Storage Foundation Cluster
File System High Availability
7.4.1 Administrator's Guide

- Linux

VERITAS



Last updated: 2019-09-25

Legal Notice
Copyright © 2019 Veritas Technologies LLC. All rights reserved.

Veritas and the Veritas Logo are trademarks or registered trademarks of Veritas Technologies
LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their
respective owners.

This product may contain third-party software for which Veritas is required to provide attribution
to the third-party (“Third-Party Programs”). Some of the Third-Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the third-party legal notices document accompanying this
Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC
500 E Middlefield Road
Mountain View, CA 94043

http://www.veritas.com


https://www.veritas.com/about/legal/license-agreements
http://www.veritas.com

Technical Support

Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:

https://www.veritas.com/support
You can manage your Veritas account information at the following URL:
https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

Worldwide (except Japan) CustomerCare@yveritas.com
Japan CustomerCare_Japan@veritas.com
Documentation

Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The latest documentation is available on the Veritas
website:

https://sort.veritas.com/documents

Documentation feedback

Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:

infoscaledocs@veritas.com
You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)

Veritas Services and Operations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf


https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:infoscaledocs@veritas.com?Subject=InfoScale
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Section 1

Chapter 1

Chapter 2

Introducing Storage Foundation Cluster

File System High Availability ... 31
Overview of Storage Foundation Cluster File
System High Availability ...................................... 32
About Storage Foundation Cluster File System High Availability ............. 32
About Dynamic Multi-Pathing (DMP) .........cooiiiiiiiiieee 35
About Veritas Volume Manager ............ooiiiiiiiiiii e 35
About Veritas File System ... 36
About the Veritas File System intentlog ..............cocoooviiiiiinnn. 37
ADOUL €XIENTS ..o 38
About file system disk layouts .............c.coiiiiiiiiiii 38
About Storage Foundation Cluster File System (SFCFS) ...................... 40
About Veritas File System features supported in cluster file
SY S M L 40
About Veritas InfoScale Operations Manager ............ccccocoevviiiininnane.. 41
About Veritas Replicator .........ccoiiiiiii e 42
What is VER? .. 42
Features of VFR ... 42
Use cases for Storage Foundation Cluster File System High Availability
........................................................................................... 43
How Dynamic Multi-Pathing works ....................... 45
HOW DIMP WOTKS .ot 45
Device diSCOVEIY .....uieii e 49
How DMP monitors /O on paths ..........cccoiiiiiiiiiiee 51
Load balanCing ..o 53
DMP in a clustered environment .............cocoiiiiiiiiiiii 54

Veritas Volume Manager co-existence with Oracle Automatic Storage
Management diSKS ....... ..o 55



Chapter 3

Contents

How Veritas Volume Manager works ........................... 57
How Veritas Volume Manager works with the operating system .............. 58
How datais stored ..........cocoiiiiiii 58
How Veritas Volume Manager handles storage management ................ 59
Physical ObJects ....... ..o 59
Virtual ObJeCtS ... 61
About the configuration daemon in Veritas Volume Manager ........... 64
Multiple paths to disk arrays ..........c.coooiiiiiiiiiii 65
Volume layouts in Veritas Volume Manager ..........cccooviiiiiiiiiiiiiiiiinnn, 66
Non-layered VOIUMES .........ooiiiii e 66
Layered VOIUMES ... 66
Layout methods .......coviiii 67
Concatenation, spanning, and carving ............ccoccoceviiiiiineennnnnn. 67
Striping (RAID-0) .. .. 69
Mirroring (RAID=1) ..e e 72
Striping plus mirroring (mirrored-stripe or RAID-0+1) ..................... 73
Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)
..................................................................................... 74
RAID-5 (striping with parity) ..........coooiiii 75
ONliNe relayout ... ... 82
How online relayout Works ...........coooiiiiiiiiii e 82
Limitations of online relayout ... 85
Transformation characteristics .............coooviiviniiiiinie, 86
Transformations and volume length ..., 86
Volume resynchronization ... 87
Dirty flags . ..eeeeee e 87
Resynchronization proCcess ...........cccoiiiiiiiiiiiiiiiiien 87
HO-reloCation ..........ooiin i 88
Dirty region l0gging ... 88
Log subdisks and PIEXES .......cocvuiiiniiiii i 89
Sequential DRL ..o 89
VoIumMeE SNAPSOLS ...vi 89
Comparison of snapshot features ................cccoiiiii, 91
Support for atomic WHtes ...........coiiiiii 92
FastRESYNC ... 93
How FastResync Works ... 93
How non-persistent FastResync works with snapshots ................... 94
How persistent FastResync works with snapshots ......................... 95
DCO volume VErsionNiNg .......cc.oeuieiiiie e 98
Effect of growing a volume on the FastResyncmap ..................... 100
FastResync limitations ... 101

VOIUME SIS ... 102

5



Chapter 4

Chapter 5

How VxVM handles hardware clones or snapshots ............................
How VxVM uses the unique disk identifier (UDID) ........................
VOolUME €NCIYPHION ...eiiie e
Using passphrases for encryption ............cccociiiiiiiiiiiiiiiiiiiannn,
Using Key Management Server for encryption ............................
Recommendations for encryption ..............coooviiiiiiini

How Veritas File System works ...............................

Veritas File System features ...
Veritas File System performance enhancements .......................o...e..
Enhanced I/0O performance ...........c.cooiiiiiiiiiiiii
Delayed allocation for extending writes ................ocooviiiiiiiinn...
Using Veritas File System ........coooiiiiiiii e
Online system administration ..................ccooiii
Application program interface ...............ccooeiiiiiiiiiic

How Storage Foundation Cluster File System
High Availability wWorks ...

How Storage Foundation Cluster File System High Availability works

About Storage Foundation Cluster File System High Availability
arChiteCtUre ..o
About the symmetric architecture ...,
About Storage Foundation Cluster File System High Availability

primary/secondary failover ...............cooiiiii
About single-host file system semantics using Group Lock
MaNAGET ...

About Veritas File System features supported in cluster file systems
Veritas File System features not in cluster file systems .................

About Cluster Server architecture ..............cooooiiiiiiiiii

About the Storage Foundation Cluster File System High Availability
NAMIESPACE ... ettt et et et e e e e et e et et e e et e et ea e aees

About asymmetric MOUNES ..........cooiiiiiiii e

About primary and secondary clusternodes ................coooiiiin .

Determining or moving primaryship ..........cccooooiiiiiiiiiee

About synchronizing time on Cluster File Systems ...................oolL

About file system tunables ...

About setting the number of parallel fsck threads .....................oene.

Storage Checkpoints .........oouiiiiii

Contents

6



Chapter 6

About Storage Foundation Cluster File System High Availability backup
StrAtegIes ..
About parallel 1/O ...
About the I/O error handling policy for Cluster Volume Manager ...........
About recovering from /O failures ..o
About single network link and reliability .................cooii
Configuring a low-priority lInk ..o
Split-brain and jeopardy handling ............c.cooiiiiiiiii
ADOUL 1/O FENCING ... et
About I/O fencing for SFCFSHA in virtual machines that do not
support SCSI-3 PR ..o
About preventing data corruption with I/O fencing ........................
About 1/0 fencing cCompoNeNts ............ccoveiiiiiiiiiiiiieea
About I/O fencing configuration files ................cocooii
How 1/O fencing works in different event scenarios ......................
About server-based I/O fencing ..........ccoooiiiiiiiiiii
About secure communication between the SFCFSHA cluster and
CP SEBIVET L.
Storage Foundation Cluster File System High Availability and Veritas
Volume Manager cluster functionality agents ...................ooeee.
Veritas Volume Manager cluster functionality .................c.cooiinn.

How Cluster Volume Manager works .......................

About the cluster functionality of VXVM ........cccooiiiiiin
Overview of CIUStEING ........oirii i
Overview of cluster volume management ....................coveiiennn...
About private and shared disk groups ..........ccocoeviiiiiiiiiiiiinn.
Activation modes of shared disk groups ...........c.cocoeiiiiiiiiiiii.,
Limitations of shared disk groups ...........ccccooeiiiiiiiiiiiiiiiieeen
Cluster Volume Manager (CVM) tolerance to storage connectivity
FAIlUMES o
Availability of shared disk group configuration copies ...................
About redirection of application I/Os with CVM I/O shipping ...........
Storage disconnectivity and CVM disk detach policies ..................
Availability of cluster nodes and shared disk groups .....................
CVM initialization and configuration ..................ccooiiiiii
Cluster reconfiguration ...............coooiiiiiiiii e
Volume reconfiguration .............cociiiiiiii
Node ShutdOWN ...
Cluster shutdown ..o
Dirty region logging in cluster environments ...............ccoiiiiiiiiins
How DRL works in a cluster environment ...,

Contents

7



Section 2
Chapter 7

Chapter 8

Contents

Multiple host failover configurations ..............cc.oooiiiiiiiiiini, 197
IMPOIE TOCK ... 198
FailOVET ... 198
Corruption of disk group configuration ..............c.cooiiiiiinninnnnen. 199

About Flexible Storage Sharing .............coooviiiiiii e, 200
Flexible Storage Sharing USe Cases ............coveiiiiiiiiiiiiiniienns 201
Limitations of Flexible Storage Sharing ...........c..ccooviiiiinn, 203

Application isolation in CVM environments with disk group
SUD-CIUSEEIING ....viieieii 204
Behavioral changes in a disk group sub-cluster .......................... 206
Changes to CVM agents ..........coiiiiiiiiiiii e 208

Provisioning storage ... 209

Provisioning new storage ... 210

Provisioning new storage ...........ooiiiiiiiiiiii 210

Growing the existing storage by addinganew LUN ........................... 21

Growing the existing storage by growing the LUN ......................ees 212

Displaying SFCFSHA information with vxlist ..., 212

Advanced allocation methods for configuring

Storage ... 214
Customizing allocation behavior ... 215
Setting default values for vxassist ... 216
Using rules to make volume allocation more efficient .................... 218
Understanding persistent attributes ... 221
Customizing disk classes for allocation ...................ooon . 223
Specifying allocation constraints for vxassist operations with the
use clause and the require clause .................ccooiiiiiiin. 226
Management of the use and require type of persistent attributes
.................................................................................... 234
Creating volumes of a specific layout ..o 237
Types of volume layouts ... . ..o 238
Creating a mirrored vOIUME ... 239
Creating a striped volume ... 241
Creating @ RAID-5 vOIUME ........cooiiii e, 243
Creating a volume on specific disks ...........c.coviiiiiiiiiii 245
Creating volumes on specific media types ...........ccocoiiviiiiiiiiiinens 246
Creating encrypted VOIUMES ... ..o 246
Changing the encryption password .............cooooviiiiiiiiiiieens 247

Viewing encrypted VOIUMES ........c.oiiiniiiiiii e 247

8



Chapter 9

Chapter 10

Contents

Automating startup for encrypted volumes .............ccoooiiiiiiiinn 248
Configuring a Key Management Server .............cooviiiiiiiiinniiinin, 249
Specifying ordered allocation of storage to volumes ........................... 249
Site-based allocation ........ ... 252
Changing the read policy for mirrored volumes ...................coooiienn.. 253
Creating and mounting VxFS file systems ............. 256
Creating a VxFSfile system ... 256
File system block Size ........ccoiiiiiiii 258
INtENt 10Q SIZE ...vieii 258
Converting a file system to VXFS ... 259
Mounting a VXFS file system ... 259
10g MOUNt OPLION ...t 262
delaylog mount option ..o 262
tmplog mount Option .........coieiiii 263
logiosize mount Option .........oiiii i 263
nodatainlog mount option ... 264
blkclear mount option ... ..o 264
mincache mount option ... 264
CONVOSYNC MOUNE OPLION ... 265
ioerror mouNnt OPtioN ... ..o 267
largefiles and nolargefiles mount options ...................coooiiiinnl. 268
CIO MOUNt OPLION ... 269
mntlock mount Option ..o 269
ckptautomnt mount option ... 270
Combining mount command options ...............coceiiiiiiiinen. 270
Unmounting a file system ... 271
Resizing afile system ... 271
Extending a file system using fsadm ...................ocoo 271
Shrinking a file system ..., 272
Reorganizing afile system ... 273
Displaying information on mounted file systems .......................oolL 275
Identifying file system types .......c.cooviiiiiiiiiii 275
Monitoring fre€ SPaCE .......c.iviriii i 276
Monitoring fragmentation ..o 277
Extent attributes ... 279
About extent attributes ... ... 279
Reservation: preallocating space to afile ...................ooooiiiinn. 280
Fixed extent Size ... 280
How the fixed extent size works with the shared extents ............... 281

Other extent attribute controls ...........cccoeviiiiiiiiiee 281

9



Section 3

Chapter 11

Contents

Commands related to extent attributes ... 283
About failing to preserve extent attributes ................... 284

Administering multi-pathing with DMP

.......................................................................................... 286
Administering Dynamic Multi-Pathing .................... 287
Discovering and configuring newly added disk devices ....................... 287

Partial device diSCOVErY .........coiiiiiiiiiii 288

About discovering disks and dynamically adding disk arrays .......... 289

About third-party driver coexistence ............c.cooiiiiiiii 291

How to administer the Device Discovery Layer ...............c.c.c.oeee. 292
Making devices invisible to VXVM ... 305
Making devices visible to VXVM ... 306
About enabling and disabling 1/O for controllers and storage processors

.......................................................................................... 307
About displaying DMP database information ....................coooiiiinnn. 308
Displaying the paths to @ disk .........coooiiiiiiiii 308
Administering DMP using the vxdmpadm utility ......................cone. 31

Retrieving information abouta DMP node ...............ccoooiiiiiennne. 313

Displaying consolidated information about the DMP nodes ............ 314

Displaying the members of a LUN group ..........cccocovviiiiininnnnne. 315

Displaying paths controlled by a DMP node, controller, enclosure,

(o= 14 =V o o] o (PP 315
Displaying information about controllers .....................ccooiinn. 318
Displaying information about enclosures ..............ccccoviiiviiiinennne. 319
Displaying information about array ports ..............ccocoevviiiiiinennt. 320
Displaying information about devices controlled by third-party

AFIVEIS oo 320
Displaying extended device attributes .................c.oc 321
Suppressing or including devices from VxVM control .................... 324
Gathering and displaying 1/0 statistics ...........ccccooiiiiiiiiiiiinn. 324
Setting the attributes of the paths to an enclosure ........................ 331
Displaying the redundancy level of a device or enclosure .............. 332
Specifying the minimum number of active paths .......................... 333
Displaying the 1/O poliCy .......couviiiii e 334
Specifying the I/O poliCy .........ooiiiiiii e 334
Disabling 1/O for paths, controllers, array ports, or DMP nodes

.................................................................................... 340

10



Chapter 12

Chapter 13

Contents

Renaming an enclosure .............ooiiiiiiii e 343
Configuring the response to /O failures ............coooviiiiiiiine. 343
Configuring the 1/O throttling mechanism ..................cccnel. 345
Configuring Low Impact Path Probing (LIPP) ..., 346
Configuring Subpaths Failover Groups (SFG) ..........ccocvvviiveinanen. 346
Displaying recovery option values ..............cccoooviiiiiiiiiinininn. 347
Configuring DMP path restoration policies .................ccooiiiiini. 348
Stopping the DMP path restoration thread .....................oon. 349
Displaying the status of the DMP path restoration thread .............. 350
Configuring Array Policy Modules ..o, 350
Dynamic Reconfiguration of devices ... 352
About online dynamic reconfiguration ..................c.cooiiiiiinn, 352
Reconfiguring a LUN online that is under DMP control using the
Dynamic Reconfiguration tool ...............cocoiiiiiiiii 352
Removing LUNs dynamically from an existing target ID ................ 353
Adding new LUNs dynamically toatargetID ................c.coeeiennt. 356
Replacing LUNs dynamically from an existing target ID ................ 359
Replacing a host bus adapter online ..............coooiiiiiiiiiiiinen.n. 361
Manually reconfiguring a LUN online that is under DMP control ............ 361
Overview of manually reconfiguringa LUN ....................c. 362
Manually removing LUNs dynamically from an existing target ID
.................................................................................... 365
Manually adding new LUNs dynamically to a new target ID ........... 367
About detecting target ID reuse if the operating system device
treeisnotcleaned Up .......coooiiiiiii i 368
Scanning an operating system device tree after adding or removing
LUNS e 369
Manually cleaning up the operating system device tree after
removing LUNS ... 370
Changing the characteristics of a LUN from the array side ................... 370
Upgrading the array controller firmware online ..................c.oooiiiini. 372
Reformatting NVMe devices manually ................ccooeiiiiiiiiiiinnenn. 373
Managing deviCes ... 375
Displaying disk information ...............coooiiiiiii 375
About Media Format DiSCOVErY .........c.cooiiiiiiiiiiiiiiiieees 376
Viewing information about the native layouts of operating system
.................................................................................... 376
Viewing information about the disk sector size ........................... 378
Displaying disk information with vxdiskadm ................................ 378

Changing the disk device haming scheme ..................oone. 379

1



Chapter 14

Section 4

Chapter 15

Displaying the disk-naming scheme .............ccoooiiiiiiiiiinenn,
Setting customized names for DMP nodes ............ccccociiiiiinn.n.
Regenerating persistent device names ................cooiiiiiinnn.
Changing device naming for enclosures controlled by third-party
AMIVEIS o
About the Array Volume Identifier (AVID) attribute ........................
About disk installation and formatting ................ocoiiii
Adding and removing diSKS ..........cciiiiiiiii e
Adding a disk to VXVM ...
Removing diSKS .......ouiiii
Renaming @ disk .......couiiiiiii

Event monitoring ...

About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
Fabric Monitoring and proactive error detection ....................oocoiinnl
Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre
Channel topology ......ccviiii
DMP event I0gging . ...ovieiiie e
Starting and stopping the Dynamic Multi-Pathing (DMP) event source
JABMON

Administering Storage Foundation
Cluster File System High Availability

Administering Storage Foundation Cluster File
System High Availability and its components

About Storage Foundation Cluster File System High Availability
administration ... ...
Administering CFS ... e
Adding CFS file systems to a VCS configuration .........................
Uses of cfsmount to mount and cfsumount to unmount CFS file
Sy S BN e
Removing CFS file systems from VCS configuration ....................
Resizing CFS file systems .........coooiiiiiiiiii e
Verifying the status of CFS file system nodes and their mount
POINES .ttt
Verifying the state of the CFS port ...........coooviiiiiiiiiii

Contents

12



Contents | 13

CFS agents and AMF SUPPOIt .......oooveieiiiiiii e 410
CFS agent1og files ..o 410
CFS commaNnds .....c.ouiiiiiiii 410
About the mount, fsclustadm, and fsadm commands .................... 411
Synchronizing system clocks on allnodes .................cocoviiiin.. 413
Growing a CFS file system ........cooiiiiiiiiiii 413
About the fetc/fstab file ... 413
When the CFS primary node fails ..........c.coooviiiiiiiiia 414
About Storage Checkpoints on SFCFSHA ..., 414
About Snapshots on SFCFSHA ... ..., 414
AdmMINIStering VCS ... 416
Configuring VCS to start Oracle with a specified Pfile ................... 417
Verifying VCS configuration ...........c.coooiiiiiiiiiiieee 417
Starting and stopping VCS ... 417
Configuring destination-based load balancing for LLT ................... 418
Administering CVM ... 418
Listing all the CVM shared disks ..........c.ccoviiiiiiiiiiiiiens 418
Viewing all available disks inacluster ................cocooiiiiinns 418
Establishing CVM cluster membership manually ......................... 420
Methods to control CVM master selection ...............c.oooiiiiienis 420
About setting cluster node preferences for master failover ............. 421
About changing the CVM master manually .................c.coocoiines 426
Enabling the application isolation feature in CVM environments
.................................................................................... 430
Disabling the application isolation feature in a CVM cluster ............ 432
Changing the disk group master manually .....................oooienis 433
Setting the sub-cluster node preference value for master failover
.................................................................................... 435
Importing a shared disk group manually ................cooiiiiiiiinnen. 435
Deporting a shared disk group manually .............c.ocoooviiiiiiinnn, 436
Mapping remote storage to a node in the cluster ......................... 436
Removing remote storage mappings from a node in the cluster
.................................................................................... 438
Starting shared volumes manually ..............ccooooiiiiiiiii, 438
Evaluating the state of CVM ports ..........cooooiiiiiiiiiiiiiens 438
Verifying if CVM is running in an SFCFSHA cluster ...................... 438
Verifying CVM membership state .............coooiii, 439
Verifying the state of CVM shared disk groups ...............ccoeieinin 440
Verifying the activation mode ... 440
CVM IOG fIl€S et 440
Requesting node status and discovering the master node ............. 440
Determining if a LUN is in a shareable disk group ........................ 441

Listing shared disk groups ...........cooviiiiiiiii e 442



Contents | 14

Creating a shared disk group ...........coooiiiiiiiiiniiee 443
Importing disk groups as shared ... 444
Converting a disk group from shared to private ........................... 445
Moving objects between shared disk groups ............c.cooiiininnnn. 445
Splitting shared disk groups ..........cooooiiiiiiiii 445
Joining shared disk groups ............coiiiiiiiiii 446
Changing the activation mode on a shared disk group .................. 446
Enabling 1/O shipping for shared disk groups .............ccccoeviennne. 446
Setting the detach policy for shared disk groups .......................... 447
Volume-level 1/0 Shipping ........covuiiiiii e, 447
Enabling or disabling volume-level I/O shipping ...............ccooeeenee. 448
Controlling the CVM tolerance to storage disconnectivity .............. 451
Handling cloned disks in a shared disk group .............cccoooviiienns 451
Creating volumes with exclusive open access by anode ............... 452
Setting exclusive open access to a volume by a node .................. 452
Displaying the cluster protocol version ..................cccooiiiiin.. 452
Displaying the supported cluster protocol version range ................ 453
Recovering volumes in shared disk groups ...............ocoovviiinenns 453
Obtaining cluster performance statistics ...............c.cooiinns 454
Administering CVM from the slave node .............c..cooiiiiinnnn. 455
Administering Flexible Storage Sharing ..........c.coooiiiiiiiiiis 456
About Flexible Storage Sharing disk support ............cc.cooovvinianen. 457
About the volume layout for Flexible Storage Sharing disk groups
.................................................................................... 457
Setting the host prefiX ... 458
Exporting a disk for Flexible Storage Sharing ...............c..cooeieni. 459
Setting the Flexible Storage Sharing attribute on a disk group
.................................................................................... 461
Using the host disk class and allocating storage .......................... 461
Administering mirrored volumes using vxassist .................coceenee. 462
Displaying exported disks and network shared disk groups ........... 463
Tuning LLT for memory and performance in FSS environments
.................................................................................... 465
Administering ODM ... 465
Verifying the ODM port ........ovieiiiii e 465
Starting ODM ... 465
About administering 1/O fencing ..........coooviiiiiiii 466
About the vxfentsthdw utility ... 467
About the vxfenadm utility ... 474
About the vxfenclearpre utility ............c.oooiiiiii 479
About the vxfenswap utility ............ooooiii 483

About administering the coordination point server ........................ 496



Chapter 16

Contents

About migrating between disk-based and server-based fencing

CONFIQUIAtIONS ....oeie i 517
Enabling or disabling the preferred fencing policy ........................ 525
About 1/0 fencing log files .........cooiiiiii 527

Administering SFCFSHA global clusters .............coocoiiiiiiiiin 528
About setting up a disaster recovery fire drill ....................l 528
About configuring the fire drill service group using the Fire Drill

Setup WIizard ..o 529
Verifying a successful fire drill ... 530
Scheduling a fire drill ... 531

Using Clustered NFS ...l 532

Understanding how Clustered NFS Works ............ccccoovviiiiinininnnn. 532
BasiC deSign ...o.oiriii 532
Internal Clustered NFS functionality ...................oooooiiiiiinnn. 533

SAMPIE USE CASES ..uvininiiiiitit ettt aeas 536

cfsshare manual Page ..........ccooiiiiiii s 536

Configure and unconfigure Clustered NFS ..., 536
Configure Clustered NFS ... ... 536
Unconfiguring Clustered NFS ... 539

Administering Clustered NFS ... 540
Displaying the NFS shared CFS file systems ..................ccooeneee. 540
Sharing a CFS file system previously added to VCS .................... 540
Unsharing the previous shared CFS file system .......................... 541
Adding an NFS shared CFS file systemto VCS .......................... 541
Deleting the NFS shared CFS file system from VCS .................... 542
Adding a virtual IP address to VCS ..o 542
Deleting a virtual IP address from VCS ............ooooiiiiiiiien, 543
Adding an IPv6 virtual IP address to VCS in a pure IPv6

configuration ... 543
Deleting an IPv6 virtual IP address from VCS in a pure IPv6

configuration ... 543
Adding a virtual IP address to VCS in a dual-stack configuration

.................................................................................... 543
Deleting a virtual IP address from VCS in a dual-stack

configuration ... 543
Changing the share options associated with an NFS share ............ 544
Sharing a file system checkpoint ...............cccoiiiii 544
Samples for configuring a Clustered NFS ..., 545
Sample main.cffile ... 548

How to mount an NFS-exported file system on the NFS clients ............ 554

Debugging Clustered NFS ... ... 555

15



Chapter 17

Chapter 18

Chapter 19

Chapter 20

Contents

Using Common Internet File System ... 556
ABOUL CIFS L. 556
Requirements for CIFS ... ... 557
Understanding how Samba Works ...........cccoiiiiiiiiiiiiiiieee, 557
Configuring Clustered NFSand CIFSon CFS .........c.oooiiiiiiiiiiiiinenns 557
cfsshare manual Page .........cooovuiiiiiiiiii 557
Configuring CIFS in USEr mode ..........ccoiuiiiiiiiiiii e 557
Configuring CIFS in domain mode ...........cocoviiiiiiiiiiiiie e 559
Configuring CIFS in ads mode .........c.oeieiiiiiiii e 561
Administering CIFS ... 563
Sharing a CFS file system previously added to VCS .................... 565
Migrating a CFS file system previously added to VCS from IPv4
TOIPVG oo 566
Adding dual-stack support to an existing share ........................... 567
Removing the dual stack support from an existing share ............... 568
Unsharing the previous shared CFS file system .......................... 568
Sample main.cffile for CIFS ..., 569
Debugging CIFS ... 574
Deploying Oracle with Clustered NFS ... 575
Tasks for deploying Oracle with CNFS ..., 575
About deploying Oracle with CNFS ....... ..., 576
VCS service groups in a CNFS environment ..................coooeenne. 576
Configuring the CNFS server for Oracle ..o, 577
Configuring Oracle for Direct NFS ... ..o 580
Recommended mount options for NFS ..., 581
About oranfstab ... 582
Verifying Oracle Direct NFS usage ...........cooiveiiiiiiiiiiiiieen 583

Using SFCFSHA utilities for the Oracle database

.......................................................................................... 586
About SFCFSHA utilities for the Oracle database .............................. 586
Installing SFCFSHA utilities for the Oracle database .......................... 587
Using the svsdbsnap command ..............coooeiiiiiii e 587
Administering sites and remote mirrors ... 590
About sites and remote Mirrors ............ocooiiiiiiiin 590

About site-based allocation ..............cccooiiiiii 593

About site conSIStENCY ... 594

About site tags ....oooii 595

16



Chapter 21

About the site read poliCy .........ccovviiuiiiiiii
About disk detach policies for campus clusters ...........................
Making an existing disk group site consistent ....................ooo
Configuring a new disk group as a Remote Mirror configuration ............
Fire drill — testing the configuration ...,
Simulating site failure ...
Verifying the secondary site ..o
Recovery from simulated site failure ...................coo
Changing the site NamMe ...........ooiiiiii
Resetting the site name forahost ...
Administering the Remote Mirror configuration .................cccocoeieinne.
Configuring site tagging for disks or enclosures ...........................
Configuring automatic site tagging for a disk group ......................
Configuring site consistency on a volume .................cooiiiiiin.n.
Examples of storage allocation by specifying sites ..............c..coooveenee.
Displaying site information ...,
Failure and recovery SCENarios ...........cccoveivuiiiiiiiieiiiie e
Recovering from a loss of site connectivity ..................ocoiiinn.
Recovering from host failure ...
Recovering from storage failure ...
Recovering from site failure ...
Recovering from disruption of connectivity to storage at the remote
sites from hosts on all Sites ...........cocoiiiiiiiii
Recovering from disruption to connectivity to storage at all sites
fromthe hostsatasite ...
Automatic site reattachment ...

Administering iISCSI with SFCFSHA ...

About iISCSI with SFCFSHA ...
PrereqUISItes ..o
svsiscsiadm manual Page ........ooeiiiiiii
Administering iSCSI with SFCFSHA ...
Configuring the cluster for iSCSI ............oooiiiiiii .
Creating targets .......o.oeiiiiiii
Adding LUNs totargets ......c.ooiiiiiii e
Removing LUNS ...
Removing targets .......ooiiiiii
Unconfiguring the cluster for iSCSI ..o
Create a clone with FileSnap ............ccooiiiiiiiii
Add iSCSI-backed SFCFSHA storage shares to vCenter and ESX

Contents

17



Chapter 22

Section 5
Chapter 23

Chapter 24

Offline targets .......oooveiiii
Display LUN Status .........ooooiiiiii e

Administering datastores with SFCFSHA ...............

About administering datastores with SFCFSHA ....................ooll
About svsdatastore utility ............ccoooiiii
Administering NFS datastores ...............coooiiiiiiiii e

Optimizing I/O performance ...

Veritas File System /O ...

About Veritas File System 1/O ..........ooiiiiiiii e
Buffered and Direct 1/O .........oouieiii i
DireCt 1/O ..o
Unbuffered /O ...
Data synchronous 1/O .........c.oiiiii e
Concurrent 1/O ...
Cache adViSOries ...
Freezing and thawing a file system ...,
Getting the /O SIZe ..o
About Veritas InfoScale product components database accelerators

Veritas Volume Manager I/O ...

Veritas Volume Manager throttling of administrative 1/O ......................
Managing application I/O workloads using maximum IOPS settings
About application volume groups ...........cccoveviiiiiiiniiiiiieeennn
Creating application volume groups ...........ccooviiiiiiniiieenen.
Viewing the list of application volume groups .............cc.ccoveinnn.
Setting the maximum IOPS threshold on application volume groups
Viewing the IOPS statistics for application volume groups .............
Removing the maximum IOPS setting from application volume
oo TN o P
Adding volumes to an application volume group .............c.coceeienns
Removing volumes from an application volume group ..................
Removing an application volume group ...........cccoooiiiiiiiiiiinne.

Contents

18



Section 6

Chapter 25

Section 7
Chapter 26

Contents

Veritas Extension for Oracle Disk

Manager ..., 639
Using Veritas Extension for Oracle Disk Manager
.......................................................................................... 640
About Oracle Disk Manager ..........cooviiuiiiiiiie e 640
How Oracle Disk Manager improves database performance .......... 641
About Oracle Disk Manager and Storage Foundation Cluster File
System High Availability ............cooiiiii 643
About Oracle Disk Manager and Oracle Managed Files ..................... 644
How Oracle Disk Manager works with Oracle Managed Files ......... 644
Setting up Veritas Extension for Oracle Disk Manager ........................ 646
Configuring Veritas Extension for Oracle Disk Manager ...................... 647
Preparing existing database storage for Oracle Disk Manager ............. 648
Verifying that Oracle Disk Manager is configured ..................cccvennne. 648
Disabling the Oracle Disk Manager feature ..................ccooviiiinininnen. 650
Using Cached ODM .......ouiuiiiiii e 650
Enabling Cached ODM for file systems ...........cccoovviiiiiiiiinninns 651
Modifying Cached ODM settings for individual files ...................... 651
Adding Cached ODM settings via the cachemap ......................... 652
Making the caching settings persistent across mounts .................. 653
Using Point-in-time copies ... 654
Understanding point-in-time copy methods ............. 655
About point-in-time CoPIES ........coviiriiii 655
When to use point-in-time COPIES ..........cciviiiiiiiiiiee e 656
Implementing point-in time copy solutions on a primary host .......... 657
Implementing off-host point-in-time copy solutions ....................... 659
About Storage Foundation point-in-time copy technologies .................. 665
Comparison of Point-in-time copy solutions ....................o.ooevee. 666
Volume-level snapshots ..o 667
Persistent FastResync of volume snapshots .............................. 667
Data integrity in volume snapshots .............ccccooiiiiiiiiiiiiieen 667
Third-mirror break-off snapshots ...............c.cooiiiiii. 668
Space-optimized instant volume snapshots .......................oonl. 669
Choices for snapshot resynchronization ..........................ooeenae. 670
Disk group split/join .........ooiiiiiiii 670
Storage Checkpoints .........cooiiiiiiii e 671

How Storage Checkpoints differ from snapshots ......................... 671

19



Chapter 27

Chapter 28

Contents

How a Storage Checkpoint works .............coooviiiiiiiiiin, 672
Types of Storage Checkpoints ..........c.ccoiiiiiiiiiiiiii, 676
ADOUL FileSNaps .....viii 679
Properties of FileSnaps ..o 679
Concurrent /O to FileSnaps .........ocovviiiiiii 680
Copy-on-write and FileSNaps ..........cccooeiiiiiiiiiii e 680
Reading from FileSnaps ........ccooiiiiiiii e 681
Block map fragmentation and FileSnaps ..............coooiiiiiiinnn. 681
Backup and FileSnaps ..........c.covviiiiiii e 681
About snapshot file systems ... 682
How a snapshot file system works .............ccccooiiiiiiiiiiinn, 682
Administering volume snapshots ........................... 684
About volume snapshots .......c.ccoviiii i 684
Traditional third-mirror break-off snapshots ...................coooiiiin. 685
Creating traditional third-mirror break-off snapshots ..................... 686
Full-sized instant snapshots ..o 695
Creating instant snapshots ... 696
Linked break-off snapshots .............coooiiiiiiii 729
Cascaded SNAPShOLS .......ovivieiii e 730
Creating a snapshot of a snapshot ..................ooo 732
Creating multiple snapshots ..o 734
Restoring the original volume from a snapshot ........................coooeae. 735
Adding a version 0 DCO and DCO vOIUME ........ccovniiiiiiiiiiiiieean, 736
Specifying storage for version 0 DCO plexes .........ccccovvviinininnnnn. 738
Removing a version 0 DCO and DCO volume ...............ccccovvnene.. 739
Reattaching a version 0 DCO and DCO volume .......................... 740
Administering Storage Checkpoints ........................... 741
About Storage Checkpoints ...........cooviiiiiiiii 741
Storage Checkpoint administration .................cocoiiiiiiiin 742
Creating a Storage Checkpoint ............cccoviiiiiiiiiiiiiiie e, 743
Removing a Storage Checkpoint .............ccooviiiviiiiiiiiieee 744
Accessing a Storage Checkpoint .............cooiiiiiiiiiiiiiien 744
Converting a data Storage Checkpoint to a nodata Storage
ChecKpoint . ... 746
Enabling and disabling Storage Checkpoint visibility .................... 754
Storage Checkpoint space management considerations ..................... 755
Restoring from a Storage Checkpoint ..............ccccoiiiiiiiiii, 755

Storage Checkpoint qUOLAS ...........couiiiiiii e 761

20



Chapter 29

Chapter 30

Section 8

Chapter 31

Administering FileSnaps ...,

FileSnap creation ..........ccoooiiiiiiii

FileSnap creation over Network File System .........................oooel.

USING Fil@SNaPS . ..eieiiiei e

Using FileSnaps to create point-in-time copies of files ........................

Using FileSnaps to provision virtual desktops ................cccocoeenes
Using FileSnaps to optimize write intensive applications for virtual

MACKINES ... e

Using FileSnaps to create multiple copies of data instantly ............

An example to perform FileSnap .............cccoooiiiiiiiiiiiii,
Comparison of the logical size output of the fsadm -S shared, du, and

df COMMANGS ..o

Administering snapshot file systems ...

Snapshot file system backups ..........ccooeiiiiiiii
Snapshot file system performance ..............cooviii
About snapshot file system disk structure ...
Differences between snapshots and Storage Checkpoints ...................
Creating a snapshot file system ...

Optimizing storage with Storage
Foundation Cluster File System High
Availability ...

Understanding storage optimization solutions in
Storage Foundation Cluster File System High
Availability ...

About thin provisioning ...........cooiiiii
About thin optimization solutions in Storage Foundation Cluster File
System High Availability ...
ADOUL SMArMOVE ... ..t
SmartMove for thin provisioning .............cooviiiiiiiiiii,
About the Thin Reclamation feature ................coocoiiiiii
About reclaiming space on Solid State Devices (SSDs) with the TRIM
OPEIALION ..ttt
Determining when to reclaim space on a thin reclamation LUN .............
How automatic reclamation Works .............cooiiiiiiiiiii,

Contents

21



Chapter 32

Chapter 33

Chapter 34

Section 9
Chapter 35

Migrating data from thick storage to thin storage

About using SmartMove to migrate to Thin Storage ..................coeeets
Migrating to thin provisioning .............cooviiiiiiiii

Maintaining Thin Storage with Thin Reclamation

Reclamation of storage on thin reclamation arrays .....................c.......
About Thin Reclamation of a disk, a disk group, or an enclosure
About Thin Reclamation of a file system ....................c.

Identifying thin and thin reclamation LUNS ..............cccoooiiiiiiiiinnne.
Displaying detailed information about reclamation commands

Displaying VxFS file system usage on thin reclamation LUNs ..............

Reclaiming space on afile system ..o

Reclaiming space on a disk, disk group, or enclosure .........................

About the reclamation log file .............ccooiiiiiii

Monitoring Thin Reclamation using the vxtask command ....................

Configuring automatic reclamation ...............ccooiiiiiiiii

Veritas InfoScale 4k sector device support
SOIULION ..o

About 4K sector size technology ............cooviiiiiiiiiiii

Veritas InfoScale unsupported configurations .....................oooae.

Migrating VxFS file system from 512-bytes sector size devices to 4K
SECLOT SIZE EVICES ....iviiiiiii e

Maximizing storage utilization ...

Understanding storage tiering with SmartTier

ADOUL SMANTIEr ....eeei e
About VXFS multi-volume file systems ...
About VXVM volume Sets ..........oeiiiiiiiiiii
About volUME tags ..o
SmartTier file management ...
SmartTier sub-file object management ......................l

How the SmartTier policy works with the shared extents .....................

Contents

22



Chapter 36

Chapter 37

SmartTier in a High Availability (HA) environment ...................coonis
Creating and administering volume sets ...............
AbOUt VOIUME SEtS ...
Creating a volume Set .......cooiuiiii i
Adding a volume toavolume set .........cooiiiiiiiii
Removing a volume fromavolume set ..............cccooeiiiiiiiiiiiiiiin
Listing details of volume sets ............coooiiiiiii
Stopping and starting volume Sets ............coooiiiiiiii
Managing raw device nodes of component volumes ..........................
Enabling raw device access when creating a volume set ...............
Displaying the raw device access settings for a volume set ...........
Controlling raw device access for an existing volume set ..............
Multi-volume file systems ...,
About multi-volume file systems ..........cccooiiiiiiiii
AbOoUt VOIUME tYPES ...
Features implemented using multi-volume file system (MVFS) support
Volume availability ...
Creating multi-volume file systems ..o
Converting a single volume file system to a multi-volume file system
Adding a volume to and removing a volume from a multi-volume file
Sy S BN s
Adding a volume to a multi-volume file system ............................
Removing a volume from a multi-volume file system ....................
Forcibly removing a volume in a multi-volume file system ..............
Moving volume 0 in a multi-volume file system ............................
Volume encapsulation ..........ccooiiiiiiiii
Encapsulating a volume ...
Deencapsulating a volume ...
Reporting file extents ..........cooiiiiii
Load balanCing ........c.oeieieiii i
Defining and assigning a load balancing allocation policy ..............
Rebalancing extents ........ ..o

Converting a multi-volume file system to a single volume file system

Contents

23



Chapter 38

Contents

Administering SmartTier ... 835
ADOUL SMATIET ...t 835
About compressing files with SmartTier ................coocoiii. 836
Supported SmartTier document type definitions ......................oooone. 837
Placement ClasSes .........coouiiiiii 838
Tagging volumes as placement classes ............cccoooeiiiiiiiiinnans 839
Listing placement Classes .............coveiiiiiiiii 839
Administering placement poliCies ... 839
Assigning a placement poliCy ...........coviiiiiiiiii 840
Unassigning a placement poliCy ...........c.cooviiiiiiiiiiiiiie, 840
Analyzing the space impact of enforcing a placement policy .......... 841
Querying which files will be affected by enforcing a placement
POLICY e e 841
Enforcing a placement policy ............coooiiiiiiiiiii 841
Validating a placement poliCy ...........ccooiiiiiiiie, 843
File placement policy grammar ...........c.coiiiiiii e 843
File placement policy rules ..........ccooiiiiii 844
SELECT statement ........coouiiiiiiii e 844
CREATE statement .........cc.ooiiiiii e 847
RELOCATE statement .........coooviiiiii e 849
DELETE statement ... 864
COMPRESS statement ..........ccooiiiiiiiiice e 866
UNCOMPRESS statement ............cccooeiiiiiiiiiieeen 876
Calculating 1/0 temperature and access temperature ......................... 885
Multiple criteria in file placement policy rule statements ...................... 889
Multiple file selection criteria in SELECT statement clauses ........... 890

Multiple placement classes in <ON> clauses of CREATE
statements and in <TO> clauses of RELOCATE statements

.................................................................................... 891
Multiple placement classes in <FROM> clauses of RELOCATE
and DELETE statements ..., 892
Multiple conditions in <WHEN> clauses of RELOCATE and
DELETE statements ... 892
File placement policy rule and statement ordering ...................cooeeie 892
File placement policies and extending files ..............cccoooiiiiiiiiiininne. 895
Using SmartTier with solid state disks ...............coooiiiiiii, 895
Fine grain temperatures with solid state disks .......................c... 896
Prefer mechanism with solid state disks ....................coooiiiis 896
Average /O activity with solid state disks ...................cooiiiiiiats 897
Frequent SmartTier scans with solid state disks .......................... 897
Quick identification of cold files with solid state disks .................... 898

Example placement policy when using solid state disks ................ 899

24



Chapter 39

Chapter 40

Chapter 41

Contents

Sub-file relocation ....... ..o 903
Moving sub-file data of files to specific target tiers ....................... 903
Administering hot-relocation ...................................... 904
About hot-relocation ... 904
How hot-relocation WOrKS ..............ouieiiiiiiii e 905
Partial disk failure mail messages ...........ccoceviiiiiiiiiiiii, 908
Complete disk failure mail messages ...........cocoeviiiiiiiiiiiiien.. 909
How space is chosen for relocation ..............ccoooviiiiiiiiinnn, 910
How hot-relocation works in FSS environments ........................... 911
Configuring a system for hot-relocation ...................cccoceeiiininnn. 918
Displaying spare disk information ..................cooiii 919
Marking a disk as a hot-relocation spare ................ccoiiiiiiiiiiiinnn. 919
Removing a disk from use as a hot-relocation spare .......................... 921
Excluding a disk from hot-relocation use .................coooiiiiiiiiiiinin. 921
Making a disk available for hot-relocation use ...............c.coocoiiiiiinnen. 922
Configuring hot-relocation to use only spare disks .............cc.cccoveinnen. 923
Moving relocated SUDAISKS ...........cooiuiuiiiii 923
Moving relocated subdisks using vxunreloc ................c.cocoioiinnne. 924
Restarting vxunreloc after errors ...........cc.oooiiiiiiiiiiiiien 926
Modifying the behavior of hot-relocation ....................ccooin. 927
Deduplicatingdata ... 929
About deduplicating data ... 929
About deduplication chunk size ............cccoiiiiiiiii 930
Deduplication and file system performance ..................cc.coooeents 931
About the deduplication scheduler ... 931
Deduplicating data ... 932
Enabling and disabling deduplication on a file system .................. 935
Scheduling deduplication of a file system .................cocoiiinne. 935
Performing a deduplication dry run ..............coooiiiiiiiiiiiin 937
Querying the deduplication status of a file system ........................ 937
Starting and stopping the deduplication scheduler daemon ........... 938
Deduplication reSULS ........c.ooiniiii 938
Deduplication supportability ..o 939
Deduplication USE CaSES ........cviuiiiiiiiiiii e 939
Deduplication limitations ... 939
Compressing files ... 941
About compressing files ....... ... 941

About the compressed file format ... 942

25



Section 10
Chapter 42

Contents

About the file compression attributes ..................oo 942
About the file compression block size ..............cooviiiii 943
Compressing files with the vxcompress command ..................cooeeee. 943
Interaction of compressed files and other commands ......................... 945
Interaction of compressed files and other features ........................c... 946
Interaction of compressed files and applications ..............cccooiieinnen. 947
Use cases for compressing files ..........cooiiiiiiiiii 948
Compressed files and databases ..............c.cooeviiiiiiiiiinnnn. 948
Compressing all files that meet the specified criteria .................... 952
Administering storage ... 953
Managing volumes and disk groups ......................... 954
Rules for determining the default disk group ..............oooooiiiiini. 955
Displaying the system-wide boot disk group ...............cooviiinn.n. 955
Displaying and specifying the system-wide default disk group
.................................................................................... 955
Moving volumes Or diSKS ........oovieiiiii i 956
Moving volumes from a VXVM disk ..........cccooiiiiiiiiiiiiiin, 956
Moving disks between disk groups .........cccooiiiiiiiiii 957
Reorganizing the contents of disk groups ..............cocoviiiiiiiinn.n. 958
Monitoring and controlling tasks ..o 971
Specifying task tags .......coooiiiiiiii 972
Managing tasks with vxtask ..o 973
Using vxnotify to monitor configuration changes ....................c.coeeenl. 975
Performing online relayout ..o 975
Permitted relayout transformations ......................coo 976
Specifying a non-default layout ................coooiii 979
Specifying a plex for relayout ...............cooiiiiii 980
Tagging a relayout operation .............coviiiiiiiiii 980
Viewing the status of arelayout ................coooiiiiii, 980
Controlling the progress of arelayout .............cccooviiiiiiiiiiinn.n. 981
Adding a mirrorto a volume .........coiiiiiiiii e 982
Mirroring all VOIUMES ... 982
Mirroring volumes on a VXVM disK .......ccooiiiiiiiiiiiiiiiees 983
Configuring SMartMOVe ... 984
RemoVvIiNg @ MIrrOr ... 985
Setting tags oN VOIUMES .........cciviiiii e 986
Managing disk groupS ......o.ouiiiiiiii 987
DiSK Qroup VEISIONS ....oiviiii i e 987
Displaying disk group information ................c.cocoiiiin. 994

Creating a disk group ........cooiiiiiiiii 996

26



Chapter 43

Contents

Removing a disk from a disk group ..........c.coociiiiiiiiiii 997
Deporting @ disk group ........covuiiinii 998
Importing @ disk group ........ocuiuiiii e 1000
Handling of minor number conflicts ..., 1001
Moving disk groups between systems ..............coceiiiiiininn. 1002
Importing a disk group containing hardware cloned disks ............ 1009
Setting up configuration database copies (metadata) for a disk
(o] (o 18] « TP P PP 1015
Renaming a disk group ..........oooiiiiiiii e 1016
Handling conflicting configuration copies ................cooovivieinnen. 1018
Disabling @ disk group ........c.oeiuiiiiii 1025
Destroying @ disk group ........ooovuiiiiiniii 1025
Backing up and restoring disk group configuration data ............... 1026
Working with existing ISP disk groups ...........cccoociiiiiiiints 1028
Managing plexes and subdisks .............ccccoiiiiii 1030
Reattaching plexes .........cocoiiiiiiii 1030
Plex synchronization ..o 1033
Erasure coding in Veritas InfoScale storage environments ................. 1034
Using Distributed Parity ............cooiiiiii 1036
Allocating logs on different disks ..............ccocooiiiiiiiiii 1038
Limitations of erasure coded volumes ...............coeoviiiiiiiiiininnen. 1039
Erasure coding deployment scenarios ...............coeoveiiniiniiinninnn, 1039
I/0 operations on erasure coded volumes .....................ooceeenee. 1046
Recovery of erasure coded volumes ............c.coeoiiiiiiiiiiiieninnn, 1046
Relocation of faulted storage containing erasure coded volumes
.................................................................................. 1048
Initializing an erasure coded volume ...........c.coovviiiiiiininennns 1048
Resizing an erasure coded volume ............ccooiiiiiiiiiiiiiiin 1051
Customized failure domain ..............cooiiiiiiiii 1052
Decommissioning StOrage ..........ovuieiiiiiiiiii 1061
Removing @ volume ... ..o 1061
Removing a disk from VXVM control ............ccooviiiiiiiiiiiinin, 1062
About shredding data .............cooiiiiii 1062
Shredding @ VXVM disk .....oooiiiiiiiii e 1063
Failed disk shred operation results in a disk with no label ............ 1065
Removing and replacing disks ...........cocoiiiiiiiiiiiii 1065
Rootability ... 1071
Root Disk Encapsulation (RDE) is not supported .................cceveenene. 1071
Encapsulating @ disk ........coooiiiii 1071
Failure of disk encapsulation ................cccoiiiiiiiiiii 1075

Using nopriv disks for encapsulation .....................cooooiiiienne. 1076

27



Chapter 44

Chapter 45

Section 11

Appendix A

Contents

Device name format changes in RHEL 7 environments after

eNcapSUlation ... .. ..o 1077
ROOADIIILY ...oeeeeeeiee e 1078
Restrictions on using rootability with Linux ....................coo. 1079
Sample supported root disk layouts for encapsulation ................. 1081
Booting root VOIUMES .........couviiiiiiii 1088
Boot-time volume restrictions ..o 1088
Creating redundancy for the root disk ..............cooviiiiiiiiiininns 1089
Creating an archived back-up root disk for disaster recovery ........ 1089
Encapsulating and mirroring the root disk ...............c.oocoiinn, 1089
Upgrading the kernel on a root encapsulated system .................. 1095
Administering an encapsulated boot disk ... 1097
Creating a snapshot of an encapsulated boot disk ..................... 1097
Unencapsulating the root disk ... 1098
QUOLAS ..., 1099
About Veritas File System quota limits ....................cc, 1099
About quota files on Veritas File System ..............cocociiiii 1100
About Veritas File System quota commands ......................coeeinl, 1101
About quota checking with Veritas File System ....................cooois 1102
Using Veritas File System quotas .............ccccooiiiiiiiiien 1102
Turning on Veritas File System quotas ...................cooooiiieenne. 1103
Turning on Veritas File System quotas at mount time .................. 1103
Editing Veritas File System quotas ...............cocooveiiiiiiiinn. 1104
Modifying Veritas File System quota time limits ......................... 1104
Viewing Veritas File System disk quotas and usage ................... 1105
Displaying blocks owned by users or groups ...........cccoceevieieenannns 1105
Turning off Veritas File System quotas ...................oooiiinenne. 1105
Support for 64-bit QUOLAS ........c.oeiieiii 1106
File Change Log .........ccccoooviiieeeeeeeeeeeee. 1107
About Veritas File System File Change Log ..........cccocovviiiiinininane.. 1107
About the Veritas File System File Change Log file .......................... 1108
Veritas File System File Change Log administrative interface ............. 1109
Veritas File System File Change Log programmatic interface ............. 1111
Summary of Veritas File System File Change Log API functions ......... 1113
Reference ... 1115
Reverse path name lookup ................ccoooeii, 1116

About reverse path name [00KUP ..........cveiiiiiiiiii e 1116

28



Appendix B

Contents

Tunable parameters ... 1118
About tuning Storage Foundation Cluster File System High Availability
........................................................................................ 1118
Tuning the VxFS file system ... 1119
Tuning inode table Size ... 1119
Tuning performance optimization of inode allocation ................... 1120
Tuning file system parallel direct I/O ...........coooiiiiiiiiiiiiin, 1120
Partitioned directories ............ooviiiiiiiii 1120
Veritas Volume Manager maximum /O size .............cccooevvennnne. 1121
Native asynchronous 1/O with cloned processes ........................ 1121
DMP tunable parameters ..........coooiiiiiiiiii 1121
Methods to change Dynamic Multi-Pathing tunable parameters ......... 1128
Changing the values of DMP parameters with the vxdmpadm
settune command line ... 1128
About tuning Dynamic Multi-Pathing (DMP) with templates .......... 1128
Tunable parameters for VXVM ..., 1136
Tunable parameters for core VXVM .........ccoooiiiiiiiiiiiiiiiiiieeen 1136
Tunable parameters for FlashSnap (FMR) .............c.ccoiiiiinnnn. 1143
Tunable parameters for CVM ... 1148
Tunable parameters for VVR ... ..o 1149
Tunable parameters for hot-relocation in FSS environments ........ 1150
Points to note when changing the values of the VVR tunables
.................................................................................. 1151
Methods to change Veritas Volume Manager tunable parameters
........................................................................................ 1152
Changing the values of the Veritas Volume Manager tunable
parameters using the vxtune command line ........................ 1152
Changing the value of the Veritas Volume Manager tunable
parameters using templates ... 1155
About LLT tunable parameters .........cccooiiiiiiiii e 1156
About LLT timer tunable parameters ............ccocoviiiiiiiiiiiiinnnns 1156
About LLT flow control tunable parameters .........................o..el. 1161
Setting LLT timer tunable parameters ...............cccoooiiiiiiiiiinnn. 1164
About GAB tunable parameters .............ccoooiiiiiiiii 1165
About GAB load-time or static tunable parameters ..................... 1166
About GAB run-time or dynamic tunable parameters .................. 1167
About VXFEN tunable parameters ...........cccociiiiiiiiiiiiiiiiiiiens 1172
Configuring the VXFEN module parameters .................c.cocuenee. 1174

About AMF tunable parameters ...........cooviiiiiii 1175

29



Appendix C

Appendix D

Contents

Command reference ..............c.cccocoooeeeeececeee. 1177
Command completion for Veritas commands .....................ccooeeneen. 1177
Veritas Volume Manager command reference ..............cocoooveviennen. 1179
CVM commands supported for executing on the slave node .............. 1201
Veritas Volume Manager manual pages ..........c.coooviiiiiiiiiiiineens 1208

Section 1M — administrative commands .................ccocoeiiiinint. 1209

Section 4 —file formats ..o 1212
Veritas File System command summary ...........c.ccocoiiiiiiiiiiiiiinenenn.. 1212
Veritas File System manual pages ...........coooviiiiiiii i 1215
SmartlO command reference ...........cccovviiiiiiiii 1220
Creating a starter database ... 1223
Creating a database for Oracle 119r2 ........cocooiiiiiiiiiieee 1223

Creating database tablespace on shared raw VxVM volumes

30



Introducing Storage
Foundation Cluster File
System High Availability

= Chapter 1. Overview of Storage Foundation Cluster File System High Availability
= Chapter 2. How Dynamic Multi-Pathing works

= Chapter 3. How Veritas Volume Manager works

» Chapter 4. How Veritas File System works

= Chapter 5. How Storage Foundation Cluster File System High Availability works

= Chapter 6. How Cluster Volume Manager works



Overview of Storage
Foundation Cluster File
System High Availability

This chapter includes the following topics:

= About Storage Foundation Cluster File System High Availability
= About Dynamic Multi-Pathing (DMP)

= About Veritas Volume Manager

= About Veritas File System

= About Storage Foundation Cluster File System (SFCFS)

= About Veritas InfoScale Operations Manager

= About Veritas Replicator

= Use cases for Storage Foundation Cluster File System High Availability

About Storage Foundation Cluster File System
High Availability

Storage Foundation Cluster File System High Availability (SFCFSHA) is a storage
management solution to enable robust, manageable, and scalable storage
deployment. SFCFSHA maximizes your storage efficiency, availability, agility, and
performance across heterogeneous server and storage platforms. SFCFSHA
extends Storage Foundation to support shared data in a storage area network
(SAN) environment. Using SFCFSHA, multiple servers can concurrently access



Overview of Storage Foundation Cluster File System High Availability
About Storage Foundation Cluster File System High Availability

shared storage and files transparently to applications. SFCFSHA also provides

increased automation and intelligent management of availability and performance.

Storage Foundation Cluster File System High Availability consists of product
components and features that can be used individually and together to improve

performance, resilience and ease of management for your storage and applications.

Table 1-1 describes the components of Storage Foundation Cluster File System

High Availability.

Table 1-1 Storage Foundation Cluster File System High Availability
components
Component Description

Dynamic Multi-Pathing
(DMP)

Manages the I/O performance and path availability of the physical
storage devices that are configured on the system.

DMP creates DMP metadevices across all of the paths to each
LUN. DMP uses the DMP metadevices to manage path failover
and /O load balancing across the paths to the physical devices.

DMP metadevices provide the foundation for Veritas Volume
Manager (VxVM) and Veritas File System (VxFS). DMP also
supports native operating system volumes and file systems on
DMP devices.

Veritas Volume Manager
(VxVM)

Provides a logical storage abstraction layer or storage
management between your operating system devices and your
applications.

VxVM enables you to create logical devices called volumes on
the physical disks and LUNs.The applications such as file systems
or databases access the volumes as if the volumes were physical
devices but without the physical limitations.

VxVM features enable you to configure, share, manage, and
optimize storage 1/O performance online without interrupting data
availability. Additional VxVM features enhance fault tolerance and
fast recovery from disk failure or storage array failure.

33



Overview of Storage Foundation Cluster File System High Availability | 34
About Storage Foundation Cluster File System High Availability

Table 1-1 Storage Foundation Cluster File System High Availability
components (continued)
Component Description
Cluster Volume Extends the VxVM logical volume layer for use with multiple
Manager (CVM) systems in a cluster.

Each system, or cluster node, can share access to the same logical
devices or volumes. Each node sees the same logical storage in
the same state.

CVM supports VxVM features that improve performance, such as
striping, mirroring, and creating snapshots. You manage the shared
storage using the standard VxVM commands from one node in
the cluster. All other nodes immediately recognize any changes
in disk group and volume configuration with no user interaction.

