set-name

vxvset

vxevac -g <shared_dg> medianamevxevac

vxresize [-Vsb] [-F fstype] -g <shared_dg> volume lengthvxresize

vxrecover -g <shared_dg>

vxrecover -g <shared_dg> volume

vxrecover

vxckdiskrm -g <shared_dg> medianamevxckdiskrm

Veritas Volume Manager manual pages
Manual pages are organized into the following sections:

Administrative commands.1M

File formats.4

1071Command reference
Veritas Volume Manager manual pages

Section 1M — administrative commands
Table C-10 lists the manual pages in section 1M for commands that are used to
administer Veritas Volume Manager.

Table C-10 Section 1M manual pages

DescriptionName

Create, relayout, convert, mirror, backup,
grow, shrink, delete, and move volumes.

vxassist

Administer the cache object for
space-optimized snapshots.

vxcache

Resize cache volumes when required.vxcached

Make disks and disk groups portable
between systems.

vxcdsconvert

Start, stop, and reconfigure a cluster.vxclustadm

Administer command logging.vxcmdlog

Back up disk group configuration.vxconfigbackup

Disk group configuration backup daemon.vxconfigbackupd

Veritas Volume Manager configuration
daemon

vxconfigd

Restore disk group configuration.vxconfigrestore

Perform operations on version 0 DCO
objects and DCO volumes.

vxdco

Control the volume configuration daemon.vxdctl

Device Discovery Layer subsystem
administration.

vxddladm

Manage the defaults set in
/etc/default/vxsf that configure
settings such as SmartMove, thin
reclamation, automatic starting of volumes,
and minor numbers for shared disk groups.

vxdefault

Manage Veritas Volume Manager disk
groups.

vxdg

1072Command reference
Veritas Volume Manager manual pages

Table C-10 Section 1M manual pages (continued)

DescriptionName

Define and manage Veritas Volume
Manager disks.

vxdisk

Add one or more disks for use with Veritas
Volume Manager.

vxdiskadd

Menu-driven Veritas Volume Manager disk
administration.

vxdiskadm

Configure a disk for use with Veritas Volume
Manager.

vxdisksetup

Deconfigure a disk from use with Veritas
Volume Manager.

vxdiskunsetup

DMP subsystem administration.vxdmpadm

Display and change values of DMP tunable
parameters.

vxdmptune

Create, remove, and modify Veritas Volume
Manager records.

vxedit

Encapsulate partitions on a new disk.vxencap

Evacuate all volumes from a disk.vxevac

Print accessibility and usability of volumes.vxinfo

Create initial ramdisk images for preloading
VxVM modules.

vxinitrd

Menu-driven Veritas Volume Manager initial
configuration.

vxinstall

Introduction to the Veritas Volume Manager
utilities.

vxintro

Start, stop, and report on Veritas Volume
Manager kernel I/O threads.

vxiod

Create Veritas Volume Manager
configuration records.

vxmake

Display memory statistics for Veritas Volume
Manager.

vxmemstat

1073Command reference
Veritas Volume Manager manual pages

Table C-10 Section 1M manual pages (continued)

DescriptionName

Mend simple problems in configuration
records.

vxmend

Mirror volumes on a disk or control default
mirroring.

vxmirror

Display Veritas Volume Manager
configuration events.

vxnotify

Perform Veritas Volume Manager operations
on plexes.

vxplex

Display records from the Veritas Volume
Manager configuration.

vxprint

Verify RAID-5 volume parity.vxr5check

Reattach disk drives that have become
accessible again.

vxreattach

Perform volume recovery operations.vxrecover

Convert online storage from one layout to
another.

vxrelayout

Monitor Veritas Volume Manager for failure
events and relocate failed subdisks.

vxrelocd

Change the length of a volume containing
a file system.

vxresize

Grow or take snapshots of the boot disk.vxrootadm

Mirror root disk to an alternate disk.vxrootmir

Display SCSI inquiry data.vxscsiinq

Perform Veritas Volume Manager operations
on subdisks.

vxsd

Enable DRL on a volume, and create and
administer instant snapshots.

vxsnap

Veritas Volume Manager statistics
management utility.

vxstat

1074Command reference
Veritas Volume Manager manual pages

Table C-10 Section 1M manual pages (continued)

DescriptionName

List and administer Veritas Volume Manager
tasks.

vxtask

Trace operations on volumes.vxtrace

Administer transaction logging.vxtranslog

Adjust Veritas Volume Replicator and
Veritas Volume Manager tunables.

vxtune

Move a hot-relocated subdisk back to its
original disk.

vxunreloc

Remove Veritas Volume Manager hooks
from encapsulated root volumes.

vxunroot

Perform Veritas Volume Manager operations
on volumes.

vxvol

Create and administer volume sets.vxvset

Section 4 — file formats
Table C-11 lists the manual pages in section 4 that describe the format of files that
are used by Veritas Volume Manager.

Table C-11 Section 4 manual pages

DescriptionName

Disk group search specifications.vol_pattern

vxmake description file.vxmake

Veritas File System command summary
Symbolic links to all VxFS command executables are installed in the /opt/VRTS/bin

directory. Add this directory to the end of your PATH environment variable to access
the commands.

Table C-12 describes the VxFS-specific commands.

1075Command reference
Veritas File System command summary

Table C-12 VxFS commands

DescriptionCommand

Reports the number of free disk blocks and inodes for a VxFS file system.df

Administers VxFS File Change Logs.fcladm

Lists file names and inode information for a VxFS file system.ff

Administers file I/O statisticsfiostat

Resizes or defragments a VxFS file system.fsadm

Administers VxFS allocation policies.fsapadm

Cats a VxFS file system.fscat

Performs online CDS operations.fscdsadm

Performs offline CDS migration tasks on VxFS file systems.fscdsconv

Performs various CDS operations.fscdstask

Checks and repairs a VxFS file system.

Due to a behavioral issue with the Linux fsck wrapper, you must run the VxFS fsck
command, /opt/VRTS/bin/fsck, when specifying any option with an equals sign (=) in it.
For example:

/opt/VRTS/bin/fsck -o zapvol=MyVolName /dev/rdsk/c0t0d1s1

fsck

Restores file systems from VxFS Storage Checkpoints.fsckpt_restore

Manages cluster-mounted VxFS file systems.fsclustadm

Debugs VxFS file systems.fsdb

Administers data deduplication.fsdedupadm

Freezes VxFS file systems and executes a user command on the file systems.fsfreeze

Displays VxFS file system extent information.fsmap

Administers VxFS placement policies.fsppadm

Creates placement policies.fsppmk

Creates, deletes, or lists file tags.fstag

Returns the type of file system on a specified disk partition.fstyp

1076Command reference
Veritas File System command summary

Table C-12 VxFS commands (continued)

DescriptionCommand

Maps volumes of VxFS file systems to files.fsvmap

Administers VxFS volumes.fsvoladm

Configures Group Lock Managers (GLM).glmconfig

Reports stuck Group Lock Managers (GLM) locks in a cluster file system.glmdump

Group Lock Managers (GLM) statistics gathering utility.glmstat

SmartTier file system creation utility.mkdstfs

Constructs a VxFS file system.mkfs

Mounts a VxFS file system.mount

Generates path names from inode numbers for a VxFS file system.ncheck

Sets extent attributes on a file in a VxFS file system.setext

Compresses and uncompresses files.vxcompress

Incrementally dumps file systems.vxdump

Edits user quotas for a VxFS file system.vxedquota

Enables specific VxFS features.vxenable

Makes a copy-on-write copy of a file in a VxFS file system.vxfilesnap

Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.vxfsconvert

Displays file system statistics.vxfsstat

Looks up VxFS reverse path names.vxlsino

Displays file system ownership summaries for a VxFS file system.vxquot

Displays user disk quotas and usage on a VxFS file system.vxquota

Turns quotas on and off for a VxFS file system.vxquotaoff
vxquotaon

Summarizes quotas for a VxFS file system.vxrepquota

Restores a file system incrementally.vxrestore

Tunes a VxFS file system.vxtunefs

1077Command reference
Veritas File System command summary

Table C-12 VxFS commands (continued)

DescriptionCommand

Upgrades the disk layout of a mounted VxFS file system.vxupgrade

Veritas File System manual pages
This release includes the following online manual pages as part of the VRTSvxfs

RPM. These are installed in the appropriate directories under /opt/VRTS/man (add
this to your MANPATH environment variable), but does not update the windex
database. To ensure that new VxFS manual pages display correctly, update the
windex database after installing VRTSvxfs.

See the catman(1M) manual page.

Table C-13 describes the VxFS-specific section 1 manual pages.

Table C-13 Section 1 manual pages

DescriptionSection 1

Administers file I/O statistics.fiostat

Displays VxFS file system extent information.fsmap

Gets extent attributes for a VxFS file system.getext

Sets extent attributes on a file in a VxFS file system.setext

Compresses or uncompresses files.vxcompress

Makes a copy-on-write copy of a file in a VxFS file system.vxfilesnap

Table C-14 describes the VxFS-specific section 1M manual pages.

Table C-14 Section 1M manual pages

DescriptionSection 1M

Reports the number of free disk blocks and inodes for a VxFS file system.df_vxfs

Administers VxFS File Change Logs.fcladm

Lists file names and inode information for a VxFS file system.ff_vxfs

Resizes or reorganizes a VxFS file system.fsadm_vxfs

Administers VxFS allocation policies.fsapadm

1078Command reference
Veritas File System manual pages

Table C-14 Section 1M manual pages (continued)

DescriptionSection 1M

Cats a VxFS file system.fscat_vxfs

Performs online CDS operations.fscdsadm

Performs offline CDS migration tasks on VxFS file systems.fscdsconv

Performs various CDS operations.fscdstask

Checks and repairs a VxFS file system.fsck_vxfs

Performs various administrative tasks like creating, deleting, converting, setting, and displaying
the quota on a Storage Checkpoint.

Quota display can be formatted in a human-friendly way, using the -H option.

fsckptadm

Restores file systems from VxFS Storage Checkpoints.fsckpt_restore

Manages cluster-mounted VxFS file systems.fsclustadm

Encapsulates databases.fsdbencap

Debugs VxFS file systems.fsdb_vxfs

Administers data deduplication.fsdedupadm

Freezes VxFS file systems and executes a user command on the file systems.fsfreeze

Administers VxFS placement policies.fsppadm

Returns the type of file system on a specified disk partition.fstyp_vxfs

Maps volumes of VxFS file systems to files.fsvmap

Administers VxFS volumes.fsvoladm

Configures Group Lock Managers (GLM). This functionality is available only with the Veritas
Cluster File System product.

glmconfig

Reports stuck Group Lock Managers (GLM) locks in a cluster file system.glmdump

SmartTier file system creation utility.mkdstfs

Constructs a VxFS file system.mkfs_vxfs

Mounts a VxFS file system.mount_vxfs

Generates path names from inode numbers for a VxFS file system.ncheck_vxfs

1079Command reference
Veritas File System manual pages

Table C-14 Section 1M manual pages (continued)

DescriptionSection 1M

Summarizes ownership on a VxFS file system.quot

Checks VxFS file system quota consistency.quotacheck_vxfs

Generates VxFS disk accounting data by user ID.vxdiskusg

Incrementally dumps file systems.vxdump

Edits user quotas for a VxFS file system.vxedquota

Enables specific VxFS features.vxenable

Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.vxfsconvert

Displays file system statistics.vxfsstat

Looks up VxFS reverse path names.vxlsino

Displays file system ownership summaries for a VxFS file system.vxquot

Displays user disk quotas and usage on a VxFS file system.vxquota

Turns quotas on and off for a VxFS file system.vxquotaoff
vxquotaon

Summarizes quotas for a VxFS file system.vxrepquota

Restores a file system incrementally.vxrestore

Tunes a VxFS file system.vxtunefs

Upgrades the disk layout of a mounted VxFS file system.vxupgrade

Table C-15 describes the VxFS-specific section 3 manual pages.

