
Cluster Server 7.4.3 Agent
Developer's Guide - AIX,
Linux, Solaris, Windows

Last updated: 2020-11-18

Legal Notice
Copyright © 2020 Veritas Technologies LLC. All rights reserved.

Veritas and the Veritas Logo are trademarks or registered trademarks of Veritas Technologies
LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their
respective owners.

This product may contain third-party software for which Veritas is required to provide attribution
to the third-party (“Third-Party Programs”). Some of the Third-Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the third-party legal notices document accompanying this
Veritas product or available at:
https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by anymeans without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

https://www.veritas.com/about/legal/license-agreements

Veritas Technologies LLC
2625 Augustine Drive
Santa Clara, CA 95054
http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:
https://www.veritas.com/support

You can manage your Veritas account information at the following URL:
https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

Documentation
Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The latest documentation is available on the Veritas
website:
https://sort.veritas.com/documents

Documentation feedback
Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:
infoscaledocs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:
http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)
Veritas Services andOperations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:infoscaledocs@veritas.com?Subject=InfoScale
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Chapter 1 Introduction .. 13

About VCS agents .. 13
How agents work .. 14

About the agent framework ... 14
About intelligent monitoring framework (IMF) 15
Resource type definitions ... 15
About agent functions (entry points) ... 15
About on-off, on-only, and persistent resources 16
About attributes .. 16
About intentional offline of applications 21

About developing an agent ... 21
Considerations for the application .. 21
High-level overview of the agent development process 22

Chapter 2 Agent entry point overview ... 24

About agent entry points .. 24
Supported entry points .. 24
How the agent framework interacts with entry points 25

Agent entry points described ... 26
About the open entry point ... 26
About the monitor entry point .. 26
About the online entry point .. 27
About the offline entry point .. 27
About the clean entry point ... 28
About the action entry point .. 29
About the info entry point ... 30
About the attr_changed entry point ... 33
About the close entry point ... 33
About the shutdown entry point ... 34
About the imf_init entry point ... 34
About the imf_register entry point .. 34
About the imf_getnotification entry point 35
About the migrate entry point .. 35
About the meter entry point .. 35

Return values for entry points ... 35

Contents

Considerations for using C++ or script entry points 38
About the VCSAgStartup routine ... 38

About the agent information file ... 39
Example agent information file (UNIX) .. 40
Implementing the agent XML information file 43

About the ArgList and ArgListValues attributes 43
ArgListValues attribute for agents registered as V50 and later

... 44
Overview of the name-value tuple format 44
ArgListValues attribute for different agents versions 45
About the entry point timeouts ... 47

Chapter 3 Creating entry points in C++ .. 48

About creating entry points in C++ ... 48
Entry point examples in this chapter ... 49

Data Structures .. 49
Syntax for C++ entry points .. 50

Syntax for C++ VCSAgStartup .. 51
Syntax for C++ monitor .. 52
Syntax for C++ info ... 53
Syntax for C++ online .. 57
Syntax for C++ offline .. 58
Syntax for C++ clean ... 59
Syntax for C++ action .. 60
Syntax for C++ attr_changed .. 62
Syntax for C++ open ... 63
Syntax for C++ close ... 64
Syntax for C++ shutdown ... 65
Syntax for C++ migrate .. 65
Syntax for C++ meter .. 66

Agent framework primitives .. 67
VCSAgGetMonitorLevel ... 67
VCSAgGetFwVersion .. 68
VCSAgGetRegVersion .. 68
VCSAgRegisterEPStruct .. 68
VCSAgSetCookie2 ... 68
VCSAgRegister .. 70
VCSAgUnregister ... 71
VCSAgGetCookie ... 71
VCSAgStrlcpy .. 73
VCSAgStrlcat .. 73
VCSAgSnprintf .. 73

5Contents

VCSAgCloseFile .. 73
VCSAgDelString .. 73
VCSAgExec .. 74
VCSAgExecWithTimeout ... 75
VCSAgGenSnmpTrap ... 76
VCSAgSendTrap .. 77
VCSAgLockFile .. 77
VCSAgInitEntryPointStruct ... 78
VCSAgSetStackSize ... 78
VCSAgUnlockFile ... 79
VCSAgValidateAndSetEntryPoint .. 79
VCSAgSetLogCategory ... 79
VCSAgGetProductName .. 79
VCSAgMonitorReturn .. 80
VCSAgSetResEPTimeout .. 80
VCSAgDecryptKey ... 80
VCSAgGetConfDir .. 81
VCSAgGetHomeDir .. 81
VCSAgGetLogDir ... 81
VCSAgGetSystemName .. 81
VCSAG_CONSOLE_LOG_MSG ... 81
VCSAG_LOG_MSG .. 82
VCSAG_LOGDBG_MSG ... 82
VCSAG_RES_LOG_MSG .. 83

Agent Framework primitives for container support 83
VCSAgIsContainerUp .. 83
VCSAgGetContainerTypeEnum ... 83
VCSAgExecInContainer2 ... 84
VCSAgIsContainerCapable .. 84
VCSAgExecInContainerWithTimeout .. 84
VCSAgGetUID ... 85
VCSAgIsPidInContainer ... 85
VCSAgIsProcInContainer ... 85
VCSAgGetContainerID2 .. 86
VCSAgGetContainerName2 ... 86
VCSAgGetContainerBasePath .. 87
VCSAgGetContainerEnabled .. 88

Chapter 4 Creating entry points in scripts 89

About creating entry points in scripts .. 89
Rules for using script entry points .. 90
Parameters and values for script entry points 90

6Contents

ArgList attributes .. 90
Examples ... 91

Syntax for script entry points ... 91
Syntax for the monitor script ... 91
Syntax for the online script ... 92
Syntax for the offline script ... 92
Syntax for the clean script .. 92
Syntax for the action script ... 93
Syntax for the attr_changed script .. 93
Syntax for the info script .. 93
Syntax for the open script ... 93
Syntax for the close script .. 94
Syntax for the shutdown script .. 94
Syntax for the imf_init script ... 94
Syntax for the imf_register script ... 94
Syntax for the imf_getnotification script 95
Syntax for migrate script .. 95
Syntax for meter script ... 95

Agent framework primitives .. 95
VCSAG_GET_MONITOR_LEVEL ... 96
VCSAG_GET_AGFW_VERSION .. 97
VCSAG_GET_REG_VERSION ... 97
VCSAG_SET_RES_EP_TIMEOUT .. 97
VCSAG_GET_ATTR_VALUE .. 98
VCSAG_SET_RESINFO .. 101
VCSAG_MONITOR_EXIT .. 101
VCSAG_SYSTEM .. 103
VCSAG_SU ... 103
VCSAG_RETURN_IMF_RESID ... 104
VCSAG_RETURN_IMF_EVENT .. 104
VCSAG_BLD_PSCOMM .. 104
VCSAG_PHANTOM_STATE ... 104
VCSAG_SET_ENVS ... 105
VCSAG_LOG_MSG .. 105
VCSAG_LOGDBG_MSG ... 105
VCSAG_SQUEEZE_SPACES ... 105

Agent Framework primitives with container support 106
VCSAG_GET_CONTAINER_BASE_PATH 106
VCSAG_GET_CONTAINER_INFO .. 108
VCSAG_IS_PROC_IN_CONTAINER .. 109
VCSAG_EXEC_IN_CONTAINER .. 109

Example script entry points ... 110
Online entry point for FileOnOff ... 110

7Contents

Monitor entry point for FileOnOff .. 111
Monitor entry point with intentional offline 112
Offline entry point for FileOnOff ... 113
Monitor entry point for agent having basic (level-1) and detailed

(level-2) monitoring ... 114

Chapter 5 Logging agent messages .. 116

About logging agent messages .. 116
Logging in C++ and script-based entry points 116

Agent messages: format .. 117
Log unification of VCS agent’s entry points 119

C++ agent logging APIs ... 119
Agent application logging macros for C++ entry points 119
Agent debug logging macros for C++ entry points 120
Severity arguments for C++ macros .. 121
Initializing function_name using VCSAG_LOG_INIT 122
Log category ... 123
Examples of logging APIs used in a C++ agent 124

Script entry point logging functions ... 127
Using functions in scripts .. 128
VCSAG_SET_ENVS ... 128
VCSAG_LOG_MSG .. 131
VCSAG_LOGDBG_MSG ... 133
Example of logging functions used in a script agent 135

Chapter 6 Building a custom agent .. 137
Files for use in agent development ... 137

Script based agent binaries ... 137
C++ based agent binaries .. 138

Creating the type definition file for a custom agent 138
Naming convention for the type definition file 138
Example: FileOnOffTypes.cf .. 139
Example: Type definition for a custom agent that supports

intentional offline .. 139
Requirements for creating the agentTypes.cf file 139
Adding the custom type definition to the configuration 139

Building a custom agent on UNIX ... 140
Implementing entry points using scripts 140
Example: Using script entry points on UNIX 141
Example: Using VCSAgStartup() and script entry points on UNIX

.. 142
Implementing entry points using C++ .. 144

8Contents

Example: Using C++ entry points on UNIX 144
Example: Using C++ and script entry points on UNIX 148

Installing the custom agent ... 151
Defining resources for the custom resource type 152

Sample resource definition ... 152
Agent framework versions details ... 153

Chapter 7 Building a script based IMF-aware custom agent
.. 155

About building a script based IMF-aware custom agent 155
Linking AMF plugins with script agent ... 156
Creating XML file required for AMF plugins to do resource registration

for online and offline state monitoring .. 156
Example of amfregister.xml for registration of process-based

resource with AMF for online monitoring 159
Example of amfregister.xml for registration of process-based

resource with AMF for offline monitoring 161
Example of amfregister.xml for online and offline IMF monitoring

for a given process .. 162
Examples for adding RepearName tag in amfregister.xml 163

Adding IMF and IMFRegList attributes in configuration 164
Monitor without IMF integration ... 166
Monitor without IMF but with LevelTwo monitor frequency 166
Monitor with IMF integration .. 167
Monitor with IMF but with LevelTwo monitor frequency 168
Installing the IMF-aware script-based custom agent 169

Chapter 8 Testing agents ... 170

About testing agents .. 170
Using debug messages ... 170

Debugging agent functions (entry points). 170
Debugging the agent framework .. 171

Debugging using AdvDbg attribute ... 172
Working of AdvDbg attribute ... 172
Impact of AdvDbg attribute on existing functionality of the entry

point .. 173
Using the engine process to test agents .. 174

Test commands .. 174

9Contents

Chapter 9 Static type attributes ... 176

About static attributes .. 176
Overriding static type attributes .. 176

Static type attribute definitions ... 177
ActionTimeout .. 177
AdvDbg .. 177
AEPTimeout .. 179
AgentClass .. 179
AgentDirectory ... 180
AgentFailedOn ... 180
AgentFile .. 180
AgentPriority .. 180
AgentReplyTimeout ... 180
AgentStartTimeout .. 181
AlertOnMonitorTimeouts .. 181
ArgList .. 181
AttrChangedTimeout ... 182
AvailableMeters ... 182
CleanRetryLimit .. 182
CleanTimeout .. 183
CloseTimeout .. 183
ContainerOpts .. 183
ConfInterval ... 183
EPClass ... 184
EPPriority .. 184
ExternalStateChange .. 185
FaultOnMonitorTimeouts .. 185
FaultPropagation .. 185
FireDrill ... 186
IMF .. 186
IMFRegList .. 187
InfoInterval .. 187
InfoTimeout ... 187
IntentionalOffline .. 188
LevelTwoMonitorFreq .. 188
LogDbg .. 188
LogFileSize ... 189
LogViaHalog .. 190
ManageFaults .. 190
Meters .. 191
MeterControl .. 191
MeterRegList ... 192

10Contents

MeterRetryLimit .. 192
MeterTimeout .. 192
MonitorInterval ... 193
MonitorStatsParam ... 193
MonitorTimeout .. 193
MigrateTimeout .. 194
MigrateWaitLimit ... 194
NumThreads ... 194
OfflineMonitorInterval .. 195
OfflineTimeout .. 195
OfflineWaitLimit .. 195
OnlineClass ... 195
OnlinePriority ... 196
OnlineRetryLimit ... 196
OnlineTimeout ... 196
OnlineWaitLimit .. 196
OpenTimeout ... 197
Operations .. 197
RegList ... 197
RestartLimit ... 198
ScriptClass .. 199
ScriptPriority .. 199
SourceFile ... 199
SupportedActions ... 199
SupportedOperations .. 200
ToleranceLimit .. 200

Chapter 10 State transition diagram ... 201

State transitions ... 201
State transitions with respect to ManageFaults attribute 215

Chapter 11 Internationalized messages .. 220

About internationalized messages .. 220
Creating SMC files .. 221

SMC format ... 221
Example SMC file ... 221
Formatting SMC files ... 222
Naming SMC files, BMC files .. 222
Message examples ... 223
Using format specifiers .. 223

Converting SMC files to BMC files .. 224
Storing BMC files .. 224

11Contents

Displaying the contents of BMC files ... 224
Using BMC Map Files .. 224

Location of BMC Map Files ... 225
Creating BMC Map Files .. 225
Example BMC Map File ... 225

Updating BMC Files .. 226

Chapter 12 Troubleshooting VCS resource’s unexpected
behavior using First Failure Data Capture
(FFDC) ... 227

Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS
resource’s unexpected behavior .. 227

Appendix A Using pre-5.0 VCS agents .. 229

Using pre-5.0 VCS agents and registering them with V50 or later 229
Outline of steps to change V40 agents to V50 or later 229
Example script in V40 and V50 or later 230
Sourcing ag_i18n_inc modules in script entry points 230

Guidelines for using pre-VCS 4.0 Agents ... 231
Log messages in pre-VCS 4.0 agents ... 231

Mapping of log tags (pre-VCS 4.0) to log severities (VCS 4.0)
.. 232

How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later
.. 232

Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros 232
Pre-VCS 4.0 Message APIs .. 233

VCSAgLogConsoleMsg ... 233
VCSAgLogI18NMsg .. 234
VCSAgLogI18NMsgEx ... 235
VCSAgLogI18NConsoleMsg ... 235
VCSAgLogI18NConsoleMsgEx .. 236

12Contents

Introduction
This chapter includes the following topics:

■ About VCS agents

■ How agents work

■ About developing an agent

About VCS agents
Agents are programs that manage resources, such as a disk group or a mount
point, within a cluster environment. Each type of resource requires an agent. The
agent acts as an intermediary between VCS and the resources it manages, typically
by bringing them online, monitoring their state, or taking them offline.

VCS agents are classified as follows:

■ Bundled agents
These agents are part of the VCS infrastructure and are packaged along with
VCS. Examples of bundled agents include the IP (Internet Protocol) and NIC
(network interface card) agents. For more information on VCS bundled agents,
including their attributes andmodes of operation, see theCluster Server Bundled
Agents Reference Guide.

■ Enterprise agents
These agents manage enterprise databases including Oracle, Sybase, and DB2,
and are packaged along with VCS.

■ High availability agents
High availability agents manage various applications and are available through
a release vehicle called Agent Pack. The Agent Pack is released every quarter
independent of the VCS release. The agents are classified based on the
application type as follows:

1Chapter

■ Application agents
These agents manage enterprise applications, such as WebLogic,
WebSphere, and SAP.

■ Database agents
These agents manage database applications, such as MySQL, SAPMaxDB,
and Informix.

■ Replication agents
These agents manage hardware and software replication technologies, such
as SRDF and HP EVACA.

The Agent Pack is available as a free download from the following locations:

■ Veritas Services and Operations Readiness Tool (SORT)
The agents are available as individual tarballs from:
https://sort.veritas.com/agents

■ Custom agents: These are agents that are developed outside of Veritas and
are not supported by Veritas Technical Support.

How agents work
A single agent manages multiple resources of the same type on one system. For
example, the NIC agent manages all NIC resources. The resources to be managed
are those defined within the VCS configuration.

As part of the VCS processes, a high availability daemon (HAD) is responsible for
making applications highly available on a system.

When the VCS process HAD comes up on a system, it automatically starts the
agents required for the types of resources that are to be managed on the system.

The VCSHAD process provides the agents with the specific configuration information
for the resources that are configured under VCS.

An agent carries out the commands received from HAD to bring resources online,
offline, migrate, and monitor their status, as needed. When an agent crashes or
hangs, VCS detects the fault and restarts the agent.

About the agent framework
The agent framework is a set of predefined functions compiled into the agent for
each resource type. These functions include the ability to connect to the VCS engine
and to understand the common configuration attributes, such as RestartLimit and
MonitorInterval. When an agent is built using C++, the agent framework is compiled
in the agent with an include statement. When an agent is built using script languages,

14Introduction
How agents work

https://sort.symantec.com/agents

such as shell, Perl, or Python, the user can use the different agent binaries on UNIX
shipped with VCS that provides framework functions. The agent framework handles
much of the complexity that need not concern the agent developer.

Note: Python scripts are supported only on the Linux and the Windows platforms.

See “Script based agent binaries” on page 137.

About intelligent monitoring framework (IMF)
With the IMF, VCS supports intelligent resource monitoring in addition to the
poll-based monitoring. IMF is an extension to the VCS agent framework. Many VCS
agents use IMF for monitoring resources. You can enable and disable the IMF
functionality of the VCS agents as needed. However, IMF is enabled by default for
all agents that support IMF.

The benefits of intelligent monitoring over poll-based monitoring are as follows:

■ Provides faster notification of resource state changes.

■ Reduces VCS system utilization due to reduced monitor function footprint, which
enables VCS to effectively monitor a large number of resources.

For information on agents that support IMF in VCS, refer
https://www.veritas.com/support/en_US/article.TECH223407

Resource type definitions
The agent for each type of resource requires a resource type definition that describes
the information an agent needs to control resources of that type. The type definition
file can be considered similar to a header file in a C program. The type definition
defines the attributes and their data types, and provides default values for certain
attributes that affect all resources of that resource type.

For example, one of the attributes that is defined for the IP resource type is the
Address attribute, which stores the IP address of a specific IP resource. This attribute
is defined as a ‘string-scalar’.

About agent functions (entry points)
An entry point is either a C++ function or a script (for example: shell, Perl, or Python)
used by the agent to carry out a specific task on a resource. The agent framework
supports a specific set of entry points, each of which is expected to do a different
task and return. For example, the online entry point brings a resource online.

See “Supported entry points ” on page 24.

15Introduction
How agents work

https://www.veritas.com/support/en_US/article.TECH223407

An agent developer should implement the entry points for a resource type that the
agent uses to carry out the required tasks on the resources of that type. For example,
in the online entry point for the Mount resource type, the agent developer includes
the logic to mount a file system based on the parameters provided to the entry point.
These parameters are attributes for a particular resource, for example, mount point,
device name, and mount options. In the monitor entry point, the agent developer
checks the state of the mount resource and returns a code to indicate whether the
mount resource is online or offline.

See “About agent entry points” on page 24.

About on-off, on-only, and persistent resources
Different types of resources require different types of control. Resources can be
classified as on-off, on-only, or persistent.

■ On-off resources
Most resources are on-off, meaning agents start and stop them as required. For
example, VCS assigns an IP address to a specified NIC when bringing a resource
online and removes the assigned IP address when taking the resource offline.
Another example is the DiskGroup resource. VCS imports a disk group when
needed and deports it when it is no longer needed. For agents of on-off
resources, all entry points can be implemented.

■ On-only resources
An on-only resource is brought online, but it is not taken offline when the
associated service group is taken offline. For example, in the case of the
FileOnOnly resource, the engine creates the specified file when required, but
does not delete the file if the associated service group is taken offline. For agents
of on-only resources, the offline entry point is not needed or invoked.

■ Persistent resources
Persistent resource has an operation value of None. It cannot be brought online
or taken offline, yet the resource must be present in the configuration to allow
the resource to be monitored. For example, a NIC resource cannot be started
or stopped, but it is required to be operational in order for the associated IP
address to function properly. The agent monitors persistent resources to ensure
their status and operation. An agent for a persistent resource does not require
or invoke the online or offline entry points. It uses only the monitor entry points.

About attributes
VCS has the following types of attributes, depending on the object the attribute
applies to.

16Introduction
How agents work

Attributes associated with resource types in VCS. These can be further
classified as:

■ Type-independent—Attributes that all agents (or resource types)
understand.
Examples: RestartLimit, MonitorInterval, Enabled, and Probed; these
can be set for any resource type.
Typically, these attributes are set for all resources of a specific type.
For example, if you set the MonitorInterval for the IP resource type,
the same value applies to all resources of type IP. You can also
override the values of these attributes, that is, you can configure a
different attribute value for each resource of this type.

■ Type-dependent—Attributes that apply to a particular resource type.
Examples: The MountPoint attribute applies only to the Mount
resource type. The Address attribute applies only to the IP resource
type.
Attributes defined in the types file (types.cf) apply to all resources
of the resource type. When you configure resources, you can assign
resource-specific values to these attributes, which appear in the
main.cf file.
For example, the PathName attribute for the FileOnOff resource
type is type-dependent, and can take a resource-specific value when
configured.

■ Static—These attributes apply to all resource types and can have
a different value per resource type. You can override some static
attributes and assign them resource-specific values. These attributes
are prefixed with the term static and are not included in the
resource's argument list.
Examples: MonitorInterval and ToleranceLimit.

Resource type
attributes

Attribute data types
VCS supports the following data types for attributes.

A string is a sequence of characters. If the string contains double quotes,
the quotes must be immediately preceded by a backslash. A backslash
is represented in a string as \\. Quotes are not required if a string begins
with a letter, and contains only letters, numbers, dashes (-), and
underscores (_). For example, a string defining a network interface
such as hme0 or eth0 does not require quotes as it contains only letters
and numbers. However a string defining an IP address contains periods
and requires quotes, such as: "192.168.100.1"

String

Signed integer constants are a sequence of digits from 0 to 9. They
may be preceded by a dash, and are interpreted in base 10. Integers
cannot exceed the value of a 32-bit signed integer: 2147483647.

Integer

17Introduction
How agents work

A Boolean is an integer, the possible values of which are 0 (false) and
1 (true).

Boolean

Attribute dimensions
VCS attributes have the following dimensions.

A scalar has only one value.

For example:

MountPoint = "/Backup"

Scalar

A vector is an ordered list of values. Each value is indexed using a
positive integer beginning with zero.

Use a comma (,) or a semi-colon (;) to separate values.

A set of brackets ([]) after the attribute name denotes that the dimension
is a vector.

Example snippet from the type definition file for an agent:

str BackupSys[]

When values are assigned to a vector attribute in the main.cf
configuration file, the attribute definition might resemble:

BackupSys[] = { sysA, sysB, sysC }

For example, an agent's ArgList is defined as:

static str ArgList[] = {RVG, DiskGroup, Primary,
SRL, Links}

Vector

18Introduction
How agents work

A Keylist is an unordered list of strings, and each string is unique within
the list.

Use a comma (,) or a semi-colon (;) to separate values.

For example, to designate the list of systems on which a service group
will be started with VCS (usually at system boot):

AutoStartList = {SystemA; SystemB; SystemC}

For example:

keylist BackupVols = {}

When values are assigned to a keylist attribute in the main.cf file, it
might resemble:

BackupVols = { vol1, vol2 }

Keylist

An association is an unordered list of name-value pairs.

Use a comma (,) or a semi-colon (;) to separate values.

A set of braces ({}) after the attribute name denotes that an attribute is
an association.

For example, to designate the list of systems on which the service group
is configured to run and the system's priorities:

SystemList = {SystemA=1, SystemB=2, SystemC=3}

For example:

int BackupSysList {}

When values are assigned to an association attribute in the main.cf file,
it might resemble:

BackupSysList{} = { sysa=1, sysb=2, sysc=3 }

Association

Attribute scope across systems: global and local attributes
An attribute whose value is the same across all systems on which the service group
is configured global in scope. An attribute whose value applies on a per-system
basis is local in scope.

The at operator (@) indicates the system to which a local value applies.

19Introduction
How agents work

In the following example of the MultiNICA resource type, attributes applying locally
are indicated by "@system" following the attribute name:

MultiNICA mnic (

Device@sysa = { le0 = "166.98.16.103", qfe3 =

"166.98.16.105" }

Device@sysb = { le0 = "166.98.16.104", qfe3 =

"166.98.16.106" }

NetMask = "255.255.255.0"

ArpDelay = 5

RouteOptions@sysa = "default 166.98.16.103 0"

RouteOptions@sysb = "default 166.98.16.104 0"

)

In the preceding example, the value of the NetMask attribute is "255.255.255.0" on
all systems, whereas the values of the Device attribute and the RouteOptions
attribute are different on sysa and sysb.

Attribute life: temporary attributes
You can define temporary attributes in the types file. The values of temporary
attributes remain in memory as long as the VCS HAD process is running. Values
of temporary attributes are not available when the HAD process is restarted.

These attribute values are not stored in the main.cf file.

Temporary attributes cannot be converted to permanent and vice-versa. When you
save a configuration, VCS saves the temporary attribute definitions and their default
values in the type definition file.

You can modify attribute values only while VCS is running.

In the following example of RVGSnapshot resource type, FDFile is the temporary
attribute.

type RVGSnapshot (

static keylist RegList = { Prefix }

static int NumThreads = 1

static str ArgList[] = { RvgResourceName, CacheObj,

Prefix, DestroyOnOffline }

str RvgResourceName

str CacheObj

str Prefix

boolean DestroyOnOffline = 1

temp str FDFile

)

20Introduction
How agents work

About intentional offline of applications
Certain agents can identify when an application has been intentionally shut down
outside of VCS control.

If an administrator intentionally shuts down an application outside of VCS control,
VCS does not treat it as a fault. VCS sets the service group state as offline or partial,
depending on the state of other resources in the service group.

This feature allows administrators to stop applications without causing failovers.

See “IntentionalOffline” on page 188.

About developing an agent
Before creating the agent, some considerations and planning are required, especially
regarding the type of the resource for which the agent is being created.

Considerations for the application
The application for which an agent for VCS is developed must lend itself to being
controlled by the agent and be able to operate in a cluster environment. The following
criteria describe an application that can successfully operate in a cluster:

■ The application must be capable of being started by a defined procedure if new
agent is of type OnOff or OnOnly. There must be some means of starting the
application's external resources such as file systems that store databases, or
IP addresses used for listener processes, and so on.

■ Each instance of an application must be capable of being stopped by a defined
procedure if new agent is of type OnOff. Other instances of the application must
not be affected.

■ The application must be capable of being stopped cleanly, by forcible means if
necessary.

■ Each instance of an application must be capable of being monitored uniquely.
Monitoring can be simple or in-depth so as to achieve a high level of confidence
in the operation of the application. Monitoring an application becomes more
effective when the monitoring procedure resembles the actual activity of the
application's user.

■ For failover capability, the application must be capable of storing data on shared
disks rather than locally or in memory, and each system must be capable of
accessing the data and all information required to run the application.

■ The application must be crash-tolerant. It must be capable of being run on a
system that crashes and of being started on a failover node in a known state.

21Introduction
About developing an agent

This typically means that data is regularly written to shared storage rather than
stored in memory.

■ The application must be host-independent within a cluster; that is, there are no
licensing requirements or host name dependencies that prevent successful
failover.

■ The application must run properly with other applications in the cluster.

■ The applications configured under VCS control must not write data on stdout
and stderr stream. This may interfere with VCS agent functionality. For such
applications to run under VCS control, you must redirect the application's stdout
and stderr stream.

High-level overview of the agent development process
The steps to create and implement an agent are described by example in later
chapters.

Creating the type definition file
The types definition file contains definitions of resource types. Place a custom
resource type definition in a file that specifies the name of the custom resource; for
example, MyResourceTypes.cf . This file is referenced as an "include" statement
in the VCS configuration file, main.cf.

Decide about attributes, attribute types, and attribute dimension of this new agent.
Based on these create the type definition file for this agent.

See “Creating the type definition file for a custom agent” on page 138.

Developing the entry points
Decide whether to implement the agent entry points using C++ code, scripts, or a
combination of the two.

See “Considerations for using C++ or script entry points” on page 38.

Create the entry points.

For more information on developing entry points, refer to the following links.

See “About creating entry points in C++” on page 48.

See “About creating entry points in scripts” on page 89.

Building the agent
Build the agent, create required files, and place the agent in specific directories.

22Introduction
About developing an agent

See “Creating the type definition file for a custom agent” on page 138.

See “Files for use in agent development” on page 137.

For building an agent, sample files are provided.

Testing the agent
Test the agent using the Agent Server utility or by defining the resource type in a
configuration.

See “About testing agents” on page 170.

23Introduction
About developing an agent

Agent entry point overview
This chapter includes the following topics:

■ About agent entry points

■ Agent entry points described

■ Return values for entry points

■ Considerations for using C++ or script entry points

■ About the agent information file

■ About the ArgList and ArgListValues attributes

About agent entry points
Developing an agent involves developing the entry points that the agent can call
to perform operations on a resource, such as to bring a resource online, to take a
resource offline, or to monitor the resource.

Supported entry points
The agent framework supports the following entry points:

■ open - initializes the environment for a resource before the agent starts to
manage it

■ monitor - determines the status of a resource

■ online - brings a resource online

■ offline - takes a resource offline

■ clean - terminates ongoing tasks associated with an online or partially-online
resource and then forcefully brings the resource offline

2Chapter

■ action - starts a defined action for a resource

■ info - provides information about an online resource

■ attr_changed - responds to a resource's attribute's value change

■ close - terminates the environment associated with a resource before the agent
stops managing it

■ shutdown - called when the agent shuts down

■ imf_init- initializes the agent to interface with the IMF notification module

■ imf_register - registers or unregisters resource entities with the IMF notification
module

■ imf_getnotification - gets notifications about the resource state changes
from IMF notification module

Note: IMF entry points are supported only on V51 or later versions of agent.

■ migrate - migrates a resource.

Note: The migration is supported only on V60 or later agent versions.

■ meter - measures the system resource utilization of a VCS resource.

Note: The migration is supported only on V60 or later agent versions.

See “Agent entry points described” on page 26.

How the agent framework interacts with entry points
The agent framework ensures that only one entry point is running for a given
resource at one time. If multiple requests are received or multiple events are
scheduled for the same resource, the agent queues them and processes them one
at a time. An exception to this behavior is an optimization such that the agent
framework discards internally generated periodic monitoring requests for a resource
that is already being monitored or that has a monitor request as the last request in
resource command queue.

The agent framework is multithreaded. This means a single agent process can run
entry points for multiple resources simultaneously. However, if an agent receives
a request to take a given resource offline and simultaneously receives a request

25Agent entry point overview
About agent entry points

to close it, it calls the offline entry point first. The close entry point is called only
after the offline request returns or times out. If the offline request is received
for one resource, and the close request is received for another, the agent can call
both simultaneously.

The entry points supported by agent framework are described in the following
sections. With the exception of monitor, other entry points are optional. Each may
be implemented in C++ or scripts.

Agent entry points described
This section describes each entry point in detail.

About the open entry point
The status of the open entry point is passed as an argument to the next monitor
entry point. The name of the argument is OpenStatus. The possible value for
OpenStatus is 0 and 2. A value of 0 means that the open entry point completed
successfully. A value of 2 means that the open entry point has timed out.

When an agent starts, the open entry point of each configured and enabled resource
is called before its online, offline, or monitor entry points are called. This allows
you to include initialization for specific resources. Most agents do not require this
functionality and will not implement this entry point.

The open entry point is also called whenever the Enabled attribute for the resource
changes from 0 to 1. The entry point receives the resource name and ArgList

attribute values as input and returns no value.

A resource can be brought online, taken offline, and monitored only if it is managed
by an agent. For an agent to manage a resource, the value of the resource's Enabled
attribute must be set to 1. The open entry point creates the environment needed
for other entry points to function. For example, the entry point could create files
required by other entry points for the resource, or perform some resource-specific
setup.

About the monitor entry point
The monitor entry point typically contains the logic to determine the status of a
resource. For example, the monitor entry point of the IP agent checks whether or
not an IP address is configured, and returns the state online, offline, or unknown.

Note: This entry point is mandatory.

26Agent entry point overview
Agent entry points described

The agent framework calls the monitor entry point after completing the online,
offline and migrate entry points to determine if bringing the resource online,
offline or migration operations were effective. The agent framework also calls this
entry point periodically to detect if the resource was brought online or taken offline
unexpectedly.

By default, the monitor entry point runs every 60 seconds (the default value of the
MonitorInterval attribute) when a resource is online.

When a resource is expected to be offline, the entry point runs every 300 seconds
(the default value for the OfflineMonitorInterval attribute).

The monitor entry point receives a resource name and ArgList attribute values
as input (See “ArgList reference attributes” on page 182.).

The entry point returns the resource status and the confidence level.

See “Return values for entry points ” on page 35.

The entry point returns confidence level only when the resource status is online.
The confidence level is informative only and is not used by the engine. It can be
referenced by examining the value of ConfidenceLevel attribute.

A C++ entry point can return a confidence level of 0–100. A script entry point
combines the status and the confidence level in a single number.

See “Syntax for script entry points” on page 91.

About the online entry point
The online entry point typically contains the code to bring a resource online. For
example, the online entry point for an IP agent configures an IP address. When
the online procedure completes, the monitor entry point is automatically called by
the framework to verify that the resource is online.

The online entry point receives a resource name and ArgList attribute values as
input. It returns an integer indicating the number of seconds to wait for the online
to take effect. The typical return value is 0. If the return value is not zero, the agent
framework waits the number of seconds indicated by the return value before calling
the monitor entry point for the resource.

About the offline entry point
The offline entry point takes a resource offline. For example, the offline entry
point for an IP agent removes an IP address from the system. When the offline
procedure completes, the monitor entry point is automatically called by the
framework to verify that the resource is offline.

27Agent entry point overview
Agent entry points described

The offline entry point receives a resource name and ArgList attribute values
as input. It returns an integer indicating the number of seconds to wait for the offline
to take effect. The typical return value is 0. If the return value is not zero, the agent
framework waits the number of seconds indicated by the return value to call the
monitor entry point for the resource.

About the clean entry point
The clean entry point is called by the agent framework when all ongoing tasks
associated with a resource must be terminated and the resource must be taken
offline, perhaps forcibly. The entry point receives as input the resource name, an
encoded reason describing why the entry point is being called, and the ArgList

attribute values. It must return 0 if the operation is successful and 1 if unsuccessful.

The reason for calling the entry point is encoded according to the following enum

type:

enum VCSAgWhyClean {

VCSAgCleanOfflineHung,

VCSAgCleanOfflineIneffective,

VCSAgCleanOnlineHung,

VCSAgCleanOnlineIneffective,

VCSAgCleanUnexpectedOffline,

VCSAgCleanMonitorHung

};

For script-based Clean entry points, the Clean reason is passed as an integer:

0 => offline hung

1 => offline ineffective

2 => online hung

3 => online ineffective

4 => unexpected offline

5 => monitor hung

The above is an enum type, so same integer value is passed irrespective of whether
the entry point is written in C++ or is script-based.

■ VCSAgCleanOfflineHung
The offline entry point did not complete within the expected time.
See “OfflineTimeout” on page 195.

■ VCSAgCleanOfflineIneffective

28Agent entry point overview
Agent entry points described

The offline entry point was ineffective. The monitor entry point scheduled for
the resource after the offline entry point invocation returned a status other
than OFFLINE.

■ VCSAgCleanOnlineHung
The online entry point did not complete within the expected time.
(See “OnlineTimeout” on page 196.)

■ VCSAgCleanOnlineIneffective
The online entry point was ineffective. The monitor entry point scheduled for
the resource after the online entry point invocation returned a status other than
ONLINE.

■ VCSAgCleanUnexpectedOffline
The online resource faulted because it was taken offline unexpectedly.
(See “ToleranceLimit” on page 200.)

■ VCSAgCleanMonitorHung
The online resource faulted because the monitor entry point consistently failed
to complete within the expected time.
(See “FaultOnMonitorTimeouts” on page 185.)

The agent supports the following tasks when the clean entry point is implemented:

■ Automatically restarts a resource on the local system when the resource faults.
See “RestartLimit” on page 198.

■ Automatically retries the online entry point when the attempt to bring a resource
online fails.
See “OnlineRetryLimit” on page 196.

■ Enables the engine to bring a resource online on another system when the
resource faults on the local system.

For the above actions to occur, the clean entry point must run successfully, that
is, return an exit code of 0.

About the action entry point
Runs a pre-specified action on a resource. Use the entry point to run non-periodic
actions like suspending a database or resuming the suspended database.

The SupportedActions attribute is a keylist attribute that lists all the actions that are
intended on being supported. Each action is identified by a name (action_token).

See “SupportedActions” on page 199.

For an agent, all action entry points must be either C++ or script-based; you cannot
use both C++ and scripts.

29Agent entry point overview
Agent entry points described

If all actions are script based, make sure the action scripts reside within an actions
directory under the agent directory. Create a script for each action. Use the correct
action_token as the script name.

For example, a script called suspend defines the actions to be performed when the
action_token "suspend" is invoked via the hares -action command.

For C++ entry points, actions are implemented via a switch statement that defines
a case for each possible action_token.

See “Syntax for C++ action” on page 60.

The following shows the syntax for the -action option used with the hares

command:

hares -action <res> <token> [-actionargs <arg1> ...]

-sys <system> [-clus <cluster> | -localclus]

The following example commands show the invocation of the action entry point
using the example action tokens, DBSuspend and DBResume:

hares -action DBResource DBSuspend -actionargs dbsuspend -sys

Sys1

Also,

hares -action DBResource DBResume -actionargs dbstart -sys Sys1

Return values for action entry point
The action entry point exits with a 0 if it is successful, or 1 if not successful. The
command hares -action exits with 0 if the action entry point exits with a 0 and
1 if the action entry point is not successful.

The agent framework limits the output of the script-based action entry point to 2048
bytes.

Output refers to information that the script prints to stdout or stderr. When users
run the hares -action command, the command prints this output. The output is also
logged to the HAD log file.

About the info entry point
The info entry point enables agents to obtain information about an online resource.
For example, the Mount agent's info entry point could be used to report on space
available in the file system. All information the info entry point collects is stored in
the "temp" attribute ResourceInfo.

30Agent entry point overview
Agent entry points described

See “About the ResourceInfo attribute” on page 32.

See the Administrator's Guide for information about "temp" attributes.

The entry point can optionally modify a resource's ResourceInfo attribute by adding
or updating other name-value pairs using the following commands:

hares -modify res ResourceInfo -add key value

or

hares -modify res ResourceInfo -update key value

Refer to the hares manual page for more information on modifying values of
string-association attributes.

See “About the ResourceInfo attribute” on page 32.

See “Syntax for C++ entry points” on page 50.

Return values for info entry point
■ If the info entry point exits with 0 (success), the output captured on stdout for

the script entry point, or the contents of the info_output argument for C++
entry point, is dumped to the Msg key of the ResourceInfo attribute. The Msg

key is updated only when the info entry point is successful. The State key is
set to the value: Valid.

■ If the entry point exits with a non-zero value, ResourceInfo is updated to indicate
the error; the script's stdout or the C++ entry point's info_output is ignored.
The State key is set to the value: Invalid. The error message is written to the
agent's log file.