Veritas File System Provides a high-performance journaling file system.

(VXFS) VxFS is designed for use in operating environments that deal with

large amounts of data and that require high performance and
continuous availability.

VxFS features provide quick-recovery for applications, scalable
performance, continuous availability, increased 1/0O throughput,
and increased structural integrity.

Cluster File System Extends the VxFS file system for use with multiple systems (or
(CFS) nodes) in a cluster.

CFS enables you to simultaneously mount the same file system
on multiple nodes.

CFS features simplify management, improve performance, and
enable fast failover of applications and databases.

Cluster Server (VCS) Provides high availability functionality.

VCS provides monitoring and notification for failures of the cluster
nodes. VCS controls the startup and shutdown of component
layers and facilitates failover of services to another node.

Replicator (VR) Enables you to maintain a consistent copy of application data at
one or more remote locations for disaster recovery.

Replicator provides the flexibility of block-based continuous
replication with Volume Replicator (VVR) and file-based periodic
replication with File Replicator (VFR). Replicator option is a
separately-licensable feature of Storage Foundation Cluster File
System High Availability.




Overview of Storage Foundation Cluster File System High Availability | 35
About Dynamic Multi-Pathing (DMP)

Table 1-1 Storage Foundation Cluster File System High Availability
components (continued)

Component Description

1/0 fencing Protects the data on shared disks when nodes in a cluster detect

a change in the network cluster membership with a potential split
brain condition.

A related product, Veritas Operations Manager, provides a centralized management
console that you can use with Veritas InfoScale products.

See “About Veritas InfoScale Operations Manager” on page 41.

Note: The commands used for the Red Hat Enterprise Linux (RHEL) operating
system in this document also apply to supported RHEL-compatible distributions.

About Dynamic Multi-Pathing (DMP)

Dynamic Multi-Pathing (DMP) provides multi-pathing functionality for the operating
system native devices that are configured on the system. DMP creates DMP
metadevices (also known as DMP nodes) to represent all the device paths to the
same physical LUN.

DMP is available as a component of Storage Foundation Cluster File System High
Availability. DMP supports Veritas Volume Manager (VxVM) volumes on DMP
metadevices, and Veritas File System (VxFS) file systems on those volumes.

DMP metadevices support the OS native logical volume manager (LVM). You can
create LVM volumes and volume groups on DMP metadevices.

Veritas Volume Manager (VxVM) volumes and disk groups can co-exist with LVM
volumes and volume groups. But, each device can only support one of the types.
If a disk has a VxVM label, then the disk is not available to LVM. Similarly, if a disk
is in use by LVM, then the disk is not available to VxVM.

About Veritas Volume Manager

Veritas™ Volume Manager (VxVM) by Veritas is a storage management subsystem
that allows you to manage physical disks and logical unit numbers (LUNSs) as logical
devices called volumes. A VxVM volume appears to applications and the operating
system as a physical device on which file systems, databases, and other managed
data objects can be configured.



Overview of Storage Foundation Cluster File System High Availability | 36
About Veritas File System

VxVM provides easy-to-use online disk storage management for computing
environments and Storage Area Network (SAN) environments. By supporting the
Redundant Array of Independent Disks (RAID) model, VxXVM can be configured to
protect against disk and hardware failure, and to increase |/O throughput.
Additionally, VxVM provides features that enhance fault tolerance and fast recovery
from disk failure or storage array failure.

VxVM overcomes restrictions imposed by hardware disk devices and by LUNs by
providing a logical volume management layer. This allows volumes to span multiple
disks and LUNs.

VxVM provides the tools to improve performance and ensure data availability and
integrity. You can also use VxVM to dynamically configure storage while the system
is active.

About Veritas File System

A file system is simply a method for storing and organizing computer files and the
data they contain to make it easy to find and access them. More formally, a file
system is a set of abstract data types (such as metadata) that are implemented for
the storage, hierarchical organization, manipulation, navigation, access, and retrieval
of data.

Veritas File System (VxFS) was the first commercial journaling file system. With
journaling, metadata changes are first written to a log (or journal) then to disk. Since
changes do not need to be written in multiple places, throughput is much faster as
the metadata is written asynchronously.

VXFS is also an extent-based, intent logging file system. VxFS is designed for use
in operating environments that require high performance and availability and deal
with large amounts of data.

The maximum size of the file system you can create depends on the block size.

Block Size Currently-Supported Maximum File System Size
1024 bytes 68,719,472,624 sectors (=32 TB)

2048 bytes 137,438,945,248 sectors (=64 TB)

4096 bytes 274,877,890,496 sectors (=128 TB)

8192 bytes 549,755,780,992 sectors (=256 TB)

VxFS major components include:

File system logging About the Veritas File System intent log



Overview of Storage Foundation Cluster File System High Availability | 37
About Veritas File System

Extents About extents

File system disk layouts About file system disk layouts

About the Veritas File System intent log

Most file systems rely on full structural verification by the £sck utility as the only
means to recover from a system failure. For large disk configurations, this involves
a time-consuming process of checking the entire structure, verifying that the file
system is intact, and correcting any inconsistencies. VxFS provides fast recovery
with the VxFS intent log and VxFS intent log resizing features.

VxFS reduces system failure recovery times by tracking file system activity in the
VxFS intent log. This feature records pending changes to the file system structure
in a circular intent log. The intent log recovery feature is not readily apparent to
users or a system administrator except during a system failure. By default, VXFS
file systems log file transactions before they are committed to disk, reducing time
spent recovering file systems after the system is halted unexpectedly.

During system failure recovery, the VxFS fsck utility performs an intent log replay,
which scans the intent log and nullifies or completes file system operations that
were active when the system failed. The file system can then be mounted without
requiring a full structural check of the entire file system. Replaying the intent log
might not completely recover the damaged file system structure if there was a disk
hardware failure; hardware problems might require a complete system check using
the fsck utility provided with VxFS.

Note: Compatibility of VxFS file system images with VxFS software releases is
determined mainly by the disk layout version (DLV). But if the file system image
needs recovery (for example, if the system crashed, or if the file system image was
created by an array-level snapshot), then there is an additional restriction on the
software release. In such cases, the software release used to perform the recovery
must also be at least as new as the software release with which the file system was
most recently mounted.

The mount command automatically runs the VxFS fsck command to perform an
intent log replay if the mount command detects a dirty log in the file system. This
functionality is only supported on a file system mounted on a Veritas Volume
Manager (VxVM) volume, and is supported on cluster file systems.

See the £sck_vxf£s(1M) manual page and mount_vxfs(1M) manual page.

The VxFS intent log is allocated when the file system is first created. The size of
the intent log is based on the size of the file system—the larger the file system, the



Overview of Storage Foundation Cluster File System High Availability | 38
About Veritas File System

larger the intent log. You can resize the intent log at a later time by using the fsadm
commnad.

See the fsadm_vx£fs(1M) manual page.

The maximum default intent log size for disk layout Version 7 or later is 256
megabytes.

Note: Inappropriate sizing of the intent log can have a negative impact on system
performance.

See “Intent log size” on page 258.

About extents

An extent is a contiguous area of storage in a computer file system, reserved for a
file. When starting to write to a file, a whole extent is allocated. When writing to the
file again, the data continues where the previous write left off. This reduces or
eliminates file fragmentation. An extent is presented as an address-length pair,
which identifies the starting block address and the length of the extent (in file system
or logical blocks). Since Veritas File System (VxFS) is an extent-based file system,
addressing is done through extents (which can consist of multiple blocks) rather
than in single-block segments. Extents can therefore enhance file system throughput.

Extents allow disk 1/O to take place in units of multiple blocks if storage is allocated
in contiguous blocks. For sequential I/O, multiple block operations are considerably
faster than block-at-a-time operations; almost all disk drives accept I/O operations
on multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the
inode structure compared to block-based inodes. A VxFS inode references 10 direct
extents, each of which are pairs of starting block addresses and lengths in blocks.

Disk space is allocated in 512-byte sectors to form logical blocks. VXFS supports
logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is
1 KB for file system sizes of up to 2 TB, and 8 KB for file system sizes 2 TB or
larger.

About file system disk layouts

The disk layout is the way file system information is stored on disk. On Veritas File
System (VxFS), several disk layout versions are supported to provide new features
and specific UNIX environments.

You can use one of the following commands to upgrade the disk layout version.



vxupgrade

vxfsconvert

Overview of Storage Foundation Cluster File System High Availability | 39

About Veritas File System

Upgrades an existing VxFS file system to a supported disk
layout version while the file system remains online.

See the vxupgrade(1M) manual page.

Upgrades a no-longer supported disk layout version to a
supported version while the file system is not mounted.

The vxfsconvert command can also be used to convert a
native file system (ext2, ext3, and ext4) to VxFS, while the file
system is not mounted.

See the vxfsconvert(1M) manual page.

Table 1-2 lists the supported disk layout versions.

Table 1-2 Supported disk layout versions
Version Supported features
Version 11 Version 11 supports the following features:
= Mounting of corrupted or inconsistent file system in read-write
mode
s Locality-aware allocation policies
= Multiple SmartlO cache areas and support for independent cache
areas for read and write-back caching of a file system
= Store file type as part of the directory entry
Version 12 Version 12 supports 128 node cluster on CFS
Version 13 = Added support for WORM
» Clone creation performance improvement when extended file
attributes are used
Version 14 Supports SmartlO FEL-based caching
Version 15 s Performance enhancements in SELinux attribute storage and

retrieval
» Secure Clock support for WORM files

Currently, only versions 11, 12, 13, 14, and 15 can be created and mounted.
Versions 6, 7, 8, 9, and 10 can be mounted, but only for upgrading to a supported

version.



Overview of Storage Foundation Cluster File System High Availability | 40
About Storage Foundation Cluster File System (SFCFS)

About Storage Foundation Cluster File System

(SFCFS)

Extends the VxFS file system for use with multiple systems (or nodes) in a cluster.
CFS enables you to simultaneously mount the same file system on multiple nodes.
CFS features simplify management, improve performance, and enable fast failover
of applications and databases.

About Veritas File System features supported in cluster file systems

Storage Foundation Cluster File System High Availability is based on Veritas File
System (VxFS).

Most of the major features of VXFS local file systems are available on cluster file
systems, including the following features:

» Extent-based space management that maps files up to one terabyte in size

» Fastrecovery from system crashes using the intent log to track recent file system
metadata updates

= Online administration that allows file systems to be extended and defragmented
while they are in use

Every VxFS manual page has a section on "Storage Foundation Cluster File System
Issues" with information on whether the command functions on a cluster-mounted
file system and indicates any difference in behavior from local mounted file systems.

Veritas File System features not in cluster file systems

See Table 1-3 on page 40.lists functionality that is not supported in a cluster file
system. You can attempt to use the listed functionality, but there is no guarantee
that the functionality will operate as intended.

It is not advisable to use unsupported functionality on SFCFSHA, or to alternate
mounting file systems with these options as local and cluster mounts.

Table 1-3 Veritas File System features not supported in cluster file systems

glog Quick log is not supported.

Swap files Swap files are not supported on cluster-mounted file
systems.

mknod The mknod command cannot be used to create

devices on a cluster mounted file system.



Overview of Storage Foundation Cluster File System High Availability | 41
About Veritas InfoScale Operations Manager

Table 1-3 Veritas File System features not supported in cluster file systems
(continued)

Cache advisories Cache advisories are set with the mount command
on individual file systems, but are not propagated to
other nodes of a cluster.

Cached Quick I/0 This Quick I/O for Databases feature that caches data
in the file system cache is not supported.

Commands that depend on file File access times may appear different across nodes

access times because the atime file attribute is not closely
synchronized in a cluster file system. So utilities that
depend on checking access times may not function
reliably.

About Veritas InfoScale Operations Manager

Veritas InfoScale Operations Manager provides a centralized management console
for Veritas InfoScale products. You can use Veritas InfoScale Operations Manager
to monitor, visualize, and manage storage resources and generate reports.

Veritas recommends using Veritas InfoScale Operations Manager to manage
Storage Foundation and Cluster Server environments.

You can download Veritas InfoScale Operations Manager from
https://sort.veritas.com/.

Refer to the Veritas InfoScale Operations Manager documentation for installation,
upgrade, and configuration instructions.

The Veritas Enterprise Administrator (VEA) console is no longer packaged with
Veritas InfoScale products. If you want to continue using VEA, a software version
is available for download from
https://www.veritas.com/product/storage-management/infoscale-operations-manager.
Storage Foundation Management Server is deprecated.

If you want to manage a single cluster using Cluster Manager (Java Console), a
version is available for download from
https://www.veritas.com/product/storage-management/infoscale-operations-manager.
You cannot manage the new features of this release using the Java Console. Cluster
Server Management Console is deprecated.


https://sort.veritas.com/
https://www.veritas.com/product/storage-management/infoscale-operations-manager
https://www.veritas.com/product/storage-management/infoscale-operations-manager

Overview of Storage Foundation Cluster File System High Availability | 42
About Veritas Replicator

About Veritas Replicator

Veritas Replicator provides organizations with a comprehensive solution for
heterogeneous data replication. As an option to Storage Foundation, Veritas
Replicator enables cost-effective replication of data over IP networks, giving
organizations an extremely flexible, storage hardware independent alternative to
traditional array-based replication architectures. Veritas Replicator provides the
flexibility of block-based continuous replication with Volume Replicator Option (VVR)
and file-based periodic replication with File Replicator Option (VFR).

What is VFR?

Veritas File Replicator (VFR) enables cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexible storage independent data
availability solution for disaster recovery and off-host processing. With flexibility of
scheduling the replication intervals to match the business requirements, Veritas
File Replicator tracks all updates to the file system and replicates these updates at
the end of the configured time interval. VFR leverages data deduplication provided
by Veritas File System (VxFS) to reduce the impact that replication can have on
scarce network resources. VFR is included, by default, with Virtual Store 6.0 on
Linux and is available as an option with Storage Foundation and associated products
on Linux.

Features of VFR

Veritas File Replicator (VFR) includes the following features:

= Supports periodic replication of a subset of a file system ranging from a single
file to an entire file system.

= Supports reversible data transfer. The target of replication may become the
source at runtime, with the former source system becoming a target.

= Supports automatic recovery from the last good successfully replicated point in
time image.

= Periodically replicates changes. The interval is configurable by the user.

= Supports deduplication to increase storage efficiency on the target system.
= Supports protection of the target file system from accidental writes.

= Supports IPv4, IPv6, and dual-stack configurations.

See the Storage Foundation and High Availability Solutions Replication
Administrator’s Guide for more information.



Overview of Storage Foundation Cluster File System High Availability | 43
Use cases for Storage Foundation Cluster File System High Availability

Use cases for Storage Foundation Cluster File
System High Availability

Storage Foundation Cluster File System High Availability components and features
can be used individually and together to improve performance, resilience, and ease
of management for your storage and applications. Storage Foundation Cluster File
System High Availability features can be used for:

= Improving database performance: you can use Storage Foundation Cluster File
System High Availability database accelerators to improve 1/0 performance.
SFHA Solutions database accelerators achieve the speed of raw disk while
retaining the management features and convenience of a file system.

= Optimizing thin array usage: you can use Storage Foundation Cluster File System
High Availability thin provisioning and thin reclamation solutions to set up and
maintain thin storage.

= Backing up and recovering data: you can use Storage Foundation Cluster File
System High Availability Flashsnap, Storage Checkpoints, and NetBackup
point-in-time copy methods to back up and recover your data.

= Processing data off-host: you can avoid performance loss to your production
hosts by using Storage Foundation Cluster File System High Availability volume
snapshots.

= Optimizing test and development environments: you can optimize copies of your
production database for test, decision modeling, and development purposes
using Storage Foundation Cluster File System High Availability point-in-time
copy methods.

= Optimizing virtual desktop environments: you can use Storage Foundation
Cluster File System High Availability FileSnap to optimize your virtual desktop
environment.

= Maximizing storage utilization: you can use Storage Foundation Cluster File
System High Availability SmartTier to move data to storage tiers based on age,
priority, and access rate criteria.

= Maximizing storage utilization: you can use Storage Foundation Cluster File
System High Availability Flexible Storage Sharing for data redundancy, high
availability, and disaster recovery, without physically shared storage.

= Migrating your data: you can use Storage Foundation Cluster File System High
Availability Portable Data Containers to easily and reliably migrate data from
one environment to another.



Overview of Storage Foundation Cluster File System High Availability | 44
Use cases for Storage Foundation Cluster File System High Availability

For a supplemental guide that documents Storage Foundation Cluster File System
High Availability use case solutions using example scenarios: See the Veritas
InfoScale Solutions Guide.



How Dynamic
Multi-Pathing works

This chapter includes the following topics:
= How DMP works

= Veritas Volume Manager co-existence with Oracle Automatic Storage
Management disks

How DMP works

Dynamic Multi-Pathing (DMP) provides greater availability, reliability, and
performance by using the path failover feature and the load balancing feature.
These features are available for multiported disk arrays from various vendors.

Disk arrays can be connected to host systems through multiple paths. To detect
the various paths to a disk, DMP uses a mechanism that is specific to each
supported array. DMP can also differentiate between different enclosures of a
supported array that are connected to the same host system.

See “Discovering and configuring newly added disk devices” on page 287.

The multi-pathing policy that DMP uses depends on the characteristics of the disk
array.

DMP supports the following standard array types:



Table 2-1

How Dynamic Multi-Pathing works
How DMP works

Array type

Description

Active/Active (A/A)

Allows several paths to be used concurrently for
1/0O. Such arrays allow DMP to provide greater /O
throughput by balancing the 1/O load uniformly
across the multiple paths to the LUNs. In the event
that one path fails, DMP automatically routes 1/O
over the other available paths.

Asymmetric Active/Active (A/A-A)

A/A-A or Asymmetric Active/Active arrays can be
accessed through secondary storage paths with
little performance degradation. The behavior is
similar to ALUA, except that it does not support
the SCSI commands that an ALUA array supports.

Asymmetric Logical Unit Access (ALUA)

DMP supports all variants of ALUA.

Active/Passive (A/P)

Allows access to its LUNs (logical units; real disks
or virtual disks created using hardware) via the
primary (active) path on a single controller (also
known as an access port or a storage processor)
during normal operation.

In implicit failover mode (or autotrespass mode),
an A/P array automatically fails over by scheduling
1/0 to the secondary (passive) path on a separate
controller if the primary path fails. This passive port
is not used for I/O until the active port fails. In A/P
arrays, path failover can occur for a single LUN if
1/O fails on the primary path.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

46



Table 2-1 (continued)

How Dynamic Multi-Pathing works
How DMP works

Array type

Description

Active/Passive in explicit failover mode
or non-autotrespass mode (A/PF)

The appropriate command must be issued to the
array to make the LUNSs fail over to the secondary
path.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

Active/Passive with LUN group failover
(A/PG)

For Active/Passive arrays with LUN group failover
(A/PG arrays), a group of LUNs that are connected
through a controller is treated as a single failover
entity. Unlike A/P arrays, failover occurs at the
controller level, and not for individual LUNs. The
primary controller and the secondary controller are
each connected to a separate group of LUNSs. If a
single LUN in the primary controller’'s LUN group
fails, all LUNs in that group fail over to the
secondary controller.

This array mode supports concurrent I/O and load
balancing by having multiple primary paths into a
controller. This functionality is provided by a
controller with multiple ports, or by the insertion of
a SAN switch between an array and a controller.
Failover to the secondary (passive) path occurs
only if all the active primary paths fail.

An array policy module (APM) may define array types to DMP in addition to the
standard types for the arrays that it supports.

Storage Foundation Cluster File System High Availability uses DMP metanodes
(DMP nodes) to access disk devices connected to the system. For each disk in a

supported array, DMP maps one node to the set of paths that are connected to the
disk. Additionally, DMP associates the appropriate multi-pathing policy for the disk

array with the node.

For disks in an unsupported array, DMP maps a separate node to each path that

is connected to a disk. The raw and block devices for the nodes are created in the

directories /dev/vx/rdmp and /dev/vx/dmp respectively.

Figure 2-1 shows how DMP sets up a node for a disk in a supported disk array.

47



How Dynamic Multi-Pathing works
How DMP works
Figure 21 How DMP represents multiple physical paths to a disk as one
node
VxVM
Host
$ Single DMP node
N

Mapped by DMP
—_—

Multiple paths

T_l l_T Multiple paths
oo -

DMP implements a disk device naming scheme that allows you to recognize to
which array a disk belongs.

Figure 2-2 shows an example where two paths, sdf and sdm, exist to a single disk

in the enclosure, but VxVM uses the single DMP node, enc0_0, to access it.

Figure 2-2 Example of multi-pathing for a disk enclosure in a SAN
environment

Host
VxVM

i encO 0

)

Mapped

Fibre Channel by DMP
SW|tches ./)' k* .//'

Disk enclosure
enc0

Disk is sdf or sdm
depending on the path

See “About enclosure-based naming” on page 49.

See “Changing the disk device naming scheme” on page 379.

48



How Dynamic Multi-Pathing works | 49
How DMP works

See “Discovering and configuring newly added disk devices” on page 287.

Device discovery

Device discovery is the term used to describe the process of discovering the disks
that are attached to a host. This feature is important for DMP because it needs to
support a growing number of disk arrays from a number of vendors. In conjunction
with the ability to discover the devices attached to a host, the Device Discovery
service enables you to add support for new disk arrays. The Device Discovery uses
a facility called the Device Discovery Layer (DDL).

The DDL enables you to add support for new disk arrays without the need for a
reboot.

About enclosure-based naming

Enclosure-based naming provides an alternative to operating system-based device
naming. In a Storage Area Network (SAN) that uses Fibre Channel switches,
information about disk location provided by the operating system may not correctly
indicate the physical location of the disks. Enclosure-based naming allows SFCFSHA
to access enclosures as separate physical entities. By configuring redundant copies
of your data on separate enclosures, you can safeguard against failure of one or
more enclosures.

Figure 2-3 shows a typical SAN environment where host controllers are connected
to multiple enclosures through a Fibre Channel switch.



How Dynamic Multi-Pathing works
How DMP works
Figure 2-3 Example configuration for disk enclosures connected through a
Fibre Channel switch
Host
Fibre Channel
switch
Disk enclosures
enc0 enci enc2

In such a configuration, enclosure-based naming can be used to refer to each disk
within an enclosure. For example, the device names for the disks in enclosure enco
are named enc0_0, enc0_1, and so on. The main benefit of this scheme is that it
lets you quickly determine where a disk is physically located in a large SAN
configuration.

In most disk arrays, you can use hardware-based storage management to represent
several physical disks as one LUN to the operating system. In such cases, VxVM
also sees a single logical disk device rather than its component disks. For this
reason, when reference is made to a disk within an enclosure, this disk may be
either a physical disk or a LUN.

Another important benefit of enclosure-based naming is that it enables VxVM to
avoid placing redundant copies of data in the same enclosure. This is a good thing
to avoid as each enclosure can be considered to be a separate fault domain. For
example, if a mirrored volume were configured only on the disks in enclosure enci,
the failure of the cable between the switch and the enclosure would make the entire
volume unavailable.

If required, you can replace the default name that SFCFSHA assigns to an enclosure
with one that is more meaningful to your configuration.

50



How Dynamic Multi-Pathing works | 51
How DMP works

Figure 2-4 shows a High Availability (HA) configuration where redundant-loop access
to storage is implemented by connecting independent controllers on the host to
separate switches with independent paths to the enclosures.

Figure 2-4 Example HA configuration using multiple switches to provide
redundant loop access

Host

Fibre Channel [Qh
switches ||’

Disk enclosures

enc0 enci enc2

Such a configuration protects against the failure of one of the host controllers (c1
and c2), or of the cable between the host and one of the switches. In this example,
each disk is known by the same name to VxVM for all of the paths over which it
can be accessed. For example, the disk device enc0 0 represents a single disk for
which two different paths are known to the operating system, such as sdf and sdm.

See “Changing the disk device naming scheme” on page 379.

To take account of fault domains when configuring data redundancy, you can control
how mirrored volumes are laid out across enclosures.

How DMP monitors 1/O on paths

In VXVM prior to release 5.0, DMP had one kernel daemon (errord) that performed
error processing, and another (restored) that performed path restoration activities.

From release 5.0, DMP maintains a pool of kernel threads that are used to perform
such tasks as error processing, path restoration, statistics collection, and SCSI
request callbacks. The name restored has been retained for backward compatibility.



How Dynamic Multi-Pathing works
How DMP works

One kernel thread responds to I/O failures on a path by initiating a probe of the host
bus adapter (HBA) that corresponds to the path. Another thread then takes the
appropriate action according to the response from the HBA. The action taken can
be to retry the I/O request on the path, or to fail the path and reschedule the I/O on
an alternate path.

The restore kernel task is woken periodically (by default, every 5 minutes) to check
the health of the paths, and to resume I/O on paths that have been restored. As
some paths may suffer from intermittent failure, I/O is only resumed on a path if the
path has remained healthy for a given period of time (by default, 5 minutes). DMP
can be configured with different policies for checking the paths.

See “Configuring DMP path restoration policies” on page 348.

The statistics-gathering task records the start and end time of each I/O request,
and the number of 1/O failures and retries on each path. DMP can be configured to
use this information to prevent the SCSI driver being flooded by I/O requests. This
feature is known as I/O throttling.

If an 1/0 request relates to a mirrored volume, VxVM specifies the FAILFAST flag.
In such cases, DMP does not retry failed I/O requests on the path, and instead
marks the disks on that path as having failed.

See “Path failover mechanism” on page 52.

See “I/O throttling” on page 53.

Path failover mechanism

DMP enhances system availability when used with disk arrays having multiple
paths. In the event of the loss of a path to a disk array, DMP automatically selects
the next available path for /0 requests without intervention from the administrator.

DMP is also informed when a connection is repaired or restored, and when you
add or remove devices after the system has been fully booted (provided that the
operating system recognizes the devices correctly).

If required, the response of DMP to I/O failure on a path can be tuned for the paths
to individual arrays. DMP can be configured to time out an 1/O request either after
a given period of time has elapsed without the request succeeding, or after a given
number of retries on a path have failed.

See “Configuring the response to I/O failures” on page 343.

Subpaths Failover Group (SFG)

A subpaths failover group (SFG) represents a group of paths which could fail and
restore together. When an I/O error is encountered on a path in an SFG, DMP does
proactive path probing on the other paths of that SFG as well. This behavior adds

52



How Dynamic Multi-Pathing works | 53
How DMP works

greatly to the performance of path failover thus improving I/O performance. Currently
the criteria followed by DMP to form the subpaths failover groups is to bundle the
paths with the same endpoints from the host to the array into one logical storage
failover group.

See “Configuring Subpaths Failover Groups (SFG)” on page 346.

Low Impact Path Probing (LIPP)

The restore daemon in DMP keeps probing the LUN paths periodically. This behavior
helps DMP to keep the path states up-to-date even when no 1/0 occurs on a path.
Low Impact Path Probing adds logic to the restore daemon to optimize the number
of the probes performed while the path status is being updated by the restore
daemon. This optimization is achieved with the help of the logical subpaths failover
groups. With LIPP logic in place, DMP probes only a limited number of paths within
a subpaths failover group (SFG), instead of probing all the paths in an SFG. Based
on these probe results, DMP determines the states of all the paths in that SFG.

See “Configuring Low Impact Path Probing (LIPP)” on page 346.

1/0O throttling

If I/O throttling is enabled, and the number of outstanding I/O requests builds up
on a path that has become less responsive, DMP can be configured to prevent new
I/O requests being sent on the path either when the number of outstanding I/O
requests has reached a given value, or a given time has elapsed since the last
successful I/O request on the path. While throttling is applied to a path, the new I/O
requests on that path are scheduled on other available paths. The throttling is
removed from the path if the HBA reports no error on the path, or if an outstanding
I/0 request on the path succeeds.

See “Configuring the 1/O throttling mechanism” on page 345.

Load balancing

By default, DMP uses the Minimum Queue I/O policy for load balancing across
paths for all array types. Load balancing maximizes 1/O throughput by using the
total bandwidth of all available paths. I/O is sent down the path that has the minimum
outstanding 1/Os.

For Active/Passive (A/P) disk arrays, I/0 is sent down the primary paths. If all of
the primary paths fail, 1/O is switched over to the available secondary paths. As the
continuous transfer of ownership of LUNs from one controller to another results in
severe |/O slowdown, load balancing across primary and secondary paths is not
performed for A/P disk arrays unless they support concurrent 1/0.

For other arrays, load balancing is performed across all the currently active paths.



How Dynamic Multi-Pathing works | 54
How DMP works

You can change the I/O policy for the paths to an enclosure or disk array. This
operation is an online operation that does not impact the server or require any
downtime.

DMP in a clustered environment

In a clustered environment where Active/Passive (A/P) type disk arrays are shared
by multiple hosts, all nodes in the cluster must access the disk through the same
physical storage controller port. Accessing a disk through multiple paths
simultaneously can severely degrade I/O performance (sometimes referred to as
the ping-pong effect). Path failover on a single cluster node is also coordinated
across the cluster so that all the nodes continue to share the same physical path.

Prior to release 4.1 of VxVM, the clustering and DMP features could not handle
automatic failback in A/P arrays when a path was restored, and did not support
failback for explicit failover mode arrays. Failback could only be implemented
manually by running the vxdctl enable command on each cluster node after the
path failure had been corrected. From release 4.1, failback is now an automatic
cluster-wide operation that is coordinated by the master node. Automatic failback
in explicit failover mode arrays is also handled by issuing the appropriate low-level
command.

Note: Support for automatic failback of an A/P array requires that an appropriate
Array Support Library (ASL) is installed on the system. An Array Policy Module
(APM) may also be required.

See “About discovering disks and dynamically adding disk arrays” on page 289.

For Active/Active type disk arrays, any disk can be simultaneously accessed through
all available physical paths to it. In a clustered environment, the nodes do not need
to access a disk through the same physical path.

See “How to administer the Device Discovery Layer” on page 292.

See “Configuring Array Policy Modules” on page 350.

About enabling or disabling controllers with shared disk
groups

Prior to release 5.0, Veritas Volume Manager (VxVM) did not allow enabling or
disabling of paths or controllers connected to a disk that is part of a shared Veritas
Volume Manager disk group. From VxVM 5.0 onward, such operations are supported
on shared DMP nodes in a cluster.



How Dynamic Multi-Pathing works | 55

Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

Veritas Volume Manager co-existence with Oracle
Automatic Storage Management disks

Automatic Storage Management (ASM) disks are the disks used by Oracle Automatic
Storage Management software. Veritas Volume Manager (VxVM) co-exists with
Oracle ASM disks, by recognizing the disks as the type Oracle ASM. VxVM protects
ASM disks from any operations that may overwrite the disk. VxVM classifies and
displays the ASM disks as ASM format disks. You cannot initialize an ASM disk,
or perform any VxVM operations that may overwrite the disk.

If the disk is claimed as an ASM disk, disk initialization commands fail with an
appropriate failure message. The vxdisk init command and the vxdisksetup
command fail, even if the force option is specified. The vxprivutil command also
fails for disks under ASM control, to prevent any on-disk modification of the ASM
device.

If the target disk is under ASM control, any rootability operations that overwrite the
target disk fail. A message indicates that the disk is already in use as an ASM disk.
The rootability operations include operations to create a VM root image
(vxcp_lvmroot command) , create a VM root mirror (vxrootmir command), or
restore the LVM root image (vxres lvmroot command). The vxdestroy lvmroot
command also fails for ASM disks, since the target disk is not under LVM control
as expected.

Disks that ASM accessed previously but that no longer belong to an ASM disk group
are called FORMER ASM disks. If you remove an ASM disk from ASM control,
VxVM labels the disk as a FORMER ASM disk. VxVM enforces the same restrictions
for FORMER ASM disks as for ASM disks, to enable ASM to reuse the disk in the
future. To use a FORMER ASM disk with VxVM, you must clean the disk of ASM
information after you remove the disk from ASM control. If a disk initialization
command is issued on a FORMER ASM disk, the command fails. A message
indicates that the disk must be cleaned up before the disk can be initialized for use
with VXVM.



How Dynamic Multi-Pathing works | 56

Veritas Volume Manager co-existence with Oracle Automatic Storage Management disks

To remove a FORMER ASM disk from ASM control for use with VxVM

1

Clean the disk with the dd command to remove all ASM identification information
on it. For example:

dd if=/dev/zero of=/dev/rdsk/<wholedisk|partition> count=1 bs=1024

where wholedisk is a disk name in the format: cxtydz
where patrtition is a partition name in the format:cxtydzsn

Perform a disk scan:

# vxdisk scandisks

To view the ASM disks

*

You can use either of the following commands to display ASM disks:

The vxdisk 1ist command displays the disk type as asw.

# wvxdisk list

DEVICE TYPE DISK GROUP STATUS
Disk 0s2 auto:LVM - - LVM
Disk 1 auto:ASM - - ASM
EVA4K6KO 0 auto - - online
EVA4K6KO 1 auto - - online
You

To check if a particular disk is under ASM control

*

Use the vxmediadisc utility to check if a particular disk is under ASM control.

# /etc/vx/diag.d/vxmediadisc 3pardata0_ 2798
3pardata0_2799 ACTIVE

Alternatively, use the utility to check if the disk is under control of any foreign
software like LVM or ASM:

# /etc/vx/bin/vxisforeign 3pardatal_2799
3pardatal0_ 2799 ASM ACTIVE

# /etc/vx/bin/vxisforeign 3pardatal_2798
3pardatal_2798 ASM FORMER



How Veritas Volume
Manager works

This chapter includes the following topics:

= How Veritas Volume Manager works with the operating system
= How Veritas Volume Manager handles storage management
= Volume layouts in Veritas Volume Manager

= Online relayout

= Volume resynchronization

= Hot-relocation

= Dirty region logging

= Volume snapshots

= Support for atomic writes

= FastResync

= Volume sets

= How VxVM handles hardware clones or snapshots

= Volume encryption



How Veritas Volume Manager works | 58

How Veritas Volume Manager works with the operating system

How Veritas Volume Manager works with the
operating system

Veritas Volume Manager (VxVM) operates as a subsystem between your operating
system and your data management systems, such as file systems and database
management systems. VxVM is tightly coupled with the operating system. Before
a disk or LUN can be brought under VxVM control, the disk must be accessible
through the operating system device interface. VxVM is layered on top of the
operating system interface services, and is dependent upon how the operating
system accesses physical disks.

VxVM is dependent upon the operating system for the following functionality:
= operating system (disk) devices

= device handles

= VXVM Dynamic Multi-Pathing (DMP) metadevice

VxVM relies on the following constantly-running daemons and kernel threads for
its operation:

vxconfigd The VxVM configuration daemon maintains disk and group
configurations and communicates configuration changes
to the kernel, and modifies configuration information stored
on disks.

See the vxconfigd(1m) manual page.

vxiod VxVM 1/O kernel threads provide extended I/O operations
without blocking calling processes. By default, 16 1/0
threads are started at boot time, and at least one I/O thread
must continue to run at all times.

See the vxiod(1m) manual page.

vxrelocd The hot-relocation daemon monitors VxVM for events that
affect redundancy, and performs hot-relocation to restore
redundancy. If thin provision disks are configured in the
system, then the storage space of a deleted volume is
reclaimed by this daemon as configured by the policy.

See the vxrelocd(1m) manual page.

How data is stored

Several methods are used to store data on physical disks. These methods organize
data on the disk so the data can be stored and retrieved efficiently. The basic method



How Veritas Volume Manager works | 59
How Veritas Volume Manager handles storage management

of disk organization is called formatting. Formatting prepares the hard disk so that
files can be written to and retrieved from the disk by using a prearranged storage
pattern.

Two methods are used to store information on formatted hard disks: physical-storage
layout and logical-storage layout. VxXVM uses the logical-storage layout method.

See “How Veritas Volume Manager handles storage management” on page 59.

How Veritas Volume Manager handles storage
management

Veritas Volume Manager (VxVM) uses the following types of objects to handle
storage management:

Physical objects Physical disks, LUNs (virtual disks implemented in hardware), or
other hardware with block and raw operating system device
interfaces that are used to store data.

See “Physical objects” on page 59.

Virtual objects When one or more physical disks are brought under the control of
VxVM, it creates virtual objects called volumes on those physical
disks. Each volume records and retrieves data from one or more
physical disks. Volumes are accessed by file systems, databases,
or other applications in the same way that physical disks are
accessed. Volumes are also composed of other virtual objects
(plexes and subdisks) that are used in changing the volume
configuration. Volumes and their virtual components are called
virtual objects or VxVM objects.

See “Virtual objects” on page 61.

Physical objects

A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name to locate
the disk. The physical disk device hame varies with the computer system you use.
Not all parameters are used on all systems.

Typical device names are of the form sda or hdb, where sda references the first (a)
SCSI disk, and nhdb references the second (b) EIDE disk.

Figure 3-1 shows how a physical disk and device name (devname) are illustrated
in the Veritas Volume Manager (VxVM) documentation.



How Veritas Volume Manager works | 60
How Veritas Volume Manager handles storage management

Figure 3-1 Physical disk example

VxVM writes identification information on physical disks under VxVM control (VM
disks). VxVM disks can be identified even after physical disk disconnection or
system outages. VxVM can then re-form disk groups and logical objects to provide
failure detection and to speed system recovery.

About disk partitions

Figure 3-2 shows how a physical disk can be divided into one or more partitions.

Figure 3-2 Partition example

Physical disk with several partitions Partition

devname1
devname?2

_devname |

The partition number is added at the end of the devname.

Disk arrays

Performing 1/O to disks is a relatively slow process because disks are physical
devices that require time to move the heads to the correct position on the disk
before reading or writing. If all of the read or write operations are done to individual
disks, one at a time, the read-write time can become unmanageable. Performing
these operations on multiple disks can help to reduce this problem.

A disk array is a collection of physical disks that VxVM can represent to the operating
system as one or more virtual disks or volumes. The volumes created by VxVM
look and act to the operating system like physical disks. Applications that interact
with volumes should work in the same way as with physical disks.

Figure 3-3 shows how VxVM represents the disks in a disk array as several volumes
to the operating system.



How Veritas Volume Manager works | 61
How Veritas Volume Manager handles storage management

Figure 3-3 How VxVM presents the disks in a disk array as volumes to the
operating system

< Operating system>

Veritas Volume Manager I

Volumes

Physical disks

N
T T P e

Data can be spread across several disks within an array, or across disks spanning
multiple arrays, to distribute or balance I/O operations across the disks. Using
parallel I/O across multiple disks in this way improves I/O performance by increasing
data transfer speed and overall throughput for the array.

Virtual objects

Veritas Volume Manager (VxVM) uses multiple virtualization layers to provide distinct
functionality and reduce physical limitations. The connection between physical
objects and VxVM objects is made when you place a physical disk under VxVM
control.

Table 3-1 describes the virtual objects in VxVM.

Table 3-1 VxVM virtual objects
Virtual object Description
Disk groups A disk group is a collection of disks that share a common

configuration and which are managed by VxVM. A disk group
configuration is a set of records with detailed information about
related VxVM objects, their attributes, and their connections. A disk
group name can be up to 29 characters long. Disk group names
must not contain periods (.).




Table 3-1

How Veritas Volume Manager works
How Veritas Volume Manager handles storage management

VxVM virtual objects (continued)

Virtual object

Description

VxVM disks

A VxVM disk is assigned to a physical disk, when you place the
physical disk under VxVM control. A VxVM disk is usually in a disk
group. VxXVM allocates storage from a contiguous area of VxVM
disk space.

Each VxVM disk corresponds to at least one physical disk or disk
partition.

A VxVM disk typically includes a public region (allocated storage)
and a small private region where VxVM internal configuration
information is stored.

Subdisks

A subdisk is a set of contiguous disk blocks. A block is a unit of
space on the disk. VxVM allocates disk space using subdisks. A
VxVM disk can be divided into one or more subdisks. Each subdisk
represents a specific portion of a VxVM disk, which is mapped to
a specific region of a physical disk.

Plexes

A plex consists of one or more subdisks located on one or more
physical disks.

Volumes

A volume is a virtual disk device that appears to applications,
databases, and file systems like a physical disk device, but does
not have the physical limitations of a physical disk device. A volume
consists of one or more plexes, each holding a copy of the selected
data in the volume. Due to its virtual nature, a volume is not
restricted to a particular disk or a specific area of a disk. The
configuration of a volume can be changed by using VxVM user
interfaces. Configuration changes can be accomplished without
causing disruption to applications or file systems that are using the
volume. For example, a volume can be mirrored on separate disks
or moved to use different disk storage.

After installing VXVM on a host system, you must bring the contents of physical
disks under VxVM control by collecting the VxVM disks into disk groups and
allocating the disk group space to create logical volumes.

Bringing the contents of physical disks under VxVM control is accomplished only
if VXVM takes control of the physical disks and the disk is not under control of
another storage manager such as LVM.

For more information on how LVM and VxVM disks co-exist or how to convert LVM
disks to VxVM disks, see the Veritas InfoScale Solutions Guide.

VxVM creates virtual objects and makes logical connections between the objects.
The virtual objects are then used by VxVM to do storage management tasks.

62



How Veritas Volume Manager works | 63
How Veritas Volume Manager handles storage management

The vxprint command displays detailed information about the VxVM objects that
exist on a system.

See the vxprint(1M) manual page.

Combining virtual objects in Veritas Volume Manager

Veritas Volume Manager (VxVM) virtual objects are combined to build volumes.
The virtual objects contained in volumes are VxVM disks, disk groups, subdisks,
and plexes. VxVM virtual objects are organized in the following ways:

= VXVM disks are grouped into disk groups

» Subdisks (each representing a specific region of a disk) are combined to form
plexes

= Volumes are composed of one or more plexes

Figure 3-4 shows the connections between VxVM virtual objects and how they
relate to physical disks.



How Veritas Volume Manager works | 64
How Veritas Volume Manager handles storage management

Figure 3-4 Connection between objects in VxVM

C3CT]

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

disk01-01 disk02-01 disk03-01

Physical
disks

The disk group contains three VxVM disks which are used to create two volumes.
Volume vo101 is simple and has a single plex. Volume vo102 is a mirrored volume
with two plexes.

The various types of virtual objects (disk groups, VM disks, subdisks, plexes, and
volumes) are described in the following sections. Other types of objects exist in
Veritas Volume Manager, such as data change objects (DCOs), and volume sets,
to provide extended functionality.

About the configuration daemon in Veritas Volume Manager

The Veritas Volume Manager (VxVM) configuration daemon (vxconfigd) provides
the interface between VxVM commands and the kernel device drivers. vxconfigd
handles configuration change requests from VxVM utilities, communicates the



How Veritas Volume Manager works | 65
How Veritas Volume Manager handles storage management

change requests to the VxVM kernel, and modifies configuration information stored
on disk. vxconfigd also initializes VXVM when the system is booted.

The vxdctl command is the command-line interface to the vxconfigd daemon.
You can use vxdctl to:

= Control the operation of the vxconfigd daemon.

= Change the system-wide definition of the default disk group.

In VxVM 4.0 and later releases, disk access records are no longer stored in the
/etc/vx/volboot file. Non-persistent disk access records are created by scanning
the disks at system startup. Persistent disk access records for simple and nopriv
disks are permanently stored in the /etc/vx/darecs file in the root file system.
The vxconfigd daemon reads the contents of this file to locate the disks and the
configuration databases for their disk groups.

The /etc/vx/darecs file is also used to store definitions of foreign devices that
are not autoconfigurable. Such entries may be added by using the vxddiladm
addforeign command.

See the vxddladm(1M) manual page.

If your system is configured to use Dynamic Multi-Pathing (DMP), you can also use
vxdctl to:

= Reconfigure the DMP database to include disk devices newly attached to, or
removed from the system.

» Create DMP device nodes in the /dev/vx/dmp and /dev/vx/rdmp directories.

= Update the DMP database with changes in path type for active/passive disk
arrays. Use the utilities provided by the disk-array vendor to change the path
type between primary and secondary.

See the vxdct1(1M) manual page.

Multiple paths to disk arrays

Some disk arrays provide multiple ports to access their disk devices. These ports,
coupled with the host bus adaptor (HBA) controller and any data bus or I/O processor
local to the array, make up multiple hardware paths to access the disk devices.
Such disk arrays are called multipathed disk arrays. This type of disk array can be
connected to host systems in many different configurations, (such as multiple ports
connected to different controllers on a single host, chaining of the ports through a
single controller on a host, or ports connected to different hosts simultaneously).

See “How DMP works” on page 45.



How Veritas Volume Manager works | 66
Volume layouts in Veritas Volume Manager

Volume layouts in Veritas Volume Manager

A Veritas Volume Manager (VxVM) virtual device is defined by a volume. A volume
has a layout defined by the association of a volume to one or more plexes, each
of which map to one or more subdisks. The volume presents a virtual device interface
that is exposed to other applications for data access. These logical building blocks
re-map the volume address space through which 1/O is re-directed at run-time.

Different volume layouts provide different levels of availability and performance. A
volume layout can be configured and changed to provide the desired level of service.

Non-layered volumes

In a non-layered volume, a subdisk maps directly to a VxVM disk. This allows the
subdisk to define a contiguous extent of storage space backed by the public region
of a VxVM disk. When active, the VxVM disk is directly associated with an underlying
physical disk. The combination of a volume layout and the physical disks therefore
determines the storage service available from a given virtual device.

Layered volumes

A layered volume is constructed by mapping its subdisks to underlying volumes.
The subdisks in the underlying volumes must map to VxVM disks, and hence to
attached physical storage.

Layered volumes allow for more combinations of logical compositions, some of
which may be desirable for configuring a virtual device. For example, layered
volumes allow for high availability when using striping. Because permitting free use
of layered volumes throughout the command level would have resulted in unwieldy
administration, some ready-made layered volume configurations are designed into
VxVM.

See “About layered volumes” on page 80.

These ready-made configurations operate with built-in rules to automatically match
desired levels of service within specified constraints. The automatic configuration

is done on a “best-effort” basis for the current command invocation working against
the current configuration.

To achieve the desired storage service from a set of virtual devices, it may be
necessary to include an appropriate set of VxVM disks into a disk group and to
execute multiple configuration commands.

To the extent that it can, VxVM handles initial configuration and on-line
re-configuration with its set of layouts and administration interface to make this job
easier and more deterministic.



How Veritas Volume Manager works | 67
Volume layouts in Veritas Volume Manager

Layout methods

Data in virtual objects is organized to create volumes by using the following layout
methods:

= Concatenation, spanning, and carving

See “Concatenation, spanning, and carving” on page 67.
= Striping (RAID-0)

See “Striping (RAID-0)" on page 69.

= Mirroring (RAID-1)
See “Mirroring (RAID-1)” on page 72.

= Striping plus mirroring (mirrored-stripe or RAID-0+1)
See “Striping plus mirroring (mirrored-stripe or RAID-0+1)” on page 73.

= Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)

See “Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)” on page 74.
= RAID-5 (striping with parity)

See “RAID-5 (striping with parity)” on page 75.

Concatenation, spanning, and carving

Concatenation maps data in a linear manner onto one or more subdisks in a plex.
To access all of the data in a concatenated plex sequentially, data is first accessed
in the first subdisk from the beginning to the end. Data is then accessed in the
remaining subdisks sequentially from the beginning to the end of each subdisk,
until the end of the last subdisk.

The subdisks in a concatenated plex do not have to be physically contiguous and
can belong to more than one VxVM disk. Concatenation using subdisks that reside
on more than one VxVM disk is called spanning.

Figure 3-5 shows the concatenation of two subdisks from the same VxVM disk.

If a single LUN or disk is split into multiple subdisks, and each subdisk belongs to
a unique volume, it is called carving.



How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 3-5 Example of concatenation

Data in Data in
M ,ﬂ;km -03

E Data blocks

[ disk01-01 || disk01-03 | Plex with concatenated subdisks

[ disk01-01 || disk01-03 | Subdisks

[ disk01-01 | disk01-02 || disk01-03 |\ gisk
disk01

devname
[+ 2

Physical disk

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks on the same
physical disk.

The remaining free space in the subdisk disk01-02 on VxVM disk disk01 can be
put to other uses.

You can use concatenation with multiple subdisks when there is insufficient
contiguous space for the plex on any one disk. This form of concatenation can be
used for load balancing between disks, and for head movement optimization on a
particular disk.

Figure 3-6 shows data spread over two subdisks in a spanned plex.

68



How Veritas Volume Manager works | 69
Volume layouts in Veritas Volume Manager

Figure 3-6 Example of spanning

Datain Datain
disk01-01 gisk02-01
]

E Data blocks

| disk01-01 | disk02-01 | Plex with concatenated subdisks
[ disk01-01 || disk02-01 | Subdisks
[ disk01-01 | [disk02-01][disk02-02] VM disks
disk01 disk02

devname2

[ e

Physical disks

The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks from two distinct
physical disks.

The remaining free space in the subdisk disk02-02 on VxVM disk disk02 can be
put to other uses.

Warning: Spanning a plex across multiple disks increases the chance that a disk
failure results in failure of the assigned volume. Use mirroring or RAID-5 to reduce
the risk that a single disk failure results in a volume failure.

Striping (RAID-0)
Striping (RAID-0) is useful if you need large amounts of data written to or read from
physical disks, and performance is important. Striping is also helpful in balancing
the I/0 load from multi-user applications across multiple disks. By using parallel
data transfer to and from multiple disks, striping significantly improves data-access
performance.

Striping maps data so that the data is interleaved among two or more physical disks.
A striped plex contains two or more subdisks, spread out over two or more physical
disks. Data is allocated alternately and evenly to the subdisks of a striped plex.



How Veritas Volume Manager works | 70
Volume layouts in Veritas Volume Manager

The subdisks are grouped into “columns,” with each physical disk limited to one
column. Each column contains one or more subdisks and can be derived from one
or more physical disks. The number and sizes of subdisks per column can vary.
Additional subdisks can be added to columns, as necessary.

Warning: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure will result in failure of that volume.

If five volumes are striped across the same five disks, then failure of any one of the
five disks will require that all five volumes be restored from a backup. If each volume
is on a separate disk, only one volume has to be restored. (As an alternative to or
in conjunction with striping, use mirroring or RAID-5 to substantially reduce the
chance that a single disk failure results in failure of a large number of volumes.)

Data is allocated in equal-sized stripe units that are interleaved between the columns.
Each stripe unit is a set of contiguous blocks on a disk. The default stripe unit size
is 64 kilobytes.

Figure 3-7 shows an example with three columns in a striped plex, six stripe units,
and data striped over the three columns.

Figure 3-7 Striping across three columns
Column 0 Column 1 Column 2
’ stripe unit stripe unit stripe unit
Stripe 1 1 5 3
" stripe unit stripe unit stripe unit
Stripe 2 4 5 6

Sub$isk

Subdisk
2

Plex

Subdisk
3



How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

A stripe consists of the set of stripe units at the same positions across all columns.
In the figure, stripe units 1, 2, and 3 constitute a single stripe.

Viewed in sequence, the first stripe consists of:
= stripe unit 1 in column 0

= stripe unit 2 in column 1

= stripe unit 3 in column 2

The second stripe consists of:

» stripe unit 4 in column 0

» stripe unit 5 in column 1

= stripe unit 6 in column 2

Striping continues for the length of the columns (if all columns are the same length),
or until the end of the shortest column is reached. Any space remaining at the end
of subdisks in longer columns becomes unused space.

Figure 3-8 shows a striped plex with three equal sized, single-subdisk columns.

Figure 3-8 Example of a striped plex with one subdisk per column
sul su2 su3 su4 sub sub Stripe units
Column 0 Column 1 Column 2 Stri
disk01-01 [ | disko201 | | disko3-01 | triped plex
[ disko1-01 | | disko2-01 | [ disk03-01 | Subdisks
disk01-01 disk02-01 disk03-01 .
I I I I I I VM disks
disk01 disk02 disk03

devname1 devname2 devname3

Physical disk

There is one column per physical disk. This example shows three subdisks that
occupy all of the space on the VM disks. It is also possible for each subdisk in a



How Veritas Volume Manager works | 72
Volume layouts in Veritas Volume Manager

striped plex to occupy only a portion of the VM disk, which leaves free space for
other disk management tasks.

Figure 3-9 shows a striped plex with three columns containing subdisks of different

sizes.
Figure 3-9 Example of a striped plex with concatenated subdisks per column
sul su2 su3 su4 sub su6 - - - Stripe units
Column 0 Column 1 Column 2
. disk03-01
disk02-01 .
disk01-01 disk03-02 Striped plex
ol disk03-03
disk02-01 disk03-01
disk01-01 disk03-02 Subdisks
sk disk03-03
disk02-01 disk03-01
disk01-01 disk03-02 .
SieK02.02 = VM disks
1SkD2- disk03-03
disk01 disk02 disk03

"= )

Each column contains a different number of subdisks. There is one column per
physical disk. Striped plexes can be created by using a single subdisk from each
of the VM disks being striped across. It is also possible to allocate space from
different regions of the same disk or from another disk (for example, if the size of
the plex is increased). Columns can also contain subdisks from different VM disks.

Physical disks

See “Creating a striped volume” on page 241.

Mirroring (RAID-1)

Mirroring uses multiple mirrors (plexes) to duplicate the information contained in a
volume. In the event of a physical disk failure, the plex on the failed disk becomes



How Veritas Volume Manager works | 73
Volume layouts in Veritas Volume Manager

unavailable, but the system continues to operate using the unaffected mirrors.
Similarly, mirroring two LUNs from two separate controllers lets the system operate
if there is a controller failure.

Although a volume can have a single plex, at least two plexes are required to provide
redundancy of data. Each of these plexes must contain disk space from different
disks to achieve redundancy.

When striping or spanning across a large number of disks, failure of any one of
those disks can make the entire plex unusable. Because the likelihood of one out
of several disks failing is reasonably high, you should consider mirroring to improve
the reliability (and availability) of a striped or spanned volume.

See “Creating a mirrored volume” on page 239.

Striping plus mirroring (mirrored-stripe or RAID-0+1)

VxVM supports the combination of mirroring above striping. The combined layout
is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual benefits
of striping to spread data across multiple disks, while mirroring provides redundancy
of data.

For mirroring above striping to be effective, the striped plex and its mirrors must be
allocated from separate disks.

Figure 3-10 shows an example where two plexes, each striped across three disks,
are attached as mirrors to the same volume to create a mirrored-stripe volume.

Figure 3-10 Mirrored-stripe volume laid out on six disks

Mirrored-stripe

Striped vl

column O column 1 column 2
plex
column 0 column 1 column 2 .
Striped
plex

See “Creating a mirrored-stripe volume” on page 242.

Mirror

The layout type of the data plexes in a mirror can be concatenated or striped. Even
if only one is striped, the volume is still termed a mirrored-stripe volume. If they are
all concatenated, the volume is termed a mirrored-concatenated volume.



How Veritas Volume Manager works | 74

Volume layouts in Veritas Volume Manager

Mirroring plus striping (striped-mirror, RAID-1+0, or RAID-10)

Veritas Volume Manager (VxVM) supports the combination of striping above
mirroring. This combined layout is called a striped-mirror layout. Putting mirroring
below striping mirrors each column of the stripe. If there are multiple subdisks per
column, each subdisk can be mirrored individually instead of each column.

A striped-mirror volume is an example of a layered volume.
See “About layered volumes” on page 80.

As for a mirrored-stripe volume, a striped-mirror volume offers the dual benefits of
striping to spread data across multiple disks, while mirroring provides redundancy
of data. In addition, it enhances redundancy, and reduces recovery time after disk
failure.

Figure 3-11 shows an example where a striped-mirror volume is created by using
each of three existing 2-disk mirrored volumes to form a separate column within a
striped plex.

Figure 3-11 Striped-mirror volume laid out on six disks

Underlying mi‘rrored volumes

column 0 column column 2

Striped-mirror

volume
:> Mirror

Striped plex

See “Creating a striped-mirror volume” on page 242.

Figure 3-12 shows that the failure of a disk in a mirrored-stripe layout detaches an
entire data plex, thereby losing redundancy on the entire volume.



How Veritas Volume Manager works | 75
Volume layouts in Veritas Volume Manager

Figure 3-12 How the failure of a single disk affects mirrored-stripe and
striped-mirror volumes

Mirrored-stripe volume

. with no
: Striped plex redundancy
Mirror
@ 8 Detached
‘ striped plex

Failure of disk detaches plex

Striped-mirror volume

with partial
:> Mirror

redundancy
Striped plex

Gt
At
i Ul

Failure of disk removes redundancy from a mirror

When the disk is replaced, the entire plex must be brought up to date. Recovering
the entire plex can take a substantial amount of time. If a disk fails in a striped-mirror
layout, only the failing subdisk must be detached, and only that portion of the volume
loses redundancy. When the disk is replaced, only a portion of the volume needs
to be recovered. Additionally, a mirrored-stripe volume is more vulnerable to being
put out of use altogether should a second disk fail before the first failed disk has
been replaced, either manually or by hot-relocation.

Compared to mirrored-stripe volumes, striped-mirror volumes are more tolerant of
disk failure, and recovery time is shorter.

If the layered volume concatenates instead of striping the underlying mirrored
volumes, the volume is termed a concatenated-mirror volume.

RAID-5 (striping with parity)

Although both mirroring (RAID-1) and RAID-5 provide redundancy of data, they
use different methods. Mirroring provides data redundancy by maintaining multiple
complete copies of the data in a volume. Data being written to a mirrored volume



How Veritas Volume Manager works | 76
Volume layouts in Veritas Volume Manager

is reflected in all copies. If a portion of a mirrored volume fails, the system continues
to use the other copies of the data.

RAID-5 provides data redundancy by using parity. Parity is a calculated value used
to reconstruct data after a failure. While data is being written to a RAID-5 volume,
parity is calculated by doing an exclusive OR (XOR) procedure on the data. The
resulting parity is then written to the volume. The data and calculated parity are
contained in a plex that is “striped” across multiple disks. If a portion of a RAID-5
volume fails, the data that was on that portion of the failed volume can be recreated
from the remaining data and parity information. It is also possible to mix
concatenation and striping in the layout.