Table C-15 Section 3 manual pages

DescriptionSection 3

Allocates an fsap_info2 structure.vxfs_ap_alloc2

Assigns an allocation policy to file data and metadata in a Storage
Checkpoint.

vxfs_ap_assign_ckpt

Assigns an allocation policy for all of the Storage Checkpoints of a VxFS
file system.

vxfs_ap_assign_ckptchain

1080Command reference
Veritas File System manual pages

Table C-15 Section 3 manual pages (continued)

DescriptionSection 3

Assigns a default allocation policy for new Storage Checkpoints of a VxFS
file system.

vxfs_ap_assign_ckptdef

Assigns an allocation policy for file data and metadata.vxfs_ap_assign_file

Assigns a pattern-based allocation policy for a directory.vxfs_ap_assign_file_pat

Assigns an allocation policy for all file data and metadata within a specified
file system.

vxfs_ap_assign_fs

Assigns an pattern-based allocation policy for a file system.vxfs_ap_assign_fs_pat

Defines a new allocation policy.vxfs_ap_define

Defines a new allocation policy.vxfs_ap_define2

Reorganizes blocks in a Storage Checkpoint to match a specified
allocation policy.

vxfs_ap_enforce_ckpt

Enforces the allocation policy for all of the Storage Checkpoints of a VxFS
file system.

vxfs_ap_enforce_ckptchain

Ensures that all blocks in a specified file match the file allocation policy.vxfs_ap_enforce_file

Reallocates blocks in a file to match allocation policies.vxfs_ap_enforce_file2

Reallocates blocks in a file within a specified range to match allocation
policies.

vxfs_ap_enforce_range

Returns information about all allocation policies.vxfs_ap_enumerate

Returns information about all allocation policies.vxfs_ap_enumerate2

Frees one or more fsap_info2 structures.vxf_ap_free2

Returns information about a specific allocation policy.vxfs_ap_query

Returns information about a specific allocation policy.vxfs_ap_query2

Returns information about allocation policies for each Storage Checkpoint.vxfs_ap_query_ckpt

Retrieves the default allocation policies for new Storage Checkpoints of
a VxFS file system

vxfs_ap_query_ckptdef

Returns information about allocation policies assigned to a specified file.vxfs_ap_query_file

Returns information about the pattern-based allocation policy assigned
to a directory.

vxfs_ap_query_file_pat

1081Command reference
Veritas File System manual pages

Table C-15 Section 3 manual pages (continued)

DescriptionSection 3

Retrieves allocation policies assigned to a specified file system.vxfs_ap_query_fs

Returns information about the pattern-based allocation policy assigned
to a file system.

vxfs_ap_query_fs_pat

Deletes a specified allocation policy.vxfs_ap_remove

Sets a synchronization point in the VxFS File Change Log.vxfs_fcl_sync

Returns file and file range I/O statistics.vxfs_fiostats_dump

Gets file range I/O statistics configuration values.vxfs_fiostats_getconfig

Turns on and off file range I/O statistics and resets statistics counters.vxfs_fiostats_set

Obtains VxFS inode field offsets.vxfs_get_ioffsets

Returns path names for a given inode number.vxfs_inotopath

Gets the file statistics based on the inode number.vxfs_inostat

Gets the file descriptor based on the inode number.vxfs_inotofd

Checks for the existence of named data streams.vxfs_nattr_check

vxfs_nattr_fcheck

Links to a named data stream.vxfs_nattr_link

Opens a named data stream.vxfs_nattr_open

Renames a named data stream.vxfs_nattr_rename

Removes a named data stream.vxfs_nattr_unlink

Sets access and modification times for named data streams.vxfs_nattr_utimes

Adds a volume to a multi-volume file system.vxfs_vol_add

Clears specified flags on volumes in a multi-volume file system.vxfs_vol_clearflags

De-encapsulates a volume from a multi-volume file system.vxfs_vol_deencapsulate

Encapsulates a volume within a multi-volume file system.vxfs_vol_encapsulate

Encapsulates a volume within a multi-volume file system.vxfs_vol_encapsulate_bias

Returns information about the volumes within a multi-volume file system.vxfs_vol_enumerate

1082Command reference
Veritas File System manual pages

Table C-15 Section 3 manual pages (continued)

DescriptionSection 3

Queries flags on volumes in a multi-volume file system.vxfs_vol_queryflags

Removes a volume from a multi-volume file system.vxfs_vol_remove

Resizes a specific volume within a multi-volume file system.vxfs_vol_resize

Sets specified flags on volumes in a multi-volume file system.vxfs_vol_setflags

Returns free space information about a component volume within a
multi-volume file system.

vxfs_vol_stat

Table C-16 describes the VxFS-specific section 4 manual pages.

Table C-16 Section 4 manual pages

DescriptionSection 4

Provides the format of a VxFS file system volume.fs_vxfs

Provides the format of a VxFS file system inode.inode_vxfs

Describes the VxFS file system tuning parameters table.tunefstab

Table C-17 describes the VxFS-specific section 7 manual pages.

Table C-17 Section 7 manual pages

DescriptionSection 7

Describes the VxFS file system control functions.vxfsio

1083Command reference
Veritas File System manual pages

Creating a starter
database

This appendix includes the following topics:

■ Creating a database for Oracle 11gr2

Creating a database for Oracle 11gr2
Create a database tablespace for Oracle 11gr2 on shared raw VxVM volumes

Before you begin, take note of the following prerequisites:

■ CRS daemons must be running. To verify the status of CRS, enter:
For Oracle 11gr2,

$CRS_HOME/bin/crsctl status resource -t

■ Use the ping command to verify that all private IP addresses on each node are
up.

Creating database tablespace on shared raw VxVM volumes
This section describes how to create database tablespace on shared raw VxVM
volumes (option 1).

DAppendix

To create database tablespace on shared raw VxVM volumes (option 1)

1 On any cluster node, log in as root. Find out the spare disks that can be used
for creating shared disk group for Oracle database tablespaces, enter:

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

sda auto:none - - online invalid

sdb auto:none - - online invalid

sdc auto:cdsdisk - tempdg online shared

sdd auto:cfsdisk - ocrvotedg online shared

sde auto:cdsdisk - - online shared

sdf auto:cdsdisk - - online shared

The above sample output indicates that shared disks sde and sdf are free and
can be used for Oracle database tablespaces.

2 Create a shared disk group:

vxdg -s init oradatadg sde sdf

3 Create a volume in the shared group for each of the required tablespaces.

See the Oracle documentation specific to the Oracle database release to
determine the tablespace requirements.

For example, enter:

vxassist -g oradatadg make VRT_sys1 1000M

vxassist -g oradatadg make VRT_sys2 2 10M

.

.

.

1085Creating a starter database
Creating a database for Oracle 11gr2

4 Define the access mode and permissions for the volumes storing the Oracle
data. For each volume listed in $ORACLE_HOME/raw_config, use the vxedit

command:

vxedit -g disk_group set group=group user=user mode=660

volume

See the vxedit(1M) manual page.

For example, enter:

vxedit -g oradatadg set group=oinstall user=oracle mode=660 \

VRT_sys1

In this example, VRT_sys1 is the name of one of the volumes. Repeat the
command to define access mode and permissions for each volume in the
oradatadg.

5 Create the database.

See the Oracle documentation.

1086Creating a starter database
Creating a database for Oracle 11gr2

Symbols
/boot/grub/menu.lst file 954
/dev/vx/dmp directory 181
/dev/vx/rdmp directory 181
/etc/default/vxassist file 198, 817
/etc/default/vxdg defaults file 151
/etc/default/vxdg file 888
/etc/fstab file 374, 925
/etc/gabtab

VCS 48
/etc/grub.conf file 954
/etc/init.d/vxvm-recover file 821
/etc/lilo.conf file 954
/etc/llthosts

VCS 48
/etc/llttab

VCS 48
/etc/volboot file 106
/etc/vx/darecs file 106
/etc/vx/dmppolicy.info file 312
/etc/vx/volboot file 896

A
A/A disk arrays 179
A/A-A disk arrays 180
A/P disk arrays 180
A/P-C disk arrays 180–181
A/P-F disk arrays 180
A/P-G disk arrays 181
access control lists 84
access port 180
Actions 481
activation modes for shared disk groups 150–151
active path attribute 309
active paths

devices 310–311
ACTIVE state 598
Active/Active disk arrays 179
Active/Passive disk arrays 180
adaptive load-balancing 312
adaptiveminq policy 312

adding disks 358
Administering

Clustered NFS 484
Administration

I/O fencing 405
administration

SFCFSHA 368
Agents

CVM 79
allocation

site-based 518
allocation policies 259

default 259
extent 36
extent based 36, 81

APM
configuring 327

Architecture
SFCFSHA 44
VCS 48

array policy module (APM)
configuring 327

array ports
disabling for DMP 318
displaying information about 299
enabling for DMP 319

array support library (ASL) 269
Array Volume ID

device naming 342
arrays

DMP support 268
ASL

array support library 268–269
Asymmetric Active/Active disk arrays 180
Asymmetric mounts 50
asymmetric mounts

mount_vxfs(1M) 51
ATTACHING state 598
attributes

active 309
autogrow 607, 612
autogrowby 607

Index

attributes (continued)
cache 612
cachesize 612
dcolen 142, 646
for specifying storage 226
highwatermark 607
maxautogrow 607
maxdev 900
mirdg 620
mirvol 620
ncachemirror 612
ndcomirror 646
ndcomirs 605
newvol 618
nmirror 618
nomanual 309
nopreferred 309
preferred priority 309
primary 309
secondary 309
setting for paths 309, 311
snapvol 614, 620
source 614, 620
standby 310
syncing 604, 632

autogrow
tuning 634

autogrow attribute 607, 612
autogrowby attribute 607
autotrespass mode 180
availability

storage 153

B
Backup strategies

SFCFSHA 53
backups

created using snapshots 604
creating for volumes 577
creating using instant snapshots 604
creating using third-mirror snapshots 636
for multiple volumes 621, 641
of disk group configuration 919

bad block revectoring 242
balanced path policy 313
base minor number 898
Basic design

Clustered NFS 479

BIOS
restrictions 943

blkclear mount option 242
block based architecture 88
blockmap for a snapshot file system 678
blocks on disks 102
boot disk

encapsulating 953
mirroring 953
unencapsulating 962

booting root volumes 952
BROKEN state 598
buffered file systems 82
buffered I/O 542

C
cache

for space-optimized instant snapshots 579
cache advisories 544
cache attribute 612
cache objects

creating 607
enabling 608
listing snapshots in 633

caches
creating 607
deleting 636
finding out snapshots configured on 636
growing 635
listing snapshots in 633
removing 636
resizing 635
shrinking 635
stopping 636
used by space-optimized instant snapshots 579

cachesize attribute 612
Campus Cluster feature

administering 517
campus clusters

administering 517
serial split brain condition in 911

cascade instant snapshots 599
cascaded snapshot hierarchies

creating 625
categories

disks 269
CDS

compatible disk groups 888
cds attribute 888

1088Index

CFS file system
growing 373
Sharing 485, 509

CFS primary node
fails 374

CFS primaryship
determining 51
moving 51

cfscluster command 371
cfsdgadm command 371
cfsmntadm command 371
cfsmount command 372
cfsnfssg_dummy

service group 484
cfsshare

manual page 481
cfsshare (1M) 501
cfsshare command 372
cfsumount command 372
Changing the CVM master 386
check_all policy 325
check_alternate policy 326
check_disabled policy 326
check_periodic policy 326
checkpoint interval 1002
CIFS

Common Internet File System 500
debugging 516

cio
Concurrent I/O 248

clone_disk flag 902
cloned disks 900, 902
Cluster file systems

VxFS
unsupported features 48

cluster file systems
support features

VxFS 45
Cluster master node

changing 386
cluster-shareable disk groups in clusters 149
Clustered NFS 478

Administering 484
Basic design 479
Configure 482
Debugging 499
Functionality 479
Unconfigure 484
Understanding 479

clusters
activating disk groups 151
activating shared disk groups 397
activation modes for shared disk groups 150
benefits 145
checking cluster protocol version 400
cluster-shareable disk groups 149
configuration 167
configuring exclusive open of volume by

node 399–400
connectivity policies 153
converting shared disk groups to private 396
creating shared disk groups 395
designating shareable disk groups 149
detach policies 153
determining if disks are shared 393
forcibly adding disks to disk groups 395
forcibly importing disk groups 395
importing disk groups as shared 395
initialization 167
introduced 147
limitations of shared disk groups 152
listing shared disk groups 393
maximum number of nodes in 146
moving objects between disk groups 396
node shutdown 173
nodes 147
operation of DRL in 174–175
operation of vxconfigd in 171
operation of VxVM in 147
private disk groups 149
private networks 148
protection against simultaneous writes 150
reconfiguration of 168
resolving disk status in 153
shared disk groups 149
shared objects 150
splitting disk groups in 397
use of DMP in 188
vol_fmr_logsz tunable 1008
volume reconfiguration 170
vxclustadm 168
vxdctl 392
vxrecover 401
vxstat 402

CNFS 478
columns

changing number of 873
in striping 111

1089Index

columns (continued)
mirroring in striped-mirror volumes 224

commands
cfscluster 371
cfsdgadm 371
cfsmntadm 371
cfsmount 372
cfsshare 372
cfsumount 372
cron 92
fsadm 91
getext 262
setext 262

Common Internet File System
CIFS 500

compressing files 87
concatenated volumes 108, 220
concatenated-mirror volumes

creating 222
defined 116
recovery 221

concatenation 108
configuration backup and restoration 919
configuration changes

monitoring using vxnotify 868
configuration database

listing disks with 903
metadata 903
reducing size of 852

Configure
Clustered NFS 482

Configuring
low priority link 56

Configuring a CNFS
samples 489, 492

Configuring DMP
using templates 993

connectivity policies 153
contiguous reservation 261
Controller ID

displaying 298
controllers

disabling for DMP 318
disabling in DMP 287
displaying information about 297
enabling for DMP 319
mirroring across 230
specifying to vxassist 226

converting a data Storage Checkpoint to a nodata
Storage Checkpoint 655

convosync mount option 239, 244
coordinator disks

DMP devices 61
for I/O fencing 61

copy-on-write
used by instant snapshots 597

copy-on-write technique 584, 650
copymaps 140–141
CP server

deployment scenarios 447
migration scenarios 447

CP server database 74
CP server user privileges 75
Creating

database for Oracle 11gr2 1084
creating

snapshot 376
creating a multi-volume support file system 725
creating file systems with large files 246
creating files with mkfs 234, 237
cron 91, 256
cron sample script 257
customized naming

DMP nodes 343
CVM

agents 79
cluster functionality of VxVM 145
failure tolerance 153
functionality 80
resilience 153
storage disconnectivity tolerance 153

CVM master
changing 386

D
data change object

DCO 140
data copy 541
data corruption

preventing 59
data disks

for I/O fencing 61
data redundancy 114, 117
data Storage Checkpoints definition 587
data synchronous I/O 243, 542
data transfer 541
data volume configuration 131