■ If the info entry point times out, output from the entry point is ignored. The
State key is set to the value: Invalid. The error message is written to the
agent's log file.

■ If a user kills the info entry point (for example, kill -15 pid), the State key
is set to the value: Invalid. The error message is written to the agent's log file.
See “About logging agent messages” on page 116.

■ If the resource for which the entry point is invoked goes offline or faults, the
State key is set to the value: Stale.

■ If the info entry point is not implemented, the State key is set to the value:
Stale. The error message is written to the agent's log file.

31Agent entry point overview
Agent entry points described

About the ResourceInfo attribute
The ResourceInfo attribute is a string association that stores name-value pairs.
By default, there are three such name-value pairs:

■ State indicates the status (valid, invalid, stale) of the information contained in
the ResourceInfo attribute.

■ Msg indicates the output of the info entry point, if any.

■ TS indicates the timestamp of when the ResourceInfo attribute was last updated.

These keys are updated only by the agent framework, not the entry point. The entry
point can define and add other keys (name-value pairs) and update them.

The ResourceInfo (string-association) is a temporary attribute, the scope of which
is set by the engine to be global for failover groups or local for parallel groups.
Because ResourceInfo is a temporary attribute, its values are never dumped to
the configuration file.

You can display the value of the ResourceInfo by using the hares command. The
output of hares -display shows the first 20 characters of the current value; the
output of hares -value resource ResourceInfo shows all name-value pairs in
the keylist.

The resource for which the info entry point is invoked must be online.

When a resource goes offline or faults, the State key is marked "Stale" because
the information is not current. If the info entry point exits abnormally, the State

key is marked "Invalid" because not all of the information is known to be valid. Other
key data, including Msg and TS keys, are not touched. You can manually clear values
of the ResourceInfo attribute by using the hares -flushinfo command. This
command deletes any optional keys for the ResourceInfo attribute and sets the
three mandatory keys to their default values.

For more information on hares -flushinfo command, refer the hares manual
page.

Invoking the info entry point
You can invoke the info entry point from the command line for a given online
resource using the hares -refreshinfo command.

By setting the InfoInterval attribute to some value other than 0, you can configure
the agent to invoke the info entry point periodically for an online resource.

See “InfoInterval” on page 187.

32Agent entry point overview
Agent entry points described

About the attr_changed entry point
This entry point provides a way to respond to resource attribute value changes.
The attr_changed entry point is called when a resource attribute is modified, and
only if that resource attribute is registered with the agent framework for notification.

Registering can be accomplished either through VCSAgRegister api or by definition
in the RegList. Script-based agents can register only through the RegList attribute
definition.

See “VCSAgRegister” on page 70.

See “VCSAgUnregister” on page 71.

See “RegList” on page 197.

The attr_changed entry point receives as input the resource name registered with
the agent framework for notification, the name of the changed resource, the name
of the changed attribute, and the new attribute value. It does not return a value.

About the close entry point
The close entry point is called whenever the Enabled attribute for a resource
changes from 1 to 0, or when a resource is deleted from the configuration on a
running cluster and the state of the resource permits running the close entry point.

Note that a resource is monitored only if it is managed by an agent. For an agent
to manage a resource, the resource's Enabled attribute value must be set to 1.

See the table below to find out which states of the resource allow running of the
close entry point when the resource is deleted on a running cluster. It receives a
resource name and ArgList attribute values as input and returns no value. This
entry point typically deinitializes the resource if implemented. Most agents do not
require this functionality and will not implement this entry point.

Table 2-1 States in which CLOSE entry point runs - based on operations
type of resource

Going
Online
Waiting

Going
Offline
Waiting

ProbingOffline
State

Online
State

Resource Type

N/AYesYesN/AYesNone (persistent)

YesYesYesYesYesOnOnly

YesYesYesYesYesOnOff

33Agent entry point overview
Agent entry points described

The open and close entry points are related in the sense that the open entry point
creates the environment needed for other entry points, while the close entry points
clean the setup created by the open entry point.

About the shutdown entry point
The shutdown entry point is called before the agent shuts down. It performs any
agent cleanup required before the agent exits. It receives no input and returns no
value. Most agents do not require this functionality and do not implement this entry
point.

About the imf_init entry point
This is a type-specific entry point. The agent framework invokes this entry point
when the agent starts. Agent developers can use this entry point to initialize the
agent to interface with the IMF notification module.

About the imf_register entry point
The agent framework invokes this entry point to either register or unregister a
resource with IMF.

The agent framework schedules a command to register a resource with IMF after
resource is in either steady ONLINE or steady OFFLINE state. In steady ONLINE
state, the previous and current state of the resource is ONLINE as reported by the
monitor entry point. In steady OFFLINE, the previous and current state of the
resource is OFFLINE, as reported by the monitor entry point.

The agent framework schedules the command to unregister a resource from IMF
under following circumstances:

■ When MonitorFreq key of IMF attribute has non-zero values and traditional
monitor entry point detects any of the following state changes of a resource:

■ ONLINE to OFFLINE

■ OFFLINE to ONLINE

■ ONLINE to UNKNOWN

■ OFFLINE to UNKNOWN

■ When you modify Mode key of the IMF attribute.

■ When the ContainerInfo attribute of a resource is changed.

■ If IMFRegList attribute or any attribute defined in IMFRegList is changed.

34Agent entry point overview
Agent entry points described

■ If IMFRegList is undefined and if ArgList attribute or any attribute defined in
ArgList gets changed.

About the imf_getnotification entry point
The Agent framework invokes this entry point after agent is started and the imf_init
entry point returns success. Agent framework expects this as a blocking entry point
and remains blocked until an event is received. After processing the event, agent
framework again blocks on this entry point. When agent framework receives a
notification for some resource then it confirms the resource state changes of the
scheduled monitor entry point.

This is a type-specific entry point like shutdown and imf_init entry points.

About the migrate entry point
The migrate entry point migrates a resource. For example, the migrate entry point
for an LDom agent migrates the LDom resource from a source system to a target
system. When the migration is complete, the monitor entry point is automatically
called by the framework to verify whether the resource has migrated. The migrate
entry point receives a resource name, ArgList attribute and VCSInfo values as input.
VCSInfo is an internally-generated information that contains the TargetHost name.

About the meter entry point
The meter entry point measures the system resource utilization of a VCS resource
based on the meters configured in the Meters attribute. For example, for a resource
of a LDom type, the meter entry point measures the virtual CPU and memory
requirement of that LDom configured under the resource.

The meter entry point can be called periodically as per the values configured in the
MeterInterval key of the MeterControl attribute

See “MeterControl” on page 191.

See “Meters” on page 191.

Return values for entry points
The following table summarizes the return values for each entry point.

35Agent entry point overview
Return values for entry points

Table 2-2 Return values for entry points

Return ValuesEntry Point

C++ Based Returns ResStateValues:

■ VCSAgResOnline
■ VCSAgResOffline
■ VCSAgResUnknown
■ VCSAgResIntentionalOffline

Script-Based Exit values:

■ 99 - Unknown
■ 100 - Offline
■ 101-110 - Online
■ 200 - Intentional Offline
■ Other values - Unknown.

Monitor

0 if successful; non-zero value if not successfulInfo

Integer specifying number of seconds to wait before monitor can check
the state of the resource; typically 0, that is, check resource state
immediately.

Online

Integer specifying number of seconds to wait before monitor can check
the state of the resource; typically 0, that is, check resource state
immediately.

Offline

0 if successful; non-zero value if not successful

If clean fails, the resource remains in a transition state awaiting the next
periodic monitor. After the periodic monitor, clean is attempted again.
The sequence of clean attempt followed by monitoring continues until
clean succeeds or CleanRetryLimit is not reached if it is set to non-zero
value.

For detailed descriptions of internal transition states, See “State
transitions” on page 201.

Clean

0 if successful; non-zero value if not successfulAction

NoneAttr_changed

NoneOpen

NoneClose

NoneShutdown

0 if successful; 1 if unsuccessfulimf_init

36Agent entry point overview
Return values for entry points

Table 2-2 Return values for entry points (continued)

Return ValuesEntry Point

0 if successful; 1 if unsuccessfulimf_register

0 if successful; 1 if failure; 3 if interrupted (failure case); 4 if critical
failure

imf_getnotification

■ An integer in the range of 0 to 100. The typical return value is 0. If
the return value is not zero, the agent framework waits for the
number of seconds indicated by the (return value * 10) to call the
monitor entry point for the resource. For example, for a return value
of 1, agent framework schedules monitor after 1*10=10 seconds.
Similarly, for a return value of 5 monitor is scheduled after 50
seconds.

■ 255 indicating that migration verification has failed and there is no
need to schedule a monitor to verify whether resource has migrated.
The subsequent monitor is a scheduled based on theMonitorInterval
value.

All other values in the range of 101 to 254 are reserved for future use.
Agent framework ignores any value returned between this range and
returns to previous state to continue with rest of the operations. Refer
to MigrateWaitLimit and MigrateTimeout, before implementing this entry
point.

See “MigrateTimeout” on page 194.

See “MigrateWaitLimit” on page 194.

See “SupportedOperations” on page 200.

migrate

■ 0 - Indicates that meter entry point has completed successfully.
■ 255 - Indicates that meter entry point has failed.

METER FAILED flags will be set if meter entry point fail or timeout.
■ 254 - If the meter entry point fails with this return value, then it is

treated as critical fault and metering is disabled for the resource
until the agent restarts

All other values in the range of 1 to 253 are reserved for future use.
The Agent framework considers those values as failure with unsupported
value and sets the METER FAILED flag. These failure with unsupported
value will not be counted against the MeterRetryLimit, so meter entry
point should not use these values.

See “MeterRetryLimit” on page 192.

meter

37Agent entry point overview
Return values for entry points

Considerations for using C++ or script entry
points

You may implement an entry point as a C++ function or a script.

■ The advantage to using C++ is that entry points are compiled and linked with
the agent framework library. They run as part of the agent process, so no system
overhead for creating a new process is required when they are called. Also,
since the entry point invocation is just a function call, the execution of the entry
point is relatively faster. However, if the functionality of an entry point needs to
be changed, the agent would need to be recompiled to make the changes take
effect.

■ The advantage to using scripts is that you can modify the entry points
dynamically. However, to run the script, a new process is created for each entry
point invocation, so the execution of an entry point is relatively slower and uses
more system resource compared to the C++ implementation.

Note that you may use C++ or scripts in any combination to implement multiple
entry points for a single agent. This allows you to implement each entry point in the
most advantageous manner. For example, you may use scripts to implement most
entry points while using C++ to implement the monitor entry point, which is called
often. If the monitor entry point were written in script, the agent must create a new
process to run the monitor entry point each time it is called.

See “About creating entry points in C++” on page 48.

See “About creating entry points in scripts” on page 89.

About the VCSAgStartup routine
When an agent starts, it uses the routine named VCSAgStartup to initialize the
agent's data structures.

If you implement entry points using scripts
If you implement all of the agent's entry points as scripts:

On UNIX, the user can use one of the different agent binaries which are provided
with VCS.

See “Script based agent binaries” on page 137.

The built-in implementation of VCSAgStartup() in these binaries initializes the agent's
data structures such that it causes the agent to look for and execute the scripts for
the entry points.

See “About creating entry points in scripts” on page 89.

38Agent entry point overview
Considerations for using C++ or script entry points

If you implement all or some of the entry points in C++
If you develop an agent with at least one entry point implemented in C++, you must
implement the function VCSAgStartup() and use the required C++ primitives to
register the C++ entry point with the agent framework.

Example: VCSAgStartup with C++ and script entry points
When using C++ to implement an entry point, use the
VCSAgValidateAndSetEntryPoint API and specify the entry point and the function
name. In the following example, the function my_shutdown is defined as the
Shutdown entry point.

#include "VCSAgApi.h"

void my_shutdown() {

...

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(v51);

VCSAgValidateAndSetEntryPoint(VCSAgEPShutdown, my_shutdown);

}

Note that the monitor entry point, which is mandatory, is not specified. This indicates
that it is implemented using scripts. For an entry point whose field is not set, the
agent automatically looks for the correct script to execute as per following path:

UNIX: $VCS_HOME/bin/<resource_type>/<entry_point>

The path where agent searches the entry piont can be different, given that the
AgentDirectory attribute is set. You can refer to the Cluster Server Administrator's
Guide for information on AgentDirectory attribute.

See “AgentDirectory” on page 180.

About the agent information file
The graphical user interface (GUI), Cluster Manager, can display information about
the attributes of a given resource type. For each custom agent, developers can
create an XML file that contains the attribute information for use by the GUI. The

39Agent entry point overview
About the agent information file

XML file also contains information to be used by the GUI to allow or disallow certain
operations on resources managed by the agent.

Example agent information file (UNIX)
The agent's information file is an XML file, named agent_name.xml, located in the
agent directory. The file contains information about the agent, such as its name
and version, and the description of the arguments for the resource type attributes.
For example, the following file contains information for the FileOnOff agent:

<?xml version="1.0" encoding="us-ascii"?>

<agent name="FileOnOff" version="version">

<agent_description>Creates, removes,

and monitors files.</agent_description>

<!--Platform the agent runs on-->

<platform>Cross-Platform</platform>

<!--Type of agent : script-Binary-Mixed-->

<agenttype>Binary</agenttype>

<!--The minimum VCS version needed for this agent-->

<minvcsversion>5.0</minvcsversion>

<!--The agent vendor name-->

<vendor>VendorName</vendor>

<!--Is Info Entry Point Implemented-->

<info_implemented>No</info_implemented>

<!--Attributes list for this agent-->

<attributes>

<PathName type="str" dimension="Scalar" editable="True"

important="True" mustconfigure="True" unique="True"

persistent="True" range="" default="" displayname="File Name">

<attr_description>Specifies the complete pathname,

starting with the slash (/) preceding the file name.

</attr_description>

</PathName>

</attributes>

<!--List of files installed by this agent-->

<agentfiles>

<file name="$VCS_HOME/bin/FileOnOff/FileOnOffAgent" />

</agentfiles>

</agent>

40Agent entry point overview
About the agent information file

Agent information
The information describing the agent is contained in the first section of the XML
file. The following table describes this information, which is also contained in the
previous file example:

Table 2-3 Agent information in the agent information XML file

ExampleAgent Information

name="FileOnOff"Agent name

version="x.y"Version

<agent_description>Creates,
removes, and monitors
files.</agent_description>

Agent description

<platform>Cross-Platform</platform>AIX, HP-UX, Linux, Solaris, or
Cross-Platform.

Platform, for example:

■ AIX
■ Solaris
■ Cross-platform

<vendor>VendorName</vendor>Agent vendor

<info_implemented>No</info_implemented>info entry point implemented or not; Yes, or
No; if not indicated, info entry point is
assumed not implemented

<agenttype>Binary</agenttype>Agent type, for example, Binary, Script or
Mixed

<minvcsversion>5.0</minvcsversion>Compatibility with Cluster Server; the
minimum version required to support the
agent

Attribute argument details
The agent's attribute information is described by several arguments. The following
table describes them. Refer also to the previous XML file example for the FileOnOff
agent and see how the PathName attribute information is included in the file.

41Agent entry point overview
About the agent information file

Table 2-4 Description of attribute argument details in XML file

DescriptionArgument

Possible values for attribute type, such as "str" for strings.

See “Attribute data types” on page 17.

type

Values for the attribute dimension, such as "Scalar;"

See “About attributes” on page 16.

dimension

Possible Values = "True" or "False"

Indicates if the attribute is editable or not. In most cases, the resource
attributes are editable.

editable

Possible Values = "True" or "False"

Indicates whether or not the attribute is important enough to display. In
most cases, the value is True.

important

Possible Values = "True" or "False"

Indicates whether the attribute must be configured to bring the resource
online. The GUI displays such attributes with a special indication.

If no value is specified for an attribute where the mustconfigure
argument is true, the resource state becomes "UNKNOWN" in the first
monitor cycle. Example of such attributes are Address for the IP agent,
Device for the NIC agent, and FsckOpt for the Mount agent).

mustconfigure

Possible Values = "True" or "False"

Indicates if the attribute value must be unique in the configuration; that
is, whether or not two resources of same resource type may have the
same value for this attribute. Example of such an attribute is Address
for the IP agent. Not used in the GUI.

unique

Possible Values = "True". This argument should always be set to "True";
it is reserved for future use.

persistent

Defines the acceptable range of the attribute value. GUI or any other
client can use this value for attribute value validation.

Value Format: The range is specified in the form {a,b} or [a,b]. Square
brackets indicate that the adjacent value is included in the range. The
curly brackets indicate that the adjacent value is not included in the
range. For example, {a,b] indicates that the range is from a to b, contains
b, and excludes a. In cases where the range is greater than "a" and
does not have an upper limit, it can be represented as {a,] and, similarly,
as {,b] when there is no minimum value.

range

42Agent entry point overview
About the agent information file

Table 2-4 Description of attribute argument details in XML file (continued)

DescriptionArgument

It indicates the default value of attributedefault

It is used by GUI or clients to show the attribute in user friendly manner.
For example, for FsckOpt its value could be "fsck option".

displayname

Implementing the agent XML information file
When the agent XML information file is created, you can implement it as follows:

To implement the agent XML information file in the GUI

1 Make sure the XML file, agent.xml, is in the $VCS_HOME/bin/resource_type

directory or in the directory mentioned in the AgentDirectory attribute.

2 Make sure that the command server is running on each node in the cluster.

3 Restart the GUI to have the agent's information shown in the GUI.

About the ArgList and ArgListValues attributes
The ArgList attribute specifies which attributes need to be passed to agent entry
points. The agent framework populates the ArgListValues attribute with the list of
attributes and their associated values.

In C++ agents, the value of the ArgListValues attribute is passed through a
parameter of type void **. For example, the signature of the online entry point is:

unsigned int

res_online(const char *res_name, void **attr_val);

In script agents, the value of the ArgListValues attribute is passed as command-line
arguments to the entry point script.

The number of values in the ArgListValues should not exceed more than 425. This
requirement becomes a consideration if an attribute in the ArgList is a keylist, a
vector, or an association. Such type of non-scalar attributes can typically take any
number of values, and when they appear in the ArgList, the agent has to compute
ArgListValues from the value of such attributes. If the non-scalar attribute contains
many values, it will increase the size of ArgListValues. Hence when developing an
agent, this consideration should be kept in mind when adding a non-scalar attribute
in the ArgList. Users of the agent need to be notified that the attribute should not
be configured to be so large that it pushes that number of values in the ArgListValues
attribute to be more than 425.

43Agent entry point overview
About the ArgList and ArgListValues attributes

ArgListValues attribute for agents registered as V50 and later
For agents registered as V50 or later, the ArgListValues attribute specifies the
attributes and their values in tuple format.

■ For scalar attributes, there are three components that define the ArgListValues
attribute.

■ The name of the attribute

■ The number of elements in the value, which for scalar attributes is always 1

■ The value itself

■ For non-scalar attributes (vector, keylist, and association), for each attribute
there are N+2 components in the ArgListValues attribute, where N equals the
number of elements in the attribute's value.

■ The name of the attribute

■ The number of elements in the attribute's value

■ The remaining N elements correspond to the attribute's value. Note that N
could be zero.

Overview of the name-value tuple format
For agents registered with agent version V40 and earlier, it's required that the
arguments passed to the entry point to be in the order indicated by the ArgList
attribute as it was defined in the resource type. The order of parsing the arguments
was determined by their position in the resource type definition.

With the agent framework for V50 and later, agents can use entry points that can
be passed attributes and their values in a format of name-value tuples. Such a
format means that attributes and their values are parsed by the name of the attribute
and not by their position in the ArgList Attribute.

The general tuple format for attributes in the ArgList is:

<name> <number_of_elements_in_value> <value>

Scalar attribute format
For scalar attributes, whether string, integer, or Boolean, the formatting is:

<attribute_name> 1 <value>

Example is:

DiskGroupName 1 mydg

44Agent entry point overview
About the ArgList and ArgListValues attributes

Vector attribute format
For vector attributes, whether string or integer, the formatting is:

<attribute_name> <number_of_values_in_vector> <values_in_vector>

Examples are:

MyVector 3 aa cc dd

MyEmptyVector 0

Keylist attribute format
For string keylist attributes, the formatting is:

<attribute_name> <number_of_keys_in_keylist> <keys>

Examples are:

DiskAttr 4 hdisk3 hdisk4 hdisk5 hdisk6

DiskAttr 0

Association attribute format
For association attributes, whether string or integer, the formatting is:

<attribute_name> <number_of_keys_and_values> <key_value_pair>

Examples are:

MyAssoc 4 key1 val1 key2 val2

MyAssoc 0

ArgListValues attribute for different agents versions
For agents registered as V40 and earlier, the ArgListValues attribute is an ordered
list of attribute values. The attribute values are listed in the same order as in the
ArgList attribute.

For example, if Type "Foo" is defined in the file types.cf as:

Type Foo (

str Name

int IntAttr

str StringAttr

str VectorAttr[]

str AssocAttr{}

static str ArgList[] = { IntAttr, StringAttr,

45Agent entry point overview
About the ArgList and ArgListValues attributes

VectorAttr, AssocAttr }

)

And if a resource "Bar" is defined in the file main.cf as:

Foo Bar (

IntAttr = 100

StringAttr = "Oracle"

VectorAttr = { "vol1", "vol2", "vol3" }

AssocAttr = { "disk1" = "1024", "disk2" = "512" }

)

Then, for V50 and later, the parameter attr_val is:

attr_val[0] = "IntAttr"

attr_val[1] = "1" // Number of components in

// IntAttr attr value

attr_val[2] = "100" // Value of IntAttr

attr_val[3] = "StringAttr"

attr_val[4] = "1" // Number of components in

// StringAttr attr value

attr_val[5] = "Oracle" // Value of StringAttr

attr_val[6] = "VectorAttr"

attr_val[7] = "3" // Number of components in

// VectorAttr attr value

attr_val[8] = "vol1"

attr_val[9] = "vol2"

attr_val[10] = "vol3"

attr_val[11] = "AssocAttr"

attr_val[12] = "4" // Number of components in

// AssocAttr attr value

attr_val[13] = "disk1"

attr_val[14] = "1024"

attr_val[15] = "disk2"

attr_val[16] = "512"

attr_val[17] = NULL // Last element

Or, for V40 and earlier, the parameter attr_val is:

attr_val[0] ===> "100" // Value of IntAttr, the first

// ArgList attribute.

attr_val[1] ===> "Oracle" // Value of StringAttr.

attr_val[2] ===> "3" // Number of components in

// VectorAttr.

46Agent entry point overview
About the ArgList and ArgListValues attributes

attr_val[3] ===> "vol1"

attr_val[4] ===> "vol2"

attr_val[5] ===> "vol3"

attr_val[6] ===> "4" // Number of components in

// AssocAttr.

attr_val[7] ===> "disk1"

attr_val[8] ===> "1024"

attr_val[9] ===> "disk2"

attr_val[10]===> "512"

attr_val[11]===> NULL // Last element.

About the entry point timeouts
Use the AEPTimeout attribute to append the timeout value for a particular entry
point.

This feature does not apply to pre-V50 agents.

If you set AEPTimeout to 1, the agent framework passes the timeout value for an
entry point as an argument for the entry point in the name-value tuple format.

The name of the attribute that gets passed is called AEPTimeout.

This makes the task of retrieving information about entry point timeout values easy
for agent developers. Instead of looking for different strings like MonitorTimeout
and CleanTimeout, agent developers just need to look for the string AEPTimeout.

For example, if an agent uses an attribute called PathName set to /tmp/foo, the
parameters passed to the monitor entry point are:

<resource-name> PathName 1 /tmp/fooIf AEPTimeout is set to 0:

<resource-name> PathName 1 /tmp/foo AEPTimeout 1 <value
of MonitorTimeout attribute>

If AEPTimeout set to 1:

Applying the same example for the clean entry point, the parameters are:

<resource-name> <clean reason> PathName 1 /tmp/fooIf AEPTimeout is set to 0:

<resource-name> <clean reason> PathName 1 /tmp/foo
AEPTimeout 1 <value of CleanTimeout attribute>

If AEPTimeout is set to 1:

If the timeout attribute is overridden at the resource level, this mechanism takes
care of passing the overridden value to the entry points for that resource.

See “AEPTimeout” on page 179.

47Agent entry point overview
About the ArgList and ArgListValues attributes

Creating entry points in
C++

This chapter includes the following topics:

■ About creating entry points in C++

■ Data Structures

■ Syntax for C++ entry points

■ Agent framework primitives

■ Agent Framework primitives for container support

About creating entry points in C++
Because the agent framework is multithreaded, all C++ code written by the agent
developer must be MT-safe. For best results, avoid using global variables. If you
do use them, access must be serialized (for example, by using mutex locks).

The following guidelines also apply:

■ Do not use C library functions that are unsafe in multithreaded applications.
Instead, use the equivalent reentrant versions, such as readdir_r() instead of
readdir(). Access manual pages for either of these commands by entering:
man command.

■ When acquiring resources (dynamically allocating memory or opening a file, for
example), use thread-cancellation handlers to ensure that resources are freed
properly. See the manual pages for pthread_cleanup_push and
pthread_cleanup_pop for details. Access manual pages for either of these
commands by entering: man command.

3Chapter

If you develop an agent with at least one entry point implemented in C++, you must
implement the function VCSAgStartup() and use the required C++ primitives to
register the C++ entry point with the agent framework.

A sample file containing templates for creating an agent using C++ entry points is
located in:

UNIX: $VCS_HOME/src/agent/Sample

You can use C++ to develop agents for monitoring applications that run in containers,
including non-global zones. VCS provides APIs for container support.

See “Agent Framework primitives for container support” on page 83.

Entry point examples in this chapter
In this chapter, the example entry points are shown for an agent named Foo. The
example agent has the following resource type definition:

In the types.cf format:

type Foo (

str PathName

static str ArgList[]= {PathName}

)

For this resource type, the entry points defined are as follows:

Creates a file as specified by the Pathname attributeonline

Checks for the existence of a file specified by the PathName attributemonitor

Deletes the file specified by the PathName attributeoffline

Forcibly deletes the file specified by the PathName attributeclean

Runs a pre-specified actionaction

Populates the ResourceInfo attribute with the values of the attributes
specified by the PathName attribute

info

Data Structures
This section describes the various enumerations in relation to the entry points.

■ VCSAgResState:
The VCSAgResState enumeration describes what state the monitor entry point
can return.

49Creating entry points in C++
Data Structures

enum VCSAgResState {

VCSAgResOffline, // Resource is OFFLINE

VCSAgResOnline, // Resource is ONLINE

VCSAgResUnknown,// Resource state is UNKNOWN

VCSAgResIntentionalOffline// Resource state is OFFLINE, but is

intentionally done. Only in V51 and later agents)

};

■ VCSAgWhyClean
This VCSAgWhyClean enumeration describes the reason why the clean entry
point is called.

enum VCSAgWhyClean {

VCSAgCleanOfflinehung,// offline entry point did not complete

within the expected time.

VCSAgCleanOfflineIneffective,// offline entry point was

ineffective.

VCSAgCleanOnlineHung,// online entry point did not complete

within the expected time.

VCSAgCleanOnlineIneffective,// online entry point was

ineffective.

VCSAgCleanUnexpectedOffline,// The resource became offline

unexpectedly.

VCSAgCleanMonitorHung// monitor entry point did not complete

within the expected time.

};

■ VCSAgResInfoOp
The VCSAgResInfoOp enumeration indicates whether to initialize or update the
data in the ResourceInfo attribute.

enum VCSAgResInfoOp {

VCSAgResInfoAdd = 1,// Add non-default keys to the

ResourceInfo attribute.

VCSAgResInfoUpdate// Update only the non-default

key-value data pairs in the ResourceInfo attribute.

};

Syntax for C++ entry points
This section describes the syntax for C++ entry points.

50Creating entry points in C++
Syntax for C++ entry points

Syntax for C++ VCSAgStartup
void VCSAgStartup();

Note that the name of the C++ function must be VCSAgStartup().

For example:

// This example shows the VCSAgStartup() function

// implementation,assuming that the monitor, online, offline

// and clean entry points are implemented in C++ and the

// respective function names are res_monitor, res_online,

// res_offline, and res_clean.

#include "VCSAgApi.h"

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor, res_monitor);

VCSAgValidateAndSetEntryPoint(VCSAgEPOnline, res_online);

VCSAgValidateAndSetEntryPoint(VCSAgEPOffline, res_offline);

VCSAgValidateAndSetEntryPoint(VCSAgEPClean, res_clean);

}

VCSAgResState res_monitor(const char *res_name, void

**attr_val, int

*conf_level) {

...

}

unsigned int res_online(const char *res_name,

void **attr_val) {

...

}

unsigned int res_offline(const char *res_name,

void **attr_val) {

...

}

unsigned int res_clean(const char *res_name,

51Creating entry points in C++
Syntax for C++ entry points

VCSAgWhyClean reason, void **attr_val) {

...

}

Syntax for C++ monitor
VCSAgResState

res_monitor(const char *res_name, void **attr_val,int

*conf_level);

You may select any name for the function.

The parameter conf_level is an output parameter. The return value, which indicates
the resource status, must be a defined VCSAgResState value.

See “Return values for entry points ” on page 35.

For example:

#include "VCSAgApi.h"

VCSAgResState

res_monitor(const char *res_name, void **attr_val, int

*conf_level)

{

// Code to determine the state of a resource.

VCSAgResState res_state = ...

if (res_state == VCSAgResOnline) {

// Determine the confidence level (0 to 100).

*conf_level = ...

}

else {

*conf_level = 0;

}

return res_state;

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

52Creating entry points in C++
Syntax for C++ entry points

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor, res_monitor);

}

Syntax for C++ info
unsigned int res_info (const char *res_name,

VCSAgResInfoOp resinfo_op, void **attr_val, char

info_output, char *opt_update_args, char

***opt_add_args);

You may select any name for the function.

resinfo_op
The resinfo_op parameter indicates whether to initialize or update the data in the
ResourceInfo attribute. The values of this field and their significance are described
in the following table:

SignificanceValue of
resinfo_op

Add non-default keys to the three default keys State, Msg, and TS and
initialize the name-value data pairs in the ResourceInfo attribute.

This invocation indicates to the entry point that the current value of the
ResourceInfo attribute contains only the basic three keys State, Msg,
and TS.

1

Update only the non-default key-value data pairs in the ResourceInfo
attribute, not the default keys State, Msg, and TS.

This invocation indicates that ResourceInfo attribute contains non-default
keys in addition to the default keys and only the non-default keys are
to be updated. Attempt to add keys with this invocation will result in
errors.

2

info_output
The parameter info_output is a character string that stores the output of the info
entry point. The output value could be any summarized data for the resource. The
Msg key in the ResourceInfo attribute is updated with info_output. If the info

entry point exits with success (0), the output stored in info_output is dumped into
the Msg key of the ResourceInfo attribute.

The info entry point is responsible for allocating memory for info_output. The
agent framework handles the deletion of any memory allocated to this argument.

53Creating entry points in C++
Syntax for C++ entry points

Since memory is allocated in the entry point and deleted in the agent framework,
the entry point needs to pass the address of the allocated memory to the agent
framework.

opt_update_args
The opt_update_args parameter is an array of character strings that represents
the various name-value pairs in the ResourceInfo attribute. This argument is
allocated memory in the info entry point, but the memory allocated for it will be
freed in the agent framework. The ResourceInfo attribute is updated with these
name-value pairs. The names in this array must already be present in the
ResourceInfo attribute.

For example:

ResourceInfo = { State = Valid, Msg = "Info entry point output",

TS = "Wed May 28 10:34:11 2003",

FileOwner = root, FileGroup = root, FileSize = 100 }

A valid opt_update_args array for this ResourceInfo attribute would be:

opt_update_args = { "FileSize", "102" }

This array of name-value pairs updates the dynamic data stored in the ResourceInfo
attribute.

An invalid opt_update_args array would be one that specifies a key not already
present in the ResourceInfo attribute or one that specifies any of the keys: State,
Msg, or TS. These three keys can only be updated by the agent framework and not
by the entry point.

opt_add_args
opt_add_args is an array of character strings that represent the various name-value
pairs to be added to the ResourceInfo attribute. The names in this array represent
keys that are not already present in the ResourceInfo association list and have to
be added to the attribute. This argument is allocated memory in the info entry
point, but this memory is freed in the agent framework. The ResourceInfo attribute
is populated with these name-value pairs.

For example:

ResourceInfo = { State = Valid, Msg = "Info entry point output",

TS = "Wed May 28 10:34:11 2003" }

A valid opt_add_args array for this would be:

54Creating entry points in C++
Syntax for C++ entry points

opt_add_args = { "FileOwner", "root", "FileGroup",

"root", "FileSize", "100" }

This array of name-value pairs adds to and initializes the static and dynamic data
stored in the ResourceInfo attribute.

An invalid opt_add_args array would be one that specifies a key that is already
present in the ResourceInfo attribute, or one that specifies any of the keys State,
Msg, or TS; these are keys that can be updated only by the agent framework, not
by the entry point.

Example: info entry point implementation in C++
Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function (res_info).

Allocate the info output buffer in the entry point as shown in the example below.
The buffer can be any size (the example uses 80), but the agent framework truncates
it to 2048 bytes. For the optional name-value pairs, name and value each have a
limit of 4096 bytes (the example uses 15).

Example V51 entry point:

extern "C" unsigned int res_info(const char *res_name,

VCSAgResInfoOp resinfo_op, void **attr_val, char **info_output,

char ***opt_update_args, char ***opt_add_args)

{

struct stat stat_buf;

int I;

char **args = NULL;

char *out = new char [80];

*info_output = out;

VCSAgSnprintf(out, 80,"Output of info entry point - updates

the \"Msg\" key in ResourceInfo attribute");

// Use the stat system call on the file to get its

// information The attr_val array will look like "PathName"

// "1" "<pathname value>" ... Assuming that PathName is the

// first attribute in the attr_val array, the value

// of this attribute will be in index 2 of this attr_val

// array

if (attr_val[2]) {

55Creating entry points in C++
Syntax for C++ entry points

if ((strlen((CHAR *)(attr_val[2])) != 0) &&

(stat((CHAR *)(attr_val[2]), &stat_buf) == 0)) {

if (resinfo_op == VCSAgResInfoAdd) {

// Add and initialize all the static and

// dynamic keys in the ResourceInfo attribute

args = new char * [7];

for (I = 0; I < 6; I++) {

args[i] = new char [15];

}

// All the static information - file owner

// and group

VCSAgSnprintf(args[0], 15, "%s", "Owner");

VCSAgSnprintf(args[1], 15, "%d",

stat_buf.st_uid);

VCSAgSnprintf(args[2], 15, "%s", "Group");

VCSAgSnprintf(args[3], 15, "%d",

stat_buf.st_gid);

// Initialize the dynamic information for the file

VCSAgSnprintf(args[4], 15, "%s", "FileSize");

VCSAgSnprintf(args[5], 15, "%d",

stat_buf.st_size);

args[6] = NULL;

*opt_add_args = args;

}

else {

// Simply update the dynamic keys in the

// ResourceInfo attribute. In this case, the

// dynamic info on the file

args = new char * [3];

for (I = 0; I < 2; I++) {

args[i] = new char [15];

}

VCSAgSnprintf(args[0], 15, "%s", "FileSize");

VCSAgSnprintf(args[1], 15, "%d",

stat_buf.st_size);

args[2] = NULL;

*opt_update_args = args;

}

56Creating entry points in C++
Syntax for C++ entry points

}

else {

// Set the output to indicate the error

VCSAgSnprintf(out, 80, "Stat on the file %s failed",

attr_val[2]);

return 1;

}

}

else {

// Set the output to indicate the error

VCSAgSnprintf(out, 80, "Error in arglist values passed to

the info entry point");

return 1;

}

// Successful completion of the info entry point

return 0;

} // End of entry point definition

Syntax for C++ online
unsigned int

res_online(const char *res_name, void **attr_val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_online is defined as the Online entry
point.

For example:

#include "VCSAgApi.h"

unsigned int

res_online(const char *res_name, void **attr_val) {

// Implement the code to online a resource here.

...

// If monitor can check the state of the resource

// immediately, return 0. Otherwise, return the

// appropriate number of seconds to wait before

// calling monitor.

57Creating entry points in C++
Syntax for C++ entry points

return 0;

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPOnline, res_online);

}

Syntax for C++ offline
unsigned int

res_offline(const char *res_name, void **attr_val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_offline is defined as the Offline entry
point.

For example:

#include "VCSAgApi.h"

unsigned int

res_offline(const char *res_name, void **attr_val) {

// Implement the code to offline a resource here.

...

// If monitor can check the state of the resource

// immediately, return 0. Otherwise, return the

// appropriate number of seconds to wait before

// calling monitor.

return 0;

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

58Creating entry points in C++
Syntax for C++ entry points

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPOffline, res_offline);}

Syntax for C++ clean
unsigned int

res_clean(const char *res_name, VCSAgWhyClean reason, void

**attr_val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_clean is defined as the Clean entry point.

For example:

#include "VCSAgApi.h"

unsigned int

res_clean(const char *res_name, VCSAgWhyClean reason,

void **attr_val) {

// Code to forcibly offline a resource.

...

// If the procedure is successful, return 0; else

// return 1.

return 0;

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPClean, res_clean);}

59Creating entry points in C++
Syntax for C++ entry points

Syntax for C++ action
unsigned int

action(const char *res_name, const char *action_token,

void **attr_val, char **args, char *action_output);

The parameters passed to the C++ action entry point are described as follows using
the example that the user fires

$> hares -action res1 myaction...

from the command-line or the equivalent from the GUI.

■ res_name: This is an input parameter. The name of the resource in whose
context the action entry point is being invoked. In the above example, res_name
would be set to "res1".

■ action_token: This is an input parameter. This gives the name of the action that
the user wants to run. In the above example, action_token would be set to
"myaction".
If the user ran

$> hares -action res1 youraction ...

then the same function above will get invoked but action_token will be set to
"youraction". This parameter enables different actions to be implemented for
the same agent which will all get handled in the same function above.

■ attr_val: This is an input parameter. This contains the ArgListValues of the
resource for which the action is invoked.

■ args: This is an input parameter. This contains the list of strings that are passed
to the "-actionargs" switch when invoking the "hares -action" command.

$> hares -action res1 myaction -actionargs foo bar fubar -sys

...

would give "foo", "bar" and "fubar" in the args parameter.

■ action_output: This is an output parameter. Any output that the agent developer
wants the user to see as a result of invoking the "hares -action" command needs
to be filled into the buffer whose pointer is given by this parameter. The maximum
number of characters that will be displayed to the user is 2048 (2K).

Use the VCSAgValidateAndSetEntryPoint() API to register the name of the function
that implements the action entry-point for the agent.