Figure 3-13 shows parity locations in a RAID-5 array configuration.

Figure 3-13 Parity locations in a RAID-5 model

Stripe 1
Stripe 2
Stripe 3
Stripe 4

Every stripe has a column containing a parity stripe unit and columns containing
data. The parity is spread over all of the disks in the array, reducing the write time
for large independent writes because the writes do not have to wait until a single
parity disk can accept the data.

RAID-5 volumes can additionally perform logging to minimize recovery time. RAID-5
volumes use RAID-5 logs to keep a copy of the data and parity currently being
written. RAID-5 logging is optional and can be created along with RAID-5 volumes
or added later.

See “Veritas Volume Manager RAID-5 arrays” on page 77.

Note: Veritas Volume Manager (VxVM) supports RAID-5 for private disk groups,
but not for shareable disk groups in a Cluster Volume Manager (CVM) environment.
In addition, VxXVM does not support the mirroring of RAID-5 volumes that are
configured using VxVM software. RAID-5 LUNs hardware may be mirrored.

Traditional RAID-5 arrays

A traditional RAID-5 array is several disks organized in rows and columns. A column
is a number of disks located in the same ordinal position in the array. A row is the
minimal number of disks necessary to support the full width of a parity stripe.



How Veritas Volume Manager works | 77
Volume layouts in Veritas Volume Manager

Figure 3-14 shows the row and column arrangement of a traditional RAID-5 array.

Figure 3-14 Traditional RAID-5 array

: Stripe 1
| Stripe3
1 Row 0

|

|

|

===

: Stripe 2
: Row 1

|

|

|

This traditional array structure supports growth by adding more rows per column.
Striping is accomplished by applying the first stripe across the disks in Row 0, then
the second stripe across the disks in Row 1, then the third stripe across the Row
0 disks, and so on. This type of array requires all disks columns and rows to be of
equal size.

Veritas Volume Manager RAID-5 arrays

The RAID-5 array structure in Veritas Volume Manager (VxVM) differs from the
traditional structure. Due to the virtual nature of its disks and other objects, VxXVM
does not use rows.

Figure 3-15 shows how VxVM uses columns consisting of variable length subdisks,
where each subdisk represents a specific area of a disk.



How Veritas Volume Manager works | 78
Volume layouts in Veritas Volume Manager

Figure 3-15 Veritas Volume Manager RAID-5 array

-+ Stripe 1
= Stripe 2
SD SD
SD
SD
SD SD SD SD SD = subdisk
Column 0 Column 1 Column 2 Column 3

VxVM allows each column of a RAID-5 plex to consist of a different number of
subdisks. The subdisks in a given column can be derived from different physical
disks. Additional subdisks can be added to the columns as necessary. Striping is
implemented by applying the first stripe across each subdisk at the top of each
column, then applying another stripe below that, and so on for the length of the
columns. Equal-sized stripe units are used for each column. For RAID-5, the default
stripe unit size is 16 kilobytes.

See “Striping (RAID-0)" on page 69.

Note: Mirroring of RAID-5 volumes is not supported.

See “Creating a RAID-5 volume” on page 243.

Left-symmetric layout

There are several layouts for data and parity that can be used in the setup of a
RAID-5 array. The implementation of RAID-5 in VxVM uses a left-symmetric layout.
This provides optimal performance for both random 1/O operations and large
sequential I/O operations. However, the layout selection is not as critical for
performance as are the number of columns and the stripe unit size.

Left-symmetric layout stripes both data and parity across columns, placing the parity
in a different column for every stripe of data. The first parity stripe unit is located in
the rightmost column of the first stripe. Each successive parity stripe unit is located



How Veritas Volume Manager works | 79
Volume layouts in Veritas Volume Manager

in the next stripe, shifted left one column from the previous parity stripe unit location.
If there are more stripes than columns, the parity stripe unit placement begins in
the rightmost column again.

Figure 3-16 shows a left-symmetric parity layout with five disks (one per column).

Figure 3-16 Left-symmetric layout

Column . . .
Parity stripe unit

Stripe 5 6 7 (P1) 4

10 11 P2 8 @j

15 P3 12 13 14 Data stripe unit

P4 16 17 18 19

For each stripe, data is organized starting to the right of the parity stripe unit. In the
figure, data organization for the first stripe begins at PO and continues to stripe units
0-3. Data organization for the second stripe begins at P1, then continues to stripe
unit 4, and on to stripe units 5-7. Data organization proceeds in this manner for the
remaining stripes.

Each parity stripe unit contains the result of an exclusive OR (XOR) operation
performed on the data in the data stripe units within the same stripe. If one column’s
data is inaccessible due to hardware or software failure, the data for each stripe
can be restored by XORing the contents of the remaining columns data stripe units
against their respective parity stripe units.

For example, if a disk corresponding to the whole or part of the far left column fails,
the volume is placed in a degraded mode. While in degraded mode, the data from
the failed column can be recreated by XORing stripe units 1-3 against parity stripe
unit PO to recreate stripe unit 0, then XORing stripe units 4, 6, and 7 against parity
stripe unit P1 to recreate stripe unit 5, and so on.

Failure of more than one column in a RAID-5 plex detaches the volume. The volume
is no longer allowed to satisfy read or write requests. Once the failed columns have
been recovered, it may be necessary to recover user data from backups.



How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

RAID-5 logging

Logging is used to prevent corruption of data during recovery by immediately
recording changes to data and parity to a log area on a persistent device such as
a volume on disk or in non-volatile RAM. The new data and parity are then written
to the disks.

Without logging, it is possible for data not involved in any active writes to be lost or
silently corrupted if both a disk in a RAID-5 volume and the system fail. If this
double-failure occurs, there is no way of knowing if the data being written to the
data portions of the disks or the parity being written to the parity portions have
actually been written. Therefore, the recovery of the corrupted disk may be corrupted
itself.

Figure 3-17 shows a RAID-5 volume configured across three disks (A, B, and C).

Figure 3-17 Incomplete write to a RAID-5 volume

Cosay  (CDiska g
-—

In this volume, recovery of disk B’s corrupted data depends on disk A's data and
disk C’s parity both being complete. However, only the data write to disk A is
complete. The parity write to disk C is incomplete, which would cause the data on
disk B to be reconstructed incorrectly.

Completed }:Z’I.V’I 1'1 Corrupted data ~ Incomplete
A

data write parity write

This failure can be avoided by logging all data and parity writes before committing
them to the array. In this way, the log can be replayed, causing the data and parity
updates to be completed before the reconstruction of the failed drive takes place.

Logs are associated with a RAID-5 volume by being attached as log plexes. More
than one log plex can exist for each RAID-5 volume, in which case the log areas
are mirrored.

About layered volumes

A layered volume is a virtual Veritas Volume Manager (VxVM) object that is built
on top of other volumes. The layered volume structure tolerates failure better and
has greater redundancy than the standard volume structure. For example, in a
striped-mirror layered volume, each mirror (plex) covers a smaller area of storage
space, so recovery is quicker than with a standard mirrored volume.

80



How Veritas Volume Manager works
Volume layouts in Veritas Volume Manager

Figure 3-18 shows a typical striped-mirror layered volume where each column is
represented by a subdisk that is built from an underlying mirrored volume.

Figure 3-18 Example of a striped-mirror layered volume
vol01
Striped mirror
vol01-01 volume
vol01-01
Managed Column 0 Column 1 Striped plex
by user
Managed |_vopot | [ vopo2 | Subdisks
by VXVM | |
vop01 vop02 Underlying
mirrored
volumes
[askos01 | [askosor | [aiskoso1 | [Laiskoror | Concatenated
= o = S | = plexes
- - - | - | Subdisks on
| disk04-01 | [ disk05-01 | | disk06-01 | [ disk07-01 | \/pp gisks

The volume and striped plex in the “Managed by user” area allow you to perform
normal tasks in VxVM. User tasks can be performed only on the top-level volume
of a layered volume.

Underlying volumes in the “Managed by VxVM” area are used exclusively by VxVM
and are not designed for user manipulation. You cannot detach a layered volume
or perform any other operation on the underlying volumes by manipulating the
internal structure. You can perform all necessary operations in the “Managed by
user” area that includes the top-level volume and striped plex (for example, resizing
the volume, changing the column width, or adding a column).

System administrators can manipulate the layered volume structure for
troubleshooting or other operations (for example, to place data on specific disks).
Layered volumes are used by VxVM to perform the following tasks and operations:

81



How Veritas Volume Manager works
Online relayout

Creating striped-mirrors See “Creating a striped-mirror volume” on page 242.

See the vxassist(1M) manual page.

Creating concatenated-mirrors See “Creating a concatenated-mirror volume”
on page 241.

See the vxassist(1M) manual page.

Online Relayout See “Online relayout” on page 82.
See the vxassist(1M) manual page.

See the vxrelayout(1M) manual page.
Moving RAID-5 subdisks See the vxsd(1M) manual page.

Creating Snapshots See “Volume snapshots” on page 89.
See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Online relayout

Online relayout allows you to convert between storage layouts in VxVM, with
uninterrupted data access. Typically, you would do this to change the redundancy
or performance characteristics of a volume. VxVM adds redundancy to storage
either by duplicating the data (mirroring) or by adding parity (RAID-5). Performance
characteristics of storage in VxVM can be changed by changing the striping
parameters, which are the number of columns and the stripe width.

See “Performing online relayout” on page 975.

How online relayout works

Online relayout allows you to change the storage layouts that you have already
created in place without disturbing data access. You can change the performance
characteristics of a particular layout to suit your changed requirements. You can
transform one layout to another by invoking a single command.

For example, if a striped layout with a 128KB stripe unit size is not providing optimal
performance, you can use relayout to change the stripe unit size.

File systems mounted on the volumes do not need to be unmounted to achieve this
transformation provided that the file system (such as Veritas File System) supports
online shrink and grow operations.

Online relayout reuses the existing storage space and has space allocation policies
to address the needs of the new layout. The layout transformation process converts

82



How Veritas Volume Manager works
Online relayout

a given volume to the destination layout by using minimal temporary space that is
available in the disk group.

The transformation is done by moving one portion of data at a time in the source
layout to the destination layout. Data is copied from the source volume to the
temporary area, and data is removed from the source volume storage area in
portions. The source volume storage area is then transformed to the new layout,
and the data saved in the temporary area is written back to the new layout. This
operation is repeated until all the storage and data in the source volume has been
transformed to the new layout.

The default size of the temporary area used during the relayout depends on the
size of the volume and the type of relayout. For volumes larger than 50MB, the
amount of temporary space that is required is usually 10% of the size of the volume,
from a minimum of 50MB up to a maximum of 1GB. For volumes smaller than 50MB,
the temporary space required is the same as the size of the volume.

The following error message displays the number of blocks required if there is
insufficient free space available in the disk group for the temporary area:

tmpsize too small to perform this relayout (nblks minimum required)

You can override the default size used for the temporary area by using the tmpsize
attribute to vxassist.

See the vxassist(1M) manual page.

As well as the temporary area, space is required for a temporary intermediate
volume when increasing the column length of a striped volume. The amount of
space required is the difference between the column lengths of the target and source
volumes. For example, 20GB of temporary additional space is required to relayout
a 150GB striped volume with 5 columns of length 30GB as 3 columns of length
50GB. In some cases, the amount of temporary space that is required is relatively
large. For example, a relayout of a 150GB striped volume with 5 columns as a
concatenated volume (with effectively one column) requires 120GB of space for
the intermediate volume.

Additional permanent disk space may be required for the destination volumes,
depending on the type of relayout that you are performing. This may happen, for
example, if you change the number of columns in a striped volume.

Figure 3-19 shows how decreasing the number of columns can require disks to be
added to a volume.

83



How Veritas Volume Manager works
Online relayout

Figure 3-19 Example of decreasing the number of columns in a volume

s
L] e

Five columns of length L Three columns of length 5L/3

Note that the size of the volume remains the same but an extra disk is needed to
extend one of the columns.

The following are examples of operations that you can perform using online relayout:

= Remove parity from a RAID-5 volume to change it to a concatenated, striped,
or layered volume.
Figure 3-20 shows an example of applying relayout a RAID-5 volume.

Figure 3-20 Example of relayout of a RAID-5 volume to a striped volume

__— s

RAID-5 volume Striped volume

Note that removing parity decreases the overall storage space that the volume
requires.

= Add parity to a volume to change it to a RAID-5 volume.
Figure 3-21 shows an example.

Figure 3-21 Example of relayout of a concatenated volume to a RAID-5
volume
Concatenate:
volume _—
RAID-5 volume

Note that adding parity increases the overall storage space that the volume requires.

84



How Veritas Volume Manager works | 85
Online relayout

= Change the number of columns in a volume.
Figure 3-22 shows an example of changing the number of columns.

Figure 3-22 Example of increasing the number of columns in a volume

B  www

Two columns Three columns

Note that the length of the columns is reduced to conserve the size of the volume.
= Change the column stripe width in a volume.

Figure 3-23 shows an example of changing the column stripe width.

Figure 3-23 Example of increasing the stripe width for the columns in a volume

ve s

See “Performing online relayout” on page 975.

See “Permitted relayout transformations” on page 976.

Limitations of online relayout
Note the following limitations of online relayout:
s Log plexes cannot be transformed.

= Volume snapshots cannot be taken when there is an online relayout operation
running on the volume.

= Online relayout cannot create a non-layered mirrored volume in a single step.
It always creates a layered mirrored volume even if you specify a non-layered
mirrored layout, such as mirror-stripe Or mirror-concat. Use the vxassist
convert command to turn the layered mirrored volume that results from a
relayout into a non-layered volume.



How Veritas Volume Manager works | 86
Online relayout

= The usual restrictions apply for the minimum number of physical disks that are
required to create the destination layout. For example, mirrored volumes require
at least as many disks as mirrors, striped and RAID-5 volumes require at least
as many disks as columns, and striped-mirror volumes require at least as many
disks as columns multiplied by mirrors.

= To be eligible for layout transformation, the plexes in a mirrored volume must
have identical stripe widths and numbers of columns. Relayout is not possible
unless you make the layouts of the individual plexes identical.

= Online relayout cannot transform sparse plexes, nor can it make any plex sparse.
(A sparse plex is a plex that is not the same size as the volume, or that has
regions that are not mapped to any subdisk.)

= The number of mirrors in a mirrored volume cannot be changed using relayout.
Instead, use alternative commands, such as the vxassist mirror command.

= Only one relayout may be applied to a volume at a time.

Transformation characteristics

Transformation of data from one layout to another involves rearrangement of data
in the existing layout to the new layout. During the transformation, online relayout
retains data redundancy by mirroring any temporary space used. Read and write

access to data is not interrupted during the transformation.

Data is not corrupted if the system fails during a transformation. The transformation
continues after the system is restored and both read and write access are
maintained.

You can reverse the layout transformation process at any time, but the data may
not be returned to the exact previous storage location. Before you reverse a
transformation that is in process, you must stop it.

You can determine the transformation direction by using the vxrelayout status
volume command.

These transformations are protected against I/O failures if there is sufficient
redundancy and space to move the data.

Transformations and volume length

Some layout transformations can cause the volume length to increase or decrease.
If either of these conditions occurs, online relayout uses the vxresize command
to shrink or grow a file system.

See the vxresize(1M) manual page.



How Veritas Volume Manager works
Volume resynchronization

Volume resynchronization

Dirty flags

When storing data redundantly and using mirrored or RAID-5 volumes, VxVM
ensures that all copies of the data match exactly. However, under certain conditions
(usually due to complete system failures), some redundant data on a volume can
become inconsistent or unsynchronized. The mirrored data is not exactly the same
as the original data. Except for normal configuration changes (such as detaching
and reattaching a plex), this can only occur when a system crashes while data is
being written to a volume.

Data is written to the mirrors of a volume in parallel, as is the data and parity in a
RAID-5 volume. If a system crash occurs before all the individual writes complete,
it is possible for some writes to complete while others do not. This can result in the
data becoming unsynchronized. For mirrored volumes, it can cause two reads from
the same region of the volume to return different results, if different mirrors are used
to satisfy the read request. In the case of RAID-5 volumes, it can lead to parity
corruption and incorrect data reconstruction.

VxVM ensures that all mirrors contain exactly the same data and that the data and
parity in RAID-5 volumes agree. This process is called volume resynchronization.
For volumes that are part of the disk group that is automatically imported at boot
time (usually aliased as the reserved system-wide disk group, bootdg),
resynchronization takes place when the system reboots.

Not all volumes require resynchronization after a system failure. Volumes that were
never written or that were quiescent (that is, had no active 1/0) when the system
failure occurred could not have had outstanding writes and do not require
resynchronization.

VxVM records when a volume is first written to and marks it as dirty. When a volume
is closed by all processes or stopped cleanly by the administrator, and all writes
have been completed, VxVM removes the dirty flag for the volume. Only volumes
that are marked dirty require resynchronization.

Resynchronization process

The process of resynchronization depends on the type of volume. For mirrored
volumes, resynchronization is done by placing the volume in recovery mode (also
called read-writeback recovery mode). Resynchronization of data in the volume is
done in the background. This allows the volume to be available for use while
recovery is taking place. RAID-5 volumes that contain RAID-5 logs can “replay”
those logs. If no logs are available, the volume is placed in reconstruct-recovery
mode and all parity is regenerated.

87



How Veritas Volume Manager works | 88
Hot-relocation

Resynchronization can impact system performance. The recovery process reduces
some of this impact by spreading the recoveries to avoid stressing a specific disk
or controller.

For large volumes or for a large number of volumes, the resynchronization process
can take time. These effects can be minimized by using dirty region logging (DRL)
and FastResync (fast mirror resynchronization) for mirrored volumes, or by using
RAID-5 logs for RAID-5 volumes.

See “Dirty region logging” on page 88.

For mirrored volumes used by Oracle, you can use the SmartSync feature, which
further improves performance.

Hot-relocation

Hot-relocation is a feature that allows a system to react automatically to 1/O failures
on redundant objects (mirrored or RAID-5 volumes) in VxVM and restore redundancy
and access to those objects. VxVM detects I/O failures on objects and relocates
the affected subdisks. The subdisks are relocated to disks designated as spare
disks or to free space within the disk group. VxVM then reconstructs the objects
that existed before the failure and makes them accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks on
a disk), redundant data on the failed portion of the disk is relocated. Existing volumes
on the unaffected portions of the disk remain accessible.

See “How hot-relocation works” on page 905.

Dirty region logging

Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes after
a system crash. DRL tracks the regions that have changed due to I/O writes to a
mirrored volume. DRL uses this information to recover only those portions of the
volume.

If DRL is not used and a system failure occurs, all mirrors of the volumes must be
restored to a consistent state. Restoration is done by copying the full contents of
the volume between its mirrors. This process can be lengthy and I/O intensive.

Note: DRL adds a small I/O overhead for most write access patterns. This overhead
is reduced by using SmartSync.




How Veritas Volume Manager works | 89
Volume snapshots

If an instant snap DCO volume is associated with a volume, a portion of the DCO
volume can be used to store the DRL log. There is no need to create a separate
DRL log for a volume which has an instant snap DCO volume.

Log subdisks and plexes

DRL log subdisks store the dirty region log of a mirrored volume that has DRL
enabled. A volume with DRL has at least one log subdisk; multiple log subdisks
can be used to mirror the dirty region log. Each log subdisk is associated with one
plex of the volume. Only one log subdisk can exist per plex. If the plex contains
only a log subdisk and no data subdisks, that plex is referred to as a log plex.

The log subdisk can also be associated with a regular plex that contains data
subdisks. In that case, the log subdisk risks becoming unavailable if the plex must
be detached due to the failure of one of its data subdisks.

If the vxassist command is used to create a dirty region log, it creates a log plex
containing a single log subdisk by default. A dirty region log can also be set up
manually by creating a log subdisk and associating it with a plex. The plex then
contains both a log and data subdisks.

Sequential DRL

Some volumes, such as those that are used for database replay logs, are written
sequentially and do not benefit from delayed cleaning of the DRL bits. For these
volumes, sequential DRL can be used to limit the number of dirty regions. This
allows for faster recovery. However, if applied to volumes that are written to
randomly, sequential DRL can be a performance bottleneck as it limits the number
of parallel writes that can be carried out.

The maximum number of dirty regions allowed for sequential DRL is controlled by
a tunable as detailed in the description of voldrl max seq dirty.

Volume snapshots

Veritas Volume Manager provides the capability for taking an image of a volume
at a given point in time. Such an image is referred to as a volume snapshot. Such
snapshots should not be confused with file system snapshots, which are point-in-time
images of a Veritas File System.

Figure 3-24 shows how a snapshot volume represents a copy of an original volume
at a given point in time.



How Veritas Volume Manager works
Volume snapshots

Figure 3-24 Volume snapshot as a point-in-time image of a volume

T Original volume

T2 Original volume Snapshot volume Snapshot volume is created

attime T2

T3 Original volume Snapshot volume snapshot vqum.e retains
image taken at time T2

T4 Original volume Snapshot volume Snapshot volume is updated

attime T4

Time Resynchronize snapshot volume

from the original volume

Even though the contents of the original volume can change, the snapshot volume
preserves the contents of the original volume as they existed at an earlier time.

The snapshot volume provides a stable and independent base for making backups
of the contents of the original volume, or for other applications such as decision
support. In the figure, the contents of the snapshot volume are eventually
resynchronized with the original volume at a later point in time.

Another possibility is to use the snapshot volume to restore the contents of the
original volume. This may be useful if the contents of the original volume have
become corrupted in some way.

Warning: If you write to the snapshot volume, it may no longer be suitable for use
in restoring the contents of the original volume.

One type of volume snapshot in VxVM is the third-mirror break-off type. This name
comes from its implementation where a snapshot plex (or third mirror) is added to
a mirrored volume. The contents of the snapshot plex are then synchronized from
the original plexes of the volume. When this synchronization is complete, the
snapshot plex can be detached as a snapshot volume for use in backup or decision
support applications. At a later time, the snapshot plex can be reattached to the
original volume, requiring a full resynchronization of the snapshot plex’s contents.

The FastResync feature was introduced to track writes to the original volume. This
tracking means that only a partial, and therefore much faster, resynchronization is
required on reattaching the snapshot plex. In later releases, the snapshot model

90



How Veritas Volume Manager works | 91
Volume snapshots

was enhanced to allow snapshot volumes to contain more than a single plex,
reattachment of a subset of a snapshot volume’s plexes, and persistence of
FastResync across system reboots or cluster restarts.

Release 4.0 of VxVM introduced full-sized instant snapshots and space-optimized
instant snapshots, which offer advantages over traditional third-mirror snapshots
such as immediate availability and easier configuration and administration. You
can also use the third-mirror break-off usage model with full-sized snapshots, where
this is necessary for write-intensive applications.

For information about how and when to use volume snapshots, see the Veritas
InfoScale Solutions Guide.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

Comparison of snapshot features

Table 3-2 compares the features of the various types of snapshots that are supported

in VxXVM.
Table 3-2 Comparison of snapshot features for supported snapshot types
Snapshot feature Full-sized Space-optimized | Break-off
instant (vxsnap) | instant (vxsnap) | (vxassist or
vxsnap)

Immediately available for use | Yes Yes No

on creation

Requires less storage space | No Yes No

than original volume

Can be reattached to original | Yes No Yes

volume

Can be used to restore Yes Yes Yes

contents of original volume

Can quickly be refreshed Yes Yes No

without being reattached

Snapshot hierarchy can be | Yes No No

split

Can be moved into separate | Yes No Yes

disk group from original

volume




How Veritas Volume Manager works | 92
Support for atomic writes

Table 3-2 Comparison of snapshot features for supported snapshot types
(continued)

Snapshot feature Full-sized Space-optimized | Break-off
instant (vxsnap) | instant (vxsnap) | (vxassist or
vxshap)

Can be turned into an Yes No Yes
independent volume

FastResync ability persists | Yes Yes Yes
across system reboots or
cluster restarts

Synchronization can be Yes No No
controlled
Can be moved off-host Yes No Yes

Full-sized instant snapshots are easier to configure and offer more flexibility of use
than do traditional third-mirror break-off snapshots. For preference, new volumes
should be configured to use snapshots that have been created using the vxsnap
command rather than using the vxassist command. Legacy volumes can also be
reconfigured to use vxsnap snapshots, but this requires rewriting of administration
scripts that assume the vxassist snapshot model.

Support for atomic writes

Veritas InfoScale supports atomic write operations on Fusion-io devices. Atomic
write capable devices ensure that all blocks in write I/O operation (which may span
multiple sectors) either pass or fail. If a write fails in-between, the storage reverts
back to old data.

Atomic write resolves a problem of indeterminate status of failed writes that often
requires two-part write — one write to an update log buffer and the other write on
actual data volumes. Enabling atomic write eliminates the writes on log buffer, which
in turn results in a better performance.

Storage Foundation lets you configure the atomic write support when you create a
Veritas Volume Manager (VxVM) volume on a device that has atomic write capability.
The atomic write 1/O size of an atomic write capable volume is 16KB.

While creating an atomic write capable volume, VxXVM ensures that all underlying
subdisks are aligned to the 16KB boundary. Atomic write capable volumes can
span multiple atomic write enabled devices, but I/O crossing atomic write boundary
is not supported.



How Veritas Volume Manager works | 93
FastResync

Atomic write is supported on raw VxVM volumes as well as on VxFS configured on
VxVM volumes.

For information about using the Storage Foundation atomic write 1/0O feature with
MySQL, see the Storage Foundation and High Availability Solutions Solutions
Guide.

FastResync

Note: You need to have Veritas InfoScale Enterprise product license to use this
feature.

The FastResync feature (previously called Fast Mirror Resynchronization or FMR)
performs quick and efficient resynchronization of stale mirrors (a mirror that is not
synchronized). This feature increases the efficiency of the Veritas Volume Manager
(VxVM) snapshot mechanism, and improves the performance of operations such
as backup and decision support applications. Typically, these operations require
that the volume is quiescent, and that they are not impeded by updates to the
volume by other activities on the system. To achieve these goals, the snapshot
mechanism in VxVM creates an exact copy of a primary volume at an instant in
time. After a snapshot is taken, it can be accessed independently of the volume
from which it was taken.

In a Cluster Volume Manager (CVM) environment with shared access to storage,
it is possible to eliminate the resource contention and performance overhead of
using a snapshot simply by accessing it from a different node.

How FastResync works

FastResync provides the following enhancements to VxVM:



How Veritas Volume Manager works | 94
FastResync

Faster mirror resynchronization FastResync optimizes mirror resynchronization by keeping
track of updates to stored data that have been missed by
a mirror. (A mirror may be unavailable because it has been
detached from its volume, either automatically by VxVM
as the result of an error, or directly by an administrator
using a utility such as vxplex or vxassist. A returning
mirror is a mirror that was previously detached and is in
the process of being re-attached to its original volume as
the result of the vxrecover or vkplex att operation.)
When a mirror returns to service, only the updates that it
has missed need to be re-applied to resynchronize it. This
requires much less effort than the traditional method of
copying all the stored data to the returning mirror.

Once FastResync has been enabled on a volume, it does
not alter how you administer mirrors. The only visible effect
is that repair operations conclude more quickly.

See the vxplex(1M), vxassist(1M), and
vxrecover(1M) manual pages.

Re-use of snapshots FastResync allows you to refresh and re-use snapshots
rather than discard them. You can quickly re-associate
(snap back) snapshot plexes with their original volumes.
This reduces the system overhead required to perform
cyclical operations such as backups that rely on the volume
snapshots.

FastResync can be implemented in one of two ways:

Non-persistent FastResync Non-persistent FastResync allocates its change maps in
memory. The maps do not reside on disk nor in persistent
store.

See “How non-persistent FastResync works with
snapshots” on page 94.

Persistent FastResync Persistent FastResync keeps the FastResync maps on
disk so that they can survive system reboots, system
crashes and cluster crashes.

See “How persistent FastResync works with snapshots”
on page 95.

How non-persistent FastResync works with snapshots

If FastResync is enabled on a volume before a snapshot is taken, the snapshot
feature of VxVM uses FastResync change tracking to record updates to the original



How Veritas Volume Manager works | 95
FastResync

volume after a snapshot plex is created. When the snapback option is used to
reattach the snapshot plex, the changes that FastResync recorded are used to
resynchronize the volume during the snapback. This behavior considerably reduces
the time needed to resynchronize the volume.

Non-persistent FastResync uses a map in memory to implement change tracking.
The map does not exist on disk or in persistent store. The advantage of
non-persistent FastResync is that updates to the FastResync map have little impact
on I/O performance, because no disk updates are performed. However, FastResync
must remain enabled until the snapshot is reattached, and the system cannot be
rebooted. If FastResync is disabled or the system is rebooted, the information in
the map is lost and a full resynchronization is required on snapback.

This limitation can be overcome for volumes in cluster-shareable disk groups,
provided that at least one of the nodes in the cluster remained running to preserve
the FastResync map in its memory. However, a node crash in a High Availability
(HA) environment requires the full resynchronization of a mirror when it is reattached
to its parent volume.

Each bit in the FastResync map represents a contiguous number of blocks in a
volume’s address space. The default size of the map is 4 blocks. The kernel tunable
vol fmr logsz can be used to limit the maximum size in blocks of the map

For information about tuning VxVM, see the Storage Foundation and High Availability
Solutions Tuning Guide.

How persistent FastResync works with snapshots

Persistent FastResync keeps the FastResync maps on disk so that they can survive
system reboots, system crashes, and cluster crashes. Persistent FastResync uses
a map in a data change object (DCO) volume on disk to implement change tracking.
Each bit in the map represents a contiguous number of blocks in a volume’s address
space.

Persistent FastResync can also track the association between volumes and their

snapshot volumes after they are moved into different disk groups. When the disk

groups are rejoined, this allows the snapshot plexes to be quickly resynchronized.
This ability is not supported by non-persistent FastResync.

See “Reorganizing the contents of disk groups” on page 958.

When persistent FastResync is enabled on a volume or on a snapshot volume, a
data change object (DCO) and a DCO volume are associated with the volume.

See “DCO volume versioning ” on page 98.

Figure 3-25 shows an example of a mirrored volume with two plexes on which
persistent FastResync is enabled.



How Veritas Volume Manager works
FastResync

Figure 3-25 Mirrored volume with persistent FastResync enabled
Mirrored volume

Data plex Dataplex = ——— Data change object

DCO volume

DCO plex DCO plex

Associated with the volume are a DCO object and a DCO volume with two plexes.

Create an instant snapshot by using the vxsnap make command, or create a
traditional third-mirror snapshot by using the vxassist snapstart command.

Figure 3-26 shows how a snapshot plex is set up in the volume, and how a disabled
DCO plex is associated with it.

Figure 3-26 Mirrored volume after completion of a snapstart operation

Mirrored volume

Dataplex Dataplex Dataplex @~ Datachange object
DCO volume
Disabled
D | D |
DCO plex CO plex DCO plex

Multiple snapshot plexes and associated DCO plexes may be created in the volume
by re-running the vxassist snapstart command for traditional snapshots, or the
vxsnap make command for space-optimized snapshots. You can create up to a
total of 32 plexes (data and log) in a volume.

A traditional snapshot volume is created from a snapshot plex by running the
vxassist snapshot operation on the volume. For instant snapshots, however, the
vxsnap make command makes an instant snapshot volume immediately available
for use. There is no need to run an additional command.

Figure 3-27 shows how the creation of the snapshot volume also sets up a DCO
object and a DCO volume for the snapshot volume.

96



How Veritas Volume Manager works
FastResync
Figure 3-27 Mirrored volume and snapshot volume after completion of a
snapshot operation
Mirrored volume
Dataplex Dataplex — Data change object ————  Snap object
I
! ' ’
\ DCO volume /I
/
N DCO DCO y
\ I /
N og plex log plex ,
~ s/
N - - P /
~ ~ 7
~—— -
—_—— - - o= = ~ N
Snapshot volume < —— —~ "~ N
Data plex ——  Data change object ————  Snap object
DCO volume
DCO
log plex

The DCO volume contains the single DCO plex that was associated with the
snapshot plex. If two snapshot plexes were taken to form the snapshot volume, the
DCO volume would contain two plexes. For space-optimized instant snapshots,
the DCO object and DCO volume are associated with a snapshot volume that is
created on a cache object and not on a VxVM disk.

Associated with both the original volume and the snapshot volume are snap objects.
The snap object for the original volume points to the snapshot volume, and the
snap object for the snapshot volume points to the original volume. This allows VxVM
to track the relationship between volumes and their snapshots even if they are
moved into different disk groups.

The snap objects in the original volume and snapshot volume are automatically
deleted in the following circumstances:

= Fortraditional snapshots, the vxassist snapback operation is run to return all
of the plexes of the snapshot volume to the original volume.

» Fortraditional snapshots, the vxassist snapclear operation is run onavolume
to break the association between the original volume and the snapshot volume.

97



How Veritas Volume Manager works
FastResync

If the volumes are in different disk groups, the command must be run separately
on each volume.

» Forfull-sized instant snapshots, the vxsnap reattach operation is run to return
all of the plexes of the snapshot volume to the original volume.

n For full-sized instant snapshots, the vxsnap dis or vxsnap split operations
are run on a volume to break the association between the original volume and
the snapshot volume. If the volumes are in different disk groups, the command
must be run separately on each volume.

Note: The vxsnap reattach, dis and split operations are not supported for
space-optimized instant snapshots.

See the vxassist(1M) manual page.

See the vxsnap(1M) manual page.

DCO volume versioning

Persistent FastResync uses a data change object (DCO) and a DCO volume to
hold the FastResync maps.

This release of Veritas Volume Manager (VxVM) supports the following DCO volume

versions:

Instant snap DCO  Previously known as Version 20 DCO volume layout, this version of

volume layout

Version 0 DCO
volume layout

the DCO layout supports instant snapshots of volumes.

This type of DCO manages the FastResync maps, and also manages
DRL recovery maps and special maps called copymaps that allow
instant snapshot operations to resume correctly following a system
crash.

This version of the DCO volume layout only supports legacy snapshots
(vxassist snapshots). The DCO object manages information about the
FastResync maps. These maps track writes to the original volume and
to each of up to 32 snapshot volumes since the last snapshot
operation. Each plex of the DCO volume on disk holds 33 maps, each
of which is 4 blocks in size by default.

VxVM software continues to support the version 0 (zero) layout for
legacy volumes.

98



How Veritas Volume Manager works
FastResync

Instant snap (version 20) DCO volume layout

The instant snap data change object (DCO) supports full-sized and space-optimized
instant snapshots. Traditional third-mirror volume snapshots that are administered
using the vxassist command are not supported with this DCO layout.

Introduced in Veritas Volume Manager (VxVM) 4.0, the instant snap DCO volume
layout is also known as a version 20 DCO volume layout. This type of DCO is used
not only to manage the FastResync maps, but also to manage DRL recovery maps
and special maps called copymaps that allow instant snapshot operations to resume
correctly following a system crash.

See “Dirty region logging” on page 88.

Each bit in a map represents a region (a contiguous number of blocks) in a volume’s
address space. A region represents the smallest portion of a volume for which
changes are recorded in a map. A write to a single byte of storage anywhere within
aregion is treated in the same way as a write to the entire region.

In Storage Foundation Cluster File System High Availability 6.0, the volume layout
of an instant snap DCO has been changed to improve the 1/O performance and
scalability of instant snapshots. The change in layout does not alter how you
administer instant snapshots. The only visible affect is in improved I/O performance
and in some cases, increased size of a DCO volume.

The layout of an instant snap DCO volume uses dynamic creation of maps on the
preallocated storage. The size of the DRL (Dirty region logging) map does not

depend on volume size. You can configure the size of the DRL by using the option
drlmapsz While creating the DCO volume. By default, the size of the DRL is 1MB.

For CVM configurations, each node has a dedicated DRL map that gets allocated
during the first write on that node. By default, the size of the DCO volume
accommodates 32 DRL maps, an accumulator, and 16 per-volume maps (including
a DRL recovery map, a detach map to track detached plexes, and the remaining
14 maps for tracking snapshots).

The size of the DCO plex can be estimated using the following formula:

DCO volume size = (32*drlmapsize + acmsize + l6*per-volume map size)
where:

acmsize = (volume size / (region size*4))

per-volume map size = (volume size/region size*8)

drlmapsize = 1M, by default

99



How Veritas Volume Manager works | 100
FastResync

For a 100GB volume, the size of the DCO volume with the default regionsize of
64KB is approximately 36 MB.

Create the DCOs for instant snapshots by using the vxsnap prepare command or
by specifying the options 1ogtype=dco dcoversion=20 while creating a volume
with the vxassist make command.

Version 0 DCO volume layout

The version 0 DCO volume layout supports only traditional (third-mirror) volume
snapshots that are administered using the vxassist command. Full-sized and
space-optimized instant snapshots are not supported with this DCO layout.

The size of each map can be changed by specifying the dcolen attribute to the
vxassist command when the volume is created. The default value of dcolen is
132 blocks (the plex contains 33 maps, each of length 4 blocks). To use a larger
map size, multiply the desired map size by 33 to calculate the value of dcolen. For
example, to use an 8-block map, specify dcolen=264. The maximum possible map
size is 64 blocks, which corresponds to a dcolen value of 2112 blocks.

The size of a DCO plex is rounded up to the nearest integer multiple of the disk
group alignment value. The alignment value is 8KB for disk groups that support the
Cross-platform Data Sharing (CDS) feature. Otherwise, the alignment value is 1
block.

Effect of growing a volume on the FastResync map

It is possible to grow the replica volume, or the original volume, and still use
FastResync. According to the DCO volume layout, growing the volume has the
following different effects on the map that FastResync uses to track changes to the
original volume:

» For an instant snap DCO volume, the size of the map is increased and the size
of the region that is tracked by each bit in the map stays the same.

n For a version 0 DCO volume, the size of the map remains the same and the
region size is increased.

In either case, the part of the map that corresponds to the grown area of the volume
is marked as “dirty” so that this area is resynchronized. The snapback operation
fails if it attempts to create an incomplete snapshot plex. In such cases, you must
grow the replica volume, or the original volume, before invoking any of the
commands vxsnap reattach, vxsnap restore, Of vxassist snapback. Growing
the two volumes separately can lead to a snapshot that shares physical disks with
another mirror in the volume. To prevent this, grow the volume after the snapback
command is complete.



How Veritas Volume Manager works
FastResync

See the vxsnap(1M) and the vxassist(1M) manual pages.

FastResync limitations

The following limitations apply to FastResync:

Persistent FastResync is supported for RAID-5 volumes, but this prevents the
use of the relayout or resize operations on the volume while a DCO is associated
with it.

Neither non-persistent nor persistent FastResync can be used to resynchronize
mirrors after a system crash. Dirty region logging (DRL), which can coexist with
FastResync, should be used for this purpose. In VxXVM 4.0 and later releases,
DRL logs may be stored in an instant snap DCO volume.

When a subdisk is relocated, the entire plex is marked “dirty” and a full
resynchronization becomes necessary.

If a snapshot volume is split off into another disk group, non-persistent
FastResync cannot be used to resynchronize the snapshot plexes with the
original volume when the disk group is rejoined with the original volume’s disk
group. Persistent FastResync must be used for this purpose.

If you move or split an original volume (on which persistent FastResync is
enabled) into another disk group, and then move or join it to a snapshot volume’s
disk group, you cannot use vxassist snapback to resynchronize traditional
snapshot plexes with the original volume. This restriction arises because a
snapshot volume references the original volume by its record ID at the time that
the snapshot volume was created. Moving the original volume to a different disk
group changes the volume’s record ID, and so breaks the association. However,
in such a case, you can use the vxplex snapback command with the -£ (force)
option to perform the snapback.

Note: This restriction only applies to traditional snapshots. It does not apply to
instant snapshots.

Any operation that changes the layout of a replica volume can mark the
FastResync change map for that snapshot “dirty” and require a full
resynchronization during snapback. Operations that cause this include subdisk
split, subdisk move, and online relayout of the replica. It is safe to perform these
operations after the snapshot is completed.

See the vxassist (1M) manual page.

See the vxplex (1M) manual page.

See the vxvol (1M) manual page.

101



How Veritas Volume Manager works | 102
Volume sets

Volume sets

Volume sets are an enhancement to Veritas Volume Manager (VxVM) that allow
several volumes to be represented by a single logical object. All I/O from and to
the underlying volumes is directed by way of the 1/O interfaces of the volume set.
Veritas File System (VxFS) uses volume sets to manage multi-volume file systems
and the SmartTier feature. This feature allows VxFS to make best use of the different
performance and availability characteristics of the underlying volumes. For example,
file system metadata can be stored on volumes with higher redundancy, and user
data on volumes with better performance.

See “Creating a volume set” on page 812.

How VxVM handles hardware clones or snapshots

Advanced disk arrays provide methods to create copies of physical volumes (disks
or LUNs) from the hardware side.

You can create a hardware snapshot (such as an EMC BCV™ or Hitachi
Shadowlmage™), a hardware mirror, or a hardware clone. You can also use dd or
a similar command to clone the disk content.

If the physical volumes are VxVM disks, using a hardware copy method also copies
the configuration data stored in the private region of the VxVM managed disk. The
hardware disk copy becomes a duplicate of the original VxVM disk. For VxVM to
handle the duplicated disk images correctly, VxXVM must distinguish between the
original and duplicate disk images.

VxVM detects that a disk is a hardware copy, to ensure that the duplicate disks are
not confused with the original disks. This functionality enables the server to import
a consistent set of disks. By default, VXVM imports the original physical volume but
VxVM also enables you to work with the hardware copies on the same server. VxXVM
provides special options to import a disk group with the cloned images and make
a cloned disk group with a unique identity. With care, you can manage multiple sets
of hardware copies, even from the same server.

See “Importing a disk group containing hardware cloned disks ” on page 1009.

VxVM provides the following functionality to handle hardware copies:



How Veritas Volume Manager works | 103
How VxVM handles hardware clones or shapshots

Functionality Description

Distinguishes between the hardware copy = VxVM discovers a unique disk identifier

and the original data disk. (UDID) for each disk from the attributes of the
hardware disk and stores this value. VxVM
compares the discovered UDID to the stored
value to detect if a disk is a hardware copy.

Prevents inadvertent sharing over the SAN By default, when you import a VxVM disk

of an original LUN and one or more of its group, VxVM prevents disks that are identified

point-in time copies, mirrors, or replicated as clones or copies from being imported. This

copies. behavior prevents mistakenly importing a mix
of original disks and hardware copies.

Imports the hardware copies as a clone disk [If you choose to import the hardware copies

group or as a new standard disk group. of the disks of a VxVM disk group, VxVM
identifies the disks as clone disks. You can
choose whether to maintain the clone disk
status or create a new standard disk group.

Detects the LUN class of the array. VxVM detects the extended attributes of the
array, including the LUN class. The LUN class
can help to identify which disks are hardware
copies of the VxVM disks.

Provides disk tagging to label and manage If you create multiple copies of the same set

sets of disks. of volumes, you as administrator need to
identify which disk copies make up a
consistent set of disks. You can use VxVM
disk tags to label the sets of disks. For
example, if you have multiple point in time
snapshots of the same LUN, you can label
each with a separate disk tag. Specify the tag
to the import operation to import the tagged
shapshot LUN.

How VxVM uses the unique disk identifier (UDID)

Veritas Volume Manager (VxVM) uses a unique disk identifier (UDID) to detect
hardware copies of the VxVM disks. Before using a physical volume, VxVM always
verifies whether the disk already has a UDID and whether that UDID matches the
expected value.

When you initialize a VxXVM disk, the Device Discovery Layer (DDL) of VxVM
determines the UDID from hardware attributes such as the vendor ID (vid), the
product ID (pid), the cabinet serial number, and the LUN serial number. VxVM
stores the UDID in the private region of the disk when VxVM first sees a disk that



How Veritas Volume Manager works | 104
Volume encryption

does not have a UDID, or when VxVM initializes the disk. The exact make-up of
the UDID depends on the array storage library (ASL). Future versions of VxVM may
use different formats for new arrays.

When VxVM discovers a disk with a UDID, VxVM compares the current UDID value
(the value determined from the hardware attributes) to the UDID that is already
stored on the disk. If the UDID values do not match between the UDID value
determined by the DDL and the on-disk UDID, VxVM sets the udid mismatch flag
for the disk.

The udid _mismatch flag generally indicates that the disk is a hardware copy of a
VxVM disk. The hardware copy has a copy of the VxVM private region of the original
disk, including the UDID. The UDID already stored in the VxVM private region
matches the attributes of the original hardware disk, but does not match the value
on the hardware disk that is the copy.

With the UDID matching feature, VXVM can prevent the situation where the
inconsistent set of disks is presented to the host. This functionality enables you to
import a disk group composed of LUN snapshots on the same host as the original
LUNs. When you import the disks identified with the udid mismatch flag, VXVM
sets the clone_disk flag on the disk. With care, multiple hardware images of the
original LUN can be simultaneously managed and imported on the same host as
the original LUN.

See “Importing a disk group containing hardware cloned disks ” on page 1009.

If a system only sees the copy (or clone) devices, you can remove the clone disk
flags. Only remove the clone disk flags if you are sure there is no risk. For example,
you must make sure that there are not two physical volumes that are copies of the
same base physical volume at different times.

If the udid mismatch flag is set incorrectly on a disk that is not a clone disk, you
can remove the udid mismatch flag and treat the disk as a standard disk.

See the Veritas InfoScale Troubleshooting Guide.

Volume encryption

VxVM provides advanced security for data at rest through encryption of VxVM data
volumes. Encryption is a technology that converts data or information into a code
that can be decrypted only by authorized users.

Veritas InfoScale supports encrypting data at rest and data encryption over wire.
It helps you to take regular backups of the encrypted volumes. See the Veritas
InfoScale™ 7.3.1 Replication Administrator's Guide

You can encrypt VxVM data volumes to:



How Veritas Volume Manager works
Volume encryption

s Protect sensitive data from unauthorized access

= Retire disks from use or ship them for replacement without the overhead of
secure wiping of content

The implementation uses the Advanced Encryption Standard (AES) cryptographic
algorithm with 256-bit key size validated by the Federal Information Processing
Standard (FIPS) Publication 140-2, (FIPS PUB 140-2) security standard.

You can encrypt volumes or disk groups in your storage environment. VxVM
generates a volume encryption key at the time of volume creation. The volume
encryption key is secured (wrapped) using a key wrap. The wrapped key is stored
with the volume record. The volume encryption key is not stored on disk.

You can secure the volume encryption key using one of the following methods:

Using Passphrases (PBE) See “Using passphrases for encryption” on page 109.

Using Key Management See “Using Key Management Server for encryption”
Server (KMS) on page 109.

Figure 3-28 describes the encryption process.

105



Figure 3-28 Encryption

Set the encryption attribute
when you create the volume.

Encrypted volume
encrypted=on

VxVM secures the encryption key using
one of two mechanisms: Passphrase or

Key Management Server.

Passphrase Key Management
Server

*kkkkkx

Option 1 Option 2

Kéy \Jvrab
$id
XTXX|XXT
$id

110010
101010
D100101

Wrapped key

How Veritas Volume Manager works | 106
Volume encryption

VxVM generates an
encryption key.

Volume
encryption key

VxVM stores the wrapped
key in the volume record.

110010
$/101010
D100101



How Veritas Volume Manager works
Volume encryption

If you encrypt a disk group, all volumes in the disk group are encrypted. Any volume
created later on the disk group will also be encrypted by default.

Only new volumes that are created using disk group version 220 or later can be
encrypted by VxVM.

When you start an encrypted volume, VxVM uses the key wrap to retrieve the
volume encryption key and enable access to the volume.

Figure 3-29 illustrates the decryption process.

107



How Veritas Volume Manager works | 108
Volume encryption

Figure 3-29 Decryption

VxVM retrieves the volume encryption key
Start the volume. using one of two mechanisms: Passphrase
# vxvol -g dg start volume or KMS

Key Management

o £ € »
NN = Y

XXXXXXX XXXXXXX Volume
encryption key

‘ User accesses the encrypted volume.

“Hello World” Encrypted
volumes

I

2e33a2v522j 32f34dfaStvqg
(Encrypted text) il (Encrypted text)

The following capabilities are not supported by VxVM encryption:
= Encryption of root and swap volumes
= Encryption of volumes that use RAID-5 layout

= Encryption of existing volumes



How Veritas Volume Manager works | 109
Volume encryption

= Linked break-off snapshots

Using passphrases for encryption

When you encrypt a volume, VxVM generates a volume encryption key. The volume
encryption key needs to be secured using a key wrap. If you choose to use the
passphrase mechanism, VxVM prompts for a passphrase, then uses a hash
algorithm to derive the key wrap from the specified passphrase. No additional
hardware or software is required to use this mechanism. The passphrase must be
randomly generated and must have high entropy.

Volumes that are encrypted using passphrases must be manually started whenever
the system boots up or is restarted. This is because the volume prompts for
authentication when the system starts. However, you can enable automated startup
for encrypted volumes by providing the required passphrases in a file.

Passphrase-based encryption is suitable for environments that do not depend
heavily on automated configurations.

Using Key Management Server for encryption

VxVM supports the use of a Key Management Server (KMS) that conforms to the
OASIS Key Management Interoperability Protocol (KMIP) specification.

During creation of encrypted volumes:

= VXVM sends a key generation request to the configured KMS using the KMIP
protocol.

= KMS responds with a unique identifier. VxXVM sends the identifier to KMS to
obtain the key generated by KMS.

=  KMS responds with the key; VxVM generates the random volume encryption
key, and encrypts it using the key provided by KMS.

= VXVM stores the encrypted key and the KMS identifier in the volume record.
During startup of encrypted volumes:

= VXxVM retrieves the encrypted key and the KMS identifier from the volume record.
= VXVM sends the identifier to KMS to obtain the key.

= KMS responds with the key; VxVM decrypts the encrypted key (stored in the
volume record) with the key provided by KMS.

KMS-based encryption is suitable for environments that support high availability
and automated configurations.

With a Key Management Server, you can:



How Veritas Volume Manager works | 110
Volume encryption

= Eliminate the need to remember complex passphrases
= Back up or replicate keys for disaster recovery

VxVM supports Key Management Servers that conform to the OASIS KMIP
specification.

VxVM configures the server using the configuration information in the file
/etc/vx/enc-kms-kmip.conf located on the KMIP client.

See “Configuring a Key Management Server” on page 249.

Recommendations for encryption

Itis recommended to use CPUs designed to support Advanced Encryption Standard
Instruction Set (or the Intel Advanced Encryption Standard New Instructions (AES-NI)
to improve performance.

You can use the following command to verify whether or not the processor supports
encryption acceleration:

$ grep -o aes /proc/cpuinfo
aes
aes
aes

aes

If the command does not produce any output, the processor does not support
encryption acceleration.



How Veritas File System
works

This chapter includes the following topics:
= Veritas File System features
= Veritas File System performance enhancements

= Using Veritas File System

Veritas File System features

Table 4-1 lists the Veritas File System (VxFS) features.

The below mentioned table lists the Veritas File System (VxFS) features. The
description provided in the table also mentions if the feature is supported for

SFCFSHA or not.
Table 4-1 Veritas File System features

Feature Description

Access Control Lists An Access Control List (ACL) stores a series of entries that

identify specific users or groups and their access privileges for
a directory or file. A file may have its own ACL or may share an
ACL with other files. ACLs have the advantage of specifying
detailed access permissions for multiple users and groups.

On Linux, ACLs are supported on cluster file systems.
This feature is supported in SFCFSHA.

See the getfacl(1) and setfacl(1) manual pages.




How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Cache advisories

Cache advisories are set with the mount command on individual
file systems, but are not propagated to other nodes of a cluster.

Caching advisories are not set only with the mount command.
Caching advisories can be set on per file basis (using
VX_SETCACHE ioctl).

See “About Veritas File System I/0” on page 623.

Commands that depend on
file access times

File access times may appear different across nodes because
the atime file attribute is not closely synchronized in a cluster
file system. So utilities that depend on checking access times

may not function reliably.

Cross-platform data
sharing

Cross-platform data sharing (CDS) allows data to be serially
shared among heterogeneous systems where each system has
direct access to the physical devices that hold the data. This
feature can be used only in conjunction with Veritas Volume
Manager (VxVM).

This feature is supported in SFCFSHA.

See the Veritas InfoScale Solutions Guide.

Data deduplication

You can perform post-process periodic deduplication in a file
system to eliminate duplicate data without any continuous cost.
You can verify whether data is duplicated on demand, and then
efficiently and securely eliminate the duplicates. This feature is
available with both Veritas InfoScale Storage and Veritas
InfoScale Enterprise licenses.

This feature is supported in SFCFSHA.

See “About deduplicating data” on page 929.

Defragmentation

You can perform defragmentation to remove unused space from
directories, make all small files contiguous, and consolidate free
blocks for file system use.

This feature is supported in SFCFSHA.

See “About defragmentation” on page 126.

112



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Enhanced data integrity
modes

VXFS has the following mount command options to enable the
enhanced data integrity modes:

m Dblkclear

See “blkclear mount option” on page 264.
m closesync

See “mincache mount option” on page 264.
n log

See “log mount option” on page 262.

This feature is supported in SFCFSHA.

Enhanced performance
mode

The default VxFS logging mode, mount -o delaylog,
increases performance by delaying the logging of some
structural changes. However, delaylog does not provide the
equivalent data integrity as the enhanced data integrity modes
because recent changes may be lost during a system failure.
This option provides at least the same level of data accuracy
that traditional UNIX file systems provide for system failures,
along with fast file system recovery.

See the mount vxfs(1M) manual page.

See “delaylog mount option” on page 262.

Enhanced security

This is feature is available for RHEL 7.6 and later only. RHEL
provides user-level security functionalities and features for file
systems. These security functionalities can be availed if you
enable SELinux at the OS-level.

See the mount_vxfs.1m manpage

Extent attributes

VxFS allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application
interface that allows programs to control various aspects of the
extent allocation for a given file. The extent allocation policies
associated with a file are referred to as extent attributes.

This feature is supported in SFCFSHA.

See “About extent attributes” on page 279.

113



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Extent-based allocation

An extent is a contiguous area of storage in a computer file
system, reserved for a file. When starting to write to a file, a
whole extent is allocated. When writing to the file again, the
data continues where the previous write left off. This reduces
or eliminates file fragmentation. An extent is presented as an
address-length pair, which identifies the starting block address
and the length of the extent (in file system or logical blocks).
Since VxFS is an extent-based file system, addressing is done
through extents (which can consist of multiple blocks) rather
than in single-block segments. Extents can therefore enhance
file system throughput.

This feature is supported in SFCFSHA.

See “About extents” on page 38.

Extended mount options

The VxFS file system provides the following enhancements to
the mount command:

= Enhanced data integrity modes
» Enhanced performance mode
s Temporary file system mode

= Improved synchronous writes
= Support for large file sizes

This feature is supported in SFCFSHA.

See “Mounting a VxFS file system” on page 259.

Fast file system recovery

Most file systems rely on full structural verification by the fsck
utility as the only means to recover from a system failure. For
large disk configurations, this involves a time-consuming process
of checking the entire structure, verifying that the file system is
intact, and correcting any inconsistencies. VxFS provides fast
recovery with the VxFS intent log and VxFS intent log resizing
features.

This feature is supported in SFCFSHA.

See “About the Veritas File System intent log” on page 37.

114



Table 4-1

How Veritas File System works
Veritas File System features

Veritas File System features (continued)

Feature

Description

File Change Log

The VxFS File Change Log (FCL) tracks changes to files and
directories in a file system. The File Change Log can be used
by applications such as backup products, webcrawlers, search
and indexing engines, and replication software that typically
scan an entire file system searching for modifications since a
previous scan. FCL functionality is available on all the four
Veritas InfoScale licenses: Veritas InfoScale™ Storage, Veritas
InfoScale™ Availability, Veritas InfoScale™ Foundation, and
Veritas InfoScale™ Enterprise .

This feature is supported in SFCFSHA.
See “About Veritas File System File Change Log” on page 1107.

File compression

Compressing files reduces the space used by files, while
retaining the accessibility of the files and being transparent to
applications. Compressed files look and behave almost exactly
like uncompressed files: the compressed files have the same
name, and can be read and written as with uncompressed files.
Reads cause data to be uncompressed in memory, only; the
on-disk copy of the file remains compressed. In contrast, after
a write, the new data is uncompressed on disk.

This feature is supported in SFCFSHA.

See “About compressing files” on page 941.

File replication

You can perform cost-effective periodic replication of data over
IP networks, giving organizations an extremely flexibile storage
independent data availability solution for disaster recovery and
off-host processing.

This feature is supported in SFCFSHA.

See the Veritas InfoScale Replication Administrator's Guide..

115



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

File system snapshots

VxFS provides online data backup using the snapshot feature.
An image of a mounted file system instantly becomes an exact
read-only copy of the file system at a specific point in time. The
original file system is called the snapped file system, while the
copy is called the snapshot.

When changes are made to the snapped file system, the old
data is copied to the snapshot. When the snapshot is read, data
that has not changed is read from the snapped file system,
changed data is read from the snapshot.

Backups require one of the following methods:

= Copying selected files from the snapshot file system (using
find and cpio)

= Backing up the entire file system (using fscat)

= Initiating a full or incremental backup (using vxdump)

This feature is supported in SFCFSHA.

See “About snapshot file systems” on page 682.

FileSnaps

A FileSnap is a space-optimized copy of a file in the same name
space, stored in the same file system. VxFS supports FileSnaps
on file systems with disk layout Version 8 or later.

This feature is supported in SFCFSHA.
See “About FileSnaps” on page 679.

Freezing and thawing file
systems

Freezing a file system is a necessary step for obtaining a stable
and consistent image of the file system at the volume level.
Consistent volume-level file system images can be obtained
and used with a file system snapshot tool.