1090Index

database replay logs and sequential DRL 130
databases

integrity of data in 577
resilvering 130
resynchronizing 130

DCO
adding version 0 DCOs to volumes 645
considerations for disk layout 858
data change object 140
dissociating version 0 DCOs from volumes 648
effect on disk group split and join 858
instant snap version 140
log plexes 138
log volume 140
moving log plexes 647
reattaching version 0 DCOs to volumes 648
removing version 0 DCOs from volumes 648
specifying storage for version 0 plexes 647
used with DRL 130
version 0 140
version 20 140–141
versioning 140

dcolen attribute 142, 646
DDL 183

Device Discovery Layer 272
debugging CIFS 516
Debugging Clustered NFS 499
default

allocation policy 259
defaultdg 849
defragmentation 91

extent 256
scheduling with cron 256

delaylog 83
delaylog mount option 240
detach policy

global 161
Determining

CFS primaryship 51
device discovery

introduced 183
partial 267

Device Discovery Layer 272
Device Discovery Layer (DDL) 183, 272
device names 96

configuring persistent 344
user-specified 343

device nodes
controlling access for volume sets 720

device nodes (continued)
displaying access for volume sets 720
enabling access for volume sets 719
for volume sets 718

devices
adding foreign 283
fabric 267
JBOD 268
listing all 273
making invisible to VxVM 284
nopriv 941
path redundancy 310–311

direct data transfer 541
direct I/O 541
directory reorganization 257
dirty flags set on volumes 128
dirty region logging.. See DRL
dirty regions 1009
disable failure policy 156
disabled file system

snapshot 593
disabled paths 289
discovered direct I/O 542
disk access records

stored in /etc/vx/darecs 106
disk arrays

A/A 179
A/A-A 180
A/P 180
A/P-F 180
A/P-G 181
Active/Active 179
Active/Passive 180
adding disks to DISKS category 280
Asymmetric Active/Active 180
defined 97
excluding support for 278
JBOD devices 268
listing excluded 279
listing supported 277
listing supported disks in DISKS category 279
multipathed 106
re-including support for 279
removing disks from DISKS category 282
supported with DMP 277

Disk Group Split/Join 580
disk groups

activating shared 397
activation in clusters 151

1091Index

disk groups (continued)
avoiding conflicting minor numbers on import 897
clearing locks on disks 896
cluster-shareable 149
compatible with CDS 888
configuration backup and restoration 919
configuring site consistency on 527
configuring site-based allocation on 526
converting to private 396
creating shared 395
creating with old version number 886
defaults file for shared 151
defined 100
deporting 890
designating as shareable 149
destroying 918
determining the default disk group 848
disabling 918
displaying boot disk group 849
displaying default disk group 849
displaying free space in 887
displaying information about 886
displaying version of 885
failure policy 156
features supported by version 881
forcing import of 897
free space in 812
importing 891
importing as shared 395
importing forcibly 395
importing with cloned disks 902
ISP 920
joining 854, 863
layout of DCO plexes 858
limitations of move

split. See and join
listing objects affected by a move 857
listing shared 393
making site consistent 525
moving between systems 894
moving disks between 851, 860
moving licensed EMC disks between 860
moving objects between 852, 859
moving objects in clusters 396
private in clusters 149
recovering destroyed 918
recovery from failed reconfiguration 856
removing disks from 889
renaming 909

disk groups (continued)
reorganizing 852
reserving minor numbers 897
restarting moved volumes 864
root 101
rootdg 101
serial split brain condition 911
setting default disk group 849
shared in clusters 149
splitting 853, 862
splitting in clusters 397
upgrading version of 885
version 881, 885

disk layout
Version 6 1038
Version 7 1038
Version 8 1038
Version 9 1038

Disk layout versions 46
disk media names 101
disk names

configuring persistent 344
disk## 102
disk##-## 102
diskdetpolicy attribute 398
disks 269

adding 358
adding to disk groups forcibly 395
adding to DISKS category 280
array support library 269
categories 269
changing naming scheme 341
clearing locks on 896
cloned 902
complete failure messages 811
configuring newly added 266
configuring persistent names 344
determining failed 811
determining if shared 393
Device Discovery Layer 272
disabled path 289
discovery of by DMP 266
discovery of by VxVM 268
disk access records file 106
disk arrays 97
displaying information 339–340
displaying information about 339, 887
displaying naming scheme 342
displaying spare 813

1092Index

disks (continued)
dynamic LUN expansion 335
EFI 937, 943
enabled path 289
encapsulation 936, 942
enclosures 183
excluding free space from hot-relocation use 816
failure handled by hot-relocation 808
formatting 348
handling clones 900
handling duplicated identifiers 900
hot-relocation 806
initializing 349
installing 348
invoking discovery of 270
layout of DCO plexes 858
listing tags on 902
listing those supported in JBODs 279
making available for hot-relocation 814
making free space available for hot-relocation

use 817
marking as spare 814
mirroring boot disk 953
mirroring root disk 953
mirroring volumes on 876
moving between disk groups 851, 860
moving disk groups between systems 894
moving volumes from 850
nopriv devices 941
OTHER_DISKS category 269
partial failure messages 810
postponing replacement 930
primary path 289
reinitializing 357
releasing from disk groups 918
removing 358, 930
removing from disk groups 889
removing from DISKS category 282
removing from pool of hot-relocation spares 815
removing from VxVM control 889, 926
removing tags from 903
removing with subdisks 360–361
renaming 361
replacing 930
replacing removed 933
resolving status in clusters 153
root disk 942
scanning for 266
secondary path 289

disks (continued)
setting tags on 902
spare 812
specifying to vxassist 226
tagging with site name 530
UDID flag 901
unique identifier 901
VM 101
writing a new identifier to 901

DISKS category 269
adding disks 280
listing supported disks 279
removing disks 282

displaying
DMP nodes 293
HBA information 298
redundancy levels 310
supported disk arrays 277

displaying mounted file systems 253
displaying statistics

erroneous I/Os 306
queued I/Os 306

DMP
check_all restore policy 325
check_alternate restore policy 326
check_disabled restore policy 326
check_periodic restore policy 326
configuring disk devices 266
configuring DMP path restoration policies 325
configuring I/O throttling 322
configuring response to I/O errors 321, 324
disabling array ports 318
disabling controllers 318
disabling multi-pathing 284
disabling paths 318
disk discovery 266
displaying DMP database information 287
displaying DMP node for a path 292
displaying DMP node for an enclosure 292–293
displaying DMP nodes 293
displaying information about array ports 299
displaying information about controllers 297
displaying information about enclosures 298
displaying information about paths 288
displaying LUN group for a node 294
displaying paths controlled by DMP node 295
displaying paths for a controller 295
displaying paths for an array port 296
displaying recoveryoption values 324

1093Index

DMP (continued)
displaying status of DMP path restoration

thread 327
displaying TPD information 299
dynamic multi-pathing 179
enabling array ports 319
enabling controllers 319
enabling multi-pathing 286
enabling paths 319
enclosure-based naming 182
gathering I/O statistics 303
in a clustered environment 188
load balancing 187
logging levels 987
metanodes 181
nodes 181
path aging 986
path failover mechanism 186
path-switch tunable 990
renaming an enclosure 320
restore policy 325
scheduling I/O on secondary paths 315
setting the DMP restore polling interval 325
stopping the DMP restore daemon 327
tuning with templates 993
vxdmpadm 290

DMP nodes
displaying consolidated information 293
setting names 343

DMP support
JBOD devices 268

dmp_cache_open tunable 986
dmp_daemon_count tunable 986
dmp_delayq_interval tunable 986
dmp_fast_recovery tunable 986
dmp_health_time tunable 986
dmp_log_level tunable 987
dmp_low_impact_probe 987
dmp_lun_retry_timeout tunable 988
dmp_monitor_fabric tunable 988
dmp_monitor_osevent tunable 989
dmp_monitor_ownership tunable 989
dmp_native_support tunable 989
dmp_path_age tunable 989
dmp_pathswitch_blks_shift tunable 990
dmp_probe_idle_lun tunable 990
dmp_probe_threshold tunable 990
dmp_restore_cycles tunable 991
dmp_restore_interval tunable 991

dmp_restore_state tunable 992
dmp_scsi_timeout tunable 992
dmp_sfg_threshold tunable 992
dmp_stat_interval tunable 992
DRL

dirty region logging 129
handling recovery in clusters 175
hot-relocation limitations 808
log subdisks 130
maximum number of dirty regions 1009
minimum number of sectors 1009
operation in clusters 174
sequential 130
use of DCO with 130

dynamic LUN expansion 335

E
EFI disks 937, 943
EMC arrays

moving disks between disk groups 860
EMC PowerPath

coexistence with DMP 271
EMC Symmetrix

autodiscovery 270
enabled paths

displaying 289
encapsulating disks 936, 942
encapsulating volumes 723
encapsulation

failure of 940
root disk 954
supported layouts for root disk 945
unsupported layouts for root disk 948

enclosure-based naming 183, 341
DMP 182

enclosures 183
displaying information about 298
path redundancy 310–311
setting attributes of paths 309, 311
tagging with site name 531, 534

enhanced data integrity modes 82
ENOSPC 663
Environment

public network 56
single private link 56

erroneous I/Os
displaying statistics 306

error messages
Association count is incorrect 177

1094Index

error messages (continued)
Association not resolved 177
Cannot auto-import group 177
Configuration records are inconsistent 177
Disk for disk group not found 896
Disk group has no valid configuration

copies 178, 896
Disk group version doesn't support feature 880
Disk is in use by another host 896
Disk is used by one or more subdisks 889
Disk not moving

but subdisks on it are 857
Duplicate record in configuration 177
import failed 896
It is not possible to encapsulate 940
No valid disk found containing disk group 896
The encapsulation operation failed 940
tmpsize too small to perform this relayout 124
unsupported layout 940
vxdg listmove failed 857

errord daemon 185
errors

handling transient errors 988
exclusive-write mode 151
exclusivewrite mode 150
expansion 92
explicit failover mode 180
Extensible Firmware Interface (EFI) disks 937, 943
extent 36, 81–82, 258

attributes 82, 258
reorganization 257

extent allocation 36
aligned 259
control 82, 258
fixed size 258

extent attributes 82, 258
external quotas file 965

F
fabric devices 267
FAILFAST flag 186
Failover

primary 45
secondary 45

failover 146–147
failover mode 180
fails

CFS primary node 374
failure handled by hot-relocation 808

failure in RAID-5 handled by hot-relocation 808
failure policies 156
failures

storage 153
Fast file system recovery 46
FastResync

effect of growing volume on 142
limitations 143
Non-Persistent 136
Persistent 136–137, 577
size of bitmap 1008
snapshot enhancements 595
use with snapshots 135

FastResync/cache object metadata cache size
tunable 1011

fc_foff 975
file

sparse 260
file compression 87
file system

block size 264
buffering 82
displaying mounted 253
mount 499

file system tunables
tunefstab(4) 52
vxtunefs(1M) 52

file systems
unmounting 925

fileset
primary 582

FileSnap 47
FileSnaps

about 589
data mining, reporting, and testing 673
virtual desktops 672
write intensive applications 673

backup 591
best practices 672
block map fragmentation 591
concurrent I/O 590
copy-on-write 590
creation 670
properties 589
reading from 591
using 671

fire drill
defined 518
testing 527

1095Index

fire drills
about 474
disaster recovery 474
for global clusters 474

fixed extent size 258
fixed write size 260
FlashSnap 575
FMR.. See FastResync
foreign devices

adding 283
formatting disks 348
fragmentation

monitoring 256–257
reorganization facilities 256
reporting 256

fragmented file system characteristics 256
free space in disk groups 812
free space monitoring 255
Freeze 47
freeze 544
freezing and thawing, relation to Storage

Checkpoints 582
fsadm 91

how to minimize file system free space
fragmentation 252

how to reorganize a file system 252
how to resize a file system 250
reporting extent fragmentation 257
scheduling defragmentation using cron 257
thin reclamation 699

fsadm_vxfs 247
fsadm_vxfs(1M)

manual page 373
fscat 677
fsck 655
fsckptadm

Storage Checkpoint administration 651
fsclustadm 374, 479
fsclustadm(1M)

manual page 372
fstyp

how to determine the file system type 254
fsvoladm 725
full-sized instant snapshots 596

creating 614
creating volumes for use as 609

fullinst snapshot type 631
Functionality

Clustered NFS 479

G
GAB 167

tunable parameters 1025
VCS 48

GAB tunable parameters
dynamic 1028

Control port seed 1028
Driver state 1028
Gab queue limit 1028
Halt on process death 1028
Halt on rejoin 1028
IOFENCE timeout 1028
Isolate timeout 1028
Keep on killing 1028
Kill_ntries 1028
Missed heartbeat halt 1028
Partition arbitration 1028
Quorum flag 1028
Stable timeout 1028

static 1026
gab_conn_wait 1026
gab_flowctrl 1026
gab_isolate_time 1026
gab_kill_ntries 1026
gab_kstat_size 1026
gab_logbufsize 1026
gab_msglogsize 1026
gab_numnids 1026
gab_numports 1026

get I/O parameter ioctl 545
getext 262
getfacl 84
GLM 45
global detach policy 161
GPT labels 937, 943
Group Membership and Atomic Broadcast (GAB) 167
growing

CFS file system 373
GUID Partition Table (GPT) labels 937, 943

H
handling storage disconnectivity

CVM 153
HBA information

displaying 298
HBAs

listing ports 274
listing supported 273
listing targets 274

1096Index

highwatermark attribute 607
host failures 536
hot-relocation

complete failure messages 811
configuration summary 813
daemon 807
defined 129
detecting disk failure 808
detecting plex failure 808
detecting RAID-5 subdisk failure 808
excluding free space on disks from use by 816
limitations 808
making free space on disks available for use

by 817
marking disks as spare 814
modifying behavior of 821
notifying users other than root 822
operation of 806
partial failure messages 810
preventing from running 822
reducing performance impact of recovery 822
removing disks from spare pool 815
subdisk relocation 813
subdisk relocation messages 818
unrelocating subdisks 818
unrelocating subdisks using vxunreloc 819
use of free space in disk groups 812
use of spare disks 812
use of spare disks and free space 812
using only spare disks for 817
vxrelocd 807

how to access a Storage Checkpoint 653
how to create a Storage Checkpoint 652
how to determine the file system type 254
how to display mounted file systems 249
how to minimize file system free space

fragmentation 252
how to mount a Storage Checkpoint 653
how to remove a Storage Checkpoint 653
how to reorganize a file system 252
how to resize a file system 250
how to unmount a Storage Checkpoint 655