For example:

60Creating entry points in C++
Syntax for C++ entry points

extern "C"

unsigned int res_action (const char *res_name, const char

*token,void **attr_val, char **args, char

*action_output)

{

const int output_buffer_size = 2048;

//

// checks on the attr_val entry point arg list

// perform an action based on the action token passed in

if (!strcmp(token, "token1")) {

//

// Perform action corresponding to token1

//

} else if (!strcmp(token, "token2") {

//

// Perform action corresponding to token2

//

}

:

:

:

} else {

//

// a token for which no action is implemented yet

//

VCSAgSnprintf(action_output, output_buffer_size, "No implementation

provided for token(%s)", token);

}

//

// Any other checks to be done

//

//

// return value should indicate whether the ep succeeded or

// not:

// return 0 on success

// any other value on failure

//

if (success) {

return 0;

}

else {

return 1;

61Creating entry points in C++
Syntax for C++ entry points

}

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPAction, res_action);

}

Syntax for C++ attr_changed
void

res_attr_changed(const char *res_name, const char

*changed_res_name,

const char *changed_attr_name,

void **new_val);

The parameter new_val contains the attribute's new value. The encoding of new_val
is similar to the encoding described under About the ArgList and ArgListValues
attributes.

See “About the ArgList and ArgListValues attributes” on page 43.

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_attr_changed is defined as the
attr_changed entry point.

Note: This entry point is called only if you register for change notification using the
primitive VCSAgRegister or the agent parameter RegList.

See “RegList” on page 197.

For example:

#include "VCSAgApi.h"

void

res_attr_changed(const char *res_name,

const char *changed_res_name,

const char *changed_attr_name,

62Creating entry points in C++
Syntax for C++ entry points

void **new_val) {

// When the value of attribute Foo changes, take some action.

if ((strcmp(res_name, changed_res_name) == 0) &&

(strcmp(changed_attr_name, "Foo") == 0)) {

// Extract the new value of Foo. Here, it is assumed

// to be a string.

const char *foo_val = (char *)new_val[0];

// Implement the action.

...

}

// Resource Ora1 managed by this agent needs to

// take some action when the Size attribute of

// the resource Disk1 is changed.

if ((strcmp(res_name, "Ora1") == 0) &&

(strcmp(changed_attr_name, "Size") == 0) &&

(strcmp(changed_res_name, "Disk1") == 0)) {

// Extract the new value of Size. Here, it is

// assumed to be an integer.

int sizeval = atoi((char *)new_val[0]);

// Implement the action.

...

}

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPAttrChanged,

res_attr_changed);}

Syntax for C++ open
void res_open(const char *res_name, void **attr_val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

63Creating entry points in C++
Syntax for C++ entry points

In the following example, the function res_open is defined as the Open entry point.

For example:

#include "VCSAgApi.h"

void res_open(const char *res_name, void **attr_val) {

// Perform resource initialization, if any.

// Register for attribute change notification, if needed.

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPOpen, res_open);

}

Syntax for C++ close
void res_close(const char *res_name, void **attr_val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_close is defined as the Close entry point.

For example:

#include "VCSAgApi.h"

void res_close(const char *res_name,void **attr_val) {

// Resource-specific de-initialization, if needed.

// Unregister for attribute change notification, if any.

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

64Creating entry points in C++
Syntax for C++ entry points

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPClose, res_close);

}

Syntax for C++ shutdown
void shutdown();

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function shutdown is defined as the Shutdown entry
point.

For example:

#include "VCSAgApi.h"

void shutdown() {

// Agent-specific de-initialization, if any.

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPShutdown, shutdown);

}

Syntax for C++ migrate
unsigned int res_migrate (const char *res_name, void **attr_val)

You can assign any name to the function.

Set the VCSAgValidateAndSetEntryPoint() parameter as the name of function
of the entry point.

Refer to See “Return values for entry points ” on page 35.

65Creating entry points in C++
Syntax for C++ entry points

In the following example, the function res_migrate is defined as the migrate entry
point.

For example:

#include "VCSAgApi.h"

unsigned int

res_migrate(const char *res_name, void **attr_val) {

// Implement the code to migrate a resource here.

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V60);

VCSAgValidateAndSetEntryPoint(VCSAgEPMigrate, res_migrate);

}

Syntax for C++ meter
unsigned int res_meter (const char *res_name, void **attr_val)

You can assign any name to the function.

Set the VCSAgValidateAndSetEntryPoint() parameter as the name of function
of the entry point.

Refer to See “Return values for entry points ” on page 35.

In the following example, the function res_meter is defined as the meter entry point.

For example:

#include "VCSAgApi.h"

unsigned int

res_meter(const char *res_name, void **attr_val) {

// Implement the code to meter a resource here.

}

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V60);

VCSAgValidateAndSetEntryPoint(VCSAgEPMeter, res_meter);

}

66Creating entry points in C++
Syntax for C++ entry points

Along with attribute that is specified in ArgList, the meter entry point also gets the
value of Meters and MeterUnit attributes.

You can refer to the Cluster Server Administrator's Guide for information on
MeterUnit attribute.

See “Meters” on page 191.

Agent framework primitives
Primitives are C++ methods implemented by the agent framework. The following
sections define the primitives.

See “Agent Framework primitives for container support” on page 83.

VCSAgGetMonitorLevel
int VCSAgGetMonitorLevel(int *level_one, int *level_two);

The agent developer can use this primitive to query if the LevelOne (Basic)
monitoring or the LevelTwo (Detail) monitoring or both need to be scheduled.

■ Output parameters:

■ level_one - This parameter will be updated to 1 or 0. The value of 0 indicates
that the basic monitoring should not be scheduled. And the value of 1
indicates that the basic monitoring should be scheduled.
See “IMF” on page 186.

■ level_two - This parameter will be updated to 0, 1, or 2 . The value of 0
indicates that the detail monitoring should not be scheduled, and the value
of 1 indicates that the detail monitoring should be scheduled. And the value
of 2 indicates that the detail monitoring should be scheduled if basic
monitoring (level_ one) reports the state as online in current running monitor.

■ Return values: It can be set to VCSAgSuccess or VCSAgFailure based on
whether the api passes or fails.
The following example outlines the process of setting the output parameters:
For example, if you set LevelTwoMonitorFrequency to 5 and the resource state
is ONLINE, then every fifth monitor cycle, level_two will have the value as 1. If
the resource state is OFFLINE, then every monitor cycle level_two will have the
value as 2.
See “LevelTwoMonitorFreq” on page 188.
If you set MonitorFreq to 5 and the resource is registered with IMF, then every
fifth monitor cycle level_one parameter will have the value of 1.
See “IMF” on page 186.

67Creating entry points in C++
Agent framework primitives

■ Usage:

int ret = VCSAgFailure;

ret = VCSAgGetMonitorLevel(&level_one, &level_two);

Note: This API can only be used in monitor entry point. It does not reflect correct
monitor levels when you call this API in other entry points.

See “VCSAG_GET_MONITOR_LEVEL” on page 96.

VCSAgGetFwVersion
int VCSAgGetFwVersion();

This primitive will return the latest agent framework version.

See “VCSAG_GET_AGFW_VERSION” on page 97.

VCSAgGetRegVersion
int VCSAgGetRegVersion();

This primitive will return the currently registered agent framework version.

See “VCSAG_GET_REG_VERSION” on page 97.

VCSAgRegisterEPStruct
void VCSAgRegisterEPStruct (VCSAgAgentVersion version, void *

ep_struct);

This primitive requests that the agent framework use the entry point implementations
designated in ep_struct. It must be called only from the VCSAgStartup function.

VCSAgSetCookie2
void *VCSAgSetCookie2(const char *name, void *cookie)

This primitive requests the agent framework to store a cookie given by the void
*cookie parameter. If there is a value already associated with the cookie, the primitive
sets the new value and atomically returns the old value. If there is no value
associated with the cookie then it sets a new value in the cookie and returns NULL.

68Creating entry points in C++
Agent framework primitives

This value, which is transparent to the agent framework, can be obtained by calling
the primitive VCSAgGetCookie(). A cookie is not stored permanently. It is lost when
the agent process exits. This primitive can be called from any entry point. For
example:

#include "VCSAgApi.h"

...

// Assume that the online, offline, and monitor

// operations on resource require a certain key. Also

// assume that obtaining this key is time consuming, but

// that it can be reused until this process is

// terminated.

//

// In this example, the open entry point obtains the key

// and stores it as a cookie. Subsequent online,

// offline, and monitor entry points get the cookie and

// use the key.

//

// Note that the cookie name can be any unique string.

// This example uses the resource name as the cookie

// name.

//

void *get_key() {

...

}

void res_open(const char *res_name, void **attr_val) {

if (VCSAgGetCookie(res_name) == NULL) {

void *key = get_key();

VCSAgSetCookie2(res_name, key);

}

}

VCSAgResState res_monitor(const char *res_name, void

**attr_val, int *conf_level_ptr) {

VCSAgResState state = VCSAgResUnknown;

*conf_level_ptr = 0;

void *key = VCSAgGetCookie(res_name);

if (key == NULL) {

// Take care of the rare cases when

// the open entry point failed to

// obtain the key and set the the cookie.

key = get_key();

VCSAgSetCookie2(res_name, key);

}

69Creating entry points in C++
Agent framework primitives

// Use the key for testing if the resource is

// online, and set the state accordingly.

...

return state;

}

VCSAgRegister
void

VCSAgRegister(const char *notify_res_name,

const char *res_name,

const char *attr_name);

This primitive requests that the agent framework notify the resource
notify_res_name when the value of the attribute attr_name of the resource
res_name is modified. The notification is made by calling the attr_changed entry
point for notify_res_name.

Note that notify_res_name can be the same as res_name.

This primitive can be called from any entry point, but it is useful only when the
attr_changed entry point is implemented. For example:

#include "VCSAgApi.h"

...

void res_open(const char *res_name, void **attr_val) {

// Register to get notified when the

// "CriticalAttr" of this resource is modified.

VCSAgRegister(res_name, res_name, "CriticalAttr");

// Register to get notified when the "CriticalAttr"

// of current resource is modified. It is assumed

// that the name of the current resource is given

// as the first ArgList attribute.

VCSAgRegister((const char *) attr_val[0], (const

char *) attr_val[0], "CriticalAttr");

// Register to get notified when the

// "CriticalAttr" of "CentralRes" is modified.

VCSAgRegister(res_name, "CentralRes",

"CriticalAttr");

// Register to get notified when the

70Creating entry points in C++
Agent framework primitives

// "CriticalAttr" of another resource is modified.

// It is assumed that the name of the other resource

// is given as the first ArgList attribute.

VCSAgRegister(res_name, (const char *)attr_val[0],

"CriticalAttr");

}

VCSAgUnregister
void

VCSAgUnregister(const char *notify_res_name, const char

*res_name,

const char *attr_name);

This primitive requests that the agent framework stop notifying the resource
notify_res_name when the value of the attribute attr_name of the resource
res_name is modified. This primitive can be called from any entry point. For example:

#include "VCSAgApi.h"

...

void res_close(const char *res_name, void **attr_val) {

// Unregister for the "CriticalAttr" of this resource.

VCSAgUnregister(res_name, res_name, "CriticalAttr");

// Unregister for the "CriticalAttr" of another

// resource. It is assumed that the name of the

// other resource is given as the first ArgList

// attribute.

VCSAgUnregister(res_name, (const char *)

attr_val[0], "CriticalAttr");

}

VCSAgGetCookie
void *VCSAgGetCookie(const char *name);

This primitive requests that the agent framework get the cookie set by an earlier
call to VCSAgSetCookie2(). It returns NULL if cookie was not previously set. This
primitive can be called from any entry point. For example:

#include "VCSAgApi.h"

...

71Creating entry points in C++
Agent framework primitives

// Assume that the online, offline, and monitor

// operations on resource require a certain key. Also

// assume that obtaining this key is time consuming, but

// that it can be reused until this process is terminated.

//

// In this example, the open entry point obtains the key

// and stores it as a cookie. Subsequent online,

// offline, and monitor entry points get the cookie and

// use the key.

//

// Note that the cookie name can be any unique string.

// This example uses the resource name as the cookie name.

//

void *get_key() {

...

}

void res_open(const char *res_name, void **attr_val) {

if (VCSAgGetCookie(res_name) == NULL) {

void *key = get_key();

VCSAgSetCookie2(res_name, key);

}

}

VCSAgResState res_monitor(const char *res_name, void

**attr_val, int *conf_level_ptr) {

VCSAgResState state = VCSAgResUnknown;

*conf_level_ptr = 0;

void *key = VCSAgGetCookie(res_name);

if (key == NULL) {

// Take care of the rare cases when the open

// entry point failed to obtain the key and

// set the the cookie.

key = get_key();

VCSAgSetCookie2(res_name, key);

}

// Use the key for testing if the resource is

// online, and set the state accordingly.

...

return state;

}

72Creating entry points in C++
Agent framework primitives

VCSAgStrlcpy
void VCSAgStrlcpy(CHAR *dst, const CHAR *src, int size)

This primitive copies the contents from the input buffer "src" to the output buffer
"dst" up to a maximum of "size" number of characters. Here, "size" refers to the
size of the output buffer "dst." This helps prevent any buffer overflow errors. The
output contained in the buffer "dst" may be truncated if the buffer is not big enough.

VCSAgStrlcat
void VCSAgStrlcat(CHAR *dst, const CHAR *src, int size)

This primitive concatenates the contents of the input buffer "src" to the contents of
the output buffer "dst" up to a maximum such that the total number of characters
in the buffer "dst" do not exceed the value of "size." Here, "size" refers to the size
of the output buffer "dst."

This helps prevent any buffer overflow errors. The output contained in the buffer
"dst" may be truncated if the buffer is not big enough.

VCSAgSnprintf
int VCSAgSnprintf(CHAR *dst, int size, const char *format, ...)

This primitive accepts a variable number of arguments and works like the C library
function "sprintf." The difference is that this primitive takes in, as an argument, the
size of the output buffer "dst." The primitive stores only a maximum of "size" number
of characters in the output buffer "dst." This helps prevent buffer overflow errors.
The output contained in the buffer "dst" may be truncated if the buffer is not big
enough.

VCSAgCloseFile
void VCSAgCloseFile(void *vp)

Thread cleanup handler to close a file. The input (that is, vp) must be a file descriptor.

VCSAgDelString
void VCSAgDelString(void *vp)

Thread cleanup handler to delete a (char *). The input (vp) must be a pointer to
memory allocated using "new char[xx]".

73Creating entry points in C++
Agent framework primitives

VCSAgExec
int VCSAgExec(const char *path, char *const argv[], char *buf, long

buf_size, unsigned long *exit_codep)

Fork a new process, exec a program, wait for it to complete, and return the status.
Also, capture the messages from stdout and stderr to buf. Caller must ensure that
buf is of size >= buf_size.

VCSAgExec is a forced cancellation point. Even if the C++ entry point that calls
VCSAgExec disables cancellation before invoking this API, the thread can get
canceled inside VCSAgExec. Therefore, the entry point must make sure that it
pushes appropriate cancellation cleanup handlers before calling VCSAgExec. The
forced cancellation ensures that a service thread running a timed-out entry point
does not keep running or waiting for the child process created by this API to exit,
but instead honors a cancellation request when it receives one.

Explanation of arguments to the function:

Name of the program to be executed.path

Arguments to the program. argv[0] must be same as path. The last
entry of argv must be NULL. (Same as execv syntax)

argv

Buffer to hold the messages from stdout or stderr. Caller must supply
it. This function will not allocate. When this function returns, buf will be
NULL-terminated.

buf

Size of buf. If the total size of the messages to stdout/stderr is more
than bufsize, only the first (buf_size - 1) characters will be returned.

bufsize

Pointer to a location where the exit code of the executed program will
be stored. This value should interpreted as described by

wait() on Unix

exit_codep

Return value: VCSAgSuccess if the execution was successful.

Example:

//

// ...

//

char **args = new char* [3];

char buf[100];

unsigned int status;

args[0] = "/usr/bin/ls";

74Creating entry points in C++
Agent framework primitives

args[1] = "/tmp";

args[2] = NULL;

int result = VCSAgExec(args[0], args, buf, 100, &status);

if (result == VCSAgSuccess) {

// Unix:

if (WIFEXITED(status)) {

printf("Child process returned %d\n", WEXITSTATUS(status));

}

else {

printf("Child process terminated abnormally(%x)\n", status);

}

}

else {

printf("Error executing %s\n", args[0]);

}

//

// ...

//

VCSAgExecWithTimeout
int VCSAgExecWithTimeout(const char *path, char *const argv[],

unsigned int timeout, char *buf, long buf_size, unsigned long

*exit_codep)

Fork a new process, exec a program, wait for it to complete, return the status. If
the process does not complete within the timeout value, kill it. Also, capture the
messages from stdout or stderr to buf. The caller must ensure that buf is of size >=
buf_size. VCSAgExecWithTimeout is a forced cancellation point. Even if the C++
entry point that calls VCSAgExecWithTimeout disables cancellation before invoking
this API, the thread can get canceled inside VCSAgExecWithTimeout. So the entry
point needs to make sure that it pushes the appropriate cancellation cleanup
handlers before calling VCSAgExecWithTimeout. The forced cancellation ensures
that a service thread running a timed out entry point does not keep running or waiting
for the child process created by this API to exit but instead honors a cancellation
request when it receives one.

Explanation of arguments to the function:

75Creating entry points in C++
Agent framework primitives

Name of the program to be executed.path

Arguments to the program. argv[0] must be same as path. The last
entry of argv must be NULL. (Same as execv syntax).

argv

Number of seconds within which the process should complete its
execution. If zero is specified, this API defaults to VCSAgExec(),
meaning the timeout is to be ignored. If the timeout value specified
exceeds the time left for the entry point itself to timeout, the maximum
possible timeout value is automatically used by this API. For example,
if the timeout value specified in the API is 40 seconds, but the entry
point itself times out after the next 20 seconds, the agent internally sets
the timeout value for this API to 20-3=17 seconds. The 3 seconds are
a grace period between the timeout for the process created using this
API and the entry point process timeout.

timeout

Buffer to hold the messages from stdout/stderr. The caller must supply
it. This function does not allocate. When this function returns, buf is
NULL-terminated.

buf

Size of buf. If the total size of the messages to stdout/stderr is more
than bufsize, only the first (buf_size - 1) characters is returned.

bufsize

Pointer to a location where the exit code of the executed program is
stored. This value should interpreted as described by wait() on Unix

exit_codep

Return value: VCSAgSuccess if the execution is successful.

VCSAgGenSnmpTrap
void VCSAgGenSnmpTrap(int trap_num, const char *msg, VCSAgBool

is_global)

This API is used to send a notification via SNMP and/or SMTP. The
clusterOutOfBandTrap is used to send notification messages from the agent entry
points.

Explanation of arguments to the function:

The trap identifier. This number is appended to the agents trap oid to
generate a unique trap oid for this event.

trap_num

The notification message to be sent.msg

A Boolean value indicating whether or not the event for which the
notification is being generated is local to the system where the agent
is running.

is_global

76Creating entry points in C++
Agent framework primitives

VCSAgSendTrap
void VCSAgSendTrap(const CHAR *msg)

This API is used to send a notification through the notifier process. The input (that
is, msg) is the notification message to be sent.

VCSAgLockFile
int VCSAgLockFile(const char *fname, VCSAgLockType ltype,

VCSAgBlockingType btype, VCSAgErrnoType *errp)

Get a read or write (that is, shared or exclusive) lock on the given file. Both blocking
and non-blocking modes are supported. Returns 0 if the lock could be obtained, or
returns VCSAgErrWouldBlock if non-blocking is requested and the lock is busy.
Otherwise returns -1. Each thread is considered a distinct owner of locks.

Explanation of arguments to the function:

File namefname

Lock type

VCSAgLockType enum describes the type
of lock.

For example:

enum VCSAgLockType {
VCSAgExclusiveLock, //for write operation
VCSAgSharedLock //for read operation
}

ltype

Blocking type

VCSAgBlockingType enum describes the
type of blocking which the user can require.

For example:

enum VCSAgBlockingType{
VCSAgBlocking,
VCSAgNonBlocking
}

btype

Output parameter to return the error value.errp

77Creating entry points in C++
Agent framework primitives

Warning: Do not do any operations on the file (ex, open, or close) within this
process, except through acquiring the read operation (shared lock) or write operation
(exclusive lock) or VCSAgUnlock() interface.

VCSAgInitEntryPointStruct
void VCSAgInitEntryPointStruct(VCSAgAgentVersion agent_version)

This primitive enables agents to initialize the entry point struct depending on the
agent framework version passed to this API. It must be called only from the
VCSAgStartup function.

Examples:

VCSAgInitEntryPointStruct(V50);

VCSAgInitEntryPointStruct(V51);

■ open
■ monitor
■ online
■ offline
■ clean
■ action
■ info
■ attr_changed
■ close
■ shutdown

V40 and V50

■ imf_init
■ imf_register
■ imf_getnotification

V51

■ migrate
■ meter

V60

For information on available registration version numbers, check the
VCSAgApiDefs.h header file availabe in the following location:

/opt/VRTSvcs/include/VCSAgApiDefs.h

VCSAgSetStackSize
void VCSAgSetStackSize(int I)

78Creating entry points in C++
Agent framework primitives

The agent framework sets the default stack size for threads in agents to 1MB. Use
VCSAgStackSize to set the calling thread's stack size to the specified value.

VCSAgUnlockFile
int VCSAgUnlockFile(const char *fname, VCSAgErrnoType *errp)

Release read or write (i.e shared or exclusive) lock on the given file. Returns 0, if
the lock could be released, or else returns -1.

Mt-safe; deferred cancel safe.

Explanation of arguments to the function:

File namefname

Output parameter to return the error value.errp

Warning: Do not do any operations on the file (ex, open, or close) within this
process, except through acquiring the read operation (shared lock) or write operation
(exclusive lock) or VCSAgUnlock() interface.

VCSAgValidateAndSetEntryPoint
void VCSAgValidateAndSetEntryPoint(VCSAgEntryPoint ep, f_ptr)

This primitive enables an agent developer to register any C++ entry point with the
agent framework. And also performs the signature check for the entry point function
at compile time.

VCSAgEntryPoint is an enumerated data type defined in VCSAgApiDefs.h.

Usage:

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor, my_monitor_func);

VCSAgSetLogCategory
void VCSAgSetLogCategory(int cat_id)

Sets the log category of the agent to the value specified in cat_id.

VCSAgGetProductName
const CHAR *VCSAgGetProductName()

79Creating entry points in C++
Agent framework primitives

This API fetches the name of the product for logging purposes

VCSAgMonitorReturn
VCSAgResState VCSAgMonitorReturn(VCSAgResState state, s32

conf_level, const CHAR *conf_msg)

VCSAgResState state: The state of the resource as found by the monitor entry
point.

int conf_level: The confidence level with which the resource was found to be online.
This can be a number from 10 to 100.

const char * conf_msg: If the resource is being reported as ONLINE from themonitor
entry point with a confidence level lower than 100, this parameter accepts a string
containing the reason for the lower confidence level for the resource. If the
confidence level reported is 100 or if the resource state is reported as Offline or
IntentionalOffline, the confidence message will get automatically cleared even if
agent developer provides a confidence message string to this API.

Note: You can also call this API using the macro VCSAG_MONITOR_RETURN with the
same arguments as passed to VCSAgMonitorReturn API.

VCSAgSetResEPTimeout
void VCSAgSetResEPTimeout(s32 tmo)

This API allows an agent entry point to extend its timeout value dynamically from
within the entry point's execution context. This might be required if a command
executed from the entry point takes longer than expected to complete and the entry
point does not want to timeout. Veritas recommends using this API with caution
because the intent of timeouts is to make sure that entry points finish on time.

Usage:

VCSAgSetResEPTimeout(tmo);

See “VCSAG_SET_RES_EP_TIMEOUT” on page 97.

VCSAgDecryptKey
VCSAgDecryptKey(char *key, char *outbuf, int buflen);

This API lets you decrypt an encrypted string passed in the ArgListValues by the
user. Typically users encrypt string attribute values for passwords using the

80Creating entry points in C++
Agent framework primitives

encryption commands provided by VCS. An entry point can use this API to decrypt
the encrypted string and get the original string.

VCSAgGetConfDir
void VCSAgGetConfDir(char *buf, int bufsize)

Returns the name of the VCS configuration directory.

If the VCS_CONF environment variable is set, the command returns the value of
the variable, otherwise it returns the default value. .

Caller must supply the buffer

VCSAgGetHomeDir
void VCSAgGetHomeDir(char *buf, int bufsize)

Returns the name of VCS home directory. If the VCS_HOME environment is
configured, the command returns the value of the variable, otherwise it returns the
default value.

Caller must supply the buffer

VCSAgGetLogDir
VCSAgGetLogDir(char *buf, int bufsize)

Returns the name of VCS log directory. If the VCS_LOG environment variable is
set, the command returns the value of the variable, otherwise it returns the default
value if not set.

Caller must supply the buffer

VCSAgGetSystemName
void VCSAgGetSystemName(char *buf, int bufsize)

Returns the name of the system on which the agent is currently running.

Caller must supply the buffer

VCSAG_CONSOLE_LOG_MSG
VCSAG_CONSOLE_LOG_MSG(sev, msgid, flags, fmt, variable_args...)

81Creating entry points in C++
Agent framework primitives

Use the VCSAG_CONSOLE_LOG_MSG macro to send messages to the HAD log. If the
messages are of CRITICAL or ERROR severity, then the messages are also logged
to the console.

Usage:

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,

"Resource could not be brought down because,

the attempt to remove the file(%s) failed with error(%d)", (CHAR *)(*attr_val), errno);

See “C++ agent logging APIs” on page 119.

VCSAG_LOG_MSG
VCSAG_LOG_MSG(sev, msgid, flags, fmt, variable_args...)

You can use the macro VCSAG_LOG_MSG within C++ agent entry points to log all
messages ranging in severity from CRITICAL to INFORMATION to the agent log
file.

Usage:

VCSAG_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,

"Resource could not be brought down because the attempt to remove the file(%s)

failed with error(%d)", (CHAR *)(*attr_val), errno);

See “C++ agent logging APIs” on page 119.

VCSAG_LOGDBG_MSG
Use themacros VCSAG_LOGDBG_MSGwithin agent entry points to log debugmessages
of a specific severity level to the agent log. The VCSAG_LOGDBG_MSGmacro controls
logging at the level of the resource type level.

VCSAG_LOGDBG_MSG(dbgsev, flags, fmt, variable_args);

The VCSAG_LOGDBG_MSG macro controls logging at the level of the resource
type level.

Usage:

VCSAG_LOGDBG_MSG(VCS_DBG5, VCS_DEFAULT_FLAGS,

"Received AMF monitor stop. Unregistering the group");

See “C++ agent logging APIs” on page 119.

82Creating entry points in C++
Agent framework primitives

VCSAG_RES_LOG_MSG
Themacro VCSAG_RES_LOG_MSG can be used to print debug logmessage at resource
level for a specific resource by enabling debugging at resource level by overriding
LogDbg attribute. It only accepts debug severities i.e. DBG_1 to DBG_21.

VCSAG_RES_LOG_MSG(dbgsev, flags, fmt, variable_args);

The VCSAG_RES_LOG_MSG macro controls logging at the level of the resource type
level.

Usage:

VCSAG_RES_LOG_MSG(VCS_DBG4, VCS_DEFAULT_FLAGS,

"PathName is (%s)", (CHAR *)(*attr_val));

See “C++ agent logging APIs” on page 119.

Agent Framework primitives for container support
The following APIs are for use in agents that run in AIX WPARs, XRM containers,
Solaris zones and Linux Docker containers.

Note that:

■ Zones are supported by Solaris version 10 and above.

■ Docker containers are supported on RHEL7 and SLES12.

■ Container support is available only with agent version V50 or later.

VCSAgIsContainerUp
int VCSAgIsContainerUp();

This API returns either True or False. If the container configured under Service
Group is up and running, this API returns True, else it returns False.

VCSAgGetContainerTypeEnum
VCSAgContainerType VCSAgGetContainerTypeEnum(const char *ctype);

This primitive takes a Container type name and returns a corresponding
VCSAgContainerType enum value.

83Creating entry points in C++
Agent Framework primitives for container support

VCSAgExecInContainer2
int VCSAgExecInContainer2(const CHAR *path, CHAR *const argv[], char

*buf, long buf_size, unsigned long *exit_codep);

This API is the same as VCSAgExec; however, this API should be used by an agent
only to execute a particular command or script in a specific container on the system.
If the container is not enabled or invalid container is specified or if OS does not
support container, then the API executes the command or script in the global
container. If there are no containers configured on the system, or if the agent has
no need to execute a script in a specific container, use the VCSAgExec API.

Memory for buf and exit_codep must be allocated by the calling function.

See “VCSAgExec” on page 74.

See “VCSAG_EXEC_IN_CONTAINER ” on page 109.

VCSAgIsContainerCapable
VCSAgBool VCSAgIsContainerCapable();

This API returns either True or False.

■ For Solaris zones
If the agent is running on a Solaris 11 system, the API returns True; otherwise
it returns False.
Agents can use this API to decide whether or not to perform zone-specific
operations like comparing the zone_id field in the psinfo structure with the ID of
the zone name specified in the resource configuration to confirm whether the
found process is indeed the process the agent is looking for.

■ For XRM
If the agent is running on a system that has xrm available, the API returns True;
otherwise it returns False.

■ For WPARs
If the agent is running on a system that has WPARs available, the API returns
True; otherwise it returns False.

VCSAgExecInContainerWithTimeout
int VCSAgExecInContainerWithTimeout((const CHAR *path, CHAR *const

argv[] u32 timeout, CHAR *buf, long buf_size, unsigned long

*exit_codep);

84Creating entry points in C++
Agent Framework primitives for container support

This API is similar to the VCSAgExecWithTimeout API. This API can be used by
an agent only to execute a particular command or script in a specific container on
the system. If the container is not enabled or invalid container is specified or if OS
does not support container, then the API executes the command or script in the
global container. If there are no containers configured on the system, or if the agent
has no need to exec a script in a specific container, the VCSAgExecWithTimeout
API should be used.

Memory for buf and exit_codep should be allocated by the calling function.

VCSAgGetUID
int VCSAgGetUID(const CHAR *user, int *uid, int *euid, int

*home_exists);

This API checks if the given user is valid inside the container as specified in the
resource object. The API returns the uid and euid of the user either inside the
container if container info is set for the resource or on the global container if container
info is not set for the resource. The home_exists parameter indicates if the specified
user's home directory exists within the container.

Memory for uid, euid and home_exists must be allocated by the calling function

The API returns 0 on success and 1 on failure

VCSAgIsPidInContainer
int VCSAgIsPidInContainer(VCSPID pid);

This API checks if the given pid is running inside the container as specified in the
resource object. If the container is not enabled then the API checks that the pid is
running in the global container.

Return values

■ 1 if the proc pid is running inside the container

■ 0 if the proc pid is not running inside the container

■ -1 if the API cannot verify the container info for the process. This is possible if
ContainerType is an invalid value.

VCSAgIsProcInContainer

Note: This API is not supported for Linux Docker containers.

85Creating entry points in C++
Agent Framework primitives for container support

int VCSAgIsProcInContainer(void *psinfop);

This API checks if the process corresponding to the given psinfo structure is running
inside the container as specified in the resource object. If the container is not enabled
then the API checks that the process is running in the global container.

Return values

■ 1 if the proc pid is running inside the container

■ 0 if the proc pid is not running inside the container

■ -1 if the API cannot verify the container info for the process. This is possible if
ContainerType is an invalid value.

See “VCSAG_IS_PROC_IN_CONTAINER” on page 109.

VCSAgGetContainerID2
For Linux:

int VCSAgGetContainerID2(char*containerid)

This API returns 0 if container ID is successfully retrieved and -1 if not.

For other platforms:

int VCSAgGetContainerID2()

This API retrieves the ID of the container.

Based on the thread that is implementing the entry point, the agent identifies the
resource for which this API is invoked and returns the container ID for that resource.
The container ID is the ID of the container specified in the ContainerInfo attribute
as the value of the Name key.

Return Values

■ -1, if the resource or container name is NULL or the container is DOWN or the
container is not applicable to the OS version the agent is running on.

■ Non-negative container-id, if the container name is valid and the container is
UP.

VCSAgGetContainerName2
char *VCSAgGetContainerName2();

For Solaris Zones, this API retrieves the name of the container, if set for the specified
resource.

86Creating entry points in C++
Agent Framework primitives for container support

For XRM, the API retrieves the name of the Execution Context.

For WPARs, the API retrieves the name of the WPAR.

The API returns a pointer to the container name. It is the responsibility of the caller
to free the memory associated with the returned pointer.

The name of the container is the value set in the group-level attribute ContainerInfo
for the group the resource belongs to.

VCSAgGetContainerBasePath

Note: This API is not supported for Linux Docker containers.

int VCSAgGetContainerBasePath (char *buf, int bufsize, int *exit_info)

This API returns the base path of the container mentioned under the ContainerInfo
attribute at group level. This API must be called from the global zone or WPAR.

For Solaris zones:

■ If the agent is running on a Solaris machine, the API returns the base path of
the zone where zone is installed.

For WPARs

■ If the agent is running on an AIX machine, the API returns the base path of the
WPAR where WPAR is installed.

Input parameters:

Buffer to store the base path of the container. Caller must make the
provision to reserve and release the memory for the buffer.

buf

Size of the buffer passed.bufsize

Output parameters:

Buffer to store the base path of the container at the end of its execution.buf

Provides extended information to the caller in certain cases as described
under Return values.

exit_info

Return values:

87Creating entry points in C++
Agent Framework primitives for container support

If ContainerInfo attribute is set properly, which means:

■ Name is set to <valid_container_name>
■ Type is set to <valid_container_type>
■ Enabled is set to 1

Container’s base path is returned in the buf parameter.

0

If buf is passed as null.1

If the buffer size is smaller than the size of the container’s base path.

The exit_info parameter is updated to reflect the correct value of the buffer
size needed to be passed.

2

If the Enable key of the ContainerInfo attribute is set to 0 or 2. Container’s
base path is returned in buf parameter only if Name key is set to
<valid_container_name>.

3

If the ContainerInfo attribute is not set for the resource. For example, Name
key of ContainerInfo is “” or Type key of ContainerInfo is invalid.

4

If command to obtain the base path of the container fails. The exit_info
parameter is updated accordingly with the exit status of the command.

5

If OS is not container capable.6

See “VCSAG_GET_CONTAINER_BASE_PATH” on page 106.

VCSAgGetContainerEnabled
This API returns the Enabled key of ContainerInfo attribute.

Return values:

If ContainerInfo is not defined at group level then it returns the default value
of the enabled key.

0

If ContainerInfo is defined at group level then it returns the current value
of the enabled key.

0, 1, or 2

Refer to the Veritas InfoScale 7.4.3 Virtualization Guide for more information on
the values of the enabled key.

88Creating entry points in C++
Agent Framework primitives for container support

Creating entry points in
scripts

This chapter includes the following topics:

■ About creating entry points in scripts

■ Syntax for script entry points

■ Agent framework primitives

■ Agent Framework primitives with container support

■ Example script entry points

About creating entry points in scripts
On UNIX, script agents use one of the different agent binaries that are shipped with
VCS. The agent binaries are located at:

$VCS_HOME/bin/

See “Script based agent binaries” on page 137.

You can implement entry points using C++ or scripts. If you are implementing even
one entry point in c++ then you must implement the VCSAgStartup function. If you
do not implement any entry points in C++, then you do not need to implement the
VCSAgStartup function since the default implementation of VCSAgStartup is present
in the script agent binary provided by VCS as mentioned above.

See “About the VCSAgStartup routine” on page 38.

You can use script-based entry points to develop agents for monitoring applications
that run in containers, including non-global zones. VCS provides APIs for container
support. You can use Perl, shell, or Python scripts to develop entry points.

4Chapter

See “Agent Framework primitives with container support” on page 106.

Rules for using script entry points
Script entry points can be executables or scripts, such as shell, Perl, or Python (the
product includes Perl and Python distributions).

Note: Python scripts are supported only on the Linux and the Windows platforms.

Adhere to the following rules when implementing a script entry point:

On UNIX platforms
■ In the VCSAgStartup function, if you do not set a C++ function for an entry point

using the VCSAgValidateAndSetEntryPoint() API, then the agent framework
assumes the entry point is script-based.
See “About the VCSAgStartup routine” on page 38.

■ Verify the name of the script file is the same as the entry point name.

■ Place the file in the $VCS_HOME/bin/resource_type directory or in the
directory mentioned in the AgentDirectory attribute. If for example, the online

entry point for Oracle were implemented using Perl, the online script must be:

$VCS_HOME/bin/Oracle/online

■ If you write scripts in shell, verify the PATH environment variable includes the
directory where sh is installed.

Parameters and values for script entry points
The input parameters of script entry points are passed as command-line arguments.
The first command-line argument for all the entry points is the name of the resource
(except shutdown, which has no arguments).

Some entry points have an output parameter that is returned through the program
exit value. See the entry point description for more information.

See “Syntax for script entry points” on page 91.

ArgList attributes
Specifies the attributes that must be passed to the agent entry points.

See “About the ArgList and ArgListValues attributes” on page 43.

90Creating entry points in scripts
About creating entry points in scripts

Examples
If Type "Foo" is defined in types.cf as:

Type Foo (

str Name

int IntAttr

str StringAttr

str VectorAttr[]

str AssocAttr{}

static str ArgList[] = { IntAttr, StringAttr,

VectorAttr, AssocAttr }

)

And if a resource "Bar" is defined in the VCS configuration file main.cf as:

Foo Bar (

IntAttr = 100

StringAttr = "Oracle"

VectorAttr = { "vol1", "vol2", "vol3" }

AssocAttr = { "disk1" = "1024", "disk2" = "512" }

)

The online script for a V51 agent, when invoked for Bar, resembles:

online Bar IntAttr 1 100 StringAttr 1 Oracle VectorAttr 3 vol1

vol2 vol3 AssocAttr 4 disk1 1024 disk2 512

See “About the ArgList and ArgListValues attributes” on page 43.

Syntax for script entry points
The following paragraphs describe the syntax for script entry points.

Syntax for the monitor script
monitor resource_name ArgList_attribute_values

A script entry point combines the status and the confidence level in the exit value.
For example:

■ 99 indicates unknown.

■ 100 indicates offline.

■ 101 indicates online and a confidence level of 10.

91Creating entry points in scripts
Syntax for script entry points

■ 102–109 indicates online and confidence levels 20–90.

■ 110 indicates online and confidence level 100.

■ 200 indicates intentional offline.

If the exit value is not one of the above values, the status is considered unknown.

Syntax for the online script
online resource_name ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the online
procedure to be effective. It also means the time (in seconds) that must pass before
executing the monitor entry point to validate proper operation. The exit value is
typically 0.

Syntax for the offline script
offline resource_name ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the offline
procedure to be effective. The exit value is typically 0.

It also means the time (in seconds) that must pass before executing the monitor
entry point to validate proper operation.

Syntax for the clean script
clean resource_name clean_reason argList_attribute_values

The variable clean_reason equals one of the following values:

0 - The offline entry point did not complete within the expected time.

(See “OfflineTimeout” on page 195.)