This feature is supported in SFCFSHA. Synchronizing
operations, which require freezing and thawing file systems,
are done on a cluster-wide basis.

See “Freezing and thawing a file system” on page 627.

116



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Improved synchronous
writes

VXFS provides superior performance for synchronous write
applications. The mount -o datainlog option greatly
improves the performance of small synchronous writes.

The mount -o convosync=dsync option improves the
performance of applications that require synchronous data writes
but not synchronous inode time updates.

See the mount vxfs(1M) manual page.

Warning: The use of the -0 convosync=dsync option
violates POSIX semantics.

See “convosync mount option” on page 265.

Locking

For the F_GETLK command, if there is a process holding a
conflicting lock, the 1 _pid field returns the process ID of the
process holding the conflicting lock. The nodeid-to-node name
translation can be done by examining the /etc/11thosts file
or with the £sclustadm command.

This feature is supported in SFCFSHA except for mandatory
locking, and deadlock detection supported by traditional fcnt1
locks.

See the fcnt1(2) manual page.

17



How Veritas File System works | 118
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

maxlink support

Added support for more than 64K sub-directories. If max1ink
is disabled on a file system, the sub-directory limit will be 32K
by default. If max1ink is enabled on a file system, this allows
you to create up to 4294967295(2"32 — 1) sub-directories.

By default max1ink is enabled.

To enable the max1ink option at mkfs time. For example:

# mkfs -t vxfs -o maxlink /dev/vx/rdsk/testdg/voll
To disable the max1ink option at mkfs time. For example:

# mkfs -t vxfs -o nomaxlink /dev/vx/rdsk/testdg/voll

To enable the max1ink option through the £sadm command
on a mounted files system. For example:

# fsadm -t vxfs -o maxlink /mntl

To disable the max1ink option through the fsadm command
on a mounted file system. For example:

# fsadm -t vxfs -o nomaxlink /mntl

Seethemkfs vxfs(1M)and fsadm vxfs(1M)manual pages.

Memory mapping

You can use the mmap() function to establish shared memory
mapping.
This feature is supported in SFCFSHA.

See the mmap(2) manual page.

Multi-volume file systems

The multi-volume file system (MVFS) feature allows several
volumes to be represented by a single logical object. All I/0 to
and from an underlying logical volume is directed by way of
volume sets. You can create a single VxFS file system on this
multi-volume set. This feature can be used only in conjunction
with VxVM. MVFS functionality is available on all the four Veritas
InfoScale licenses: Veritas InfoScale™ Storage, Veritas
InfoScale™ Availability, Veritas InfoScale™ Foundation, and
Veritas InfoScale™ Enterprise.

See “About multi-volume file systems” on page 819.




How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Nested Mounts

You can use a directory on a cluster mounted or local mounted
file system as a mount point for a local file system or another
cluster file system.

This feature is supported in SFCFSHA.

NFS mounts

You export the NFS file systems from the cluster. You can NFS
export CFS file systems in a distributed highly available way.

This feature is supported in SFCFSHA.

Partitioned directories

Parallel threads that access a large volume and perform access
and updates on a directory that commonly exist in a file system,
suffer from an exponentially longer wait time for the threads.

This feature creates partitioned directories to improve the
directory performance of file systems. When any directory
crosses the tunable threshold, this feature takes an exclusive
lock on the directory inode and redistributes the entries into
various respective hash directories. These hash directories are
not visible in the name-space view of the user or operating
system. For every new create, delete, or lookup thread, this
feature performs a lookup for the respective hashed directory
(depending on the target name) and performs the operation in
that directory. This leaves the parent directory inode and its
other hash directories unobstructed for access, which vastly
improves file system performance.

This feature operates only on disk layout Version 8 or later file
systems.

This feature is supported in SFCFSHA.
See “Partitioned directories” on page 1120.

See the vxtunefs(1M)and £sadm vxfs(1M) manual pages.

119



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)
Feature Description
Quotas VxFS supports quotas, which allocate per-user and per-group

quotas and limit the use of two principal resources: files and
data blocks. You can assign quotas for each of these resources.
Each quota consists of two limits for each resource: hard limit
and soft limit.

The hard limit represents an absolute limit on data blocks or
files. A user can never exceed the hard limit under any
circumstances.

The soft limit is lower than the hard limit and can be exceeded
for a limited amount of time. This allows users to exceed limits
temporarily as long as they fall under those limits before the
allotted time expires.

This feature is supported in SFCFSHA.

See “About Veritas File System quota limits” on page 1099.

Reverse path name lookup

The reverse path name lookup feature obtains the full path
name of a file or directory from the inode number of that file or
directory. The reverse path name lookup feature can be useful
for a variety of applications, such as for clients of the VxFS File
Change Log feature, in backup and restore utilities, and for
replication products. Typically, these applications store
information by inode numbers because a path name for a file
or directory can be very long, thus the need for an easy method
of obtaining a path name.

This feature is supported in SFCFSHA.

See “About reverse path name lookup” on page 1116.

120



Table 4-1

How Veritas File System works
Veritas File System features

Veritas File System features (continued)

Feature

Description

SmartlO

The SmartlO feature of Storage Foundation and High Availability
Solutions (SFHA Solutions) enables data efficiency on SSDs
or other supported devices through I/O caching. Using SmartlO
to improve efficiency, you can optimize the cost per IOPS.
SmartlO uses advanced, customizable heuristics to determine
what data to cache and how that data gets removed from the
cache. The heuristics take advantage of SFHA Solutions'
knowledge of the characteristics of the workload.

SmartlO uses a cache area on the target device or devices.
The cache area is the storage space that SmartlO uses to store
the cached data and the metadata about the cached data. The
type of the cache area determines whether it supports VxFS
caching or VxVM caching.

This feature is supported in SFCFSHA.

See the Veritas InfoScale SmartlO for Solid State Drives
Solutions Guide.

SmartTier

The SmartTier option is built on a multi-volume file system.
Using SmartTier, you can map more than one volume to a single
file system. You can then configure policies that automatically
relocate files from one volume to another, or relocate files by
running file relocation commands. Having multiple volumes lets
you determine where files are located, which can improve
performance for applications that access specific types of files.
SmartTier functionality is available with both Veritas InfoScale
Storage and Veritas InfoScale Enterprise licenses.

Note: In the previous VxFS 5.x releases, SmartTier was known
as Dynamic Storage Tiering.

This feature is supported in SFCFSHA.
See “About SmartTier” on page 835.

121



How Veritas File System works
Veritas File System features

Table 4-1 Veritas File System features (continued)

Feature

Description

Storage Checkpoints

To increase availability, recoverability, and performance, VxFS
offers on-disk and online backup and restore capabilities that
facilitate frequent and efficient backup strategies. Backup and
restore applications can leverage a Storage Checkpoint, a disk-
and I/O-efficient copying technology for creating periodic frozen
images of a file system. Storage Checkpoints present a view
of a file system at a point in time, and subsequently identifies
and maintains copies of the original file system blocks. Instead
of using a disk-based mirroring method, Storage Checkpoints
save disk space and significantly reduce 1/O overhead by using
the free space pool available to a file system.

Storage Checkpoint functionality is available with both Veritas
InfoScale Storage and Veritas InfoScale Enterprise licenses.

This feature is supported in SFCFSHA.

See “About Storage Checkpoints” on page 741.

Support for large files and
large file systems

VxFS supports files larger than two gigabytes and large file
systems up to 256 terabytes.

Warning: Some applications and utilities might not work on
large files.

See “largefiles and nolargefiles mount options” on page 268.

Swap files

Swap files are not supported on cluster-mounted file systems.

Temporary file system
mode

On most UNIX systems, temporary file system directories, such
as /tmp and /usr/tmp, often hold files that do not need to be
retained when the system reboots. The underlying file system
does not need to maintain a high degree of structural integrity
for these temporary directories. VxFS provides the mount -o
tmplog option, which allows the user to achieve higher
performance on temporary file systems by delaying the logging
of most operations.

See the mount vxfs(1M) manual page.

See “tmplog mount option” on page 263.

Thin Reclamation

The Thin Reclamation feature allows you to release free data
blocks of a VxFS file system to the free storage pool of a Thin
Storage LUN. This feature is only supported on file systems
created on a VxVM volume.

See “About Thin Reclamation of a file system” on page 787.

122



Veritas File System performance enhancements

Traditional file systems employ block-based allocation schemes that provide
adequate random access and latency for small files, but limit throughput for larger
files. As a result, they are less than optimal for commercial environments.

Veritas File System (VxFS) addresses this file system performance issue through
an alternative allocation method and increased user control over allocation, 1/O,

How Veritas File System works
Veritas File System performance enhancements

and caching policies.

See “Using Veritas File System” on page 125.

VxFS provides the following performance enhancements:

Data synchronous 1/0
See “Data synchronous 1/0” on page 625.

Direct I/O and discovered direct I/0
See “Direct I/0” on page 624.
See “Discovered Direct I/O” on page 625.

Delayed allocation for extending writes
See “Delayed allocation for extending writes” on page 125.

Enhanced 1/O performance
See “Enhanced I/O performance” on page 124.

Caching advisories
See “Cache advisories” on page 627.

Enhanced directory features

Explicit file alignment, extent size, and preallocation controls
See “Extent attribute alignment” on page 282.

See “Fixed extent size” on page 280.

See “Reservation: preallocating space to a file” on page 280.

Tunable I/O parameters
See “Tuning the VxFS file system” on page 1119.

Integration with Veritas Volume Manager (VxVM)
See “About Veritas Volume Manager” on page 35.

Support for large directories

Note: VxFS reduces the file lookup time in directories with an extremely large

number of files.

Partitioned directories

123



How Veritas File System works | 124
Veritas File System performance enhancements

See the vxtunefs(1M) and fsadm vxfs(1M) manual pages.

Enhanced I/O performance

Veritas File System (VxFS) provides enhanced I/O performance by applying an
aggressive I/O clustering policy, integrating with Veritas Volume Manager (VxVM),
and allowing application-specific parameters to be set on a per-file system basis.

See “Enhanced I/O clustering” on page 124.

See “Veritas Volume Manager integration with Veritas File System for enhanced
I/O performance” on page 124.

See “Application-specific parameters for enhanced I/O performance” on page 124.

Enhanced /O clustering

I/0 clustering is a technique of grouping multiple 1/O operations together forimproved
performance. Veritas File System (VxFS) I/O policies provide more aggressive
clustering processes than other file systems and offer higher I/O throughput when
using large files. The resulting performance is comparable to that provided by raw
disk.

Veritas Volume Manager integration with Veritas File
System for enhanced 1/O performance

Veritas File System (VxFS) interfaces with Veritas Volume Manager (VxVM) to
determine the 1/0 characteristics of the underlying volume and perform 1/0
accordingly. VxFS also uses this information when using mkfs to perform proper
allocation unit alignments for efficient I/O operations from the kernel.

As part of VXFS/VxVM integration, VxXVM exports a set of I/O parameters to achieve
better I/0 performance. This interface can enhance performance for different volume
configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes
are important in a RAID-5 volume for strong I/O performance. VXFS uses these
parameters to issue appropriate 1/0 requests to VxVM.

Application-specific parameters for enhanced 1/0
performance

You can set application specific parameters on a per-file system basis to improve
I/O performance.

= Discovered Direct I/O
All sizes above this value would be performed as direct 1/0.

= Maximum Direct I/O Size



How Veritas File System works | 125
Using Veritas File System

This value defines the maximum size of a single direct 1/O.

See the vxtunefs(1M) and tunefstab(4) manual pages.

Delayed allocation for extending writes

Delayed allocation skips the allocations for extending writes and completes the
allocations in a background thread. With this approach, Veritas File System (VxFS)
performs a smaller number of large allocations instead of performing a large number
of small allocations, which reduces the file system’s fragmentation. Fast-moving
temporary files do not have blocks allocated and thus do not add to the file system’s
fragmentation.

When a file is appended, the allocation to the file is skipped and the file is added
to the delayed allocation list. The range for which the allocation is skipped is recorded
in the inode. The write() system call returns immediately after the user pages are
copied to the page cache. The actual allocations to the file occur when the scheduler
thread picks the file for allocation. If the file is truncated or removed, allocations are
not required.

Delayed allocation is disabled by default. Delayed allocation is not dependent on
the file system disk layout version. This feature does not require any mount options.
You can enable this feature by using the vxtunefs command. You can display the
delayed allocation range in the file by using the fsmap command.

See the vxtunefs(1M) and fsmap(1M) manual pages.

For instances where the file data must be written to the disk immediately, delayed
allocation is disabled on the file. The following are the examples of such instances:
direct I/O, concurrent /0, FDD/ODM access, and synchronous I/O. Delayed
allocation is not supported on memory-mapped files and BSD quotas. When BSD
quotas are enabled on a file system, delayed allocation is turned off automatically
for that file system.

Using Veritas File System

The following list contains the main methods to use, manage, modify, and tune
VXFS:

= Online system administration

= Application program interface



How Veritas File System works | 126
Using Veritas File System

Online system administration

Veritas File System (VxFS) provides command line interface (CLI) operations that
are described throughout this guide and in manual pages.

VxFS allows you to run a number of administration tasks while the file system is
online. Two of the more important tasks include:

= About defragmentation

= About file system resizing

About defragmentation

Free resources are initially aligned and allocated to files in an order that provides
optimal performance. On an active file system, the original order of free resources
is lost over time as files are created, removed, and resized. The file system is spread
farther along the disk, leaving unused gaps or fragments between areas that are
in use. This process is known as fragmentation and leads to degraded performance
because the file system has fewer options when assigning a free extent to a file (a
group of contiguous data blocks).

VxFS provides the online administration utility £sadm to resolve the problem of
fragmentation.

The fsadm utility defragments a mounted file system by performing the following
actions:

= Removing unused space from directories

= Making all small files contiguous

= Consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron job.

See the fsadm vxfs (1M) manual page.

About file system resizing

A file system is assigned a specific size as soon as it is created; the file system
may become too small or too large as changes in file system usage take place over
time.

VxFS is capable of increasing or decreasing the file system size while in use. Many
competing file systems can not do this. The VxFS utility £sadm can expand or shrink
a file system without unmounting the file system or interrupting user productivity.
However, to expand a file system, the underlying device on which it is mounted
must be expandable.



How Veritas File System works | 127
Using Veritas File System

VxVM facilitates expansion using virtual disks that can be increased in size while
in use. The VxFS and VxVM components complement each other to provide online
expansion capability. Use the vxresize command when resizing both the volume
and the file system. The vxresize command guarantees that the file system shrinks
or grows along with the volume. You can also use the the vxassist command
combined with the £sadm command for this purpose; however, Veritas recommends
that you use the vxresize command instead.

See the vxresize(1M) manual page.

See “Growing the existing storage by adding a new LUN” on page 211.

Application program interface

Veritas File System Developer's Kit (SDK) provides developers with the information
necessary to use the application programming interfaces (APIls) to modify and tune
various features and components of Veritas File System (VxFS).

See the Veritas File System Programmer's Reference Guide.

VxFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems can take
advantage of VxFS enhancements.

Expanded application facilities

Veritas File System (VxFS) provides API functions frequently associated with
commercial applications that make it possible to perform the following actions:

» Preallocate space for a file

» Specify a fixed extent size for a file

» Bypass the system buffer cache for file /0

» Specify the expected access pattern for a file

Because these functions are provided using VxFS-specific IOCTL system calls,
most existing UNIX system applications do not use them. For portability reasons,
these applications must check which file system type they are using before using
these functions.



How Storage Foundation
Cluster File System High
Availability works

This chapter includes the following topics:

How Storage Foundation Cluster File System High Availability works

When to use Storage Foundation Cluster File System High Availability

About Storage Foundation Cluster File System High Availability architecture
About Veritas File System features supported in cluster file systems

About Cluster Server architecture

About the Storage Foundation Cluster File System High Availability namespace
About asymmetric mounts

About primary and secondary cluster nodes

Determining or moving primaryship

About synchronizing time on Cluster File Systems

About file system tunables

About setting the number of parallel fsck threads

Storage Checkpoints

About Storage Foundation Cluster File System High Availability backup strategies

About parallel 1/0



How Storage Foundation Cluster File System High Availability works
How Storage Foundation Cluster File System High Availability works

About the 1/0 error handling policy for Cluster Volume Manager
About recovering from I/O failures

About single network link and reliability

Split-brain and jeopardy handling

About I/O fencing

Storage Foundation Cluster File System High Availability and Veritas Volume
Manager cluster functionality agents

Veritas Volume Manager cluster functionality

How Storage Foundation Cluster File System High
Availability works

Storage Foundation Cluster File System High Availability (SFCFSHA) simplifies or
eliminates system administration tasks that result from the following:

The SFCFSHA single file system image administrative model simplifies
administration by enabling the execution of all file system management
commands from any node.

Because all servers in a cluster have access to SFCFSHA cluster-shareable
file systems, keeping data consistent across multiple servers is automatic. All
cluster nodes have access to the same data, and all data is accessible by all
servers using single server file system semantics.

Because all files can be accessed by all servers, applications can be allocated
to servers to balance load or meet other operational requirements. Similarly,
failover becomes more flexible because it is not constrained by data accessibility.

Because each SFCFSHA file system can be on any node in the cluster, the file
system recovery portion of failover time in an n-node cluster can be reduced by
a factor of n by distributing the file systems uniformly across cluster nodes.

Enterprise RAID subsystems can be used more effectively because all of their
capacity can be mounted by all servers, and allocated by using administrative
operations instead of hardware reconfigurations.

Larger volumes with wider striping improve application 1/0 load balancing. Not
only is the 1/0 load of each server spread across storage resources, but with
SFCFSHA shared file systems, the loads of all servers are balanced against
each other.

129



How Storage Foundation Cluster File System High Availability works | 130
When to use Storage Foundation Cluster File System High Availability

» Extending clusters by adding servers is easier because each new server’s
storage configuration does not need to be set up—new servers simply adopt
the cluster-wide volume and file system configuration.

= The clusterized Oracle Disk Manager (ODM) feature that makes file-based
databases perform as well as raw partition-based databases is available to
applications running in a cluster.

When to use Storage Foundation Cluster File
System High Availability

You should use SFCFSHA for any application that requires the sharing of files such
as for home directories, boot server files, Web pages, and cluster-ready applications.
SFCFSHA is also applicable when you want highly available standby data, in
predominantly read-only environments where you just need to access data, or when
you do not want to rely on NFS for file sharing.

Almost all applications can benefit from SFCFSHA. For example, applications that
are not “cluster-aware,” can still operate on and access data from anywhere in a
cluster. If multiple cluster applications running on different servers are accessing
data in a cluster file system, overall system 1/O performance improves due to the
load balancing effect of having one cluster file system on a separate underlying
volume. This is automatic; no tuning or other administrative action is required.

Many applications consist of multiple concurrent threads of execution that could
run on different servers if they had a way to coordinate their data accesses.
SFCFSHA provides this coordination. Such applications can be made cluster-aware
allowing their instances to cooperate to balance client and data access load, and
thereby scale beyond the capacity of any single server. In such applications,
SFCFSHA provides shared data access, enabling application-level load balancing
across cluster nodes.

SFCFSHA provides the following features:

= Forsingle-host applications that must be continuously available, SFCFSHA can
reduce application failover time because it provides an already-running file
system environment in which an application can restart after a server failure.

= For parallel applications, such as distributed database management systems
and Web servers, SFCFSHA provides shared data to all application instances
concurrently. SFCFSHA also allows these applications to grow by the addition
of servers, and improves their availability by enabling them to redistribute load
in the event of server failure simply by reassigning network addresses.



How Storage Foundation Cluster File System High Availability works
About Storage Foundation Cluster File System High Availability architecture

= For workflow applications, such as video production, in which very large files
are passed from station to station, SFCFSHA eliminates time consuming and
error prone data copying by making files available at all stations.

= For backup, SFCFSHA can reduce the impact on operations by running on a
separate server, accessing data in cluster-shareable file systems.

The following are examples of applications and how they might work with SFCFSHA:

= Using Storage Foundation Cluster File System High Availability on file servers
Two or more servers connected in a cluster configuration (that is, connected to
the same clients and the same storage) serve separate file systems. If one of
the servers fails, the other recognizes the failure, recovers, assumes the
primaryship, and begins responding to clients using the failed server’s IP
addresses.

= Using Storage Foundation Cluster File System High Availability on Web servers
Web servers are particularly suitable to shared clustering because their
application is typically read-only. Moreover, with a client load balancing front
end, a Web server cluster’s capacity can be expanded by adding a server and
another copy of the site. A SFCFSHA-based cluster greatly simplifies scaling
and administration for this type of application.

About Storage Foundation Cluster File System
High Availability architecture

Storage Foundation Cluster File System High Availability (SFCFSHA) allows
clustered servers to mount and use a file system simultaneously as if all applications
using the file system were running on the same server. The Veritas Volume Manager
cluster functionality (CVM) makes logical volumes and raw device applications
accessible throughout a cluster.

This section includes the following topics:
= About the symmetric architecture
= About SFCFSHA primary/secondary failover

= About single-host file system semantics using Group Lock Manager

About the symmetric architecture

SFCFSHA uses a symmetric architecture in which all nodes in the cluster can
simultaneously function as metadata servers. SFCFSHA still has some remnants
of the old master/slave or primary/secondary concept. The first server to mount
each cluster file system becomes its primary; all other nodes in the cluster become

131



How Storage Foundation Cluster File System High Availability works | 132
About Veritas File System features supported in cluster file systems

secondaries. Applications access the user data in files directly from the server on
which they are running. Each SFCFSHA node has its own intent log. File system
operations, such as allocating or deleting files, can originate from any node in the
cluster.

See “About the Veritas File System intent log” on page 37.

About Storage Foundation Cluster File System High Availability
primary/secondary failover

If the server on which the SFCFSHA primary is running fails, the remaining cluster
nodes elect a new primary. The new primary reads the intent log of the old primary
and completes any metadata updates that were in process at the time of the failure.

If a server on which an SFCFSHA secondary is running fails, the primary reads the
intent log of the failed secondary and completes any metadata updates that were
in process at the time of the failure.

See “When the CFS primary node fails” on page 414.

About single-host file system semantics using Group Lock Manager

SFCFSHA uses the Veritas Group Lock Manager (GLM) to reproduce UNIX
single-host file system semantics in clusters. This is most important in write behavior.
UNIX file systems make writes appear to be atomic. This means that when an
application writes a stream of data to a file, any subsequent application that reads
from the same area of the file retrieves the new data, even if it has been cached
by the file system and not yet written to disk. Applications can never retrieve stale
data, or partial results from a previous write.

To reproduce single-host write semantics, system caches must be kept coherent
and each must instantly reflect any updates to cached data, regardless of the cluster
node from which they originate. GLM locks a file so that no other node in the cluster
can update it simultaneously, or read it before the update is complete.

About Veritas File System features supported in
cluster file systems

Storage Foundation Cluster File System High Availability is based on Veritas File
System (VxFS).

Most of the major features of VxFS local file systems are available on cluster file
systems, including the following features:

= Extent-based space management that maps files up to one terabyte in size



How Storage Foundation Cluster File System High Availability works | 133
About Cluster Server architecture

= Fastrecovery from system crashes using the intent log to track recent file system
metadata updates

= Online administration that allows file systems to be extended and defragmented
while they are in use

Every VxFS manual page has a section on "Storage Foundation Cluster File System
High Availability Issues" with information on whether the command functions on a
cluster-mounted file system and indicates any difference in behavior from local
mounted file systems.

See “Veritas File System features” on page 111.

Veritas File System features not in cluster file systems

Table 5-1 lists functionality that is not supported in a cluster file system. You can
attempt to use the listed functionality, but there is no guarantee that the functionality
will operate as intended.

It is not advisable to use unsupported functionality on SFCFSHA, or to alternate
mounting file systems with these options as local and cluster mounts.

Table 5-1 Veritas File System features not supported in cluster file systems

Unsupported Comments

features

glog Quick log is not supported.

Swap files Swap files are not supported on cluster-mounted file systems.
mknod The mknod command cannot be used to create devices on a cluster

mounted file system.

Cache advisories | Cache advisories are set with the mount command on individual file
systems, but are not propagated to other nodes of a cluster.

Commands that File access times may appear different across nodes because the

depend on file atime file attribute is not closely synchronized in a cluster file system.
access times So utilities that depend on checking access times may not function
reliably.

About Cluster Server architecture

The Group Membership and Atomic Broadcast (GAB) and Low Latency Transport
(LLT) are Cluster Server (VCS)-specific protocols implemented directly on Ethernet



How Storage Foundation Cluster File System High Availability works | 134
About Cluster Server architecture

data link. They run on redundant data links that connect the nodes in a cluster. VCS
requires redundant cluster communication links to avoid single points of failure.

GAB provides membership and messaging for the cluster and its applications. GAB
membership also provides orderly startup and shutdown of a cluster. The
/etc/gabtab file is used to configure GAB. This file contains the gabconfig
command run by GAB on startup. For example, the -n <number> option of the
command specifies the number of nodes in the cluster. GAB is configured
automatically when you run the SFCFSHA installation script, but you may have to
reconfigure GAB when adding nodes to a cluster.

See the gabconfig(1M) manual page.

LLT provides kernel-to-kernel communications and monitors network
communications. The LLT/etc/11thosts and /etc/11ttab files are configured to
set system IDs within a cluster, set cluster IDs for multiple clusters, and tune network
parameters such as heartbeat frequency. LLT is implemented so that cluster
membership changes are reflected quickly, which in turn enables fast responses.

As with GAB, LLT is configured automatically when you run the VCS installation
script. The /etc/11ttab and /etc/11thosts files contain information you provide
during installation. You may also have to reconfigure LLT when adding nodes to a
cluster.

See the 11ttab(4) and the 11thosts(4) manual pages.
See the Cluster Server Administrator’s Guide.

Each component in SFCFSHA registers with a GAB membership port. The port
membership identifies nodes that have formed a cluster for the individual
components.

Table 5-2 describes the port memberships.

Table 5-2 Port memberships
Port Description
port a GAB heartbeat membership
port b 1/0O fencing membership
portd Oracle Disk Manager (ODM) membership
port f Cluster file system membership
port h Cluster Server communication between GAB and High Availability
Daemon (HAD)




How Storage Foundation Cluster File System High Availability works | 135
About the Storage Foundation Cluster File System High Availability namespace

Table 5-2 Port memberships (continued)
Port Description
port m Group Lock Manager (GLM) communication for SmartlO VxVM cache
coherency.
port u Cluster Volume Manager (CVM) port for redirecting commands from

CVM slaves to CVM master

port v Cluster Volume Manager membership
porty Cluster Volume Manager (CVM) port for I/O shipping
port w Cluster Volume Manager daemons on different nodes communicate

with one another using this port, but receive cluster membership
information through GAB (port v)

About the Storage Foundation Cluster File System
High Availability namespace

The mount point name must remain the same for all nodes mounting the same
cluster file system. This is required for the CFSMount agent (online, offline, and
monitoring) to work correctly.

About asymmetric mounts

A Veritas File System (VxFS) file system mounted with the mount -o cluster
option is a cluster, or a shared mount, as opposed to a non-shared or a local mount.
A file system mounted in shared mode must be on a VxVM shared volume in a
cluster environment. A local mount cannot be remounted in shared mode, and a
shared mount cannot be remounted in local mode when you use the mount -o
remount option. A single clustered file system can be mounted with different
read/write options on different nodes. These are called asymmetric mounts.

Asymmetric mounts allow shared file systems to be mounted with different read/write
capabilities. For example, one node in the cluster can mount read-write, while other
nodes mount read-only.

When a primary mounts "ro", this means that neither this node nor any other node
is allowed to write to the file system. Secondaries can only mount "ro", if the primary
mounts "ro". Otherwise, the primary mounts either "rw" or "ro,crw", and the
secondaries have the same choice.



How Storage Foundation Cluster File System High Availability works | 136
About primary and secondary cluster nodes

You can specify the cluster read-write (crw) option when you first mount the file
system, or the options can be altered when doing a remount (mount -o remount).

Figure 5-1 shows the different modes in which the primary node and secondary
nodes can be mounted:

Figure 5-1 Primary and secondary mounts
Secondary
ro rw ro, crw
ro X
Primary rw X X

ro, crw X X

The check marks indicate the mode secondary mounts can use for a given mode
of the primary.

Mounting the primary with only the -o cluster, ro option prevents the secondaries
from mounting in a different mode; that is, read-write.

See the mount_vx£s(1M) manual page for more information.

About primary and secondary cluster nodes

A file system cluster consists of one primary, and up to 63 secondaries. The
primary-secondary terminology applies to one file system, not to a specific node
(or hardware platform). You can have the same cluster node be primary for one
shared file system, while at the same time it is secondary for another shared file
system. Such distribution of file system primaryship to balance the load on a cluster
is a recommended administrative policy.

See “About distributing the workload on a cluster” on page 414.

For CVM, a single cluster node is the master for all shared disk groups and shared
volumes in the cluster.



How Storage Foundation Cluster File System High Availability works | 137
Determining or moving primaryship

Determining or moving primaryship

The first node of a cluster file system to mount is called the primary node. Other
nodes are called secondary nodes. If a primary node fails, an internal election
process determines which of the secondaries becomes the primary file system.

To determine primaryship

= To determine primaryship, type the following command:

# fsclustadm -v showprimary mount point

To make a node the primary node

= To make a node the primary node, type the following command on the node:

# fsclustadm -v setprimary mount point

About synchronizing time on Cluster File Systems

SFCFSHA requires that the system clocks on all nodes are synchronized using
some external component such as the Network Time Protocol (NTP) daemon. If
the nodes are not in sync, timestamps for inode (ct ime) and data modification
(mtime) may not be consistent with the sequence in which operations actually
happened.

About file system tunables

Using the /etc/vx/tunefstab file updates the tunable parameters at the time of

mounting a file system. The file system /etc/vx/tunefstab parameters are set to
be identical on all nodes by propagating the parameters to each cluster node. When
the file system is mounted on the node, the /etc/vx/tunefstab parameters of the
primary node are used. Veritas recommends that this file be identical on each node.

Note: If the /etc/vx/tunefstab file does not exist, create it manually.

To tune the lazy_copyonwrite to 1 while mounting a device, you configure the file.
For example:

# cat /etc/vx/tunefstab

/dev/vx/dsk/sharedg/voll lazy copyonwrite=1

See the tunefstab(4) and vxtunefs(1M) manual pages for more information.



How Storage Foundation Cluster File System High Availability works
About setting the number of parallel fsck threads

138

About setting the number of parallel fsck threads

This section describes how to set the number of parallel fsck threads.

The number of parallel fsck threads that could be active during recovery was set
to 4. For example, if a node failed over 12 file systems, log replay for the 12 file
systems will not complete at the same time. The number was set to 4 since parallel
replay of a large number of file systems would put memory pressure on systems
with less memory. However, on larger systems the restriction of 4 parallel processes
replaying is not necessary.

This value gets tuned in accordance with available physical memory in the system.
To set the number of parallel fsck threads

& On all nodes in the cluster, edit the
/opt/VRTSvcs/bin/CFSfsckd/CFSfsckd.env file and set FSCKD 0PTS="-n
N".

where N is the number of parallel fsck threads desired and value of N has to
be between 4 and 128.

Storage Checkpoints

Storage Foundation Cluster File System High Availability (SFCFSHA) provides a
Storage Checkpoint feature that quickly creates a persistent image of a file sytem
at an exact point in time.

See “About Storage Checkpoints” on page 741.

About Storage Foundation Cluster File System
High Availability backup strategies

The same backup strategies used for standard Veritas File System (VxFS) can be
used with Storage Foundation Cluster File System High Availability (SFCFSHA)
because the APls and commands for accessing the namespace are the same. File
system checkpoints provide an on-disk, point-in-time copy of the file system.
Because performance characteristics of a checkpointed file system are better in
certain I/O patterns, they are recommended over file system snapshots (described
below) for obtaining a frozen image of the cluster file system.

File system snapshots are another method of a file system on-disk frozen image.
The frozen image is non-persistent, in contrast to the checkpoint feature. A snapshot
can be accessed as a read-only mounted file system to perform efficient online
backups of the file system. Snapshots implement “copy-on-write” semantics that



How Storage Foundation Cluster File System High Availability works
About Storage Foundation Cluster File System High Availability backup strategies

incrementally copy data blocks when they are overwritten on the snapshot file
system. Snapshots for cluster file systems extend the same copy-on-write
mechanism for the 1/O originating from any cluster node.

Mounting a snapshot file system for backups increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the primary
server. Overhead from remote snapshots is small when compared to overall
snapshot overhead. Therefore, running a backup application by mounting a snapshot
from a relatively less loaded node is beneficial to overall cluster performance.

The following are several characteristics of a cluster snapshot:

= A snapshot for a cluster mounted file system can be mounted on any node in a
cluster. The file system can be a primary, secondary, or secondary-only. A stable
image of the file system is provided for writes from any node.

See the mount_vxfs manual page for more information on secondary-only
(seconly) file systems is a CFS mount option.

= Multiple snapshots of a cluster file system can be mounted on the same or
different cluster nodes.

= A snapshotis accessible only on the node mounting the snapshot. The snapshot
device cannot be mounted on two nodes simultaneously.

= The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable from
other nodes as long as the snapshot is mounted on that device.

= On the node mounting a snapshot, the snapped file system cannot be unmounted
while the snapshot is mounted.

» A SFCFSHA snapshot ceases to exist if it is unmounted or the node mounting
the snapshot fails. However, a snapshot is not affected if another node leaves
or joins the cluster.

= A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount a snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

In addition to frozen images of file systems, there are volume-level alternatives
available for shared volumes using mirror split and rejoin. Features such as Fast
Mirror Resync and Space Optimized snapshot are also available.

139



How Storage Foundation Cluster File System High Availability works | 140
About parallel /0

About parallel I1/O

Some distributed applications read and write to the same file concurrently from one
or more nodes in the cluster; for example, any distributed application where one
thread appends to a file and there are one or more threads reading from various
regions in the file. Several high-performance compute (HPC) applications can also
benefit from this feature, where concurrent I/O is performed on the same file.
Applications do not require any changes to use parallel I/O.

Traditionally, the entire file is locked to perform I/O to a small region. To support

parallel I/O, SFCFSHA locks ranges in a file that correspond to 1/O requests. The
granularity of the locked range is a page.Two I/O requests conflict if at least one is
a write request, and the I/O range of the request overlaps the 1/0 range of the other.

The parallel I/O feature enables 1/O to a file by multiple threads concurrently, as
long as the requests do not conflict. Threads issuing concurrent I/O requests could
be executing on the same node, or on different nodes in the cluster.

An 1/O request that requires allocation is not executed concurrently with other /O
requests. Note that when a writer is extending the file and readers are lagging
behind, block allocation is not necessarily done for each extending write.

Predetermine the file size and preallocate the file to avoid block allocations during
I/O. This improves the concurrency of applications performing parallel I/O to the
file. Parallel 1/0 also avoids unnecessary page cache flushes and invalidations
using range locking, without compromising the cache coherency across the cluster.

For applications that update the same file from multiple nodes, the -nomt ime mount
option provides further concurrency. Modification and change times of the file are
not synchronized across the cluster, which eliminates the overhead of increased
I/O and locking. The timestamp seen for these files from a node may not have the
time updates that happened in the last 60 seconds.

About the 1/O error handling policy for Cluster
Volume Manager

I/O errors can occur for several reasons, including failures of Fibre Channel links,
host-bus adapters, and disks. SFCFSHA disables the file system on the node
encountering 1/O errors. The file system remains available from other nodes.

After the hardware error is fixed (for example, the Fibre Channel link is
reestablished), the file system can be force unmounted from all the active nodes
in the cluster, and the mount resource can be brought online from the disabled node
to reinstate the file system.



How Storage Foundation Cluster File System High Availability works | 141
About recovering from /O failures

About recovering from 1I/O failures

The disabled file system can be restored by a force unmount and the resource will
be brought online without rebooting, which also brings the shared disk group
resource online.

Note: If the jeopardy condition is not fixed, the nodes are susceptible to leaving the
cluster again on subsequent node failure.

See the Cluster Server Administrator's Guide.

About single network link and reliability

Certain environments may prefer using a single private link or a public network for
connecting nodes in a cluster, despite the loss of redundancy for dealing with
network failures. The benefits of this approach include simpler hardware topology
and lower costs; however, there is obviously a tradeoff with high availability.

For the above environments, SFCFSHA provides the option of a single private link,
or using the public network as the private link if /O fencing is present. 1/0 fencing
is used to handle split-brain scenarios. The option for single network is given during
installation.

See “About preventing data corruption with I/O fencing” on page 145.

Configuring a low-priority link

Low-priority link (LLT) can be configured to use a low-priority network link as a
backup to normal heartbeat channels. Low-priority links are typically configured on
a public or an administrative network. This typically results in a completely different
network infrastructure than the cluster private interconnect, and reduces the chance
of a single point of failure bringing down all links. The low-priority link is not used
for cluster membership traffic until it is the only remaining link. In normal operation,
the low-priority link carries only heartbeat traffic for cluster membership and link
state maintenance. The frequency of heartbeats drops 50 percent to reduce network
overhead. When the low-priority link is the only remaining network link, LLT also
switches over all cluster status traffic. Following repair of any configured private
link, LLT returns cluster status traffic to the high-priority link.

LLT links can be added or removed while clients are connected. Shutting down
GAB or the high-availability daemon, (had), is not required.

To add a link

= To add a link, type the following command:



How Storage Foundation Cluster File System High Availability works | 142
Split-brain and jeopardy handling

# lltconfig -d device -t device_ tag
where device tagis atag toidentify a particular link in subsequent commands,
and is displayed by 11tstat(1M).

To remove a link

= Toremove a link, type the following command:

# lltconfig -u device_ tag

See the 11tconfig(1M) manual page.

Changes take effect immediately and are lost on the next reboot. For changes to
span reboots, you must also update the /etc/11ttab file.

Note: LLT clients will not know the cluster status until you only have one LLT link
left and GAB declares jeopardy.

Split-brain and jeopardy handling

A split-brain occurs when the cluster membership view differs among the cluster
nodes, increasing the chance of data corruption. With 1/O fencing, the potential for
data corruption is eliminated. 1/O fencing requires disks that support SCSI-3 PR.

You can also configure 1/O fencing using coordination point servers (CP servers).
In virtual environments that do not support SCSI-3, you can configure non-SCSI-3
server-based fencing.

See “About server-based I/O fencing” on page 157.

See “About I/O fencing for SFCFSHA in virtual machines that do not support SCSI-3
PR” on page 144.



Jeopardy state

Jeopardy handling

About I/O fencing

How Storage Foundation Cluster File System High Availability works
About I/0 fencing

In the absence of I/0O fencing, SFCFSHA installation requires two
heartbeat links. When a node is down to a single heartbeat connection,
SFCFSHA can no longer discriminate between loss of a system and
loss of the final network connection. This state is defined as jeopardy.

SFCFSHA detects jeopardy and responds to it in ways that prevent
data corruption in some split-brain situations. However, data corruption
can still occur in other situations:

= All links go down simultaneously.
= A node hangs and is unable to respond to heartbeat messages.

To eliminate the chance of data corruption in these scenarios, 1/0
fencing is required. With I/O fencing, the jeopardy state does not require
special handling by the SFCFSHA stack.

For installations that do not have 1/O fencing configured, jeopardy
handling prevents some potential split-brain conditions. If any cluster
node fails following a jeopardy state notification, all cluster file systems
that were mounted on the failed node or nodes are disabled on all
remaining nodes. If a leave reconfiguration happens after a jeopardy
state notification, then the nodes that have received the jeopardy state
notification leave the cluster.

I/O fencing protects the data on shared disks when nodes in a cluster detect a
change in the cluster membership that indicates a split-brain condition.

The fencing operation determines the following:

= The nodes that must retain access to the shared storage

= The nodes that must be ejected from the cluster

This decision prevents possible data corruption. The installer installs the I/O fencing
driver, part of VRTSvxfen RPM, when you install Veritas InfoScale Enterprise. To
protect data on shared disks, you must configure 1/O fencing after you install Veritas
InfoScale Enterprise and configure SFCFSHA.

I/O fencing modes - disk-based and server-based I/O fencing - use coordination
points for arbitration in the event of a network partition. Whereas, majority-based
I/O fencing mode does not use coordination points for arbitration. With
majority-based I/O fencing you may experience loss of high availability in some
cases. You can configure disk-based, server-based, or majority-based 1/O fencing:

143



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Disk-based 1/O fencing I/0 fencing that uses coordinator disks is referred
to as disk-based /O fencing.

Disk-based 1/0O fencing ensures data integrity in a
single cluster.

Server-based I/O fencing I/0 fencing that uses at least one CP server system
is referred to as server-based 1/O fencing.
Server-based fencing can include only CP servers,
or a mix of CP servers and coordinator disks.

Server-based I/O fencing ensures data integrity in
clusters.

In virtualized environments that do not support
SCSI-3 PR, SFCFSHA supports non-SCSI-3 I/0
fencing.

See “About I/O fencing for SFCFSHA in virtual
machines that do not support SCSI-3 PR”
on page 144.

Majority-based I/O fencing Majority-based I/O fencing mode does not need
coordination points to provide protection against
data corruption and data consistency in a clustered
environment.

Use majority-based I/0 fencing when there are no
additional servers and or shared SCSI-3 disks to
be used as coordination points.

See “About preventing data corruption with I/O fencing” on page 145.

Note: Veritas Corporation recommends that you use I/O fencing to protect your
cluster against split-brain situations.

See the Storage Foundation Cluster File System High Availability Configuration
and Upgrade Guide.

About I/O fencing for SFCFSHA in virtual machines that do not
support SCSI-3 PR

In a traditional I/O fencing implementation, where the coordination points are
coordination point servers (CP servers) or coordinator disks, Clustered Volume
Manager (CVM) and Veritas I/O fencing modules provide SCSI-3 persistent
reservation (SCSI-3 PR) based protection on the data disks. This SCSI-3 PR

144



How Storage Foundation Cluster File System High Availability works | 145
About I/0 fencing

protection ensures that the I/O operations from the losing node cannot reach a disk
that the surviving sub-cluster has already taken over.

In virtualized environments that do not support SCSI-3 PR, SFCFSHA attempts to
provide reasonable safety for the data disks. SFCFSHA requires you to configure
non-SCSI-3 I/0O fencing in such environments. Non-SCSI-3 fencing either uses
server-based I/O fencing with only CP servers as coordination points or
majority-based 1/O fencing, which does not use coordination points, along with some
additional configuration changes to support such environments.

About preventing data corruption with 1/O fencing

I/O fencing is a feature that prevents data corruption in the event of a communication
breakdown in a cluster.

To provide high availability, the cluster must be capable of taking corrective action
when a node fails. In this situation, SFCFSHA configures its components to reflect
the altered membership.

Problems arise when the mechanism that detects the failure breaks down because
symptoms appear identical to those of a failed node. For example, if a system in a
two-node cluster fails, the system stops sending heartbeats over the private
interconnects. The remaining node then takes corrective action. The failure of the
private interconnects, instead of the actual nodes, presents identical symptoms and
causes each node to determine its peer has departed. This situation typically results
in data corruption because both nodes try to take control of data storage in an
uncoordinated manner.

In addition to a broken set of private networks, other scenarios can generate this
situation. If a system is so busy that it appears to stop responding or "hang," the
other nodes could declare it as dead. This declaration may also occur for the nodes
that use the hardware that supports a "break" and "resume" function. When a node
drops to PROM level with a break and subsequently resumes operations, the other
nodes may declare the system dead. They can declare it dead even if the system
later returns and begins write operations.

SFCFSHA uses I/0O fencing to remove the risk that is associated with split-brain.
I/O fencing allows write access for members of the active cluster. It blocks access
to storage from non-members.

About SCSI-3 Persistent Reservations

SCSI-3 Persistent Reservations (SCSI-3 PR) are required for I/O fencing and resolve
the issues of using SCSI reservations in a clustered SAN environment. SCSI-3 PR
enables access for multiple nodes to a device and simultaneously blocks access
for other nodes.



How Storage Foundation Cluster File System High Availability works | 146
About I/0 fencing

SCSI-3 reservations are persistent across SCSI bus resets and support multiple
paths from a host to a disk. In contrast, only one host can use SCSI-2 reservations
with one path. If the need arises to block access to a device because of data integrity
concerns, only one host and one path remain active. The requirements for larger
clusters, with multiple nodes reading and writing to storage in a controlled manner,
make SCSI-2 reservations obsolete.

SCSI-3 PR uses a concept of registration and reservation. Each system registers
its own "key" with a SCSI-3 device. Multiple systems registering keys form a
membership and establish a reservation, typically set to "Write Exclusive Registrants
Only." The WERO setting enables only registered systems to perform write
operations. For a given disk, only one reservation can exist amidst numerous
registrations.

With SCSI-3 PR technology, blocking write access is as easy as removing a
registration from a device. Only registered members can "eject" the registration of
another member. A member wishing to eject another member issues a "preempt
and abort" command. Ejecting a node is final and atomic; an ejected node cannot
eject another node. In SFCFSHA, a node registers the same key for all paths to
the device. A single preempt and abort command ejects a node from all paths to
the storage device.

About I/O fencing operations

I/O fencing, provided by the kernel-based fencing module (vxfen), performs
identically on node failures and communications failures. When the fencing module
on a node is informed of a change in cluster membership by the GAB module, it
immediately begins the fencing operation. The node tries to eject the key for departed
nodes from the coordinator disks using the preempt and abort command. When
the node successfully ejects the departed nodes from the coordinator disks, it also
ejects the departed nodes from the data disks. In a split-brain scenario, both sides
of the split would race for control of the coordinator disks. The side winning the
majority of the coordinator disks wins the race and fences the loser. The loser then
panics and restarts the system.

About I/O fencing components

The shared storage for SFCFSHA must support SCSI-3 persistent reservations to
enable /O fencing. SFCFSHA involves two types of shared storage:

s Data disks—Store shared data
See “About data disks” on page 147.

= Coordination points—Act as a global lock during membership changes
See “About coordination points” on page 147.



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

About data disks

Data disks are standard disk devices for data storage and are either physical disks
or RAID Logical Units (LUNSs).

These disks must support SCSI-3 PR and must be part of standard VxVM or CVM
disk groups. CVM is responsible for fencing data disks on a disk group basis. Disks
that are added to a disk group and new paths that are discovered for a device are
automatically fenced.

About coordination points

Coordination points provide a lock mechanism to determine which nodes get to
fence off data drives from other nodes. A node must eject a peer from the
coordination points before it can fence the peer from the data drives. SFCFSHA
prevents split-brain when vxfen races for control of the coordination points and the
winner partition fences the ejected nodes from accessing the data disks.

Note: Typically, a fencing configuration for a cluster must have three coordination
points. Veritas Corporation also supports server-based fencing with a single CP
server as its only coordination point with a caveat that this CP server becomes a
single point of failure.

The coordination points can either be disks or servers or both.

» Coordinator disks
Disks that act as coordination points are called coordinator disks. Coordinator
disks are three standard disks or LUNs set aside for I/O fencing during cluster
reconfiguration. Coordinator disks do not serve any other storage purpose in
the SFCFSHA configuration.
You can configure coordinator disks to use Veritas Volume Manager's Dynamic
Multi-pathing (DMP) feature. Dynamic Multi-pathing (DMP) allows coordinator
disks to take advantage of the path failover and the dynamic adding and removal
capabilities of DMP. So, you can configure /O fencing to use DMP devices. I/O
fencing uses SCSI-3 disk policy that is dmp-based on the disk device that you
use.

Note: The dmp disk policy for I/O fencing supports both single and multiple
hardware paths from a node to the coordinator disks. If few coordinator disks
have multiple hardware paths and few have a single hardware path, then we
support only the dmp disk policy. For new installations, Veritas Corporation only
supports dmp disk policy for 10 fencing even for a single hardware path.

See the Storage Foundation Administrator’s Guide.

147



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Coordination point servers

The coordination point server (CP server) is a software solution which runs on
a remote system or cluster. CP server provides arbitration functionality by
allowing the SFHA cluster nodes to perform the following tasks:

= Self-register to become a member of an active SFCFSHA cluster (registered
with CP server) with access to the data drives

= Check which other nodes are registered as members of this active SFCFSHA
cluster

= Self-unregister from this active SFCFSHA cluster

» Forcefully unregister other nodes (preempt) as members of this active
SFCFSHA cluster

In short, the CP server functions as another arbitration mechanism that integrates

within the existing 1/0 fencing module.

Note: With the CP server, the fencing arbitration logic still remains on the
SFCFSHA cluster.

Multiple SFCFSHA clusters running different operating systems can
simultaneously access the CP server. TCP/IP based communication is used
between the CP server and the SFCFSHA clusters.

About preferred fencing

The I/O fencing driver uses coordination points to prevent split-brain in a VCS
cluster. By default, the fencing driver favors the subcluster with maximum number
of nodes during the race for coordination points. With the preferred fencing feature,
you can specify how the fencing driver must determine the surviving subcluster.

You can configure the preferred fencing policy using the cluster-level attribute
PreferredFencingPolicy for the following:

Enable system-based preferred fencing policy to give preference to high capacity
systems.

Enable group-based preferred fencing policy to give preference to service groups
for high priority applications.

Enable site-based preferred fencing policy to give preference to sites with higher
priority.

Disable preferred fencing policy to use the default node count-based race policy.

See “How preferred fencing works” on page 149.

See “Enabling or disabling the preferred fencing policy” on page 525.

148



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

How preferred fencing works

The I/O fencing driver uses coordination points to prevent split-brain in a VCS
cluster. At the time of a network partition, the fencing driver in each subcluster races
for the coordination points. The subcluster that grabs the majority of coordination
points survives whereas the fencing driver causes a system panic on nodes from
all other subclusters. By default, the fencing driver favors the subcluster with
maximum number of nodes during the race for coordination points.

This default racing preference does not take into account the application groups
that are online on any nodes or the system capacity in any subcluster. For example,
consider a two-node cluster where you configured an application on one node and
the other node is a standby-node. If there is a network partition and the standby-node
wins the race, the node where the application runs panics and VCS has to bring
the application online on the standby-node. This behavior causes disruption and
takes time for the application to fail over to the surviving node and then to start up
again.

The preferred fencing feature lets you specify how the fencing driver must determine
the surviving subcluster. The preferred fencing solution makes use of a fencing
parameter called node weight. VCS calculates the node weight based on online
applications, system capacity, and site preference details that you provide using
specific VCS attributes, and passes to the fencing driver to influence the result of
race for coordination points. At the time of a race, the racer node adds up the
weights for all nodes in the local subcluster and in the leaving subcluster. If the
leaving subcluster has a higher sum (of node weights) then the racer for this
subcluster delays the race for the coordination points. Thus, the subcluster that has
critical systems or critical applications wins the race.

The preferred fencing feature uses the cluster-level attribute PreferredFencingPolicy
that takes the following race policy values:

= Disabled (default): Preferred fencing is disabled.
When the PreferredFencingPolicy attribute value is set as Disabled, VCS sets
the count based race policy and resets the value of node weight as 0.

= System: Based on the capacity of the systems in a subcluster.
If one system is more powerful than others in terms of architecture, number of
CPUs, or memory, this system is given preference in the fencing race.
When the PreferredFencingPolicy attribute value is set as System, VCS
calculates node weight based on the system-level attribute FencingWeight.

= Group: Based on the higher priority applications in a subcluster.
The fencing driver takes into account the service groups that are online on the
nodes in any subcluster.
In the event of a network partition, I/O fencing determines whether the VCS
engine is running on all the nodes that participate in the race for coordination

149



How Storage Foundation Cluster File System High Availability works | 150
About I/0 fencing

points. If VCS engine is running on all the nodes, the node with higher priority
service groups is given preference during the fencing race.

However, if the VCS engine instance on a node with higher priority service
groups is killed for some reason, 1/0O fencing resets the preferred fencing node
weight for that node to zero. I/O fencing does not prefer that node for membership
arbitration. Instead, I/O fencing prefers a node that has an instance of VCS
engine running on it even if the node has lesser priority service groups.
Without synchronization between VCS engine and I/O fencing, a node with high
priority service groups but without VCS engine running on it may win the race.
Such a situation means that the service groups on the loser node cannot failover
to the surviving node.

When the PreferredFencingPolicy attribute value is set as Group, VCS calculates
node weight based on the group-level attribute Priority for those service groups
that are active.

= Site: Based on the priority assigned to sites in a subcluster.
The Site policy is available only if you set the cluster attribute SiteAware to 1.
VCS sets higher weights to the nodes in a higher priority site and lesser weights
to the nodes in a lower priority site. The site with highest cumulative node weight
becomes the preferred site. In a network partition between sites, VCS prefers
the subcluster with nodes from the preferred site in the race for coordination
points.

See the Cluster Server Administrator's Guide for more information on the VCS
attributes.

See “Enabling or disabling the preferred fencing policy” on page 525.

About I/O fencing configuration files

Table 5-3 lists the 1/0O fencing configuration files.



How Storage Foundation Cluster File System High Availability works | 151
About I/0 fencing

Table 5-3 I/O fencing configuration files

File Description

/etc/sysconfig/vxfen | This file stores the start and stop environment variables for 1/O fencing:

s VXFEN_START—Defines the startup behavior for the 1/0 fencing module after a system
reboot. Valid values include:
1—Indicates that I/O fencing is enabled to start up.
O0—Indicates that I/O fencing is disabled to start up.

s VXFEN_STOP—Defines the shutdown behavior for the I/O fencing module during a system
shutdown. Valid values include:

1—Indicates that I/O fencing is enabled to shut down.
O—Indicates that I/O fencing is disabled to shut down.

The installer sets the value of these variables to 1 at the end of SFCFSHA configuration.

letc/vxfendg This file includes the coordinator disk group information.

This file is not applicable for server-based fencing and majority-based fencing.




How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Table 5-3 I/O fencing configuration files (continued)
File Description
/etc/vxfenmode This file contains the following parameters:

= vxfen_mode
» scsi3—For disk-based fencing.
= customized—For server-based fencing.
= disabled—To run the I/O fencing driver but not do any fencing operations.
= majority— For fencing without the use of coordination points.
= vxfen_mechanism
This parameter is applicable only for server-based fencing. Set the value as cps.
» scsi3_disk_policy
= dmp—Configure the vxfen module to use DMP devices
The disk policy is dmp by default. If you use iSCSI devices, you must set the disk policy
as dmp.

Note: You must use the same SCSI-3 disk policy on all the nodes.

n List of coordination points
This list is required only for server-based fencing configuration.
Coordination points in server-based fencing can include coordinator disks, CP servers, or
both. If you use coordinator disks, you must create a coordinator disk group containing the
individual coordinator disks.
Refer to the sample file /etc/vxfen.d/vxfenmode_cps for more information on how to specify
the coordination points and multiple IP addresses for each CP server.

= single_cp
This parameter is applicable for server-based fencing which uses a single highly available
CP server as its coordination point. Also applicable for when you use a coordinator disk
group with single disk.

= autoseed_gab_timeout
This parameter enables GAB automatic seeding of the cluster even when some cluster
nodes are unavailable.
This feature is applicable for I/0O fencing in SCSI3 and customized mode.
0—Turns the GAB auto-seed feature on. Any value greater than 0 indicates the number of
seconds that GAB must delay before it automatically seeds the cluster.
-1—Turns the GAB auto-seed feature off. This setting is the default.

s detect_false_pesb
0—Disables stale key detection.
1—Enables stale key detection to determine whether a preexisting split brain is a true
condition or a false alarm.
Default: 0

Note: This parameter is considered only when vxfen mode=customized.

152



How Storage Foundation Cluster File System High Availability works | 153
About I/0 fencing

Table 5-3 I/O fencing configuration files (continued)
File Description
letc/vxfentab When 1/O fencing starts, the vxfen startup script creates this /etc/vxfentab file on each node.

The startup script uses the contents of the /etc/vxfendg and /etc/vxfenmode files. Any time a
system is rebooted, the fencing driver reinitializes the vxfentab file with the current list of all the
coordinator points.

Note: The /etc/vxfentab file is a generated file; do not modify this file.

For disk-based I/0 fencing, the /etc/vxfentab file on each node contains a list of all paths to
each coordinator disk along with its unique disk identifier. A space separates the path and the
unique disk identifier. An example of the /etc/vxfentab file in a disk-based fencing configuration
on one node resembles as follows:

= DMP disk:

/dev/vx/rdmp/sdx3 HITACHI%5F1724-100%20%20FAStT$5FDISKS%5F6
00AOB8000215A5D000006804E795D0A3
/dev/vx/rdmp/sdy3 HITACHI%5F1724-100%20%20FAStT%$5FDISKS%5F6
00AOB8000215A5D000006814E795D0B3
/dev/vx/rdmp/sdz3 HITACHI%5F1724-100%20%20FAStT%$5FDISKS%5F6
00AO0B8000215A5D000006824E795D0C3

For server-based fencing, the /etc/vxfentab file also includes the security settings information.

For server-based fencing with single CP server, the /etc/vxfentab file also includes the single_cp
settings information.

This file is not applicable for majority-based fencing.

How 1/O fencing works in different event scenarios

Table 5-4 describes how I/O fencing works to prevent data corruption in different
failure event scenarios. For each event, review the corrective operator actions.



How Storage Foundation Cluster File System High Availability works

About I/0 fencing

Table 5-4 I/O fencing scenarios
Event Node A: What Node B: What Operator action
happens? happens?

Both private networks
fail.

Node A races for
majority of
coordination points.

If Node A wins race
for coordination
points, Node A ejects
Node B from the
shared disks and
continues.

Node B races for
majority of
coordination points.

If Node B loses the
race for the
coordination points,
Node B panics and
removes itself from
the cluster.

When Node B is
ejected from cluster,
repair the private
networks before
attempting to bring
Node B back.

Both private networks
function again after
event above.

Node A continues to
work.

Node B has crashed.
It cannot start the
database since it is
unable to write to the
data disks.

Restart Node B after
private networks are
restored.