I
I/O

direct 541
gathering statistics for DMP 303
kernel threads 95
scheduling on secondary paths 315

I/O (continued)
sequential 542
synchronous 542
throttling 186

I/O error handling 55
I/O failures

Recovering 55
I/O fencing

administration 405
operations 60
preventing data corruption 59
testing and scenarios 67

I/O operations
maximum size of 1003

I/O policy
displaying 311
example 316
specifying 312

I/O requests
asynchronous 243
synchronous 242

I/O shipping policy 398
I/O throttling 322
I/O throttling options

configuring 325
identifiers for tasks 865
idle LUNs 990
implicit failover mode 180
Importing

ISP disk group 920
initialization

of disks 349
inode table 983

internal 983
sizes 983

inodes, block based 36
instant snap version

of DCOs 140
instant snapshots

backing up multiple volumes 621
cascaded 599
creating backups 604
creating for volume sets 622
creating full-sized 614
creating space-optimized 611
creating volumes for use as full-sized 609
displaying information about 630
dissociating 628
full-sized 596

1097Index

instant snapshots (continued)
improving performance of synchronization 633
reattaching 626
refreshing 626
removing 629
restoring volumes using 628
space-optimized 579
splitting hierarchies 629
synchronizing 632

intent log 34, 82
multi-volume file system support 723

intent log resizing 35
intent logging 578
internal inode table 983
internal quotas file 965
ioctl calls 1003–1004
ioship attribute 398
iSCSI parameters

administering with DDL 276
setting with vxddladm 276

ISP
disk groups 920

ISP disk group
Importing 920
Upgrading 920

J
JBOD

DMP support 268
JBODs

adding disks to DISKS category 280
listing supported disks 279
removing disks from DISKS category 282

Jeopardy 57
handling 57
state 57

K
kernel tunable parameters 983

L
large files 83, 246

creating file systems with 246
mounting file systems with 247

largefiles mount option 247
layered volumes

defined 121, 221
striped-mirror 115

layouts
left-symmetric 119
types of volume 220

leave failure policy 156
left-symmetric layout 119
LILO

restrictions 943
link objects 598
linked break-off snapshots 598

creating 619
linked third-mirror snapshots

reattaching 627
listing

DMP nodes 293
supported disk arrays 277

LLT
tunable parameters 1018
VCS 48

LLT timer tunable parameters
setting 1025

load balancing 179
across nodes in a cluster 147
displaying policy for 311
specifying policy for 312

lock clearing on disks 896
Locking 47
log mount option 238, 240
log subdisks

DRL 130
logdisk 225
logical units 180
logiosize mount option 242
logs

RAID-5 121, 128
specifying number for RAID-5 225

Low priority link
configuring 56

LUN 180
LUN expansion 335
LUN group failover 181
LUN groups

displaying details of 294
LUNs

idle 990
thin provisioning 689

M
main.cf file 493

sample 510

1098Index

Manual page
fsadm_vxfs(1M) 373
fsclustadm(1M) 372
mount_vxfs(1M) 372

manual page
cfsshare 481

Master Boot Record
restrictions 943

Master node
changing 386

master node
defined 148
discovering 392

maxautogrow attribute 607
maxdev attribute 900
maximum I/O size 985
memory

granularity of allocation by VxVM 1005
maximum size of pool for VxVM 1005
minimum size of pool for VxVM 1007
persistence of FastResync in 136

Memory mapping 47
messages

complete disk failure 811
hot-relocation of subdisks 818
partial disk failure 810

metadata 903
multi-volume support 723

METADATA subdisks 957
metanodes

DMP 181
migrating to thin storage 689
mincache mount option 239, 242
minimum queue load balancing policy 314
minimum redundancy levels

displaying for a device 310
specifying for a device 311

minor numbers 897
mirbrk snapshot type 631
mirdg attribute 620
mirrored volumes

changing read policies for 231
configuring VxVM to create by default 876
creating 221
creating across controllers 230
creating across targets 228
defined 220
dirty region logging 129
DRL 129

mirrored volumes (continued)
FastResync 129
FR 129
logging 129
snapshots 135

mirrored-concatenated volumes
creating 222
defined 114

mirrored-stripe volumes
benefits of 114
creating 223
defined 221

mirroring
boot disk 953
defined 114
root disk 953

mirroring plus striping 115
mirrors

adding to volumes 876
creating snapshot 638
defined 105
removing from volumes 878
specifying number of 222

mirvol attribute 620
mirvol snapshot type 631
mkfs

creating files with 234, 237
creating large files 247

modes
enhanced data integrity 82

monitoring fragmentation 256
mount 247

how to display mounted file systems 249
mounting a Storage Checkpoint 653
nfs-exported file system 499
pseudo device 654

mount options 236
blkclear 242
choosing 236
combining 248
convosync 239, 244
delaylog 83, 240
extended 82
largefiles 247
log 238, 240
logiosize 242
mincache 239, 242
nodatainlog 238, 242
tmplog 241

1099Index

mount_vxfs(1M)
asymmetric mounts 51
manual page 372

mounted file system
displaying 253

mounting a file system
option combinations 248
with large files 247

mounting a Storage Checkpoint 655
mounting a Storage Checkpoint of a cluster file

system 655
Moving

CFS primaryship 51
mrl

keyword 310
multi-pathing

disabling 284
displaying information about 288
enabling 286

multi-volume file systems 722
Multi-Volume Support 714
multi-volume support

creating a MVS file system 725
multiple block operations 36

N
name space

preserved by Storage Checkpoints 651
names

changing for disk groups 909
defining for snapshot volumes 641
device 96
disk media 101
plex 104
renaming disks 361
subdisk 102
VM disk 102
volume 104

naming
DMP nodes 343

naming scheme
changing for disks 341
changing for TPD enclosures 345
displaying for disks 342

native asynchronous I/O
with cloned processes 985

ncachemirror attribute 612
ncheck 980
ndcomirror attribute 646

ndcomirs attribute 605
Nested mounts 47
newvol attribute 618
NFS mounts 47
nfs-exported file system

mount 499
nmirror attribute 617–618
nodata Storage Checkpoints 655
nodata Storage Checkpoints definition 587
nodatainlog mount option 238, 242
nodes

DMP 181
in clusters 147
maximum number in a cluster 146
requesting status of 392
shutdown in clusters 173
use of vxclustadm to control CVM

functionality 168
nomanual path attribute 309
non-autotrespass mode 180
Non-Persistent FastResync 136
nopreferred path attribute 309
nopriv devices 941
NTP

network time protocol 373
network time protocol daemon 52

O
O_SYNC 239
objects

physical 96
virtual 98

off-host processing 146
OMF 554

working with Oracle Disk Manager 554
online invalid status 340
online relayout

changing number of columns 873
changing region size 875
changing speed of 875
changing stripe unit size 873
controlling progress of 875
defined 123
destination layouts 869
failure recovery 127
how it works 123
limitations 126
monitoring tasks for 874
pausing 875

1100Index

online relayout (continued)
performing 869
resuming 875
reversing direction of 875
specifying non-default 873
specifying plexes 873
specifying task tags for 874
temporary area 124
transformation characteristics 127
transformations and volume length 127
types of transformation 870
viewing status of 874

online status 340
Oracle Disk Manager 550

benefits 551
disabling 560
preparing existing databases for use with 558
setting up 557

Oracle Managed Files 554
working with Oracle Disk Manager 554

ordered allocation 225, 228
OTHER_DISKS category 269

P
Parallel fsck threads 52
Parallel I/O 54
parity in RAID-5 117
partial device discovery 267
partition size

displaying the value of 311
specifying 313

partition table 957
partitions

number 97
slices 97

path aging 986
path failover in DMP 186
pathgroups

creating 285
paths

disabling for DMP 318
enabling for DMP 319
setting attributes of 309, 311

performance
changing values of tunables 993, 1014
improving for instant snapshot

synchronization 633
load balancing in DMP 187
overall 236

performance (continued)
snapshot file systems 677

persistence
device naming option 342

persistent device name database 344
persistent device naming 344
Persistent FastResync 136–137, 142, 577
physical disks

clearing locks on 896
complete failure messages 811
determining failed 811
displaying information 339
displaying information about 339, 887
displaying spare 813
excluding free space from hot-relocation use 816
failure handled by hot-relocation 808
installing 348
making available for hot-relocation 814
making free space available for hot-relocation

use 817
marking as spare 814
moving between disk groups 851, 860
moving disk groups between systems 894
moving volumes from 850
partial failure messages 810
postponing replacement 930
releasing from disk groups 918
removing 358, 930
removing from disk groups 889
removing from pool of hot-relocation spares 815
removing with subdisks 360–361
replacing 930
replacing removed 933
spare 812

physical objects 96
ping-pong effect 188
plex attribute 618
plexes

adding to snapshots 643
changing read policies for 231
complete failure messages 811
converting to snapshot 640
defined 103
failure in hot-relocation 808
maximum number of subdisks 1004
maximum number per volume 104
mirrors 105
moving 647
names 104

1101Index

plexes (continued)
partial failure messages 810
putting online 923
reattaching 923
recovering after correctable hardware failure 811
removing from volumes 878
sparse 127
specifying for online relayout 873
striped 110
types 103

point-in-time copy solutions
applications 566

polling interval for DMP restore 325
Port membership

SFCFSHA 49
ports

listing 274
postoffline

trigger 481
postonline

trigger 480
PowerPath

coexistence with DMP 271
prefer read policy 232
preferred plex

read policy 232
preferred priority path attribute 309
preonline

trigger 480
Primary

failover 45
primary and secondary

terminology 51
primary fileset relation to Storage Checkpoints 582
primary path 180, 289
primary path attribute 309
primaryship

primary node 375
priority load balancing 314
private disk groups

converting from shared 396
in clusters 149

private network
in clusters 148

pseudo device 654

Q
queued I/Os

displaying statistics 306

quota commands 966
quotacheck 967
Quotas 47
quotas 964

exceeding the soft limit 965
hard limit 669, 964
soft limit 964

quotas file 965
quotas.grp file 965

R
RAID-0 110
RAID-0+1 114
RAID-1 114
RAID-1+0 115
RAID-5

hot-relocation limitations 808
logs 121, 128
parity 117
specifying number of logs 225
subdisk failure handled by hot-relocation 808
volumes 117

RAID-5 volumes
changing number of columns 873
changing stripe unit size 873
creating 225
defined 220

raw device nodes
controlling access for volume sets 720
displaying access for volume sets 720
enabling access for volume sets 719
for volume sets 718

read policies
changing 231
prefer 232
round 231
select 232
siteread 232, 519–520, 522
split 232

read-only mode 151
readonly mode 150
Recovering

I/O failures 55
recovery

checkpoint interval 1002
I/O delay 1002

recovery accelerator 130
recovery option values

configuring 324

1102Index

redo log configuration 131
redundancy

of data on mirrors 220
of data on RAID-5 220

redundancy levels
displaying for a device 310
specifying for a device 311

redundant-loop access 185
regionsize attribute 605, 607
reinitialization of disks 357
relayout

changing number of columns 873
changing region size 875
changing speed of 875
changing stripe unit size 873
controlling progress of 875
limitations 126
monitoring tasks for 874
online 123
pausing 875
performing online 869
resuming 875
reversing direction of 875
specifying non-default 873
specifying plexes 873
specifying task tags for 874
storage 123
transformation characteristics 127
types of transformation 870
viewing status of 874

relocation
automatic 806
complete failure messages 811
limitations 808
partial failure messages 810

Remote Mirror feature
administering 517

remote mirrors
administering 517

removable Storage Checkpoints definition 588
removing devices

from VxVM control 284
removing disks 930
removing physical disks 358
reorganization

directory 257
extent 257

replacing disks 930
replay logs and sequential DRL 130

report extent fragmentation 256
reservation space 258
reservations

description 60
resilvering

databases 130
restoration of disk group configuration 919
restore policy

check_all 325
check_alternate 326
check_disabled 326
check_periodic 326

restored daemon 185
restrictions

at boot time 952
on BIOS 943
on Master Boot Record 943
on rootability 943
on using LILO 943

resyncfromoriginal snapback 603
resyncfromreplica snapback 603
resynchronization

checkpoint interval 1002
I/O delay 1002
of volumes 128

resynchronizing
databases 130
snapshots 580

retry option values
configuring 324

Reverse Path Name Lookup 980
root disk

defined 942
encapsulating 953
encapsulation 954
mirroring 953
supported layouts for encapsulation 945
unencapsulating 962
unsupported layouts for encapsulation 948

root disk group 101
root volume 952
rootability 942

removing 962
restrictions 943

rootdg 101
round read policy 231
round-robin

load balancing 314
read policy 231

1103Index

S
s# 97
sample

main.cf file 510
scandisks

vxdisk subcommand 266
SCSI-3 PR 60
Secondary

failover 45
secondary path 180
secondary path attribute 309
secondary path display 289
secure communication 76
security 75
select read policy 232
sequential DRL

defined 130
maximum number of dirty regions 1009

sequential I/O 542
serial split brain condition 518

correcting 916
in campus clusters 911
in disk groups 911

server-based fencing
replacing coordination points

online cluster 443
service group

cfsnfssg_dummy 484
setext 262
setfacl 84
Setting

parallel fsck threads 52
setting

path redundancy levels 311
SFCFSHA

administration 368
architecture 44
backup strategies 53
environments 56
features 43
port membership 49
snapshots 53
synchronize time 52
usage 43