1 - The offline entry point was ineffective.

2 - The online entry point did not complete within the expected time.

(See “OnlineTimeout” on page 196.)

3 - The online entry point was ineffective.

4 - The resource was taken offline unexpectedly.

5 - The monitor entry point consistently failed to complete within the expected time.

(See “FaultOnMonitorTimeouts” on page 185.)

92Creating entry points in scripts
Syntax for script entry points

The exit value is 0 (if successful) or 1 (if unsuccessful).

Syntax for the action script
action resource_name

ArgList_attribute_values_AND_action_arguments

The exit value is 0 (if successful) or 1 (if unsuccessful).

The agent framework limits the action entry point output to 2048 bytes.

Syntax for the attr_changed script
attr_changed resource_name changed_resource_name

changed_attribute_name new_attribute_value

The exit value is ignored.

Note: This entry point is called only if you register for change notification using the
primitive VCSAgRegister() (See “VCSAgRegister” on page 70.), or the agent
parameter RegList (See “RegList” on page 197.).

Syntax for the info script
info resource_name resinfo_op ArgList_attribute_values

The attribute resinfo_op can have the values 1 or 2.

SignificanceValues of
resinfo_op

Add and initialize static and dynamic name-value data pairs in the
ResourceInfo attribute.

1

Update just the dynamic data in the ResourceInfo attribute.2

This entry point can add and update static and dynamic name-value pairs to the
ResourceInfo attribute. The info entry point has no specific output, but rather, it
updates the ResourceInfo attribute.

Syntax for the open script
open resource_name ArgList_attribute_values

93Creating entry points in scripts
Syntax for script entry points

The exit value is ignored.

Syntax for the close script
close resource_name ArgList_attribute_values

The exit value is ignored.

Syntax for the shutdown script
shutdown

The exit value is ignored.

Syntax for the imf_init script
imf_init type_name

where type_name is the type of agent. For example, Mount, Process, Application
and so on.

The exit value is 0 (zero) if successful and 1 (one) if unsuccessful.

Syntax for the imf_register script
imf_register res_name mswitch rstate ArgList_attribute_values

Name of the resource that is required to be registered.res_name

Possible value of this parameter is either
VCSAgIMFMonitorStop or VCSAgIMFMonitorStart.

If its value is VCSAgIMFMonitorStart, then it registers a
resource with underlying module. If its value is
VCSAgIMFMonitorStop, then it unregisters a resource from
underlying module. This is passed by the agent framework.

mswitch

Possible value for this parameter is either
VCSAgIMFResOffline or VCSAgIMFResOnline.

If its value is VCSAgIMFResOffline, then it registers a resource
with underlying module for OFFLINE monitoring. If its value
is VCSAgIMFResOnline, then it registers underlying module
for ONLINE monitoring.

rstate

The exit value is 0 (zero) if successful or non-zero if unsuccessful.

94Creating entry points in scripts
Syntax for script entry points

Note: The imf_register entry point also returns the resource ID to agent framework
by writing the resource ID to the exposed PIPE FD.

Syntax for the imf_getnotification script
imf_getnotification type_name

Type of the agent. For example, Mount, Process, Application
and so on.

type_name

The exit value is 0 (zero) if successful; 1 if failure; 3 if interrupted (failure case); 4
if critical failure.

Note: The imf_getnotification entry point also returns the resource event notification
to the agent framework by writing the event information to the exposed PIPE FD.

Syntax for migrate script
migrate resource_name attribute_values

The exit value is interpreted as the expected time (in seconds) for the migrate
procedure to be effective. The exit values is an integer in the range of 0 to 100. The
agent framework waits for the number of seconds as indicated by the value (return
value * 10) to call the monitor entry point for the resource to validate proper
operation. The exit value is typically 0. For more information refer to return code of
migrate entry point.

See “Return values for entry points ” on page 35.

Syntax for meter script
meter resource_name attribute_values

Along with the attribute that is specified in ArgList, meter entry point also gets the
value of Meters and MeterUnit attribute.

See “Return values for entry points ” on page 35.

Agent framework primitives
The agent framework implements Perl-, Shell-, or Python-based methods, which
are called primitives. The following sections describe the primitives.

95Creating entry points in scripts
Agent framework primitives

VCSAG_GET_MONITOR_LEVEL
The agent developer can use this primitive to query if the LevelOne (Basic)
monitoring or the LevelTwo (Detail) monitoring or both need to be scheduled.

Output parameters:

■ level_one: This parameter will be updated to 1 or 0 if basic monitoring needs to
be scheduled or not. A value of 0 means that basic monitoring should not be
scheduled while a value of 1 means that basic monitoring should be scheduled.
See “IMF” on page 186.

■ level_two: This parameter will be updated to 0, 1, or 2, based on the present
state of the resource, and if detail monitoring needs to be scheduled. A value
of 0 means that detail monitoring should not be scheduled, a value of 1 means
that detail monitoring should be scheduled, and a value of 2 means that detail
monitoring should be scheduled if basic monitoring (level_ one) reports state
as online
Following example describes setting of output parameters,
If you set LevelTwoMonitorFrequency to 5 and the resource state is ONLINE,
then every fifth monitor cycle, level_two will have the value as 1. If the resource
state is OFFLINE, then every monitor cycle level_two will have the value as 2.
See “LevelTwoMonitorFreq” on page 188.
If you set MonitorFreq to 5 and the resource is registered with IMF, then every
fifth monitor cycle level_one parameter will have the value of 1.
See “IMF” on page 186.

This API is typically used as Perl-based or Shell-based script.

Perl-based:

This API return the value of level_one and level__two and status as return value.

Usage:($ret, $level_one, $level_two) = VCSAG_GET_MONITOR_LEVEL();

■ $ret : Checks whether the API passed or failed.

■ $level_one : Holds the value of level one monitor flag if API is passed.

■ $level_two : Holds the value of level two monitor flag if API is passed.

Shell-based:

This API return the value of level_one and level__two as environment variable
VCSAG_MONITOR_LEVEL_ONE and VCSAG_MONITOR_LEVEL_TWO, and status as return
value.

Usage:VCSAG_GET_MONITOR_LEVEL

Fetches the value of the LevelOne and LevelTwo monitoring flag as below if API
passes,

96Creating entry points in scripts
Agent framework primitives

■ level_one=${VCSAG_MONITOR_LEVEL_ONE}

■ level_two=${VCSAG_MONITOR_LEVEL_TWO}

VCSAG_GET_AGFW_VERSION
This API can be used to get the latest agent version.

■ Perl-based: Returns the version information as return value.
Usage:
my $agfw_ver = VCSAG_GET_AGFW_VERSION();

■ Shell-based: Returns the version information in environment variable
VCSAG_AGFW_VERSION_VALUE, and provides success or failure as return value.
Usage:
VCSAG_GET_AGFW_VERSION agfw_ver=${VCSAG_AGFW_VERSION_VALUE}

VCSAG_GET_REG_VERSION
This API can be used to get the registered agent version.

■ Perl-based: Returns the version information as return value.
Usage:
my $agfw_reg_ver = VCSAG_GET_REG_VERSION();

■ Shell-based: Returns th version information in environment variable
VCSAG_REG_VERSION_VALUE , and provides success or failure as return value.
Usage:
VCSAG_GET_REG_VERSION agfw_reg_ver=${VCSAG_REG_VERSION_VALUE}

VCSAG_SET_RES_EP_TIMEOUT
This API allows an agent entry point to extend its timeout value dynamically from
within the entry point's execution context. This might be required if a command
executed from the entry point takes longer than expected to complete and the entry
point does not want to timeout. Veritas recommends using this API with caution
because the intent of timeouts is to make sure that entry points finish on time.

■ Perl-based usage:

VCSAG_SET_RES_EP_TIMEOUT($time);

■ Shell-based usage:

VCSAG_SET_RES_EP_TIMEOUT${time}

97Creating entry points in scripts
Agent framework primitives

■ Python-based usage:

VCSAG_SET_RES_EP_TIMEOUT(time)

VCSAG_GET_ATTR_VALUE
This API can be used to get the values of attribute. The attribute can be scalar type,
key list type, and association type.

Input parameters:

■ attribute name: The first argument holds the name of the attribute whose value
and index needs to be founded.

■ index of attribute: It is optional argument.

■ Should be specified as -1 for getting values of scalar attribute

■ Do not specify this argument, if you need to fetch only the number of keys
in key list, vector, association attribute and the index of the attribute.

■ Should be the index of attribute if you need to fetch any particular key from
the key list, vector and association attribute.

■ index of value required.

■ Should be specified as 1 for fetching the values of scalar attribute.

■ Do not specify this argument, if you need to fetch only the number of keys
in key list, vector, association attribute and the index of the attribute.

■ Should be the index of key if you need to fetch the value key from the key
list, vector and association attribute.

■ arglist : A list of attributes along with values. ResourceName and CleanReason

should not be passed in this list.

Output parameters for Perl-based API:

■ ret_val: This API returns value 0 on success and non-zero value on failure. The
error gets printed at debug level DBG_1.

Output parameters for Python-based API:

■ ret_status: This API returns value 0 on success and non-zero value on failure.
The error gets printed at debug level DBG_1.

■ ret_values: This API returns tuple in case of success. The first entry of the tuple
is the attribute value and second entry of the tuple is the index of attribute in the
argument list.

Using VCSAG_GET_ATTR_VALUE API to fetch value of scalar attribute

98Creating entry points in scripts
Agent framework primitives

■ Shell:

VCSAG_GET_ATTR_VALUE "MountPoint" -1 1 @ARGV

The environment variable VCSAG_ATTR_VALUE stores the value.

■ Perl:

my ($ret, $MountPoint) =

VCSAG_GET_ATTR_VALUE ("MountPoint", -1, 1, @ARGV);

■ Python:

ret_status, ret_values =

VCSAG_GET_ATTR_VALUE("MountPoint", -1, 1, *sys.argv)

Using VCSAG_GET_ATTR_VALUE API to fetch the value of key list, vector and
association type attribute

■ The user needs to get the number of keys in key list attribute and index of
attribute in argument list, and then calls the API in loop. The user can get the
key or values in the key list, vector and association attributes.

To get number of keys in the key list attribute and the index
of attribute in argument list
Shell:

VCSAG_GET_ATTR_VALUE "PidFiles" "$@"

The number of values will be stored in environment variable VCSAG_ATTR_VALUE ,
and the environment variable VCSAG_ATTR_INDEX holds the index of attribute in
the argument list.

Perl:

For example:

my ($retval, $NumOfArgs, $indexofattr) =

VCSAG_GET_ATTR_VALUE("ACTION_ARGS", @ARGV);

Python:

For example:

ret_code, ret_values = VCSAG_GET_ATTR_VALUE ("ACTION_ARGS", *sys.argv)

The first entry of ret_values tuple will be the number of values and second entry is
the index of attribute in the argument list.

99Creating entry points in scripts
Agent framework primitives

To get a particular key in the key list and vector attribute
Shell:

VCSAG_GET_ATTR_VALUE "PidFiles" ${VCSAG_ATTR_INDEX} $index "$@"

The variable VCSAG_ATTR_VALUE holds the value of the key at the index ($index).

Perl:

my ($retval, $value_of_key) =

VCSAG_GET_ATTR_VALUE("ACTION_ARGS", $indexofattr, $index_of_key, @ARGV);

Python:

ret_code, ret_values =

VCSAG_GET_ATTR_VALUE("ACTION_ARGS", index_of_attr, index_of_key, *sys.argv)

By getting the value of the number of keys as mentioned above and by calling this
API in the loop, the user can get all the keys of key list and vector attribute.

To get the number of keys in the association attribute, and
index of attribute in the argument list
Shell:

VCSAG_GET_ATTR_VALUE "RHEVMInfo" "$@argv "

Perl:

my ($ret_val, $ NumOfArgs, $indexofattr) =

VCSAG_GET_ATTR_VALUE ("RHEVMInfo", @argv);

Python:

ret_code, ret_values = VCSAG_GET_ATTR_VALUE ("RHEVMInfo", *sys.argv)

The first entry of ret_values tuple will be the number of values and second entry
holds the index of attribute in the argument list.

To get a particular key or value in the association attribute:
Shell:

VCSAG_GET_ATTR_VALUE " RHEVMInfo " ${VCSAG_ATTR_INDEX} $index "$@"

The variable VCSAG_ATTR_VALUE holds the value of key at the index ($index).

Perl:

100Creating entry points in scripts
Agent framework primitives

($retval, $value) =

VCSAG_GET_ATTR_VALUE("RHEVMInfo", $indexofattr, $index_of_key_or_val, @argv);

Python:

ret_code, ret_values =

VCSAG_GET_ATTR_VALUE("RHEVMInfo", index_of_attr, index_of_key_or_val,

*sys.argv)

By getting the value of the number of keys as mentioned above and by calling this
API in the loop, the user can get all the keys of association attribute.

VCSAG_SET_RESINFO
This API sets or modifies the ResourceInfo with specified key and value.

Input parameters:

■ info_type: Set to ‘1’ when you call this API for the first time so that the
corresponding key value pair can be added to the attribute ResourceInfo, and
it is set to ‘2’ second time to update the values of key.

■ key_name: Specifies the key that needs to be added or update.

■ key_val: Specifies the value of the key that needs to be added or updated.

Output parameters:

■ Returns VCSAG_SUCCESS when it successful adds or updates the key-value pair.

Shell:

VCSAG_SET_RESINFO “${info_type}” “${key_name}” “${key_val}”

Perl:

VCSAG_SET_RESINFO(${info_type}, ${key_name}, ${key_val});

VCSAG_MONITOR_EXIT
This API exits the entry point with online/offline/unknown status along with setting
the ConfidenceLevel and ConfidenceMsg attributes, if desired.

Input parameters:

■ Exit status of resource

■ VCSAG_RES_UNKNOWN: Monitor should return this value when resource state
is unknown.

101Creating entry points in scripts
Agent framework primitives

■ VCSAG_RES_OFFLINE: Monitor should return this value when resource state
is OFFLINE.

■ VCSAG_RES_ONLINE: Monitor should return this value when resource state is
ONLINE.

■ VCSAG_RES_INTENTIONALOFFLINE: Monitor should return this value when
resource state is detected as intentionally offline.

■ New confidence level when exit status is online, else ignored (optional).
Confidence level is between 10 to 100%.

■ New confidence message when exit status is online but confidence level is
below 100%, else ignored (optional)

Perl usage:

■ VCSAG_MONITOR_EXIT($exit_code);

■ VCSAG_MONITOR_EXIT($exit_code, $confidence_level);

■ VCSAG_MONITOR_EXIT($exit_code, $confidence_level,

$confidence_message);

Example:

■ VCSAG_MONITOR_EXIT($VCSAG_RES_UNKNOWN);

■ VCSAG_MONITOR_EXIT($VCSAG_RES_OFFLINE);

■ VCSAG_MONITOR_EXIT($VCSAG_RES_ONLINE, 90);

■ VCSAG_MONITOR_EXIT($VCSAG_RES_ONLINE, 20, "block device is 80%

full");

Shell usage:

■ VCSAG_MONITOR_EXIT $exit_code

■ VCSAG_MONITOR_EXIT $exit_code $confidence_level

■ VCSAG_MONITOR_EXIT $exit_code $confidence_level $confidence_message

Example:

■ VCSAG_MONITOR_EXIT $VCSAG_RES_UNKNOWN

■ VCSAG_MONITOR_EXIT $VCSAG_RES_OFFLINE

■ VCSAG_MONITOR_EXIT $VCSAG_RES_ONLINE 90

■ VCSAG_MONITOR_EXIT $VCSAG_RES_ONLINE 20 "block device is 80% full"

102Creating entry points in scripts
Agent framework primitives

VCSAG_SYSTEM
Entry points must use this function if they need to fork a command using system
call.

Shell:

■ Input parameter: A string of command with arguments.

■ Usage:

VCSAG_SYSTEM "$command"; echo $?

User can do echo $? to get the exit value of the command.

Perl:

■ Input parameter: A string of command with arguments.

■ Output parameter : Return value of system ($command).

■ Usage:

$retval = VCSAG_SYSTEM($command);

VCSAG_SU
Entry points must use this function if they need to run a command in a different
user's context.

Input parameters:

■ User name

■ A string of su options (if the string is space separated then needs quoted string)

■ A string of command with arguments

Output parameters:

■ Return value of system($command)

Shell usage:

VCSAG_SU "${user}" "-" "${program}"

Perl usage:

VCSAG_SU($user,"-", $program);

103Creating entry points in scripts
Agent framework primitives

VCSAG_RETURN_IMF_RESID
This API is used by imf_register entry point to return the resource ID registered with
underlying IMF notification module to the agent.

Shell usage: VCSAG_RETURN_IMF_RESID

Perl usage: VCSAG_RETURN_IMF_RESID()

VCSAG_RETURN_IMF_EVENT
imf_getnotification entry point uses this API to return the resource ID whose
notification arrived from underlying IMF notification module to the agent.

Shell usage: VCSAG_RETURN_IMF_EVENT

Perl usage: VCSAG_RETURN_IMF_EVENT ()

VCSAG_BLD_PSCOMM
This API builds the ps command based on platform and Container type.

Note: This API is applicable only for Perl-based usage.

Output:

Built PS command. The output can be used to list the processes. The user must
call VCSAG_IS_PROC_IN_CONTAINER to check if the process lies in the container in
which the resource is managed.

Usage:

$cmd = VCSAG_BLD_PSCOMM();

open (PIDS, "$cmd |");

VCSAG_PHANTOM_STATE
This API determines "phantom" state of a resource, and it requires State and IState
of the resource as input arguments

Input parameters: State and IState

Output: "phantom" state of the resource.

Note: This API is applicable only for Perl-based usage.

Perl usage:

104Creating entry points in scripts
Agent framework primitives

$ret_state=VCSAG_PHANTOM_STATE($state, $istate);

VCSAG_SET_ENVS
The VCSAG_SET_ENVS function is used in each script-based entry point file. Its
purpose is to set and export environment variables

See “Script entry point logging functions” on page 127.

VCSAG_LOG_MSG
This API can be used to log messages in the engine log from agent's script entry
point.

See “Script entry point logging functions” on page 127.

VCSAG_LOGDBG_MSG
This API can be used to log debug messages in the engine log from agent's script
entry point.

See “Script entry point logging functions” on page 127.

VCSAG_SQUEEZE_SPACES
This API removes leading and trailing spaces, and also squeezes the spaces in
the value that is passed as arguments.

Input parameters: Any strings with extra spaces.

Output parameters: Space squeezed strings.

Note: This API is applicable only for Perl-based and Python-based usage.

Perl Usage:

($a1,$b1...) = VCSAG_SQUEEZE_SPACES ($a, $b...);

Example:

$str1 = VCSAG_SQUEEZE_SPACES ($str1);

($str1, $str2) = VCSAG_SQUEEZE_SPACES ($str1, $str2);

@str = VCSAG_SQUEEZE_SPACES (@str);

Python Usage:

This API accepts a string or a list of strings.

105Creating entry points in scripts
Agent framework primitives

str1 = VCSAG_SQUEEZE_SPACES (str1)

str_list = VCSAG_SQUEEZE_SPACES(str_list)

Agent Framework primitives with container
support

The following APIs are for use in agents that run in AIX WPARs, Solaris zones and
Project, and Linux Docker containers. Note that zones are supported by Solaris
version 10 and above.

Note: Container support is available only with agent version V50 or later.

VCSAG_GET_CONTAINER_BASE_PATH

Note: This API is not supported for Linux Docker containers.

This API returns the base path of the container asmentioned under the ContainerInfo
attribute at group level. This API must be called from the global zone or WPAR.

■ For Solaris zones:
If the agent is running on a Solaris machine, the API returns the base path of
the zone where zone is installed.

■ For WPARs
If the agent is running on an AIX machine, the API returns the base path of the
WPAR where WPAR is installed.

Perl-based:Returns the API exits status, command status and container base path
as return value.

Return values:

If VCSAG_GET_CONTAINER_INFO is called
before and ContainerInfo is set properly,
which means

■ Name is set to <valid_container_name>
■ Type is set to <valid_container_type>
■ Enabled is set to 1

Container's base path will be returned as
return value.

0

106Creating entry points in scripts
Agent Framework primitives with container support

If VCSAG_GET_CONTAINER_INFO API is not
called before or if ContainerInfo attribute is
not set for the resource. For example, Name
key of ContainerInfo is "" or Type key of
ContainerInfo is invalid etc.

4

If command to fetch base path of container
fails. the command status is returned as
return value.

5

Usage:

my ($ret, $cmdstatus, $container_base_path) =

VCSAG_GET_CONTAINER_BASE_PATH();

Shell-based:

This API returns the base path of container in environment variable
VCSAG_CONTAINER_BASE_PATH and the status of the command which is used by api
to fetch base path name in the environment variable VCSAG_CMD_STATUS. The API
returns the exit status in the environment variable VCSAG_BASE_PATH_RET_VAL.

Return values:

If VCSAG_GET_CONTAINER_INFO is called
before and ContainerInfo is set properly,
which means

■ Name is set to <valid_container_name>
■ Type is set to <valid_container_type>
■ Enabled is set to 1

Container's base path will be stored in
environment variable
VCSAG_CONTAINER_BASE_PATH parameter.

0

If VCSAG_GET_CONTAINER_INFO API is not
called before or if ContainerInfo attribute is
not set for the resource. For example, Name
key of ContainerInfo is "" or Type key of
ContainerInfo is invalid etc.

4

If command to fetch base path of container
fails. The environment variable
VCSAG_CMD_STATUS, will be updated
accordingly with exit status of the command.

5

Usage:

107Creating entry points in scripts
Agent Framework primitives with container support

VCSAG_GET_CONTAINER_BASE_PATH

base_path=${VCSAG_CONTAINER_BASE_PATH}

Note: Before you use this API, the user should call the API
VCSAG_GET_CONTAINER_INFO. VCSAG_GET_CONTAINER_INFO API will set container
name and type appropriately which will be required for this API.

VCSAG_GET_CONTAINER_INFO
Shell:

This API populates VCSAG_CONTAINER_NAME and VCSAG_CONTAINER_TYPE

environment variables appropriately, based on the ContainerInfo attribute passed
to ArgList.

Input parameter: ArgList

Output parameter

■ Return VCSAG_INFO_NOT_AVAIL when ContainerInfo is not passed in the entry
point.

■ Return VCSAG_INFO_DONT_CARE when Container is disabled which means
Enabled is set 2 in the ContainerInfo attribute at the group level.

■ Return VCSAG_INFO_AVAIL when successful. VCSAG_CONTAINER_NAME and
VCSAG_CONTAINER_TYPE will be set appropriately.

Usage:

VCSAG_GET_CONTAINER_INFO "$@"

Perl:

This API returns the container information, such as container name and container
type, under which the resource is managed.

Input parameter: ArgList

Output parameter: Returns the name of container and container type as return
value along with success and failure of the API.

Return value:

■ $VCSAG_INFO_NOT_AVAIL – The Container Info is not available. You cannot use
the values cname and ctype.

■ $VCSAG_INFO_AVAIL - The Container Info is available. You can use the values
cname and ctype.

108Creating entry points in scripts
Agent Framework primitives with container support

■ $VCSAG_INFO_DONT_CARE - The Container is disabled which means Enabled is
set 2 in the ContainerInfo attribute at the group level.

Usage:

($ret, $cname, $ctype) = VCSAG_GET_CONTAINER_INFO(@ARGV);

VCSAG_IS_PROC_IN_CONTAINER
This API checks if the process is part of the container in which resource is managed.
The API VCSAG_BLD_PSCOMM should be used for building the ps command while
finding process name.

Note: This API is not supported for Linux Docker containers. It is applicable only
for Perl-based usage and for Solaris Zone, Project, and AIX WPAR.

Input:

$psout - Process entry from the output of ps command as generated by API
VCSAG_BLD_PSCOMM for the process that needs to be checked.

Return values:

■ 1 - Process is part of the Container

■ 0 - Process runs outside the Container

Usage:

$ret = VCSAG_IS_PROC_IN_CONTAINER($psout);

VCSAG_EXEC_IN_CONTAINER
Perl-based or Shell-based:

Executes the command that are passed as an argument to this API inside the
appropriate container.

If RIC is set to 1, do not use this API as entry point runs inside the container and
zlogin/clogin/newtask command will fail; instead use VCSAG_SYSTEM API.

Input parameter: Command that needs to be run.

Output parameter: Return value of command executed in the appropriate container.

Shell Usage:

retval=VCSAG_EXEC_IN_CONTAINER “$cmd”

Perl Usage:

109Creating entry points in scripts
Agent Framework primitives with container support

$retval = VCSAG_EXEC_IN_CONTAINER($cmd);

Note: Before using this API user should call
VCSAG_GET_CONTAINER_INFO.VCSAG_GET_CONTAINER_INFOAPI will set the container
name and type appropriately which are required. This API will execute the command
in global container when the user fails to call VCSAG_GET_CONTAINER_INFO API.

Example script entry points
The following example shows entry points written in a shell script.

Online entry point for FileOnOff
The FileOnOff example entry point is simple. When the agent's online entry point
is called by the agent, the entry point expects the name of the resource as the first
argument, followed by the values of the remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.
The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh

FileOnOff Online script

Expects ResourceName and Pathname

. "${CLUSTER_HOME}/bin/ag_i18n_inc.sh"

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

#check if second attribute provided

if [-z "$4"]

then

VCSAG_LOG_MSG "W" "The value for PathName is not

specified" 1020

else

#create the file

touch $4

fi

exit 0;

110Creating entry points in scripts
Example script entry points

Note: The actual VCS FileOnOff entry points are written in C++, but in this example,
shell script is used.

Monitor entry point for FileOnOff
When the agent's monitor entry point is called by the agent, the entry point expects
the name of the resource as the first argument, followed by the values of the
remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.

If the file exists it returns exit code 110, indicating the resource is online with 100%
confidence. If the file does not exist the monitor returns 100, indicating the resource
is offline. If the state of the file cannot be determined, the monitor returns 99.

The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh

FileOnOff Monitor script

Expects Resource Name and Pathname

. "${CLUSTER_HOME}/bin/ag_i18n_inc.sh"

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

#check if second attribute provided

#Exit with unknown and log error if not provided.

if [-z "$4"]

then

VCSAG_LOG_MSG "W" "The value for PathName is not specified" 1020

exit 99

else

if [-f $4]; then exit 110;

Exit online (110) if file exists

Exit offline (100) if file does not exist

else exit 100;

fi

fi

111Creating entry points in scripts
Example script entry points

Monitor entry point with intentional offline
This script includes the intentional offline functionality for the MyCustomApp agent.

See “About on-off, on-only, and persistent resources ” on page 16.

Note that the method to detect intentional offline of an application depends on the
type of application. The following example assumes that the application writes a
status code into a file if the application is intentionally stopped.

#!/bin/sh

. "${CLUSTER_HOME}/bin/ag_i18n_inc.sh"

ResName=$1; shift;

VCSAG_SET_ENVS $ResName

// Obtain the attribute values from ArgListValues

parse_arglist_values();

RETVAL=$?

if [${RETVAL} -eq ${VCSAG_RES_UNKNOWN}]; then

// Could not get all the required attributes from

ArgListValues

exit $VCSAG_RES_UNKNOWN;

fi

// Check if the application's process is present in the ps

// output

check_if_app_is_running();

RETVAL=$?

if [${REVAL} -eq ${VCSAG_RES_ONLINE}]; then

// Application process found

exit $VCSAG_RES_ONLINE;

fi

// Application process was not found; Check if user gracefully

// shutdown the application

grep "MyCustomAppCode 123 : User initiated shutdown command"

${APPLICATION_CREATED_STATUS_FILE}

RETVAL=$?

if [${REVAL} -eq 0]; then

// Found MyCustomAppCode 123 in the application's status

// file that gets created by the application on graceful

112Creating entry points in scripts
Example script entry points

//shutdown

exit $VCSAG_RES_INTENTIONALOFFLINE;

else

// Did not find MyCustomAppCode 123; hence application has

// crashed or gone down unintentionally

exit $VCSAG_RES_OFFLINE;

fi

// Monitor should never come here

exit $VCSAG_RES_UNKNOWN;

Offline entry point for FileOnOff
When the agent's offline entry point is called by the agent, the entry point expects
the name of the resource as the first argument, followed by the values of the
remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.

The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh

FileOnOff Offline script

Expects ResourceName and Pathname

#

. "${CLUSTER_HOME}bin/ag_i18n_inc.sh"

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

#check if second attribute provided

if [-z "$4"]

then

VCSAG_LOG_MSG "W" "The value for PathName is not specified"\

1020

else

#remove the file

/bin/rm Df $4

fi

exit 0;

113Creating entry points in scripts
Example script entry points

Monitor entry point for agent having basic (level-1) and detailed
(level-2) monitoring

When the agent calls its entry point, the entry point expects the name of the resource
as the first argument, followed by the values of the remaining ArgList attributes.

Following implementation is for the agents that are registered as V51.
Implementation is same even if the agent is an IMF-aware agent.

Note: IMF is supported for agent version V51 and later.

Implementation of Monitor entry point, which does Level-1

and Level-2 monitoring.

#

eval 'exec /opt/VRTSperl/bin/perl -I ${CLUSTER_HOME}/lib

-S $0 ${1+"$@"}'

if 0;

use strict;

use warnings;

my ($Resource, $state) = ("", "ONLINE");

$Resource = $ARGV[0]; shift;

use ag_i18n_inc;

VCSAG_SET_ENVS ($Resource);

Fetch the value of level-1 and level-2

my ($ret, $level_one, $level_two)=(0,0,0);

($ret, $level_one, $level_two) = VCSAG_GET_MONITOR_LEVEL();

Check if level-1 monitoring need to be performed

if ($level_one == 1) {

Do level-1 monitoring i.e. basic monitoring

This would return state as ONLINE or OFFLINE or

unknown

state = do_level_one_monitoring();

}

Check if level-2 monitoring need to be performed

if (($state eq "ONLINE") && ($level_two != 0)) {

114Creating entry points in scripts
Example script entry points

Do level-2 monitoring i.e. detailed monitoring

state = do_level_two_monitoring();

}

if ($state -eq "ONLINE") {

exit 110;

}

if ($state -eq "OFFLINE") {

exit 100;

}

unknown state

exit 99;

115Creating entry points in scripts
Example script entry points

Logging agent messages
This chapter includes the following topics:

■ About logging agent messages

■ Logging in C++ and script-based entry points

■ C++ agent logging APIs

■ Script entry point logging functions

About logging agent messages
This chapter describes APIs and functions that developers can use within their
custom agents to generate log file messages conforming to a standard message
logging format.

More information is available about how to create and manage messages for
internationalization.

See “About internationalized messages” on page 220.

More information is also available about APIs that are used by VCS 3.5 and earlier.

See “Log messages in pre-VCS 4.0 agents” on page 231.

Logging in C++ and script-based entry points
Developers creating C++ agent entry points can use a set of macros for logging
application messages or debug messages. Developers of script-based entry points
can use a set of methods, or “wrappers,” for logging applications or debugmessages.
Moreover, developers of script entry point can configure LogViaHalog attribute, to
generate application or debug messages using halog utility.

5Chapter

Veritas recommends using the ag_i18n_inc subroutines for logging. The subroutines
set the category ID for the messages and provide a header for the log message,
which includes the resource name and the entry point name.

Agent messages: format
An agent log message consists of five fields. The format of the message is:

<Timestamp> <Mnemonic> <Severity> <UMI> <MessageText>

The following is an example message, of severity ERROR, generated by the
FileOnOff agent's online entry point. The message is generated when the agent
attempts to bring online a resource, a file named "MyFile":

Sep 26 2010 11:32:56 VCS ERROR V-16-2001-14001

FileOnOff:MyFile:online:Resource could not be brought up

because,the attempt to create the file (filename) failed

with error (Is a Directory)

The first four fields of the message above consists of the timestamp, an uppercase
mnemonic that represents the component, the severity, and the UMI (unique
message ID). The subsequent lines contain the message text.

Timestamp
The timestamp indicates when themessage was generated. It is formatted according
to the locale.

Mnemonic
The mnemonic field is used to indicate the component.

The mnemonic, must use all capital letters. All VCS bundled agents, enterprise
agents, and custom agents use the mnemonic: VCS

Severity
The severity of each message displays in the third field of the message (Critical,
Error, Warning, Notice, or Information for normal messages; 1-21 for debug
messages). All C++ logging macros and script-based logging functions provide a
means to define the severity of messages, both normal and debugging.

117Logging agent messages
Logging in C++ and script-based entry points

UMI
The UMI (unique message identifier) includes an originator ID, a category ID, and
a message ID.

■ The originator ID is a decimal number preceded by a "V-" that defines the
component that the message comes from. This ID is assigned by Veritas.

■ The category ID is a number in the range of 0 to 65536 assigned by Veritas.
The category ID indicates the agent that message came from. For each custom
agent, you must contact Veritas so that a unique category ID can be registered
for the agent.

■ For C++messages, the category ID is defined in the VCSAgStartup function.
See “Log category” on page 123.

■ For script-based entry points, the category is set within the
VCSAG_SET_ENVS function
See “VCSAG_SET_ENVS” on page 128.

■ For debug messages, the category ID, which is 50 by default, need not be
defined within logging functions.

■ Message IDs can range from 0 to 65536 for a category ID. Each normal message
(that is, non-debug message) generated by an agent must be assigned a
message ID. For C++ entry points, the msgid is set as part of the
VCSAG_LOG_MSG and VCSAG_CONSOLE_LOG_MSG macros. For
script-based entry points, themsgid is set using the VCSAG_LOG_MSG function.
Themsgid field is not used by debug functions or required in debug messages.
See “VCSAG_LOG_MSG” on page 131.

Message text
The message text is a formatted message string preceded by a dynamically
generated header consisting of three colon-separated fields. namely, <name of the
agent>: <resource>:<name of the entry point>:<message>. For example:

FileOnOff:MyFile:online:Resource could not be brought up

because,the attempt to create the file (MyFile) failed

with error (Is a Directory)

■ In the case of C++ entry points, the header information is generated.

■ In the case of script-based entry points, the header information is set within the
VCSAG_SET_ENVS function (See “VCSAG_SET_ENVS” on page 128.).

118Logging agent messages
Logging in C++ and script-based entry points

Log unification of VCS agent’s entry points
Earlier, the logs of VCS agent’s implemented using script and C/C++ language
were scattered between the engine log file and agent log file respectively.

From VCS 6.2 version, the logs of all the entry points will be logged in respective
agent log file. For example, the logs of Mount agent can be found in the Mount
agent log file located under /var/VRTSvcs/log directory.

Moreover, using LogViaHalog attribute, user can switch back to pre VCS 6.2 version
log behavior. This attribute support two values 0 and 1. By default the value is 0,
which means the agent’s log will go into their respective agent log file. If value is
set to 1, then the C/C++ entry point’s logs will go into the agent log file and the
script entry point’s logs will go into the engine log file using halog command.

Note: Irrespective of the value of LogViaHalog, the script entry point’s logs that are
executed in the container will go into the engine log file.

C++ agent logging APIs
The agent framework provides four logging APIs (macros) for use in agent entry
points written in C++.

These APIs include two application logging macros:

VCSAG_CONSOLE_LOG_MSG(sev, msgid, flags, fmt, variable_args...)

VCSAG_LOG_MSG(sev, msgid, flags, fmt, variable_args...)

and the macros for debugging:

VCSAG_LOGDBG_MSG(dbgsev, flags, fmt, variable_args...)

VCSAG_RES_LOG_MSG(dbgsev, flags, fmt, variable args...)

Agent application logging macros for C++ entry points
You can use the macro VCSAG_LOG_MSG within C++ agent entry points to log
all messages ranging in severity from CRITICAL to INFORMATION to the agent
log file. Use the VCSAG_CONSOLE_LOG_MSG macro to send messages to the
HAD log. Where the messages are of CRITICAL or ERROR severity, the message
is also logged to the console.

The following table describes the argument fields for the application logging macros:

119Logging agent messages
C++ agent logging APIs

Severity of the message from the application. The values of sev are
macros VCS_CRITICAL, VCS_ERROR, VCS_WARNING,
VCS_NOTICE, and VCS INFORMATION; see Severity arguments for
C++ macros.

sev

The 16-bit integer message ID.msgid

Default flags (0) prints UMI, NEWLINE. A macro,
VCS_DEFAULT_FLAGS, represents the default value for the flags.

flags

A formatted string containing formatting specifier symbols. For example:
"Resource could not be brought down because the attempt to remove
the file (%s) failed with error (%d)"

fmt

Variable number (as many as 6) of type char, char *, or integervariable_args

In the following example, the macros are used to log an error message to the agent
log and to the console:

.

.

VCSAG_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,

"Resource could not be brought down because the

attempt to remove the file(%s) failed with error(%d)",

(CHAR *)(*attr_val), errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,

"Resource could not be brought down because, the

attempt to remove the file(%s) failed with error(%d)",

(CHAR *)(*attr_val), errno);

Agent debug logging macros for C++ entry points
Use the macros VCSAG_RES_LOG_MSG and VCSAG_LOGDBG_MSG within
agent entry points to log debug messages of a specific severity level to the agent
log.

Use the LogDbg attribute to specify a debug message severity level. See the
description of the LogDbg attribute (See “LogDbg” on page 188.). Set the LogDbg

attribute at the resource type level. The attribute can be overridden to be set at the
level for a specific resource.

The VCSAG_LOGDBG_MSG macro controls logging at the level of the resource
type level, whereas VCSAG_RES_LOG_MSG macro can enable logging debug
messages at the level of a specific resource.

120Logging agent messages
C++ agent logging APIs

The following table describes the argument fields for the application logging macros:

Debug severity of the message. The values of dbgsev are macros
ranging from VCS_DBG1 to VCS_DBG21.

See Severity arguments for C++ macros.

dbgsev

Describes the logging options.

Default flags (0) prints UMI, NEWLINE. A macro,
VCS_DEFAULT_FLAGS, represents the default value for the flags

flags

A formatted string containing symbols. For example: "PathName is
(%s)"

fmt

Variable number (as many as 6) of type char, char * or integervariable_args

For example:

VCSAG_RES_LOG_MSG(VCS_DBG4, VCS_DEFAULT_FLAGS, "PathName is

(%s)",

(CHAR *)(*attr_val));

For the example shown, the specified message is logged to the agent log if the
specific resource has been enabled (that is, the LogDbg attribute is set) for logging
of debug messages at the severity level DBG4.

Severity arguments for C++ macros
A severity argument for a loggingmacro, for example, VCS_ERROR or VCS_DBG1,
is in fact a macro itself that expands to include the following information:

■ actual message severity

■ function name

■ name of the file that includes the function

■ line number where the logging macro is expanded

For example, the application severity argument VCS_ERROR within the monitor

entry point for the FileOnOff agent would expand to include the following information:

ERROR, res_monitor, FileOnOff.C, 28

Application severity macros map to application severities defined by the enum
VCSAgAppSev and the debug severity macros map to severities defined by the enum

121Logging agent messages
C++ agent logging APIs

VCSAgDbgSev. For example, in the VCSAgApiDefs.h header file, these enumerated
types are defined as:

enum VCSAgAppSev {

AG_CRITICAL,

AG_ERROR,

AG_WARNING,

AG_NOTICE,

AG_INFORMATION

};

enum VCSAgDbgSev {

DBG1,

DBG2,

DBG3,

.