One private network
fails.

Node A prints
message about an
IOFENCE on the
console but
continues.

Node B prints
message about an
IOFENCE on the
console but
continues.

Repair private
network. After
network is repaired,
both nodes
automatically use it.

Node A hangs.

Node A is extremely
busy for some reason
or is in the kernel
debugger.

When Node A is no
longer hung or in the
kernel debugger, any
queued writes to the
data disks fail
because Node A is
ejected. When Node
A receives message
from GAB about
being ejected, it
panics and removes
itself from the cluster.

Node B loses
heartbeats with Node
A, and races for a
majority of
coordination points.

Node B wins race for
coordination points
and ejects Node A
from shared data
disks.

Repair or debug the
node that hangs and
reboot the node to
rejoin the cluster.

154



How Storage Foundation Cluster File System High Availability works

About I/0 fencing

Table 5-4 I/O fencing scenarios (continued)
Event Node A: What Node B: What Operator action
happens? happens?

Nodes A and B and
private networks lose
power. Coordination
points and data disks
retain power.

Power returns to
nodes and they
restart, but private
networks still have no
power.

Node A restarts and
I/O fencing driver
(vxfen) detects Node
B is registered with
coordination points.
The driver does not
see Node B listed as
member of cluster
because private
networks are down.
This causes the /O
fencing device driver
to prevent Node A
from joining the
cluster. Node A
console displays:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required

to clear
preexisting

split brain.

Node B restarts and
1/O fencing driver
(vxfen) detects Node
A is registered with
coordination points.
The driver does not
see Node A listed as
member of cluster
because private
networks are down.
This causes the I1/0
fencing device driver
to prevent Node B
from joining the
cluster. Node B
console displays:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required

to clear
preexisting

split brain.

Resolve preexisting
split-brain condition.

155



How Storage Foundation Cluster File System High Availability works

About I/0 fencing

Table 5-4 I/O fencing scenarios (continued)
Event Node A: What Node B: What Operator action
happens? happens?

Node A crashes while
Node B is down.
Node B comes up
and Node A is still
down.

Node A is crashed.

Node B restarts and
detects Node A is
registered with the
coordination points.
The driver does not
see Node A listed as
member of the
cluster. The 110
fencing device driver
prints message on
console:

Potentially a
preexisting
split brain.
Dropping out
of the cluster.
Refer to the
user
documentation
for steps
required

to clear
preexisting
split brain.

Resolve preexisting
split-brain condition.

The disk array
containing two of the
three coordination
points is powered off.

No node leaves the
cluster membership

Node A continues to
operate as long as no
nodes leave the
cluster.

Node B continues to
operate as long as no
nodes leave the
cluster.

Power on the failed
disk array so that
subsequent network
partition does not
cause cluster
shutdown, or replace
coordination points.

See “Replacing 1/0
fencing coordinator
disks when the cluster
is online” on page 484.

156



How Storage Foundation Cluster File System High Availability works

About I/0 fencing

Table 5-4 I/O fencing scenarios (continued)
Event Node A: What Node B: What Operator action
happens? happens?

The disk array
containing two of the
three coordination
points is powered off.

Node B gracefully
leaves the cluster and
the disk array is still
powered off. Leaving
gracefully implies a
clean shutdown so
that vxfen is properly
unconfigured.

Node A continues to
operate in the cluster.

Node B has left the
cluster.

Power on the failed
disk array so that
subsequent network
partition does not
cause cluster
shutdown, or replace
coordination points.

See “Replacing 1/0
fencing coordinator
disks when the cluster
is online” on page 484.

The disk array
containing two of the
three coordination
points is powered off.

Node B abruptly
crashes or a network
partition occurs
between node A and
node B, and the disk
array is still powered
off.

Node A races for a
majority of
coordination points.
Node A fails because
only one of the three
coordination points is
available. Node A
panics and removes
itself from the cluster.

Node B has left
cluster due to crash

or network partition.

Power on the failed
disk array and restart
I/0 fencing driver to
enable Node A to
register with all
coordination points,
or replace
coordination points.

About server-based I/0O fencing

In a disk-based I/O fencing implementation, the vxfen driver handles various SCSI-3

PR based arbitration operations completely within the driver. /0O fencing also
provides a framework referred to as customized fencing wherein arbitration

operations are implemented in custom scripts. The vxfen driver invokes the custom

scripts.

The CP server-based coordination point uses a customized fencing framework.

Note that SCSI-3 PR based fencing arbitration can also be enabled using customized
fencing framework. This allows the user to specify a combination of SCSI-3 LUNs

and CP servers as coordination points using customized fencing. Customized
fencing can be enabled by specifying vxfen_mode=customized and
vxfen_mechanism=cps in the /etc/vxfenmode file.

Figure 5-2 displays a schematic of the customized fencing options.

157



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Figure 5-2 Customized fencing

SCSI-3 LUN CP server

A A

cpsadm
vxfenadm

Customized
Scripts

{

vxfend
A
Y
VXFEN

User space

Kernel space

Client cluster node

A user level daemon vxfend interacts with the vxfen driver, which in turn interacts
with GAB to get the node membership update. Upon receiving membership updates,
vxfend invokes various scripts to race for the coordination point and fence off data
disks. The vxfend daemon manages various fencing agents. The customized fencing
scripts are located in the /opt/VRTSvcs/vxfen/bin/customized/cps directory.

The scripts that are involved include the following:

= generate_snapshot.sh : Retrieves the SCSI ID’s of the coordinator disks and/or
UUID ID's of the CP servers
CP server uses the UUID stored in /etc/VRTScps/db/current/cps_uuid.
For information about the UUID (Universally Unique Identifier), see theCluster
Server Administrator's Guide.

= join_local_node.sh: Registers the keys with the coordinator disks or CP servers

158



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

= race_for_coordination_point.sh: Races to determine a winner after cluster
reconfiguration

= unjoin_local_node.sh: Removes the keys that are registered in join_local_node.sh
» fence_data_disks.sh: Fences the data disks from access by the losing nodes.

= local_info.sh: Lists local node’s configuration parameters and coordination points,
which are used by the vxfen driver.

= validate_pesb_join.sh:

= Determines whether the preexisting split brain is a true condition or a false
alarm due to the presence of stale keys on the coordination points.

» Clears the coordination points if the preexisting split brain turns out to be a
false alarm.

1/0 fencing enhancements provided by CP server

CP server configurations enhance disk-based I/0 fencing by providing the following
new capabilities:

= CP server configurations are scalable, and a configuration with three CP servers
can provide I/O fencing for multiple SFCFSHA clusters. Since a single CP server
configuration can serve a large number of SFCFSHA clusters, the cost of multiple
SFCFSHA cluster deployments can be significantly reduced.

= Appropriately situated CP servers can eliminate any coordinator disk location
bias in the I/O fencing process. For example, this location bias may occur where,
due to logistical restrictions, two of the three coordinator disks are located at a
single site, and the cost of setting up a third coordinator disk location is
prohibitive.
See Figure 5-3 on page 160.
In such a configuration, if the site with two coordinator disks is inaccessible, the
other site does not survive due to a lack of a majority of coordination points. I/O
fencing would require extension of the SAN to the third site which may not be
a suitable solution. An alternative is to place a CP server at a remote site as the
third coordination point.

Note: The CP server provides an alternative arbitration mechanism without having
to depend on SCSI-3 compliant coordinator disks. Data disk fencing in Cluster
Volume Manager (CVM) will still require SCSI-3 1/O fencing.

159



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Figure 5-3 Skewed placement of coordinator disks at Site 1
Site 1 Site 2
Node 1

Public
Network

Coordinator disk #1 @
g/ Coordinator disk #3

Coordinator disk #2

About the CP server database

CP server requires a database for storing the registration keys of the SFCFSHA
cluster nodes. CP server uses a SQLite database for its operations. By default, the
database is located at /etc/VRTScps/db.

For a single node VCS cluster hosting a CP server, the database can be placed on
a local file system. For an SFHA cluster hosting a CP server, the database must
be placed on a shared file system. The file system must be shared among all nodes
that are part of the SFHA cluster.

In an SFHA cluster hosting the CP server, the shared database is protected by
setting up SCSI-3 PR based I/0O fencing. SCSI-3 PR based /O fencing protects
against split-brain scenarios.

Warning: The CP server database must not be edited directly and should only be
accessed using cpsadm(1M). Manipulating the database manually may lead to
undesirable results including system panics.

About the CP server user types and privileges

The CP server supports the following user types, each with a different access level
privilege:

= CP server administrator (admin)

a CP server operator

160



How Storage Foundation Cluster File System High Availability works | 161
About I/0 fencing

Different access level privileges permit the user to issue different commands. If a
user is neither a CP server admin nor a CP server operator user, then the user has
guest status and can issue limited commands.

The user types and their access level privileges are assigned to individual users
during SFCFSHA cluster configuration for fencing. During the installation process,
you are prompted for a user name, password, and access level privilege (CP server
admin or CP server operator).

To administer and operate a CP server, there must be at least one CP server admin.

A root user on a CP server is given all the administrator privileges, and these
administrator privileges can be used to perform all the CP server specific operations.

About secure communication between the SFCFSHA cluster and

CP server

In a data center, TCP/IP communication between the SFCFSHA cluster (application
cluster) and CP server must be made secure. The security of the communication
channel involves encryption, authentication, and authorization.

The CP server node or cluster needs to confirm the authenticity of the SFCFSHA
cluster nodes that communicate with it as a coordination point and only accept
requests from known SFCFSHA cluster nodes. Requests from unknown clients are
rejected as non-authenticated. Similarly, the fencing framework in SFCFSHA cluster
must confirm that authentic users are conducting fencing operations with the CP
server.

The secure mode of communication between CP server and SFCFSHA cluster is
HTTPS communication.

HTTPS communication: The SSL infrastructure uses the client cluster certificates
and CP server certificates to ensure that communication is secure. The HTTPS
mode does not use the broker mechanism to create the authentication server
credentials.

How secure communication works between the CP servers
and the SFCFSHA clusters using the Veritas Product
Authentication Services (AT)

Veritas Product Authentication Services (AT): Entities on behalf of which
authentication is done are referred to as principals. On the SFCFSHA cluster nodes,
the current VCS installer creates the authentication server credentials on each node
in the cluster. It also creates vcsauthserver which authenticates the credentials.
The installer then proceeds to start VCS in secure mode. Typically, in an existing
VCS cluster with security configured, vcsauthserver runs on each cluster node.



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

CP server and SFCFSHA cluster (application cluster) node communication involve
the following entities:

= vxcpserv for the CP server
= cpsadm for the SFCFSHA cluster node

Figure 5-4 displays a schematic of the end-to-end communication flow with security
enabled on CP server and SFCFSHA clusters (application clusters).

Figure 5-4 End-To-end communication flow with security enabled on CP
server and SFCFSHA clusters

CP server
(vxcpserv)

CP client
(cpsadm)

Client cluster nodes

Communication flow between CP server and SFCFSHA cluster nodes with security
configured on them is as follows:

= Initial setup:
Identities of CP server and SFCFSHA cluster nodes are configured on respective
nodes by the VCS installer.

Note: At the time of fencing configuration, the installer establishes trust between
the CP server and the application cluster so that vxcpserv process can
authenticate requests from the application cluster nodes. If you manually
configured 1/O fencing, then you must set up trust between the CP server and
the application cluster.

The cpsadm command gets the user name, domain type from the environment
variables CPS_USERNAME, CPS_DOMAINTYPE. Export these variables before
you run the cpsadm command manually. The customized fencing framework

162



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

exports these environment variables internally before you run the cpsadm
commands.

The CP server process (vxcpserv) uses its own user (CPSERVER) which is
added to the local vcsauthserver.

Getting credentials from authentication broker:

The cpsadm command tries to get the existing credentials that are present on
the local node. The installer generates these credentials during fencing
configuration.

The vxcpserv process tries to get the existing credentials that are present on
the local node. The installer generates these credentials when it enables security.

Communication between CP server and SFCFSHA cluster nodes:

After the CP server establishes its credential and is up, it becomes ready to
receive data from the clients. After the cpsadm command obtains its credentials
and authenticates CP server credentials, cpsadm connects to the CP server.
Data is passed over to the CP server.

Validation:
On receiving data from a particular SFCFSHA cluster node, vxcpserv validates
its credentials. If validation fails, then the connection request data is rejected.

Security configuration details on CP server and SFCFSHA
cluster

This section discusses the security configuration details for the CP server and
SFCFSHA cluster (application cluster).

Settings in Veritas Product Authentication Services (AT) secure mode

The following are the settings for secure communication between the CP server
and SFCFSHA cluster:

CP server settings:
Installer creates a user with the following values:

= username: CPSERVER
= domainname: VCS_SERVICES@cluster_uuid

= domaintype: vx
Run the following commands on the CP server to verify the settings:

# export EAT DATA DIR-=/var/VRTSvcs/vcsauth/data/CPSERVER

# /opt/VRTScps/bin/cpsat showcred

163



How Storage Foundation Cluster File System High Availability works
About I/0 fencing

Note: The CP server configuration file (/etc/vxcps.conf) must not contain a line
specifying security=0. If there is no line specifying "security" parameter or if
there is a line specifying security=1, CP server with security is enabled (which
is the default).

s SFCFSHA cluster node(s) settings:

On SFCFSHA cluster, the installer creates a user for cpsadm during fencing
configuration with the following values:

= username: CPSADM
» domainname: VCS_SERVICES@cluster_uuid

= domaintype: vx

Run the following commands on the SFCFSHA cluster node(s) to verify the
security settings:

# export EAT DATA DIR=/var/VRTSvcs/vcsauth/data/CPSADM

# /opt/VRTScps/bin/cpsat showcred

The users described above are used only for authentication for the communication
between the CP server and the SFCFSHA cluster nodes.

For CP server's authorization, customized fencing framework on the SFCFSHA
cluster uses the following user if security is configured:

CPSADM@VCS_SERVICES@cluster_uuid
where cluster_uuid is the application cluster's universal unique identifier.

For each SFCFSHA cluster node, this user must be registered on the CP server
database before fencing starts on the SFCFSHA cluster node(s). This can be verified
by issuing the following command:

# cpsadm -s cp server -a list_users
The following is an example of the command output:

Username/Domain Type
CPSADMEVCS_SERVICES@77a2549c-1dd2-11b2-88d6-00306e4b2e0b/vx

Cluster Name / UUID Role
clusterl/{77a2549c-1dd2-11b2-88d6-00306e4b2e0b} Operator

164



How Storage Foundation Cluster File System High Availability works | 165
Storage Foundation Cluster File System High Availability and Veritas Volume Manager cluster functionality
agents

Note: The configuration file (/etc/vxfenmode) on each client node must not contain
a line specifying security=0. If there is no line specifying "security" parameter or if
there is a line specifying security=1, client node starts with security enabled (which
is the default).

Settings in non-secure mode

In non-secure mode, only authorization is provided on the CP server. Passwords
are not requested. Authentication and encryption are not provided. User credentials
of “cpsclient@hostname” of “vx” domaintype are used by the customized fencing
framework for communication between CP server or SFCFSHA cluster node(s).

For each SFCFSHA cluster node, this user must be added on the CP server
database before fencing starts on the SFCFSHA cluster node(s). The user can be
verified by issuing the following command:

# cpsadm -s cpserver -a list_users
The following is an example of the command output:

Username/Domain Type Cluster Name / UUID Role
cpsclient@sysl/vx clusterl / {£f0735332-e3709clc73b9} Operator

Note: In non-secure mode, CP server configuration file (/etc/vxcps.conf) should
contain a line specifying security=0. Similarly, on each SFCFSHA cluster node the
configuration file (/etc/vxfenmode) should contain a line specifying security=0.

Storage Foundation Cluster File System High
Availability and Veritas Volume Manager cluster
functionality agents

Agents are VCS processes that manage predefined resource types. SFCFSHA and
CVM require agents to interact with VCS. Agents bring resources online, take
resources offline, monitor resources, and report any state changes to VCS. VCS
bundled agents are part of VCS and are installed when VCS is installed. The
SFCFSHA and CVM agents are add-on resources to VCS specifically for the Veritas
File System and Veritas Volume Manager.

See the Storage Foundation Cluster File System High Availability Installation Guide.



How Storage Foundation Cluster File System High Availability works
Veritas Volume Manager cluster functionality

166

Veritas Volume Manager cluster functionality

The Veritas Volume Manager cluster functionality (CVM) makes logical volumes
accessible throughout a cluster. CVM enables multiple hosts to concurrently access
the logical volumes under its control. A VxVM cluster comprises nodes sharing a
set of devices. The nodes are connected across a network. If one node fails, other
nodes can access the devices. The VxVM cluster feature presents the same logical
view of the device configurations, including changes, on all nodes. You configure
CVM shared storage after VCS sets up a cluster configuration.



How Cluster Volume
Manager works

This chapter includes the following topics:

About the cluster functionality of VxVM

Overview of clustering

Cluster Volume Manager (CVM) tolerance to storage connectivity failures
CVM initialization and configuration

Dirty region logging in cluster environments

Multiple host failover configurations

About Flexible Storage Sharing

Application isolation in CVM environments with disk group sub-clustering

About the cluster functionality of VxVM

A cluster consists of a number of hosts or nodes that share a set of disks. The
following are the main benefits of cluster configurations:



How Cluster Volume Manager works
Overview of clustering

Availability If one node fails, the other nodes can still access the shared disks.
When configured with suitable software, mission-critical applications
can continue running by transferring their execution to a standby node
in the cluster. This ability to provide continuous uninterrupted service
by switching to redundant hardware is commonly termed failover.

Failover is transparent to users and high-level applications for database
and file-sharing. You must configure cluster management software,
such as Veritas Cluster Server (VCS), to monitor systems and services,
and to restart applications on another node in the event of either
hardware or software failure. VCS also allows you to perform general
administration tasks such as making nodes join or leave a cluster.

Note that a standby node need not remain idle. It could be used to serve
other applications in parallel.

Off-host Clusters can reduce contention for system resources by performing

processing activities such as backup, decision support, and report generation on
the more lightly-loaded nodes of the cluster. This allows businesses to
derive enhanced value from their investment in cluster systems.

Storage Foundation Cluster File System High Availability (SFCFSHA) includes the
Cluster Volume Manager (CVM) as a component. CVM expands the functionality
of Veritas Volume Manager (VxVM) to add support for a clustered environment.
CVM enables the cluster nodes to simultaneously access and manage a set of
disks or LUNs under VxVM control. The same logical view of disk configuration and
any changes to this view are available on all the nodes. When the CVM functionality
is enabled, all cluster nodes can share VxVM objects such as shared disk groups.
Private disk groups are supported in the same way as in a non-clustered
environment.

Overview of clustering

Tightly-coupled cluster systems are common in the realm of enterprise-scale
mission-critical data processing. The primary advantage of clusters is protection
against hardware failure. Should the primary node fail or otherwise become
unavailable, applications can continue to run by transferring their execution to
standby nodes in the cluster. This ability to provide continuous availability of service
by switching to redundant hardware is commonly termed failover.

Another major advantage of clustered systems is their ability to reduce contention
for system resources caused by activities such as backup, decision support, and
report generation. Businesses can derive enhanced value from their investment in
cluster systems by performing such operations on lightly-loaded nodes in the cluster
rather than on the heavily-loaded nodes that answer requests for service. This

168



How Cluster Volume Manager works | 169
Overview of clustering

ability to perform some operations on the lightly-loaded nodes is commonly termed
load balancing.

Overview of cluster volume management

Over the past several years, parallel applications using shared data access have
become increasingly popular. Examples of commercially available applications
include Oracle Real Application Clusters™ (RAC), Sybase Adaptive Server®, and
Informatica Enterprise Cluster Edition. In addition, the semantics of Network File
System (NFS), File Transfer Protocol (FTP), and Network News Transfer Protocol
(NNTP) allow these workloads to be served by shared data access clusters. Finally,
numerous organizations have developed internal applications that take advantage
of shared data access clusters.

The cluster functionality of VxXVM (CVM) works together with the cluster monitor
daemon that is provided by VCS or by the host operating system. The cluster monitor
informs VxVM of changes in cluster membership. Each node starts up independently
and has its own cluster monitor plus its own copies of the operating system and
VxVM/CVM. When a node joins a cluster, it gains access to shared disk groups
and volumes. When a node leaves a cluster, it loses access to these shared objects.
A node joins a cluster when you issue the appropriate command on that node.

Warning: The CVM functionality of VxVM is supported only when used with a
cluster monitor that has been configured correctly to work with VxVM.

Figure 6-1 shows a simple cluster arrangement consisting of four nodes with similar
or identical hardware characteristics (CPUs, RAM, and host adapters), and
configured with identical software (including the operating system).



How Cluster Volume Manager works | 170
Overview of clustering

Figure 6-1 Example of a 4-node CVM cluster

Redundant private network

Node 0
(master)

Node 1
(slave)

Node 2
(slave)

z

Redundant SCSI
or Fibre Channel
connectivity u

0

Cluster-shareable disks

ACIuster-shareable disk
groups

To the cluster monitor, all nodes are the same. VxVM objects configured within
shared disk groups can potentially be accessed by all nodes that join the cluster.
However, the CVM functionality of VxVM requires that one node act as the master
node; all other nodes in the cluster are slave nodes. Any node is capable of being
the master node, and it is responsible for coordinating certain VxVM activities.

In this example, node 0 is configured as the CVM master node and nodes 1, 2, and
3 are configured as CVM slave nodes. The nodes are fully connected by a private
network and they are also separately connected to shared external storage (either
disk arrays or JBODs: just a bunch of disks) through SCSI or Fibre Channel in a
Storage Area Network (SAN).

Figure 6-1 shows each node has two independent paths to the disks, which are
configured in one or more cluster-shareable disk groups. Multiple paths provide
resilience against failure of one of the paths, but this is not a requirement for cluster
configuration. Disks may also be connected by single paths.

The private network allows the nodes to share information about system resources
and about each other’s state. Using the private network, any node can recognize
which other nodes are currently active, which are joining or leaving the cluster, and
which have failed. The private network requires at least two communication channels
to provide redundancy against one of the channels failing. If only one channel were
used, its failure would be indistinguishable from node failure—a condition known
as network partitioning.



How Cluster Volume Manager works | 171
Overview of clustering

You can run the commands that configure or reconfigure VxVM objects on any
node in the cluster. These tasks include setting up shared disk groups, creating
and reconfiguring volumes, and performing snapshot operations.

The first node to join a cluster performs the function of master node. If the master
node leaves a cluster, one of the slave nodes is chosen to be the new master.

See “Methods to control CVM master selection” on page 420.

About private and shared disk groups

The following types of disk groups are defined:

Private disk group Belongs to only one node. A private disk group can only be imported
by one system. LUNs in a private disk group may be physically
accessible from one or more systems, but access is restricted to only
one system at a time.

The boot disk group (usually aliased by the reserved disk group name
bootdg) is always a private disk group.

Shared disk group Can be shared by all nodes. A shared (or cluster-shareable) disk group
is imported by all cluster nodes. LUNSs in a shared disk group must be
physically accessible from all systems that may join the cluster.

In a CVM cluster, most disk groups are shared. LUNs in a shared disk group are
accessible from all nodes in a cluster, allowing applications on multiple cluster
nodes to simultaneously access the same LUN. A volume in a shared disk group
can be simultaneously accessed by more than one node in the cluster, subject to
license key and disk group activation mode restrictions.

You can use the vxdg command to designate a disk group as cluster-shareable.
See “Importing disk groups as shared” on page 444.

When a disk group is imported as cluster-shareable for one node, each disk header
is marked with the cluster ID. As each node subsequently joins the cluster, it
recognizes the disk group as being cluster-shareable and imports it. In contrast, a
private disk group's disk headers are marked with the individual node's host name.
As system administrator, you can import or deport a shared disk group at any time;
the operation takes place in a distributed fashion on all nodes.

Each LUN is marked with a unique disk ID. When cluster functionality for VxXVM
starts on the master, it imports all shared disk groups (except for any that do not
have the autoimport attribute set). When a slave tries to join a cluster, the master
sends it a list of the disk records that it has imported, and the slave checks to see
if it can access them all. If the slave cannot access one of the listed disks, it
abandons its attempt to join the cluster. If it can access all of the listed disks, it joins



How Cluster Volume Manager works | 172
Overview of clustering

the cluster and imports the same shared disk groups as the master. When a node
leaves the cluster gracefully, it deports all its imported shared disk groups, but they
remain imported on the surviving nodes.

Reconfiguring a shared disk group is performed with the cooperation of all nodes.
Configuration changes to the disk group are initiated by the master, and happen
simultaneously on all nodes and the changes are identical. Such changes are atomic
in nature, which means that they either occur simultaneously on all nodes or not at
all.

Whether all members of the cluster have simultaneous read and write access to a
cluster-shareable disk group depends on its activation mode setting.

See “Activation modes of shared disk groups” on page 172.

The data contained in a cluster-shareable disk group is available as long as at least
one node is active in the cluster. The failure of a cluster node does not affect access
by the remaining active nodes. Regardless of which node accesses a
cluster-shareable disk group, the configuration of the disk group looks the same.

Warning: Applications running on each node can access the data on the VxVM
disks simultaneously. VxVM does not protect against simultaneous writes to shared
volumes by more than one node. It is assumed that applications control consistency
(by using Cluster File System or a distributed lock manager, for example).

Activation modes of shared disk groups

A shared disk group must be activated on a node in order for the volumes in the
disk group to become accessible for application 1/0 from that node. The ability of
applications to read from or to write to volumes is dictated by the activation mode
of a shared disk group. Valid activation modes for a shared disk group are
exclusivewrite, readonly, sharedread, sharedwrite, and of £ (inactive).

The default activation mode for shared disk groups is sharedwrite.

Special uses of clusters, such as high availability (HA) applications and off-host
backup, can use disk group activation to explicitly control volume access from
different nodes in the cluster

Table 6-1 describes the activation modes.



How Cluster Volume Manager works

173

Overview of clustering

Table 6-1 Activation modes for shared disk groups
Activation Description
mode
exclusivewrite | The node has exclusive write access to the disk group. No other node
(ew) can activate the disk group for write access.
readonly (ro) | The node has read access to the disk group and denies write access
for all other nodes in the cluster. The node has no write access to the
disk group. Attempts to activate a disk group for either of the write
modes on other nodes fail.
sharedread The node has read access to the disk group. The node has no write
(sr) access to the disk group, however other nodes can obtain write access.
sharedwrite The node has write access to the disk group. Attempts to activate the
(sw) disk group for shared read and shared write access succeed. Attempts
to activate the disk group for exclusive write and read-only access fail.
off The node has neither read nor write access to the disk group. Query

operations on the disk group are permitted.

Table 6-2 summarizes the allowed and conflicting activation modes for shared disk

groups.
Table 6-2 Allowed and conflicting activation modes
Disk group Attempt to

activated in activate disk

cluster as... group on

another node
as...

exclusive- readonly sharedread |sharedwrite
write
exclusivewrite Fails Fails Succeeds Fails
readonly Fails Succeeds Succeeds Fails
sharedread Succeeds Succeeds Succeeds Succeeds
sharedwrite Fails Fails Succeeds Succeeds

Shared disk groups can be automatically activated in a specified mode when the
disk group is created or imported. To control automatic activation of shared disk
groups, create a defaults file /etc/default/vxdg containing the following lines:



How Cluster Volume Manager works | 174
Overview of clustering

enable activation=true

default activation mode=activation-mode

The activation-mode is one of exclusivewrite, readonly, sharedread,
sharedwrite, Or off.

When a shared disk group is created or imported, it is activated in the specified
mode. When a node joins the cluster, all shared disk groups accessible from the
node are activated in the specified mode.

The activation mode of a disk group controls volume I/O from different nodes in the
cluster. It is not possible to activate a disk group on a given node if it is activated
in a conflicting mode on another node in the cluster. When enabling activation using
the defaults file, it is recommended that the file be consistent on all nodes in the
cluster as in Table 6-2. Otherwise, the results of activation are unpredictable.

If the defaults file is edited while the vxconfigd daemon is already running, run the
/sbin/vxconfigd -k -x syslog command on all nodes to restart the process.

If the default activation mode is anything other than of £, an activation following a
cluster join, or a disk group creation or import can fail if another node in the cluster
has activated the disk group in a conflicting mode.

To display the activation mode for a shared disk group, use the vxdg 1list
diskgroup command.

See “Listing shared disk groups” on page 442.

You can also use the vxdg command to change the activation mode on a shared
disk group.

See “Changing the activation mode on a shared disk group” on page 446.

It is also possible to configure a volume so that it can only be opened by a single
node in a cluster.

See “Creating volumes with exclusive open access by a node” on page 452.

See “Setting exclusive open access to a volume by a node” on page 452.

Limitations of shared disk groups

Only raw device access may be performed via CVM. It does not support shared
access to file systems in shared volumes unless the appropriate software, such as
Cluster File System, is installed and configured.

Note: The boot disk group (usually aliased as bootdg) cannot be made
cluster-shareable. It must be private.




How Cluster Volume Manager works | 175
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

The cluster functionality of VxVM does not support RAID-5 volumes for
cluster-shareable disk groups. These volumes can, however, be used in private
disk groups that are attached to specific nodes of a cluster or can be failed over to
other nodes in the cluster.

If you have RAID-5 volumes in a private disk group that you wish to make shareable,
you must first relayout the volumes as a supported volume type such as
stripe-mirror Of mirror-stripe. Online relayout of shared volumes is supported
provided that it does not involve RAID-5 volumes.

Cluster Volume Manager (CVM) tolerance to
storage connectivity failures

Cluster Volume Manager (CVM) uses a shared storage model. A shared disk group
provides concurrent read and write access to the volumes that it contains for all
nodes in a cluster.

Cluster resiliency means that the cluster functions with minimal disruptions if one
or more nodes lose connectivity to the shared storage. When CVM detects a loss
of storage connectivity for an online disk group, CVM performs appropriate error
handling for the situation. For example, CVM may redirect I/O over the network,
detach a plex, or disable a volume for all disks, depending on the situation. The
behavior of CVM can be customized to ensure the appropriate handling for your
environment.

The CVM resiliency features also enable a node to join the cluster even if the new
node does not have connectivity to all the disks in the shared disk group.This
behavior ensures that a node that is taken offline can rejoin the cluster. Similarly,
a shared disk group can be imported on a node.

Note: Cluster resiliency functionality is intended to handle temporary failures.
Restore the connectivity as soon as possible.

CVM provides increased cluster resiliency and tolerance to connectivity failure in
the following ways:



Table 6-3

How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Functionality

Description

Configurable?

Consistency of data plexes.

CVM manages connectivity errors
for data disks so that I/0 can
continue to the unaffected disks.

n Ifafailure is seen on all nodes,
CVM detaches the affected
plexes as long at least one plex
is still accessible.

= [f afailure does not affect all of
the nodes, the disk detach
policy determines how CVM
handles the failure.

See “About disk detach
policies” on page 181.

Yes. Controlled by
the detach policy,
which can be local
or global.

See “Setting the
detach policy for
shared disk
groups”

on page 447.

Continuity of application 1/0

If a connectivity failure does not
affect all the nodes, CVM can
redirect I/0 over the network to a
node that has access to the
storage. This behavior enables the
application I/0 to continue on some
nodes even when storage
connectivity failures occur on some
nodes.

By redirecting 1/0, CVM can avoid
the need to either locally fail the
I/0 on the volume or detach the
plex when at least one node has
access to the underlying storage.
Therefore, the ioship policy
changes the behavior of the disk
detach policy.

See “About redirection of
application 1/0s with CVM 1/O
shipping” on page 178.

Yes. Controlled by
the ioship
tunable parameter,
which is set for a
disk group.

See “Enabling I/O
shipping for shared
disk groups”
on page 446.




How Cluster Volume Manager works | 177
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 6-3 (continued)

Functionality Description Configurable?

Availability of shared disk group | The master node handles No. Enabled by
configurations. configuration changes to the default.

shared disk group, so CVM
ensures that the master node has
access to the configuration copies.

If the master node loses
connectivity to a configuration
copy, CVM redirects the 1/0
requests over the network to a
node that can access the
configuration copy. This behavior
ensures that the disk group stays
available.

This behavior is independent of the
disk detach policy or ioship policy.

If the disk group version is less
than 170, CVM handles the
disconnectivity according to the
disk group failure policy
(dgfailpolicy) .

See “Availability of shared disk

group configuration copies”
on page 178.

Availability of snapshots CVM initiates internal 1/Os to No. Enabled by
update Data Change Objects default.
(DCOs).

If a node loses connectivity to
these objects, CVM redirects the
internal I/Os over the network to a
node that has access.

This behavior is independent of the
disk detach policy or ioship policy.




How Cluster Volume Manager works | 178
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Table 6-3 (continued)

Functionality Description Configurable?

Availability of cluster nodes and CVM enables a cluster node to join | Yes. Controlled by

shared disk groups even if the node does not have the
access to all of the shared storage. | storage comectivity
tunable.

Similarly, a node can import a
shared disk group even if there is | See “Controlling

a local failure to the storage. the CVM tolerance
to storage
disconnectivity ”
on page 451.

This behavior is independent of the
disk detach policy or ioship policy.

See “Availability of cluster nodes
and shared disk groups”
on page 188.

Availability of shared disk group configuration copies

CVM maintains connectivity to shared disk groups as long as at least one node in
the cluster has access to the configuration copies. The master node performs
changes to the configuration and propagates the changes to all of the slave nodes.
If the master node loses access to the configuration copies, the master node sends
the writes for the configuration change to a slave node that has access. The slave
node implements the changes. This behavior enables the disk group to stay active,
even when the master node loses access to the shared disk group configuration.
If all nodes lose access to the shared disk group, the disk group is disabled.

In previous releases prior to release 6.0, you could configure a disk group failure
policy for a shared disk group. The disk group failure policy is no longer supported
for disk groups with the latest disk group version and cluster protocol version.

If the cluster protocol version is less than 110, or the disk group version is less than
170, the disk group failure policy (dgfailpolicy) determines the behavior after failure.

See the documentation from the relevant release of VxVM.

Disk group configurations are handled this way regardless of the setting for the
ioship policy. The ioship policy controls redirection of application 1/Os.

See “About redirection of application 1/Os with CVM I/O shipping” on page 178.

About redirection of application 1/0Os with CVM 1/O shipping

Cluster Volume Manager (CVM) provides an option to handle loss of connectivity
by redirecting application I/Os over the network if a node loses connectivity to a
disk. The node that lost connectivity sends the 1/0 request over the network to a



How Cluster Volume Manager works | 179
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

node that can access the disk. The node can be a master node or a slave node.
The process of redirecting the 1/Os is also called I/O shipping. The application 1/0Os
are only shipped when the node has lost local connectivity.

The I/0 shipping is controlled by the ioship policy, which is disabled by default. You
can turn on 1/O shipping per shared disk group.

See “Enabling 1/O shipping for shared disk groups” on page 446.

CVM considers the I/O shipping policy together with the disk detach policy to
determine how to handle the 1/O errors.

See “How CVM detach policies interact with 1/0 shipping” on page 185.
The 1/O shipping policy handles only application 1/0.
CVM always uses I/O redirection for 1/O to the configuration copies.

See “Availability of shared disk group configuration copies” on page 178.

Storage disconnectivity and CVM disk detach policies

When Cluster Volume Manager (CVM) detects a connectivity failure to one or more
plexes on one or more cluster nodes, CVM determines the handling of the
connectivity failure based on the following:

= The type of storage disconnectivity failure.
See “About the types of storage connectivity failures” on page 179.

= The detach policy set for the disk group.
See “About disk detach policies” on page 181.

About the types of storage connectivity failures

CVM determines the type of storage disconnnectivity failure based on the scope
of failure. CVM determines whether the failure affects all nodes (global failure), or
only particular nodes (local failure). CVM also determines whether the failure affects
one or more plexes of the volume. If the failure affects all plexes, it is considered
total failure. Otherwise, it is considered partial failure.

CVM defines the following types of storage disconnectivity:

= global partial failure
Figure 6-2 shows this scenario.

= global total failure
Figure 6-3 shows a global total failure.

= local partial failure
Figure 6-4 shows a local partial failure.



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

= local total failure
Figure 6-5 shows a local total failure.

Figure 6-2 shows a global partial failure. A global partial failure indicates that all of
the nodes are affected, but not all of the plexes in the volume. In the example, all
nodes in the cluster lost access to Array B, which has plex B for the volume.

Figure 6-2 Global partial failure

| CVMCluster

.....................

ray A ray B

Figure 6-3 shows a global total failure. A global total failure means that all nodes
are affected and all plexes in the volume are affected.

Figure 6-3 Global total failure

180



How Cluster Volume Manager works | 181
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 6-4 shows a local partial failure. A local partial failure indicates that the failure
did not affect all plexes, and the failure occured on one or more nodes, but not on
all nodes.

Figure 6-4 Local partial failure

rayA

Figure 6-5 shows a local total failure. A local total failure indicates that the failure
affect all plexes, and the failure occured on one or more nodes, but not on all nodes.

Figure 6-5 Local total failure

¢

: CVMCluster ;

rrayA |

About disk detach policies

The disk detach policy determines how CVM handles failures in the storage or
connectivity to the storage.

For small mirrored volumes, non-mirrored volumes, volumes that use hardware

mirrors, and volumes in private disk groups, there is no benefit in configuring the
local detach policy. In most cases, Veritas recommends that you use the default
global detach policy.

The following disk detach policies are available:



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

= Global detach policy
The global detach policy specifies that on any I/O error, the plex seeing the error
is detached cluster-wide for the volume. This behavior assures a symmetric
access to the volumes on all nodes in the cluster. The global detach policy is
the traditional and default policy for all nodes in the configuration.
See “How CVM handles local storage disconnectivity with the global detach
policy” on page 182.

= Local detach policy
The local detach policy indicates that when a node has an I/O failure to a plex
due to a local connectivity issue, the volume is disabled locally. The plex is not
detached for the whole cluster. This behavior ensures that all of the plexes are
available for I/0O on the other nodes. Only the node or nodes that had the failure
are affected.
See “How CVM handles local storage disconnectivity with the local detach policy”
on page 183.

The disk detach policy is set for the shared disk group. If you need to change the
detach policy from the default global detach policy to the local detach policy, use
the vxdg command.

How CVM handles local storage disconnectivity with the
global detach policy

CVM behavior for a local failure depends on the setting for the detach policy, and
the number of plexes affected.

If the failure does not affect all nodes, the failure is considered to be local. Local
failure could occur on one or more nodes, but not all nodes. The I/O failure is
considered local if at least one node still has access to the plex.

If the detach policy is set to global, and the failure affects one or more plexes in the
volume for one or more nodes, CVM detaches the plex. The global detach policy
indicates that CVM should ensure that the plexes (mirrors) of the volume stay
consistent. Detaching the plex ensures that data on the plex is exactly the same
for all nodes. When the connectivity returns, CVM reattaches the plex to the volume
and resynchronizes the plex.

Figure 6-6 shows how CVM handles a local partial failure, when the detach policy
is global.

182



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 6-6 How CVM handles local partial failure - global detach policy

CVM Cluster

‘ Volume Volume Volume \

Master's objects Slave1's objects Slave2's objects

The benefit with this policy is that the volume is still available for I/O on all nodes.
If there is a read or write 1/O failure on a slave node, the master node performs the
usual I/O recovery operations to repair the failure. If required, the plex is detached
from the volume, for the entire cluster. All nodes remain in the cluster and continue
to perform 1/O, but the redundancy of the mirrors is reduced.

The disadvantage is that redundancy is lost, because of the detached plex. Because
one or more nodes in the cluster lose connectivity to a plex, the entire cluster loses
access to that plex. This behavior means that a local fault on one node has a global
impact on all nodes in the cluster.

The global detach policy also requires the overhead of reattaching the plex. When
the problem that caused the I/O failure has been corrected, the disks should be
re-attached. The mirrors that were detached must be recovered before the
redundancy of the data can be restored.

If a node experiences failure to all of the plexes of a mirrored volume, the 1/Os fail
to the volume from the local node, but no plexes are detached. This behavior
prevents the behavior wherein each plex was detached one after other and the
volume was disabled globally.

How CVM handles local storage disconnectivity with the
local detach policy

The local detach policy indicates that when a node has an I/O failure to a plex due
to a local connectivity issue, the I/Os fail to the local volume. The plex is not detached

183



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

for the whole cluster. This behavior ensures that all of the plexes are available for
I/O on the other nodes. Only the node or nodes that had the failure are affected.

The benefit with this policy is that the redundancy of the volume is protected, as
much as possible. The local detach policy supports failover applications in large
clusters where the redundancy of the volume is more important than the number
of nodes that can access the volume. That is, you would prefer one or more nodes
to lose 1/0O access to the volume, rather than lose a plex of the volume for all of the
nodes in the cluster. This scenario typically applies when the volumes are mirrored,
and a parallel application is used that can seamlessly provide the same service
from the other nodes. For example, this option is not appropriate for fast failover
configurations.

If the detach policy is set to local, and the failure is a local partial failure, CVM locally
fails write 1/Os to the volume. The local detach policy indicates that CVM should
ensure that a local connectivity error only affects the local node. When the 1/O is
failing locally to the volume, applications need to be failed over to another node.

If the 1/0 shipping policy is on, the 1/Os are redirected over the network to another
node in the cluster. CVM does not fail the 1/0 in this case.

Figure 6-7 shows a local partial failure.

Figure 6-7 Local partial failure - local detach policy

Volume ‘ Volume \’“0

Master's ob;ecls Slavel's objects Siave's oblects

Guidelines for choosing detach policies

In most cases it is recommended that you use the global detach policy, and
particularly if any of the following conditions apply:

184



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

If only non-mirrored volumes, small, mirrored volumes, or hardware-mirrored
volumes are configured. This avoids the system overhead of the extra messaging
that is required by the local detach policy.

The local detach policy may be suitable in the following cases:

When large, mirrored volumes are configured. Resynchronizing a reattached
plex can degrade system performance. The local detach policy can avoid the
need to detach the plex at all. Alternatively, the dirty region logging (DRL) feature
can reduce the amount of resynchronization that is required.

For clusters with more than four nodes. Keeping an application running on a
particular node is less critical when there are many nodes in a cluster. It may
be possible to configure the cluster management software to move an application
to a node that has access to the volumes. In addition, load balancing may be
able to move applications to a different volume from the one that experienced
the 1/0 problem. This behavior preserves data redundancy, and other nodes
may still be able to perform I/O to and from the volumes on the disk.

Table 6-4 compares the behavior of CVM when I/O failures occur under the different
detach policies.

Table 6-4 Cluster behavior under I/O failure to a mirrored volume for disk

detach policies

Type of failure Local detach policy Global detach policy
Local partial failure Fails I/0 to the volume from | Detaches the plex.
the nodes that cannot access
the plex.
Local total failure Fails 1/0 to the volume from | Fails 1/O to the volume.
the nodes that cannot access
the plex.
Global partial failure Detaches the plex. Detaches the plex.
Global total failure Disables the volume. Disables the volume.

How CVM detach policies interact with 1/0 shipping

When /O shipping is enabled, CVM tries to redirect the I/O across the network,
before locally disabling a volume or detaching a plex. Therefore, the behavior of
the detach policies differs when 1/O shipping is enabled.

Table 6-5 summarizes the effect on a cluster of I/O failure to the disks in a mirrored
volume when I/O shipping is enabled.

185



Table 6-5

How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Cluster behavior under |/O failure to a mirrored volume for disk

detach policies when 1/O shipping is enabled

Type of failure

Local detach
policy

Global detach
policy

Local partial failure

Ships 1/0.

Detaches the plexes.

Local total failure

Ships 1/0.

Ships I/0.

Global partial failure

Detaches the plex.

Detaches the plex.

Global total failure

Detaches all plexes

Disables the volume.

but the last plex.

CVM storage disconnectivity scenarios that are policy
independent

The behavior for the following storage connectivity failures is the same regardless
of the detach policy.

» global partial failure.
Figure 6-8 shows this scenario.

= global total failure.
Figure 6-9 shows a global total failure

= local total failure.
Figure 6-10 shows a global total failure

Figure 6-8 shows a global partial failure. A global partial failure indicates that all of
the nodes are affected, but not all of the plexes in the volume. In the example, all
nodes in the cluster lost access to Array B, which has plex B for the volume.

Plex B is detached. None of the nodes can access the plex, so the plex must be
detached to maintain the consistency of the mirror. I/O continues to other plexes
in the volume. This reduces the redundancy of the volume.

186



How Cluster Volume Manager works
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 6-8 Global partial failure - policy independent

| cvM Cluster

irrayﬁ. *\.my B

Master's objects Slaval's objacts Slave?'s objects

Figure 6-9 shows a global total failure. This means that all nodes are affected and
all plexes in the volume are affected. The volume is disabled. Since no plexes are
available, the volume is not available for any I/Os. If the failure occurs on all nodes
at the same time, no plexes are detached.

Figure 6-9 Global total failure - policy independent

If the local failure is total for all of the plexes in the volume, CVM behavior is the
same regardless of policy. CVM locally fails 1/O to the volume. I/O fails to the volume
from the node or nodes that cannot access the plex. I/O continues to the volume
from other nodes.

Figure 6-10 shows a local total failure.

187



How Cluster Volume Manager works | 188
Cluster Volume Manager (CVM) tolerance to storage connectivity failures

Figure 6-10 Local total failure - policy independent

: CVM Cluster

Volume ‘ Volume

Master's objects Slave1l's objects Slave2's objects

Availability of cluster nodes and shared disk groups

By default, CVM enables a node to join the cluster as long as the node has access
to the disks through at least one node in the cluster. Typically, the node accesses
the disks through the master node. A shared disk group can also be imported if
some nodes cannot access all of the disks. During a node join operation or a disk
group import operation, if CVM detects that the node does not have access to the
underlying storage for the volume, the volume is placed in the LDISABLED state.
The storage connectivity in such a situation is asymmetric, meaning that not all
nodes have the same access to all the disks in the shared disk group.

Note: The support for asymmetric disk access is intended to handle temporary
connectivity issues, and not to be a permanent state. The connectivity should be
restored as soon as possible. CVM considers the cluster to be in a degraded mode
until the connectivity is restored.

This behavior is enabled by default. You can set the storage connectivity policy to
resilient to disable this functionality. The configuration of this feature is independent
from the detach policy and the 1/0O shipping policy. However, the disk group version
and the cluster protocol version must be a level to support the behavior.

When the storage connectivity is set to resilient, Cluster Volume Manager (CVM)
requires that a node joining a cluster must have access to all the disks in all shared



How Cluster Volume Manager works | 189
CVM initialization and configuration

disk groups. This requirement applies also to a node that was removed from the
cluster because of an I/O failure. The node cannot rejoin the cluster until the disk
access is restored. Similarly, a shared disk group cannot be imported unless all of
the nodes in the cluster can access all of the disks in the disk group.

See “Controlling the CVM tolerance to storage disconnectivity ” on page 451.

CVM initialization and configuration

Before any nodes can join a new cluster for the first time, you must supply certain
configuration information during cluster monitor setup. This information is normally
stored in some form of cluster monitor configuration database. The precise content
and format of this information depends on the characteristics of the cluster monitor.
The information required by VxVM is as follows:

n ClusterID

= Node IDs

= Network addresses of nodes
» Port addresses

When a node joins the cluster, this information is automatically loaded into VxVM
on that node at node startup time.

Note: The CVM functionality of VxVM is supported only when used with a cluster
monitor that has been configured correctly to work with VxVM.

Use a cluster monitor such as GAB (Group Membership and Atomic Broadcast) in
Cluster Service (VCS). For a VCS environment, use the vxcvmconfig command
on any node to configure the cluster to use the CVM functionality of VxXVM. The
vxcvmconfig command is not included with Veritas Volume Manager.

The cluster monitor startup procedure effects node initialization, and brings up the
various cluster components (such as VxVM with cluster support, the cluster monitor,
and a distributed lock manager) on the node. Once this is complete, applications
may be started. The cluster monitor startup procedure must be invoked on each
node to be joined to the cluster.

For VxVM in a cluster environment, initialization consists of loading the cluster
configuration information and joining the nodes in the cluster. The first node to join
becomes the master node, and later nodes (slaves) join to the master. If two nodes
join simultaneously, VxVM chooses the master. After a given node joins, that node
has access to the shared disk groups and volumes.



How Cluster Volume Manager works | 190
CVM initialization and configuration

Cluster reconfiguration

Cluster reconfiguration occurs if a node leaves or joins a cluster. Each node’s cluster
monitor continuously watches the other cluster nodes. When the membership of
the cluster changes, the cluster monitor informs Veritas Volume Manager (VxVM)
to take appropriate action.

During cluster reconfiguration, VxVM suspends /O to shared disks. 1/O resumes
when the reconfiguration completes. Applications may appear to freeze for a short
time during reconfiguration.

If other operations, such as VxVM operations or recoveries, are in progress, cluster
reconfiguration can be delayed until those operations complete. Volume
reconfigurations do not take place at the same time as cluster reconfigurations.
Depending on the circumstances, an operation may be held up and restarted later.
In most cases, cluster reconfiguration takes precedence. However, if the volume
reconfiguration is in the commit stage, it completes first.

See “Volume reconfiguration” on page 192.

See “vxclustadm utility” on page 190.

vxclustadm utility

The vxclustadm command provides an interface to the CVM functionality of VxVM
when VCS is used as the cluster monitor. It is also called during cluster startup and
shutdown. In the absence of a cluster monitor, vxclustadm can also be used to
activate or deactivate the CVM functionality of VxVM on any node in a cluster.

The startnode keyword to vxclustadm starts CVM functionality on a cluster node
by passing cluster configuration information to the VxVM kernel. In response to this
command, the kernel and the VxVM configuration daemon, vxconfigd, perform
initialization.

The stopnode keyword stops CVM functionality on a node. It waits for all outstanding
I/0O to complete and for all applications to close shared volumes.

The setmaster keyword migrates the CVM master to the specified node. The
migration is an online operation. Veritas recommends that you switch the master
when the cluster is not handling VxVM configuration changes or cluster
reconfiguration operations.

The reinit keyword allows nodes to be added to or removed from a cluster without
stopping the cluster. Before running this command, the cluster configuration file
must have been updated with information about the supported nodes in the cluster.



How Cluster Volume Manager works | 191

CVM initialization and configuration

The nidmap keyword prints a table showing the mapping between CVM node IDs
in VXVM’s cluster-support subsystem and node IDs in the cluster monitor. It also
prints the state of the nodes in the cluster.

The nodestate keyword reports the state of a cluster node and also the reason for
the last abort of the node as shown in this example:

# vxclustadm nodestate
state: out of cluster

reason: user initiated stop

Table 6-6 lists the various reasons that may be given for a node abort.

Table 6-6

Node abort messages

Reason

Description

cannot find disk on slave node

Missing disk or bad disk on the slave node.

cannot obtain configuration
data

The node cannot read the configuration data due
to an error such as disk failure.

cluster device open failed

Open of a cluster device failed.

clustering license mismatch

with master node

Clustering license does not match that on the
master node.

clustering license not
available

Clustering license cannot be found.

connection refused by master

Join of a node refused by the master node.

disk in use by another cluster

A disk belongs to a cluster other than the one that
a node is joining.

join timed out during

reconfiguration

Join of a node has timed out due to reconfiguration
taking place in the cluster.

klog update failed

Cannot update kernel log copies during the join of
a node.

master aborted during join

Master node aborted while another node was
joining the cluster.

protocol version out of range

Cluster protocol version mismatch or unsupported
version.

recovery in progress

Volumes that were opened by the node are still
recovering.




How Cluster Volume Manager works | 192
CVM initialization and configuration

Table 6-6 Node abort messages (continued)
Reason Description
transition to role failed Changing the role of a node to be the master failed.
user initiated abort Node is out of cluster due to an abort initiated by

the user or by the cluster monitor.

user initiated stop Node is out of cluster due to a stop initiated by the
user or by the cluster monitor.

vxconfigd is not enabled The VXVM configuration daemon is not enabled.

See the vxclustadm(1M) manual page.

Volume reconfiguration

Volume reconfiguration is the process of creating, changing, and removing VxVM
objects such as disk groups, volumes, and plexes. In a cluster, all nodes cooperate
to perform such operations. The vxconfigd daemons play an active role in volume
reconfiguration. For reconfiguration to succeed, a vxconfigd daemon must be
running on each of the nodes.

See “vxconfigd daemon” on page 193.

A volume reconfiguration transaction is initiated by running a VxVM utility on the
master node. The utility contacts the local vxconfigd daemon on the master node,
which validates the requested change. For example, vxconfigd rejects an attempt
to create a new disk group with the same name as an existing disk group. The
vxconfigd daemon on the master node then sends details of the changes to the
vxconfigd daemons on the slave nodes. The vxconfigd daemons on the slave
nodes then perform their own checking. For example, each slave node checks that
it does not have a private disk group with the same name as the one being created.
If the operation involves a new disk, each node checks that it can access that disk.
When the vxconfigd daemons on all the nodes agree that the proposed change
is reasonable, each notifies its kernel. The kernels then cooperate to either commit
or to abandon the transaction. Before the transaction can be committed, all of the
kernels ensure that no I/O is underway, and block any I/O issued by applications
until the reconfiguration is complete. The master node is responsible both for
initiating the reconfiguration, and for coordinating the commitment of the transaction.
The resulting configuration changes appear to occur simultaneously on all nodes.

If a vxconfigd daemon on any node goes away during reconfiguration, all nodes
are notified and the operation fails. If any node leaves the cluster, the operation
fails unless the master has already committed it. If the master node leaves the



How Cluster Volume Manager works
CVM initialization and configuration

cluster, the new master node, which was previously a slave node, completes or
fails the operation depending on whether or not it received notification of successful
completion from the previous master node. This notification is performed in such a
way that if the new master does not receive it, neither does any other slave.

If a node attempts to join a cluster while a volume reconfiguration is being performed,
the result of the reconfiguration depends on how far it has progressed. If the kernel
has not yet been invoked, the volume reconfiguration is suspended until the node
has joined the cluster. If the kernel has been invoked, the node waits until the
reconfiguration is complete before joining the cluster.

When an error occurs, such as when a check on a slave fails or a node leaves the
cluster, the error is returned to the utility and a message is sent to the console on
the master node to identify on which node the error occurred.

vxconfigd daemon

The VxVM configuration daemon, vxconfigd, maintains the configuration of VxVM
objects. It receives cluster-related instructions from the kernel. A separate copy of
vxconfigd runs on each node, and these copies communicate with each other over
a network. When invoked, a VxVM utility communicates with the vxconfigd daemon
running on the same node; it does not attempt to connect with vxconfigd daemons
on other nodes. During cluster startup, the kernel prompts vxconfigd to begin
cluster operation and indicates whether it is a master node or a slave node.

When a node is initialized for cluster operation, the vxconfigd daemon is notified
that the node is about to join the cluster and is provided with the following information
from the cluster monitor configuration database:

n cluster ID

= node IDs

= master node ID

= role of the node

= network address of the node

On the master node, the vxconfigd daemon sets up the shared configuration by
importing shared disk groups, and informs the kernel when it is ready for the slave
nodes to join the cluster.

On slave nodes, the vxconfigd daemon is notified when the slave node can join
the cluster. When the slave node joins the cluster, the vxconfigd daemon and the
VxVM kernel communicate with their counterparts on the master node to set up the
shared configuration.

193



How Cluster Volume Manager works
CVM initialization and configuration

When a node leaves the cluster, the kernel notifies the vxconfigd daemon on all
the other nodes. The master node then performs any necessary cleanup. If the
master node leaves the cluster, the kernels select a new master node and the
vxconfigd daemons on all nodes are notified of the choice.

The vxconfigd daemon also participates in volume reconfiguration.

See “Volume reconfiguration” on page 192.

vxconfigd daemon recovery

In a cluster, the vxconfigd daemons on the slave nodes are always connected to
the vxconfigd daemon on the master node. If the vxconfigd daemon is stopped,
volume reconfiguration cannot take place. Other nodes can join the cluster if the
vxconfigd daemon is not running on the slave nodes.

If the vxconfigd daemon stops, different actions are taken depending on which
node this occurred:

If the vxconfigd daemon is stopped on the master node, the vxconfigd
daemons on the slave nodes periodically attempt to rejoin to the master node.
Such attempts do not succeed until the vxconfigd daemon is restarted on the
master. In this case, the vxconfigd daemons on the slave nodes have not lost
information about the shared configuration, so that any displayed configuration
information is correct.

If the vxconfigd daemon is stopped on a slave node, the master node takes
no action. When the vxconfigd daemon is restarted on the slave, the slave
vxconfigd daemon attempts to reconnect to the master daemon and to
re-acquire the information about the shared configuration. (Neither the kernel
view of the shared configuration nor access to shared disks is affected.) Until
the vxconfigd daemon on the slave node has successfully reconnected to the
vxconfigd daemon on the master node, it has very little information about the
shared configuration and any attempts to display or modify the shared
configuration can fail. For example, shared disk groups listed using the vxdg
1ist command are marked as disabled; when the rejoin completes successfully,
they are marked as enabled.

If the vxconfigd daemon is stopped on both the master and slave nodes, the
slave nodes do not display accurate configuration information until vxconfigd
is restarted on the master and slave nodes, and the daemons have reconnected.

If the Cluster Volume Manager (CVM) agent for Cluster Server (VCS) determines
that the vxconfigd daemon is not running on a node during a cluster reconfiguration,
vxconfigd is restarted automatically.

194



How Cluster Volume Manager works | 195
CVM initialization and configuration

Warning: The -r reset option to vxconfigd restarts the vxconfigd daemon and
recreates all states from scratch. This option cannot be used to restart vxconfigd
while a node is joined to a cluster because it causes cluster information to be
discarded.

It may sometimes be necessary to restart vxconfigd manually in a VCS-controlled
cluster to resolve a Veritas Volume Manager (VxVM) issue.