Shared CFS file system
unsharing 486

shared CFS file system
unsharing 510

shared disk groups
activating 397
activation modes 150–151
converting to private 396
creating 395
importing 395
in clusters 149
limitations of 152
listing 393

shared-read mode 151
shared-write mode 151
sharedread mode 150
sharedwrite mode 150
Sharing

CFS file system 485
sharing

CFS file system 509
single active path policy 315
Site Awareness license 526
site consistency

configuring 527
defined 518

site failure
simulating 528

site failures
host failures 536
loss of connectivity 535
recovery from 528, 536
scenarios and recovery procedures 534
storage failures 536

site-based allocation
configuring for disk groups 526
defined 518

site-based consistency
configuring on existing disk groups 525

siteconsistent attribute 527
siteread read policy 232, 519–520, 522
sites

reattaching 528
slave nodes

defined 148
slices

partitions 97
SmartMove feature 689
SmartSync 130

disabling on shared disk groups 1012
enabling on shared disk groups 1012

SmartTier 714
multi-volume file system support 723

1104Index

snap objects 139
snap volume naming 603
snapabort 595
snapback

defined 596
merging snapshot volumes 642
resyncfromoriginal 603
resyncfromreplica 603, 642

snapclear
creating independent volumes 643

snapmir snapshot type 631
snapof 680
snapped file systems 85, 592

performance 677
unmounting 592

snapread 677
Snapshot

characteristics 375
performance 376

snapshot
creating 376

snapshot file systems 85, 592
blockmap 678
creating 680
data block area 678
disabled 593
fscat 677
fuser 592
mounting 680
multiple 592
on cluster file systems 592
performance 677
read 677
super-block 678

snapshot hierarchies
creating 625
splitting 629

snapshot mirrors
adding to volumes 624
removing from volumes 625

Snapshots 47, 375
SFCFSHA 53

snapshots
adding mirrors to volumes 624
adding plexes to 643
and FastResync 135
backing up multiple volumes 621, 641
backing up volumes online using 604
cascaded 599

snapshots (continued)
comparison of features 133
converting plexes to 640
creating a hierarchy of 625
creating backups using third-mirror 636
creating for volume sets 622
creating full-sized instant 614
creating independent volumes 643
creating instant 604
creating linked break-off 619
creating snapshots of 600
creating space-optimized instant 611
creating third-mirror break-off 616
creating volumes for use as full-sized instant 609
defining names for 641
displaying information about 644
displaying information about instant 630
dissociating instant 628
finding out those configured on a cache 636
full-sized instant 134, 596
hierarchy of 599
improving performance of synchronization 633
instant 579
linked break-off 598
listing for a cache 633
merging with original volumes 642
of volumes 132
on multiple volumes 603
reattaching instant 626
reattaching linked third-mirror 627
refreshing instant 626
removing 640
removing instant 629
removing linked snapshots from volumes 625
removing mirrors from volumes 625
restoring from instant 628
resynchronization on snapback 603
resynchronizing 580
resynchronizing volumes from 642
space-optimized instant 579
synchronizing instant 632
third-mirror 133
use of copy-on-write mechanism 597

snapsize 679
snapstart 595
snapvol attribute 614, 620
snapwait 617, 620
source attribute 614, 620

1105Index

space-optimized instant snapshots 579
creating 611

spaceopt snapshot type 631
spanned volumes 108
spanning 108
spare disks

displaying 813
marking disks as 814
used for hot-relocation 812

sparse file 260
sparse plexes 127
specifying

redundancy levels 311
split read policy 232
Split-brain 57
standby path attribute 310
states

of link objects 598
statistics gathering 186
storage

clearing 242
ordered allocation of 225, 228
uninitialized 242

storage attributes and volume layout 226
storage cache 579

used by space-optimized instant snapshots 579
Storage Checkpoints 47, 375, 581

accessing 653
administration of 651
converting a data Storage Checkpoint to a nodata

Storage Checkpoint with multiple Storage
Checkpoints 658

creating 652
data Storage Checkpoints 587
definition of 650
difference between a data Storage Checkpoint

and a nodata Storage Checkpoint 656
freezing and thawing a file system 582
mounting 653
multi-volume file system support 723
nodata Storage Checkpoints 587, 655
operation failures 663
pseudo device 654
removable Storage Checkpoints 588
removing 653
space management 663
synchronous vs. asynchronous conversion 655
types of 586
unmounting 655

Storage Checkpoints (continued)
using the fsck command 655
writable Storage Checkpoints 653

storage disconnectivity
CVM handling 153

storage failures 536
storage processor 180
storage relayout 123
stripe columns 111
stripe units

changing size 873
defined 111

stripe-mirror-col-split-trigger-pt 224
striped plexes

defined 110
striped volumes

changing number of columns 873
changing stripe unit size 873
creating 223
defined 220
failure of 110
specifying non-default number of columns 223
specifying non-default stripe unit size 223

striped-mirror volumes
benefits of 115
creating 224
defined 221
mirroring columns 224
mirroring subdisks 224
trigger point for mirroring 224

striping 110
striping plus mirroring 114
subdisk names 102
subdisks

blocks 102
complete failure messages 811
defined 102
determining failed 811
DRL log 130
hot-relocation 129, 806, 813
hot-relocation messages 818
listing original disks after hot-relocation 820
maximum number per plex 1004
METADATA 957
mirroring in striped-mirror volumes 224
moving after hot-relocation 818
partial failure messages 810
RAID-5 failure of 808
specifying different offsets for unrelocation 820

1106Index

subdisks (continued)
unrelocating after hot-relocation 818
unrelocating to different disks 819
unrelocating using vxunreloc 819

super-block 678
SVID requirement

VxFS conformance to 92
Switching the CVM master 386
Symmetric architecture 44
synchronization

controlling for instant snapshots 632
improving performance of 633

Synchronize time
SFCFSHA 52

Synchronizing system clocks 373
synchronous I/O 542
syncing attribute 604, 632
syncpause 632
syncresume 632
syncstart 632
syncstop 632
syncwait 632
system failure recovery 34, 82
system performance

overall 236

T
tags

for tasks 865
listing for disks 902
removing from disks 903
removing from volumes 879
renaming 879
setting on disks 902
setting on volumes 879
specifying for online relayout tasks 874
specifying for tasks 865

target IDs
specifying to vxassist 226

target mirroring 228
targets

listing 274
task monitor in VxVM 865
tasks

aborting 867
changing state of 867
identifiers 865
listing 867
managing 866

tasks (continued)
modifying parameters of 867
monitoring 867
monitoring online relayout 874
pausing 867
resuming 867
specifying tags 865
specifying tags on online relayout operation 874
tags 865

temporary area used by online relayout 124
temporary directories 83
terminology

primary and secondary 51
Thaw 47
thaw 544
thin provisioning

using 689
Thin Reclamation 695
thin reclamation

fsadm 699
thin storage

using 689
third-mirror

snapshots 133
third-mirror break-off snapshots

creating 616
third-party driver (TPD) 270
throttling 186
tmplog mount option 241
TPD

displaying path information 299
support for coexistence 270

tpdmode attribute 345
trigger

postoffline 481
postonline 480
preonline 480

trigger point in striped-mirror volumes 224
tunable I/O parameters

Volume Manager maximum I/O size 985
tunables

changing values of 993, 1014
dmp_cache_open 986
dmp_daemon_count 986
dmp_delayq_interval 986
dmp_fast_recovery 986
dmp_health_time 986
dmp_log_level 987
dmp_low_impact_probe 987

1107Index

tunables (continued)
dmp_lun_retry_timeout 988
dmp_monitor_fabric 988
dmp_monitor_osevent 989
dmp_monitor_ownership 989
dmp_native_support 989
dmp_path_age 989
dmp_pathswitch_blks_shift 990
dmp_probe_idle_lun 990
dmp_probe_threshold 990
dmp_restore_cycles 991
dmp_restore_interval 991
dmp_restore_state 992
dmp_scsi_timeout 992
dmp_sfg_threshold 992
dmp_stat_interval 992
FastrResync/cache object metadata cache

size 1011
maximum vol_stats_enable 1004
vol_checkpt_default 1002
vol_default_iodelay 1002
vol_fmr_logsz 136, 1008
vol_max_vol 1002
vol_maxio 1003
vol_maxioctl 1003
vol_maxparallelio 1003
vol_maxspecialio 1004
vol_subdisk_num 1004
volcvm_smartsync 1012
voldrl_max_drtregs 1009
voldrl_max_seq_dirty 130, 1009
voldrl_min_regionsz 1009
voliomem_chunk_size 1005
voliomem_maxpool_sz 1005
voliot_errbuf_dflt 1006
voliot_iobuf_default 1006
voliot_iobuf_limit 1006
voliot_iobuf_max 1006
voliot_max_open 1007
volpagemod_max_memsz 1011
volraid_minpool_size 1007
volraid_rsrtransmax 1007

Tuning DMP
using templates 993

tuning VxFS 983

U
UDID flag 901
udid_mismatch flag 901

umount command 249
Unconfigure

Clustered NFS 484
Understanding

Clustered NFS 479
unencapsulating the root disk 962
uninitialized storage, clearing 242
unmount 655

a snapped file system 592
Unsharing

shared CFS file system 486
unsharing

shared CFS file system 510
upgrade

from raw devices 558
Upgrading

ISP disk group 920
usage

SFCFSHA 43
use_all_paths attribute 315
use_avid

vxddladm option 342
user-specified device names 343
utility

vxtune 1015, 1017

V
V-5-1-2829 880
V-5-1-552 889
V-5-1-569 177
V-5-1-587 896
V-5-2-3091 857
V-5-2-369 889
V-5-2-4292 857
VCS

/etc/gabtab 48
/etc/llthosts 48
/etc/llttab 48
architecture 48
GAB 48
LLT 48

Veritas Operations Manager 37
version 0

of DCOs 140
version 20

of DCOs 140–141
Version 6 disk layout 1038
Version 7 disk layout 1038
Version 8 disk layout 1038

1108Index

Version 9 disk layout 1038
versioning

of DCOs 140
versions

disk group 885
displaying for disk group 885
upgrading 885

virtual disks 92
virtual objects 98
VM disks

defined 101
determining if shared 393
displaying spare 813
excluding free space from hot-relocation use 816
making free space available for hot-relocation

use 817
marking as spare 814
mirroring volumes on 876
moving volumes from 850
names 102
postponing replacement 930
removing from pool of hot-relocation spares 815
renaming 361

vol## 104
vol##-## 104
vol_checkpt_default tunable 1002
vol_default_iodelay tunable 1002
vol_fmr_logsz tunable 136, 1008
vol_max_vol tunable 1002
vol_maxio tunable 1003
vol_maxio tunable I/O parameter 985
vol_maxioctl tunable 1003
vol_maxparallelio tunable 1003
vol_maxspecialio tunable 1004
vol_subdisk_num tunable 1004
volbrk snapshot type 631
volcvm_smartsync tunable 1012
voldrl_max_drtregs tunable 1009
voldrl_max_seq_dirty tunable 130, 1009
voldrl_min_regionsz tunable 1009
voliomem_chunk_size tunable 1005
voliomem_maxpool_sz tunable 1005
voliot_errbuf_dflt tunable 1006
voliot_iobuf_default tunable 1006
voliot_iobuf_limit tunable 1006
voliot_iobuf_max tunable 1006
voliot_max_open tunable 1007
volpagemod_max_memsz tunable 1011
volraid_minpool_size tunable 1007

volraid_rsrtransmax tunable 1007
volume resynchronization 128
volume sets

adding volumes to 716
administering 714
controlling access to raw device nodes 720
creating 715
creating instant snapshots of 622
displaying access to raw device nodes 720
enabling access to raw device nodes 719
listing details of 716
raw device nodes 718
removing volumes from 716
starting 717
stopping 717

volumes
adding mirrors 876
adding snapshot mirrors to 624
adding to volume sets 716
adding version 0 DCOs to 645
backing up 577
backing up online using snapshots 604
boot-time restrictions 952
booting root 952
changing layout online 869
changing number of columns 873
changing read policies for mirrored 231
changing stripe unit size 873
concatenated 108, 220
concatenated-mirror 116, 221
configuring exclusive open by cluster node 399–

400
configuring site consistency on 531
creating concatenated-mirror 222
creating for use as full-sized instant

snapshots 609
creating from snapshots 643
creating mirrored 221
creating mirrored-concatenated 222
creating mirrored-stripe 223
creating RAID-5 225
creating snapshots 639
creating striped 223
creating striped-mirror 224
defined 104
displaying information about snapshots 644
dissociating version 0 DCOs from 648
effect of growing on FastResync maps 142
excluding storage from use by vxassist 226