.

DBG21,

DBG_SEV_End

};

With the severity macros, agent developers need not specify the name of the
function, the file name, and the line number in each log call. The name of the
function, however, must be initialized by using the macro VCSAG_LOG_INIT. See
Initializing function_name using VCSAG_LOG_INIT .

Initializing function_name using VCSAG_LOG_INIT
One requirement for logging of messages included in C++ functions is to initialize
the function_name variable within each function. The macro, VCSAG_LOG_INIT,
defines a local constant character string to store the function name:

VCSAG_LOG_INIT(func_name) const char *_function_name_ =

func_name

For example, the function named "res_offline" would contain:

void res_offline (int a, char *b)

{

VCSAG_LOG_INIT("res_offline");

.

122Logging agent messages
C++ agent logging APIs

.

}

Note: If the function name is not initialized with the VCSAG_LOG_INIT macro,
when the agent is compiled, errors indicate that the name of the function is not
defined.

More examples of the VCSAG_LOG_INIT macro are available.

See the Examples of logging APIs used in a C++ agent.

Log category
The log category for the agent is defined using the primitive VCSAgSetLogCategory
(cat_ID) within the VCSAgStartup function. In the following example, the log
category is set to 10051:

VCSEXPORT void VCSDECL VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor,

res_monitor);

VCSAgValidateAndSetEntryPoint(VCSAgEPOnline,

res_online);

VCSAgValidateAndSetEntryPoint(VCSAgEPOffline,

res_offline);

VCSAgValidateAndSetEntryPoint(VCSAgEPClean, res_clean);

VCSAgSetLogCategory(10051);

char *s = setlocale(LC_ALL, NULL);

VCSAG_LOGDBG_MSG(VCS_DBG1, VCS_DEFAULT_FLAGS, "Locale is

%s", s);

}

You do not need to set the log category for debug messages, which is 50 by default.

123Logging agent messages
C++ agent logging APIs

Examples of logging APIs used in a C++ agent

#include <stdio.h>

#include <locale.h>

#include "VCSAgApi.h"

void res_attr_changed(const char *res_name, const char

*changed_res_name,const char *changed_attr_name, void

**new_val)

{

/*

* NOT REQUIRED if the function is empty or is not logging

* any messages to the agent log file

*/

VCSAG_LOG_INIT("res_attr_changed");

}

extern "C" unsigned int

res_clean(const char *res_name, VCSAgWhyClean wc, void

**attr_val)

{

VCSAG_LOG_INIT("res_clean");

if ((attr_val) && (*attr_val)) {

if ((remove((CHAR *)(*attr_val)) == 0) || (errno

== ENOENT)) { return 0; // Success

}

}

return 1; // Failure

}

void res_close(const char *res_name, void **attr_val)

{

VCSAG_LOG_INIT("res_close");

}

//

// Determine if the given file is online (file exists) or

// offline (file does not exist).

//

extern "C" VCSAgResState

res_monitor(const char *res_name, void **attr_val, int

*conf_level)

{

VCSAG_LOG_INIT("res_monitor");

124Logging agent messages
C++ agent logging APIs

VCSAgResState state = VCSAgResUnknown;

*conf_level = 0;

/*

* This msg will be printed for all resources if VCS_DBG4

* is enabled for the resource type. Else it will be

* logged only for that resource that has the dbg level

* VCS_DBG4 enabled

*/

VCSAG_RES_LOG_MSG(VCS_DBG4, VCS_DEFAULT_FLAGS, "PathName

is(%s)", (CHAR *)(*attr_val));

if ((attr_val) && (*attr_val)) {

struct stat stat_buf;

if ((stat((CHAR *)(* attr_val), &stat_buf) == 0)

&& (strlen((CHAR *)(* attr_val)) != 0)) {

state = VCSAgResOnline; *conf_level = 100;

}

else {

state = VCSAgResOffline;

*conf_level = 0;

}

}

VCSAG_RES_LOG_MSG(VCS_DBG7, VCS_DEFAULT_FLAGS, "State is

(%d)", (int)state);

return state;

}

extern "C" unsigned int

res_online(const char *res_name, void **attr_val) {

int fd = -1;

VCSAG_LOG_INIT("res_online");

if ((attr_val) && (*attr_val)) {

if (strlen((CHAR *)(* attr_val)) == 0) {

VCSAG_LOG_MSG(VCS_WARNING, 3001, VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not

specified");

VCSAG_CONSOLE_LOG_MSG(VCS_WARNING, 3001,

VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not

125Logging agent messages
C++ agent logging APIs

specified");

return 0;

}

if (fd = creat((CHAR *)(*attr_val), S_IRUSR|S_IWUSR) < 0) {

VCSAG_LOG_MSG(VCS_ERROR, 3002, VCS_DEFAULT_FLAGS,

"Resource could not be brought up because, "

"the attempt to create the file(%s) failed "

"with error(%d)", (CHAR *)(*attr_val), errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 3002,

VCS_DEFAULT_FLAGS,

"Resource could not be brought up because, "

"the attempt to create the file(%s) failed "

"with error(%d)", (CHAR *)(*attr_val), errno);

return 0;

}

close(fd);

}

return 0;

}

extern "C" unsigned int

res_offline(const char *res_name, void **attr_val)

{

VCSAG_LOG_INIT("res_offline");

if ((attr_val) && (*attr_val) && (remove((CHAR*)

(*attr_val)) != 0) && (errno != ENOENT)) {

VCSAG_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,

"Resource could not be brought down because, the

attempt to remove the file(%s) failed with

error(%d)", (CHAR *)(*attr_val), errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 14002,

VCS_DEFAULT_FLAGS, "Resource could not be brought

down because, the attempt to remove the file(%s)

failed with error(%d)", (CHAR *)(*attr_val), errno);

}

return 0;

}

126Logging agent messages
C++ agent logging APIs

void res_open(const char *res_name, void **attr_val)

{

VCSAG_LOG_INIT("res_open");

}

VCSEXPORT void VCSDECL VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor,

res_monitor);

VCSAgValidateAndSetEntryPoint(VCSAgEPOnline,

res_online);

VCSAgValidateAndSetEntryPoint(VCSAgEPOffline,

res_offline);

VCSAgValidateAndSetEntryPoint(VCSAgEPClean, res_clean);

VCSAgSetLogCategory(2001);

char *s = setlocale(LC_ALL, NULL);

VCSAG_LOGDBG_MSG(VCS_DBG1, VCS_DEFAULT_FLAGS, "Locale is

%s", s);

}

Script entry point logging functions
For script based entry points, use the functions described in this section for message
logging purposes.

Note: Veritas recommends that you do not use the halog command in script entry
points.

The logging functions are available in the ag_i18n_inc module.

See “VCSAG_SET_ENVS” on page 128.VCSAG_SET_ENVS

See “VCSAG_LOG_MSG” on page 131.VCSAG_LOG_MSG

See “VCSAG_LOGDBG_MSG” on page 133.VCSAG_LOGDBG_MSG

127Logging agent messages
Script entry point logging functions

Using functions in scripts
The script-based entry points require a line that specifies the file defining the logging
functions. Include the following line exactly once in each script. The line should
precede the use of any of the log functions.

■ Shell Script include file

. "${CLUSTER_HOME}/bin/ag_i18n_inc.sh"

■ Perl Script include file

use ag_i18n_inc;

■ Python Script include file

from ag_i18n_inc import *;

VCSAG_SET_ENVS
The VCSAG_SET_ENVS function is used in each script-based entry point file. Its
purpose is to set and export environment variables that identify the agent's category
ID, the agent's name, the resource's name, and the entry point's name. With this
information set up in the form of environment variables, the logging functions can
handle messages and their arguments in the unified logging format without repetition
within the scripts.

The VCSAG_SET_ENVS function sets the following environment variables for a
resource:

Sets the category ID. For custom agents, Veritas assigns
the category ID.

See “UMI” on page 118.

NOTE: For bundled agents, the category ID is
pre-assigned, based on the platform (Solaris, Linux, or
AIX) for which the agent is written.

VCSAG_LOG_CATEGORY

128Logging agent messages
Script entry point logging functions

The absolute path to the agent.

For example:

UNIX: /opt/VRTSvcs/bin/resource_type

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation. If the
agent developer wishes, this agent name can also be hard
coded and passed as an argument to the
VCSAG_SET_ENVS function.

VCSAG_LOG_AGENT_NAME

The absolute path to the entry point script.

For example:

UNIX: /opt/VRTSvcs/bin/resource_type/online

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation. The
script name variable is can be overridden.

VCSAG_LOG_SCRIPT_NAME

The resource is specified in the call within the entry point:

VCSAG_SET_ENVS $resource_name

VCSAG_LOG_RESOURCE_NAME

VCSAG_SET_ENVS examples, Shell script entry points
The VCSAG_SET_ENVS function must be called before any of the other logging
functions.

■ A minimal call:

VCSAG_SET_ENVS ${resource_name}

■ Setting the category ID:

VCSAG_SET_ENVS ${resource_name} ${category_ID}

VCSAG_SET_ENVS ${resource_name} 1062

■ Overriding the default script name:

VCSAG_SET_ENVS ${resource_name} ${script_name}

VCSAG_SET_ENVS ${resource_name} "monitor"

■ Setting the category ID and overriding the script name:

129Logging agent messages
Script entry point logging functions

VCSAG_SET_ENVS ${resource_name} ${script_name}

${category_id}

VCSAG_SET_ENVS ${resource_name} "monitor" 1062

Or,

VCSAG_SET_ENVS ${resource_name} ${category_id}

${script_name}

VCSAG_SET_ENVS ${resource_name} 1062 "monitor"

VCSAG_SET_ENVS examples, Perl script entry points
■ A minimal call:

VCSAG_SET_ENVS ($resource_name);

■ Setting the category ID:

VCSAG_SET_ENVS ($resource_name, $category_ID);

VCSAG_SET_ENVS ($resource_name, 1062);

■ Overriding the script name:

VCSAG_SET_ENVS ($resource_name, $script_name);

VCSAG_SET_ENVS ($resource_name, "monitor");

■ Setting the category ID and overriding the script name:

VCSAG_SET_ENVS ($resource_name, $script_name, $category_id);

VCSAG_SET_ENVS ($resource_name, "monitor", 1062);

Or,

VCSAG_SET_ENVS ($resource_name, $category_id, $script_name);

VCSAG_SET_ENVS ($resource_name, 1062, "monitor");

130Logging agent messages
Script entry point logging functions

VCSAG_SET_ENVS examples, Python script entry points
■ A minimal call:

VCSAG_SET_ENVS (resource_name)

■ Setting the category ID:

VCSAG_SET_ENVS (resource_name, category_ID)

VCSAG_SET_ENVS (resource_name, 1062)

■ Overriding the script name:

VCSAG_SET_ENVS (resource_name, script_name)

VCSAG_SET_ENVS (resource_name, "monitor")

■ Setting the category ID and overriding the script name:

VCSAG_SET_ENVS (resource_name, script_name, category_id)

VCSAG_SET_ENVS (resource_name, "monitor", 1062)

Or,

VCSAG_SET_ENVS (resource_name, category_id, script_name)

VCSAG_SET_ENVS (resource_name, 1062, "monitor");

VCSAG_LOG_MSG
The VCSAG_LOG_MSG function can be used to log all messages ranging in severity
from CRITICAL to INFORMATION to the agent log file unless LogViaHalog attribute
is configured. If LogViaHalog is configured then messages will be logged using
halog command in the engine log.

Note: Messages of the entry points which runs in the container will be logged in
the engine log using halog command.

At a minimum, the function must include the severity, the message within quotes,
and amessage ID. Optionally, the function can also include parameters and specify
an encoding format.

131Logging agent messages
Script entry point logging functions

"C" - critical, "E" - error, "W" - warning, "N" - notice, "I" - information;
place error code in quotes

Severity Levels
(sev)

A text message within quotes; for example: "One file copied"Message (msg)

An integer between 0 and 65535Message ID
(msgid)

UTF-8, ASCII, or UCS-2 in the form: "-encoding format"Encoding Format

Parameters (up to six), each within quotesParameters

VCSAG_LOG_MSG examples, Shell script entry points
■ Calling a function without parameters or encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid>

VCSAG_LOG_MSG "C" "Two files found" 140

■ Calling a function with one parameter, but without encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid> "<param1>"

VCSAG_LOG_MSG "C" "$count files found" 140 "$count"

■ Calling a function with a parameter and encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid> "-encoding <format>"

"<param1>"

VCSAG_LOG_MSG "C" "$count files found" 140 "-encoding utf8"

"$count"

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOG_MSG examples, Perl script entry points
■ Calling a function without parameters or encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>);

VCSAG_LOG_MSG ("C", "Two files found", 140);

■ Calling a function with one parameter, but without encoding format:

132Logging agent messages
Script entry point logging functions

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "<param1>";

VCSAG_LOG_MSG ("C", "$count files found", 140, "$count");

■ Calling a a function with one parameter and encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "-encoding

<format>", "<param1>");

VCSAG_LOG_MSG ("C", "$count files found", 140, "-encoding

utf8", "$count");

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOG_MSG examples, Python script entry points
■ Calling a function without parameters or encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>)

VCSAG_LOG_MSG ("C", "Two files found", 140)

■ Calling a function with one parameter, but without encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "<param1>")

VCSAG_LOG_MSG("C", "{} files found".format(count), 140, str(count))

■ Calling a function with one parameter and encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "-encoding

<format>", "<param1>")

VCSAG_LOG_MSG("C", "{} files found".format(count), 140, "-encoding utf8",

str(count))

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOGDBG_MSG
The VCSAG_LOGDBG_MSG function can be used to log all debug messages to
the agent log file unless LogViaHalog attribute is configured. If LogViaHalog is
configured then messages will be logged using halog command in the engine log.

133Logging agent messages
Script entry point logging functions

At a minimum, the severity must be indicated along with a message. Optionally,
the encoding format and parameters may be specified.

Note: Messages of the entry points which runs in the container will be logged in
the engine log using halog command.

An integer indicating a severity level, 1 to 21.

See the Cluster Server Administrator's Guide for more information.

Severity (dbg)

A text message in quotes; for example: "One file copied"Message (msg)

UTF-8, ASCII, or UCS-2 in the form: "-encoding format"Encoding Format

Parameters (up to six), each within quotesParameters

VCSAG_LOGDBG_MSGexamples, Shell script entry points
■ Calling a function without encoding or parameters:

VCSAG_LOGDBG_MSG <dbg> "<msg>"

VCSAG_LOGDBG_MSG 1 "This is string number 1"

■ Calling a function with a parameter, but without encoding format:

VCSAG_LOGDBG_MSG <dbg> "<msg>" "<param1>"

VCSAG_LOGDBG_MSG 2 "This is string number $count" "$count"

■ Calling a function with a parameter and encoding format:

VCSAG_LOGDBG_MSG <dbg> "<msg>" "-encoding <format>" "$count"

VCSAG_LOGDBG_MSG 2 "This is string number $count" "$count"

VCSAG_LOGDBG_MSGexamples, Perl script entry points
■ Calling a function:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>");

VCSAG_LOGDBG_MSG (1 "This is string number 1");

■ Calling a function with a parameter, but without encoding format:

134Logging agent messages
Script entry point logging functions

VCSAG_LOGDBG_MSG (<dbg>, "<msg>", "<param1>");

VCSAG_LOGDBG_MSG (2, "This is string number $count",

"$count");

■ Calling a function with a parameter and encoding format:

VCSAG_LOGDBG_MSG <dbg> "<msg>" "-encoding <format>"

"<param1>"

VCSAG_LOGDBG_MSG (2, "This is string number $count",

"-encoding

utf8", "$count");

VCSAG_LOGDBG_MSG examples, Python script entry
points
■ Calling a function:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>")

VCSAG_LOGDBG_MSG (1, "This is string number 1")

■ Calling a function with a parameter, but without encoding format:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>", "<param1>")

VCSAG_LOGDBG_MSG(2, "This is string number {}".format(count),

str(count))

■ Calling a function with a parameter and encoding format:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>", "-encoding <format>",

"<param1>")

VCSAG_LOGDBG_MSG(2, "This is string number {}".format(count), "-encoding utf8",

str(count))

Example of logging functions used in a script agent
The following example shows the use of VCSAG_SET_ENVS and
VCSAG_LOG_MSG functions in a shell script for the online entry point.

135Logging agent messages
Script entry point logging functions

!#/bin/ksh

ResName=$1

Parse other input arguments

:

:

VCS_HOME="${VCS_HOME:-/opt/VRTSvcs}"

. $VCS_HOME/bin/ag_i18n_inc.sh

Assume the category id assigned by Veritas for this custom

agent #is 10061

VCSAG_SET_ENVS $ResName 10061

Online entry point processing

:

:

Successful completion of the online entry point

VCSAG_LOG_MSG "N" "online succeeded for resource $ResName" 1

"$ResName"

exit 0

136Logging agent messages
Script entry point logging functions

Building a custom agent
This chapter includes the following topics:

■ Files for use in agent development

■ Creating the type definition file for a custom agent

■ Building a custom agent on UNIX

■ Installing the custom agent

■ Defining resources for the custom resource type

■ Agent framework versions details

Files for use in agent development
The VCS installation program provides the Script agents and C++ agents to aid
agent development

Script based agent binaries
These are ready to use agent binaries which has in-built VCSAgStartup function
implemented. These binaries are located in the directory $VCS_HOME/bin.

Following is the list of all script based agent binaries that user can use to build agent

■ ScriptAgent with agent framework version V40

■ Script50Agent with agent framework version V50

■ Script51Agent with agent framework version V51

■ Script60Agent with agent framework version V60

For details on the features added in each these agent frame work version please
refer:

6Chapter

See “Agent framework versions details” on page 153.

VCS does not support agents that lower then agent version V40. Please refer to
Guidelines for using pre-VCS 4.0 Agents chapter for using ScriptAgent to work with
older agent’s entry point.

See “Guidelines for using pre-VCS 4.0 Agents” on page 231.

C++ based agent binaries
The VCS installation program provides the following C++ files to aid agent
development:

Table 6-1 C++ Agents

PathnameDescription

UNIX: $VCS_HOME/src/agent/SampleDirectory
containing a
sample C++ agent
and Makefile.

UNIX: $VCS_HOME/src/agent/Sample/MakefileSample Makefile
for building a C++
agent.

UNIX: $VCS_HOME/src/agent/Sample/agent.CEntry point
templates for C++
agents.

Creating the type definition file for a custom agent
The agent you create requires a resource type definition file. This file performs the
function of providing a general type definition of the resource and its unique
attributes.

Naming convention for the type definition file
For example, for the resource type XYZ on Solaris, the file would be
XYZTypes.sun.cf.

Name the resource type definition file following the convention
resource_typeTypes.cf. For example, for the resource type XYZ, the file would
be XYZTypes.cf.

138Building a custom agent
Creating the type definition file for a custom agent

Example: FileOnOffTypes.cf
An example types configuration file for the FileOnOff resource:

// Define the resource type called FileOnOff (in

FileOnOffTypes.cf).

type FileOnOff (

str PathName;

static str ArgList[] = { PathName };

)

Example: Type definition for a custom agent that supports intentional
offline

type MyCustomApp (

static int IntentionalOffline = 1

static str ArgList[] = { PathName, Arguments }

str PathName

str Arguments

)

Requirements for creating the agentTypes.cf file
As you examine the previous example, note the following aspects:

■ The name of the agent

■ The ArgList attribute, its name, type, dimension, and its values, which consist
of the other attributes of the resource

■ The remaining attributes (in this example case there is only the PathName

attribute), their names, types, dimensions, and descriptions.

Adding the custom type definition to the configuration
You can add the custom type definition to the configuration.

To add the custom type definition to the configuration

1 Once you create the file, place it in the directory:

UNIX: $VCS_CONF/conf/config

2 Add "include FileOnOffTypes.cf" in the main.cf file.

3 Restart VCS.

139Building a custom agent
Creating the type definition file for a custom agent

Building a custom agent on UNIX
The following sections describe different ways to build an agent, using the
"FileOnOff" resource as an example. For test purposes, instructions for installing
the agent on a single system are also provided.

Note: The glibc-devel development package is required for compiling the agent
binaries.

The examples assume:

■ VCS is installed under /opt/VRTSvcs by default. If your installation directory is
different, change VCS_HOME accordingly.

■ You have created a FileOnOff type definition file.
See “Creating the type definition file for a custom agent” on page 138.

Note the following about the FileOnOff agent entry points. A FileOnOff resource
represents a regular file.

■ The FileOnOff online entry point creates the file if it does not already exist.

■ The FileOnOff offline entry point deletes the file.

■ The FileOnOff monitor entry point returns online and confidence level 100 if
the file exists; otherwise, it returns offline.

Implementing entry points using scripts
If entry points are implemented using scripts, the script file must be placed in the
directory $VCS_HOME/bin/resource_type. It must be named correctly.

See “About creating entry points in scripts” on page 89.

If all entry points are scripts, all scripts should be in the directory
$VCS_HOME/bin/resource_type.

Copy the script based agent binary into the agent directory as
$VCS_HOME/bin/resource_type/resource_typeAgent.

See “Script based agent binaries” on page 137.

For example, if the online entry point for Oracle is implemented using Perl, the
online script must be: $VCS_HOME/bin/Oracle/online.

We also recommend naming the agent binary resource_typeAgent. Place the
agent in the directory $VCS_HOME/bin/resource_type.

140Building a custom agent
Building a custom agent on UNIX

The agent binary for Oracle would be $VCS_HOME/bin/Oracle/OracleAgent, for
example.

If the agent file is different, for example /foo/ora_agent, the types.cf file must
contain the following entry:

...

Type Oracle (

...

static str AgentFile = "/foo/ora_agent"

...

)

Example: Using script entry points on UNIX
The following example shows how to build the FileOnOff agent using scripts. For
the below example, we are using Script51Agent script based agent binary.This
example implements the online, offline, and monitor entry points only.

See “Script based agent binaries” on page 137.

Example: implementing entry points using scripts

1 Create the directory /opt/VRTSvcs/bin/FileOnOff:

mkdir /opt/VRTSvcs/bin/FileOnOff

2 Use the VCS agent /opt/VRTSvcs/bin/Script51Agent as the FileOnOff agent.
Copy this file to the following path:

/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

or create a link.

To copy the agent binary:

cp /opt/VRTSvcs/bin/Script51Agent

/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

To create a link to the agent binary:

ln -s /opt/VRTSvcs/bin/Script51Agent

/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

3 Implement the online, offline, and monitor entry points using scripts. Use
any editor.

■ Create the file /opt/VRTSvcs/bin/FileOnOff/online with the contents:

141Building a custom agent
Building a custom agent on UNIX

!/bin/sh

Create the file specified by the PathName

attribute.

touch $4

exit 0

■ Create the file /opt/VRTSvcs/bin/FileOnOff/offline with the contents:

!/bin/sh

Remove the file specified by the PathName

attribute.

rm $4

exit 0

■ Create the file /opt/VRTSvcs/bin/FileOnOff/monitor with the contents:

!/bin/sh

Verify file specified by the PathName attribute

exists.

if test -f $4

then

exit 110;

else

exit 100;

fi

4 Additionally, you can implement the info and action entry points. For the
action entry point, create a subdirectory named "actions" under the agent
directory, and create scripts with the same names as the action_tokens within
the subdirectory.

Example: Using VCSAgStartup() and script entry points on UNIX
The following example shows how to build the FileOnOff agent using your own
VCSAgStartup function. This example implements the VCSAgStartup, online,
offline, and monitor entry points only.

142Building a custom agent
Building a custom agent on UNIX

To implement the agent using VCSAgStartup function and script entry points

1 Create the following directory:

mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the sample agent directory to the directory you created
in the previous step:

cp -r /opt/VRTSvcs/src/agent/Sample/*

/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:

cd /opt/VRTSvcs/src/agent/FileOnOff

4 Edit the file agent.C and modify the VCSAgStartup() function (the last several
lines) to match the following example:

void VCSAgStartup() {

VCSAgInitEntryPointStruct(V51);

// Do not configure any entry points because ♠

// this example does not implement any of them

// using C++.

VCSAgSetLogCategory(10041);

}

5 Compile agent.C and build the agent by invoking GNU make. (Makefile is
provided.)

gmake

6 Create a directory for the agent:

mkdir /opt/VRTSvcs/bin/FileOnOff

7 Install the FileOnOff agent.

make install AGENT=FileOnOff

8 Implement the online, offline, and monitor entry points.

See Example: Using script entry points on UNIX.

143Building a custom agent
Building a custom agent on UNIX

Implementing entry points using C++
You can implement entry points by using C++.

To implement entry points by using C++

1 Edit agent.C to customize the implementation; agent.C is located in the
directory $VCS_HOME/src/agent/Sample.

2 After completing the changes to agent.C, invoke the make command to build
the agent. The command is invoked from $VCS_HOME/src/agent/Sample,
where the Makefile is located.

3 Name the agent binary: resource_typeAgent.

4 Place the agent in the directory $VCS_HOME/bin/resource_type.

For example, the agent binary for Oracle would be
$VCS_HOME/bin/Oracle/OracleAgent.

Example: Using C++ entry points on UNIX
The example in this section shows how to build the FileOnOff agent using your own
VCSAgStartup function and the C++ version of online, offline, and monitor entry
points. This example implements the VCSAgStartup, online, offline, and monitor
entry points only.

144Building a custom agent
Building a custom agent on UNIX

To use VCSAgStartup and C++ entry points

1 Edit the file agent.C and modify the VCSAgStartup() function (the last several
lines) to match the following example:

// Description: This functions registers the entry points //

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor, res_monitor);

VCSAgValidateAndSetEntryPoint(VCSAgEPOnline, res_online);

VCSAgValidateAndSetEntryPoint(VCSAgEPOffline, res_offline);

}

145Building a custom agent
Building a custom agent on UNIX

2 Modify res_online():

// This is a C++ implementation of the online entry

// point for the FileOnOff resource type. This function

// brings online a FileOnOff resource by creating the

// corresponding file. It is assumed that the complete

// pathname of the file will be passed as the first

// ArgList attribute.

unsigned int res_online(const char *res_name, void **attr_val) {

int fd = -1;

int ret = 0;

char *pathname = NULL;

VCSAG_LOG_INIT("res_online");

/*

* Get PathName attribute form attr_val parameter, passed to

res_online function and store

* it under pathname variable.

*

*/

if (NULL == pathname) {

return 0;

}

VCSAG_LOGDBG_MSG(VCS_DBG2, VCS_DEFAULT_FLAGS,

"Creating file %s", pathname);

if ((fd = open(pathname, S_IRUSR|S_IWUSR)) < 0) {

VCSAG_LOG_MSG(VCS_ERROR, 2003, VCS_DEFAULT_FLAGS,

"Attempt to create the file failed with errno=%d",

errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 2003, VCS_DEFAULT_FLAGS,

"Attempt to create the file failed with errno=%d",

errno);

} else {

close(fd);

}

146Building a custom agent
Building a custom agent on UNIX

return 0;

}

3 Modify res_offline():

// Function: res_offline

// Description: This function deletes the file //

unsigned int res_offline(const char *res_name, void **attr_val)

{

char *pathname = NULL;

VCSAG_LOG_INIT("res_offline");

/*

* Get PathName attribute form attr_val parameter, passed to

res_offline function and store

* under pathname variable.

*

*/

if (NULL == pathname) {

return 0; /* success: nothing to remove */

}

VCSAG_LOGDBG_MSG(VCS_DBG2, VCS_DEFAULT_FLAGS,

"Removing file %s", pathname);

if ((0 != remove(pathname)) && (ENOENT != errno)) {

VCSAG_LOG_MSG(VCS_ERROR, 2002, VCS_DEFAULT_FLAGS,

"Attempt to remove the file failed with errno=%d",

errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 2002, VCS_DEFAULT_FLAGS,

"Attempt to remove the file failed with errno=%d",

errno);

return 1; /* failure: attempt to remove failed */

}

return 0; /* success: file removed */

}

147Building a custom agent
Building a custom agent on UNIX

4 Modify the res_monitor(), function.

See Example: Using C++ and script entry points on UNIX.

5 Compile agent.C and build the agent by invoking make. (Makefile is provided.)

make

6 Create the directory for the agent binaries:

mkdir /opt/VRTSvcs/bin/FileOnOff

7 Install the FileOnOff agent.

make install AGENT=FileOnOff

Example: Using C++ and script entry points on UNIX
The following example shows how to build the FileOnOff agent using your own
VCSAgStartup function, the C++ version of the monitor entry point, and script
versions of online and offline entry points. This example implements the
VCSAgStartup, online, offline, and monitor entry points only.

To implement the agent using VCSAgStartup, C++, and script entry points

1 Create a directory for the agent:

mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the sample agent to the directory you created in the
previous step:

cp -r /opt/VRTSvcs/src/agent/Sample/*

/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:

cd /opt/VRTSvcs/src/agent/FileOnOff

148Building a custom agent
Building a custom agent on UNIX

4 Edit the file agent.C and modify the VCSAgStartup()function (the last several
lines) to match the following example:

// Description: This functions registers the entry points //

void VCSAgStartup()

{

VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory(10051);

VCSAgInitEntryPointStruct(V51);

VCSAgValidateAndSetEntryPoint(VCSAgEPMonitor, res_monitor);

}

149Building a custom agent
Building a custom agent on UNIX

5 Modify the res_monitor() function:

// Function: res_monitor

// Description: Determine if the given file is online (file exists)

// or offline (file does not exist).

VCSAgResState res_monitor(const char *res_name, void

**attr_val, int *conf_level)

{

int ret = 0;

char *pathname = NULL;

struct stat64 stat_buf;

VCSAgResState state = VCSAgResUnknown;

VCSAG_LOG_INIT("res_monitor");

/*

* Get PathName attribute form attr_val parameter, passed to

res_offline function and store

* under pathname variable.

*

*/

if (NULL == pathname) {

return VCSAgResUnknown;

}

VCSAG_LOGDBG_MSG(VCS_DBG2, VCS_DEFAULT_FLAGS,

"Checking if file %s exists or not", pathname);

if (0 == stat64(pathname, &stat_buf)) {

/*

* If the pathname is a directory, return status as unknown

*/

if (S_ISDIR(stat_buf.st_mode) != 0) {

VCSAG_LOG_MSG(VCS_ERROR, 2004, VCS_DEFAULT_FLAGS,

"%s is a directory", pathname);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 2004,

VCS_DEFAULT_FLAGS,

"%s is a directory", pathname);

*conf_level = 0;

return VCSAgResUnknown;

150Building a custom agent
Building a custom agent on UNIX

}

*conf_level = 100;

return VCSAgResOnline;

}

*conf_level = 0;

return VCSAgResOffline;

}

6 Compile agent.C and build the agent by invoking make. (Makefile is provided.)

make

7 Build the script entry points for the agent.

See Example: Using script entry points on UNIX

8 Create a directory for the agent:

mkdir /opt/VRTSvcs/bin/FileOnOff

9 Install the FileOnOff agent.

Installing the custom agent
You can install the custom agent in one of the following directories.

On UNIX:

■ /opt/VRTSvcs/bin/custom_type/

■ /opt/VRTSagents/ha/bin/custom_type/

■ A user-defined directory. For example /myagents/custom_type/. Note that you
must configure the AgentDirectory attribute for this option.

Make sure you create the custom_type directory at only one of these locations.

Add the agent binary and the script entry points to the custom_type directory.

Note: To package the agent, see the documentation for the operating system.
When setting up the Solaris pkginfo file for the installation of agents that are to run
in zones, set the following variable: SUNW_PKG_ALLZONES=true.

151Building a custom agent
Installing the custom agent

Defining resources for the custom resource type
When you have created a type definition for the resource and created an agent for
it, you can begin to use the agent to control specific resources by adding the
resources of the custom type and assigning values to resource attributes.

You can add resources and configure attribute values in the main.cf file.

See the Cluster Server User's Guide for more information.

Sample resource definition
In the VCS configuration file, main.cf, a specific resource of the FileOnOff resource
type may resemble

include types.cf

.

.

.

FileOnOff temp_file1 (

PathName = "/tmp/test"

)

The type FileOnOff is defined in the file types.cf. The file types.cf is included in
main.cf using the include directive.The resource defined in the main.cf file
specifies:

■ The resource type: FileOnOff

■ The name of the resource, temp_file1

■ The name of the attribute, PathName

■ The value for the PathName attribute:

On UNIX:"/tmp/test"

When the resource temp_file1 is brought online on a system by VCS, the FileOnOff
agent creates a file "test" in the specified directory on that system.

How the FileOnOff agent uses configuration information
The information in the VCS configuration is passed by the engine to the FileOnOff
agent when the agent starts up on a node in the cluster. The information passed
to the agent includes: the names of the resources of the type FileOnOff configured

152Building a custom agent
Defining resources for the custom resource type

on the system, the corresponding resource attributes, and the values of the attributes
for all of the resources of that type. It also sends all the attribute and their repective
value details to the agent.

Thereafter, to bring the resource online, for example,VCS can provide the agent
with the name of the entry point (online) and the name of the resource
(temp_file01). The agent then calls the entry point and provides the resource
name and values for the attributes in the ArgList to the entry point. The entry point
performs its tasks.

Agent framework versions details
The following table describes the various agent binaries and its functions.

DescriptionAgent binary

The support for action and info entry point is
available for agents with agent version V40
or later.

See “About the info entry point” on page 30.

See “About the action entry point”
on page 29.

Agent version V40

The AEPTimeout attribute feature is available
for agents registered with version V50 or later.

See “AEPTimeout” on page 179.

Support for positional independent
ArgListValues is available in agent framework
version V50 and later.

See “About the ArgList and ArgListValues
attributes” on page 43.

The container support on AIX and Solaris is
available in agent framework version V50 or
later for containers solaris zones, solaris
project and aix wpars.

See “ContainerOpts” on page 183.

Agent version V50

153Building a custom agent
Agent framework versions details

DescriptionAgent binary

Intentional offline and IMF features are
available for agents framework version V51
or later.

See “IntentionalOffline” on page 188.

See “About intelligent monitoring framework
(IMF) ” on page 15.

There are three new entry points for this
feature

■ imf_init
■ imf_register
■ imf_getnotificaiton

See “About building a script based IMF-aware
custom agent” on page 155.

Agent version V51

Metering and migration features are available
in the agent framework version V60. Entry
points meters and migrate is added with this
feature.

See “About the migrate entry point”
on page 35.

See “About the meter entry point” on page 35.

Note: Veritas recommends using the latest
agent version.

Agent version V60

154Building a custom agent
Agent framework versions details

Building a script based
IMF-aware custom agent

This chapter includes the following topics:

■ About building a script based IMF-aware custom agent

■ Linking AMF plugins with script agent

■ Creating XML file required for AMF plugins to do resource registration for online
and offline state monitoring

■ Adding IMF and IMFRegList attributes in configuration

■ Monitor without IMF integration

■ Monitor without IMF but with LevelTwo monitor frequency

■ Monitor with IMF integration

■ Monitor with IMF but with LevelTwo monitor frequency

■ Installing the IMF-aware script-based custom agent

About building a script based IMF-aware custom
agent

This chapter explains how you can build a script-based IMF-aware custom agent.
VCS supports only process and script-based IMF-aware custom agents from VCS
6.0.1 and later release. The process to build a custom agent (without IMF) is similar
to what is described in the previous chapter.

The following IMF entry points have been introduced in VCS 5.1SP1 to enable IMF
for intelligent monitoring:

7Chapter

■ imf_init

■ imf_register

■ imf_getnotification

You must use the above-stated IMF entry points along with the other entry points
if you want the IMF feature enabled for your custom agent. Veritas supports only
the AMF plugins while implementing these entry points.

See “About agent entry points” on page 24.

See “Syntax for the imf_init script ” on page 94.

See “Syntax for the imf_register script ” on page 94.

See “Syntax for the imf_getnotification script ” on page 95.

Building a script based IMF-aware agent involves the following steps:

1. Linking AMF plugins with the script agent.

2. Creating XML file (amfregister.xml) required for AMF plugins to do resource
registration for online and offline state monitoring.

3. Adding IMF and IMFRegList attributes in configuration files

See “Adding IMF and IMFRegList attributes in configuration” on page 164.

4. Installing the custom script based agent to enable IMF. See “Installing the
IMF-aware script-based custom agent” on page 169.

Linking AMF plugins with script agent
Change the current working directory to agent specific directory, and in the agent
specific directory, create symbolic links (soft links) to the AMF plugins using the
following commands:

ln –s /opt/VRTSamf/imf/imf_init imf_init

ln –s /opt/VRTSamf/imf/imf_register imf_register

ln –s /opt/VRTSamf/imf/imf_getnotification imf_getnotification

Creating XML file required for AMF plugins to do
resource registration for online and offline state
monitoring

Create the amfregister.xml file that is used by imf_register entry point to do
registration of process-based resource for online and offline monitoring with AMF.

156Building a script based IMF-aware custom agent
Linking AMF plugins with script agent

Since imf_register entry point is a generic script used by different agents to register
resources for online and offline monitoring, you must specify what needs to be
registered for a resource of a particular type with the help of amfregister.xml. You
can refer the following table description to know about the tags used in
amfregister.xml.

Table 7-1 Common tags for the amfregister.xml file

DescriptionTag name

This tag is used to specify the type of registration. This tag is common
between PRON and PROFF - specific tags.

Set it to PROFF to do resource registration with AMF for process offline
monitoring.

Set it to PRON to do resource registration with AMF for process online
monitoring.

RegType

It contains the reaper name (type name) for the agent. Agent will be
registered with this name in the IMF notification module.

ReaperName

Table 7-2 PRON-specific tags

DescriptionTag name

Indicates how the process-based resource shows up in the process table. The specified
ProcPattern is searched in the process table and the corresponding pid is registered with AMF
for online monitoring.

ProcPattern

Specifies additional options for ProcPattern matching. If it is set to IGNORE_ARGS, the value
specified in ProcPattern is considered as the process path. While matching against the process
table entries, only the process path is matched against the ProcPattern. The pid of the matching
process is registered with AMF.

If PronOptions is set to IGNORE_PATH, the value mentioned in the ProcPattern is considered
as the process name followed by the process args. While matching against the process table
entries, only the base name of the process path and the process args are matched against
ProcPattern. The pid of the matching process is registered with AMF.

If the PronOptions is set to IGNORE_ARGS IGNORE_PATH, the value mentioned in the
ProcPattern is considered as just the process name.While matching against the process table
entries, only the base name of the process path is matched against the process name
mentioned in the ProcPattern. The arguments of the process are not considered. The pid of
the matching process is registered with AMF.

PronOptions

157Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Table 7-3 PROFF-specific tags

DescriptionTag name

It is the user who executes this process. The UID and GID of this user are used to register
the PROFF event with AMF.