Node shutdown

Although it is possible to shut down the cluster on a node by invoking the shutdown
procedure of the node’s cluster monitor, this procedure is intended for terminating
cluster components after stopping any applications on the node that have access
to shared storage. VxVM supports clean node shutdown, which allows a node to
leave the cluster gracefully when all access to shared volumes has ceased. The
host is still operational, but cluster applications cannot be run on it.

The CVM functionality of VXVM maintains global state information for each volume.
This enables VxVM to determine which volumes need to be recovered when a node
crashes. When a node leaves the cluster due to a crash or by some other means
that is not clean, VxVM determines which volumes may have writes that have not
completed and the master node resynchronizes these volumes. The
resynchronization can use dirty region logging (DRL) or FastResync if these are
active for any of the volumes.

Clean node shutdown must be used after, or in conjunction with, a procedure to
halt all cluster applications. Depending on the characteristics of the clustered
application and its shutdown procedure, a successful shutdown can require a lot
of time (minutes to hours). For instance, many applications have the concept of
draining, where they accept no new work, but complete any work in progress before
exiting. This process can take a long time if, for example, a long-running transaction
is active.

When the VxVM shutdown procedure is invoked, it checks all volumes in all shared
disk groups on the node that is being shut down. The procedure then either continues
with the shutdown, or fails for one of the following reasons:

= [fall volumes in shared disk groups are closed, VxVM makes them unavailable
to applications. Because all nodes are informed that these volumes are closed
on the leaving node, no resynchronization is performed.

= [fany volume in a shared disk group is open, the shutdown procedure fails. The
shutdown procedure can be repeatedly retried until it succeeds. There is no
timeout checking in this operation—it is intended as a service that verifies that
the clustered applications are no longer active.



How Cluster Volume Manager works | 196
Dirty region logging in cluster environments

Once shutdown succeeds, the node has left the cluster. It is not possible to access
the shared volumes until the node joins the cluster again.

Since shutdown can be a lengthy process, other reconfiguration can take place
while shutdown is in progress. Normally, the shutdown attempt is suspended until
the other reconfiguration completes. However, if it is already too far advanced, the
shutdown may complete first.

Cluster shutdown

If all nodes leave a cluster, shared volumes must be recovered when the cluster is
next started if the last node did not leave cleanly, or if resynchronization from
previous nodes leaving uncleanly is incomplete. CVM automatically handles the
recovery and resynchronization tasks when a node joins the cluster.

Dirty region logging in cluster environments

Dirty region logging (DRL) is an optional property of a volume that provides speedy
recovery of mirrored volumes after a system failure. DRL is supported in
cluster-shareable disk groups. This section provides a brief overview of how DRL
behaves in a cluster environment.

In a cluster environment, the VxVM implementation of DRL differs slightly from the
normal implementation.

A dirty region log on a system without cluster support has a recovery map and a
single active map. A CVM DRL, however, has a single recovery map per cluster
and one active map per cluster node.

The dirty region log size in clusters is typically larger than in non-clustered systems,
as it must accommodate a recovery map plus active maps for each node in the
cluster. The size of each map within the dirty region log is one or more whole blocks.
The vxassist command automatically allocates a sufficiently large dirty region log
for the size of the volume and the number of nodes.

It is possible to reimport a non-shared disk group (and its volumes) as a shared
disk group in a cluster environment. However, the dirty region logs of the imported
disk group may be considered invalid and a full recovery may result.

If a shared disk group is imported as a private disk group on a system without cluster
support, VxVM considers the logs of the shared volumes to be invalid and conducts
a full volume recovery. After the recovery completes, VxVM uses DRL.

The cluster functionality of VXVM can perform a DRL recovery on a non-shared
volume. However, if such a volume is moved to a VxVM system with cluster support
and imported as shared, the dirty region log is probably too small to accommodate



How Cluster Volume Manager works | 197
Multiple host failover configurations

maps for all the cluster nodes. VxVM then marks the log invalid and performs a full
recovery anyway. Similarly, moving a DRL volume from a two-node cluster to a
four-node cluster can result in too small a log size, which the cluster functionality
of VxXVM handles with a full volume recovery. In both cases, you must allocate a
new log of sufficient size.

See “Dirty region logging” on page 88.

How DRL works in a cluster environment

When one or more nodes in a cluster crash, DRL must handle the recovery of all
volumes that were in use by those nodes when the crashes occurred. On initial
cluster startup, all active maps are incorporated into the recovery map during the
volume start operation.

Nodes that crash (that is, leave the cluster as dirty) are not allowed to rejoin the
cluster until their DRL active maps have been incorporated into the recovery maps
on all affected volumes. The recovery utilities compare a crashed node's active
maps with the recovery map and make any necessary updates. Only then can the
node rejoin the cluster and resume 1/O to the volume (which overwrites the active
map). During this time, other nodes can continue to perform 1/O.

VxVM tracks which nodes have crashed. If multiple node recoveries are underway
in a cluster at a given time, VxVM tracks changes in the state of DRL recovery and
prevents 1/O collisions.

The master node performs volatile tracking of DRL recovery map updates for each
volume, and prevents multiple utilities from changing the recovery map
simultaneously.

Multiple host failover configurations

Outside the context of Cluster Volume Manager (CVM), Veritas Volume Manager
(VxVM) disk groups can be imported (made available) on only one host at any given
time. When a host imports a (private) disk group, the volumes and configuration of
that disk group become accessible to the host. If the administrator or system software
wants to privately use the same disk group from another host, the host that already
has the disk group imported (importing host) must deport (give up access to) the
disk group. Once deported, the disk group can be imported by another host.

If two hosts are allowed to access a disk group concurrently without proper
synchronization, such as that provided by Oracle RAC, the configuration of the disk
group, and possibly the contents of volumes, can be corrupted. Similar corruption
can also occur if a file system or database on a raw disk partition is accessed
concurrently by two hosts, so this problem is not limited to VxVM.



Import lock

Failover

How Cluster Volume Manager works
Multiple host failover configurations

When a host in a non-Cluster Volume Manager (CVM) environment imports a disk
group, an import lock is written on all disks in that disk group. The import lock is
cleared when the host deports the disk group. The presence of the import lock
prevents other hosts from importing the disk group until the importing host has
deported the disk group.

Specifically, when a host imports a disk group, the import normally fails if any disks
within the disk group appear to be locked by another host. This allows automatic
re-importing of disk groups after a reboot (autoimporting) and prevents imports by
another host, even while the first host is shut down. If the importing host is shut
down without deporting the disk group, the disk group can only be imported by
another host by clearing the host ID lock first (discussed later).

The import lock contains a host ID (the host name) reference to identify the importing
host and enforce the lock. Problems can therefore arise if two hosts have the same
host ID.

Since Veritas Volume Manager (VxVM) uses the host name as the host ID (by
default), it is advisable to change the host name of one machine if another machine
shares its host name. To change the host name, use the vxdctl hostid
new_hostname command.

The import locking scheme works well in an environment where disk groups are
not normally shifted from one system to another. However, consider a setup where
two hosts, Node A and Node B, can access the drives of a disk group. The disk
group is initially imported by Node A, but the administrator wants to access the disk
group from Node B if Node A crashes. Such a failover scenario can be used to
provide manual high availability to data, where the failure of one node does not
prevent access to data. Failover can be combined with a “high availability” monitor
to provide automatic high availability to data: when Node B detects that Node A
has crashed or shut down, Node B imports (fails over) the disk group to provide
access to the volumes.

Veritas Volume Manager can support failover, but it relies on the administrator or
on an external high-availability monitor, such as Cluster Server (VCS), to ensure

that the first system is shut down or unavailable before the disk group is imported
to another system.

See “Moving disk groups between systems” on page 1002.

See the vxdg(1M) manual page.

198



How Cluster Volume Manager works | 199
Multiple host failover configurations

Corruption of disk group configuration

If vxdg import is used with -c (clears locks) and/or - (forces import) to import a
disk group that is still in use from another host, disk group configuration corruption
is likely to occur. Volume content corruption is also likely if a file system or database
is started on the imported volumes before the other host crashes or shuts down.

If this kind of corruption occurs, your configuration must typically be rebuilt from
scratch and all data be restored from a backup. There are typically numerous
configuration copies for each disk group, but corruption nearly always affects all
configuration copies, so redundancy does not help in this case.

As long as the configuration backup daemon, vxconfigbackupd, is running, Veritas
Volume Manager (VxVM) will backup configurations whenever the configuration is
changed. By default, backups are stored in /etc/vx/cbr/bk. You may also manually
backup the configuration using the vxconfigbackup utility. The configuration can
be rebuilt using the vxconfigrestore utility.

See the vxconfigbackup, vxconfigbackupd, vxconfigrestore man pages

Disk group configuration corruption usually shows up as missing or duplicate records
in the configuration databases. This can result in a variety of vxconfigd error
messages, in the following format:

VxVM vxconfigd ERROR
V-5-1-569 Disk group group,Disk disk:

Cannot auto-import group: reason
where the reason can describe errors such as:

Association not resolved
Association count is incorrect
Duplicate record in configuration

Configuration records are inconsistent

These errors are typically reported in association with specific disk group
configuration copies, but usually apply to all copies. The following is usually displayed
along with the error:

Disk group has no valid configuration copies

If you use Cluster Server (VCS), all disk group failover issues are managed correctly.
VCS includes a high availability monitor and includes failover scripts for VxVM,
Veritas File System (VxFS), and for several popular databases.

The -t option to vxdg prevents automatic re-imports on reboot and is necessary
when used with a host monitor (such as VCS) that controls imports itself, rather
than relying on automatic imports by VxVM.



How Cluster Volume Manager works | 200
About Flexible Storage Sharing

See the Veritas InfoScale Troubleshooting Guide.

About Flexible Storage Sharing

Flexible Storage Sharing (FSS) enables network sharing of local storage, cluster
wide. The local storage can be in the form of Direct Attached Storage (DAS) or
internal disk drives. Network shared storage is enabled by using a network
interconnect between the nodes of a cluster.

FSS allows network shared storage to co-exist with physically shared storage, and
logical volumes can be created using both types of storage creating a common
storage namespace. Logical volumes using network shared storage provide data
redundancy, high availability, and disaster recovery capabilities, without requiring
physically shared storage, transparently to file systems and applications.

FSS can be used with SmartlO technology for remote caching to service nodes
that may not have local SSDs.

FSS is supported on clusters containing up to 64 nodes with CVM protocol versions
140 and above. For more details, refer to the Veritas InfoScale Release Notes.

Figure 6-11 shows a Flexible Storage Sharing environment.

Figure 6-11 Flexible Storage Sharing Environment

Network Interconnect

\

—._._._./.

CVM Shared Disk Group




Flexible Storage Sharing use cases

How Cluster Volume Manager works
About Flexible Storage Sharing

The following list includes several use cases for which you would want to use the

FSS feature:

Use of local storage in current use
cases

Off-host processing

DAS SSD benefits leveraged with
existing SFCFSHA features

The FSS feature supports all current use cases of
the Storage Foundation Cluster File System High
Availability (SFCFSHA) stack without requiring
SAN-based storage.

Data Migration:

s From shared (SAN) storage to network shared
storage

s From network shared storage to SAN storage

= From storage connected to one node
(DAS)/cluster to the storage connected to a
different node (DAS)/cluster, that do not share
the storage

Back-up/Snapshots:

An additional node can take a back-up by joining
the cluster and reading from volumes/snapshots
that are hosted on the DAS/shared storage, which
is connected to one or more nodes of the cluster,
but not the host taking the back-up.

s Mirroring across DAS SSDs connected to
individual nodes of the cluster. DAS SSDs
provides better performance than SAN storage
(including SSDs). FSS provides a way to share
these SSDs across cluster.

= Keeping one mirror on the SSD and another on
the SAN storage provides faster read access
due to the SSDs, and also provide high
availability of data due to the SAN storage.

» There are several best practices for using SSDs
with Storage Foundation. All the use-cases are
possible with SAN attached SSDs in clustered
environment. With FSS, DAS SSDs can also
be used for similar purposes.

201



FSS with SmartlO for file system
caching

FSS with SmartlO for remote caching

Campus cluster configuration

How Cluster Volume Manager works
About Flexible Storage Sharing

If the nodes in the cluster have internal SSDs as
well as HDDs, the HDDs can be shared over the
network using FSS. You can use SmartlO to set
up a read/write-back cache using the SSDs. The
read cache can service volumes created using the
network-shared HDDs.

FSS works with SmartlO to provide caching
services for nodes that do not have local SSD
devices.

In this scenario, Flexible Storage Sharing (FSS)
exports SSDs from nodes that have a local SSD.
FSS then creates a pool of the exported SSDs in
the cluster. From this shared pool, a cache area is
created for each node in the cluster. Each cache
area is accessible only to that particular node for
which it is created. The cache area can be of type,
VxVM or VxFS.

The cluster must be a CVM cluster.

The volume layout of the cache area on remote
SSDs follows the simple stripe layout, not the
default FSS allocation policy of mirroring across
host. If the caching operation degrades
performance on a particular volume, then caching
is disabled for that particular volume. The volumes
that are used to create cache areas must be
created on disk groups with disk group version 200
or later. However, data volumes that are created
on disk groups with disk group version 190 or later
can access the cache area created on FSS
exported devices.

Note: CFS write-back caching is not supported
for cache areas created on remote SSDs.

For more information, see the document Veritas
InfoScale SmartlO for Solid State Drives Solutions
Guide.

Campus clusters can be set up without the need
for Fibre Channel (FC) SAN connectivity between
sites.

202



How Cluster Volume Manager works
About Flexible Storage Sharing

FSS in cloud environments The Flexible Shared Storage (FSS) Technology

allows you to overcome the limitations of
'Share-Nothing' storage in cloud environments.
FSS enables you to create shared-nothing clusters
by sharing cloud block storage over the network.

For details, see the Veritas InfoScale Solutions in
Cloud Environments document.

See “Administering Flexible Storage Sharing” on page 456.

Limitations of Flexible Storage Sharing
Note the following limitations for using Flexible Storage Sharing (FSS):

FSS is only supported on clusters of up to 64 nodes.

Disk initialization operations should be performed only on nodes with local
connectivity to the disk.

FSS does not support the use of boot disks, opaque disks, and non-VxVM disks
for network sharing.

Hot-relocation is disabled on FSS disk groups.

The VxVM cloned disks operations are not supported with FSS disk groups.
FSS does not support non-SCSI3 disks connected to multiple hosts.
Dynamic LUN Expansion (DLE) is not supported.

FSS only supports instant data change object (DCO), created using the vxsnap
operation or by specifying "logtype=dco dcoversion=20" attributes during volume
creation.

By default creating a mirror between SSD and HDD is not supported through
vxassist, as the underlying mediatypes are different. To workaround this issue,
you can create a volume with one mediatype, for instance the HDD, which is
the default mediatype, and then later add a mirror on the SSD.

For example:

# vxassist -g diskgroup make volume size init=none
# vxassist -g diskgroup mirror volume mediatype:ssd
# vxvol -g diskgroup init active volume

See “Administering mirrored volumes using vxassist” on page 462.

203



How Cluster Volume Manager works | 204

Application isolation in CVM environments with disk group sub-clustering

Application isolation in CVM environments with
disk group sub-clustering

Veritas InfoScale introduces a technology preview of the application isolation feature
for non-production environments. This is an early access initiative intended solely
for test environments.

Veritas InfoScale supports application isolation in a CVM cluster through the creation
of disk group sub-clusters. A disk group sub-cluster consists of a logical grouping
of nodes that can selectively import or deport shared disk groups. The shared disk
groups are not imported or deported on all nodes in the cluster as in the traditional
CVM environment. This minimizes the impact of node failures or configuration
changes on applications in the cluster.

You can enable the application isolation feature by setting the cvMbpGsubclust
attribute for the CVMCluster resource in the VCS configuration file. When the cluster
restarts, the feature is enabled and shared disk groups are not auto-imported to all
nodes in the cluster. The first node that imports the disk group forms a disk group
sub-cluster and is elected as the disk group master for the sub-cluster. The remaining
nodes in the cluster that import the shared disk group are treated as slaves. All disk
group level operations run on the master node of the disk group sub-cluster. You
can switch the master at any time for each disk group sub-cluster. A node can play
the role of a master for a sub-cluster as well as that of a slave for another sub-cluster.

If a node loses connectivity to the SAN, the 1/Os for that node are shipped to another
node in the disk group sub-cluster just as in traditional CVM environments. If the
disk group fails due to failed 1/Os on all disks in the disk group, it is disabled and
the nodes that share the disk group must deport and import the disk group again.

A node can belong to multiple disk group sub-clusters. Each disk group sub-cluster
provides all the capabilities of a clustered Veritas Volume Manager environment,
with the exception of some features.

The following CVM features are not available in a disk group sub-cluster:
= Rolling upgrade
= Campus cluster configurations in CVM

= Move and Join operations with different disk group sub-cluster masters (source
and target disk group)

s Clustered Volume Replicator
= Clone devices

The application isolation feature is supported with CVM protocol version 160 and
above. It is disabled, by default, both after installation and upgrade.



How Cluster Volume Manager works

205

Application isolation in CVM environments with disk group sub-clustering

Figure 6-12 illustrates disk group sub-clustering for the application isolation feature.

Figure 6-12

Disk group sub-clustering for the application isolation feature

Disk group sub-cluster 1: Node 1 + Node 2 & Master: Node 1
Disk group sub-cluster 2: Node 2 + Node 3 & Master: Node 2
Disk group sub-cluster 3: Node 4 + Node 5 & Master: Node 4

.o

IMPORTED

-

-

Shared disk group 1

Node 2 ™,

S M‘
A~ Sub-custer 2

IMPORTED

CVM Cluster

S

Node 3 ™

Node 4

!

z

Sub-cu:

J

...................

IMPORTED

IMPORTED

1
Storage Area Network (SAN)

L

Shared disk group 2

Node 5

S
ster 3 !

Node 6
(storage only)

y

Shared disk group 3
FSS [SAN + DAS]

Figure 6-13 illustrates failure management within disk group sub-clusters.

The figure illustrates the following:

= Selective import of disk groups, creating disk group sub-clusters

= A configuration that includes both SAN and DAS storage

= Node 6 is a storage-only node exporting its DAS storage to multiple disk group
sub-clusters

= A node can play multiple roles—master for one sub-cluster and a slave for
another sub-cluster



How Cluster Volume Manager works | 206
Application isolation in CVM environments with disk group sub-clustering
Figure 6-13 Failure management within disk group sub-clusters

Node 4 has faulted causing disk group sub-cluster 3
(Node 4 + Node 5) to fail.

Disk group sub-clusters 1 (N1 & N2) & 2 (N2 & N3) continue
to be up and running.

Node 6
(storage only)

CVM Cluster

Node 4 Node 5

IMPORTED

IMPORTED

| |
Storage Area Network (SAN)

- o T

Shared disk group 3
FSS [SAN + DAS]

DAS

IMPORTED
IMPORTED

Shared disk group 1 Shared disk group 2

Behavioral changes in a disk group sub-cluster

Some operations in a disk group sub-cluster differ in their behavior from traditional
CVM environments.

Table 6-7 lists the behavioral changes in a disk group sub-cluster for certain
operations.



How Cluster Volume Manager works

Application isolation in CVM environments with disk group sub-clustering

Table 6-7

Behavioral changes in a disk group sub-cluster

Operation

Behavioral change

Auto-import of
shared disk groups

Shared disk groups are not imported by default when the CVM cluster
starts. They must be manually imported on the nodes.

The CVM cluster starts successfully even if there is no storage for some
disk groups in the cluster.

Adding or deleting
shared disk groups
to and from a
cluster
configuration
(cfsdgadm)

Shared disk groups can be auto-imported on some nodes in the cluster.
The disk groups that are required for a cluster file system environment
are automatically imported by VCS when the cluster starts.

Creating shared
disk groups

When you create a shared disk group, it is imported only on the node
on which you run the command.

Importing shared
disk groups

Importing a shared disk group using the vxdg -s import command
imports the disk group only on the node on which you run the command.

The nodes that import the same disk group become part of the
sub-cluster for that disk group.

Deporting shared
disk groups

Deporting a shared disk group using the vxdg deport command
deports the disk group only on the node on which you run the command.

The node that deports a shared disk group leaves the disk group
sub-cluster and may initiate a recovery in the disk group sub-cluster.

CVM master and
disk group master

Each disk group sub-cluster has a disk group master that handles the
VxVM configuration changes. All disk group level operations run on the
disk group master node.

The disk group master node can be switched to any node in the disk
group sub-cluster. A node can be configured as the disk group master
for multiple disk group sub-clusters.

FSS

VxVM auto-exports DAS storage from a cluster node to other nodes in
the cluster when the FSS disk group is created.

You can also manually export the storage before creating the FSS disk
group using the vxdisk export command. If the storage is already
exported, VxVM skips the auto-export operation.

The FSS disk group can be imported on any node and may utilize the
storage from outside the disk group sub-cluster . A node can export its
DAS storage to multiple disk group sub-clusters.

207



How Cluster Volume Manager works | 208
Application isolation in CVM environments with disk group sub-clustering

Table 6-7 Behavioral changes in a disk group sub-cluster (continued)
Operation Behavioral change
Command The disk group operations must be run on the disk group master node.
shipping within the | Al commands other than vxdg that are run from the disk group
disk group sub-cluster slave nodes are shipped to the disk group sub-cluster master
sub-cluster node. Disk group operations that run outside the disk group sub-cluster
are not supported and will fail.

Changes to CVM agents

Table 6-8 lists the attributes that are introduced to support the application isolation

capability.
Table 6-8 CVM agent attributes
CVM agent Attribute Description
CVMCluster CVMDGSubClust | Allows you to enable (1) or disable (0) the
application isolation feature.
CVMVoIDG NodelList Allows you to specify the list of nodes that belong
to a disk group sub-cluster.




Provisioning storage

= Chapter 7. Provisioning new storage
= Chapter 8. Advanced allocation methods for configuring storage
= Chapter 9. Creating and mounting VxFS file systems

= Chapter 10. Extent attributes



Provisioning new storage

This chapter includes the following topics:

= Provisioning new storage

= Growing the existing storage by adding a new LUN
» Growing the existing storage by growing the LUN

= Displaying SFCFSHA information with vxlist

Provisioning new storage

The following procedure describes how to provision new storage. If you are
provisioning Storage Foundation on thin storage, you should understand how
Storage Foundation works with thin storage.

See “About thin optimization solutions in Storage Foundation Cluster File System
High Availability ” on page 775.

The procedure assumes a basic configuration for volumes and file systems. More
options are available to customize your configuration.

See “Customizing allocation behavior” on page 215.

See “Creating a VxFS file system” on page 256.



Provisioning new storage | 211
Growing the existing storage by adding a new LUN

To provision new storage

1 Set up the LUN. See the documentation for your storage array for information
about how to create, mask, and bind the LUN.

2 Initialize the LUNs that you want to use with Veritas Volume Manager (VxVM),
using one of the following commands.

The recommended method is to use the vxdisksetup command.

# vxdisksetup -i 3PARDATAO_1
# vxdisk init 3PARDATAO_1

3 Add the LUN to a disk group.

= If you do not have a disk group for your LUN, create the disk group:
# vxdg init dgl devl=3PARDATAO 1

= If you already have a disk group for your LUN, add the LUN to the disk
group:

# vxdg -g dgl adddisk 3PARDATAO_1

4 Create the volume on the LUN:

# vxassist -b -g dgl make voll 100g 3PARDATAO 1

5 Create a Veritas File System (VxFS) file system on the volume:

# mkfs -t vxfs /dev/vx/rdsk/dgl/voll

6 Create a mount point on the file system:

# mkdir /mountl

7 Mount the file system:

# mount -t vxfs /dev/vx/dsk/dgl/voll /mountl

Growing the existing storage by adding a new
LUN

The following procedure describes how to grow the existing storage by adding a
new LUN.



Provisioning new storage | 212
Growing the existing storage by growing the LUN

To grow the existing storage by adding a new LUN
1 Create and set up the LUN.
2 Add the LUN to the disk group.

# vxdg -g dgl adddisk 3PARDATAQ_2

3  Grow the volume and the file system to the desired size. For example:

# vxresize -b -F vxfs -g dgl voll 200g

Growing the existing storage by growing the LUN

The following procedure describes how to grow the existing storage by growing a
LUN.

To grow the existing storage by growing a LUN

1 Grow the existing LUN. See the documentation for your storage array for
information about how to create, mask, and bind the LUN.

2 Make Veritas Volume Manager (VxVM) aware of the new LUN size.

# vxdisk -g dgl resize 3PARDATAO 1

3 Calculate the new maximum volume size:

# vxassist -g dgl -b maxgrow voll

4  Grow the volume and the file system to the desired size:

# vxresize -b -F vxfs -g dgl voll 200g

Displaying SFCFSHA information with vxlist

The vx1ist command is a display command that provides a consolidated view of
the SFCFSHA configuration. The vx1ist command consolidates information from
Veritas Volume Manager (VxVM) and Veritas File System (VxFS). The vx1ist
command provides various options to display information. For example, use the
following form of the command to display file system information including information
about the volume, disk group, and so on. In previous releases, you needed to run
at least two commands to retrieve the following information.

# /opt/VRTSsfmh/bin/vxlist fs



Provisioning new storage
Displaying SFCFSHA information with vxlist

TY FS FSTYPE SIZE FREE %USED DEVICE PATH MOUNT_POINT
fs / ext3 65.20g 51.70g 17% /dev/sdal /
fs mnt vxfs 19.84g 9.96g 49% /dev/vx/dsk/bardg/voll /mnt

For help on the vx1ist command, enter the following command:
# vxlist -H

See the vx1list (1m) manual page.

213



Advanced allocation
methods for configuring
storage

This chapter includes the following topics:

= Customizing allocation behavior

= Creating volumes of a specific layout

= Creating a volume on specific disks

= Creating volumes on specific media types
= Creating encrypted volumes

= Changing the encryption password

= Viewing encrypted volumes

= Automating startup for encrypted volumes
= Configuring a Key Management Server

= Specifying ordered allocation of storage to volumes
» Site-based allocation

= Changing the read policy for mirrored volumes



Advanced allocation methods for configuring storage | 215
Customizing allocation behavior

Customizing allocation behavior

By default, the vxassist command creates volumes on any available storage that
meets basic requirements. The vxassist command seeks out available disk space
and allocates it in the configuration that conforms to the layout specifications and

that offers the best use of free space. The vxassist command creates the required
plexes and subdisks using only the basic attributes of the desired volume as input.

If you are provisioning Storage Foundation Cluster File System High Availability on
thin storage, you should understand how Storage Foundation Cluster File System
High Availability works with thin storage.

See “About thin optimization solutions in Storage Foundation Cluster File System
High Availability ” on page 775.

Additionally, when you modify existing volumes using the vxassist command, the
vxassist command automatically modifies underlying or associated objects. The
vxassist command uses default values for many volume attributes, unless you
provide specific values to the command line. You can customize the default behavior
of the vxassist command by customizing the default values.

See “Setting default values for vxassist” on page 216.

The vxassist command creates volumes in a default disk group according to the
default rules. To use a different disk group, specify the -g diskgroup option to the
vxassist command.

See “Rules for determining the default disk group” on page 955.

If you want to assign particular characteristics for a certain volume, you can specify
additional attributes on the vxassist command line. These can be storage
specifications to select certain types of disks for allocation, or other attributes such
as the stripe unit width, number of columns in a RAID-5 or stripe volume, number
of mirrors, number of logs, and log type.

For details of available vxassist keywords and attributes, refer to the vxassist(1M)
manual page.

You can use allocation attributes to specify the types of allocation behavior shown

in Table 8-1
Table 8-1 Types of allocation behavior
Allocation behavior Procedures
Layouts for the volumes See “Creating volumes of a specific layout”
on page 237.




Advanced allocation methods for configuring storage | 216
Customizing allocation behavior

Table 8-1 Types of allocation behavior (continued)
Allocation behavior Procedures
Media types See “Creating volumes on specific media

types” on page 246.

Specific disks, subdisks, plexes locations See “Creating a volume on specific disks”
on page 245.

Ordered allocation See “Specifying ordered allocation of storage
to volumes” on page 249.

Site-based allocation See “Site-based allocation” on page 252.

Setting the read policy See “Changing the read policy for mirrored
volumes” on page 253.

The vxassist utility also provides various constructs to help define and manage
volume allocations, with efficiency and flexibility.

See “Setting default values for vxassist” on page 216.

See “Using rules to make volume allocation more efficient” on page 218.
See “Understanding persistent attributes” on page 221.

See “Customizing disk classes for allocation” on page 223.

See “Specifying allocation constraints for vxassist operations with the use clause
and the require clause” on page 226.

See “Management of the use and require type of persistent attributes ” on page 234.

Setting default values for vxassist

The default values that the vxassist command uses may be specified in the file
/etc/default/vxassist. The defaults listed in this file take effect if you do not
override them on the command line, or in an alternate defaults file that you specify
using the -d option. A default value specified on the command line always takes
precedence. vxassist also has a set of built-in defaults that it uses if it cannot find
a value defined elsewhere.

You must create the /etc/default directory and the vxassist default file if these
do not already exist on your system.

The format of entries in a defaults file is a list of attribute-value pairs separated by
new lines. These attribute-value pairs are the same as those specified as options
on the vxassist command line.



Advanced allocation methods for configuring storage

Customizing allocation behavior

See the vxassist(1M) manual page.

To display the default attributes held in the file /etc/default/vxassist, use the
following form of the vxassist command:

# vxassist help showattrs

The following is a sample vxassist defaults file:

S o H FE

By default:

create unmirrored, unstriped volumes

allow allocations to span drives

with RAID-5 create a log, with mirroring don’t create a log

align allocations on cylinder boundaries
layout=nomirror,nostripe, span,nocontig,raid5log,noregionlog,

diskalign

use the fsgen usage type, except when creating RAID-5 volumes
usetype=fsgen
allow only root access to a volume

mode=u=rw, g=, o=

user=root

group=root

when mirroring, create two mirrors

nmirror=2
for regular striping, by default create between 2 and 8 stripe
columns

max nstripe=8

min nstripe=2

for RAID-5, by default create between 3 and 8 stripe columns
max nraidSstripe=8

min nraidSstripe=3

217

by default, create 1 log copy for both mirroring and RAID-5 volumes

nregionlog=1

nraid5log=1

by default, limit mirroring log lengths to 32Kbytes

max regionloglen=32k

use 64K as the default stripe unit size for regular volumes

stripe stwid=64k



Advanced allocation methods for configuring storage | 218
Customizing allocation behavior

# wuse 16K as the default stripe unit size for RAID-5 volumes
raid5 stwid=16k

Using rules to make volume allocation more efficient

The vxassist command lets you create a set of volume allocation rules and define
it with a single name. When you specify this name in your volume allocation request,
all the attributes that are defined in this rule are honored when vxassist creates
the volume.

Creating volume allocation rules has the following benefits:

= Rules streamline your typing and reduce errors. You can define relatively complex
allocation rules once in a single location and reuse them.

= Rules let you standardize behaviors in your environment, including across a set
of servers.

For example, you can create allocation rules so that a set of servers can standardize
their storage tiering. Suppose you had the following requirements:

Tier 1 Enclosure mirroring between a specific set of array types
Tier 2 Non-mirrored striping between a specific set of array types
Tier 0 Select solid-state drive (SSD) storage

You can create rules for each volume allocation requirement and name the rules
tier1, tier2, and tierO.

You can also define rules so that each time you create a volume for a particular
purpose, the volume is created with the same attributes. For example, to create
the volume for a production database, you can create a rule called productiondb.
To create standardized volumes for home directories, you can create a rule called
homedir. To standardize your high performance index volumes, you can create a
rule called dbindex.

Rule file format

When you create rules, you do not define themin the /etc/default/vxassist file.
You create the rules in another file and add the path information to
/etc/default/vxassist. By default, a rule file is loaded from
/etc/default/vxsf rules. You can override this location in
/etc/default/vxassist With the attribute rulefile=/path/rule file name.You
can also specify additional rule files on the command line.



Advanced allocation methods for configuring storage
Customizing allocation behavior

A rule file uses the following conventions:
= Blank lines are ignored.
= Use the pound sign, #, to begin a comment.

= Use C language style quoting for the strings that may include embedded spaces,
new lines, or tabs. For example, use quotes around the text for the description
attribute.

» Separate tokens with a space.

» Use braces for a rule that is longer than one line.

Within the rule file, a volume allocation rule has the following format:
volume rule rulename vxassist attributes

This syntax defines a rule named rulename which is a short-hand for the listed
vxassist attributes. Rules can reference other rules using an attribute of
rule=rulenamel, rulename, . ..], Which adds all the attributes from that rule into
the rule currently being defined. The attributes you specify in a rule definition override
any conflicting attributes that are in a rule that you specify by reference. You can
add a description to a rule with the attribute description=description text.

The following is a basic rule file. The first rule in the file, base, defines the 1ogtype
and persist attributes. The remaining rules in the file — tier0, tier1, and tier2 —
reference this rule and also define their own tier-specific attributes. Referencing a
rule lets you define attributes in one place and reuse them in other rules.

# Create tier 1 volumes mirrored between disk arrays, tier 0 on SSD,
# and tier 2 as unmirrored. Always use FMR DCO objects.

volume rule base { logtype=dco persist=yes }

volume rule tierO { rule=base mediatype:ssd tier=tier0 }

volume rule tierl { rule=base mirror=enclosure tier=tierl }

volume rule tier2 { rule=base tier=tier2 }

The following rule file contains a more complex definition that runs across several
lines.

volume rule appXdb storage {
description="Create storage for the database of Application X"
rule=base
siteconsistent=yes

mirror=enclosure

219



vxprint -g dg3

TY
dg

pl
sd
pl
sd

pl
sd
pl
sd

NAME
dg3

Advanced allocation methods for configuring storage
Customizing allocation behavior

Using rules to create a volume

When you use the vxassist command to create a volume, you can include the
rule name on the command line. For example, the content of the vxsf rules file
is as follows:

volume rule basic { logtype=dco }
volume rule tierl {

rule=basic

layout=mirror

tier=tierl

In the following example, when you create the volume vo11 in disk group dg3, you
can specify the tier1 rule on the command line. In addition to the attributes you
enter on the command line, vol1 is given the attributes that you defined in tier1.

vxassist -g dg3 make voll 200m rule=tierl

The following vxprint command displays the attributes of disk group dg3. The
output includes the new volume, voll.

ASSOC KSTATE LENGTH PLOFF'S STATE TUTILO PUTILO
dg3 - - - - - -

ibm ds8x000 0266 ibm ds8x000 0266 - 2027264 - - - -

ibm ds8x000_ 0267 ibm ds8x000_ 0267 - 2027264

ibm ds8x000 0268 ibm ds8x000 0268 - 2027264 - - - -

voll fsgen ENABLED 409600 - ACTIVE - -
voll-01 voll ENABLED 409600 - ACTIVE - -
ibm ds8x000_0266-01 voll-01 ENABLED 409600 O - - -
voll-02 voll ENABLED 409600 - ACTIVE - -
ibm ds8x000_0267-01 voll-02 ENABLED 409600 O - - -
voll dco voll - - - - - -
voll dcl gen ENABLED 144 - ACTIVE - -
voll dcl-01 wvoll dcl ENABLED 144 - ACTIVE - -
ibm ds8x000_0266-02 voll dcl-01 ENABLED 144 0 - - -
voll dcl-02 wvoll dcl ENABLED 144 - ACTIVE - -

ibm ds8x000 0267-02 voll dcl-02 ENABLED 144 0 - - -

The following vxassist command confirms that vo11 is in the tier tier1. The
application of rule tier1 was successful.

220



Advanced allocation methods for configuring storage | 221
Customizing allocation behavior

vxassist -g dg3 listtag
TY NAME DISKGROUP TAG

v voll dg3 vxfs.placement class.tierl

Understanding persistent attributes

The vxassist command lets you record certain volume allocation attributes for a
volume. These attributes are called persistent attributes. You can record the
attributes which would be useful in later allocation operations on the volume, such
as volume grow and enclosure mirroring. You can also restrict allocation to storage
that has a particular property (such as the enclosure type, disk tag, or media type).
On the other hand, volume length is not useful, and generally neither is a specific
list of disks.

The persistent attributes can be retrieved and applied to the allocation requests
(with possible modifications) for the following operations:

= volume grow or shrink

= move
= relayout
= mirror

= addalog

Persistent attributes let you record carefully-described allocation attributes at the
time of volume creation and retain them for future allocation operations on the
volume. Also, you can modify, enhance, or discard the persistent attributes. For
example, you can add and retain a separation rule for a volume that is originally
not mirrored. Alternatively, you can temporarily suspend a volume allocation rule
which has proven too restrictive or discard it to allow a needed allocation to succeed.

You can use the persist attribute to record allocation attributes on the command
line orin a rule file.

See “Using persistent attributes” on page 221.

You can manage the use and require type of persistent attributes with the intent
management operations: setrule, changerule, clearrule, and listrule.

See “Management of the use and require type of persistent attributes ” on page 234.

Using persistent attributes

You can define volume allocation attributes so they can be reused in subsequent
operations. These attributes are called persistent attributes, and they are stored in



Advanced allocation methods for configuring storage
Customizing allocation behavior

a set of hidden volume tags. The persist attribute determines whether an attribute
persists, and how the current command might use or modify preexisting persisted
attributes. You can specify persistence rules in defaults files, in rules, or on the
command line. For more information, see the vxassist manual page.

To illustrate how persistent attributes work, we will use the following vxsf rules
file. It contains a rule, rule1, which defines the mediatype attribute. This rule also
uses the persist attribute to make the mediatype attribute persistent.

# cat /etc/default/vxsf rules

volume rule rulel { mediatype:ssd persist=extended }

The following command confirms that LUNS ibm ds8x000 0266 and
ibm_ ds8x000_ 0268 are Solid-State Drive (SSD) devices.

# vxdisk listtag

DEVICE NAME VALUE
ibm ds8x000 0266 vxmediatype ssd
ibm ds8x000_ 0268 vxmediatype ssd

The following command creates a volume, vol1, in the disk group dg3. rule1 is
specified on the command line, so those attributes are also applied to vo11.

# vxassist -g dg3 make voll 100m rule=rulel

The following command shows that the volume vo11 is created off the SSD device
ibm ds8x000_ 0266 as specified in rule1.

# vxprint -g dg3
TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg dg3 dg3 - - - - - -

dm ibm ds8x000_0266 ibm ds8x000_0266 - 2027264 - - - -
dm ibm ds8x000 0267 ibm ds8x000 0267 - 2027264
dm ibm ds8x000_0268 ibm ds8x000_0268 - 2027264 - - - -

v voll fsgen ENABLED 204800 ACTIVE - -
pl voll-01 voll ENABLED 204800 ACTIVE - -
sd ibm ds8x000_0266-01 voll-01 ENABLED 204800 O - - -

The following command displays the attributes that are defined in rule1.

# vxassist -g dg3 help showattrs rule=rulel
alloc=mediatype:ssd

persist=extended

222



# vxprint -g dg3

TY
dg

pl
sd
sd

NAME
dg3

Advanced allocation methods for configuring storage
Customizing allocation behavior

If no persistent attributes are defined, the following command grows vo11 on Hard
Disk Drive (HDD) devices. However, at the beginning of this section, mediatype:ssd
was defined as a persistent attribute. Therefore, the following command honors
this original intent and grows the volume on SSD devices.

# vxassist -g dg3 growby voll 1lg

The following vxprint command confirms that the volume was grown on SSD
devices.

ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg3 - - - - - -

ibm_ds8x000 0266 ibm ds8x000 0266 - 2027264 - - - -

ibm ds8x000 0267 ibm ds8x000 0267 - 2027264

ibm ds8x000 0268 ibm ds8x000 0268 - 2027264 - - - -

voll
voll-01

fsgen ENABLED 2301952
voll ENABLED 2301952

ACTIVE - -
ACTIVE - -

ibm ds8x000 0266-01 voll-01 ENABLED 2027264 0 - - -
ibm ds8x000 0268-01 voll-01 ENABLED 274688 2027264 - - -

Customizing disk classes for allocation

The vxassist command accepts disk classes to indicate storage specifications for
allocation. The disk classes are internally-discovered attributes that are automatically
associated with the disks. You can specify disk classes to an allocation request
with vxassist to indicate the type of storage to allocate.

For more information about the disk classes, see the Storage Specifications section
of the vxassist(1M) manual page.

You can customize the disk classes in the following ways:

» Create a customized alias name.
See “User-defined alias names for disk classes” on page 224.

» Customize the priority order for the disk classes.
See “User-defined precedence order for disk classes” on page 224.

You can also create customized, user-defined disk classes.

See “User-defined disk classes” on page 225.

223



Advanced allocation methods for configuring storage | 224
Customizing allocation behavior

User-defined alias names for disk classes

For convenience, you can define alias names for existing storage-specification disk
classes. Typically, an alias is a shorter or more user-friendly name. You can use
the alias instead of its corresponding disk class, to specify vxassist allocation
constraints. Define the alias names in rule files.

For example, to define “atyp” as an alias for the base disk class “arraytype”, include
the following statement in a rule file.

class alias atyp=arraytype

When the above rule file is used, you can specify the alias “atyp” for allocation. For
example, the following constraint specification allocates storage from A/A arrays
for the volume creation.

# vxassist -g dgname make volname volsize use=atyp:A/A

User-defined precedence order for disk classes

The vxassist command applies a default priority order for the disk classes that
are specified in the mirror confinement (mirrorconfine, wantmirrorconfine),
mirror separation (mirror, wantmirror), and stripe separation (stripe, wantstripe)
constraints. The higher priority class is honored for allocation when mirroring or
striping. If a different priority order is required, you can change the default order for
these disk classes.

Note: The “site” class always has the highest precedence, and its order cannot be
overridden.

Define the customized precedence order in a rule file. The higher the order number,
the higher is the class precedence.

The following shows the default precedence order, for the class names supported
with mirror and stripe separation or confinement constraints.

site order=1000
vendor order=900
arrayproduct order=800
array order=700
arrayport order=600

hostport order=400



Advanced allocation methods for configuring storage
Customizing allocation behavior

The acceptable range for the precedence order is between 0 and 1000.

For example, the array class has a higher priority than the hostport class by default.
To make the hostport class have a higher priority, assign the hostport class a higher
order number. To define the order for the classes, include the following statement
in a rule file:

class define array order=400

class define hostport order=700

When the above rule is used, the following command mirrors across hostport class
rather than the array class.

# vxassist -g dgname make volname volsize mirror=array,hostport

User-defined disk classes

You can define customized disk classes to use in storage specifications for the
vxassist command. Customized disk classes allow for user-defined device
classification and grouping. You can use these disk classes to control allocations.
A customized disk class is a user-defined property that is associated with a set of
disks. The property is attached as a disk class to the disks that satisfy a particular
constraint.

You can use the custom disk classes like other storage-specification disk classes,
to specify vxassist allocation constraints. Define the custom disk classes in a rule
file.

Example

With the following definition in the rule file, the user-defined property “poolname”
is associated to the referenced disks. All devices that have the array vendor property
defined as HITACHI or IBM, are marked as poolname “finance”. All devices that
have the array vendor property defined as DGC or EMC, are marked as poolname
“admin”.

disk properties vendor:HITACHI {

poolname: finance

disk properties vendor:IBM ({

poolname: finance

disk properties vendor:DGC {

poolname:admin

disk properties vendor:EMC ({

225



Advanced allocation methods for configuring storage | 226
Customizing allocation behavior

poolname:admin

}

You can now use the user-defined disk class “poolname’for allocation. For example,
the following constraint specification allocates disks from the poolname “admin” for
the volume creation.

# vxassist -g dgname make volname volsize poolname:admin

Specifying allocation constraints for vxassist operations with the use
clause and the require clause

The vxassist command accepts a variety of storage specifications for allocations.
The require constraint and the use constraint are methods to specify detailed storage
specifications for allocations. These constraints enable you to select disks from an
intersection set or a union set of intended properties. You can specify the set of
disks for allocations with more precision than the existing methods a110c and
logdisk clauses. The use and require constraints can apply to data, log, or both
data and log.

The constraints can be one of the following types:

= The require constraints
All of the specifications in the constraint must be satisfied, or the allocation fails.
A require constraint behaves as an intersection set. For example, allocate disks
from a particular array vendor AND with a particular array type.

= The use constraints
At least one of the specifications in the constraint must be satisfied, or the
allocation fails. A use constraint behaves as a union set. For example, allocate
disks from any of the specified enclosures: enclrA or enclrB.

For disk group version of 180 or above, the use and require type of constraints are
persistent for the volume by default. The default preservation of these clauses
enables further allocation operations like grow, without breaking the specified intents.

You can specify multiple storage specifications, separated by commas, in a use or
require clause on the vxassist command line. You can also specify multiple use
or require clauses on the vxassistcommand line.

See “Interaction of multiple require and use constraints” on page 228.

Use the vxassist intent management operations (setrule, changerule, clearrule,
listrule) to manage persistent require and use constraints.

See “Management of the use and require type of persistent attributes ” on page 234.



Advanced allocation methods for configuring storage
Customizing allocation behavior

About require constraints

The “require” type of constraints specify that the allocation must select storage that
matches all the storage specifications in the constraint. Therefore, the require
constraint acts like an intersection set, or a logical AND operation. If any of the
specifications cannot be met, the operation fails. The attribute names to specify
require constraints are:

m require

The constraint applies to both data and log allocation.
m logrequire

The constraint applies to log allocations only.

m datarequire

The constraint applies to data allocations only.

If any storage-specification is negated with !, the allocation excludes the storage
that matches that storage specification

Note: If the require type of constraint is provided with the same class but different
instances, then these instances are unionized rather than intersected. That is, the
allocation selects storage that satisfies any of these storage specifications (similar
to use type of constraint).

See “Interaction of multiple require and use constraints” on page 228.

About use constraints

The “use” type of constraints specify that the allocation must select storage that
matches at least one of the storage specifications in the constraint. Therefore, the
use constraint acts like a union set, or a logical OR operation. If none of the
specifications can be met, the operation fails. The attribute names to specify use
constraints are:

n use

The constraint applies to both data and log allocation.

m  loguse

The constraint applies to log allocations only.

m datause

The constraint applies to data allocations only.
See “Interaction of multiple require and use constraints” on page 228.

If the storage specification is negated with !, then the allocation excludes the storage
that matches that storage specification.

227



Advanced allocation methods for configuring storage
Customizing allocation behavior

Interaction of multiple require and use constraints

You can specify multiple use or require clauses on the vxassist command line.
Not all combinations are supported. However, all possible constraint specifications
can be achieved with the supported combinations.

The scope for a constraint can be data-specific (datause or datarequire), log-specific
(loguse or logrequire) or general, which applies to both data and log (use or require).

Note: Veritas recommends that you do not combine use or require constraints with
direct storage-specifications or other clauses like a11oc or 1ogdisk.

The following rules apply when multiple use or require clauses are specified:

= Multiple use constraints of the same scope are unionized, so that at least one
of the storage specifications is satisfied. That is, multiple use clauses; multiple
datause clauses; or multiple 1oguse clauses.

= Multiple require constraints of the same scope are intersected, so that all the
storage specifications are satisfied. That is, multiple require clauses; multiple
datarequire clauses; or multiple 1ogrequire clauses.

= Require and use constraints of the same scope are mutually intersected. That
is, require clauses and use clauses; datarequire clauses and datause clauses;
or logrequire clauses and loguse clauses. At least one of the use storage
specifications must be satisfied and all of the require storage specifications are
satisfied. For example, if a datause clause and a datarequire clause are used
together, the allocation for the data must meet at least one of the datause
specifications and all of the datarequire specifications.

» Data-specific constraints and log-specific constraints can be used together.
They are applied independently to data and logs respectively. That is, datause
clause with 1oguse clause or logrequire clause; datarequire clause with
loguse clause or logrequire clause . For example, a datarequire clause can
be used to control data allocation along with a 1ogrequire clause to control log
allocation.

s The vxassist command does not support a mix of general scope constraints
with data-specific or log-specific constraints. For example, a require clause
cannot be used along with the 1ogrequire clause or a datarequire clause.
However, all possible constraint specifications can be achieved with the
supported combinations.

Table 8-2 summarizes these rules for the interaction of each type of constraint if
multiple constraints are specified.

228



Table 8-2

Advanced allocation methods for configuring storage
Customizing allocation behavior

Combinations of require and use constraints

Scope

Mutually unionized

Mutually
intersected

Applied
independently

Data

datause - datause

datarequire - datause

datarequire -
datarequire

datause - loguse
datause - logrequire
datarequire - loguse

datarequire -
logrequire

Log

loguse - loguse

logrequire - loguse

logrequire - logrequire

loguse - datause
loguse - datarequire
logrequire -datause

logrequire -
datarequire

General - log and

data

use - use

use - require

require - require

N/A

Examples of use and require constraints

The following examples show use and require constraints for storage allocation.

Example 1 - require constraint

This example shows the require constraint in a disk group that has disks from two
arrays: emc_clariion0and ams wms0. Both arrays are connected through the same
HBA hostportid (06-08-02), but the arrays have different arraytype (A/A and A/A-A

respectively).

The following output shows the disk group information:

# vxprint -g testdg

TY
dg

dm
dm
dm
dm
dm
dm

NAME ASSOC
testdg testdg
ams_wmsO_359 ams_wmsO0_359

ams_wmsO0_ 360 ams_wms0_360

ams_wmsO_ 361 ams_wmsO_361

ams_wms0_ 362 ams_wms0_362

emc_clariion0 0 emc clariion0O 0 -

emc_clariion0 1 emc clariion0O 1 -

KSTATE

LENGTH

2027264 -
2027264 -
2027264 -
2027264 -
4120320 -
4120320 -

PLOFFS

STATE

TUTILO

PUTILO

229



Advanced allocation methods for configuring storage | 230
Customizing allocation behavior

dm emc_clariion0O 2 emc clariion0 2 - 4120320 - - - -

dm emc_clariion0O 3 emc clariion0 3 - 4120320 - - - -

To allocate both the data and the log on the disks that are attached to the particular
HBA and that have the array type A/A:

# vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \
require=hostportid:06-08-02,arraytype:A/A

The following output shows the results of the above command. The command
allocated disk space for the data and the log on emc_clariion0 array disks, which
satisfy all the storage specifications in the require constraint:

# vxprint -g testdg

TY
dg

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams _wmsO_ 359 ams wmsO 359 - 2027264 - - - -
ams _wmsO 360 ams wmsO 360 - 2027264 - - - -
ams wmsO 361 ams wmsO 361 - 2027264 - - - -
ams wmsO 362 ams wmsO 362 - 2027264 - - - -
emc_clariion0 0 emc clariion0 0 - 4120320 - - - -
emc_clariion0 1 emc clariion0 1 - 4120320 - - - -
emc_clariion0 2 emc clariion0 2 - 4120320 - - - -
emc_clariion0 3 emc clariion0 3 - 4120320 - - - -
vl fsgen ENABLED 2097152 - ACTIVE - -
v1-01 vl ENABLED 2097152 - ACTIVE - -
emc_clariion0 0-01 v1-01 ENABLED 2097152 0 - - -
vl dco vl - - - - - -
vl dcl gen ENABLED 67840 - ACTIVE - -
vl dcl-01 vl dcl ENABLED 67840 - ACTIVE - -
emc_clariion0 0-02 vl dcl-01 ENABLED 67840 O - - -

Example 2 - use constraint

This example shows the use constraint in a disk group that has disks from three
arrays: ams_wms0, emc_clariion0, and hitachi vspO.

The following output shows the disk group information:

# vxprint -g testdg
NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -

TY
dg

dm ams_wmsO_ 359 ams wmsO_359 - 2027264 - - - -



dm
dm
dm
dm
dm

ams_wmsO_360 ams_wmsO_ 360 -
ams_wmsO_361 ams_wmsO_ 361 -
ams_wmsO_362 ams_wmsO_ 362 -
emc_clariion0 0 emc clariion0O 0 -

hitachi vspO 3 hitachi vspO 3 -

To allocate both the data and the log on the disks that belong to the array ams_wms0

2027264
2027264
2027264
4120320
4120320

or the array emc_clariionO:

Advanced allocation methods for configuring storage
Customizing allocation behavior

# vxassist -g testdg make vl 3G logtype=dco dcoversion=20 \

use=array:ams_wms0,array:emc_clariion0

The following output shows the results of the above command. The command
allocated disk space for the data and the log on disks that satisfy the arrays specified

in the use constraint.

# vxprint -g testdg

TY
dg

dm
dm
dm
dm
dm
dm

pl
sd
sd
sd

pl
sd

NAME ASSOC KSTATE
testdg testdg -
ams_wmsO_ 359 ams wmsO_ 359 -

ams_wmsO_ 360 ams wmsO 360 -
ams_wmsO_ 361 ams wmsO 361 -
ams_wmsO_ 362 ams wmsO_ 362 -
emc_clariion0 0 emc clariion0 0 -

hitachi vsp0O 3 hitachi vsp0O 3 -

vl fsgen ENABLED
v1-01 vl ENABLED
ams_wmsO 359-01 v1-01 ENABLED
ams_wmsO 360-01 v1-01 ENABLED
emc_clariion0 0-01 v1-01 ENABLED
vl dco vl -

vl dcl gen ENABLED
vl _dcl-01 vl _dcl ENABLED

ams_wmsO_ 360-02 vl dcl-01 ENABLED

LENGTH

2027264
2027264
2027264
2027264
4120320
4120320

6291456
6291456
2027264
143872
4120320
67840
67840
67840

PLOFFS

0
2027264
2171136

0

STATE

ACTIVE
ACTIVE

ACTIVE
ACTIVE

Example 3: datause and logrequire combination

This example shows the combination of a datause constraint and a logrequire
constraint. The disk group has disks from three arrays: ams_wms0, emc_clariiono,
and hitachi_vsp0, which have different array types.

The following output shows the disk group information:

TUTILO

PUTILO

231



# vxprint -g testdg

TY NAME ASSOC KSTATE
dg testdg testdg -
dm ams_wms0_359 ams_wms0_359 -

dm
dm
dm
dm
dm
dm
dm
dm

ams_wms0_360 ams_wms0_360 -
ams_wms0_361 ams_wms0_361 -
ams_wms0_362 ams_wms0_362 -

emc_clariion0_0 emc_clariionO_0

emc_clariion0_1 emc_clariionO_1

emc_clariion0_2 emc_clariionO_2

emc_clariion0_3 emc_clariionO_3

hitachi_vspO_3 hitachi vspO_3 -

To allocate data on disks from ams_wms0 Or emc_clariion0 array, and to allocate

LENGTH
2027264
2027264
2027264
2027264
4120320
4120320
4120320
4120320
4120320

Advanced allocation methods for configuring storage
Customizing allocation behavior

PLOFFS

log on disks from arraytype A/A-A:

STATE

TUTILO

PUTILO

# vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \

232

datause=array:ams_wms0,array:emc_clariion0 logrequire=arraytype:A/A-A

The following output shows the results of the above command. The command
allocated disk space for the data and the log independently. The data space is
allocated on emc_clariiono0 disks that satisfy the datause constraint. The log space
is allocated on ams_wms0 disks that are A/A-A arraytype and that satisfy the
logrequire constraint:

# vxprint -g testdg

TY
dg
dm
dm
dm
dm
dm
dm
dm
dm
dm

pl
sd

NAME ASSOC KSTATE
testdg testdg -
ams_wmsO_ 359 ams wmsO_ 359 -

ams_wmsO_ 360 ams wmsO 360 -
ams_wmsO_ 361 ams wmsO 361 -

ams_wmsO_ 362 ams wmsO_ 362 -

emc_clariion0 0 emc clariion0O 0

emc_clariion0 1 emc clariionO_ 1

emc_clariion0 2 emc clariion0 2

emc_clariion0 3 emc clariion0O_ 3

hitachi vsp0O 3 hitachi vsp0O 3 -

vl fsgen ENABLED
v1-01 vl ENABLED
emc_clariion0 0-01 v1-01 ENABLED
vl dco vl -

vl dcl gen ENABLED

LENGTH

2027264
2027264
2027264
2027264
4120320
4120320
4120320
4120320
4120320

2097152
2097152
2097152

67840

PLOFFS

STATE

ACTIVE
ACTIVE

ACTIVE

TUTILO

PUTILO



pl
sd

Advanced allocation methods for configuring storage
Customizing allocation behavior

vl decl-01 vl dcl ENABLED 67840 - ACTIVE - -
ams_wmsO_359-01 vl dcl-01 ENABLED 67840 0 - - -
Example 4 - use and require combination

This example shows the combination of a use constraint and a require constraint.
The disk group has disks from three arrays: ams_wms0, emc_clariion0, and
hitachi vsp0. Only the disks from ams_wms0 array are multi-pathed.