1109Index

volumes (continued)
flagged as dirty 128
layered 115, 121, 221
limit on number of plexes 104
limitations 104
maximum number of 1002
merging snapshots 642
mirrored 114, 220
mirrored-concatenated 114
mirrored-stripe 114, 221
mirroring across controllers 230
mirroring across targets 228
mirroring all 876
mirroring on disks 876
moving from VM disks 850
names 104
naming snap 603
performing online relayout 869
RAID-0 110
RAID-0+1 114
RAID-1 114
RAID-1+0 115
RAID-10 115
RAID-5 117, 220
reattaching plexes 923
reattaching version 0 DCOs to 648
reconfiguration in clusters 170
recovering after correctable hardware failure 811
removing 925
removing from /etc/fstab 925
removing linked snapshots from 625
removing mirrors from 878
removing plexes from 878
removing snapshot mirrors from 625
removing version 0 DCOs from 648
restarting moved 864
restoring from instant snapshots 628
resynchronizing from snapshots 642
snapshots 132
spanned 108
specifying non-default number of columns 223
specifying non-default relayout 873
specifying non-default stripe unit size 223
specifying storage for version 0 DCO plexes 647
specifying use of storage to vxassist 226
stopping activity on 925
striped 110, 220
striped-mirror 115, 221
taking multiple snapshots 603

volumes (continued)
trigger point for mirroring in striped-mirror 224
types of layout 220

vx_allow_cloned_naio 985
VX_DSYNC 542
VX_FREEZE 544, 967
VX_GETCACHE 544
VX_SETCACHE 544
VX_SNAPREAD 677
VX_THAW 544
VX_UNBUFFERED 542
vxassist

adding DCOs to volumes 646
adding mirrors to volumes 876
configuring exclusive access to a volume 399
configuring site consistency on volumes 531
creating cache volumes 607
creating concatenated-mirror volumes 222
creating mirrored volumes 222
creating mirrored-concatenated volumes 222
creating mirrored-stripe volumes 223
creating RAID-5 volumes 225
creating snapshots 637
creating striped volumes 223
creating striped-mirror volumes 224
creating volumes for use as full-sized instant

snapshots 610
defaults file 198
defining layout on specified storage 226
displaying information about snapshots 644
dissociating snapshots from volumes 643
excluding storage from use 226
listing tags set on volumes 879
merging snapshots with volumes 642
mirroring across controllers 230
mirroring across targets 228, 230
moving DCO plexes 647
relaying out volumes online 869
removing mirrors 878
removing plexes 878
removing tags from volumes 879
removing version 0 DCOs from volumes 648
removing volumes 926
replacing tags set on volumes 879
resynchronizing volumes from snapshots 642
setting default values 198
setting tags on volumes 879–880
snapabort 595
snapback 596

1110Index

vxassist (continued)
snapshot 596
snapstart 595
specifying number of mirrors 222
specifying number of RAID-5 logs 225
specifying ordered allocation of storage 228
specifying plexes for online relayout 873
specifying storage attributes 226
specifying storage for version 0 DCO plexes 647
specifying tags for online relayout tasks 874
taking snapshots of multiple volumes 641

vxcache
listing snapshots in a cache 633
resizing caches 635
starting cache objects 608
stopping a cache 636
tuning cache autogrow 634

vxcached
tuning 634

vxclustadm 168
vxconfigd

managing with vxdctl 105
monitoring configuration changes 868
operation in clusters 171

vxdco
dissociating version 0 DCOs from volumes 648
reattaching version 0 DCOs to volumes 648
removing version 0 DCOs from volumes 648

vxdctl
checking cluster protocol version 400
managing vxconfigd 105
setting a site tag 526, 529
setting default disk group 850
usage in clusters 392

vxdctl enable
configuring new disks 266
invoking device discovery 270

vxddladm
adding disks to DISKS category 281
adding foreign devices 283
changing naming scheme 342
displaying the disk-naming scheme 342
listing all devices 273
listing configured devices 275–276
listing configured targets 274–275
listing excluded disk arrays 279, 281
listing ports on a Host Bus Adapter 274
listing supported disk arrays 277
listing supported disks in DISKS category 279

vxddladm (continued)
listing supported HBAs 273
removing disks from DISKS category 271, 282–

283
setting iSCSI parameters 276
used to exclude support for disk arrays 278
used to re-include support for disk arrays 279

vxdg
changing activation mode on shared disk

groups 397
clearing locks on disks 896
configuring site consistency for a disk group 527
configuring site-based allocation for a disk

group 526
controlling CDS compatibility of new disk

groups 888
converting shared disk groups to private 396
correcting serial split brain condition 917
creating disk groups 888
creating shared disk groups 395
deporting disk groups 891
destroying disk groups 918
disabling a disk group 918
displaying boot disk group 849
displaying default disk group 849
displaying disk group version 885
displaying free space in disk groups 887
displaying information about disk groups 886
forcing import of disk groups 897
importing a disk group containing cloned

disks 902
importing cloned disks 903
importing disk groups 892
importing shared disk groups 395
joining disk groups 863
listing disks with configuration database

copies 903
listing objects affected by move 857
listing shared disk groups 393
listing spare disks 813
moving disk groups between systems 895
moving disks between disk groups 851
moving objects between disk groups 859
placing a configuration database on cloned

disks 903
reattaching a site 528
recovering destroyed disk groups 918
removing disks from disk groups 889
renaming disk groups 909

1111Index

vxdg (continued)
setting a site name 531, 534
setting base minor number 898
setting disk group policies 398
setting I/O shipping policy 398
setting maximum number of devices 900
simulating site failure 528
splitting disk groups 862
upgrading disk group version 885

vxdisk
clearing locks on disks 896
determining if disks are shared 393
displaying information about disks 887
displaying multi-pathing information 289
listing disks 340
listing spare disks 814
listing tags on disks 902
notifying dynamic LUN expansion 335
placing a configuration database on a cloned

disk 903
removing tags from disks 903
scanning disk devices 266
setting a site name 530
setting tags on disks 902
updating the disk identifier 901

vxdisk scandisks
rescanning devices 267
scanning devices 267

vxdiskadd
creating disk groups 888
placing disks under VxVM control 358

vxdiskadm
Add or initialize one or more disks 349, 888
adding disks 349
changing the disk-naming scheme 341
creating disk groups 888
deporting disk groups 890
Enable access to (import) a disk group 892
Encapsulate one or more disks 938
Exclude a disk from hot-relocation use 816
excluding free space on disks from hot-relocation

use 816
importing disk groups 892
initializing disks 349
List disk information 340
listing spare disks 814
Make a disk available for hot-relocation use 817
making free space on disks available for

hot-relocation use 817

vxdiskadm (continued)
Mark a disk as a spare for a disk group 815
marking disks as spare 815
Mirror volumes on a disk 877
mirroring disks 943
mirroring root disks 956
mirroring volumes 877
Move volumes from a disk 850
moving disk groups between systems 897
moving disks between disk groups 851
moving subdisks from disks 889
moving volumes from VM disks 850
Remove a disk 359, 889
Remove a disk for replacement 930
Remove access to (deport) a disk group 890
removing disks from pool of hot-relocation

spares 816
Replace a failed or removed disk 933
Turn off the spare flag on a disk 816

vxdiskunsetup
removing disks from VxVM control 889, 926

vxdmpadm
changing TPD naming scheme 345
configuring an APM 328
configuring I/O throttling 322
configuring response to I/O errors 321, 324
disabling controllers in DMP 287
disabling I/O in DMP 318
displaying APM information 328
displaying DMP database information 287
displaying DMP node for a path 292, 294
displaying DMP node for an enclosure 292–293
displaying I/O error recovery settings 324
displaying I/O policy 311
displaying I/O throttling settings 324
displaying information about controllers 297
displaying information about enclosures 298
displaying partition size 311
displaying paths controlled by DMP node 295
displaying status of DMP restoration thread 327
displaying TPD information 299
enabling I/O in DMP 319
gathering I/O statistics 303
listing information about array ports 299
removing an APM 328
renaming enclosures 320
setting I/O policy 314–315
setting path attributes 309
setting restore polling interval 325

1112Index

vxdmpadm (continued)
specifying DMP path restoration policy 325
stopping DMP restore daemon 327

vxdmpadm list
displaying DMP nodes 293

vxdump 262
vxedit

excluding free space on disks from hot-relocation
use 816

making free space on disks available for
hot-relocation use 817

marking disks as spare 814
removing a cache 636
removing disks from pool of hot-relocation

spares 815
removing instant snapshots 629
removing snapshots from a cache 636
removing volumes 926
renaming disks 362

vxencap
encapsulating the root disk 954

VxFS
storage allocation 236
supported features

cluster file systems 45
unsupported features

cluster file systems 48
vxfs_inotopath 980
vxfs_ninode 983
vxiod I/O kernel threads 95
vxlsino 980
vxmake

creating cache objects 607
creating plexes 876

vxmend
re-enabling plexes 923

vxmirror
configuring VxVM default behavior 876
mirroring root disks 956
mirroring volumes 876

vxnotify
monitoring configuration changes 868

vxplex
attaching plexes to volumes 876
converting plexes to snapshots 640
reattaching plexes 923
removing mirrors 879
removing mirrors of root disk volumes 963
removing plexes 879

vxprint
displaying DCO information 647
displaying snapshots configured on a cache 636
listing spare disks 814
verifying if volumes are prepared for instant

snapshots 605
viewing base minor number 898

vxrecover
recovering plexes 811
restarting moved volumes 864

vxrelayout
resuming online relayout 875
reversing direction of online relayout 875
viewing status of online relayout 874

vxrelocd
hot-relocation daemon 807
modifying behavior of 821
notifying users other than root 822
operation of 808
preventing from running 822
reducing performance impact of recovery 822

vxrestore 262
vxsnap

adding snapshot mirrors to volumes 624
administering instant snapshots 597
backing up multiple volumes 621
controlling instant snapshot synchronization 632
creating a cascaded snapshot hierarchy 625
creating full-sized instant snapshots 614, 620
creating linked break-off snapshot volumes 620
creating space-optimized instant snapshots 612
displaying information about instant

snapshots 630
dissociating instant snapshots 628
preparing volumes for instant snapshots 605
reattaching instant snapshots 626
reattaching linked third-mirror snapshots 627
refreshing instant snapshots 626
removing a snapshot mirror from a volume 625
restore 597
restoring volumes 628
splitting snapshot hierarchies 629

vxsplitlines
diagnosing serial split brain condition 916

vxstat
determining which disks have failed 811
usage with clusters 402

vxtask
aborting tasks 868

1113Index

vxtask (continued)
listing tasks 868
monitoring online relayout 874
monitoring tasks 868
pausing online relayout 875
resuming online relayout 875
resuming tasks 868

vxtune
setting volpagemod_max_memsz 1011

vxtune utility 1015, 1017
vxunreloc

listing original disks of hot-relocated subdisks 820
moving subdisks after hot-relocation 819
restarting after errors 821
specifying different offsets for unrelocated

subdisks 820
unrelocating subdisks after hot-relocation 819
unrelocating subdisks to different disks 819

vxunroot
removing rootability 963
unencapsulating the root disk 963

VxVM
cluster functionality (CVM) 145
configuration daemon 105
configuring to create mirrored volumes 876
dependency on operating system 95
disk discovery 268
granularity of memory allocation by 1005
limitations of shared disk groups 152
maximum number of subdisks per plex 1004
maximum number of volumes 1002
maximum size of memory pool 1005
minimum size of memory pool 1007
objects in 98
operation in clusters 147
removing disks from 889
removing disks from control of 926
rootability 942
shared objects in cluster 150
task monitor 865
types of volume layout 220
upgrading 885
upgrading disk group version 885

vxvol
configuring exclusive access to a volume 400
configuring site consistency on volumes 531
restarting moved volumes 864
setting read policy 232
stopping volumes 926

vxvset
adding volumes to volume sets 716
controlling access to raw device nodes 720
creating volume sets 715
creating volume sets with raw device access 719
listing details of volume sets 716
removing volumes from volume sets 716
starting volume sets 717
stopping volume sets 717

W
warning messages

Specified region-size is larger than the limit on
the system 605

workload distribution 375
writable Storage Checkpoints 653
write size 260

1114Index

	Veritas Storage Foundation™ Cluster File System High Availability 6.0.1 Administrator's Guide - Linux
	Technical Support
	Contents
	Section 1. Introducing Storage Foundation Cluster File System High Availability
	1. Overview of Storage Foundation Cluster File System High Availability
	About Veritas Storage Foundation Cluster File System High Availability
	About Veritas File System
	About the Veritas File System intent log
	About extents
	About file system disk layouts

	About Veritas Volume Manager
	About Veritas Dynamic Multi-Pathing (DMP)
	About Veritas Operations Manager
	About Storage Foundation Cluster File System High Availability solutions
	About Veritas Replicator
	What is VFR?
	Features of VFR

	2. How Storage Foundation Cluster File System High Availability works
	How Storage Foundation Cluster File System High Availability works
	When to use Storage Foundation Cluster File System High Availability
	About Storage Foundation Cluster File System High Availability architecture
	About the symmetric architecture
	About Storage Foundation Cluster File System High Availability primary/secondary failover
	About single-host file system semantics using Group Lock Manager

	About Veritas File System features supported in cluster file systems
	Veritas File System features in cluster file systems
	Veritas File System features not in cluster file systems

	About Veritas Cluster Server architecture
	About the Storage Foundation Cluster File System High Availability namespace
	About asymmetric mounts
	About primary and secondary cluster nodes
	Determining or moving primaryship
	About synchronizing time on Cluster File Systems
	About file system tunables
	About setting the number of parallel fsck threads
	Storage Checkpoints
	About Storage Foundation Cluster File System High Availability backup strategies
	About parallel I/O
	About the I/O error handling policy for Cluster Volume Manager
	About recovering from I/O failures
	About single network link and reliability
	Configuring a low-priority link

	Split-brain and jeopardy handling
	About I/O fencing
	About I/O fencing for SFCFSHA in virtual machines that do not support SCSI-3 PR
	About preventing data corruption with I/O fencing
	About I/O fencing components
	About I/O fencing configuration files
	How I/O fencing works in different event scenarios
	About server-based I/O fencing
	About secure communication between the SFCFSHA cluster and CP server

	Storage Foundation Cluster File System High Availability and Veritas Volume Manager cluster functionality agents
	Veritas Volume Manager cluster functionality

	3. How Veritas File System works
	Veritas File System features
	Veritas File System performance enhancements
	Enhanced I/O performance
	Delayed allocation for extending writes

	Using Veritas File System
	Online system administration
	Application program interface