Owner

Complete path of the binary.Path

Name with which the binary is executed. If it is executed with the complete path, you need
not provide this.

arg0

This is used to further refine the matching behavior of arg0. The string specified in arg0 (for
example: string A) is searched inside the arg0 of the process that is being matched against
(for example: string PA). This can have the following values:

■ FREE: Look for string A in string PA using a free substring match operation.
■ BOUNDLEFT: Look for string A in string PA using a left-bounded substring match operation.
■ BOUNDRIGHT: Look for string A in string PA using a right-bounded substring match

operation.
■ EXACT: String A must exactly match string PA.

If arg0flag is not provided, the default value for arg0flag is considered as EXACT.

Note: BOUNDLEFT and BOUNDRIGHT can be specified together, separated by a space.
BOUNDLEFT and BOUNDRIGHT specified together is not the same as EXACT.

arg0flag

Arguments with which the binary is executed. This is used for matching while finding the
process in the process table. Here it looks for exact match.

args

Apart from the default exact match of the arguments, you can specify a list of substrings that
must appear in the argument list of the process that is being matched against.

Using the ArgsSubString tag, you can specify one substring. You can specify up to 8 such
substrings.

Note: If ArgsSubString is provided, you must not provide args.

ArgsSubString

For each substring specified, you can specify additional flags to control the matching behavior.
Each substring specified (for example: string SS) is searched inside args of the process that
is being matched against (for example: string PA).

■ FREE: Look for string SS in string PA using a free substring match operation.
■ BOUNDLEFT: Look for string SS in string PA using a left-bounded substring match

operation.
■ BOUNDRIGHT: Look for string SS in string PA using a right-bounded substring match

operation.
Every ArgsSubString shall have a corresponding ArgsSubStringFlag. If no
ArgsSubStringFlag is provided, the default flag is FREE.

ArgsSubStringFlag

158Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Table 7-3 PROFF-specific tags (continued)

DescriptionTag name

This tag is used to control the behavior of overall substring matching.

It can have the following values:

■ MATCH_ALL: Match all substrings specified.
■ MATCH_ANY: Match any of the substrings specified.
■ IGNORE_ARGS: Ignore the args completely. You must not provide this if ArgsSubString

or args tags are provided.
A set of zero or more ArgsSubString and ArgsSubStringFlag tags can be followed by an
optional tag ArgsFlag. If no ArgsFlag is provided, MATCH_ALL is considered as the default
value for ArgsFlag.

ArgsFlag

Example of amfregister.xml for registration of process-based resource
with AMF for online monitoring

Assuming the process in the ps output is displayed as follows, you can use the
subsequent steps to register a process-based resource for online monitoring:

"/usr/sbin/rpc.statd -d 0 -t 50"

1. If you are sure about the path and arguments, you must specify your process
in the following format in the amfregister.xml file:

<xml>

<Register>

<RegType>PRON</RegType>

<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>

</Register>

</xml>

2. If you are not sure about the arguments but are sure about the path, you must
specify your process in the following format in the amfregister.xml file:

<xml>

<Register>

<RegType>PRON</RegType>

<PronOptions>IGNORE_ARGS</PronOptions>

<ProcPattern>/usr/sbin/rpc.statd</ProcPattern>

</Register>

</xml>

159Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Note: If there are more than one processes or instances with different
arguments, all get registered.

For example:

"/usr/sbin/rpc.statd -d 0 -t 50"

"/usr/sbin/rpc.statd -xyz"

Both the above processes get registered with AMF.

3. If you are not sure about the path but are sure about the arguments, you must
use the following format of the amfregister.xml:

<xml>

<Register>

<RegType>PRON</RegType>

<PronOptions>IGNORE_PATH</PronOptions>

<ProcPattern>rpc.statd -d 0 -t 50</ProcPattern>

</Register>

</xml>

Note: If there are more than one processes/instances with different paths, all
get registered.

For example:

"/usr/sbin/rpc.statd -d 0 -t 50"

"/home/<testuser>/rpc.statd -d 0 -t 50"

4. If you are not sure about the path or the arguments, you must use the following
format of the amfregister.xml:

<xml>

<Register>

<RegType>PRON</RegType>

<PronOptions>IGNORE_ARGS IGNORE_PATH</PronOptions>

<ProcPattern>rpc.statd</ProcPattern>

</Register>

</xml>

160Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Note: If there are more than one processes with the same base name, all get
registered irrespective of the path and arguments.

For example:

"/usr/sbin/rpc.statd -d 0"

"/home/<testuser>/rpc.statd -d 0 -t 50"

Example of amfregister.xml for registration of process-based resource
with AMF for offline monitoring

■ Example 1:

■ Process name: xyz

■ Complete path of the process: /MyHome/veritas/xyz

■ Arguments: -p abc -t qwe -m40

■ Process owner : vcsuser

<xml>

<Register>

<RegType>PROFF</RegType>

<Owner>vcsuser</Owner>

<Path>/MyHome/veritas/xyz</Path>

<arg0>xyz</arg0>

<args>-p abc -t qwe -m40</args>

</Register>

</xml>

■ Example 2: To register a process-based resource with AMF for offline monitoring
assuming OwnerName and HomeDir as VCS attributes the amfregister.xml has
the following format:

<xml>

<Register>

<RegType>PROFF</RegType>

<Owner>${OwnerName}</Owner>

<Path>${HomeDir}/veritas/xyz</Path>

<arg0>xyz</arg0>

<args>-p abc -t qwe -m40</args>

161Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

</Register>

</xml>

■ Example 3: To register a process-based resource with AMF for offline monitoring
using substring matching for the arguments:

■ Process: xyz

■ Complete path of the process: /MyHome/veritas/xyz

■ Arguments substrings:

■ -t qwe with left bounded substring matching

■ -m 40 with right bounded substring matching

■ Argument flags: Match any of the substring

<xml>

<Register>

<RegType>PROFF</RegType

<Path>/MyHome/veritas/xyz</Path>

<arg0>xyz</arg0>

<arg0flag>EXACT</arg0flag>

<ArgsSubString>-t qwe</ArgsSubString>

<ArgsSubStringFlag>BOUNDLEFT</ArgsSubStringFlag>

<ArgsSubString>-m 40</ArgsSubString>

<ArgsSubStringFlag>BOUNDRIGHT</ArgsSubStringFlag>

<ArgsFlag>MATCH_ANY</ArgsFlag>

</Register>

</xml>

Example of amfregister.xml for online and offline IMF monitoring for
a given process

To register a process-based resource with AMF for online and offline monitoring
with:

■ Path: /opt/VRTSamf/bin/amfstat

■ argv0: amfstat

■ args: -s 5

<xml>

<Register>

162Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

<RegType>PRON</RegType>

<ProcPattern>/opt/VRTSamf/bin/amfstat -s 5</ProcPattern>

</Register>

<Register>

<RegType>PROFF</RegType>

<Path>/opt/VRTSamf/bin/amfstat</Path>

<arg0>amfstat</arg0>

<args>-s 5</args>

</Register>

</xml>

Examples for adding RepearName tag in amfregister.xml
The RepearName tag can be added both manually and automatically in the
amfregister.xml.

■ Adding ReaperName tag automatically
The tag is created automatically when imf_init for the agent is called for the first
time if not already present.
For example, if the type name is CFSMount, the amfregister.xml will have
following lines:

<xml>

<!--ReaperName tag has been added by imf_init entry point-->

<ReaperName>CFSMount</ReaperName>

<Register>

<RegType>PRON</RegType>

<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>

</Register>

</xml>

■ Adding ReaperName tag manually
Agent Developer may also choose to add this tag manually. In this case, imf_init
will not update amfregister.xml.
For example, if the reaper name (type of the resource) is Process, the xml file
will look as follows:

<xml>

<ReaperName>Process</ReaperName>

163Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

<Register>

<RegType>PRON</RegType>

<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>

</Register>

</xml>

Adding IMF and IMFRegList attributes in
configuration

You need to add IMF and IMFRegList attribute in configuration files. Adding
IMFRegList is optional.

See “IMF” on page 186.

See “IMFRegList” on page 187.

To add these attributes, you can either modify the configuration file if VCS is not
running or modify the running configuration by ha - command if VCS is running.
Refer to the following examples for this purpose.

Example of type definition for a custom agent to supports IMF when VCS is not
running:

type MyCustomIMFApp (

static int IMF{} = { Mode=3, MonitorFreq=1, RegisterRetryLimit=3 }

static str IMFRegList[] = { PathName, Arguments }

static str ArgList[] = { PathName, Arguments, HomeDir }

str PathName

str Arguments

str HomeDir

)

Example of modify configuration for a custom agent to supports IMF when VCS is
running:

Command to add IMF attribute:

haattr -add -static IMF MyCustomIMFApp -integer -assoc Mode 3

MonitorFreq 1 RegisterRetryLimit 3

Command to add IMFRegList attribute:

164Building a script based IMF-aware custom agent
Adding IMF and IMFRegList attributes in configuration

haattr -add -static Zone IMFRegList -string -vector PathName,

Arguments

See “IMFRegList” on page 187.

You can modify these IMF attribute values at the Agent Type or Resource level to
suite your requirement. The following example describes how you can modify the
values for Mode attribute.

In case of Online only Monitoring (PRON), Mode value can be set to 2. Run
the following commands at the respective levels to modify the Mode value:

1 At the type level:

hatype -display <resource-type> -attribute IMF

#Type Attribute Value

CustomProcess IMF Mode 3 MonitorFreq 1 RegisterRetryLimit 3

hatype -modify <resource-type> IMF -update Mode 2

hatype -display <resource-type> -attribute IMF

#Type Attribute Value

CustomProcess IMF Mode 2 MonitorFreq 1 RegisterRetryLimit 3

2 At the Resource level, first check that whether static attribute IMF is overridden
or not.

hares -display <resource-name> -attribute IMF

VCS WARNING V-16-1-10554 No resource exists with attribute IMF

In case not overridden , you can now override static attribute IMF at resource
level using following command:

hares -override <resource-name> IMF

hares -display <resource-name> -attribute IMF

#Resource Attribute System Value

pres1 IMF global Mode 3 MonitorFreq 1 RegisterRetryLimit 3

hares -modify pres1 IMF -update Mode 2

hares -display pres1 -attribute IMF

#Resource Attribute System Value

pres1 IMF global Mode 2 MonitorFreq 1 RegisterRetryLimit 3

165Building a script based IMF-aware custom agent
Adding IMF and IMFRegList attributes in configuration

Monitor without IMF integration
Monitor without IMF integration and having basic (Level-1) monitoring:

#!/bin/sh

CustomAgent Monitor script

. $VCS_HOME/bin/ag_i18n_inc.sh

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

Logic for custom agent resource monitoring.

Based on logic set STATE to "OFFLINE" or "ONLINE"

if resource is found in either OFFLINE or ONLINE state.

if [${STATE} = "OFFLINE"]

then

exit ${STATE}

fi

Monitor without IMF but with LevelTwo monitor
frequency

If the custom agent monitor does the basic as well as detail monitoring, then detail
monitoring code must be conditional. This avoids scheduling of detail monitoring if
not required. VCSAG_GET_MONITOR_LEVEL API can be used to check if detail
monitoring needs to be scheduled.

VCSAG_GET_MONITOR_LEVEL API fetches and sets the values of the
LevelTwoMonitorFreq attribute.

#!/bin/sh

CustomAgent Monitor script

. $VCS_HOME/bin/ag_i18n_inc.sh

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

STATE=${VCS_RES_ONLINE};

Fetch the value of detail (Level-2) monitoring.

VCSAG_GET_MONITOR_LEVEL will store this values in

VCSAG_MONITOR_LEVEL_TWO environment.

VCSAG_GET_MONITOR_LEVEL();

166Building a script based IMF-aware custom agent
Monitor without IMF integration

Logic for custom agent basic monitoring.

Based on logic set STATE to OFFLINE or ONLINE

if basic monitoring of the resource state that resource is ONLINE,

check if detail monitoring (Level-2) need to be performed.

if [${STATE} -eq ${VCS_RES_ONLINE}]; then

if [${VCSAG_MONITOR_LEVEL_TWO} -ne 0]; then

Logic for custom agent detail monitoring.

Based on logic return OFFLINE or ONLINE

If resource is found as OFFLINE

STATE = ${VCS_RES_OFFLINE};

If resource is found as ONLINE

STATE = ${VCS_RES_ONLINE};

fi

fi

exit $(STATE);

Monitor with IMF integration
If the custom agent monitor does only basic monitoring, then you need not make
any changes in the existing monitor entry point.

#!/bin/sh

CustomAgent Monitor script

. $VCS_HOME/bin/ag_i18n_inc.sh

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

Logic for custom agent resource monitoring.

Based on logic set STATE to "OFFLINE" or "ONLINE"

if resource is found in either OFFLINE or ONLINE state.

if [${STATE} = "OFFLINE"]

then

exit ${STATE}

fi

167Building a script based IMF-aware custom agent
Monitor with IMF integration

if [${STATE} = "ONLINE"]

then

exit ${STATE}

fi

Monitor with IMF but with LevelTwo monitor
frequency

If the custom agent monitor does the basic as well as detail monitoring, then the
basic monitoring code must be conditional. This avoids scheduling of basic
monitoring if only detail monitoring is required to be scheduled.
VCSAG_GET_MONITOR_LEVEL api can be used to check if basic, detail or both
monitoring is required to be scheduled.

Using api VCSAG_GET_MONITOR_LEVELmonitor entry point can decides whether
to perform basic and detail monitoring based on the values of MonitorFreq and
LevelTwoMonitorFreq attributes respectively.

#!/bin/sh

CustomAgent Monitor script

. $VCS_HOME/bin/ag_i18n_inc.sh

RESNAME=$1

VCSAG_SET_ENVS $RESNAME

STATE=${VCS_RES_ONLINE};

Fetch the value of basic (Level-1) and detail (Level-2) monitoring.

VCSAG_GET_MONITOR_LEVEL will store these values in

VCSAG_MONITOR_LEVEL_ONE and CSAG_MONITOR_LEVEL_TWO environment.

VCSAG_GET_MONITOR_LEVEL();

Check if basic monitoring (Level-1) need to be performed.

if [${VCSAG_MONITOR_LEVEL_ONE} -ne 0]; then

Logic for custom agent basic monitoring.

Based on logic set STATE to OFFLINE or ONLINE

If resource is found as OFFLINE

STATE = ${VCS_RES_OFFLINE};

If resource is found as ONLINE

168Building a script based IMF-aware custom agent
Monitor with IMF but with LevelTwo monitor frequency

STATE = ${VCS_RES_ONLINE};

fi

if basic monitoring of the resource state that resource is ONLINE,

check if detail monitoring (Level-2) need to be performed.

if [${STATE} -eq ${VCS_RES_ONLINE}]; then

if [${VCSAG_MONITOR_LEVEL_TWO} -ne 0]; then

Logic for custom agent detail monitoring.

Based on logic return OFFLINE or ONLINE

If resource is found as OFFLINE

STATE = ${VCS_RES_OFFLINE};

If resource is found as ONLINE

STATE = ${VCS_RES_ONLINE};

fi

fi

exit $(STATE);

Installing the IMF-aware script-based custom
agent

The procedure to install the custom script based-agent is similar to installing the
custom agent. See “Installing the custom agent” on page 151.for more information.

169Building a script based IMF-aware custom agent
Installing the IMF-aware script-based custom agent

Testing agents
This chapter includes the following topics:

■ About testing agents

■ Using debug messages

■ Debugging using AdvDbg attribute

■ Using the engine process to test agents

About testing agents
Before testing an agent, make sure you have built the agent and have installed and
configured the agent.

Using debug messages
You can activate agent framework debug messages by setting the value of the
LogDbg attribute. This directs the framework to print messages logged with the
specified severity.

See “LogDbg” on page 188.

Debugging agent functions (entry points).
The LogDbg attribute indicates the debug severities enabled for the agent function
or agent framework. Debug severities used by agent functions are in the range of
DBG_1-DBG_21.

To enable debug logging, use the LogDbg attribute at the type-level.

To set debug severities for a particular resource-type:

8Chapter

hatype -modify <resource-type> LogDbg -add <Debug-Severity>

[<Debug-Severity> ...]

To remove debug severities for a particular resource-type:

hatype -modify <resource-type> LogDbg -delete <Debug-Severity>

[<Debug-Severity> ...]

To remove all debug severities:

hatype -modify <resource-type> LogDbg -delete -keys

Note that you cannot set debug severities for an individual resource.

To debug a specific agent's entry point, see the documentation for that agent. So
for bundled agents, see the Bundled Agent's Reference Guide.

For example, if you want to log debug messages for the FileOnOff resource type
with severity levels DBG_3 and DBG_4, use the hatype commands:

hatype -modify FileOnOff LogDbg -add DBG_3 DBG_4

hatype -display FileOnOff -attribute LogDbg

TYPE ATTRIBUTE VALUE

FileOnOff LogDbg DBG_3 DBG_4

The debug messages from the FileOnOff agent with debug severities DBG_3 and
DBG_4 get printed to the log files. Debug messages from C++ entry points get
printed to the agent log file (UNIX: $VCS_LOG/log/<resource_type>_A.log) and
from script entry points will get printed to the HAD log file. An example line from
the agent log file:

.

.

2003/06/06 11:02:35 VCS DBG_3 V-16-50-0

FileOnOff:f1:monitor:This is a debug message

FileOnOff.C:res_monitor[28]

Debugging the agent framework
The LogDbg attribute indicates the debug severities enabled for the resource type
or agent framework. The debug messages from the agent framework are logged
with the following severities:

171Testing agents
Using debug messages

■ DBG_AGDEBUG: Enables most debug logs, which include: debugging
commands received from the engine, service thread execution code path, that
is when a service thread picks up a resource for running an entry point or for
modification of an attribute, printing of environment variables that the agent
uses, timer-related processing like sending IAmAlive messages to engine, and
so on.

■ DBG_AGINFO: Enables debugging messages related to specific entry-point
execution, including entry point exit codes, transitioning of resources between
various internal-states, printing of ArgListValues before entry point invocation,
values of entry-point execution related attributes like RunInContainer and
PassCInfo, and so on.

■ DBG_AGTRACE: Enables verbose debug logging, the bulk of it being Begin
and End messages for almost every function that gets called within the
agent-framework, like function-tracing.

Debugging using AdvDbg attribute
You can activate advanced debugging by setting the value of AdvDbg attribute. If
configured, this directs the agent framework to invoke the following predefined
actions on entry point time out:

■ pstack: Used to generate the process tree or process stack or both.

■ core: Used to generate the core of the agent process.

A process can be the agent process or any command executed from the agent
entry point. All information is captured under $VCS_LOG/diag/agents/<Agent
Name> directory.

Working of AdvDbg attribute
To understand how data is captured, you need to understand the variety of agents.
Agents are divided into three varieties:

1. Agents with all entry points written in script.

2. Agents with all entry points implemented using C/C++. The implementation of
these entry points is such that:

■ Some commands get invoked from the entry points

■ Only system calls (but no commands) get executed from the entry points.

3. Hybrid agents where some entry points are written using scripts and remaining
using C/C++.

172Testing agents
Debugging using AdvDbg attribute

Working of pstack action
When configured with this action, the agent framework captures the process stack
or process stack with the process tree on entry point timeout. The agent framework
takes a decision internally to capture the process tree along with the process stack.
In the following cases, agent framework also captures the process tree along with
the process stack for the process:

■ If the timed out entry point is implemented using script, the agent framework
captures the process tree as well as the process stack.

■ If the timed out entry point is implemented in C/C++ and waits for some command
to complete, the agent framework captures the process tree along with the
process stack.

In all the other cases, the agent framework captures the process stack of the agent
process. All the information related to process stack and process tree is captured
in the FFDC_AGFWEP<ep_name>_A.log file. This file contains the information of all
the resources of the same type for which <ep_name> entry point has timed out.
When file FFDC_AGFWEP<ep_name>_A.log is full, the current data is moved to
FFDC_AGFWEP<ep_name>_B.log for backup.

Working of core action
When configured with this action, the agent framework captures the process core
on the entry point timeout. In this release, agent framework only supports capturing
of agent core. The core file is named as core.<AgentPID>.<res_name>.<ep_name>.
This means that core is generated when entry point <ep_name> of the <res_name>
resource is timed out. The core of the agent process gets generated in the last
timeout of the entry point. For a given agent, if the same entry point time-outs
multiple times for a same resource then this core will be obtained at the time of last
timeout.

Impact of AdvDbg attribute on existing functionality of the entry point
You must clearly understand and consider the following impact while configuring
the AdvDbg attribute:

■ Processing of other resources may get delayed as one thread is occupied in
capturing the debug information.

■ System resources are consumed by extra activities like core generation, process
stack and process tree generation.

■ Agent may stop responding due to low system resources.

Considering the above impact, the default action can be set for rarely occurring or
one-time occurring events like open, close, offline, online, or clean. For other entry

173Testing agents
Debugging using AdvDbg attribute

points, like monitor, if you face timeout issues, AdvDbg must be configured
dynamically by overriding this attribute to the resource level for that resource which
faces entry point timeout. As soon as the data is captured, AdvDbg attribute must
be cleared for these entry points. If multiple resources of the same entry point are
timing out, then choose only one resource to configure the AdvDbg attribute.

See “Recommended steps for configuring AdvDbg attribute for monitor entry points”
on page 179.

Using the engine process to test agents
When the VCS HAD process becomes active on a system, it automatically starts
the appropriate agent processes based on the contents of the configuration files.

A single agent process monitors all resources of the same type on a system.

After the VCS HAD process is active, type the following command at the system
prompt to verify that the agent has been started and is running:

haagent -display <resource_type>

For example, to test the Oracle agent, type:

haagent -display Oracle

If the Oracle agent is running, the output resembles:

#Agent Attribute Value

Oracle AgentFile

Oracle Faults 0

Oracle Running Yes

Oracle Started Yes

Test commands
The following examples show how to use commands to test the agent:

■ To activate agent debug messages for C++ agents, type:

hatype -modify <resource_type> LogDbg -add DBG_AGINFO

■ To check the status of a resource, type:

hares -display <resource_name>

174Testing agents
Using the engine process to test agents

■ To bring a resource online, type:

hares -online <resource_name> -sys system

This causes the online entry point of the corresponding agent to be called.

■ To take a resource offline, type:

hares -offline <resource_name> -sys system

This causes the offline entry point of the corresponding agent to be called.

■ To deactivate agent debug messages for C++ agents, type:

hatype -modify <resource_type> LogDbg -delete DBG_AGINFO

175Testing agents
Using the engine process to test agents

Static type attributes
This chapter includes the following topics:

■ About static attributes

■ Static type attribute definitions

About static attributes
Predefined static resource type attributes apply to all resource types.

See “Static type attribute definitions” on page 177.

When developers create agents and define the resource type definitions for them,
the static type attributes become part of the type definition.

Overriding static type attributes
Typically, the value of a static attribute of a resource type applies to all resources
of the type. You can override the value of a static attribute for a specific resource
without affecting the value of that attribute for other resources of that type. In this
chapter, the description of each agent attribute indicates whether the attribute's
values can be overridden.

Users can override the values of static attributes in two ways:

■ By explicitly defining the attribute in a resource definition in configuration file
(main.cf) when VCS is not running.

■ By using the hares command from the command line with the -override option
when VCS is running.

The values of the overridden attributes may be displayed using the hares -display

command. You can remove the overridden values of static attributes by using the
hares -undo_override option from the command line.

9Chapter

See the Cluster Server Administrator's Guide for additional information about
overriding the values of static attributes.

Static type attribute definitions
The following sections describe the static attributes for agents.

ActionTimeout
After the hares -action command has instructed the agent to perform a specified
action, the agent waits for the number of seconds as specified in the ActionTimeout
attribute (scalar-integer) to let the action entry point finish and after the time limit
has been reached the agent terminates the running action entry as it might hung
at any point. The value of ActionTimeout may be set for individual resources, if
overridden.

The default is 30 seconds. The value of the ActionTimeout attribute is internally
capped at MonitorInterval / 2.

If the ActionTimeout attribute is set to a value greater than MonitorInterval/2, then
MonitorInterval/2 is used instead of ActionTimeout. If ActionTimeout value is less
than MonitorInterval/2, then the ActionTimeout value is honored.

Note: You can extend this value by using the VCSAgSetResEPTimeout (for C/C++
entry point) /VCSAG_SET_RES_EP_TIMEOUT (for script entry point). Use this
API cautiously as setting a value higher than MonitorInterval / 2 might result in delay
of next periodic monitor which is used to check the state of the resource.

See “VCSAgSetResEPTimeout” on page 80.

See “VCSAG_SET_RES_EP_TIMEOUT” on page 97.

AdvDbg
AdvDbg attribute helps VCS agents to capture advance information like process
stack, process tree, and core on unexpected events. This is helpful in RCA and
saves time in troubleshooting the unexpected event. The present scope of
unexpected event is entry point timeout.

This is a KeyList attribute where each key defines an action that gets executed
when an entry point times out.

See “Debugging using AdvDbg attribute” on page 172.

177Static type attributes
Static type attribute definitions

ConfiguringAdvDbg attribute and formatting the individual
key
AdvDbg attribute is a keylist attribute and the format of the individual key is:

<ep_name>:<event>:<action[,action...]>

In the above syntax:

<ep_name>: Name of the resource level entry point. For example monitor, offline,
online, clean, and so on.

<event>: This should always be specified as timeout and is reserved for future
use.

<action>: Specifies what information to capture on entry point timeout. Its value
can be either pstack or core or both.

For example:

■ monitor:timeout:pstack instructs the agent framework to generate pstack
information on monitor entry point timeout.

■ offline:timeout:pstack instructs the agent framework to generate pstack
information on offline entry point timeout.

■ clean:timeout:pstack,core instructs the agent framework to generate pstack
information as well as core on clean entry point timeout.

Caution: The present scope of AdvDbg attribute is limited to resource level entry
points. This includes all entry points except imf_init, imf_getnotification, and
shutdown entry points. This could degrade the system performance based on how
this attribute is configured and how many resources experience timeout.

178Static type attributes
Static type attribute definitions

Recommended steps for configuring AdvDbg attribute for
monitor entry points
Set the AdvDbg attribute for the monitor entry points using the following
steps:

1 Identify the resource for which the monitor entry point is timing out and analyze
which information is useful.

This helps in choosing the action (pstack or core or both)

2 Run the following commands:

hares -override <res_name> AdvDbg

hares -modify <res_name> AdvDbg -add monitor:timeout:pstack

3 After the data is captured, clear action by:

hares -modify <res_name> AdvDbg -delete monitor:timeout:pstack

hares -undo_override <res_name> AdvDbg

AEPTimeout
The AEPTimeout (Append Entry Point Timeout) attribute is a Boolean attribute. Set
this attribute to true to append the entry point timeout value for a particular entry
point to the list of arguments passed to the entry point.

If any entry point needs to fetch the value of entry point timeout attribute from the
running entry point (for example, MonitorTimeout and ActionTimeout for monitor
entry point and action entry point respectively) then instead of executing
hatype/hares command, the attribute AEPTimeout should be set to 1 and agent
entry point will get the value of respective entry point timeout attribute in the
AEPTimeout argument. The advantage of using AEPTimeout over hatype/hares
command is, if the attribute is overridden at resource level, the AEPTimeout will
automatically fetch the overridden value.

This feature does not apply to pre-V50 agents. The AEPTimeout attribute value
cannot be overridden.

See “About the entry point timeouts” on page 47.

AgentClass
Indicates the scheduling class for agent process.

The default setting is TS. The AgentClass attribute value cannot be overridden.

179Static type attributes
Static type attribute definitions

AgentDirectory
Complete path of the directory in which the agent binary and scripts are located.
Agents look for binaries and scripts in the following directories:

■ The directory specified by the AgentDirectory attribute

■ /opt/VRTSvcs/bin/type/

■ /opt/VRTSagents/ha/bin/type/

If none of the above directories exist, the agent does not start. Use this attribute in
conjunction with the AgentFile attribute to specify a different location or a different
binary for the agent.

AgentFailedOn
A keylist attribute indicating the systems on which the agent has failed. This is not
a user-defined attribute.

Default is an empty keylist. The AgentFailedOn attribute value cannot be overridden.

AgentFile
The complete name and path of the binary for an agent. If you do not specify a
value for this attribute, VCS uses the agent binary at the path defined by the
AgentDirectory attribute.

AgentPriority
Indicates the priority in which the agent process runs.

Default is 0. The AgentPriority attribute value cannot be overridden.

AgentReplyTimeout
The HAD process restarts an agent if it has not received any messages from the
agent for the number of seconds specified by AgentReplyTimeout.

The default value of 130 seconds works well for most configurations. Increase this
value if the HAD is restarting the agent too often during steady state of the cluster.
This may occur when the system is heavily loaded or if the number of resources
exceeds four hundred. Refer to the description of the command haagent -display

to view the current status of the agent. Note that the HAD process will also restart
a crashed agent.

The AgentReplyTimeout attribute value cannot be overridden.

180Static type attributes
Static type attribute definitions

AgentStartTimeout
The value of AgentStartTimeout specifies how long the HAD waits for the initial
agent "handshake" after starting the agent, and before attempting to restart it.

Default is 60 seconds. The AgentStartTimeout attribute value cannot be overridden.

AlertOnMonitorTimeouts
Indicates the number of consecutive monitor failures after which VCS sends an
SNMP notification to the user. A monitor attempt is considered a failure if it does
not complete within the time specified by the MonitorTimeout attribute.

When a monitor fails as many times as the value or a multiple of the value specified
by the AlertOnMonitorTimeouts attribute, then VCS sends an SNMP notification to
the user. If this attribute is set to a value, say N, then after sending the notification
at the first monitor timeout, VCS also sends an SNMP notification at each
N-consecutive monitor timeout including the first monitor timeout for the second-time
notification.

In case of monitor timeouts, the AlertOnMonitorTimeouts attribute can be used in
conjunction with the FaultOnMonitorTimeouts attribute to control the behavior of
resources of a group configured under VCS. When FaultOnMonitorTimeouts is set
to 0 and AlertOnMonitorTimeouts is set to some value for all resources of a service
group, then VCS will not perform any action on monitor timeouts for resources
configured under that service group, but will only send notifications at the frequency
set in the AlertOnMonitorTimeouts attribute.

Note: This attribute applies only to online resources. If a resource is offline, no
special action is taken during monitor failures.

When AlertOnMonitorTimeouts is set to 0, VCS sends an SNMP notification to the
user only for the first monitor timeout; VCS does not send further notifications to
the user for subsequent monitor timeouts until the monitor returns a success.

Default is 0. The AlertOnMonitorTimeouts attribute value can be overridden.

ArgList
An ordered list of attributes whose values are passed to the open, close, online,
offline, monitor, info, action, clean, imf_register, migrate, and meter entry points.

The default is an empty list. The ArgList attribute value cannot be overridden.

181Static type attributes
Static type attribute definitions

ArgList reference attributes
Reference attributes refer to attributes of a different resource. If the value of a
resource's attribute is the name of another resource, the ArgList of the first resource
can refer to an attribute of the second resource using the : operator.

For example, say, there is a type T1 whose ArgList is of the form:

{ Attr1, Attr2, Attr3:Attr_A }

where Attr1, Attr2 and Attr3 are attributes of type T1, and say for a resource res1T1
of type T1, Attr3 's value is the name of another resource, res1T2. Then the entry
points for res1T1 are passed the values of attributes Attr1 and Attr2 of res1T1 and
the value of attribute Attr_A of resource res1T2.

Note that one has to first add the attribute Attr3 to type T1 before adding Attr3:Attr_A
to T1's ArgList. Only then should one modify Attr3 for a resource (res1T1) to
reference another resource (res1T2). Also, the value of Attr3 can either be another
resource of the same time (res2T1) or a resource of a different type (res1T2).

AttrChangedTimeout
Maximum time (in seconds) within which the attr_changed entry point must
complete or else be terminated. Default is 60 seconds. The AttrChangedTimeout
attribute value can be overridden.

AvailableMeters
List of meters that are supported by that agent of that resource type to measure.
The AvailableMeters attribute value cannot be overridden.

The value of AvailableMeters attribute cannot be changed when VCS is running.

Default:static str AvailableMeters{} = { SCPU="", SMem="" }

User can set the value of this attribute in the types.cf file.

CleanRetryLimit
Defines the number of times clean operation can be retried before it succeeds. This
parameter is meaningful only if the clean operation is implemented and the
ManageFaults attribute is set to ALL. If CleanRetryLimit is set to 0, there will be no
limit. Default = 0.

If this attribute is set to a non-zero value and the clean fails after the specified times
then the resource enters into the ADMIN_WAIT state. The CleanRetryLimit attribute
value can be overridden.

182Static type attributes
Static type attribute definitions

CleanTimeout
Maximum time (in seconds) within which the clean entry point must complete or
else be terminated.

Default is 60 seconds. The CleanTimeout attribute value can be overridden.

CloseTimeout
Maximum time (in seconds) within which the close entry point must complete or
else be terminated.

Default is 60 seconds. The CloseTimeout attribute value can be overridden.

ContainerOpts
This attribute helps you to control execution of agent entry point and allows you to
control the container information passed to the agent entry point. For each
application or resource type that you want to include as part of the zone, wpar, and
project, you need to assign the following values to the ContainerOpts attribute:

■ RunInContainer (RIC)
RunInContainer defines whether the agent framework should run all the
script-based entry points for the agent inside the container. If the attribute is set
to 1, all script-based entry points are forked off inside the local container that is
configured for the corresponding resource. If the attribute is set to 0, even if a
resource's service group has ContainerInfo set, the entry point scripts for that
resource will still be run in the global container.

■ PassCInfo (PCI)
PassCInfo specifies if you want to pass the container information, defined in the
service group's ContainerInfo attribute, to the entry points of the agent. Specify
a value of 1, if you want to pass the container information to the entry points.
Specify a value of 0, if you do not want to pass the container information to the
entry points.

Note: Container support is available only from V50 or later agent versions.

ConfInterval
Specifies an interval in seconds. When a resource has remained online for the
designated interval (all monitor invocations during the interval reported ONLINE),
any earlier faults or restart attempts of that resource are ignored. This attribute is
used with ToleranceLimit to allow the monitor entry point to report OFFLINE several

183Static type attributes
Static type attribute definitions

times before the resource is declared FAULTED. If monitor reports OFFLINEmore
often than the number set in ToleranceLimit, the resource is declared FAULTED.
However, if the resource remains online for the interval designated in ConfInterval,
any earlier reports of OFFLINE are not counted against ToleranceLimit.

The agent framework uses the values of MonitorInterval (MI), MonitorTimeout (MT),
and ToleranceLimit (TL) to determine how low to set the value of ConfInterval. The
agent framework ensures that ConfInterval (CI) cannot be less than that expressed
by the following relationship:

(MI + MT) * TL + MI + 10

Lesser specified values of ConfInterval are ignored. For example, assume that the
values are 60 for MI, 60 for MT, and 0 for TL. If you specify any value lower than
70 for CI, the agent framework ignores the specified value and sets the value to
70. However, you can successfully specify and set CI to any value over 70.

ConfInterval is also used with RestartLimit to prevent agent from restarting the
resource indefinitely. The agent process attempts to restart the resource on the
same system according to the number set in RestartLimit within ConfInterval before
giving up and failing over. However, if the resource remains online for the interval
designated in ConfInterval, earlier attempts to restart are not counted against
RestartLimit. Default is 600 seconds.

The ConfInterval attribute value can be overridden.

EPClass
Indicates the scheduling class at which the entry points need to run. All entry points
except Online are affected by this attribute.

Default = -1, which indicates that this attribute is not being used. Setting this attribute
to a non-default value overrules the older AgentScript-Class attributes. The EPClass
attribute value cannot be overridden.

EPPriority
Indicates the scheduling priority at which the entry points need to run. All entry
points except Online are affected by this attribute.

Default = -1, which indicates that this attribute is not being used. Setting this attribute
to a non-default value overrules the older AgentPriority attributes. The EPPriority
attribute value cannot be overridden.

184Static type attributes
Static type attribute definitions

ExternalStateChange
Specifies what actions must be taken on the group when a resource of this type is
detected online or offline outside of VCS control. If OnlineGroup is specified and
the resource is detected as online, the group will be brought online. If OfflineGroup
is specified and the resource is detected as intentionally offline, the group will be
taken offline after due consideration of the group dependency. Default is no action.

FaultOnMonitorTimeouts
Indicates the number of consecutive monitor failures to be treated as a resource
fault. A monitor attempt is considered a failure if it does not complete within the
time specified by the MonitorTimeout attribute.

When a monitor fails as many times as the value specified by this attribute, the
corresponding resource is brought down by calling the clean entry point. The
resource is then marked faulted, or it is restarted, depending on the value set in
the Restart Limit attribute.

Note: This attribute applies only to online resources. If a resource is offline, no
special action is taken during monitor failures.

When FaultOnMonitorTimeouts is set to 0, monitor failures are not considered
indicative of a resource fault.

Default is 4. The FaultOnMonitorTimeouts attribute value can be overridden.

FaultPropagation
Specifies if VCS should propagate the fault up to parent resources and take the
entire service group offline when a resource faults, or if VCS should not take the
group offline, but fail over the group only when the system faults.

This attribute value can be set to 0 or 1. Default = 0.

If FaultPropagation is set to 1, then if a resource in the service group faults, the
group is failed over if the group's AutoFailover attribute is set to 1. If FaultPropagation
is set to 0, then if a resource in the service group faults, no other resources are
taken offline nor the parent group regardless of the value set for the attribute Critical
of a resource. VCS gives priority to the same attribute at a group level.

The FaultPropagation attribute value can be overridden

185Static type attributes
Static type attribute definitions

FireDrill
A "fire drill" refers to the process of bringing up a database or application on a
secondary or standby system for the purpose of doing some processing on the
secondary data, or to verify that the application is capable of being brought online
on the secondary in case of a primary fault. The FireDrill attribute specifies whether
a resource type has fire drill enabled or not. A value of 1 for the FireDrill attribute
indicates a fire drill is enabled. A value of 0 indicates a fire drill is not enabled.

The default is 0. The FireDrill attribute can be overridden.

Refer to the Administrator's Guide for details of how to set up and implement a fire
drill.

IMF
Determines whether the IMF-aware agent must perform intelligent resource
monitoring. It is an association attribute with three keys—Mode, MonitorFreq, and
RegisterRetryLimit.

■ Mode defines for which state of the entry point, IMF monitoring must be
performed. Mode can take values 0, 1, 2, or 3.

DescriptionMode
value

No IMF monitoring0

Offline IMF monitoring1

Online IMF monitoring2

Offline and online IMF monitoring3

■ MonitorFreq specifies the frequency at which the agent invokes the monitor
agent function.

■ RegisterRetryLimit defines the maximum number of times the agent attempts
to register a resource.

The IMF attribute value can be overridden.

Note: To make a custom agent IMF-aware, you must add IMF attribute in your
configuration.

See “Adding IMF and IMFRegList attributes in configuration” on page 164.