The following output shows the disk group information:

# vxprint -g testdg

TY

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams wmsO 359 ams wmsO 359 - 2027264 - - - -
ams wmsO 360 ams wmsO 360 - 2027264 - - - -
ams wmsO 361 ams wmsO 361 - 2027264 - - - -
ams wmsO 362 ams wmsO 362 - 2027264 - - - -
emc _clariion0 0 emc clariion0 0 - 4120320 - - - -
emc _clariion0 1 emc clariion0 1 - 4120320 - - - -
emc _clariion0 2 emc clariion0 2 - 4120320 - - - -
emc _clariion0 3 emc clariion0 3 - 4120320 - - - -
hitachi vsp0O 3 hitachi vsp0O 3 - 4120320 - - - -

To allocate data and log space on disks from emc_clariion0 Or ams_wmsO array,
and disks that are multi-pathed:

# vxassist -g testdg make vl 1G logtype=dco dcoversion=20 \

use=array:emc_clariion0,array:ams_wms0 require=multipathed:yes

The following output shows the results of the allocation. The data and log space is
on ams_wnms0 disks, which satisfy the use as well as the require constraints:

# vxprint -g testdg

TY
dg
dm
dm
dm
dm
dm
dm
dm
dm
dm

v

NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
testdg testdg - - - - - -
ams_wmsO_ 359 ams wmsO_ 359 - 2027264 - - - -
ams_wmsO_ 360 ams wmsO_ 360 - 2027264 - - - -
ams_wmsO_ 361 ams wmsO 361 - 2027264 - - - -
ams_wmsO_ 362 ams wmsO_ 362 - 2027264 - - - -
emc_clariion0 0 emc clariion0 0 - 4120320 - - - -
emc_clariion0 1 emc clariion0 1 - 4120320 - - - -
emc_clariion0 2 emc clariion0 2 - 4120320 - - - -
emc_clariion0 3 emc clariion0 3 - 4120320 - - - -

hitachi vsp0O 3 hitachi vsp0O 3 - 4120320 - - - -
vl fsgen ENABLED 2097152 - ACTIVE - -

233



pl
sd
sd

pl
sd

Advanced allocation methods for configuring storage | 234
Customizing allocation behavior

v1-01 vl ENABLED 2097152 - ACTIVE - -
ams_wmsO_359-01 v1-01 ENABLED 2027264 0 - - -
ams_wms0_360-01 v1-01 ENABLED 69888 2027264 - - -
vl dco vl - - - - - -
vl_dcl gen ENABLED 67840 - ACTIVE - -
vl_dcl-01 vl_dcl ENABLED 67840 - ACTIVE - -
ams_wmsO_360-02 vl dcl-01 ENABLED 67840 0 - - -

Management of the use and require type of persistent attributes

Persistent attributes are the saved volume intents that should be honored for
subsequent allocation operations for that volume. The intent management operations
enable you to manage the use and require type of persistent intents for volumes.
These operations allow you to independently manage the intents after the volume
creation. When you change the persistent intents for a volume, the changed intents
are not checked for validity or enforced for the current allocation of the volume.

You can set, change, clear, or list the persistent intents for the volume with the
following vxassist operations:

setrule

Replaces any existing saved intents with the specified intents for the specified
volume.

changerule

Appends the specified intents to the existing saved intents for the specified
volume.

clearrule

Removes any existing saved intents for the specified volume.

listrule

Lists any saved intents for the specified volume. If no volume name is specified,
the command shows the intents for all of the volumes.

The intent management operations only apply to the use or require type of persistent
constraints. The other type of persistent constraints are managed with the persist
attribute.

See “Using persistent attributes” on page 221.



Advanced allocation methods for configuring storage | 235
Customizing allocation behavior

To display the intents that are currently associated to a volume

L

To display the intents that are currently associated to a volume, use the
following command:

# vxassist [options] listrule [volume]
For example, to display the existing saved intents for the volume v1:

# vxassist -g testdg listrule vl
volume rule vl {

require=array:ams_wms0

To replace the intents that are currently associated to a volume

1

Display the intents that are currently associated to the volume:
# vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ams_wmsQ0. For example, to display the existing saved intents for
the volume v1:

# vxassist -g testdg listrule vl
volume rule vl {

require=array:ams_wms0

Specify the new intent with the following command:
# vxassist [options] setrule volume attributes...

For example, to replace the array with the ds4100-0 array, specify the new
intent with the following command:

# vxassist -g testdg setrule vl require=array:ds4100-0

Verify the new intent with the display command.
For example, the following command shows that the intent has changed:
# vxassist -g testdg listrule vl

volume rule vl {

require=array:ds4100-0



Advanced allocation methods for configuring storage
Customizing allocation behavior

To add to the intents that are currently associated to a volume

1

Display the intents that are currently associated to the volume:
# vxassist [options] listrule [volume]

In this example, the volume v1 has an existing saved intent that requires the
array to be ds4100-0. For example, to display the existing saved intents for
the volume v1:

# vxassist -g testdg listrule vl
volume rule vl {

use=array:ds4100-0

Add the new intent with the following command:
# vxassist [options] changerule volume attributes...

For example, to add the ams_wms0 array in the use constraint, specify the
new intent with the following command:

# vxassist -g testdg changerule vl use=array:ams_wms0

Verify the new intent with the display command.
For example, the following command shows that the intent has changed:
# vxassist -g testdg listrule vl

volume rule vl {

use=array:ds4100-0,array:ams_wms0

236



Advanced allocation methods for configuring storage
Creating volumes of a specific layout

To clear the intents that are currently associated to a volume

1 Display the intents that are currently associated to the volume:
# vxassist [options] listrule [volume]
For example, to display the existing saved intents for the volume v1:

# vxassist -g testdg listrule vl
volume rule vl {
require=multipathed:yes

use=array:emc_clariion0,array:ams wmsO

2 Clear the existing intents with the following command:
# vxassist [options] clearrule volume
For example, to clear the intents for the volume v1:

# vxassist -g testdg clearrule vl

3 Verify that the volume has no saved intents.
For example, the following command shows that the volume v1 has no saved
intents:

# vxassist -g testdg listrule vl

volume rule vl {}

Creating volumes of a specific layout

Veritas Volume Manager (VxVM) enables you to create volumes of various layouts.
You can specify an attribute to indicate the type of layout you want to create. The
following sections include details for each of the following types:

= mirrored volumes
See “Creating a mirrored volume” on page 239.

= striped volumes
See “Creating a striped volume” on page 241.

= RAID-5 volumes
See “Creating a RAID-5 volume” on page 243.

237



Advanced allocation methods for configuring storage | 238
Creating volumes of a specific layout

Types of volume layouts

Veritas Volume Manager (VxVM) allows you to create volumes with several layout
types. Table 8-3 describes the layout types for VxVM volumes.

Table 8-3 Types of volume layout
Layout type Description
Concatenated A volume whose subdisks are arranged both sequentially and

contiguously within a plex. Concatenation allows a volume to be
created from multiple regions of one or more disks if there is not
enough space for an entire volume on a single region of a disk. If
a single LUN or disk is split into multiple subdisks, and each subdisk
belongs to a unique volume, this is called carving.

See “Concatenation, spanning, and carving” on page 67.

Striped A volume with data spread evenly across multiple disks. Stripes
are equal-sized fragments that are allocated alternately and evenly
to the subdisks of a single plex. There must be at least two subdisks
in a striped plex, each of which must exist on a different disk.
Throughput increases with the number of disks across which a plex
is striped. Striping helps to balance 1/O load in cases where high
traffic areas exist on certain subdisks.

See “Striping (RAID-0)” on page 69.

Mirrored A volume with multiple data plexes that duplicate the information
contained in a volume. Although a volume can have a single data
plex, at least two are required for true mirroring to provide
redundancy of data. For the redundancy to be useful, each of these
data plexes should contain disk space from different disks.

See “Mirroring (RAID-1)" on page 72.

RAID-5 A volume that uses striping to spread data and parity evenly across
multiple disks in an array. Each stripe contains a parity stripe unit
and data stripe units. Parity can be used to reconstruct data if one
of the disks fails. In comparison to the performance of striped
volumes, write throughput of RAID-5 volumes decreases since
parity information needs to be updated each time data is modified.
However, in comparison to mirroring, the use of parity to implement
data redundancy reduces the amount of space required.

See “RAID-5 (striping with parity)” on page 75.




Advanced allocation methods for configuring storage
Creating volumes of a specific layout

Table 8-3 Types of volume layout (continued)
Layout type Description
Mirrored-stripe A volume that is configured as a striped plex and another plex that

mirrors the striped one. This requires at least two disks for striping
and one or more other disks for mirroring (depending on whether
the plex is simple or striped). The advantages of this layout are
increased performance by spreading data across multiple disks
and redundancy of data.

See “Striping plus mirroring (mirrored-stripe or RAID-0+1)”
on page 73.

Layered Volume A volume constructed from other volumes. Non-layered volumes
are constructed by mapping their subdisks to VxVM disks. Layered
volumes are constructed by mapping their subdisks to underlying
volumes (known as storage volumes), and allow the creation of
more complex forms of logical layout.

See “About layered volumes” on page 80.
The following layouts are examples of layered volumes:

n Striped-mirror
A striped-mirror volume is created by configuring several
mirrored volumes as the columns of a striped volume. This
layout offers the same benefits as a non-layered mirrored-stripe
volume. In addition, it provides faster recovery as the failure of
single disk does not force an entire striped plex offline.
See “Mirroring plus striping (striped-mirror, RAID-1+0, or
RAID-10)" on page 74.

s Concatenated-mirror
A concatenated-mirror volume is created by concatenating
several mirrored volumes. This provides faster recovery as the
failure of a single disk does not force the entire mirror offline.

Creating a mirrored volume

A mirrored volume provides data redundancy by containing more than one copy of
its data. Each copy (or mirror) is stored on different disks from the original copy of
the volume and from other mirrors. Mirroring a volume ensures that its data is not
lost if a disk in one of its component mirrors fails.

A mirrored volume requires space to be available on at least as many disks in the
disk group as the number of mirrors in the volume.

If you specify 1ayout=mirror, vxassist determines the best layout for the mirrored
volume. Because the advantages of the layouts are related to the size of the volume,

239



Advanced allocation methods for configuring storage
Creating volumes of a specific layout

vxassist selects the layout based on the size of the volume. For smaller volumes,
vxassist uses the simpler mirrored concatenated (mirror-concat) layout. For larger
volumes, vxassist uses the more complex concatenated mirror (concat-mirror)
layout. The attribute stripe-mirror-col-split-trigger-pt controls the selection. Volumes
that are smaller than stripe-mirror-col-split-trigger-pt are created as mirror-concat,
and volumes that are larger are created as concat-mirror. By default, the attribute
stripe-mirror-col-split-trigger-pt is set to one gigabyte. The value can be set in
/etc/default/vxassist. If there is a reason to implement a particular layout, you
can specify layout=mirror-concat or layout=concat-mirror to implement the desired
layout.

To create a new mirrored volume

¢ Create a new mirrored volume, using the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=mirror [nmirror=number] [init=active]
Specify the -b option if you want to make the volume immediately available
for use.

For example, to create the mirrored volume, volmir, in the disk group, mydg,
use the following command:

# vxassist -b -g mydg make volmir 5g layout=mirror

The following example shows how to create a volume with 3 mirrors instead
of the default of 2 mirrors:

# vxassist -b -g mydg make volmir 5g layout=mirror nmirror=3

Creating a mirrored-concatenated volume
A mirrored-concatenated volume mirrors several concatenated plexes.
To create a mirrored-concatenated volume

& Create the volume as a mirrored-concatenated volume, using the following
command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=mirror-concat [nmirror=number]

Specify the -b option if you want to make the volume immediately available
for use.

Alternatively, first create a concatenated volume, and then mirror it.

240



Advanced allocation methods for configuring storage | 241
Creating volumes of a specific layout

See “Adding a mirror to a volume ” on page 982.

Creating a concatenated-mirror volume

A concatenated-mirror volume is an example of a layered volume which
concatenates several underlying mirror volumes.

To create a concatenated-mirror volume

¢ Create a concatenated-mirror volume, using the following command:

# vxassist [-b] [-g diskgroup] make volume length \

layout=concat-mirror [nmirror=number]

Specify the -b option if you want to make the volume immediately available
for use.

Creating a striped volume

A striped volume contains at least one plex that consists of two or more subdisks
located on two or more physical disks. A striped volume requires space to be
available on at least as many disks in the disk group as the number of columns in
the volume.

See “Striping (RAID-0)" on page 69.
To create a striped volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length layout=stripe

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the 10-gigabyte striped volume volzebra, in the disk group,
mydg, use the following command:

# vxassist -b -g mydg make volzebra 10g layout=stripe

This creates a striped volume with the default stripe unit size (64 kilobytes) and the
default number of stripes (2).

You can specify the disks on which the volumes are to be created by including the
disk names on the command line. For example, to create a 30-gigabyte striped
volume on three specific disks, mydg03, mydg04, and mydg05, use the following
command:

# vxassist -b -g mydg make stripevol 30g layout=stripe \
mydg03 mydg04 mydg05



Advanced allocation methods for configuring storage | 242
Creating volumes of a specific layout

To change the number of columns or the stripe width, use the ncolumn and
stripeunit modifiers with vxassist. For example, the following command creates
a striped volume with 5 columns and a 32-kilobyte stripe size:

# vxassist -b -g mydg make stripevol 30g layout=stripe \

stripeunit=32k ncol=5

Creating a mirrored-stripe volume

A mirrored-stripe volume mirrors several striped data plexes. A mirrored-stripe
volume requires space to be available on at least as many disks in the disk group
as the number of mirrors multiplied by the number of columns in the volume.

To create a mirrored-stripe volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \
layout=mirror-stripe [nmirror=number of mirrors] \

[ncol=number of columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

Alternatively, first create a striped volume, and then mirror it. In this case, the
additional data plexes may be either striped or concatenated.

See “Adding a mirror to a volume ” on page 982.

Creating a striped-mirror volume

A striped-mirror volume is an example of a layered volume that stripes several
underlying mirror volumes. A striped-mirror volume requires space to be available
on at least as many disks in the disk group as the number of columns multiplied by
the number of mirrors in the volume.

To create a striped-mirror volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \
layout=stripe-mirror [nmirror=number of mirrors] \

[ncol=number of columns] [stripewidth=size]

Specify the -b option if you want to make the volume immediately available for use.

By default, Veritas Volume Manager (VxVM) attempts to create the underlying
volumes by mirroring subdisks rather than columns if the size of each column is
greater than the value for the attribute stripe-mirror-col-split-trigger-pt
that is defined in the vxassist defaults file.

If there are multiple subdisks per column, you can choose to mirror each subdisk
individually instead of each column. To mirror at the subdisk level, specify the layout



Advanced allocation methods for configuring storage | 243
Creating volumes of a specific layout

as stripe-mirror-sd rather than stripe-mirror. To mirror at the column level,
specify the layout as stripe-mirror-col rather than stripe-mirror

Creating a RAID-5 volume

A RAID-5 volume requires space to be available on at least as many disks in the
disk group as the number of columns in the volume. Additional disks may be required
for any RAID-5 logs that are created.

Note: Veritas Volume Manager (VxVM) supports the creation of RAID-5 volumes
in private disk groups, but not in shareable disk groups in a cluster environment.

You can create RAID-5 volumes by using either the vxassist command
(recommended) or the vxmake command. This section describes using the preferred
method, the vxassist command.

For information about using the vxmake command, see the vxmake(1M) manual
page.

A RAID-5 volume contains a RAID-5 data plex that consists of three or more

subdisks located on three or more physical disks. Only one RAID-5 data plex can
exist per volume. A RAID-5 volume can also contain one or more RAID-5 log plexes,
which are used to log information about data and parity being written to the volume.

See “RAID-5 (striping with parity)” on page 75.

Warning: Do not create a RAID-5 volume with more than 8 columns because the
volume will be unrecoverable in the event of the failure of more than one disk.

To create a RAID-5 volume, use the following command:

# vxassist [-b] [-g diskgroup] make volume length layout=raid5 \
[ncol=number of columns] [stripewidth=size] [nlog=number] \

[loglen=1log length]

Specify the -b option if you want to make the volume immediately available for use.

For example, to create the RAID-5 volume volraid together with 2 RAID-5 logs in
the disk group, mydg, use the following command:

# vxassist -b -g mydg make volraid 10g layout=raid5 nlog=2

This creates a RAID-5 volume with the default stripe unit size on the default number
of disks. It also creates two RAID-5 logs rather than the default of one log.



Advanced allocation methods for configuring storage
Creating volumes of a specific layout

If you require RAID-5 logs, you must use the 10gdisk attribute to specify the disks
to be used for the log plexes.

RAID-5 logs can be concatenated or striped plexes, and each RAID-5 log associated
with a RAID-5 volume has a complete copy of the logging information for the volume.
To support concurrent access to the RAID-5 array, the log should be several times
the stripe size of the RAID-5 plex.

It is suggested that you configure a minimum of two RAID-5 log plexes for each
RAID-5 volume. These log plexes should be located on different disks. Having two
RAID-5 log plexes for each RAID-5 volume protects against the loss of logging
information due to the failure of a single disk.

If you use ordered allocation when creating a RAID-5 volume on specified storage,
you must use the 1o0gdisk attribute to specify on which disks the RAID-5 log plexes
should be created. Use the following form of the vxassist command to specify the
disks from which space for the logs is to be allocated:

# vxassist [-b] [-g diskgroup] -o ordered make volume length \
layout=raid5 [ncol=number columns] [nlog=number] \
[loglen=log length] logdisk=disk[,disk,...] \

storage attributes

For example, the following command creates a 3-column RAID-5 volume with the
default stripe unit size on disks mydg04, mydg05 and mydg06. It also creates two
RAID-5 logs on disks mydg07 and mydg08.

# vxassist -b -g mydg -o ordered make volraid 10g layout=raid5 \
ncol=3 nlog=2 logdisk=mydg07,mydg08 mydg04 mydg05 mydg06

The number of logs must equal the number of disks that is specified to 10gdisk.

See “Specifying ordered allocation of storage to volumes” on page 249.

See the vxassist(1M) manual page.

You can add more logs to a RAID-5 volume at a later time.

To add a RAID-5 log to an existing volume, use the following command:
# vxassist [-b] [-g diskgroup] addlog volume [loglen=length]

If you specify the -b option, adding the new log is a background task.

When you add the first log to a volume, you can specify the log length. Any logs
that you add subsequently are configured with the same length as the existing log.

For example, to create a log for the RAID-5 volume volraid, in the disk group mydg,
use the following command:

244



Advanced allocation methods for configuring storage | 245
Creating a volume on specific disks

# vxassist -g mydg addlog volraid

Creating a volume on specific disks

Veritas Volume Manager (VxVM) automatically selects the disks on which each
volume resides, unless you specify otherwise. If you want to select a particular type
of disks for a certain volume, you can provide the storage specifications to vxassist
for storage allocation.

For more infornation, see the Storage Specifications section of the vxassist(1M)
manual page.

See “Customizing disk classes for allocation” on page 223.

See “Specifying allocation constraints for vxassist operations with the use clause
and the require clause” on page 226.

If you want a volume to be created on specific disks, you must designate those
disks to VxVM. More than one disk can be specified.

To create a volume on a specific disk or disks, use the following command:

# vxassist [-b] [-g diskgroup] make volume length \
[layout=layout] diskname ...

Specify the -p option if you want to make the volume immediately available for use.

For example, to create the volume volspec with length 5 gigabytes on disks mydg03
and mydg04, use the following command:

# vxassist -b -g mydg make volspec 5g mydg03 mydg04

The vxassist command allows you to specify storage attributes. These give you
control over the devices, including disks and controllers, which vxassist uses to
configure a volume.

For example, you can specifically exclude the disk mydg05.

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

# vxassist -b -g mydg make volspec 5g \!mydg05
The following example excludes all disks that are on controller c2:

# vxassist -b -g mydg make volspec 5g \'!ctlr:c2



Advanced allocation methods for configuring storage | 246
Creating volumes on specific media types

If you want a volume to be created using only disks from a specific disk group, use
the -g option to vxassist, for example:

# vxassist -g bigone -b make volmega 20g bigonelO bigonell
or alternatively, use the diskgroup attribute:

# vxassist -b make volmega 20g diskgroup=bigone bigonel0 \
bigonell

Any storage attributes that you specify for use must belong to the disk group.

Otherwise, vxassist will not use them to create a volume.

You can also use storage attributes to control how vxassist uses available storage,
for example, when calculating the maximum size of a volume, when growing a
volume or when removing mirrors or logs from a volume. The following example
excludes disks mydg07 and mydg08 when calculating the maximum size of a RAID-5
volume that vxassist can create using the disks in the disk group mydg:

# vxassist -b -g mydg maxsize layout=raid5 nlog=2 \'!'mydg07 \'mydg08
It is also possible to control how volumes are laid out on the specified storage.

See “Specifying ordered allocation of storage to volumes” on page 249.

vxassist also lets you select disks based on disk tags. The following command
only includes disks that have a tier1 disktag.

# vxassist -g mydg make vol3 1lg disktag:tierl

See the vxassist(1M) manual page.

Creating volumes on specific media types

When you create a volume, you can specify the media type for the volume. The
supported media types are Hard Disk Drives (HDD) or Solid State Devices (SSD).
The SSD media type requires disk group 150 or greater. The default is HDD.

To specify a media type, specify the vxassist command with the mediatype
attribute. If no mediatype is specified, the volume allocates storage only from the
HDD devices.

Creating encrypted volumes

Set the attribute encrypted to on with the vxassist command to create encrypted
volumes.



Advanced allocation methods for configuring storage
Changing the encryption password

If you encrypt the volume with a password or passphrase, VxVM displays the volume
status encrypted with password for the volume. If you have configured the Key
Management Server and encrypt the volume using it, VxVM displays the volume
status encrypted for the volume.

The following example encrypts a volume using a Key Management Server:

# vxassist -g mydg make vol0l 1lg encrypted=on
# vxassist -g mydg make vol02 1lg

# vxencrypt list

Disk group: mydg

VOLUME STATUS
vol0l encrypted
vol02 not encrypted

Changing the encryption password

Use the vxencrypt command to change the encryption password at any time.

# vxencrypt -g mydg passwd volOl
Enter current password: xxxx
Enter new password: xXxx

Confirm new password: XXXxXX

Viewing encrypted volumes
Use the vxencrypt command to view the list of encrypted volumes.

# vxencrypt list
Disk group: mydg

VOLUME STATUS
vol0l encrypted
vol02 encrypted

Disk group: mydgl

VOLUME STATUS
vol03 encrypted
vol04 not encrypted

# vxencrypt -g mydgl list
VOLUME STATUS

247



Advanced allocation methods for configuring storage | 248
Automating startup for encrypted volumes

vol03 encrypted
vol04 not encrypted

Automating startup for encrypted volumes

By default, encrypted volumes can not start automatically when the system boots
up because it requires the user to provide an access passphrase. However, you
can automate the startup of encrypted volumes by storing the required passphrases
inthe /etc/vx/encryption/password file file.

Caution: The password file is stored on the disk. Set secure file permissions to
prevent unauthorized users from reading the file. You must also secure physical
access to the hosts and storage on which the file is located.

The passphrase file must contain one line for each encrypted volume; each line
contains the following information in three columns of text:

First column Name of the disk group or disk group ID

Use the * wildcard character to indicate any disk group.

Second column Name of the encrypted volume

Use the * wildcard character to indicate any volume.

Third column Passphrase

The passphrase must be specified as plain text in the
password file file.

VxVM does not impose any limitation on the size of the passphrase
or the characters in the passphrase; however, new line or NULL
character must not be specified in the passphrase.

At the time of system startup, VxXVM queries the passphrase file for encrypted
volumes. If the volume is listed in the file, it uses the corresponding passphrase for
the volume instead of prompting the user for a manual entry.

A sample passphrase file is as follows:

datadgl datavoll mypassphrasel
datadgl datavol2 mypassphrase?2



Advanced allocation methods for configuring storage
Configuring a Key Management Server

Configuring a Key Management Server

You can configure a Key Management Server for volume encryption by creating
the configuration file /etc/vx/enc-kms-kmip.conf on the KMIP client.

The configuration file must have the following information:

host The hostname or IP address of the Key Management Server

port The port number at which the Key Management Server accepts Key
Management Interoperability Protocol (KMIP) clients

keyfile The location of the private key to be used by the KMIP client, in Privacy
Enhanced Mail (PEM) format

certfile The location of the certificate to be used by the KMIP client, in PEM
format
cacerts The location of the root certificate to be used for mutual authentication,

in PEM format

A sample configuration file is as follows:

[client]

host = kms-enterprise.example.com

port = 5696

keyfile = /var/kmip/certs/client-key.pem
certfile = /var/kmip/certs/client-crt.pem
cacerts = /var/kmip/certs/cacert.pem

Specifying ordered allocation of storage to

volumes

Ordered allocation gives you complete control of space allocation. It requires that
the number of disks that you specify to the vxassist command must match the
number of disks that are required to create a volume. The order in which you specify
the disks to vxassist is also significant.

If you specify the -0 ordered option to vxassist when creating a volume, any
storage that you also specify is allocated in the following order:

» Concatenate disks
s Form columns

s Form mirrors

249



Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

For example, the following command creates a mirrored-stripe volume with 3
columns and 2 mirrors on 6 disks in the disk group, mydg:

# vxassist -b -g mydg -o ordered make mirstrvol 10g \
layout=mirror-stripe ncol=3 mydg0l mydg02 mydg03 \
mydg04 mydg05 mydg06

This command places columns 1, 2, and 3 of the first mirror on disks mydg01, mydg02,
and mydg03 respectively, and columns 1, 2, and 3 of the second mirror on disks
mydg04, mydg05, and mydg06 respectively.

Figure 8-1 shows an example of using ordered allocation to create a mirrored-stripe
volume.

Figure 8-1 Example of using ordered allocation to create a mirrored-stripe
volume

Mirrored-stripe

. volume
tri
column 1 column 2 column 3 S p|2()j(
mydg01-01 mydg02-01 mydg03-01 P
Mirror

column 1 column 2 column 3 X
mydg04-01 mydg05-01 mydg06-01 Stri pled
plex

For layered volumes, vxassist applies the same rules to allocate storage as for
non-layered volumes. For example, the following command creates a striped-mirror
volume with 2 columns:

# vxassist -b -g mydg -o ordered make strmirvol 10g \

layout=stripe-mirror ncol=2 mydg0l mydg02 mydg03 mydg04
This command mirrors column 1 across disks mydg01 and mydg03, and column 2
across disks mydg02 and mydg04.

Figure 8-2 shows an example of using ordered allocation to create a striped-mirror
volume.

250



Advanced allocation methods for configuring storage
Specifying ordered allocation of storage to volumes

Figure 8-2 Example of using ordered allocation to create a striped-mirror
volume

Underlying mirrored volumes

column 1
mydg01-01
column 1
mydg03-01

Striped-mirror
volume

Mirror
column 2

mydg04-01

Striped plex

Additionally, you can use the col switch attribute to specify how to concatenate
space on the disks into columns. For example, the following command creates a
mirrored-stripe volume with 2 columns:

# vxassist -b -g mydg -o ordered make strmir2vol 10g \
layout=mirror-stripe ncol=2 col_switch=3g,2g \
mydg0l mydg02 mydg03 mydg04 mydg05 mydg06 mydg07 mydg08

This command allocates 3 gigabytes from mydg01 and 2 gigabytes from mydg02 to
column 1, and 3 gigabytes from mydg03 and 2 gigabytes from mydg04 to column 2.
The mirrors of these columns are then similarly formed from disks mydg05 through
mydg08.

Figure 8-3 shows an example of using concatenated disk space to create a
mirrored-stripe volume.

Figure 8-3 Example of using concatenated disk space to create a
mirrored-stripe volume

Mirrored-stripe

S Column 13 “coumn2y Striped Vvolume

mydg01-01 mydg03-01 lex

Tydgotol  (mydgo3.oy P

mydg02-01 mydg04-01

~ ~ .
:> Mirror

column 1) (column 1)

mydg05-01 mydg07-01 X

N M~———| Striped

orists0) (@8O " piex

251



Advanced allocation methods for configuring storage | 252
Site-based allocation

Other storage specification classes for controllers, enclosures, targets and trays
can be used with ordered allocation. For example, the following command creates
a 3-column mirrored-stripe volume between specified controllers:

# vxassist -b -g mydg -o ordered make mirstr2vol 80g \
layout=mirror-stripe ncol=3 \
ctlr:cl ctlr:c2 ctlr:c3 ctlr:c4 ctlr:c5 ctlr:cé

This command allocates space for column 1 from disks on controllers c1, for column
2 from disks on controller c2, and so on.

Figure 8-4 shows an example of using storage allocation to create a mirrored-stripe
volume across controllers.

Figure 8-4 Example of storage allocation used to create a mirrored-stripe
volume across controllers

cl c2 ¢3  Controllers

Striped plex

column 1 ‘cdumnil Icmumnil
:> Mirror

(_column 23 fcolumn 33
Striped plex

c4 c5 c6  Controllers

Mirrored-stripe volume

é

There are other ways in which you can control how vxassist lays out mirrored
volumes across controllers.

Site-based allocation

In a Remote Mirror configuration (also known as a campus cluster or stretch cluster),
the hosts and storage of a cluster are divided between two or more sites. These
sites are typically connected through a redundant high-capacity network that provides
access to storage and private link communication between the cluster nodes.

Configure the disk group in a Remote Mirror site to be site-consistent. When you
create volumes in such a disk group, the volumes are mirrored across all sites by
default.



Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

See “About sites and remote mirrors” on page 590.

Changing the read policy for mirrored volumes

For a mirrored volume, Veritas Volume Manager (VxVM) uses the read policy to
determine which data plex in the volume to use for reads. By default, VxXVM chooses
a plex using the following criteria, in order:

Site
Plexes on the same site are chosen over plexes on another site.
Connectivity

Locally connected plexes are chosen over remotely connected plexes. This
criterion applies for shared disk groups.

Media type
SSD devices are chosen over HDDs.

Layout
Striped plexes are chosen over other layouts

To customize the read policy, you can choose one of the following VxVM read

policies:

prefer Uses a particular named plex to satisfy read requests. Specify
one preferred plex when you set the prefer policy.
If a read request cannot be satisfied by the preferred plex,
VxVM applies the plex order in the select policy.

round Distributes the non-sequential read operations in “round-robin”

fashion across all of the available plexes. For example, given
three plexes, VxXVM switches between each of the three
plexes, so that each plex receives one third of the read
requests. Sequential read operations access only one plex.
This approach takes advantage of the drive or controller
read-ahead caching policies.

253



select

siteread

split

Advanced allocation methods for configuring storage
Changing the read policy for mirrored volumes

Chooses a plex based on the characteristics of the plex. The
select policy is the default read policy, unless site
consistency is enabled. If sites are configured, VxXVM
internally switches to the siteread policy.

The select policy chooses a plex in the following order:

s Locally connected striped SSD plexes

m Locally connected SSD plexes

= Locally connected striped plexes

= Locally connected plexes

= Remotely connected striped SSD plexes
= Remotely connected SSD plexes

If VxXVM cannot find a plex with the above characteristics,
VxVM uses the round policy.

Reads preferentially from plexes at the locally defined site.
This method is the default policy for volumes in disk groups
where site consistency is enabled.

The siteread policy chooses a plex in the following order:

= Local site, locally connected striped SSD plexes

» Local site, locally connected SSD plexes

= Local site, locally connected striped plexes

= Local site, locally connected plexes

s Local site, remotely connected striped SSD plexes
= Local site, remotely connected SSD plexes

= Local site, remotely connected striped plexes

= Local site, remotely connected plexes

If VXVM cannot find a plex with the above characteristics,
VxVM refers to the plex order in the select policy.

Divides the read requests and distributes them across all the
available plexes.

Note: You cannot set the read policy on a RAID-5 volume.

To set the read policy to round, use the following command:

# vxvol [-g diskgroup] rdpol round volume

For example, to set the read policy for the volume vo101 in disk group mydg to
round-robin, use the following command:

# vxvol -g mydg rdpol round volOl

254



Advanced allocation methods for configuring storage | 255
Changing the read policy for mirrored volumes

To set the read policy to prefer, use the following command:
# vxvol [-g diskgroup] rdpol prefer volume preferred plex

For example, to set the policy for vo101 to read preferentially from the plex vo101-02,
use the following command:

# vxvol -g mydg rdpol prefer volO0l vol01-02
To set the read policy to select, use the following command:

# vxvol [-g diskgroup] rdpol select volume



Creating and mounting
VXFS file systems

This chapter includes the following topics:

Creating a VxFS file system

Converting a file system to VxFS

Mounting a VxFS file system

Unmounting a file system

Resizing a file system

Displaying information on mounted file systems
Identifying file system types

Monitoring free space

Creating a VxFS file system

The mkfs command creates a VxFS file system by writing to a special character
device file. The special character device must be a Veritas Volume Manager (VxVM)
volume. The mkfs command builds a file system with a root directory and a
lost+found directory.

Before running mk fs, you must create the target device.

See to your operating system documentation.

If you are using a logical device (such as a VxVM volume), see the VxVM
documentation.



Creating and mounting VxFS file systems
Creating a VxFS file system

Note: Creating a VxFS file system on a Logical Volume Manager (LVM) or Multiple
Device (MD) driver volume is not supported in this release. You also must convert
an underlying LVM to a VxVM volume before converting an ext2 or ext 3 file system
to a VxFS file system. See the vxvmconvert(1M) manual page.

See the mk£s(1M) and mk£s_vx£s(1M) manual pages.

When you create a file system with the mk fs command, you can select the following
characteristics:

= File system block size
= Intent log size
To create a file system

¢ Use the mkfs command to create a file system:
mkfs [-t vxfs] [generic options]
[-o specific options] -m special [size]
-t vxfs Specifies the VxFS file system type.

-m Displays the command line that was used to create the file
system. The file system must already exist. This option enables
you to determine the parameters used to construct the file
system.

generic_options Options common to most other file system types.
-o specific_options Options specific to VxFS.

-0 N Displays the geometry of the file system and does not write
to the device.

-o largefiles Allows users to create files larger than two gigabytes. The
default option is largefiles.

-0 nomaxlink Support is added for more than 64 K sub-directory. If maxlink
is disabled on the file system, the sub-directory limit is 32 K
by default.

special Specifies the special device file location or character device

node of a particular storage device. The device must be a
Veritas Volume Manager volume.

size Specifies the number of 512-byte sectors in the file system.
If size is not specified, mk £ s determines the size of the special
device.

257



Creating and mounting VxFS file systems | 258
Creating a VxFS file system

The following example creates a VxFS file system of 12288 sectors in size on a
VxVM volume.

To create a VxFS file system

1 Create the file system:

# /opt/VRTS/bin/mkfs /dev/vx/rdsk/diskgroup/volume 12288
version 13 layout

12288 sectors, 6144 blocks of size 1024, log size 256 blocks
rcqg size 1024 blocks

largefiles supported

maxlink supported

WORM not supported

2 Mount the newly created file system:

# mount -t vxfs /dev/vx/dsk/diskgroup/volume /mntl

File system block size

The unit of allocation in VxFS is an extent. Unlike some other UNIX file systems,
VxFS does not make use of block fragments for allocation because storage is
allocated in extents that consist of one or more blocks. You specify the block size
when creating a file system by using the mkfs -o bsize option. The block size
cannot be altered after the file system is created. The smallest available block size
for VxFS is 1 KB.

The default block size is 1024 bytes for file systems smaller than 1 TB, and 8192
bytes for file systems 1 TB or larger.

Choose a block size based on the type of application being run. For example, if
there are many small files, a 1 KB block size may save space. For large file systems,
with relatively few files, a larger block size is more appropriate. Larger block sizes
use less disk space in file system overhead, but consume more space for files that
are not a multiple of the block size. The easiest way to judge which block sizes
provide the greatest system efficiency is to try representative system loads against
various sizes and pick the fastest.

Intent log size

You specify the intent log size when creating a file system by using the mkfs -o
logsize option.You can dynamically increase or decrease the intent log size using
the 1ogsize option of the fsadm command. The mkfs utility uses a default intent
log size of 64 megabytes. The default size is sufficient for most workloads. If the



Creating and mounting VxFS file systems | 259
Converting a file system to VxFS

system is used as an NFS server or for intensive synchronous write workloads,
performance may be improved using a larger log size.

See the fsadm vxfs(1M) and mkfs_vxfs(1M) manual pages.

With larger intent log sizes, recovery time is proportionately longer and the file
system may consume more system resources (such as memory) during normal
operation.

There are several system performance benchmark suites for which VxFS performs
better with larger log sizes. As with block sizes, the best way to pick the log size is
to try representative system loads against various sizes and pick the fastest.

Converting a file system to VxFS

To meet your storage needs you may want to convert your file system to Veritas
File System (VxFS).

InfoScale provides an offline as well as online solution to convert a native file system
(Ext2, Ext3, and Ext4) to VxFS.

The online conversion of file system is a real-time migration process. This process
requires additional separate storage to copy the application data from the existing
LVM volume to the VxVM volumes. This conversion process involves migration of
the file system with limited application downtime. Use the fsmigadm command to
perform the online migration of a native file system to VxFS.

The offline conversion of a file system is a process that allows you to convert your
existing file system while your applications are offline. The offline conversion involves
two steps:

1. Conversion of Logical Volume Manager (LVM) volume groups and objects to
the equivalent VxVM disk groups and objects. Use the vxvmconvert utility to
convert the LVM groups to VxVM disk groups.

2. Conversion of file system to VxFS. Use the vxfsconvert utility to convert the
native file system to VxFS.

For more details about converting a file system, refer to, Veritas InfoScale Solutions
Guide.

Mounting a VxFS file system

You can mount a VxFS file system by using the mount command. When you enter
the mount command, the generic mount command parses the arguments and the
-t FSType option executes the mount command specific to that file system type.
If the -t option is not supplied, the command searches the file /etc/fstab for a



Creating and mounting VxFS file systems
Mounting a VxFS file system

file system and an FSType matching the special file or mount point provided. If no
file system type is specified, mount uses the default file system.

The mount command automatically runs the VxFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This
functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

On RHEL, you can use the context, defcontext, fscontext, and rootcontext mount
options to specify a mode for VxFS operation.

In addition to the standard mount mode (delaylog mode), Veritas File System
(VXFS) provides the following mount options for you to specify other modes of
operation:

= log mount option

= delaylog mount option

= tmplog mount option

= logiosize mount option

= nodatainlog mount option
= blkclear mount option

= mincache mount option

= convosync mount option
= ioerror mount option

= largefiles and nolargefiles mount options
= Cio mount option

= mntlock mount option

= ckptautomnt mount option

Caching behavior can be altered with the mincache option, and the behavior of
0_syNc and D_syNc writes can be altered with the convosync option.

See the fcnt1(2) manual page.

The delaylog and tmplog modes can significantly improve performance. The
improvement over 1og mode is typically about 15 to 20 percent with delaylog; with
tmplog, the improvement is even higher. Performance improvement varies,
depending on the operations being performed and the workload. Read/write intensive
loads should show less improvement, while file system structure intensive loads,
such as mkdir, create, and rename, may show over 100 percent improvement.

260



Creating and mounting VxFS file systems | 261
Mounting a VxFS file system

The best way to select a mode is to test representative system loads against the
logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine
might use both the blkclear and mincache=closesync modes.

The mount command automatically runs the VXFS fsck command to clean up the
intent log if the mount command detects a dirty log in the file system. This

functionality is only supported on file systems mounted on a Veritas Volume Manager
(VxVM) volume.

See the mount_vx£s(1M) manual page.
To mount a file system

¢ Use the mount command to mount a file system:

mount [-t vxfs] [generic options] [-r] [-o specific options] \

special mount point

vxfs File system type.
generic_options Options common to most other file system types.
specific_options Options specific to VxFS.

-o ckpt=ckpt name Mounts a Storage Checkpoint.

-o cluster Mounts a file system in shared mode. Available only with the VxFS
cluster file system feature.

special A VxFS block special device.
mount_point Directory on which to mount the file system.
-r Mounts the file system as read-only.

The following example mounts the file system /dev/vx/dsk/fsvol/voll on the
/mnt1 directory with read/write access and delayed logging.

Example of mounting a file system

¢ Mount the file system /dev/vx/dsk/£fsvol/voll on the /mnt1 directory with
read/write access and delayed logging:

# mount -t vxfs -o delaylog /dev/vx/dsk/fsvol/voll /mntl



Creating and mounting VxFS file systems | 262
Mounting a VxFS file system

log mount option

File systems are typically asynchronous in that structural changes to the file system
are not immediately written to disk, which provides better performance. However,
recent changes made to a system can be lost if a system failure occurs. Specifically,
attribute changes to files and recently created files may disappear. In log mode, all
system calls other than write(2), writev(2), and pwrite(2) are guaranteed to be
persistent after the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In both the 10g and de1aylog modes, the rename
is also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.

delaylog mount option

The default logging mode is delaylog, in which writing to a file is delayed, or
buffered, meaning that the data to be written is copied to the file system cache and
later flushed to disk. In delaylog mode, the effects of most system calls other than
write(2), writev(2), and pwrite(2) are guaranteed to be persistent approximately
three seconds after the system call returns to the application. Contrast this with the
behavior of most other file systems in which most system calls are not persistent
until approximately 30 seconds or more after the call has returned. Fast file system
recovery works with this mode.

A delayed write provides much better performance than synchronously writing the
data to disk. However, in the event of a system failure, data written shortly before
the failure may be lost since it was not flushed to disk. In addition, if space was
allocated to the file as part of the write request, and the corresponding data was
not flushed to disk before the system failure occurred, uninitialized data can appear
in the file.

For the most common type of write, delayed extending writes (a delayed write that
increases the file size), VxFS avoids the problem of uninitialized data appearing in
the file by waiting until the data has been flushed to disk before updating the new
file size to disk. If a system failure occurs before the data has been flushed to disk,
the file size has not yet been updated, thus no uninitialized data appears in the file.
The unused blocks that were allocated are reclaimed.

The rename(2) system call flushes the source file to disk to guarantee the persistence
of the file data before renaming it. In the 10g and delaylog modes, the rename is
also guaranteed to be persistent when the system call returns. This benefits shell
scripts and programs that try to update a file atomically by writing the new file
contents to a temporary file and then renaming it on top of the target file.



Creating and mounting VxFS file systems | 263
Mounting a VxFS file system

tmplog mount option

In tmplog mode, the effects of system calls have persistence guarantees that are
similar to those in de1aylog mode. In addition, enhanced flushing of delayed
extending writes is disabled, which results in better performance but increases the
chances of data being lost or uninitialized data appearing in a file that was being
actively written at the time of a system failure. This mode is only recommended for
temporary file systems. Fast file system recovery works with this mode.

Note: The term "effects of system calls" refers to changes to file system data and
metadata caused by a system call, excluding changes to st_atime.

See the stat(2) manual page.

Logging mode persistence guarantees

In all logging modes, VxFS is fully POSIX compliant. The effects of the fsync(2)
and fdatasync(2) system calls are guaranteed to be persistent after the calls return.
The persistence guarantees for data or metadata modified by write(2), writev(2),
or pwrite(2) are not affected by the logging mount options. The effects of these
system calls are guaranteed to be persistent only if the 0_sync, 0_DsyNnc, vx_DsYNC,
or vx_DIRECT flag, as modified by the convosync=mount option, has been specified
for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the 104 and
tmplog mount options, but not delaylog. In all cases except for tmplog, VXFS
complies with the persistency requirements of the NFSv3 and NFSv4 standard.
Unless a UNIX application has been developed specifically for the VxFS file system
in 1og mode, it expects the persistence guarantees offered by most other file systems
and experiences improved robustness when used with a VxFS file system mounted
in delaylog mode. Applications that expect better persistence guarantees than
that offered by most other file systems can benefit from the 10g, mincache=, and
closesync mount options. However, most commercially available applications work
well with the default VXFS mount options, including the de1aylog mode.

See the mount_vx£s(1M) manual page.

logiosize mount option

The 1ogiosize=size option enhances the performance of storage devices that
employ a read-modify-write feature. If you specify 1ogiosize when you mount a
file system, VxFS writes the intent log in the least size bytes or a multiple of size
bytes to obtain the maximum performance from such devices.



Creating and mounting VxFS file systems
Mounting a VxFS file system

See the mount_vxfs(1M) manual page.

The values for size can be 512, 1024, 2048, 4096, or 8192.

nodatainlog mount option

Use the nodatainlog mode on systems with disks that do not support bad block
revectoring. Usually, a VxFS file system uses the intent log for synchronous writes.
The inode update and the data are both logged in the transaction, so a synchronous
write only requires one disk write instead of two. When the synchronous write returns
to the application, the file system has told the application that the data is already
written. If a disk error causes the metadata update to fail, then the file must be
marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely,
so logging synchronous writes should be allowed. If the disk does not support bad
block revectoring, then a failure is more likely, so the nodatainlog mode should
be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard
mode VxFS file system for synchronous writes. Other operations are not affected.

blkclear mount option

The blkclear mode is used in increased data security environments. The blkclear
mode guarantees that uninitialized storage never appears in files. The increased
integrity is provided by clearing extents on disk when they are allocated within a
file. This mode does not affect extending writes. A blkclear mode file system is
approximately 10 percent slower than a standard mode VxFS file system, depending
on the workload.

mincache mount option

The mincache mode has the following suboptions:
m mincache=closesync

m mincache=direct

m mincache=dsync

m mnmincache=unbuffered

m mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users
are likely to shut off the power on the machine without halting it first. In this mode,
any changes to the file are flushed to disk when the file is closed.

264



Creating and mounting VxFS file systems | 265
Mounting a VxFS file system

To improve performance, most file systems do not synchronously update data and
inode changes to disk. If the system crashes, files that have been updated within
the past minute are in danger of losing data. With the mincache=closesync mode,
if the system crashes or is switched off, only open files can lose data. A
mincache=closesync mode file system could be approximately 15 percent slower
than a standard mode VxFS file system, depending on the workload.

The following describes where to use the mincache modes:

m The mincache=direct, mincache=unbuffered, and mincache=dsync modes
are used in environments where applications have reliability problems caused
by the kernel buffering of /0 and delayed flushing of non-synchronous 1/0.

m The mincache=direct and mincache=unbuffered modes guarantee that all
non-synchronous I/O requests to files are handled as if the vx_DIRECT or
VX_UNBUFFERED caching advisories had been specified.

s The mincache=dsync mode guarantees that all non-synchronous I/O requests
to files are handled as if the vx_DsyNnc caching advisory had been specified.
Refer to the vxfsio(7) manual page for explanations of vx_DIRECT,
VX_UNBUFFERED, and vx_DsYNC, as well as for the requirements for direct I/O.

s The mincache=direct, mincache=unbuffered, and mincache=dsync modes
also flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync
modes change non-synchronous I/O to synchronous I/O, throughput can substantially
degrade for small to medium size files with most applications. Since the vx_DIRECT
and vx_UNBUFFERED advisories do not allow any caching of data, applications that
normally benefit from caching for reads usually experience less degradation with
the mincache=dsync mode. mincache=direct and mincache=unbuffered require
significantly less CPU time than buffered 1/O.

If performance is more important than data integrity, you can use the
mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed
extending write handling, trading off less integrity for better performance. Unlike
the other mincache modes, tmpcache does not flush the file to disk when the file is
closed. When the mincache=tmpcache option is used, bad data can appear in a
file that was being extended when a crash occurred.

See the mount_vx£s(1M) manual page.

convosync mount option

The convosync (convert osync) mode has the following suboptions:

m convosync=closesync



Creating and mounting VxFS file systems
Mounting a VxFS file system

Note: The convosync=closesync mode converts synchronous and data
synchronous writes to non-synchronous writes and flushes the changes to the
file to disk when the file is closed.

m convosync=delay
m convosync=direct

m convosync=dsync

Note: The convosync=dsync option violates POSIX guarantees for synchronous
1/0.

m  convosync=unbuffered

The convosync=delay mode causes synchronous and data synchronous writes to
be delayed rather than to take effect immediately. No special action is performed
when closing a file. This option effectively cancels any data integrity guarantees
normally provided by opening a file with o_sync.

See the open(2), fcnt1(2), and vxfsio(7) manual pages.

Warning: Be very careful when using the convosync=closesync or
convosync=delay mode because they actually change synchronous I/O into
non-synchronous I/O. Applications that use synchronous /O for data reliability may
fail if the system crashes and synchronously-written data is lost.

The convosync=dsync mode converts synchronous writes to data synchronous
writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to
the file to disk when it is closed. These modes can be used to speed up applications
that use synchronous I/O. Many applications that are concerned with data integrity
specify the o_sync fentl in order to write the file data synchronously. However, this
has the undesirable side effect of updating inode times and therefore slowing down
peﬁonnance.The convosync=dsync,convosync=unbuffered,and
convosync=direct modes alleviate this problem by allowing applications to take
advantage of synchronous writes without modifying inode times as well.

Before uﬁng convosync=dsync, convosync=unbuffered, Of convosync=direct
make sure that all applications that use the file system do not require synchronous
inode time updates for o_sync writes.

266



Creating and mounting VxFS file systems | 267
Mounting a VxFS file system

ioerror mount option

This mode sets the policy for handling I/O errors on a mounted file system. 1/O
errors can occur while reading or writing file data or metadata. The file system can
respond to these I/O errors either by halting or by gradually degrading. The icerror
option provides five policies that determine how the file system responds to the
various errors. All policies limit data corruption, either by stopping the file system
or by marking a corrupted inode as bad.

The policies are as follows:
= disable policy
= wdisable policy and mwdisable policy

= mdisable policy

disable policy

If disable is selected, VxXFS disables the file system after detecting any I/O error.
You must then unmount the file system and correct the condition causing the 1/0
error. After the problem is repaired, run £sck and mount the file system again. In
most cases, replay fsck to repair the file system. A full £sck is required only in
cases of structural damage to the file system's metadata. Select disable in
environments where the underlying storage is redundant, such as RAID-5 or mirrored
disks.

wdisable policy and mwdisable policy

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the
file system is disabled or degraded, depending on the type of error encountered.
Select wdisable Or mwdisable for environments where read errors are more likely
to persist than write errors, such as when using non-redundant storage. mwdisable
is the default ioerror mount option for local mounts.

Note: The mirrored volume file system is not disabled when wdisable Or mwdisable
is selected, if the problem occurs when there is only one plex.

See the mount_vx£s(1M) manual page.

Note: If the nodisable option is selected, the behavior will be same as the
mwdisable ioerror policy. For more information see the mwdisable option.




Creating and mounting VxFS file systems | 268
Mounting a VxFS file system

mdisable policy

If mdisable (metadata disable) is selected, the file system is disabled if a metadata
read or write fails. However, the file system continues to operate if the failure is
confined to data extents. mdisable is the default icerror mount option for cluster
mounts.

largefiles and nolargefiles mount options

Veritas File System (VxFS) supports sparse files up to 16 terabytes, and non-sparse
files up to 2 terabytes - 1 kilobyte.

Note: Applications and utilities such as backup may experience problems if they
are not aware of large files. In such a case, create your file system without large
file capability.

See “Creating a file system with large files” on page 268.
See “Mounting a file system with large files” on page 268.

See “Managing a file system with large files” on page 269.

Creating a file system with large files

To create a file system with large file capability:
# mkfs -t vxfs -o largefiles special device size

Specifying 1argefiles sets the 1argefiles flag. This enables the file system to
hold files that are two gigabytes or larger. This is the default option.

To clear the flag and prevent large files from being created:
# mkfs -t vxfs -o nolargefiles special device size

The 1argefiles flag is persistent and stored on disk.

Mounting a file system with large files

If a mount succeeds and nolargefiles is specified, the file system cannot contain
or create any large files. If a mount succeeds and 1argefiles is specified, the file
system may contain and create large files.

The mount command fails if the specified 1argefiles|nolargefiles option does
not match the on-disk flag.



Creating and mounting VxFS file systems | 269
Mounting a VxFS file system

Because the mount command defaults to match the current setting of the on-disk

flag if specified without the 1argefiles or nolargefiles option, the best practice
is not to specify either option. After a file system is mounted, you can use the fsadm
utility to change the large files option.

Managing a file system with large files

Managing a file system with large files includes the following tasks:
= Determining the current status of the large files flag

= Switching capabilities on a mounted file system

= Switching capabilities on an unmounted file system

To determine the current status of the 1argefiles flag, type either of the following
commands:

# mkfs -t vxfs -m special device
# /opt/VRTS/bin/fsadm mount point | special device

To switch capabilities on a mounted file system:
# /opt/VRTS/bin/fsadm -o [no]largefiles mount point
To switch capabilities on an unmounted file system:
# /opt/VRTS/bin/fsadm -o [no]largefiles special device

You cannot change a file system to nolargefiles if it contains large files.

See the mount_vx£fs(1M), £sadm vxfs(1M), and mkfs_vx£fs(1M) manual pages.

cio mount option

The cio (Concurrent I/0) option specifies the file system to be mounted for
concurrent reads and writes. If cio is specified, but the license is not present, the
mount command prints an error message and terminates the operation without
mounting the file system. The cio option cannot be disabled through a remount.
To disable the cio option, the file system must be unmounted and mounted again
without the cio option.

mntlock mount option

The mnt1ock option prevents a file system from being unmounted by an application.
This option is useful for applications that do not want the file systems that the



Creating and mounting VxFS file systems | 270
Mounting a VxFS file system

applications are monitoring to be improperly unmounted by other applications or
administrators.

The mntunlock option of the vxumount command reverses the mnt1ock option if
you previously locked the file system.

ckptautomnt mount option

The ckptautomnt option enables the Storage Checkpoint visibility feature, which
makes Storage Checkpoints easier to access.

See “Storage Checkpoint visibility” on page 675.

Combining mount command options

Although mount options can be combined arbitrarily, some combinations do not
make sense. The following examples provide some common and reasonable mount
option combinations.

To mount a desktop file system using options:

# mount -t vxfs -o log,mincache=closesync \

/dev/vx/dsk/diskgroup/volume /mnt

This guarantees that when a file is closed, its data is synchronized to disk and
cannot be lost. Thus, after an application has exited and its files are closed, no data
is lost even if the system is immediately turned off.

To mount a temporary file system or to restore from backup:

# mount -t vxfs -o tmplog,convosync=delay,mincache=tmpcache \

/dev/vx/dsk/diskgroup/volume /mnt

This combination might be used for a temporary file system where performance is
more important than absolute data integrity. Any o_sync writes are performed as
delayed writes and delayed extending writes are not handled. This could result in
a file that contains corrupted data if the system crashes. Any file written 30 seconds
or so before a crash may contain corrupted data or be missing if this mount
combination is in effect. However, such a file system does significantly less disk
writes than a log file system, and should have significantly better performance,
depending on the application.

To mount a file system for synchronous writes:

# mount -t vxfs -o log,convosync=dsync \

/dev/vx/dsk/diskgroup/volume /mnt



Creating and mounting VxFS file systems | 271
Unmounting a file system

This combination can be used to improve the performance of applications that
perform o_sync writes, but only require data synchronous write semantics.
Performance can be significantly improved if the file system is mounted using
convosync=dsync Without any loss of data integrity.

Unmounting a file system

Use the umount command to unmount a currently mounted file system.
See the vxumount(1M) manual page.

To unmount a file system

¢ Use the umount command to unmount a file system:

Specify the file system to be unmounted as a mount_point or special. special
is the VXFS block special device on which the file system resides.

The following is an example of unmounting a file system.
Example of unmounting a file system

¢ Unmount the file system /dev/vx/dsk/fsvol/voll:

# umount /dev/vx/dsk/fsvol/voll

Resizing a file system

You can extend or shrink mounted VxFS file systems using the fsadm command.
The size to which a file system can be increased depends on the file system disk
layout version. A file system with version 7 or later can be increased up to 256
terabytes. The size to which a file system with version 7 or later disk layout can be
increased depends on the file system block size.

See the fsadm vxfs(1M) and £disk(8) manual pages.

Extending a file system using fsadm
You can resize a file system by using the fsadm command.
To resize a VxFS file system

¢ Use the £sadm command to extend a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] \

mount point



Creating and mounting VxFS file systems | 272
Resizing a file system

vxfs The file system type.

newsize The size to which the file system will increase. The default units is
sectors, but you can specify k or K for kilobytes, m or M for megabytes,
or g or G for gigabytes.

mount_point The file system's mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/fstab and £sadm cannot determine the raw device.

The following example extends a file system mounted at /mnt1 by 22528 sectors.
Example of extending a file system to 22528 sectors

¢ Extend the VxFS file system mounted on /mnt1 to 22528 sectors:

# fsadm -t vxfs -b 22528 /mntl

The following example extends a file system mounted at /mnt1 to 500 gigabytes.
Example of extending a file system to 500 gigabytes
¢ Extend the VxFS file system mounted on /mnt1 to 500 gigabytes:

# fsadm -t vxfs -b +500g /mntl

Shrinking a file system

You can decrease the size of the file system using fsadm, even while the file system
is mounted.

Warning: After this operation, there is unused space at the end of the device. You
can then resize the device, but be careful not to make the device smaller than the
new size of the file system.

To decrease the size of a VxFS file system

¢ Use the £sadm command to decrease the size of a VxFS file system:

fsadm [-t vxfs] [-b newsize] [-r rawdev] mount point

vxfs The file system type.



Creating and mounting VxFS file systems | 273
Resizing a file system

newsize The size to which the file system will shrink. The default units is
sectors, but you can specify k or X for kilobytes, m or M for
megabytes, or g or G for gigabytes.

mount_point The file system's mount point.

-r rawdev Specifies the path name of the raw device if there is no entry in
/etc/fstab and £sadm cannot determine the raw device.

The following example shrinks a VxFS file system mounted at /mnt1 to 20480
sectors.

Example of shrinking a file system to 20480 sectors

& Shrink a VxFS file system mounted at /mnt1 to 20480 sectors:

# fsadm -t vxfs -b 20480 /mntl

The following example shrinks a file system mounted at /mnt1 to 450 gigabytes.
Example of shrinking a file system to 450 gigabytes
& Shrink the VXFS file system mounted on /mnt1 to 450 gigabytes:

# fsadm -t vxfs -b 450g /mntl

Reorganizing a file system

You can reorganize or compact a fragmented file system using fsadm, even while
the file system is mounted. This may help shrink a file system that could not
previously be decreased.

To reorganize a VxFS file system

¢ Use the £sadm command to reorganize a VxFS file system:

fsadm [-t vxfs] [-e] [-d] [-E] [-i] [-D] [-H] [-r rawdev] mount point
vxfs The file system type.
-d Reorders directory entries to put subdirectory entries first, then all

other entries in decreasing order of time of last access. Also
compacts directories to remove free space.

-D Reports on directory fragmentation.



mount_point

-r rawdev

Creating and mounting VxFS file systems
Resizing a file system

Minimizes file system fragmentation. Files are reorganized to have
the minimum number of extents.

Reports on extent fragmentation.

Indicates that the files that are used in last 60 seconds must not
be reorganized.