	4. How Veritas Volume Manager works
	How Veritas Volume Manager works with the operating system
	How data is stored

	How Veritas Volume Manager handles storage management
	Physical objects
	Virtual objects
	About the configuration daemon in Veritas Volume Manager
	Multiple paths to disk arrays

	Volume layouts in Veritas Volume Manager
	Non-layered volumes
	Layered volumes
	Layout methods
	Concatenation, spanning, and carving
	Striping (RAID-0)
	Mirroring (RAID-1)
	Striping plus mirroring (mirrored-stripe or RAID-0+1)
	Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)
	RAID-5 (striping with parity)

	Online relayout
	How online relayout works
	Limitations of online relayout
	Transformation characteristics
	Transformations and volume length

	Volume resynchronization
	Dirty flags
	Resynchronization process

	Hot-relocation
	Dirty region logging
	Log subdisks and plexes
	Sequential DRL
	SmartSync recovery accelerator

	Volume snapshots
	Comparison of snapshot features

	FastResync
	How FastResync works
	How non-persistent FastResync works with snapshots
	How persistent FastResync works with snapshots
	DCO volume versioning
	Effect of growing a volume on the FastResync map
	FastResync limitations

	Volume sets

	5. How Cluster Volume Manager works
	About the cluster functionality of VxVM
	Overview of clustering
	Overview of cluster volume management
	About private and shared disk groups
	Activation modes of shared disk groups
	Limitations of shared disk groups

	Cluster Volume Manager (CVM) tolerance to storage connectivity failures
	Availability of shared disk group configuration copies
	About redirection of application I/Os with CVM I/O shipping
	Storage disconnectivity and CVM disk detach policies
	Availability of cluster nodes and shared disk groups

	CVM initialization and configuration
	Cluster reconfiguration
	Volume reconfiguration
	Node shutdown
	Cluster shutdown

	Dirty region logging in cluster environments
	How DRL works in a cluster environment

	Multiple host failover configurations
	Import lock
	Failover
	Corruption of disk group configuration

	6. How Veritas Dynamic Multi-Pathing works
	How DMP works
	Device discovery
	How DMP monitors I/O on paths
	Load balancing
	DMP in a clustered environment

	Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

	Section 2. Provisioning storage
	7. Provisioning new storage
	Provisioning new storage
	Growing the existing storage by adding a new LUN
	Growing the existing storage by growing the LUN
	Displaying SFCFSHA information with vxlist

	8. Advanced allocation methods for configuring storage
	Customizing allocation behavior
	Setting default values for vxassist
	Using rules to make volume allocation more efficient
	Understanding persistent attributes
	Customizing disk classes for allocation
	Specifying allocation constraints for vxassist operations with the use clause and the require clause
	Management of the use and require type of persistent attributes

	Creating volumes of a specific layout
	Types of volume layouts
	Creating a mirrored volume
	Creating a striped volume
	Creating a RAID-5 volume

	Creating a volume on specific disks
	Creating volumes on specific media types
	Specifying ordered allocation of storage to volumes
	Site-based allocation
	Changing the read policy for mirrored volumes

	9. Creating and mounting VxFS file systems
	Creating a VxFS file system
	Block size
	Intent log size
	Example of creating a file system

	Converting a file system to VxFS
	Example of converting a file system

	Mounting a VxFS file system
	log mount option
	delaylog mount option
	tmplog mount option
	logiosize mount option
	nodatainlog mount option
	blkclear mount option
	mincache mount option
	convosync mount option
	ioerror mount option
	largefiles and nolargefiles mount options
	cio mount option
	mntlock mount option
	ckptautomnt mount option
	Combining mount command options
	Example of mounting a file system

	Unmounting a file system
	Example of unmounting a file system

	Resizing a file system
	Extending a file system using fsadm
	Shrinking a file system
	Reorganizing a file system

	Displaying information on mounted file systems
	Example of displaying information on mounted file systems

	Identifying file system types
	Example of determining a file system's type

	Monitoring free space
	Monitoring fragmentation

	10. Extent attributes
	About extent attributes
	Reservation: preallocating space to a file
	Fixed extent size
	How the fixed extent size works with the shared extents
	Other extent attribute controls

	Commands related to extent attributes
	Example of setting an extent attribute
	Example of getting an extent attribute
	Failure to preserve extent attributes

	Section 3. Administering multi-pathing with DMP
	11. Administering Dynamic Multi-Pathing
	Discovering and configuring newly added disk devices
	Partial device discovery
	Discovering disks and dynamically adding disk arrays
	Third-party driver coexistence
	How to administer the Device Discovery Layer

	Making devices invisible to VxVM
	Making devices visible to VxVM
	About enabling and disabling I/O for controllers and storage processors
	About displaying DMP database information
	Displaying the paths to a disk
	Administering DMP using vxdmpadm
	Retrieving information about a DMP node
	Displaying consolidated information about the DMP nodes
	Displaying the members of a LUN group
	Displaying paths controlled by a DMP node, controller, enclosure, or array port
	Displaying information about controllers
	Displaying information about enclosures
	Displaying information about array ports
	Displaying information about TPD-controlled devices
	Displaying extended device attributes
	Suppressing or including devices from VxVM control
	Gathering and displaying I/O statistics
	Setting the attributes of the paths to an enclosure
	Displaying the redundancy level of a device or enclosure
	Specifying the minimum number of active paths
	Displaying the I/O policy
	Specifying the I/O policy
	Disabling I/O for paths, controllers, array ports, or DMP nodes
	Enabling I/O for paths, controllers, array ports, or DMP nodes
	Renaming an enclosure
	Configuring the response to I/O failures
	Configuring the I/O throttling mechanism
	Configuring Low Impact Path Probing
	Configuring Subpaths Failover Groups (SFG)
	Displaying recovery option values
	Configuring DMP path restoration policies
	Stopping the DMP path restoration thread
	Displaying the status of the DMP path restoration thread
	Configuring array policy modules

	12. Dynamic Reconfiguration of devices
	About online Dynamic Reconfiguration
	Reconfiguring a LUN online that is under DMP control
	Removing LUNs dynamically from an existing target ID
	Adding new LUNs dynamically to a new target ID
	Replacing LUNs dynamically from an existing target ID
	Dynamic LUN expansion
	Changing the characteristics of a LUN from the array side

	Replacing a host bus adapter online
	Upgrading the array controller firmware online

	13. Managing devices
	Displaying disk information
	Displaying disk information with vxdiskadm

	Changing the disk device naming scheme
	Displaying the disk-naming scheme
	Setting customized names for DMP nodes
	Regenerating persistent device names
	Changing device naming for TPD-controlled enclosures
	About the Array Volume Identifier (AVID) attribute

	About disk installation and formatting
	Adding and removing disks
	Adding a disk to VxVM
	Removing disks

	Renaming a disk

	14. Event monitoring
	About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
	Fabric Monitoring and proactive error detection
	Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel topology
	DMP event logging
	Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

	Section 4. Administering Storage Foundation Cluster File System High Availability and its components
	15. Administering Storage Foundation Cluster File System High Availability and its components
	About Storage Foundation Cluster File System High Availability administration
	Administering CFS
	Adding CFS file systems to a VCS configuration
	Using cfsmount to mount CFS file systems
	Resizing CFS file systems
	Verifying the status of CFS file system nodes and their mount points
	Verifying the state of the CFS port
	CFS agents and AMF support
	CFS agent log files
	CFS commands
	About the mount, fsclustadm, and fsadm commands
	Synchronizing system clocks on all nodes
	Growing a CFS file system
	About the /etc/fstab file
	When the CFS primary node fails
	Storage Checkpoints on SFCFSHA
	About Snapshots on Storage Foundation Cluster File System High Availability

	Administering VCS
	Configuring VCS to start Oracle with a specified Pfile
	Verifying VCS configuration
	Starting and stopping VCS
	Configuring destination-based load balancing for LLT

	Administering CVM
	Listing all the CVM shared disks
	Establishing CVM cluster membership manually
	Methods to control CVM master selection
	About setting cluster node preferences for master failover
	About changing the CVM master manually
	Importing a shared disk group manually
	Deporting a shared disk group manually
	Starting shared volumes manually
	Evaluating the state of CVM ports
	Verifying if CVM is running in an SFCFSHA cluster
	Verifying CVM membership state
	Verifying the state of CVM shared disk groups
	Verifying the activation mode
	CVM log files
	Requesting node status and discovering the master node
	Determining if a LUN is in a shareable disk group
	Listing shared disk groups
	Creating a shared disk group
	Importing disk groups as shared
	Converting a disk group from shared to private
	Moving objects between shared disk groups
	Splitting shared disk groups
	Joining shared disk groups
	Changing the activation mode on a shared disk group
	Enabling I/O shipping for shared disk groups
	Setting the detach policy for shared disk groups
	Controlling the CVM tolerance to storage disconnectivity
	Handling cloned disks in a shared disk group
	Creating volumes with exclusive open access by a node
	Setting exclusive open access to a volume by a node
	Displaying the cluster protocol version
	Displaying the supported cluster protocol version range
	Recovering volumes in shared disk groups
	Obtaining cluster performance statistics
	Administering CVM from the slave node

	Administering ODM
	Verifying the ODM port
	Starting ODM

	Administering I/O fencing
	About administering I/O fencing
	About the vxfentsthdw utility
	About the vxfenadm utility
	About the vxfenclearpre utility
	About the vxfenswap utility
	About administering the coordination point server
	About migrating between disk-based and server-based fencing configurations
	Enabling or disabling the preferred fencing policy

	Administering SFCFSHA global clusters
	About setting up a disaster recovery fire drill
	About configuring the fire drill service group using the Fire Drill Setup wizard
	Verifying a successful fire drill
	Scheduling a fire drill

	16. Using Clustered NFS
	About Clustered NFS
	Sample use cases
	Requirements for Clustered NFS
	Understanding how Clustered NFS works
	Basic design
	Internal Clustered NFS functionality

	cfsshare manual page
	Configure and unconfigure Clustered NFS
	Configure Clustered NFS
	Unconfiguring Clustered NFS

	Administering Clustered NFS
	Displaying the NFS shared CFS file systems
	Sharing a CFS file system previously added to VCS
	Unsharing the previous shared CFS file system
	Adding an NFS shared CFS file system to VCS
	Deleting the NFS shared CFS file system from VCS
	Adding a virtual IP address to VCS
	Deleting a virtual IP address from VCS
	Adding an IPv6 virtual IP address to VCS
	Deleting an IPv6 virtual IP address from VCS
	Changing the share options associated with an NFS share
	Sharing a file system checkpoint
	Samples for configuring a Clustered NFS
	Sample main.cf file

	How to mount an NFS-exported file system on the NFS clients
	Debugging Clustered NFS

	17. Using Common Internet File System
	About CIFS
	Requirements for CIFS
	Understanding how Samba works
	Configuring Clustered NFS and CIFS on CFS
	cfsshare manual page
	Configuring CIFS in user mode
	Configuring CIFS in domain mode
	Configuring CIFS in ads mode
	Administering CIFS
	Sharing a CFS file system previously added to VCS
	Unsharing the previous shared CFS file system
	Sample main.cf file for CIFS

	Debugging CIFS

	18. Administering sites and remote mirrors
	About sites and remote mirrors
	About site-based allocation
	About site consistency
	About site tags
	About the site read policy
	About disk detach policies for campus clusters

	Making an existing disk group site consistent
	Configuring a new disk group as a Remote Mirror configuration
	Fire drill — testing the configuration
	Simulating site failure
	Verifying the secondary site
	Recovery from simulated site failure

	Changing the site name
	Resetting the site name for a host

	Administering the Remote Mirror configuration
	Configuring site tagging for disks or enclosures
	Configuring automatic site tagging for a disk group
	Configuring site consistency on a volume

	Examples of storage allocation by specifying sites
	Displaying site information
	Failure and recovery scenarios
	Recovering from a loss of site connectivity
	Recovering from host failure
	Recovering from storage failure
	Recovering from site failure
	Recovering from disruption of connectivity to storage at the remote sites from hosts on all sites
	Recovering from disruption to connectivity to storage at all sites from the hosts at a site
	Automatic site reattachment

	Section 5. Optimizing I/O performance
	19. Veritas File System I/O
	About Veritas File System I/O
	Buffered and Direct I/O
	Direct I/O
	Unbuffered I/O
	Data synchronous I/O

	Concurrent I/O
	Cache advisories
	Freezing and thawing a file system
	Getting the I/O size
	About Storage Foundation and High Availability Solutions products database accelerators

	20. Veritas Volume Manager I/O
	Veritas Volume Manager throttling of administrative I/O

	Section 6. Veritas Extension for Oracle Disk Manager
	21. Using Veritas Extension for Oracle Disk Manager
	About Oracle Disk Manager
	How Oracle Disk Manager improves database performance

	About Oracle Disk Manager and Veritas Storage Foundation Cluster File System High Availability
	About Oracle Disk Manager and Oracle Managed Files
	How Oracle Disk Manager works with Oracle Managed Files

	Setting up Veritas Extension for Oracle Disk Manager
	Configuring Veritas Extension for Oracle Disk Manager
	Preparing existing database storage for Oracle Disk Manager
	Verifying that Oracle Disk Manager is configured
	Disabling the Oracle Disk Manager feature
	Using Cached ODM
	Enabling Cached ODM for file systems
	Modifying Cached ODM settings for individual files
	Adding Cached ODM settings via the cachemap
	Making the caching settings persistent across mounts

	Section 7. Using Point-in-time copies
	22. Understanding point-in-time copy methods
	About point-in-time copies
	When to use point-in-time copies
	Implementing point-in time copy solutions on a primary host
	Implementing off-host point-in-time copy solutions

	About Storage Foundation point-in-time copy technologies
	Comparison of Point-in-time copy solutions