186Static type attributes
Static type attribute definitions

IMFRegList
It is an ordered list of attributes. If IMFRegList attribute or any attribute defined in
IMFRegList is changed then the registered resource gets unregistered from IMF.

If IMFRegList is not defined and if ArgList attribute or any attribute defined in ArgList
gets changed, then the resource gets unregistered from IMF.

Note: If IMF support for custom agent is added by a user then it is recommended
to define value of IMFRegList attribute, if the number of attributes used for resource
registration with IMF is less then ArgList. Thus avoiding unregisteration of resources
from IMFwhen any of the attributes gets changed that are not present in IMFResList.

InfoInterval
Specifies the interval, in seconds, between successive invocations of the info entry
point for a given resource. The default value of the InfoInterval attribute is 0, which
specifies that the agent framework is not to schedule the info entry point
periodically; the info entry point can also be invoked by the user from the command
line using the hares -refreshinfo command.

For example,

hares -refreshinfo <res> [-sys <system>] [-clus <cluster> | -localclus]

The InfoInterval attribute value can be overridden.

See “About the info entry point” on page 30.

InfoTimeout
Maximum time (in seconds) within which the info entry point must complete or be
terminated.

The default is 30 seconds. The value of the InfoTimeout attribute is internally capped
at MonitorInterval / 2. The InfoTimeout attribute value can be overridden.

You can extend this value by using the VCSAgSetResEPTimeout (for C/C++ entry
point) /VCSAG_SET_RES_EP_TIMEOUT (for script entry point).

Note: You can extend this value by using the VCSAgSetResEPTimeout (for C/C++
entry point) /VCSAG_SET_RES_EP_TIMEOUT (for script entry point). Use this
API cautiously as setting a value higher than MonitorInterval / 2 might result in delay
of next periodic monitor which is used to check the state of the resource.

187Static type attributes
Static type attribute definitions

See “VCSAgSetResEPTimeout” on page 80.

See “VCSAG_SET_RES_EP_TIMEOUT” on page 97.

IntentionalOffline
Defines how VCS reacts to a configured application being intentionally stopped
outside of VCS control.

Add this attribute for agents that support detection of an intentional offline outside
of VCS control.

Note that the intentional offline feature is available for agents registered as V51 or
later. User can use any script agent registered as V51 or later

The value 0 instructs the agent to register a fault and initiate the failover of a service
group when the supported resource is taken offline outside of VCS control. The
default value for this attribute is 0.

The value 1 instructs VCS to take the resource offline instead of faulting, when the
corresponding application is stopped outside of VCS control. This attribute does
not affect VCS behavior on application failure. VCS continues to fault resources if
managed corresponding applications fail.

See “About on-off, on-only, and persistent resources ” on page 16.

LevelTwoMonitorFreq
The number of monitor cycles at which the agent framework initiates detailed
monitoring. For example, if you set this attribute to 5, the agent framework initiates
detailed monitoring every five monitor cycles.

The LevelTwoMonitorFreq attribute can be overridden at a resource level.

The monitor entry point can check if detail monitoring needs to be done through
VCSAgGetMonitorLevel (for C/C++ based entry point) or
VCSAG_GET_MONITOR_LEVEL (for script-based entry point).

See “VCSAG_GET_MONITOR_LEVEL” on page 96.

See “VCSAgGetMonitorLevel” on page 67.

LogDbg
The LogDbg attribute indicates the debug severities enabled for the resource type
or agent framework.

Debug severities used by agent functions are in the range of DBG_1–DBG_21. By
default, LogDbg is an empty list, meaning that no debug messages are logged for

188Static type attributes
Static type attribute definitions

a resource type. Users can modify this attribute for a given resource type, to specify
the debug severities that they want to enable, which would cause those debug
messages to be printed to the log files. For more information on agent debug levels,
see the Cluster Server Bundled Agents Reference Guide.

The LogDbg attribute can be overridden at a resource level.

The debug messages from the agent framework are logged with the following
severities:

■ DBG_AGDEBUG: Enables most debug logs.

■ DBG_AGINFO: Enables debugging messages related to specific entry-point
execution.

■ DBG_AGTRACE: Enables verbose debug logging that prints function tracing.

See “Using debug messages” on page 170.

More information is available about APIs that are available to log debug messages
from agent entry points.

See “About logging agent messages” on page 116.

These APIs expect a debug severity as a parameter, along with the message to be
logged. You can choose different debug severities for messages to provide different
logging levels for the agent. When you enable a a particular severity in the LogDbg
attribute, agent entry points log corresponding messages.

The LogDbg attribute is modified such that it can be overridden in VCS 6.2 or later
releases. Although using this attribute, we can set DBG_AGINFO, DBG_AGTRACE,
DBG_AGDEBUG at resource level but they will not have any impact as these levels
are agent type specific. Hence we recommend to set values between DBG_1 to
DBG_21 at resource level using this attribute.

LogFileSize
Sets the size of an agent log file. Value must be specified in bytes. Minimum is
65536 bytes (64KB). Maximum is 134217728 bytes (128MB). Default is 33554432
bytes (32MB). For example,

hatype -modify FileOnOff LogFileSize 2097152

Values specified less than the minimum acceptable value will be changed 65536
bytes. Values specified greater than the maximum acceptable value will be changed
to 134217728 bytes. Therefore, out-of-range values displayed for the command:

hatype -display restype -attribute LogFileSize

189Static type attributes
Static type attribute definitions

will be those entered with the -modify option, not the actual values. The LogFileSize
attribute value cannot be overridden.

LogViaHalog
Enables the agent's entry points logs to be logged in respective agent log file or
engine log files based on the values configured.

■ 0- The agent’s log will be logged into their respective agent log file.

■ 1- The C/C++ entry point’s logs will go into the agent log file and the script entry
point’s logs will go into the engine log file using halog command.

Type: boolean-scalar

Default Value: 0

ManageFaults
A service group level attribute. ManageFaults specifies if VCS manages resource
failures within the service group by calling clean entry point for the resources. This
attribute value can be set to ALL or NONE. Default = ALL.

If set to NONE, VCS does not call clean entry point for any resource in the group.
User intervention is required to handle resource faults/failures. WhenManageFaults
is set to NONE and one of the following events occur, the resource enters the
ADMIN_WAIT state:

1. The offline entry point was ineffective. Resource state is
ONLINE|ADMIN_WAIT.

2. The offline entry point did not complete within the expected time. Resource
state is ONLINE|ADMIN_WAIT.

3. The online entry point did not complete within the expected time. Resource
state is OFFLINE|ADMIN_WAIT.

4. The online entry point was ineffective. Resource state is
OFFLINE|ADMIN_WAIT.

5. The resource was taken offline unexpectedly. Resource state is
OFFLINE|ADMIN_WAIT.

6. For the online resource the monitor entry point consistently failed to complete
within the expected time. Resource state is ONLINE| MONITOR_
TIMEDOUT|ADMIN_WAIT. The value configured in FaultOnMonitorTimeouts
attribute indicates number of consecutive monitor failures after which the
resource must move into ONLINE| MONITOR_ TIMEDOUT|ADMIN_WAIT
state.

190Static type attributes
Static type attribute definitions

Meters
Defines the meters based on which fail-over decision will be taken for a service
group that contains the resource of type that can perform metering. The keys of
this attribute must be a subset of intersection of HostMeters (Cluster attribute) and
AvailableMeters(Type level). This attribute cannot be overridden at resource level
and cannot be modified at run time.

User can set the value of this attribute in the types.cf file.

Type and dimension: string-keylist

Default: static keylist Meters = { SCPU, SMem }

Example:{ SCPU }

See “AvailableMeters ” on page 182.

You can refer to the Cluster Server Administrator's Guide for information on
HostMeters attribute

MeterControl
Indicates the intervals at which metering and forecasting are done for the keys
specified in the Meters attribute. The attribute value cannot be overridden.

See “Meters” on page 191.

At every ForecastCycle, the ForecastFlag key of VCSInfo attribute will be set to 1
which is passed to the meter entry point to perform the forecasting.

This attribute includes the following keys:

■ MeterInterval
Frequency in seconds at which metering is done by the agent that supports
metering. If the value is configured as 600, it indicates that agent calls meter
entry point after every 600 seconds and sends the systems resource utilization
data to the VCS engine.

■ ForecastCycle
The number of metering cycles after which forecasting of available capacity is
done. If the value of MeterInterval is 60 seconds and ForcastCycle is 5 seconds
then forecasting will be done after every 300 seconds.

You cannot modify the value at run time. User can set value in the type.cf file for
the respective agent.

Type and dimension: integer-association

Default:static int MeterControl{} = { MeterInterval=600, ForecastCycle=0

}

191Static type attributes
Static type attribute definitions

MeterRegList
It is an ordered list of attributes. If MeterRegList attribute or any attribute that are
defined in MeterRegList is changed then the meter entry point is called immediately.

This attribute cannot be overridden at resource level.

Type and dimension: string-vector

Default: static str MeterRegList[] = { LDomName, CfgFile, NumCPU, Memory

}

MeterRetryLimit
Defines the number of times the meter operation can be retried before it succeeds.
If MeterRetryLimit is set to 0, there is no limit on number of retries. If this attribute
is set to a non-zero value and the meter entry point fails after the specified attempts,
then the metering for that resource is disabled.

You can override this attribute at the resource level.

Default: 10

You can turn on metering in one of the following ways:

■ Veritas recommends to increase the MeterRetryLimit attribute value to a higher
value using the following command:
If MeterRetryLimit is defined at type level, enter:

hatype -modify type_name MeterRetryLimit new_value

If MeterRetryLimit is overridden at the resource level, enter:

hares -modify res_name MeterRetryLimit new_value

■ Re-enable the resource using the following commands:

hares -modify res_name Enabled 0

hares -modify res_name Enabled 1

MeterTimeout
Maximum time for the meter entry point to complete.The value is in seconds.

Type and dimension: integer-scalar

Default: 300

Example: 900

192Static type attributes
Static type attribute definitions

MonitorInterval
Duration (in seconds) between two consecutive monitor calls for an ONLINE
resource or a resource in transition.

Default is 60 seconds. The MonitorInterval attribute value can be overridden.

MonitorStatsParam
MonitorStatsParam is a type-level attribute, which stores the required parameter
values for calculating monitor time statistics. For example:

static str MonitorStatsParam = { Frequency = 10, ExpectedValue =

3000, ValueThreshold = 100, AvgThreshold = 40 }

■ Frequency: Defines the number of monitor cycles after which the averagemonitor
cycle time should be computed and sent to HAD. The value of this key can be
from 1 to 30. A value of 0 (zero) indicates that the average monitor time need
not be computed. This is the default value for this key.

■ ExpectedValue: The expected monitor time in milliseconds for all resources of
this type. Default=100.

■ ValueThreshold: The acceptable percentage difference between the expected
monitor cycle time (ExpectedValue) and the actual monitor cycle time.
Default=100.

■ AvgThreshold: The acceptable percentage difference between the benchmark
average and the moving average of monitor cycle times. Default=40.

The MonitorStatsParam attribute values can be overridden.

For more information:

Refer to the Administrator's Guide.

MonitorTimeout
Maximum time (in seconds) within which the monitor entry point must complete
or else be terminated. Default is 60 seconds. The MonitorTimeout attribute value
can be overridden.

The determination of a suitable value for the MonitorTimeout attribute can be
assisted by the use of the MonitorStatsParam attribute.

193Static type attributes
Static type attribute definitions

MigrateTimeout
Maximum time (in seconds) within which the migrate procedure must complete or
else the procedure is terminated.

Default value is 600 secs. The MigrateTimeout attribute can be overridden.

MigrateWaitLimit
Number of monitor intervals to wait for resource to migrate after completing the
migrate procedure. MigrateWaitLimit will be applicable for source as well as for
target node; as the migrate operation brings the resource offline on the source node
and online on the target node. We can also define MigrateWaitLimit as the number
of monitor intervals required to wait for resource to go offline on source after
completing the migrate procedure, and the number of monitor intervals to wait for
resource to come online on target after the resource goes offline on source.

Default value is 2. The MigrateWaitLimit attribute can be overridden.

Probes fired manually are counted when MigrateWaitLimit is set and the resource
is waiting to migrate. For example, if the MigrateWaitLimit of a resource is set to 5
and the MonitorInterval is set to 60 (seconds), the resource waits for a maximum
of five monitor intervals (that is, 5 x 60), and if all five monitors within
MigrateWaitLimit report the resource as online on source node, it sets the
ADMIN_WAIT flag. If you run another probe, the resource waits for four monitor
intervals (that is, 4 x 60), and if the fourth monitor does not report the state as offline
on source , it sets the ADMIN_WAIT flag. This process is repated for remaining
monitor intervals (3x60, 2x60 and 1x60). Similarly if the resource does not moved
to online state within the MigrateWaitLimit then it sets the ADMIN_WAIT flag.

NumThreads
NumThreads specifies the maximum number of service threads that an agent is
allowed to create. Service threads are the threads in the agent that service resource
commands. NumThreads does not control the number of threads used for other
internal purposes.

Agents dynamically create service threads depending on the number of resources
that the agent has to manage. Until the number of resources is less than the
NumThreads value, the addition of a new resource will make the agent create an
additional service thread. Also, if the number of resources falls below the
NumThreads value as a result of deletion of resources, the agent will correspondingly
delete service threads. Since an agent for a type will be started by VCSHAD process
only if there is at least one resource for that type in the configuration, an agent will
always have at least 1 service thread. Setting NumThreads to 1 will thus prevent
any additional service threads from being created even if more resources are added.

194Static type attributes
Static type attribute definitions

If the entry points have a locking mechanism within them for synchronization, then
set the NumThreads attribute to a relatively low value, for example, 2—5.

The maximum value that can be set for NumThreads is 100. If NumThreads need
to be increased beyond 30, please contact Veritas support.

Default is 10. The NumThreads attribute cannot be overridden.

OfflineMonitorInterval
The duration (in seconds) between two consecutive monitor calls for an OFFLINE
resource. If set to 0, OFFLINE resources are not monitored.

Default is 300 seconds. The OfflineMonitorInterval attribute value can be overridden.

OfflineTimeout
Maximum time (in seconds) within which the offline entry point must complete
or else be terminated.

Default is 300 seconds. The OfflineTimeout attribute value can be overridden.

OfflineWaitLimit
Number of monitor intervals to wait after completing the offline procedure and before
the resource goes offline.

Probes fired manually are counted when OfflineWaitLimit is set and the resource
is waiting to go offline. For example, say the OfflineWaitLimit of a resource is set
to 5 and the MonitorInterval is set to 60. The resource waits for a maximum of five
monitor intervals (five times 60), and if all five monitors within OfflineWaitLimit report
the resource as offline, it calls the clean agent function. If the user fires a probe,
the resource waits for four monitor intervals (four times 60), and if the fourth monitor
does not report the state as offline, it calls the clean agent function. If the user fires
another probe, one more monitor cycle is consumed and the resource waits for
three monitor intervals (three times 60), and if the third monitor does not report the
state as offline, it calls the clean agent function.

Default = 0.

OnlineClass
Indicates the scheduling class at which the Online entry point needs to run. Only
the Online entry point gets affected by this attribute.

195Static type attributes
Static type attribute definitions

Default = -1, which indicates that this attribute is not being used. Setting this attribute
to a non-default value overrules the older AgentClass attributes. The OnlineClass
attribute value cannot be overridden.

OnlinePriority
Indicates the scheduling priority at which the Online entry point needs to run. Only
the Online entry point gets affected by this attribute.

Default = -1, which indicates that this attribute is not being used. Setting this attribute
to a non-default value overrules the older AgentPriority attributes. The OnlinePriority
attribute value cannot be overridden.

OnlineRetryLimit
Number of times to retry online if the attempt to bring a resource online is
unsuccessful. This attribute is meaningful only if clean is implemented.

Default is 0. The OnlineRetryLimit attribute value can be overridden.

OnlineTimeout
Maximum time (in seconds) within which the online entry point must complete or
else be terminated.

Default is 300 seconds. The OnlineTimeout attribute value can be overridden.

OnlineWaitLimit
Number of monitor intervals to wait after completing the online procedure, and
before declaring the online attempt as ineffective.

This attribute is meaningful only if the clean entry point is implemented.

If clean is implemented, when the agent reaches the maximum number of monitor
intervals it assumes that the online procedure was ineffective and runs clean. The
agent then notifies HAD that the online attempt failed, or retries the procedure,
depending on whether or not the OnlineRetryLimit is reached.

If clean is not implemented, the agent continues to periodically run monitor until
the resource is brought online.

Each probe command fired from the user is considered as one monitor interval.
For example, say the OnlineWaitLimit of a resource is set to 5. This means that the
resource will be moved to a faulted state after five monitor intervals. If the user fires
a probe, then the resource will be faulted after four monitor cycles, if the fourth
monitor does not report the state as ONLINE. If the user again fires a probe, then

196Static type attributes
Static type attribute definitions

one more monitor cycle is consumed and the resource will be faulted if the third
monitor does not report the state as ONLINE.

Default is 2. The OnlineWaitLimit attribute value can be overridden.

OpenTimeout
Maximum time (in seconds) within which the open entry point must complete or
else be terminated. The OpenTimeout attribute value can be overridden.

Operations
Indicates the valid operations for the resources of the type. The values are OnOff
(can be brought online and taken offline), OnOnly (can be online only), and None
(cannot be brought online or taken offline but can be monitored).

Default is OnOff. The Operations attribute value cannot be overridden.

RegList
RegList is a type level keylist attribute that can be used to store, or register, a list
of certain resource level attributes. The agent calls the attr_changed entry point
for a resource when the value of an attribute listed in RegList is modified. The
RegList attribute is useful where a change in the values of important attributes
require specific actions that can be executed from the attr_changed entry point.

By default, the attribute RegList is not included in a resource's type definition, but
it can be added using either of the two methods shown below.

Assume the RegList attribute is added to the FileOnOff resource type definition and
its value is defined as PathName. Thereafter, when the value of the PathName attribute
for a FileOnOff resource is modified, the attr_changed entry point is called.

■ Method one is to modify the types definition file (types.cf for example) to include
the RegList attribute when VCS is not running. Add a line in the definition of a
resource type that resembles:

static keylist RegList = { attribute1_name,

attribute2_name,...}

For example, if the type definition is for the FileOnOff resource and the name
of the attribute to register is PathName, the modified type definition would
resemble:

.

197Static type attributes
Static type attribute definitions

.

.

type FileOnOff (

str PathName

static keylist RegList = { PathName }

static str ArgList[] = { PathName }

)

.

.

■ Method two is to use the haattr command to add the RegList attribute to a
resource type definition and then modify the value of the type's RegList attribute
using the hatype command when VCS is running; the commands are:

haattr -add -static resource_type RegList -keylist

■ To set value
hatype -modify resource_type RegList attribute_name1

attribute_name2

■ To add a new key
hatype -modify resource_type RegList -add attribute_name3

For example:

■ # haattr -add -static FileOnOff RegList -keylist

■ # hatype -modify FileOnOff RegList PathName

■ # hatype -modify FileOnOff RegList -add PathName

The RegList attribute cannot be overridden.

RestartLimit
Affects how the agent responds to a resource fault.

A non-zero value for RestartLimit causes the invocation of the online entry point
instead of the failover of the service group to another system. The agent process
attempts to restart the resource according to the number set in RestartLimit before
it gives up and attempts failover. However, if the resource remains online for the
interval designated in ConfInterval, earlier attempts to restart are not counted against
RestartLimit

198Static type attributes
Static type attribute definitions

Note: The agent will not restart a faulted resource if the clean entry point is not
implemented. Therefore, the value of the RestartLimit attribute applies only if clean
is implemented.

Default is 0. The RestartLimit attribute value can be overridden.

See “ToleranceLimit” on page 200.

ScriptClass
Indicates the scheduling class of the script processes (for example, online) created
by the agent. This attribute is not an overrideable static attribute.

The default setting is TS.

ScriptPriority
Indicates the priority of the script processes created by the agent. This attribute is
not an overrideable static attribute.

Default is 0.

SourceFile
The file from which the configuration was read. This attribute is not an overrideable
static attribute.

SupportedActions
The SupportedActions (string-keylist) attribute lists all possible actions defined for
an agent, including those defined by the agent developer. The HAD process validates
the action_token value specified in the hares -action resource action_token

command against the SupportedActions attribute. For example, if action_token is
not present in SupportedActions, HAD will not allow the command to go through.
It is the responsibility of the agent developer to initialize the SupportedActions
attribute in the resource type definition and update the definition for each new action
added to the action entry point code or script. This attribute serves as a reference
for users of the command line or the graphical user interface.

See “About the action entry point” on page 29.

An example definition of a resource type in a VCS ResourceTypeTypes.cf file may
resemble:

Type DBResource (

199Static type attributes
Static type attribute definitions

static str ArgList[] = { Sid, Owner, Home, User, Pwork,

StartOpt, ShutOpt }

static keylist SupportedActions = { VRTS_GetRunningServices,

DBRestrict, DBUndoRestrict, DBSuspend, DBResume }

str Sid

str Owner

str Home

str User

str Pword

str StartOpt

str ShutOpt

)

In the SupportedActions attribute definition, VRTS_GetRunningServices is a Veritas
predefined action, and the actions following it are defined by the developer. The
SupportedActions attribute value cannot be overridden.

SupportedOperations
Indicates the operations that can be performed by the agent. The value can be set
to "migrate", "meter" or both. The attribute value must be set only by those agents
that support metering and migration.

This attribute is not an overrideable static attribute.

ToleranceLimit
A non-zero ToleranceLimit allows the monitor entry point to return OFFLINE several
times before the ONLINE resource is declared FAULTED. If the monitor entry point
reports OFFLINE more times than the number set in ToleranceLimit, the resource
is declared FAULTED. However, if the resource remains online for the interval
designated in ConfInterval, any earlier reports of OFFLINE are not counted against
ToleranceLimit. Default is 0. The ToleranceLimit attribute value can be overridden.

Each probe command fired from the user is considered as onemonitor. For example,
when Tolerance limit of a resource is set to 5, the resource will be moved to a faulted
state after five monitor intervals. If the user fires another probe and the resource is
not reported as ONLINE, then the resource will be faulted after four monitor cycles.
This process will be repeated for five monitoring cycles.

200Static type attributes
Static type attribute definitions

State transition diagram
This chapter includes the following topics:

■ State transitions

■ State transitions with respect to ManageFaults attribute

State transitions
This section describes state transitions for:

■ Opening a resource

■ Resource in a steady state

■ Bringing a resource online

■ Taking a resource offline

■ Resource fault (without automatic restart)

■ Resource fault (with automatic restart)

■ Monitoring of persistent resources

■ Closing a resource

■ Migrating a resource

In addition, state transitions are shown for the handling of resources with respect
to the ManageFaults service group attribute.

See “State transitions with respect to ManageFaults attribute” on page 215.

The states shown in these diagrams are associated with each resource by the agent
framework. These states are used only within the agent framework and are
independent of the IState resource attribute values indicated by the engine.

10Chapter

The agent writes resource state transition information into the agent log file when
the LogDbg parameter, a static resource type attribute, is set to the value
DBG_AGINFO. Agent developers can make use of this information when debugging
agents.

Figure 10-1 Opening a resource

Opening

Detached

Probing Online

timed out or
unknown

status Offline

status Online
monitorenabled=1

timed out or done /
start Periodic
Monitoring

Monitoring Offline

When the agent starts up, each resource starts with the initial state of Detached.
In the Detached state (Enabled=0), the agent rejects all commands to bring a
resource online or take it offline.

Figure 10-2 Resource in a steady state

Status offline

Monitor

Status online

Status online

Monitor

Offline

Monitoring
(Online) Online

Monitoring
(Offline)

When resources are in a steady state of Online or Offline, they are monitored at
regular intervals. The intervals are specified by the MonitorInterval attribute in
the Online state and by the OfflineMonitorInterval attribute in the Offline state.
An Online resource that is unexpectedly detected as Offline is considered to be
faulted. Refer to diagrams describing faulted resources.

202State transition diagram
State transitions

Figure 10-3 Bringing a resource online: ManageFaults=ALL

Going Online
Going Online
Waiting

ORL
reached ?

OWL – Online Wait Limit
OWC – Online Wait Count
PM – Periodic Monitoring

Monitoring

OWL
reached?

ORL
reached?

Status
offline?

yes

yes/
reset
OWC

Offline Cleaning

CRL
reached?

Online

done/
start PM

no/inc
ORCtim

ed
out

success

online/
stop PM

clean
timeout
or fail/
start PM

no/stop
PM, in
CC

status IO

m
onitor

status online

status offline
or unknown
or timeout

no/stop PM,
reset OWC,
inc CC

yes/start PM reset ORC
and mark as faulted

ORL – Online Retry Limit
ORC– Online Retry Count
CRL – Clean Retry Limit
CC – Clean Count

no/inc
OWC

yes/start
PM

yes/
ADMIN_
WAIT

no

When the agent receives a request from the engine to bring the resource online,
the resource enters the Going Online state, where the online entry point is invoked.

If online entry point completes, the resource enters the Going Online Waiting state
where it waits for the next monitor cycle.

If online entry point timesout, the agent call clean.

If monitor of GoingOnlineWaiting state returns a status as online, the resource
moves to the Online state.

If monitor of GoingOnlineWaiting state returns a status as Intentional Offline, the
resource moves to the Offline state.

If, however, the monitor times out, or returns a status of "not Online" (that is,
unknown or offline), the following actions are considered:

203State transition diagram
State transitions

■ If OnlineWaitLimit is not reached then resource returns to GoingOnlineWaiting
and waits for next monitor.

■ If OnlineWaitLimit and OnlineRetryLimit are reached and the status remains
unknow then resource returns to GoingOnlineWaiting and waits for next monitor.

■ If OnlineWaitLimit and OnlineRetryLimit are reached then the status remains
offline then resource return to Offline state and marks the resource as faulted.

■ If OnlineWaitLimit is reached and OnlineRetryLimit is not reached then run clean,
if CleanRetryLimit is not reached.

■ If OnlineWaitLimit and CleanRetryLimit are reached and OnlineRetryLimit is not
reached then move the resource to GoingOnlineWaiting and mark it as
ADMIN_WAIT.

■ If CleanRetryLimit is not reached and agent calls clean then following things
can happen:

■ If clean times out or fails, the resource again returns to the Going Online
Waiting state and waits for the next monitor cycle.

■ If clean succeeds with the OnlineRetryLimit reached, and the subsequent
monitor reports the status as offline, the resource transitions to the offline
state and it is marked as FAULTED.

204State transition diagram
State transitions

Figure 10-4 Taking a resource offline and ManageFault = ALL

Cleaning

Monitoring

Going Offline

Going Offline
Waiting Offline

Online

Clean called?
OWL

reached?
CRL

reached?

Offline
timedout

offline/stop PM

yes

no/start PM

Status offline or IO

no/inc CC, stop PM

no

yes/set ADMIN_WAIT

yes/reset OFWC
no/inc
OFWC

clean timeout or
complete/start PM
and reset OFWC if
clean success

status unknown or
online or monitor

timeout

If user initiate
operation
clearadminwait or -
clearadminwait -
fault when
ADMIN_WAIT set/
set ADMIN_WAIT

CC – Clean Count
CRL – Clean Retry Limit
OFWL – Offline wait Limit
OFWC – Offline Wait Count
PM – Periodic Monitoring
IO – Intentional Offline

monitor

yes/
UNABLE_TO_OFFLINE

flag set

Upon receiving a request from the engine to take a resource offline, the agent places
the resource in a GoingOffline state and invokes the offline entry point and stop
periodic monitoring.

If offline completes, the resource enters the GoingOfflineWaiting state, agent starts
periodic monitoring of resource and also insert a monitor command for the resource.
If offline times out, the clean entry point is called for the resource. If clean times out
or complete then start periodic monitoring and reset Offline Wait Count if clean was
success and move resource to Going Offline Waiting state

If monitor of Going Offline Waiting state returns offline or intentional offline then
resource moves to offline state

205State transition diagram
State transitions

If monitor of the GoingOffline Waiting state returns unknown or online, or if the
monitor times out then,

■ If OfflineWait Limit is not reached then the resource is moved to GoingOffline
Waiting state.

■ If Offline Wait Limit is reached then the resource which is cleaned earlier is
called, then mark the resource as UNABLE_TO_OFFLINE

■ If CleantRetryLimit is not reached then call clean.

■ If CleantRetryLimit is reached then mark resource as ADMIN_WAIT state and
move the resource to GoingOffline Waiting state.

■ If the user initiates operation “-clearadminwait” then reset the ADMIN_WAIT flag.
If user initiates operation “-clearaminwait -fault” then agent resets the ADMIN_WAIT
flag

206State transition diagram
State transitions

Figure 10-5 Resource fault when RestartLimit reached and ManageFault =
ALL

Offline

Going Offline
Waiting

Online

Cleaning

Monitoring

TL
reached?

FOMT
reached

CRL
reached?

clean timedout or failed/start PM

no/inc CC and
stop PM

yes/set
ADMIN_WAIT

yes yes

timed out monitor of
online state
return status

offline
monitor

clean succeeds and
monitor of Going

Offline Waiting returns
online

no/inc CMTC

monitor of Going Offline
Waiting returns offline or
status IO

clean succeeds,
monitor times out
or returns unknown

monitor

FOMT- Fault On Monitor Timeout
CMTC – Consecutive Monitor Timeout
Count
TL – Tolerance Limit
PM -Periodic Monitoring
IO- Intentional Offline
TLC – Tolerance Limit Count
CRL – Clean Retry Limit
CC- Clean Count

If user initiates operation
-clearadminwait or -
clearadminwait -fault
when ADMIN_WAIT set/
reset ADMIN_WAIT

no/inc TC

clean
succeeds/
start PM

This diagram describes the activity that occurs when a resource faults and the
RestartLimit is reached. When the monitor entry point times out successively
and FaultOnMonitorTimeout is reached, or monitor returns offline and the
ToleranceLimit is reached.

If clean retry limit is reached then set ADMIN_WAIT flag for resource and move
resource to online state if not reached the agent invokes the clean entry point.

If clean fails, or if it times out, the agent places the resource in the online state as
if no fault has occurred and starts periodic monitoring. If clean succeeds, the
resource is placed in the Going Offline Waiting state and start periodic monitoring,
where the agent waits for the next monitor.

207State transition diagram
State transitions

If clean succeeds, the resource is placed in the GoingOffline Waiting state, where
the agent waits for the next monitor.

■ If monitor reports online, the resource is placed back online as if no fault
occurred. Ifmonitor reports offline, the resource is placed in an offline state and
marked as FAULTED. If monitor reports IO, the resource is placed in an offline
state

■ If monitor reports unknown or times out, the agent places the resource back
into the Going Offline Waiting state, and sets the UNABLE_TO_OFFLINE flag.

Note: If clean succeeds, the agent move resource to GoingOfflineWait and the
resource is marked faulted. If monitoring of GoingOfflineWaiting returns online
then the resource is moved to online state as engine does not expects the resource
to go in offline state the as GoingOfflineWaiting state was set by the agent as a
result of clean success.

208State transition diagram
State transitions

Figure 10-6 Resource fault when RestartLimit not reached and ManageFault
= ALL

MonitoringOnline

Offline

CleaningGoing Online

FOMT
reached?

TL
reached?

CRL
reached?

yes

no/in CMTC

timedout

IO

yes/set
ADMIN_WAIT

no

yes

monitor

status offline
no/inc TC

no/inc CC,
stop PM;
reset TC,
reset CMTC

timedout or
failed/start

PM

If user initates operation
clearadminwait or -
clearadminwait -fault
when ADMIN_WAIT set/
reset ADMIN_WAIT

clean success/inc
RC and start online

IO – Intentional Offline
RC – Restart Count
PM – Periodic Monitoring
TL – Tolerance Limit
TC – Tolerance Count
FOMT – Fault On Monitor Timeout
CMTC – Consecutive Monitor Timeout Count

This diagram describes the activity that occurs when a resource faults and the
RestartLimit is not reached. When themonitor entry point times out successively
and FaultOnMonitorTimeout is reached, or monitor returns offline and the
ToleranceLimit is reached then agent checks the clean counter to check if the
clean entry point can be invoked.

If CleanRetryLimit is reached then set ADMIN_WAIT flag for the resource and move
the resource to online state. If clean retry limit fails to reach, the agent invokes the
clean entry point.

■ If clean succeeds, the resource is placed in the Going Online state and the
online entry point is invoked to restart the resource; refer to the diagram,
"Bringing a resource online."

209State transition diagram
State transitions

■ If clean fails or times out, the agent places the resource in the Online state as
if no fault occurred.

Refer to the diagram "Resource fault without automatic restart," for a discussion of
activity when a resource faults and the RestartLimit is reached.

Figure 10-7 Monitoring of persistent resources

Monitoring
(Offline) Offline

FOMT
reached?

Online Monitoring
(online)

TL
reached?

monitor

status offline or IO or unknown
or timeout

online or offline/
ignore

yes

timedout

status
online

IO

status online or unknown

monitor

online or offline/
ignore

no/inc TC

TL – Tolerance Limit
TC – Tolerance Limit Count
FOMT – Fault on Monitor Timeout
CMTC – Consecutive Monitor Timeout Count
IO – Intentional Offilne

status offline

no/inc CMTC

yes

Ifmonitor returns offline and the ToleranceLimit is reached, the resource is placed
in an Offline state and noted as FAULTED. If monitor timeout and
FaultOnMonitorTimeouts is reached, the resource is placed in an Offline state
and noted as FAULTED.

210State transition diagram
State transitions

Figure 10-8 Closing a resource

Going Offline
Waiting

Going Offline
Going Online

Going Migrate

Going Migrate
Waiting

Online

Offline
Going Online
Waiting

DetachedClosing
done or timedout

The state diagram explains all the states fromwhere a resource canmove toClosing
state. The following tables describes the actions performed in different state by
which a resource can move to Closing state,

ActionState

hastop –local –force or hares -delete or
Enabled = 0 only if resource is persistent
resource

Online to Closing

Enabled = 0 or hastop –local or hastop –local
–force or hares -delete

Offline to Closing

hastop –local –force or hares -deleteGoingOnlineWaiting

hastop –local –force or hares -deleteGoingOfflineWaiting

hastop –local –force or hares -deleteGoingMigrateWaiting

hastop –local –forceGoingOnline

hastop –local –forceGoingOffline

hastop –local –forceGoingMigrate

Enabled = 0 or hastop –local or hastop –local
–force or hares –delete

Probing

211State transition diagram
State transitions

Figure 10-9 Migrating a resource

Online Going Migrate

Offline Monitoring

MWL
reached?

MonitoringOffline Online

MWL
reached?

Resource offline on
source node?

fail/start
PM

migrate/
stop PM

offline or IO

online or
unknown
or timed
out

yes/set
ADMIN_WAIT

If user initiate
operation -

clearadminwait/
reset ADMIN_WAIT

done or timedout
or terminated/

start PM

On source
node

On target
node

offline or
unknown or
timedout

onlinemonitor

no/inc MWC

yes/set
ADMIN_WAIT

no

Going Migrate
Wait

monitor

no/inc
MWC

MWL – Migrate Wait Limit
MWC – Migrate Wait Count
IO – Intentional Offline
PM – Periodic Monitoring

yes

If user initiate
operation –

clearadminwait/
reset

ADMIN_WAIT

The migration process is initiated from the source system, where virtual machine
(VM) is online and the VM is migrated to the target system where it was offline.
When the agent on the source system receives a migration request from the engine
to migrate the resource, the resource goes to Going Migrate state, where migrate
entry point is invoked. If the migrate entry point fails with return code 255, the
resource is transitioned back to the online state and failure of migrate operation is
communicated to the engine. This indicates that the migration operation cannot be
performed.

Agent framework ignores any value returned between 101 to 254 range and will
return to online state. If the migrate entry point completes successfully or times out
is reached, the resource enters the Going Migrate Waiting state where it waits for
the next monitor cycle and the monitor calls with the frequency as configured in

212State transition diagram
State transitions

MonitorInterval. If monitor returns an offline status, the resource moves to the offline
state and the migration on the source system is considered complete.

Even after moving to offline state the agent keeps on monitoring the resource with
same monitor frequency as configured in MonitorInterval. This is to detect if VM
fails back at source node early. However, if monitor entry point times out or reports
the state as online or unknown, the resource waits for the MigrateWaitLimit resource
cycle to complete.

If any of the monitor within MigrateWaitLimit reports the state as offline, the resource
transitions to offline state and the same is reported to the engine. If the monitor
entry point times out or reports the state as online or unknown even after
MigrateWaitLimit has reached, the ADMIN_WAIT flag is set.

If resource migration operation is successful on source node then on target node
the agent change the monitoring frequency from OfflineMonitorInterval to
MonitorInternal to detect success full migration early. But if resource is not detected
as online on target node even after MigrateWaitLimit is reached then resource is
moved to ADMIN_WAIT state and agent fail back to monitor frequency as configured
in OfflineMonitorInterval

Note: : The agent does not call clean if the migrate entry point times out or if monitor
after migrate entry point times out or reports the state as online or unknown even
after MigrateWaitLimit has reached. You need to manually clear the ADMIN_WAIT
flag after resolving the issue.

213State transition diagram
State transitions

Figure 10-10 Resource fault: ManageFaults attribute = ALL

Cleaning

Online Monitoring
monitor

Status = online /
monitor of online
state Status = offline

clean timed out or failed /
Start PM

YES / stop PM; faulted = 1
call clean; inc CC

Going Offline
Waiting

Offline

Either monitor return IO
or monitor of
GoingOffline Waiting
state returns offline

Going Online

Is
RL

Reached
?

NO / inc TC

Clean success /
offline_cleaned = 1;
increment RC; reset TC

monitor

if monitor of Going Offline
Waiting return status
unknown or monitor timed
out if clean success then
set
UNABLE_TO_OFFLINE

NO / call online; set flag
as RESTARTING

See Bringing a resource online with
ManageFaults = ALL

YES

clean not
Implemented and
non-persistent
resource /
offline_cleaned = 0
reset clean_count,
start PM

Is TL
Reached

?

PM - Periodic Monitoring
RL - Restart Limit
TL - Tolerance Limit
CC - Clean Count
RC - Restart Count
TC - Tolerance Count
IO – Intentional Offline

214State transition diagram
State transitions

Figure 10-11 Resource fault (monitor hung): ManageFaults attribute = ALL

Online Monitoring

Is
FOMT
reached

?

Cleaning
Is RL

Reached
?

Offline

Going Offline
Waiting

monitor

status = online /
reset CMTC

status = unknown / set
MONITOR_UNKNOWN

No/inc CMTC

monitor timed out / set
MONITOR_TIMEDOUT

YES / stop PM; inc
CC; call clean (MH);

faulted = 1

clean success / inc
CMTC

FOMT - Fault On Monitor Timeout
MH - Monitor Hung
PM - Periodic Monitoring
RL - Restart Limit
CMTC - consecutive monitor timedout count
RC - Restart Count
CC - Clean Count
IO – Intentional Offline

status = unknown or
monitor timed out / set
UNABLE_TO_OFFLINE

monitor

clean failed or
timed out / start
PM

if monitor of Going Offline
Wiating return state status =
online reset faulted; reset
clean count; reset CMTC

Going
Online

NO / call online; set flag
as RESTARTING

Either monitor returns IO or
monitor of Going Offline Waiting
state returns offline

See Brining a resource online
with ManageFaults =ALL

State transitions with respect to ManageFaults
attribute

This section shows state transition diagrams with respect to the ManageFault

attribute.

By default, ManageFaults is set to ALL, in which case the clean entry point is called
by VCS.

See “ManageFaults” on page 190.

215State transition diagram
State transitions with respect to ManageFaults attribute

The diagrams cover the following conditions:

■ Bringing a resource online when the ManageFaults attribute is set to NONE

■ Taking a resource offline when the ManageFaults attribute is set to NONE

■ Resource fault when ManageFaults attribute is set to ALL

■ Resource fault (unexpected offline) when ManageFaults attribute is set to
NONE

■ Resource fault (monitor is hung) when ManageFaults attribute is set to ALL

■ Resource fault (monitor is hung) when ManageFaults attribute is set to NONE

Figure 10-12 Bringing a resource online: ManageFaults attribute = NONE

Offline

Going Online
Waiting

Offline

Offline

OWL
reached?

ORL
reached?

Status
offline?

Going Online

no/inc OWC

no/set
ADMIN_WAIT

no

Yes

Yes

Yes

status IO

status online

monitoring

User initiate
operation
”clearadminwait-
fault”/reset
ADMIN_WAIT,
set ORC to ORL

If User initiate
operation
clearadminwait or
set ManageFault
to ALL / reset
ADMIN_WAIT

online/ stop
PM

timedout/set
ADMIN_WAIT

with reason ONH,
start PM

OWL – Online Wait Limit
OWC – Online Wait Count
PM – Periodic Monitoring
ORL – Online Retry Limit
ORC– Online Retry Count
ONH – Online Hung
IO – Intentional offline

offline or
unknown or
timedout

done/
insert

monitor;
start PM

Monitoring

216State transition diagram
State transitions with respect to ManageFaults attribute

Figure 10-13 Taking a resource offline; ManageFaults = None

Online
Going
Offline

Going Offline
Waiting

Monitoring

Offline

Is
OFWL
reached

?

offline /
stop PM

timed out / set
ADMIN_WAIT with
reason = OFH; start
PM

done /
insert
monitor;
start PM

monitor

status = online
or unknown or
Monitor timed
out

status = offline or
IO

no / set
ADMIN_WAIT
with reason =
OFI

no/ Inc OFWC
User initiate operation "-clearadminwait -
fault" / reset ADMIN_WAIT; offline_cleaned =
1; insert monitor

User initiate operation -clearadminwait
or set MangeFault to All/
reset ADMIN_WAIT, insert monitor

OFH - Offline Hang
OFI - Offline Ineffective
PM - Periodic Monitoring
OFWL - Offline Wait Limit
OFWC - Offline Wait Count

Is
Offline
cleaned

?

yes / set
UNABLE_TO_OFFLINE

Yes

217State transition diagram
State transitions with respect to ManageFaults attribute

Figure 10-14 Resource fault (unexpected offline): ManageFaults attribute =
NONE

Online

Is TL
reached

?

Going Offline
Waiting

Monitoring

Offline

monitor

if monitor after Going
Offline Waiting state return
status = unknown or
times out then move to
goinng offline waiting.
and
offline cleaned = 1/ set
UNABLE_TO_OFFLINE

if monitor of going offline
waiting state return status
= offline or
if monitor report status =
IO

status = online / reset faulted;
reset clean count; reset offline-
cleaned;

User initiate operation "-clearadminwait -fault" /
reset ADMIN_WAIT; offline_cleaned = 1; insert
monitor

monitor timed out / set
MONITOR_TIMEDOUT

status = online

monitor

No/inc TC

YES / clean reason = OU;
set ADMIN_WAIT

User initiate operation -
clearadminwait
or
set MangeFault to All/
reset ADMIN_WAIT,
insert monitor

TL - Tolerance Limit
TC - Tolerance Count
OU - Offline Unexpectedly

status offline

status = unknown / set
MONITOR_UNKNOWN

218State transition diagram
State transitions with respect to ManageFaults attribute

Figure 10-15 Resource fault (monitor hung): ManageFaults attribute = NONE

Online Monitoring

Is
FOMT
reached

?

Offline

Going Offline
Waiting

monitor

status = online /
reset CMTC

status = unknown / set
MONITOR_UNKNOWN

NO / increment
CMTC

monitor timed out / set
MONITOR_TIMEDOUT

YES / set
ADMIN_WAIT; with
reason = MH

monitor of Going Offline
Waiting state return status =
unknown or monitor timed out /
set UNABLE_TO_OFFLINE if
offline_cleaned = 1

monitor

status = online
reset faulted;
reset clean count;
reset CMTC

if user initiate operation "-clearadminwait -fault" /
reset ADMIN_WAIT and set offline_cleaned = 1

if monitor returns
IO or if monitor of
Going Oflline
Waiting state
returns offline

If user initiate operation "-clearadminwait" or
set ManageFault to ALL
/ reset ADMIN_WAIT

FOMT - Fault On Monitor Timeout
MH - Monitor Hung
CMTC - Consecutive Monitor Time out Count
IO – Intentional Offline

219State transition diagram
State transitions with respect to ManageFaults attribute

Internationalized
messages

This chapter includes the following topics:

■ About internationalized messages

■ Creating SMC files

■ Converting SMC files to BMC files

■ Using BMC Map Files

■ Updating BMC Files

About internationalized messages
VCS handles internationalized messages in binary message catalogs (BMCs)
generated from source message catalogs (SMCs).

■ A source message catalog (SMC) is a plain text catalog file encoded in ASCII
or in UCS-2, a two-byte encoding of Unicode. Developers can create messages
using a prescribed format and store them in an SMC.

■ A binary message catalog(BMC) is a catalog file in a form that VCS can use.
BMCs are generated from SMCs through the use of the bmcgen utility.

Each module requires a BMC. For example, the VCS engine (HAD), GAB, and LLT
require distinct BMCs, as do each enterprise agent and each custom agent. For
agents, a BMC is required for each operating system platform.

Once generated, BMCs must be placed in specific directories that correspond to
the module and the language of the message. You can run the bmcmap utility within
the specific directory to create a BMC map file, an ASCII text file that links BMC

11Chapter

files with their corresponding module, language, and range of message IDs. The
map file enables VCS to manage the BMC files.

You can change an existing SMC file to generate an updated BMC file.

Creating SMC files
Since Source Message Catalog files are used to generate the Binary Message
Catalog files, they must be created in a consistent format.

SMC format
Writer: introductory text is required here.

#!language = language_ID

#!module = module_name

#!version = version

#!category = category_ID

comment

message_ID1 {%s:msg}

message_ID2 {%s:msg}

message_ID3 {%s:msg}

comment

message_ID4 {%s:msg}

message_ID5 {%s:msg}

...

Example SMC file
Examine an example SMC file:

VRTSvcsSunAgent.smc

The sample file is based on the SMC format:

#!language = en

#!module = HAD

#!version = 4.0

#!category = 203

common library

221Internationalized messages
Creating SMC files

100 {"%s:Invalid message for agent"}

101 {"%s:Process %s restarted"}

102 {"%s:Error opening /proc directory"}

103 {"%s:online:No start program defined"}

104 {"%s:Executed %s""}

105 {"%s:Executed %s"}

Formatting SMC files
■ SMC files must be encoded in UCS-2, ASCII, or UTF-8.

A discussion of file naming conventions is available.
See “Naming SMC files, BMC files” on page 222.

■ All messages should begin with "%s:" that represents the three-part header
"Agent:Resource:EntryPoint" generated by the agent framework.

■ The HAD module must be specified in the header for custom agents.
See “Example SMC file” on page 221.

■ The minor number of the version (for example, 2.x) can be modified each time
a BMC is to be updated. The major number is only to be changed by VCS. The
version number indicates to processes handling the messages which catalog
is to be used.
See “Updating BMC Files” on page 226.

■ In the SMC header, no space is permitted between the "#" and the "!" characters.
Spaces can follow the "#" character and regular comments in the file. See the
example above.

■ SMC filenames must use the extension: .smc.

■ A message should contain no more than six string format specifiers.

■ Message IDs must contain only numeric characters, not alphabetic characters.
For example, 2001003A is invalid. Message IDs can range from 1 to 65535.

■ Message IDs within an SMC file must be in ascending order.

■ A message formatted to span across multiple lines must use the "\n" characters
to break the line, not a hard carriage return. Line wrapping is permitted. See the
examples that follow.

Naming SMC files, BMC files
BMC files, which follow a naming convention, are generated from SMC files. The
name of an SMC file determines the name of the generated BMC file. The naming
convention for BMC files has the following pattern:

222Internationalized messages
Creating SMC files

VRTSvcs{Sun|AIX|Lnx}{Agent_name}.bmc

where the platform and agent_name are included.

For example:

VRTSvcsLnxOracle.bmc

Message examples
■ An illegal message, with hard carriage returns embedded with the message:

201 {"%s:To be or not to be!

That is the question"}

■ A valid message using "\n":

10010 {"%s:To be or not to be!\n

That is the question"}

■ A valid message with text wrapping to the next line:

10012 {"%s:To be or not to be!\n

That is the question.\n Whether tis nobler in the mind to

suffer\n the slings and arrows of outrageous fortune\n or to

take arms against a sea of troubles"}

Using format specifiers
Using the "%s" specifier is appropriate for all message arguments unless the
arguments must be reordered. Since the word order in messages may vary by
language, a format specifier,%#$s, enables the reordering of arguments in a
message; the "#" character is a number from 1 to 99.

In an English SMC file, the entry might resemble:

301 {"%s:Setting cookie for proc=%s, PID = %s"}

In a language where the position of message arguments need to switch, the same
entry in the SMC file for that language might resemble:

301 {"%s:Setting cookie for process with PID = %3$s, name =

%2$s"}

223Internationalized messages
Creating SMC files

Converting SMC files to BMC files
Use the bmcgen utility to convert SMC files to BMC files. For example:

bmcgen VRTSvcsLnxAgent.smc

The file VRTSvcsLnxAgent.bmc is created in the directory where the SMC file exists.
A BMC file must have an extension: .bmc.

By default, the bmcgen utility assumes the SMC file is a Unicode (UCS-2) file. For
ASCII or UTF-8 encoded files, use the -ascii option. For example:

bmcgen -ascii VRTSvcsSunAgent.smc

Storing BMC files
By default, BMC files must be installed in /opt/VRTS/messages/language, where
language is a directory containing the BMCs of a given supported language. For
example, the path to the BMC for a Japanese agent on a Solaris system resembles:

/opt/VRTS/messages/ja/VRTSvcsSunAgent.bmc.

VCS languages
The languages supported by VCS are listed as subdirectories, such as /ja
(Japanese) and /en (English), in the directory /opt/VRTS/messages.

Displaying the contents of BMC files
The bmcread command enables you to display the contents of the binary message
catalog file. For example, the following command displays the contents of the
specified BMC file:

bmcread VRTSvcsLnxAgent.bmc

bmcread VRTSvcsW2KAgent.bmc

Using BMC Map Files
VCS uses a BMC map file to manage the various BMC files of a given module for
a given language. HAD is themodule for the VCS engine, bundled agents, enterprise
agents, and custom agents. A BMC map file is an ASCII text file that associates
BMC files with their category and unique message ID range.

224Internationalized messages
Converting SMC files to BMC files

Location of BMC Map Files
Map files, by default, are created in the same directories as their corresponding
BMC files: /opt/VRTS/messages/language.

Creating BMC Map Files
Developers can add BMCs to the BMC map file. After generating a BMC file:

1 Copy the BMC file to the corresponding directory. For example:

cp VRTSvcsLnxOracle.bmc /opt/VRTS/messages/en

2 Change to the directory containing the BMC file and run the bmcmap utility. For
example:

cd /opt/VRTS/messages/en

bmcmap -create en HAD

cd %VCS_HOME%\messages\en

bmcmap -create en HAD

The bmcmap utility scans the contents of the directory and dynamically generates
the BMC map. In this case, HAD.bmc map is created.

Example BMC Map File
An example of a BMC Map file named HAD.bmcmap on a Solaris system.

This is a program generated file, please do not edit.

Language=en

HAD=VRTSvcsHad VRTSvcsAgfw VRTSvcsWac \

VRTSvcsHbfw VRTSvcsAlerts VRTSvcsTriggers \

VRTSvcsApi gcoconfig fdsetup \

hazonesetup hagetcf uuidconfig \

hazoneverify VRTSvcsSunAgent VRTSvcsCommonAgent \

VRTSvcsOracle VRTSvcsDb2udb VRTSvcsCVMCluster \

VRTSvcsCVMVolDg VRTSvcsSunVVR VRTSvcsCFSMount \

VRTSvcsSybase VRTSvcsCVMVxconfigd VRTSvcsCFSfsckd \

VRTSvcsCommon

VRTSvcsHad.version=5.1

VRTSvcsHad.category=1

VRTSvcsHad.IDstart=0

225Internationalized messages
Using BMC Map Files

VRTSvcsHad.IDend=53502

VRTSvcsAgfw.version=5.1

VRTSvcsAgfw.category=2

VRTSvcsAgfw.IDstart=0

VRTSvcsAgfw.IDend=60019

VRTSvcsWac.version=5.1

VRTSvcsWac.category=3

VRTSvcsWac.IDstart=0

VRTSvcsWac.IDend=53006

VRTSvcsHbfw.version=5.1

VRTSvcsHbfw.category=4

VRTSvcsHbfw.IDstart=0

VRTSvcsHbfw.IDend=13301

VRTSvcsAlerts.version=5.1

VRTSvcsAlerts.category=5

VRTSvcsAlerts.IDstart=10018

VRTSvcsAlerts.IDend=52026

Updating BMC Files
You can update an existing BMC file. This may be necessary, for example, to add
new messages or to change a message.

This can be done in the following way:

■ If the original SMC file for a given BMC file exists, you can edit it using a text
editor. Otherwise, create a new SMC file.

■ Make your changes, such as adding, deleting, or changing messages.

■ Change the minor number of the version number in the header. For example,
change the version from 2.0 to 2.1.

■ Save the file.

■ Generate the new BMC file using the bmcgen command; place the new BMC
file in the corresponding language directory.

■ In the directory containing the BMC file, run the bmcmap command to create a
new BMC map file.

226Internationalized messages
Updating BMC Files

Troubleshooting VCS
resource’s unexpected
behavior using First
Failure Data Capture
(FFDC)

This chapter includes the following topics:

■ Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource’s
unexpected behavior

Enhancing First Failure Data Capture (FFDC) to
troubleshoot VCS resource’s unexpected behavior

FFDC is the process of generating and dumping debug information on unexpected
events.

Earlier, FFDC information is generated on following unexpected events:

■ Segmentation fault

■ When agent fails to heartbeat with engine

From VCS 6.2 version, the capturing of the FFDC information on unexpected events
has been extended to resource level and to cover VCS events. This means, if a
resource faces an unexpected behavior then FFDC information will be generated.

12Chapter

The current version enables the agent to log detailed debug logging during
unexpected events with respect to resource, such as,

■ Monitor entry point of a resource reported OFFLINE/IO when it was in ONLINE
state.

■ Monitor entry point of a resource reported UNKNOWN.

■ If any entry point times-out.

■ If any entry point reports failure.

Now whenever an unexpected event occurs FFDC information will be automatically
generated. And this information will be logged in their respective agent log file.

228Troubleshooting VCS resource’s unexpected behavior using First Failure Data Capture (FFDC)
Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource’s unexpected behavior

Using pre-5.0 VCS agents
This appendix includes the following topics:

■ Using pre-5.0 VCS agents and registering them with V50 or later

■ Guidelines for using pre-VCS 4.0 Agents

■ Log messages in pre-VCS 4.0 agents

■ Pre-VCS 4.0 Message APIs

Using pre-5.0 VCS agents and registering them
with V50 or later

With VCS 5.0 release, the agent framework has been enhanced. For using this
enhanced agent framework for your agent, you need to register the agent with the
agent framework version V50 or later. The following sections describe how to use
pre-5.0 agents with the VCS 5.0 agent framework.

When you use pre-5.0 agents with VCS, you may register them as V50 or later
agents after making necessary modifications. Making this conversion affords you
advantages, which include:

■ You can use different versions of an agent on different systems in VCS.

■ You can make changes to the resource type definition used on some systems
without affecting how older versions of the agents function

Outline of steps to change V40 agents to V50 or later
■ Modifications to PATH variables and links to the agent binary registered with

agent version V50 or later may be necessary.

AAppendix

■ Change the way attributes and their values are passed to the entry points from
the V40 format to V50 or later name-value tuple format.

■ Include /opt/VRTSvcs/lib in path for Perl and shell to source them.

■ Set necessary environment variables.

See “About the ArgList and ArgListValues attributes” on page 43.

Example script in V40 and V50 or later
Note the following comparison.

V40

ResName=$1

Attr1=$2

Attr2=$3

VCSHOME="${VCS_HOME:-/opt/VRTSvcs}"

. $VCSHOME/bin/ag_i18n_inc.sh;

VCSAG_SET_ENVS $ResName;

V50 or later

ResName=$1; shift;

."../ag_i18n_inc.sh";

VCSAG_SET_ENVS $ResName;

VCSAG_GET_ATTR_VALUE "Attr1" -1 1 "$@";

attr1_value=${VCSAG_ATTR_VALUE};

VCSAG_GET_ATTR_VALUE "Attr2" -1 1 "$@";

attr2_value=${VCSAG_ATTR_VALUE};

Sourcing ag_i18n_inc modules in script entry points
In entry points, you need to source the ag_i18n_incmodules. The following examples
assume that the agent is installed in the directory /opt/VRTSvcs/bin/type.

For entry points in Perl:

...

$ResName = shitf;

use ag_i18n_inc;

VCSAG_SET_ENVS ($ResName);

...

For entry points in Shell:

230Using pre-5.0 VCS agents
Using pre-5.0 VCS agents and registering them with V50 or later

...

ResName = $1; shift;

. "../ag_i18n_inc.sh";

VCSAG_SET_ENVS $ ResName;

Guidelines for using pre-VCS 4.0 Agents
The agent framework supports all VCS agents by enabling them to communicate
with the engine about the definitions of resource types, the values configured for
the resource attributes, and entry points they use.

Changes made to the agent framework with VCS 4.0 and VCS 5.0 releases affect
how agents developed using the pre-VCS 4.0 agent framework can be used. While
not necessary, all pre-VCS 4.0 agents may be modified to work with the VCS 4.0
and later agent framework so that the new entry points can be used.

Note the following guidelines:

■ If the pre-VCS 4.0 agent is implemented strictly in scripts, then the VCS 4.0 and
later ScriptAgent can be used on UNIX. If desired, the VCS 4.0 and later action
and info entry points can be used directly.

■ If the pre-VCS 4.0 agent is implemented using any C++ entry points, the agent
can be used if developers do not care to implement the action or info entry
points. The VCS 4.0 and later agent framework assumes all pre-VCS 4.0 agents
are version 3.5.

■ If the pre-VCS 4.0 agent is implemented using any C++ entry points, and you
want to implement the action or the info entry point:

■ Add the action or info entry point, C++ or script-based, to the agent.

■ Use the API VCSAgInitEntryPointStruct with the parameter V40 to register
the agent as a VCS 4.0 agent. Use the VCSAgValidateAndSetEntryPoint
API to register your C++ entry points.

■ Recompile the agent.

Note: Agents developed on the 4.0 and later agent framework are not compatible
with the 2.0 or the 3.5 pre-4.0 frameworks.

Log messages in pre-VCS 4.0 agents
The log messages in pre-VCS 4.0 agents are automatically converted to the VCS
4.0 and later message format.

231Using pre-5.0 VCS agents
Guidelines for using pre-VCS 4.0 Agents

See Logging agent messages for more information.

Mapping of log tags (pre-VCS 4.0) to log severities (VCS 4.0)
For agents, the severity levels of entry point messages for VCS 4.0 and later
correspond to the pre-VCS 4.0 entry point message tags as shown in this table:

Log Severity (VCS 4.0 and later)Log Tag
(Pre-VCS 4.0)

VCS_CRITICALTAG_A

VCS_ERRORTAG_B

VCS_WARNINGTAG_C

VCS_NOTETAG_D

VCS_INFORMATIONTAG_E

VCS_DBG1 through VCS_DBG21TAG_F through
TAG_Z

How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later
In the following examples, a message written in a VCS 3.5 agent is shown as it
would appear in VCS 3.5 and as it appears in VCS 4.0 and later. Note that when
messages from pre-VCS 4.0 agents are displayed by VCS 4.0 or later, a category
ID of 10000 is included in the unique message identifier portion of the message.
The category ID was introduced with VCS 4.0.

■ Pre-VCS 4.0 message output:

TAG_B 2003/12/08 15:42:30

VCS:141549:Mount:nj_batches:monitor:Mount resource will not go

online because FsckOpt is incomplete

■ Pre-VCS 4.0 message displayed by VCS 4.0 and later

2003/12/15 12:39:32 VCS ERROR V-16-10000-141549

Mount:nj_batches:monitor:Mount resource will not go online

because FsckOpt is incomplete

Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros
This guide describes the logging macros for C++ agents and script-based agents.

232Using pre-5.0 VCS agents
Log messages in pre-VCS 4.0 agents

See Logging agent messages for more information.

For the purpose of comparison, the examples that follow show a pair of messages
in C++ that are formatted using the pre-VCS 4.0 API and the VCS 4.0 macros.

■ Pre-VCS 4.0 APIs:

sprintf(msg,

"VCS:140003:FileOnOff:%s:online:The value for PathName attribute

is not specified", res_name);

VCSAgLogI18NMsg(TAG_C, msg, 140003,

res_name, NULL, NULL, NULL, LOG_DEFAULT);

VCSAgLogI18NConsoleMsg(TAG_C, msg, 140003, res_name,

NULL,NULL,NULL,LOG_DEFAULT);

■ VCS 4.0 macros:

VCSAG_LOG_MSG(VCS_WARNING, 14003, VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not specified");

VCSAG_CONSOLE_LOG_MSG(VCS_WARNING, 14003, VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not specified");

Pre-VCS 4.0 Message APIs
The message APIs described in this section of the document are maintained to
allow VCS 4.0 and later to work with the agents developed on the 2.0 and 3.5 agent
framework.

VCSAgLogConsoleMsg
void

VCSAgLogConsoleMsg(int tag, const char *message, int flags);

This primitive requests that the VCS agent framework write message to the agent
log file

UNIX: $VCS_LOG/log/resource_type_A.log.

The message must not exceed 4096 bytes. A message greater that 4096 bytes is
truncated.

tag can be any value from TAG_A to TAG_Z. Tags A through E are enabled by
default. To enable other tags, use the halog command. flags can be zero or more
of LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE (prints a new
line), and LOG_TAG (prints tag). This primitive can be called from any entry point.

233Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

For example:

#include "VCSAgApi.h"

...

VCSAgLogConsoleMsg(TAG_A, "Getting low on disk space",

LOG_TAG|LOG_TIMESTAMP);

...

VCSAgLogI18NMsg
void

VCSAgLogI18NMsg(int tag, const char *msg,

int msg_id, const char *arg1_string, const char

*arg2_string,

const char *arg3_string, const char *arg4_string, int

flags);

This primitive requests that the VCS agent framework write an internationalized
message with a message ID and four string arguments to the agent log file

UNIX: $VCS_LOG/log/resource_type_A.log

The message must not exceed 4096 bytes. A message greater that 4096 bytes is
truncated. The size of all argument strings combined must not exceed 4096 bytes.
If the argument string total exceeds 4096 bytes, then each argument is allowed an
equal portion of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through H are enabled by
default. To enable other tags, modify the LogTags attribute of the corresponding
resource type. flags can be zero or more of LOG_NONE, LOG_TIMESTAMP (prints date
and time), LOG_NEWLINE (prints a new line), and LOG_TAG (prints tag). This primitive
can be called from any entry point.

For example:

#include "VCSAgApi.h"

...

char buffer[256];

sprintf(buffer, "VCS:2015001:IP:%s:monitor:Device %s address

%s", res_name, device, address);

VCSAgLogI18NConsoleMsg(TAG_B, buffer, 2015001, res_name, device,

address, NULL, LOG_TAG|LOG_TIMESTAMP|LOG_NEWLINE);

234Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

VCSAgLogI18NMsgEx
void

VCSAgLogI18NMsgEx(int tag, const char *msg,

int msg_id, const char *arg1_string, const char

*arg2_string,

const char *arg3_string, const char *arg4_string,

const char *arg5_string, const char *arg6_string, int

flags);

This primitive requests that the VCS agent framework write an internationalized
message with a message ID and six string arguments to the agent log file

UNIX: $VCS_LOG/log/resource_type_A.log

The message must not exceed 4096 bytes. A message greater that 4096 bytes is
truncated. The size of all argument strings combined must not exceed 4096 bytes.
If the argument string total exceeds 4096 bytes, then each argument is allowed an
equal portion of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through H are enabled by
default. To enable other tags, modify the LogTags attribute of the corresponding
resource type. flags can be zero or more of LOG_NONE, LOG_TIMESTAMP (prints date
and time), LOG_NEWLINE (prints a new line), and LOG_TAG (prints tag). This primitive
can be called from any entry point.

For example:

#include "VCSAgApi.h"

...

char buffer[256];

sprintf(buffer, "VCS:2015004:Oracle:%s:%s:During scan for

process %s ioctl failed with return code %s, errno = %s",

res_name, ep_name, proc_name, ret_buf, err_buf);

VCSAgLogI18NConsoleMsgEx(TAG_A, buffer, 2015004, res_name,

ep_name, proc_name, ret_buf, err_buf, NULL, flags);

VCSAgLogI18NConsoleMsg
void

VCSAgLogI18NConsoleMsg(int tag,

const char *msg, int msg_id, const char *arg1_string,

const char *arg2_string, const char *arg3_string,

const char *arg4_string, int flags);

235Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

This primitive requests that the VCS agent framework write an internationalized
message with a message ID and four string arguments to the agent log file

UNIX: $VCS_LOG/log/resource_type_A.log

The message must not exceed 4096 bytes. A message greater that 4096 bytes is
truncated. The size of all argument strings combined must not exceed 4096 bytes.
If the argument string total exceeds 4096 bytes, then each argument is allowed an
equal portion of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through E are enabled by
default. To enable other tags, use the halog command. flags can be zero or more
of LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE (prints a new
line), and LOG_TAG (prints tag). This primitive can be called from any entry point.

For example:

#include "VCSAgApi.h"

...

char buffer[256];

sprintf(buffer, "VCS:2015002:IP:%s:monitor:Device %s address

%s", res_name, device, address);

VCSAgLogI18NConsoleMsg(TAG_B, buffer, 2015002, res_name, device,

address, NULL, LOG_TAG|LOG_TIMESTAMP|LOG_NEWLINE);

VCSAgLogI18NConsoleMsgEx
void

VCSAgLogI18NConsoleMsgEx(int tag,

const char *msg, int msg_id, const char *arg1_string,

const char *arg2_string, const char *arg3_string,

const char *arg4_string, const char *arg5_string,

const char *arg6_string, int flags);

This primitive requests that the VCS agent framework write an internationalized
message with a message ID and six string arguments to the agent log file

UNIX: $VCS_LOG/log/resource_type_A.log

The message must not exceed 4096 bytes. A message greater that 4096 bytes is
truncated. The size of all argument strings combined must not exceed 4096 bytes.
If the argument string total exceeds 4096 bytes, then each argument is allowed an
equal portion of 4096 bytes and truncated if it exceeds the allowed portion.

236Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

tag can be any value from TAG_A to TAG_Z. Tags A through E are enabled by
default. To enable other tags, use the halog command. flags can be zero or more
of LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE (prints a new
line), and LOG_TAG (prints tag). This primitive can be called from any entry point.

For example:

#include "VCSAgApi.h"

...

...

char buffer[256];

sprintf(buffer, "VCS:2015003:Oracle:%s:%s:During scan for

process %s ioctl failed with return code %s, errno = %s",

res_name, ep_name, proc_name, ret_buf, err_buf);

VCSAgLogI18NConsoleMsgEx(TAG_A, buffer, 2015003, res_name,

ep_name, proc_name, ret_buf, err_buf, NULL, flags);

237Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

	Cluster Server 7.4.3 Agent Developer's Guide - AIX, Linux, Solaris, Windows
	Contents
	1. Introduction
	About VCS agents
	How agents work
	About the agent framework
	About intelligent monitoring framework (IMF)
	Resource type definitions
	About agent functions (entry points)
	About on-off, on-only, and persistent resources
	About attributes
	About intentional offline of applications

	About developing an agent
	Considerations for the application
	High-level overview of the agent development process

	2. Agent entry point overview
	About agent entry points
	Supported entry points
	How the agent framework interacts with entry points

	Agent entry points described
	About the open entry point
	About the monitor entry point
	About the online entry point
	About the offline entry point
	About the clean entry point
	About the action entry point
	About the info entry point
	About the attr_changed entry point
	About the close entry point
	About the shutdown entry point
	About the imf_init entry point
	About the imf_register entry point
	About the imf_getnotification entry point
	About the migrate entry point
	About the meter entry point

	Return values for entry points
	Considerations for using C++ or script entry points
	About the VCSAgStartup routine

	About the agent information file
	Example agent information file (UNIX)
	Implementing the agent XML information file

	About the ArgList and ArgListValues attributes
	ArgListValues attribute for agents registered as V50 and later
	Overview of the name-value tuple format
	ArgListValues attribute for different agents versions
	About the entry point timeouts

	3. Creating entry points in C++
	About creating entry points in C++
	Entry point examples in this chapter

	Data Structures
	Syntax for C++ entry points
	Syntax for C++ VCSAgStartup
	Syntax for C++ monitor
	Syntax for C++ info
	Syntax for C++ online
	Syntax for C++ offline
	Syntax for C++ clean
	Syntax for C++ action
	Syntax for C++ attr_changed
	Syntax for C++ open
	Syntax for C++ close
	Syntax for C++ shutdown
	Syntax for C++ migrate
	Syntax for C++ meter

	Agent framework primitives
	VCSAgGetMonitorLevel
	VCSAgGetFwVersion
	VCSAgGetRegVersion
	VCSAgRegisterEPStruct
	VCSAgSetCookie2
	VCSAgRegister
	VCSAgUnregister
	VCSAgGetCookie
	VCSAgStrlcpy
	VCSAgStrlcat
	VCSAgSnprintf
	VCSAgCloseFile
	VCSAgDelString
	VCSAgExec
	VCSAgExecWithTimeout
	VCSAgGenSnmpTrap
	VCSAgSendTrap
	VCSAgLockFile
	VCSAgInitEntryPointStruct
	VCSAgSetStackSize
	VCSAgUnlockFile
	VCSAgValidateAndSetEntryPoint
	VCSAgSetLogCategory
	VCSAgGetProductName
	VCSAgMonitorReturn
	VCSAgSetResEPTimeout
	VCSAgDecryptKey
	VCSAgGetConfDir
	VCSAgGetHomeDir
	VCSAgGetLogDir
	VCSAgGetSystemName
	VCSAG_CONSOLE_LOG_MSG
	VCSAG_LOG_MSG
	VCSAG_LOGDBG_MSG
	VCSAG_RES_LOG_MSG

	Agent Framework primitives for container support
	VCSAgIsContainerUp
	VCSAgGetContainerTypeEnum
	VCSAgExecInContainer2
	VCSAgIsContainerCapable
	VCSAgExecInContainerWithTimeout
	VCSAgGetUID
	VCSAgIsPidInContainer
	VCSAgIsProcInContainer
	VCSAgGetContainerID2
	VCSAgGetContainerName2
	VCSAgGetContainerBasePath
	VCSAgGetContainerEnabled

	4. Creating entry points in scripts
	About creating entry points in scripts
	Rules for using script entry points
	Parameters and values for script entry points
	ArgList attributes
	Examples

	Syntax for script entry points
	Syntax for the monitor script
	Syntax for the online script
	Syntax for the offline script
	Syntax for the clean script
	Syntax for the action script
	Syntax for the attr_changed script
	Syntax for the info script
	Syntax for the open script
	Syntax for the close script
	Syntax for the shutdown script
	Syntax for the imf_init script
	Syntax for the imf_register script
	Syntax for the imf_getnotification script
	Syntax for migrate script
	Syntax for meter script

	Agent framework primitives
	VCSAG_GET_MONITOR_LEVEL
	VCSAG_GET_AGFW_VERSION
	VCSAG_GET_REG_VERSION
	VCSAG_SET_RES_EP_TIMEOUT
	VCSAG_GET_ATTR_VALUE
	VCSAG_SET_RESINFO
	VCSAG_MONITOR_EXIT
	VCSAG_SYSTEM
	VCSAG_SU
	VCSAG_RETURN_IMF_RESID
	VCSAG_RETURN_IMF_EVENT
	VCSAG_BLD_PSCOMM
	VCSAG_PHANTOM_STATE
	VCSAG_SET_ENVS
	VCSAG_LOG_MSG
	VCSAG_LOGDBG_MSG
	VCSAG_SQUEEZE_SPACES

	Agent Framework primitives with container support
	VCSAG_GET_CONTAINER_BASE_PATH
	VCSAG_GET_CONTAINER_INFO
	VCSAG_IS_PROC_IN_CONTAINER
	VCSAG_EXEC_IN_CONTAINER

	Example script entry points
	Online entry point for FileOnOff
	Monitor entry point for FileOnOff
	Monitor entry point with intentional offline
	Offline entry point for FileOnOff
	Monitor entry point for agent having basic (level-1) and detailed (level-2) monitoring

	5. Logging agent messages
	About logging agent messages
	Logging in C++ and script-based entry points
	Agent messages: format
	Log unification of VCS agent’s entry points

	C++ agent logging APIs
	Agent application logging macros for C++ entry points
	Agent debug logging macros for C++ entry points
	Severity arguments for C++ macros
	Initializing function_name using VCSAG_LOG_INIT
	Log category
	Examples of logging APIs used in a C++ agent

	Script entry point logging functions
	Using functions in scripts
	VCSAG_SET_ENVS
	VCSAG_LOG_MSG
	VCSAG_LOGDBG_MSG
	Example of logging functions used in a script agent

	6. Building a custom agent
	Files for use in agent development
	Script based agent binaries
	C++ based agent binaries

	Creating the type definition file for a custom agent
	Naming convention for the type definition file
	Example: FileOnOffTypes.cf
	Example: Type definition for a custom agent that supports intentional offline
	Requirements for creating the agentTypes.cf file
	Adding the custom type definition to the configuration

	Building a custom agent on UNIX
	Implementing entry points using scripts
	Example: Using script entry points on UNIX
	Example: Using VCSAgStartup() and script entry points on UNIX
	Implementing entry points using C++
	Example: Using C++ entry points on UNIX
	Example: Using C++ and script entry points on UNIX

	Installing the custom agent
	Defining resources for the custom resource type
	Sample resource definition

	Agent framework versions details

	7. Building a script based IMF-aware custom agent
	About building a script based IMF-aware custom agent
	Linking AMF plugins with script agent
	Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring
	Example of amfregister.xml for registration of process-based resource with AMF for online monitoring
	Example of amfregister.xml for registration of process-based resource with AMF for offline monitoring
	Example of amfregister.xml for online and offline IMF monitoring for a given process
	Examples for adding RepearName tag in amfregister.xml

	Adding IMF and IMFRegList attributes in configuration
	Monitor without IMF integration
	Monitor without IMF but with LevelTwo monitor frequency
	Monitor with IMF integration
	Monitor with IMF but with LevelTwo monitor frequency
	Installing the IMF-aware script-based custom agent

	8. Testing agents
	About testing agents
	Using debug messages
	Debugging agent functions (entry points).
	Debugging the agent framework

	Debugging using AdvDbg attribute
	Working of AdvDbg attribute
	Impact of AdvDbg attribute on existing functionality of the entry point

	Using the engine process to test agents
	Test commands

	9. Static type attributes
	About static attributes
	Overriding static type attributes

	Static type attribute definitions
	ActionTimeout
	AdvDbg
	AEPTimeout
	AgentClass
	AgentDirectory
	AgentFailedOn
	AgentFile
	AgentPriority
	AgentReplyTimeout
	AgentStartTimeout
	AlertOnMonitorTimeouts
	ArgList
	AttrChangedTimeout
	AvailableMeters
	CleanRetryLimit
	CleanTimeout
	CloseTimeout
	ContainerOpts
	ConfInterval
	EPClass
	EPPriority
	ExternalStateChange
	FaultOnMonitorTimeouts
	FaultPropagation
	FireDrill
	IMF
	IMFRegList
	InfoInterval
	InfoTimeout
	IntentionalOffline
	LevelTwoMonitorFreq
	LogDbg
	LogFileSize
	LogViaHalog
	ManageFaults
	Meters
	MeterControl
	MeterRegList
	MeterRetryLimit
	MeterTimeout
	MonitorInterval
	MonitorStatsParam
	MonitorTimeout
	MigrateTimeout
	MigrateWaitLimit
	NumThreads
	OfflineMonitorInterval
	OfflineTimeout
	OfflineWaitLimit
	OnlineClass
	OnlinePriority
	OnlineRetryLimit
	OnlineTimeout
	OnlineWaitLimit
	OpenTimeout
	Operations
	RegList
	RestartLimit
	ScriptClass
	ScriptPriority
	SourceFile
	SupportedActions
	SupportedOperations
	ToleranceLimit

	10. State transition diagram
	State transitions
	State transitions with respect to ManageFaults attribute

	11. Internationalized messages
	About internationalized messages
	Creating SMC files
	SMC format
	Example SMC file
	Formatting SMC files
	Naming SMC files, BMC files
	Message examples
	Using format specifiers

	Converting SMC files to BMC files
	Storing BMC files
	Displaying the contents of BMC files

	Using BMC Map Files
	Location of BMC Map Files
	Creating BMC Map Files
	Example BMC Map File

	Updating BMC Files

	12. Troubleshooting VCS resource’s unexpected behavior using First Failure Data Capture (FFDC)
	Enhancing First Failure Data Capture (FFDC) to troubleshoot VCS resource’s unexpected behavior

	A. Using pre-5.0 VCS agents
	Using pre-5.0 VCS agents and registering them with V50 or later
	Outline of steps to change V40 agents to V50 or later
	Example script in V40 and V50 or later
	Sourcing ag_i18n_inc modules in script entry points

	Guidelines for using pre-VCS 4.0 Agents
	Log messages in pre-VCS 4.0 agents
	Mapping of log tags (pre-VCS 4.0) to log severities (VCS 4.0)
	How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later
	Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros

	Pre-VCS 4.0 Message APIs
	VCSAgLogConsoleMsg
	VCSAgLogI18NMsg
	VCSAgLogI18NMsgEx
	VCSAgLogI18NConsoleMsg
	VCSAgLogI18NConsoleMsgEx