	Volume-level snapshots
	Persistent FastResync of volume snapshots
	Data integrity in volume snapshots
	Third-mirror break-off snapshots
	Space-optimized instant volume snapshots
	Choices for snapshot resynchronization
	Disk group split/join

	Storage Checkpoints
	How Storage Checkpoints differ from snapshots
	How a Storage Checkpoint works
	Types of Storage Checkpoints

	About FileSnaps
	Properties of FileSnaps
	Concurrent I/O to FileSnaps
	Copy-on-write and FileSnaps
	Reading from FileSnaps
	Block map fragmentation and FileSnaps
	Backup and FileSnaps

	About snapshot file systems
	How a snapshot file system works

	23. Administering volume snapshots
	About volume snapshots
	How traditional third-mirror break-off snapshots work
	How full-sized instant snapshots work
	Linked break-off snapshot volumes
	Cascaded snapshots
	Creating a snapshot of a snapshot

	Creating multiple snapshots
	Restoring the original volume from a snapshot
	Creating instant snapshots
	Adding an instant snap DCO and DCO volume
	Creating and managing space-optimized instant snapshots
	Creating and managing full-sized instant snapshots
	Creating and managing third-mirror break-off snapshots
	Creating and managing linked break-off snapshot volumes
	Creating multiple instant snapshots
	Creating instant snapshots of volume sets
	Adding snapshot mirrors to a volume
	Removing a snapshot mirror
	Removing a linked break-off snapshot volume
	Adding a snapshot to a cascaded snapshot hierarchy
	Refreshing an instant space-optimized snapshot
	Reattaching an instant full-sized or plex break-off snapshot
	Reattaching a linked break-off snapshot volume
	Restoring a volume from an instant space-optimized snapshot
	Dissociating an instant snapshot
	Removing an instant snapshot
	Splitting an instant snapshot hierarchy
	Displaying instant snapshot information
	Controlling instant snapshot synchronization
	Listing the snapshots created on a cache
	Tuning the autogrow attributes of a cache
	Monitoring and displaying cache usage
	Growing and shrinking a cache
	Removing a cache

	Creating traditional third-mirror break-off snapshots
	Converting a plex into a snapshot plex
	Creating multiple snapshots with the vxassist command
	Reattaching a snapshot volume
	Adding plexes to a snapshot volume
	Dissociating a snapshot volume
	Displaying snapshot information

	Adding a version 0 DCO and DCO volume
	Specifying storage for version 0 DCO plexes
	Removing a version 0 DCO and DCO volume
	Reattaching a version 0 DCO and DCO volume

	24. Administering Storage Checkpoints
	About Storage Checkpoints
	Storage Checkpoint administration
	Creating a Storage Checkpoint
	Removing a Storage Checkpoint
	Accessing a Storage Checkpoint
	Converting a data Storage Checkpoint to a nodata Storage Checkpoint
	Enabling and disabling Storage Checkpoint visibility

	Storage Checkpoint space management considerations
	Restoring from a Storage Checkpoint
	Examples of restoring a file from a Storage Checkpoint

	Storage Checkpoint quotas

	25. Administering FileSnaps
	FileSnap creation
	FileSnap creation over Network File System

	Using FileSnaps
	Using FileSnaps to create point-in-time copies of files
	Using FileSnaps to provision virtual desktops
	Using FileSnaps to optimize write intensive applications for virtual machines
	Using FileSnaps to create multiple copies of data instantly

	Comparison of the logical size output of the fsadm -S shared, du, and df commands

	26. Administering snapshot file systems
	Snapshot file system backups
	Snapshot file system performance
	About snapshot file system disk structure
	Differences between snapshots and Storage Checkpoints
	Creating a snapshot file system
	Examples of creating snapshot file systems

	Section 8. Optimizing storage with Storage Foundation Cluster File System High Availability
	27. Understanding storage optimization solutions in Storage Foundation Cluster File System High Availability
	About thin provisioning
	About thin optimization solutions in Storage Foundation Cluster File System High Availability
	About SmartMove
	SmartMove for thin provisioning

	About the Thin Reclamation feature
	About reclaiming space on Solid State Devices (SSDs) with the TRIM operation
	Determining when to reclaim space on a thin reclamation LUN
	How automatic reclamation works

	28. Migrating data from thick storage to thin storage
	About using SmartMove to migrate to Thin Storage
	Migrating to thin provisioning

	29. Maintaining Thin Storage with Thin Reclamation
	Reclamation of storage on thin reclamation arrays
	About Thin Reclamation of a disk, a disk group, or an enclosure
	About Thin Reclamation of a file system

	Identifying thin and thin reclamation LUNs
	Displaying VxFS file system usage on thin reclamation LUNs
	Reclaiming space on a file system
	Reclaiming space on a disk, disk group, or enclosure
	About the reclamation log file
	Monitoring Thin Reclamation using the vxtask command
	Configuring automatic reclamation

	Section 9. Maximizing storage utilization
	30. Understanding storage tiering with SmartTier
	About SmartTier
	About VxFS multi-volume file systems
	About VxVM volume sets
	About volume tags
	SmartTier file management
	SmartTier sub-file object management

	How the SmartTier policy works with the shared extents
	SmartTier in a High Availability (HA) environment

	31. Creating and administering volume sets
	About volume sets
	Creating a volume set
	Adding a volume to a volume set
	Removing a volume from a volume set
	Listing details of volume sets
	Stopping and starting volume sets
	Managing raw device nodes of component volumes
	Enabling raw device access when creating a volume set
	Displaying the raw device access settings for a volume set
	Controlling raw device access for an existing volume set

	32. Multi-volume file systems
	About multi-volume file systems
	About volume types
	Features implemented using multi-volume support
	Volume availability

	Creating multi-volume file systems
	Example of creating a multi-volume file system

	Converting a single volume file system to a multi-volume file system
	Adding a volume to and removing a volume from a multi-volume file system
	Adding a volume to a multi-volume file system
	Removing a volume from a multi-volume file system
	Forcibly removing a volume in a multi-volume file system
	Moving volume 0 in a multi-volume file system

	Volume encapsulation
	Encapsulating a volume
	Deencapsulating a volume

	Reporting file extents
	Examples of reporting file extents

	Load balancing
	Defining and assigning a load balancing allocation policy
	Rebalancing extents

	Converting a multi-volume file system to a single volume file system

	33. Administering SmartTier
	About SmartTier
	About compressing files with SmartTier

	Supported SmartTier document type definitions
	Placement classes
	Tagging volumes as placement classes
	Listing placement classes

	Administering placement policies
	Assigning a placement policy
	Unassigning a placement policy
	Analyzing the space impact of enforcing a placement policy
	Querying which files will be affected by enforcing a placement policy
	Enforcing a placement policy
	Validating a placement policy

	File placement policy grammar
	File placement policy rules
	SELECT statement
	CREATE statement
	RELOCATE statement
	DELETE statement
	COMPRESS statement
	UNCOMPRESS statement

	Calculating I/O temperature and access temperature
	Multiple criteria in file placement policy rule statements
	Multiple file selection criteria in SELECT statement clauses
	Multiple placement classes in <ON> clauses of CREATE statements and in <TO> clauses of RELOCATE statements
	Multiple placement classes in <FROM> clauses of RELOCATE and DELETE statements
	Multiple conditions in <WHEN> clauses of RELOCATE and DELETE statements

	File placement policy rule and statement ordering
	File placement policies and extending files
	Using SmartTier with solid state disks
	Fine grain temperatures with solid state disks
	Prefer mechanism with solid state disks
	Average I/O activity with solid state disks
	Frequent SmartTier scans with solid state disks
	Quick identification of cold files with solid state disks
	Example placement policy when using solid state disks

	Sub-file relocation
	Moving sub-file data of files to specific target tiers

	34. Administering hot-relocation
	About hot-relocation
	How hot-relocation works
	Partial disk failure mail messages
	Complete disk failure mail messages
	How space is chosen for relocation

	Configuring a system for hot-relocation
	Displaying spare disk information
	Marking a disk as a hot-relocation spare
	Removing a disk from use as a hot-relocation spare
	Excluding a disk from hot-relocation use
	Making a disk available for hot-relocation use
	Configuring hot-relocation to use only spare disks
	Moving relocated subdisks
	Moving relocated subdisks using vxunreloc
	Restarting vxunreloc after errors

	Modifying the behavior of hot-relocation

	35. Deduplicating data
	About deduplicating data
	About deduplication chunk size
	Deduplication and file system performance
	About the deduplication scheduler

	Deduplicating data
	Enabling and disabling deduplication on a file system
	Scheduling deduplication of a file system
	Performing a deduplication dry run
	Querying the deduplication status of a file system
	Starting and stopping the deduplication scheduler daemon
	Example of deduplicating a file system

	Deduplication results
	Deduplication supportability
	Deduplication use cases
	Deduplication limitations

	36. Compressing files
	About compressing files
	About the compressed file format
	About the file compression attributes
	About the file compression block size

	Compressing files with the vxcompress command
	Examples of using the vxcompress command

	Interaction of compressed files and other commands
	Interaction of compressed files and other features
	Interaction of compressed files and applications
	Use cases for compressing files
	Compressed files and databases
	Compressing all files that meet the specified criteria

	Section 10. Administering storage
	37. Managing volumes and disk groups
	Rules for determining the default disk group
	Displaying the system-wide boot disk group
	Displaying and specifying the system-wide default disk group

	Moving volumes or disks
	Moving volumes from a VM disk
	Moving disks between disk groups
	Reorganizing the contents of disk groups

	Monitoring and controlling tasks
	Specifying task tags
	Managing tasks with vxtask

	Using vxnotify to monitor configuration changes
	Performing online relayout
	Permitted relayout transformations
	Specifying a non-default layout
	Specifying a plex for relayout
	Tagging a relayout operation
	Viewing the status of a relayout
	Controlling the progress of a relayout

	Adding a mirror to a volume
	Mirroring all volumes
	Mirroring volumes on a VM disk

	Configuring SmartMove
	Removing a mirror
	Setting tags on volumes
	Managing disk groups
	Disk group versions
	Displaying disk group information
	Creating a disk group
	Removing a disk from a disk group
	Deporting a disk group
	Importing a disk group
	Handling of minor number conflicts
	Moving disk groups between systems
	Handling cloned disks with duplicated identifiers
	Renaming a disk group
	Handling conflicting configuration copies
	Disabling a disk group
	Destroying a disk group
	Backing up and restoring disk group configuration data
	Working with existing ISP disk groups

	Managing plexes and subdisks
	Reattaching plexes
	Plex synchronization

	Decommissioning storage
	Removing a volume
	Removing a disk from VxVM control
	About shredding data
	Shredding a VxVM disk
	Failed disk shred operation results in a disk with no label
	Removing and replacing disks

	38. Rootability
	Encapsulating a disk
	Failure of disk encapsulation
	Using nopriv disks for encapsulation

	Rootability
	Restrictions on using rootability with Linux
	Sample supported root disk layouts for encapsulation
	Booting root volumes
	Boot-time volume restrictions
	Creating redundancy for the root disk
	Creating an archived back-up root disk for disaster recovery
	Encapsulating and mirroring the root disk
	Upgrading the kernel on a root encapsulated system

	Administering an encapsulated boot disk
	Creating a snapshot of an encapsulated boot disk

	Unencapsulating the root disk

	39. Quotas
	About quota limits
	About quota files on Veritas File System
	About quota commands
	About quota checking with Veritas File System
	Using quotas
	Turning on quotas
	Turning on quotas at mount time
	Editing user and group quotas
	Modifying time limits
	Viewing disk quotas and usage
	Displaying blocks owned by users or groups
	Turning off quotas

	40. File Change Log
	About File Change Log
	About the File Change Log file
	File Change Log administrative interface
	File Change Log programmatic interface
	Summary of API functions

	Section 11. Reference
	41. Reverse path name lookup
	About reverse path name lookup

	A. Tunable parameters
	About tuning Veritas Storage Foundation Cluster File System High Availability
	Tuning the VxFS file system
	Tuning inode table size
	Tuning performance optimization of inode allocation
	Tuning file system parallel direct I/O
	Partitioned directories
	Veritas Volume Manager maximum I/O size
	Native asynchronous I/O with cloned processes

	DMP tunable parameters
	Methods to change Veritas Dynamic Multi-Pathing tunable parameters
	Changing the values of DMP parameters with the vxdmpadm settune command line
	About tuning Veritas Dynamic Multi-Pathing (DMP) with templates

	Tunable parameters for VxVM
	Tunable parameters for core VxVM
	Tunable parameters for FlashSnap (FMR)
	Tunable parameters for CVM
	Tunable parameters for VVR
	Points to note when changing the values of the VVR tunables

	Methods to change Veritas Volume Manager tunable parameters
	Changing the values of the Veritas Volume Manager tunable parameters using the vxtune command line
	Changing the value of the Veritas Volume Manager tunable parameters using templates

	About LLT tunable parameters
	About LLT timer tunable parameters
	About LLT flow control tunable parameters
	Setting LLT timer tunable parameters

	About GAB tunable parameters
	About GAB load-time or static tunable parameters
	About GAB run-time or dynamic tunable parameters

	About VXFEN tunable parameters
	Configuring the VXFEN module parameters

	About AMF tunable parameters

	B. Veritas File System disk layout
	About Veritas File System disk layouts
	VxFS Version 7 disk layout
	VxFS Version 8 disk layout
	VxFS Version 9 disk layout

	C. Command reference
	Command completion for Veritas commands
	Veritas Volume Manager command reference
	CVM commands supported for executing on the slave node
	Veritas Volume Manager manual pages
	Section 1M — administrative commands
	Section 4 — file formats

	Veritas File System command summary
	Veritas File System manual pages

	D. Creating a starter database
	Creating a database for Oracle 11gr2
	Creating database tablespace on shared raw VxVM volumes

	Index