During the file system reorganization, if an application is actively
accessing a particular file or has accessed it in the last 60 seconds,
then the file system reorganization must not affect the file read-write
operation and must not reorganize it.

Displays the storage size in human-friendly units
(KB/MB/GB/TB/PB/EB), when used with the -E and -D options.

The file system's mount point.

Specifies the path name of the raw device if there is no entry in
/etc/fstab and fsadm cannot determine the raw device.

To perform free space defragmentation

¢ Use the fsadm command to perform free space defragmentation of a VxFS file
system:

fsadm

vxfs

mount_point

[-t vxfs] [-C] mount point

The file system type.

Minimizes file system free space fragmentation. This attempts to
generate bigger chunks of free space in the device.

The file system's mount point.

The following example reorganizes the file system mounted at /mnt1.

Example of reorganizing a VxFS file system

¢ Reorganize the VxFS file system mounted at /mnt1:

# fsadm -t vxfs -EeDd /mntl

The following example minimizes the free space fragmentation of the file system

mounted at /mnt1.

274



Creating and mounting VxFS file systems | 275
Displaying information on mounted file systems

Example of running free space defragmentation

¢ Minimize the free space of the the VxFS file system mounted at /mnt1:

# fsadm -t vxfs -C /mntl

Displaying information on mounted file systems

Use the mount command to display a list of currently mounted file systems.
See the mount_vx£s(1M) and mount(8) manual pages.
To view the status of mounted file systems

¢ Use the mount command to view the status of mounted file systems:
mount

This shows the file system type and mount options for all mounted file systems.

The following example displays information on mounted file systems by invoking
the mount command without options.

To display information on mounted file systems
¢ Invoke the mount command without options:
# mount
/dev/sda3 on / type ext3 (rw,acl,user xattr)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)

/dev/vx/dsk/testdg/vol0l on /vol0l testdg type vxfs

(rw,delaylog, largefiles, ioerror=mwdisable)

Identifying file system types

Use the £styp command to determine the file system type for a specified file system.
This is useful when a file system was created elsewhere and you want to know its

type.
See the fstyp_ vxfs(1M) manual page.
To determine a file system's type

¢ Use the £styp command to determine a file system's type:

fstyp -v special



Creating and mounting VxFS file systems | 276
Monitoring free space

special The block or character (raw) device.

-v Specifies the device that needs to be checked.

The following example uses the fstyp command to determine the file system type
of the /dev/vx/dsk/fsvol/voll device.

To determine the file system's type

¢ Use the £styp command to determine the file system type of the device
/dev/vx/dsk/fsvol/voll:

# fstyp -v /dev/vx/dsk/fsvol/voll

The output indicates that the file system type is vxfs, and displays file system
information similar to the following:

vxfs

magic a501fcf5 version 7 ctime Tue Jun 23 18:29:39 2004
logstart 17 logend 1040

bsize 1024 size 1048576 dsize 1047255 ninode 0 nau 8
defiextsize 64 ilbsize 0 immedlen 96 ndaddr 10

aufirst 1049 emap 2 imap 0O iextop 0 istart O

bstart 34 femap 1051 fimap 0 fiextop O fistart 0 fbstart

1083

nindir 2048 aulen 131106 auimlen 0 auemlen 32

auilen 0 aupad 0 aublocks 131072 maxtier 17

inopb 4 inopau 0 ndiripau 0 iaddrlen 8 bshift 10
inoshift 2 Dbmask fffffc00 boffmask 3ff checksum d7938aal
oltextl 9 oltext2 1041 oltsize 8 checksum2 52a

free 382614 ifree 0

efree 676 413 426 466 612 462 226 112 85 35 14 3 6 54 400

Monitoring free space

In general, Veritas File System (VxFS) works best if the percentage of free space
in the file system does not get below 10 percent. This is because file systems with
10 percent or more free space have less fragmentation and better extent allocation.
Regular use of the df command to monitor free space is desirable.

See the df_vxfs(1M) manual page.

Full file systems may have an adverse effect on file system performance. Full file
systems should therefore have some files removed, or should be expanded.



Creating and mounting VxFS file systems | 277
Monitoring free space

See the fsadm vxfs(1M) manual page.
VxFS supports reclamation of free storage on a Thin Storage LUN.

See “About Thin Reclamation of a file system” on page 787.

Monitoring fragmentation

Fragmentation reduces performance and availability. Veritas recommends regular
use of the fragmentation reporting and reorganization facilities of the fsadm
command.

The easiest way to ensure that fragmentation does not become a problem is to
schedule regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file
systems) to monthly (for infrequently used file systems). Extent fragmentation should
be monitored with the £sadm command.

To determine the degree of fragmentation, use the following factors:

= Percentage of free space in extents of less than 8 blocks in length

» Percentage of free space in extents of less than 64 blocks in length

» Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system has the following characteristics:

= Less than 1 percent of free space in extents of less than 8 blocks in length
= Less than 5 percent of free space in extents of less than 64 blocks in length

= More than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

A badly-fragmented file system has one or more of the following characteristics:
= Greater than 5 percent of free space in extents of less than 8 blocks in length
= More than 50 percent of free space in extents of less than 64 blocks in length

= Less than 5 percent of the total file system size available as free extents in
lengths of 64 or more blocks

Fragmentation can also be determined based on the fragmentation index. Two
types of indices are generated by the £sadm command: the file fragmentation index
and the free space fragmentation index. Both of these indices range between 0 and
100, and give an idea about the level of file fragmentation and free space
fragmentation, respectively. A value of 0 for the fragmentation index means that
the file system has no fragmentation, and a value of 100 means that the file system
has the highest level of fragmentation. Based on the index, you should use the
appropriate defragmentation option with the fsadm command. For example if the



Creating and mounting VxFS file systems
Monitoring free space

file fragmentation index is high, the £sadm command should be run with the -e
option. If the free space fragmentation index is high, the fsadm command should
be run with -c option. When the fsadm command is run with the -e option, internally
it performs free space defragmentation before performing file defragmentaion.

The optimal period for scheduling of extent reorganization runs can be determined
by choosing a reasonable interval, scheduling £sadm runs at the initial interval, and
running the extent fragmentation report feature of fsadm before and after the
reorganization.

The “before" result is the degree of fragmentation prior to the reorganization. If the
degree of fragmentation is approaching the figures for bad fragmentation, reduce
the interval between fsadm runs. If the degree of fragmentation is low, increase the
interval between fsadm runs.

The “after" result is an indication of how well the reorganizer has performed. The
degree of fragmentation should be close to the characteristics of an unfragmented
file system. If not, it may be a good idea to resize the file system; full file systems
tend to fragment and are difficult to defragment. It is also possible that the
reorganization is not being performed at a time during which the file system in
question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular
directory reorganization improves performance. It is advisable to schedule directory
reorganization for file systems when the extent reorganization is scheduled. The
following is a sample script that is run periodically at 3:00 A.M. from cron for a
number of file systems:

outfile=/var/spool/fsadm/out. ‘/bin/date +'$m%d'"
for i in /home /home2 /project /db
do
/bin/echo "Reorganizing $i"
/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -e -E -s $1i
/usr/bin/time /opt/VRTS/bin/fsadm -t vxfs -s -d -D $i
done > $outfile 2>&1

278



Extent attributes

This chapter includes the following topics:
= About extent attributes

s Commands related to extent attributes

About extent attributes

Veritas File System (VxFS) allocates disk space to files in groups of one or more
adjacent blocks called extents. VxFS defines an application interface that allows
programs to control various aspects of the extent allocation for a given file. The
extent allocation policies associated with a file are referred to as extent attributes.

The VXFS getext and setext commands let you view or manipulate file extent
attributes.

See the setext(1) and getext(1) manual pages.

The two basic extent attributes associated with a file are its reservation and its fixed
extent size. You can preallocate space to the file by manipulating a file's reservation,
or override the default allocation policy of the file system by setting a fixed extent
size.

See “Reservation: preallocating space to a file” on page 280.
See “Fixed extent size” on page 280.

Other policies determine the way these attributes are expressed during the allocation
process.

You can specify the following criteria:
= The space reserved for a file must be contiguous
= No allocations will be made for a file beyond the current reservation

» An unused reservation will be released when the file is closed



Extent attributes | 280
About extent attributes

= Space will be allocated, but no reservation will be assigned
= The file size will be changed to incorporate the allocated space immediately

Some of the extent attributes are persistent and become part of the on-disk
information about the file, while other attributes are temporary and are lost after the
file is closed or the system is rebooted. The persistent attributes are similar to the
file's permissions and are written in the inode for the file. When a file is copied,
moved, or archived, only the persistent attributes of the source file are preserved
in the new file.

See “Other extent attribute controls” on page 281.

In general, the user will only set extent attributes for reservation. Many of the
attributes are designed for applications that are tuned to a particular pattern of 1/0
or disk alignment.

See “About Veritas File System I/0” on page 623.

Reservation: preallocating space to a file

Veritas File System (VxFS) makes it possible to preallocate space to a file at the
time of the request rather than when data is written into the file. This space cannot
be allocated to other files in the file system. VxFS prevents any unexpected
out-of-space condition on the file system by ensuring that a file's required space
will be associated with the file before it is required.

A persistent reservation is not released when a file is truncated. The reservation
must be cleared or the file must be removed to free the reserved space.

Fixed extent size

The Veritas File System (VxFS) default allocation policy uses a variety of methods
to determine how to make an allocation to a file when a write requires additional
space. The policy attempts to balance the two goals of optimum 1/O performance
through large allocations and minimal file system fragmentation. VxFS accomplishes
these goals by allocating from space available in the file system that best fits the
data.

Setting a fixed extent size overrides the default allocation policies for a file and
always serves as a persistent attribute. Be careful to choose an extent size
appropriate to the application when using fixed extents. An advantage of the VxFS
extent-based allocation policies is that they rarely use indirect blocks compared to
block-based file systems; VxFS eliminates many instances of disk access that stem
from indirect references. However, a small extent size can eliminate this advantage.

Files with large extents tend to be more contiguous and have better 1/0
characteristics. However, the overall performance of the file system degrades



Extent attributes
About extent attributes

because the unused space fragments free space by breaking large extents into
smaller pieces. By erring on the side of minimizing fragmentation for the file system,
files may become so non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

= If afile is large and sparse and its write size is fixed, a fixed extent size that is
a multiple of the write size can minimize space wasted by blocks that do not
contain user data as a result of misalignment of write and extent sizes. The
default extent size for a sparse file is 8K.

» Ifafileis large and contiguous, a large fixed extent size can minimize the number
of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as
the need to align extents to cylinder or striping boundaries on disk.

How the fixed extent size works with the shared extents

Veritas File System (VxFS) allows the user to set the fixed extent size option on a
file that controls the minimum allocation size of the file. If a file has shared extents
that must be unshared, the allocation that is done as a part of the unshare operation
ignores the fixed extent size option that is set on the file. The allocation size during
the unshare operation, is dependent on the size of the write operation on the shared
region.

Other extent attribute controls

The auxiliary controls on extent attributes determine the following conditions:

= Whether allocations are aligned
See “Extent attribute alignment” on page 282.

= Whether allocations are contiguous
See “Extent attribute contiguity” on page 282.

= Whether the file can be written beyond its reservation
See “Write operations beyond extent attribute reservation” on page 282.

= Whether an unused reservation is released when the file is closed
See “Extent attribute reservation trimming” on page 282.

= Whether the reservation is a persistent attribute of the file
See “Extent attribute reservation persistence” on page 282.

= When the space reserved for a file will actually become part of the file
See “Including an extent attribute reservation in the file” on page 282.

281



Extent attributes | 282
About extent attributes

Extent attribute alignment

Specific alignment restrictions coordinate a file's allocations with a particular 1/0
pattern or disk alignment. Alignment can only be specified if a fixed extent size has
also been set. Setting alignment restrictions on allocations is best left to
well-designed applications.

See the setext(1) manual page.

See “About Veritas File System 1/0” on page 623.

Extent attribute contiguity

A reservation request can specify that its allocation remain contiguous (all one
extent). Maximum contiguity of a file optimizes its /0 characteristics.

Note: Fixed extent sizes or alignment cause a file system to return an error message
reporting insufficient space if no suitably sized (or aligned) extent is available. This
can happen even if the file system has sufficient free space and the fixed extent
size is large.

Write operations beyond extent attribute reservation

A reservation request can specify that no allocations can take place after a write
operation fills the last available block in the reservation. This request can be used
a way similar to the function of the u1imit command to prevent a file's uncontrolled
growth.

Extent attribute reservation trimming

A reservation request can specify that any unused reservation be released when
the file is closed. The file is not completely closed until all processes open against
the file have closed it.

Extent attribute reservation persistence

A reservation request can ensure that the reservation does not become a persistent
attribute of the file. The unused reservation is discarded when the file is closed.

Including an extent attribute reservation in the file

A reservation request can make sure the size of the file is adjusted to include the
reservation. Normally, the space of the reservation is not included in the file until
an extending write operation requires it. A reservation that immediately changes
the file size can generate large temporary files. Unlike a ftruncate operation that



Extent attributes | 283
Commands related to extent attributes

increases the size of a file, this type of reservation does not perform zeroing of the
blocks included in the file and limits this facility to users with appropriate privileges.
The data that appears in the file may have been previously contained in another
file. For users who do not have the appropriate privileges, there is a variant request
that prevents such users from viewing uninitialized data.

Commands related to extent attributes

The Veritas File System (VxFS) commands for manipulating extent attributes are
setext and getext; they allow the user to set up files with a given set of extent
attributes or view any attributes that are already associated with a file.

See the setext(1) and getext(1) manual pages.

The VxFS-specific commands vxdump and vxrestore preserve extent attributes
when backing up, restoring, moving, or copying files.

Most of these commands include a command-line option (-e) for maintaining extent
attributes on files. You use this option with a VxFS file that has extent attribute
information including reserved space, a fixed extent size, and extent alignment.
The extent attribute information may be lost if the destination file system does not
support extent attributes, has a different block size than the source file system, or
lacks free extents appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn Issues a warning message if extent attribute information cannot be
maintained (the default)

force Fails the copy if extent attribute information cannot be maintained

ignore Ignores extent attribute information entirely

The following example creates a file named filel and preallocates 2 GB of disk
space for the file.



Extent attributes
Commands related to extent attributes

Example of setting an extent attribute

1

Create the file file1:

# touch filel

Preallocate 2 GB of disk space for the file filei:
# setext -t vxfs -r 2g -f chgsize filel

Since the example specifies the -f chgsize option, VXFS immediately
incorporates the reservation into the file and updates the file’s inode with size
and block count information that is increased to include the reserved space.
Only users with root privileges can use the -f chgsize option.

The following example gets the extent atribute information of a file named file1.

Example of getting an extent attribute’s information

& Get the extent attribute information for the file file1:

# getext -t vxfs filel
filel: Bsize 1024 Reserve 2097152 Extent Size 0

Thefile fi1e1 has a block size of 1024 bytes, 36 blocks reserved, a fixed extent
size of 3 blocks, and all extents aligned to 3 block boundaries. The file size
cannot be increased after the current reservation is exhausted. Reservations
and fixed extent sizes are allocated in units of the file system block size.

About failing to preserve extent attributes

Whenever a file is copied, moved, or archived using commands that preserve extent
attributes, there is the possibility of losing the attributes.

Such a failure might occur for one of the following reasons:

The file system receiving a copied, moved, or restored file from an archive is
not a VxFS file system. Since other file system types do not support the extent
attributes of the VxFS file system, the attributes of the source file are lost during
the migration.

The file system receiving a copied, moved, or restored file is a VxFS type but
does not have enough free space to satisfy the extent attributes. For example,
consider a 50 KB file and a reservation of 1 MB. If the target file system has 500
KB free, it could easily hold the file but fail to satisfy the reservation.

The file system receiving a copied, moved, or restored file from an archive is a
VxFS type but the different block sizes of the source and target file system make
extent attributes impossible to maintain. For example, consider a source file

284



Extent attributes
Commands related to extent attributes

system of block size 1024, a target file system of block size 4096, and a file that
has a fixed extent size of 3 blocks (3072 bytes). This fixed extent size adapts
to the source file system but cannot translate onto the target file system.

The same source and target file systems in the preceding example with a file
carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096
byte) extent on the source file system would translate into a 1 block extent on
the target.

On a system with mixed block sizes, a copy, move, or restoration operation may
or may not succeed in preserving attributes. It is recommended that the same
block size be used for all file systems on a given system.

285



Administering multi-pathing
with DMP

= Chapter 11. Administering Dynamic Multi-Pathing
= Chapter 12. Dynamic Reconfiguration of devices
= Chapter 13. Managing devices

= Chapter 14. Event monitoring



Administering Dynamic
Multi-Pathing

This chapter includes the following topics:

Discovering and configuring newly added disk devices

Making devices invisible to VxVM

Making devices visible to VxVM

About enabling and disabling 1/O for controllers and storage processors
About displaying DMP database information

Displaying the paths to a disk

Administering DMP using the vxdmpadm utility

Discovering and configuring newly added disk

devices

When you physically connect new disks to a host or when you zone new Fibre
Channel devices to a host, you can use the vxdctl enable command to rebuild
the volume device node directories and to update the Dynamic Multi-Pathing (DMP)
internal database to reflect the new state of the system.

To reconfigure the DMP database, first make Linux recognize the new disks, and
then invoke the vxdctl enable command.

You can also use the vxdisk scandisks command to scan devices in the operating
system device tree, and to initiate dynamic reconfiguration of multipathed disks.



Administering Dynamic Multi-Pathing | 288
Discovering and configuring newly added disk devices

If you want SFCFSHA to scan only for new devices that have been added to the
system, and not for devices that have been enabled or disabled, specify the -
option to either of the commands, as shown here:

# vxdctl -f enable

# vxdisk -f scandisks

However, a complete scan is initiated if the system configuration has been modified
by changes to:

= Installed array support libraries.

= The list of devices that are excluded from use by VxVM.
= DISKS (JBOD), SCSI3, or foreign device definitions.
See the vxdct1(1M) manual page.

See the vxdisk(1M) manual page.

Partial device discovery

Dynamic Multi-Pathing (DMP) supports partial device discovery where you can
include or exclude paths to a physical disk from the discovery process.

The vxdisk scandisks command rescans the devices in the OS device tree and
triggers a DMP reconfiguration. You can specify parameters to vxdisk scandisks
to implement partial device discovery. For example, this command makes SFCFSHA
discover newly added devices that were unknown to it earlier:

# vxdisk scandisks new

The next example discovers fabric devices:

# vxdisk scandisks fabric

The following command scans for the devices sdm and sdn:
# vxdisk scandisks device=sdm,sdn

Alternatively, you can specify a ! prefix character to indicate that you want to scan
for all devices except those that are listed.

Note: The ! character is a special character in some shells. The following examples
show how to escape it in a bash shell.

# vxdisk scandisks \'!'device=sdm,sdn



Administering Dynamic Multi-Pathing | 289
Discovering and configuring newly added disk devices

You can also scan for devices that are connected (or not connected) to a list of
logical or physical controllers. For example, this command discovers and configures
all devices except those that are connected to the specified logical controllers:

# vxdisk scandisks \'ctlr=cl,c2

The next command discovers only those devices that are connected to the specified
physical controller:

# vxdisk scandisks pctlr=cl+c2

The items in a list of physical controllers are separated by + characters.

You can use the command vxdmpadm getctlr all to obtain a list of physical
controllers.

You should specify only one selection argument to the vxdisk scandisks command.
Specifying multiple options results in an error.

See the vxdisk(1M) manual page.

About discovering disks and dynamically adding disk arrays

Dynamic Multi-Pathing (DMP) uses array support libraries (ASLs) to provide
array-specific support for multi-pathing. An array support library (ASL) is a
dynamically loadable shared library (plug-in for DDL). The ASL implements
hardware-specific logic to discover device attributes during device discovery. DMP
provides the device discovery layer (DDL) to determine which ASLs should be
associated to each disk array.

In some cases, DMP can also provide basic multi-pathing and failover functionality
by treating LUNs as disks (JBODs).

How DMP claims devices

For fully optimized support of any array and for support of more complicated array
types, Dynamic Multi-Pathing (DMP) requires the use of array-specific array support
libraries (ASLs), possibly coupled with array policy modules (APMs). ASLs and
APMs effectively are array-specific plug-ins that allow close tie-in of DMP with any
specific array model.

See the Hardware Compatibility List for the complete list of supported arrays.
https://www.veritas.com/support/en_US/article.000126344

During device discovery, the DDL checks the installed ASL for each device to find
which ASL claims the device.


https://www.veritas.com/support/en_US/article.000126344

Administering Dynamic Multi-Pathing | 290
Discovering and configuring newly added disk devices

If no ASL is found to claim the device, the DDL checks for a corresponding JBOD
definition. You can add JBOD definitions for unsupported arrays to enable DMP to
provide multi-pathing for the array. If a JBOD definition is found, the DDL claims
the devices in the DISKS category, which adds the LUNSs to the list of JBOD (physical
disk) devices used by DMP. If the JBOD definition includes a cabinet number, DDL
uses the cabinet number to group the LUNSs into enclosures.

See “Adding unsupported disk arrays to the DISKS category” on page 300.

DMP can provide basic multi-pathing to arrays that comply with the Asymmetric
Logical Unit Access (ALUA) standard, even if there is no ASL or JBOD definition.
DDL claims the LUNs as part of the aluadisk enclosure. The array type is shown
as ALUA. Adding a JBOD definition also enables you to group the LUNSs into
enclosures.

Disk categories

Disk arrays that have been certified for use with Dynamic Multi-Pathing (DMP) are
supported by an array support library (ASL), and are categorized by the vendor ID
string that is returned by the disks (for example, “61TACHT”).

Disks in JBODs that are capable of being multi-pathed by DMP, are placed in the
DISKS category. Disks in unsupported arrays can also be placed in the p1sks
category.

See “Adding unsupported disk arrays to the DISKS category” on page 300.

Disks in JBODs that do not fall into any supported category, and which are not
capable of being multi-pathed by DMP are placed in the oTHER DIsks category.

Adding DMP support for a new disk array

You can dynamically add support for a new type of disk array. The support comes
in the form of Array Support Libraries (ASLs) that are developed by Veritas. Veritas
provides support for new disk arrays through updates to the vRTsas1apm RPM. To
determine if an updated vRTsas1apm RPM is available for download, refer to the
hardware compatibility list tech note. The hardware compatibility list provides a link
to the latest RPM for download and instructions for installing the vRTsas1apm RPM.
You can upgrade the vRTsas1apm RPM while the system is online; you do not need
to stop the applications.

To access the hardware compatibility list, go to the following URL:
https://www.veritas.com/support/en_US/article.000126344

Each VRTSaslapm RPM is specific for the Storage Foundation Cluster File System
High Availability version. Be sure to install the vrRTsas1apm RPM that supports the
installed version of Storage Foundation Cluster File System High Availability.


https://www.veritas.com/support/en_US/article.000126344

Administering Dynamic Multi-Pathing | 291
Discovering and configuring newly added disk devices

The new disk array does not need to be already connected to the system when the
VRTSaslapm RPM is installed.

If you need to remove the latest vRTsas1apm RPM, you can revert to the previously
installed version. For the detailed procedure, refer to the Veritas InfoScale
Troubleshooting Guide.

Enabling discovery of new disk arrays

The vxdctl enable command scans all of the disk devices and their attributes,
updates the SFCFSHA device list, and reconfigures DMP with the new device
database. There is no need to reboot the host.

Warning: This command ensures that Dynamic Multi-Pathing is set up correctly
for the array. Otherwise, VxVM treats the independent paths to the disks as separate
devices, which can result in data corruption.

To enable discovery of a new disk array

¢ Type the following command:

# vxdctl enable

About third-party driver coexistence

The third-party driver (TPD) coexistence feature of Storage Foundation Cluster File
System High Availability (SFCFSHA) allows 1/O that is controlled by some third-party
multi-pathing drivers to bypass Dynamic Multi-Pathing (DMP) while retaining the
monitoring capabilities of DMP. If a suitable Array Support Library (ASL) is available
and installed, devices that use TPDs can be discovered without requiring you to
set up a specification file, or to run a special command. The TPD coexistence feature
of SFCFSHA permits coexistence without requiring any change in a third-party
multi-pathing driver.

See “Changing device naming for enclosures controlled by third-party drivers”
on page 383.

See “Displaying information about devices controlled by third-party drivers”
on page 320.



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

How to administer the Device Discovery Layer

The Device Discovery Layer (DDL) allows dynamic addition of disk arrays. DDL
discovers disks and their attributes that are required for Storage Foundation Cluster

File System High Availability (SFCFSHA) operations.

The DDL is administered using the vxdd1adm utility to perform the following tasks:

List the hierarchy of all the devices discovered by DDL including iSCSI devices.

List all the Host Bus Adapters including iSCSI.

List the ports configured on a Host Bus Adapter.

List the targets configured from a Host Bus Adapter.
List the devices configured from a Host Bus Adapter.
Get or set the iSCSI operational parameters.

List the types of arrays that are supported.

Add support for an array to DDL.

Remove support for an array from DDL.

List information about excluded disk arrays.

List disks that are claimed in the p1sks (JBOD) category.
Add disks from different vendors to the p1sks category.
Remove disks from the pI1sks category.

Add disks as foreign devices.

The following sections explain these tasks in more detail.

See the vxddladm(1M) manual page.

Listing all the devices including iSCSI

You can display the hierarchy of all the devices discovered by DDL, including iSCSI

devices.

292



Administering Dynamic Multi-Pathing

Discovering and configuring newly added disk devices

To list all the devices including iSCSI

¢ Type the following command:

# wvxddladm list

The following is a sample output:

HBA fscsiO
Port fscsiO pO

HBA iscsiO
Port

(20:00:00:E0:8B:19:77:BE)
(50:0A:09:80:85:84:9D:84)
Target fscsiO pO t0 (50:0A:09:81:85:84:9D:84)

Device sda

(1gn.1986-03.com.sun:01:0003ba8edlb5.45220£80)

(10.216.130.10:3260)

iscsi0 pO t0 (ign.1992-08.com.netapp:sn.84188548)
Device sdb
Device sdc
iscsi0 pO tl (ign.1992-08.com.netapp:sn.84190939)

Listing all the Host Bus Adapters including iSCSI

You can obtain information about all the Host Bus Adapters (HBAs) configured on
the system, including iISCSI adapters.

Table 11-1 shows the HBA information.

Table 11-1 HBA information
Field Description
Driver Driver controlling the HBA.
Firmware Firmware version.
Discovery The discovery method employed for the targets.
State Whether the device is Online or Offline.
Address The hardware address.

To list all the Host Bus Adapters including iSCSI

¢ Use the following command to list all of the HBAs, including iSCSI devices,
configured on the system:

# vxddladm list hbas

293



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Listing the ports configured on a Host Bus Adapter

You can obtain information about all the ports configured on an HBA. The display
includes the following information:

HBA-ID The parent HBA.

State

Whether the device is Online or Offline.

Address The hardware address.

To list the ports configured on a Host Bus Adapter

*

Use the following command to obtain the ports configured on an HBA:

# vxddladm list ports

PORT-ID HBA-ID STATE ADDRESS
c2 p0 c2 Online 50:0A:09:80:85:84:9D:84
c3 p0 c3 Online 10.216.130.10:3260

Listing the targets configured from a Host Bus Adapter or
a port
You can obtain information about all the targets configured from a Host Bus Adapter
or a port.

Table 11-2 shows the target information.

Table 11-2 Target information
Field Description
Alias The alias name, if available.
HBA-ID Parent HBA or port.
State Whether the device is Online or Offline.
Address The hardware address.

294



Administering Dynamic Multi-Pathing | 295
Discovering and configuring newly added disk devices

To list the targets

& To list all of the targets, use the following command:
# vxddladm list targets
The following is a sample output:

TARGET-ID ALIAS HBA-ID STATE ADDRESS

c2 p0_to0 - c2 Online 50:0A:09:80:85:84:9D:84
c3 pO_tl - c3 Online ign.1992-08.com.netapp:sn.84190939

To list the targets configured from a Host Bus Adapter or port

¢ You can filter based on a HBA or port, using the following command:
# vxddladm list targets [hba=hba name|port=port name]
For example, to obtain the targets configured from the specified HBA:
# vxddladm list targets hba=c2

TARGET-ID ALIAS HBA-ID STATE ADDRES

c2 p0_to - c2 Online 50:0A:09:80:85:84:9D:84

Listing the devices configured from a Host Bus Adapter
and target

You can obtain information about all the devices configured from a Host Bus Adapter.

Table 11-3 shows the device information.

Table 11-3 Device information
Field Description
Device The device name.
Target-ID The parent target.
State Whether the device is Online or Offline.
DDL status Whether the device is claimed by DDL. If claimed, the output
also displays the ASL name.




Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To list the devices configured from a Host Bus Adapter

& To obtain the devices configured, use the following command:

# vxddladm list devices

Device Target-ID State DDL status (ASL)

sda fscsi0 _pO_t0 Online CLAIMED (libvxemc.so)
sdb fscsi0 _pO_t0 Online SKIPPED (libvxemc.so)
sdc fscsi0 p0_t0 Offline ERROR

sdd fscsi0 _pO_t0 Online EXCLUDED

sde fscsi0 pO _t0 Offline MASKED

To list the devices configured from a Host Bus Adapter and target

¢ To obtain the devices configured from a particular HBA and target, use the
following command:

# vxddladm list devices target=target name

Getting or setting the iSCSI operational parameters

DDL provides an interface to set and display certain parameters that affect the
performance of the iSCSI device path. However, the underlying OS framework must
support the ability to set these values. The vxddladm set command returns an
error if the OS support is not available.

Table 11-4 Parameters for iSCSI devices
Parameter Default value Minimum value | Maximum value
DataPDUInOrder yes no yes
DataSequencelnOrder yes no yes
DefaultTime2Retain 20 0 3600
DefaultTime2Wait 2 0 3600
ErrorRecoveryLevel 0 0 2
FirstBurstLength 65535 512 16777215
InitialR2T yes no yes
ImmediateData yes no yes

296



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Table 11-4 Parameters for iISCSI devices (continued)
Parameter Default value Minimum value | Maximum value
MaxBurstLength 262144 512 16777215
MaxConnections 1 1 65535
MaxOutStandingR2T 1 1 65535
MaxRecvDataSegmentLength | 8182 512 16777215

To get the iSCSI operational parameters on the initiator for a specific iSCSI
target

.

Type the following commands:

# vxddladm getiscsi target=tgt-id {all

| parameter}

You can use this command to obtain all the iISCSI operational parameters.

# vxddladm getiscsi target=c2 p2 t0

The following is a sample output:

PARAMETER CURRENT
DataPDUInOrder yes
DataSequenceInOrder yes
DefaultTime2Retain 20
DefaultTime2Wait 2
ErrorRecoveryLevel 0
FirstBurstLength 65535
InitialR2T yes
ImmediateData yes
MaxBurstLength 262144
MaxConnections 1
MaxOutStandingR2T 1

MaxRecvDataSegmentLength 8192

DEFAULT MIN MAX
yes no yes
yes no yes

20 0 3600

2 0 3600

0 0 2
65535 512 16777215
yes no yes
yes no yes

262144 512 16777215

1 1 65535
1 1 65535
8182 512 16777215

To set the iSCSI operational parameters on the initiator for a specific iSCSI
target

.

Type the following command:

# vxddladm setiscsi target=tgt-id parameter=value

297



Administering Dynamic Multi-Pathing | 298
Discovering and configuring newly added disk devices

Listing all supported disk arrays

Use this procedure to obtain values for the vid and pid attributes that are used
with other forms of the vxdd1adm command.

To list all supported disk arrays

¢ Use the following command:

# vxddladm listsupport all

Displaying details about an Array Support Library

Dynamic Multi-Pathing (DMP) enables you to display details about the Array Support
Libraries (ASL).

To display details about an Array Support Library
¢ Type the following command:

# vxddladm listsupport libname=library name.so

This command displays the vendor IDs (vibps), product IDs (p1Ds) for the arrays,
array types (for example, A/A or A/P), and array names. The following is sample
output.

# wvxddladm listsupport libname=libvxfujitsu.so

ATTR NAME ATTR VALUE
LIBNAME libvxfujitsu.so
VID vendor
PID GR710, GR720, GR730
GR740, GR820, GR840
ARRAY TYPE A/A, A/P
ARRAY NAME FJ GR710, FJ GR720, FJ GR730

FJ GR740, FJ GR820, FJ GR840

Excluding support for a disk array library

You can exclude support for disk arrays that depends on a particular disk array
library. You can also exclude support for disk arrays from a particular vendor.



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To exclude support for a disk array library

& To exclude support for a disk array library, specify the array library to the
following command.

# vxddladm excludearray libname=1ibname

You can also exclude support for disk arrays from a particular vendor, as shown
in this example:

# vxddladm excludearray vid=ACME pid=X1

# vxdisk scandisks

Re-including support for an excluded disk array library

If you previously excluded support for all arrays that depend on a particular disk
array library, use this procedure to include the support for those arrays. This
procedure removes the library from the exclude list.

To re-include support for an excluded disk array library

¢ If you have excluded support for all arrays that depend on a particular disk
array library, you can use the includearray keyword to remove the entry from
the exclude list.

# vxddladm includearray libname=libname

This command adds the array library to the database so that the library can
once again be used in device discovery.

# vxdisk scandisks

Listing excluded disk arrays

To list all disk arrays that are currently excluded from use by Veritas Volume
Manager (VxVM)

¢ Type the following command:

# vxddladm listexclude

299



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

Listing disks claimed in the DISKS category
To list disks that are claimed in the p1sks (JBOD) category

¢ Type the following command:

# vxddladm listjbod

Adding unsupported disk arrays to the DISKS category

Disk arrays should be added as JBOD devices if no Array Support Library (ASL)
is available for the array.

JBODs are assumed to be Active/Active (A/A) unless otherwise specified. If a
suitable ASL is not available, an A/A-A, A/P, or A/PF array must be claimed as an
Active/Passive (A/P) JBOD to prevent path delays and I/O failures. If a JBOD is
ALUA-compliant, it is added as an ALUA array.

See “How DMP works” on page 45.

Warning: This procedure ensures that Dynamic Multi-Pathing (DMP) is set up
correctly on an array that is not supported by Veritas Volume Manager (VxVM).
Otherwise, VXVM treats the independent paths to the disks as separate devices,
which can result in data corruption.

300



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To add an unsupported disk array to the DISKS category

1

Use the following command to identify the vendor ID and product ID of the
disks in the array:

# /etc/vx/diag.d/vxscsiing device name

where device_name is the device name of one of the disks in the array. Note
the values of the vendor ID (vip) and product ID (p1D) in the output from this
command. For Fujitsu disks, also note the number of characters in the serial
number that is displayed.

The following example output shows that the vendor ID is sEaGaTE and the
product ID is ST318404LSUN18G.

Vendor id (VID) : SEAGATE

Product id (PID) : ST318404LSUN18G
Revision : 8507

Serial Number : 0025TOLA3H

Stop all applications, such as databases, from accessing VxVM volumes that
are configured on the array, and unmount all file systems and Storage
Checkpoints that are configured on the array.

If the array is of type A/A-A, A/P, or A/PF, configure it in autotrespass mode.

Enter the following command to add a new JBOD category:

# vxddladm addjbod vid=vendorid [pid=productid] \
[serialnum=opcode/pagecode/offset/length] \
[cabinetnum=opcode/pagecode/offset/length] policy={aal|ap}]

where vendorid and productid are the VID and PID values that you found from
the previous step. For example, vendorid might be FUJITSU, IBM, OF SEAGATE.
For Fujitsu devices, you must also specify the number of characters in the
serial number as the 1ength argument (for example, 10). If the array is of type
A/A-A, A/P, or A/PF, you must also specify the policy=ap attribute.

Continuing the previous example, the command to define an array of disks of
this type as a JBOD would be:

# vxddladm addjbod vid=SEAGATE pid=ST318404LSUN18G

Use the vxdctl enable command to bring the array under VxVM control.
# vxdctl enable

See “Enabling discovery of new disk arrays” on page 291.

301



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To verify that the array is now supported, enter the following command:
# vxddladm listjbod
The following is sample output from this command for the example array:

VID PID SerialNum CabinetNum Policy
(Cmd/PageCode/off/len) (Cmd/PageCode/off/len)

SEAGATE ALL PIDs 18/-1/36/12 18/-1/10/11 Disk
SUN SESSO1 18/-1/36/12 18/-1/12/11 Disk

302



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

7 To verify that the array is recognized, use the vxdmpadm listenclosure
command as shown in the following sample output for the example array:

# vxdmpadm listenclosure

ENCLR NAME ENCLR TYPE ENCLR SNO STATUS

ARRAY TYPE LUN COUNT FIRMWARE

Disk Disk DISKS

CONNECTED Disk

The enclosure name and type for the array are both shown as being set to

Disk. You can use the vxdisk 1ist command to display the disks in the array:

# vxdisk list
DEVICE TYPE

punr710vm04 _disk 1 auto:
punr710vm04 _disk 2 auto:
punr710vm04 _disk 3 auto:
punr710vm04 disk 4 auto:
sda auto:
xiv0 9148 auto:

none

none

none

none

none

none

GROUP

STATUS

online
online
online
online
online

online

invalid
invalid
invalid
invalid
invalid

invalid thinrclm

8 To verify that the DMP paths are recognized, use the vxdmpadm getdmpnode
command as shown in the following sample output for the example array:

# vxdmpadm getdmpnode enclosure=Disk

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
punr710vm04 disk 1 ENABLED Disk 1 1 0 disk
punr710vm04 disk 2 ENABLED Disk 1 1 0 disk
punr710vm04 disk 3 ENABLED Disk 1 1 0 disk
punr710vm04 disk 4 ENABLED Disk 1 1 0 disk
sda ENABLED Disk 1 1 0 disk

The output in this example shows that there are two paths to the disks in the
array.

For more information, enter the command vxddladm help addjbod.

See the vxddladm(1M) manual page.

See the vxdmpadm(1M) manual page.

Removing disks from the DISKS category

Use the procedure in this section to remove disks from the DISKS category.

303



Administering Dynamic Multi-Pathing
Discovering and configuring newly added disk devices

To remove disks from the p1sks category

¢ Use the vxddladm command with the rmjbod keyword. The following example
illustrates the command for removing disks that have the vendor id of SEAGATE:

# vxddladm rmjbod vid=SEAGATE

Foreign devices

The Device Discovery Layer (DDL) may not be able to discover some devices that
are not auto-discoverable, such as RAM disks. Such foreign devices can be made
available as simple disks to Veritas Volume Manager (VxVM) by using the vxddladm
addforeign command. This also has the effect of bypassing DMP for handling I/O.
The following example shows how to add entries for block and character devices
in the specified directories:

# vxddladm addforeign blockdir=/dev/foo/dsk chardir=/dev/foo/rdsk

If a block or character device is not supported by a driver, it can be omitted from
the command as shown here:

# vxddladm addforeign blockdir=/dev/foo/dsk

By default, this command suppresses any entries for matching devices in the
0OS-maintained device tree that are found by the autodiscovery mechanism. You
can override this behavior by using the -£ and -n options as described on the
vxddladm(1M) manual page.

After adding entries for the foreign devices, use either the vxdisk scandisks or
the vxdctl enable command to discover the devices as simple disks. These disks
then behave in the same way as autoconfigured disks.

Foreign device support has the following limitations:

= A foreign device is always considered as a disk with a single path. Unlike an
autodiscovered disk, it does not have a DMP node.

» Itis not supported for shared disk groups in a clustered environment. Only
standalone host systems are supported.

= Itis not supported for Persistent Group Reservation (PGR) operations.

= Itis not under the control of DMP, so enabling of a failed disk cannot be
automatic, and DMP administrative commands are not applicable.

= Enclosure information is not available to VxVM. This can reduce the availability
of any disk groups that are created using such devices.

304



Administering Dynamic Multi-Pathing
Making devices invisible to VxXVM

= The I/O fencing and Cluster File System features are not supported for foreign
devices.

Making devices invisible to VxVM

Use this procedure to exclude a device from the view of Veritas Volume Manager
(VxVM). The options to prevent a device from being multi-pathed by the Dynamic
Multi-Pathing (DMP) driver (vxdmp) are deprecated.

305



Administering Dynamic Multi-Pathing
Making devices visible to VxXVM

To make devices invisible to VxVM

1 Run the vxdiskadm command, and select Prevent multipathing/Suppress
devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Option 1

Option 2

Option 3

Option 4

Option 5

Deprecated

Option 6

Deprecated

Option 7

Deprecated

Option 8

Suppresses all paths through the specified controller from the view of
VxVM.

Suppresses specified paths from the view of VxVM.

Suppresses disks from the view of VxVM that match a specified Vendor
ID and Product ID combination.

The root disk cannot be suppressed.

The operation fails if the VID:PID of an external disk is the same VID:PID
as the root disk and the root disk is encapsulated under VxVM.

Suppresses all paths to a disk.

Prevents multi-pathing for all disks on a specified controller by VxVM.

This operation is deprecated, since it can lead to unsupported
configurations.

Prevents multi-pathing of a disk by VxVM. The disks that correspond
to a specified path are claimed in the OTHER_DISKS category and are
not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Prevents multi-pathing for the disks that match a specified Vendor ID
and Product ID combination. The disks that correspond to a specified
Vendor ID and Product ID combination are claimed in the
OTHER_DISKS category and are not multi-pathed.

This operation is deprecated, since it can lead to unsupported
configurations.

Lists the devices that are currently suppressed.

Making devices visible to VxVM

Use this procedure to make a device visible to Veritas Volume Manager (VxVM)
again. The options to allow multi-pathing by the Dynamic Multi-Pathing (DMP) driver
(vxdmp) are deprecated.

306



Administering Dynamic Multi-Pathing

About enabling and disabling I/O for controllers and storage processors

To make devices visible to VxVM

1 Runthe vxdiskadm command, and select A1low multipathing/Unsuppress
devices from VxVM’s view from the main menu. You are prompted to confirm
whether you want to continue.

2 Select the operation you want to perform from the following options:

Option 1

Option 2

Option 3

Option 4

Option 5

Deprecated

Option 6
Deprecated
Option 7

Deprecated

Option 8

Unsuppresses all paths through the specified controller from the view
of VxVM.

Unsuppresses specified paths from the view of VxVM.

Unsuppresses disks from the view of VxVM that match a specified
Vendor ID and Product ID combination.

Unsuppresses all paths to a disk.

Allows multi-pathing of all disks that have paths through the specified
controller.

This operation is deprecated.
Allows multi-pathing of a disk by VxVM.

This operation is deprecated.

Allows multi-pathing of disks that match a specified Vendor ID and
Product ID combination.

This operation is deprecated.

Lists the devices that are currently suppressed.

About enabling and disabling I/O for controllers
and storage processors

DMP allows you to turn off I/O through a Host Bus Adapter (HBA) controller or the
array port of a storage processor so that you can perform administrative operations.
This feature can be used when you perform maintenance on HBA controllers on
the host, or array ports that are attached to disk arrays supported by SFCFSHA.
I/O operations to the HBA controller or the array port can be turned back on after
the maintenance task is completed. You can accomplish these operations using
the vxdmpadm command.

For Active/Active type disk arrays, when you disable the 1/0 through an HBA
controller or array port, the 1/O continues on the remaining paths. For Active/Passive
type disk arrays, if disabling 1/0 through an HBA controller or array port resulted in

307



Administering Dynamic Multi-Pathing | 308
About displaying DMP database information

all primary paths being disabled, DMP will failover to secondary paths and 1/0 will
continue on them.

After the administrative operation is over, use the vxdmpadm command to re-enable
the paths through the HBA controllers or array ports.

See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 340.
See “Enabling 1/O for paths, controllers, array ports, or DMP nodes” on page 342.

You can also perform certain reconfiguration operations dynamically online.

About displaying DMP database information

You can use the vxdmpadm command to list DMP database information and perform
other administrative tasks. This command allows you to list all controllers that are
connected to disks, and other related information that is stored in the DMP database.
You can use this information to locate system hardware, and to help you decide
which controllers need to be enabled or disabled.

The vxdmpadm command also provides useful information such as disk array serial
numbers, which DMP devices (disks) are connected to the disk array, and which
paths are connected to a particular controller, enclosure, or array port.

See “Administering DMP using the vxdmpadm utility” on page 311.

Displaying the paths to a disk

The vxdisk command is used to display the multi-pathing information for a particular
metadevice. The metadevice is a device representation of a physical disk having
multiple physical paths through the system’s HBA controllers. In Dynamic
Multi-Pathing (DMP,) all the physical disks in the system are represented as
metadevices with one or more physical paths.



To display the multi-pathing information on a system

*

Use the vxdisk path command to display the relationships between the device
paths, disk access names, disk media names, and disk groups on a system

as shown here:

# vxdisk path

SUBPATH DANAME DMNAME
sda sda mydg01
sdi sdi mydg01
sdb sdb mydg02
sdj sdj mydg02

This shows that two paths exist to each of the two disks, mydg01 and mydg02,

Administering Dynamic Multi-Pathing
Displaying the paths to a disk

GROUP
mydg
mydg
mydg
mydg

STATE

ENABLED
ENABLED
ENABLED
ENABLED

and also indicates that each disk is in the ENABLED state.

309



Administering Dynamic Multi-Pathing | 310
Displaying the paths to a disk

To view multi-pathing information for a particular metadevice

1

Use the following command:

# vxdisk list devicename

For example, to view multi-pathing information for the device sd1, use the
following command:

# vxdisk list sdl

The output from the vxdisk 1ist command displays the multi-pathing
information, as shown in the following example:

Device: sdl
devicetag: sdl
type: sliced
hostid: sysl

Multipathing information:

numpaths: 2
sdl state=enabled type=primary
sdp state=disabled type=secondary

The numpaths line shows that there are 2 paths to the device. The next two
lines in the "Multipathing information" section of the output show that one path
is active (state=enabled) and that the other path has failed (state=disabled).

The type field is shown for disks on Active/Passive type disk arrays such as
the EMC CLARIiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and
Sun StorEdge T3 array. This field indicates the primary and secondary paths
to the disk.

The type field is not displayed for disks on Active/Active type disk arrays such
as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series, and
IBM ESS Series. Such arrays have no concept of primary and secondary paths.



Administering Dynamic Multi-Pathing | 311
Administering DMP using the vxdmpadm utility

2 Alternately, you can use the following command to view multi-pathing

information:

# vxdmpadm getsubpaths dmpnodename=devicename

For example, to view multi-pathing information for emc_clariion0 431, use

the following command:

# # vxdmpadm getsubpaths dmpnodename=emc_clariion0_431

Typical output from the vxdmpadm getsubpaths command is as follows:
NAME STATE[A] PATH-TYPE [M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS PRIORITY
sdac ENABLED Active/Non-Optimized c6 EMC CLARiiON emc clariion0 - -
sdam ENABLED (A) Active/Optimized (P) c6 EMC CLARiiON emc clariion0 - -
sdi ENABLED Active/Non-Optimized cl EMC CLARiiON emc clariion0 - -
sds ENABLED (A) Active/Optimized (P) cl EMC CLARiiON emc clariion0 - -

Administering DMP using the vxdmpadm utility

The vxdmpadn utility is a command-line administrative interface to Dynamic
Multi-Pathing (DMP).

You can use the vxdmpadm utility to perform the following tasks:

Retrieve the name of the DMP device corresponding to a particular path.
See “Retrieving information about a DMP node” on page 313.

Display consolidated information about the DMP nodes.
See “Displaying consolidated information about the DMP nodes” on page 314.

Display the members of a LUN group.
See “Displaying the members of a LUN group” on page 315.

List all paths under a DMP device node, HBA controller, enclosure, or array
port.

See “Displaying paths controlled by a DMP node, controller, enclosure, or array
port” on page 315.

Display information about the HBA controllers on the host.
See “Displaying information about controllers” on page 318.

Display information about enclosures.
See “Displaying information about enclosures” on page 319.



Administering Dynamic Multi-Pathing | 312
Administering DMP using the vxdmpadm utility

Display information about array ports that are connected to the storage
processors of enclosures.
See “Displaying information about array ports” on page 320.

Display asymmetric access state for ALUA arrays.

Display information about devices that are controlled by third-party multi-pathing
drivers.

See “Displaying information about devices controlled by third-party drivers”

on page 320.

Display extended devices attributes.
See “Displaying extended device attributes” on page 321.

Suppress or include devices from VxVM control.
See “Suppressing or including devices from VxVM control” on page 324.

Gather /O statistics for a DMP node, enclosure, path, or controller.
See “Gathering and displaying 1/O statistics” on page 324.

Configure the attributes of the paths to an enclosure.
See “Setting the attributes of the paths to an enclosure” on page 331.

Display the redundancy level of a device or enclosure.
See “Displaying the redundancy level of a device or enclosure” on page 332.

Specify the minimum number of active paths.
See “Specifying the minimum number of active paths” on page 333.

Display or set the I/O policy that is used for the paths to an enclosure.
See “Specifying the 1/0 policy” on page 334.

Enable or disable I/O for a path, HBA controller or array port on the system.
See “Disabling I/O for paths, controllers, array ports, or DMP nodes” on page 340.

Rename an enclosure.
See “Renaming an enclosure” on page 343.

Configure how DMP responds to I/O request failures.
See “Configuring the response to I/O failures” on page 343.

Configure the 1/0O throttling mechanism.
See “Configuring the 1/O throttling mechanism” on page 345.

Control the operation of the DMP path restoration thread.
See “Configuring DMP path restoration policies” on page 348.

Configure array policy modules.
See “Configuring Array Policy Modules” on page 350.

Get or set the values of various tunables used by DMP.



Administering Dynamic Multi-Pathing | 313
Administering DMP using the vxdmpadm utility

See “DMP tunable parameters” on page 1121.

See the vxdmpadm(1M) manual page.

Retrieving information about a DMP node

The following command displays the Dynamic Multi-Pathing (DMP) node that
controls a particular physical path:

# vxdmpadm getdmpnode nodename=pathname

The physical path is specified by argument to the nodename attribute, which must
be a valid path listed in the device directory.

The device directory is the /dev directory.

The command displays output similar to the following example output.
# vxdmpadm getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariion0 89 ENABLED EMC CLARiiON 6 6 0 emc_clariion0
Use the -v option to display the LUN serial number and the array volume ID.

# vxdmpadm -v getdmpnode nodename=sdbc

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME SERIAL-NO ARRAY VOL ID
emc_clariion0O_89 ENABLED EMC_CLARiiON 6 6 0 emc_clariion0 600601601 893
Use the enclosure attribute with getdmpnode to obtain a list of all DMP nodes for
the specified enclosure.
# vxdmpadm getdmpnode enclosure=emc clariion0
NAME STATE ENCLR-TYPE  PATHS ENBL DSBL ENCLR-NAME

emc_clariion0O 429
emc_clariion0O 430
emc_clariion0O 431

emc_clariion0 432

ENABLED EMC CLARiiON
ENABLED EMC CLARiiON
ENABLED EMC CLARiiON
ENABLED EMC CLARiiON

emc_clariion0
emc_clariion0

emc_clariion0

N N
N N
o O O O

emc_clariion0

Use the dmpnodename attribute with getdmpnode to display the DMP information for
a given DMP node.

# vxdmpadm getdmpnode dmpnodename=emc_clariion0O_158



Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariion0_ 158 ENABLED EMC CLARiiON 1 1 0 emc_clariion0

Displaying consolidated information about the DMP nodes

dmpdev
state
enclosure
cab-sno

asl

The vxdmpadm list dmpnode command displays the detail information of a Dynamic
Multi-Pathing (DMP) node. The information includes the enclosure name, LUN
serial number, port id information, device attributes, and so on.

The following command displays the consolidated information for all of the DMP
nodes in the system:

# vxdmpadm list dmpnode all

Use the enclosure attribute with 1ist dmpnode to obtain a list of all DMP nodes
for the specified enclosure.

# vxdmpadm list dmpnode enclosure=enclosurename

For example, the following command displays the consolidated information for all
of the DMP nodes in the enc0 enclosure.

# vxdmpadm list dmpnode enclosure=encO

Use the dmpnodename attribute with 1ist dmpnode to display the DMP information
for a given DMP node. The DMP node can be specified by name or by specifying
a path name. The detailed information for the specified DMP node includes path
information for each subpath of the listed DMP node.

The path state differentiates between a path that is disabled due to a failure and a
path that has been manually disabled for administrative purposes. A path that has
been manually disabled using the vxdmpadm disable command is listed as
disabled (m).

# vxdmpadm list dmpnode dmpnodename=dmpnodename

For example, the following command displays the consolidated information for the
DMP node emc_clariion0_158.

# vxdmpadm list dmpnode dmpnodename=emc_clariion0O_158

emc_clariion0O 158
enabled
emc_clariion0
CK200070400359
1ibvxCLAR110N. so

314



vid

pid
array-name
array-type
iopolicy
avid
lun-sno
udid
dev-attr
###path
path

path

path

path

path

path

DGC
DISK

Administering Dynamic Multi-Pathing | 315
Administering DMP using the vxdmpadm utility

EMC_CLARiiON
CLR-A/PF

MinimumQ

158

600601601A141B001D4A32F92B49DELL
DGC%5FDISK%5FCK200070400359%5F600601601A141B001D4A32F92B49DELL

lun

name
sdck
sdde
sdcu
sdbm
sdbw
sdbc

state type transport ctlr hwpath aportID aportWWN attr
enabled(a) primary FC c2 c2 A5 50:06:01:61:41:e0:3b:33
enabled(a) primary FC c2 c2 A4 50:06:01:60:41:e0:3b:33 -
enabled secondary FC c2 c2 B4 50:06:01:68:41:e0:3b:33 -
enabled secondary FC c3 c3 B4 50:06:01:68:41:e0:3b:33 -
enabled(a) primary FC c3 ¢3 A4 50:06:01:60:41:e0:3b:33 -
enabled(a) primary FC ¢3 ¢3 A5 50:06:01:61:41:e0:3b:33

Displaying the members of a LUN group

The following command displays the Dynamic Multi-Pathing (DMP) nodes that are
in the same LUN group as a specified DMP node:

# vxdmpadm getlungroup dmpnodename=dmpnode
For example:

# vxdmpadm getlungroup dmpnodename=sdq

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
sdo ENABLED ACME 2 2 0 encl
sdp ENABLED ACME 2 2 0 encl
sdg ENABLED ACME 2 2 0 encl
sdr ENABLED ACME 2 2 0 encl

Displaying paths controlled by a DMP node, controller, enclosure,
or array port

The vxdmpadm getsubpaths command lists all of the paths known to Dynamic
Multi-Pathing (DMP). The vxdmpadm getsubpaths command also provides options
to list the subpaths through a particular DMP node, controller, enclosure, or array
port. To list the paths through an array port, specify either a combination of enclosure
name and array port id, or array port worldwide name (WWN).



Administering Dynamic Multi-Pathing | 316
Administering DMP using the vxdmpadm utility

To list all subpaths known to DMP:

# vxdmpadm getsubpaths

NAME STATE [A] PATH-TYPE [M] DMPNODENAME ENCLR-NAME CTLR ATTRS
sdaf ENABLED (A) PRIMARY ams_wmsO_130 ams_wms0 c2 -
sdc ENABLED SECONDARY ams_wmsO_130 ams_wms0 c3 -
sdb ENABLED (A) - vm04 disk 24 disk c0 -
sda ENABLED (A) - vm04 disk 25 disk c0 -
sdaa ENABLED Active/Non-Optimized emc_clariion0O_438 emc_clariion0 cl -
sdak ENABLED (A) Active/Optimized(P) emc clariionO 438 emc_clariionO c6 -

The vxdmpadm getsubpaths command combined with the dmpnodename attribute
displays all the paths to a LUN that are controlled by the specified DMP node name
from the /dev/vx/dmp directory:

# vxdmpadm getsubpaths dmpnodename=sdby

NAME STATE [A] PATH-TYPE [M] CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS PRIORITY
sdbp ENABLED - cl EMC emcO - -
sdbs ENABLED - cl EMC emcO - -
sdbv ENABLED - cé6 EMC emcO - -
sdby ENABLED (A) - c6 EMC emcO - -

For AJA arrays, all enabled paths that are available for I/O are shown as ENABLED (2) .

For A/P arrays in which the 1/O policy is set to singleactive, only one path is
shown as ENABLED (2) . The other paths are enabled but not available for I/O. If the
I/O policy is not set to singleactive, DMP can use a group of paths (all primary
or all secondary) for I/O, which are shown as ENABLED (2) .

See “Specifying the I/O policy” on page 334.

Paths that are in the DISABLED state are not available for I/O operations.

A path that was manually disabled by the system administrator displays as
DISABLED(M). A path that failed displays as DISABLED.

You can use getsubpaths to obtain information about all the paths that are
connected to a particular HBA controller:

# vxdmpadm getsubpaths ctlr=cl

NAME STATE[A]

PATH-TYPE [M] DMPNODENAME ENCLR-TYPE ENCLR-NAME ATTRS

PRIOF




sdh ENABLED

sdr ENABLED(A) Active/Optimized (P)
sdm ENABLED (A) Active/Optimized (P)

sdw ENABLED

Administering Dynamic Multi-Pathing | 317
Administering DMP using the vxdmpadm utility

Active/Non-Optimized emc_clariion0_429
emc_clariion0O_429
emc_clariion0O_ 430

Active/Non-Optimized emc_clariion0_430

EMC_CLARiiON
EMC_CLARiiON
EMC_CLARiiON
EMC_CLARiiON

emc_clariion0
emc_clariion0
emc_clariion0

emc_clariion0

You can also use getsubpaths to obtain information about all the paths that are
connected to a port on an array. The array port can be specified by the name of
the enclosure and the array port ID, or by the WWN identifier of the array port:

# vxdmpadm getsubpaths enclosure=enclosure portid=portid
# vxdmpadm getsubpaths pwwn=pwwn

For example, to list subpaths through an array port through the enclosure and the
array port ID:

# vxdmpadm getsubpaths enclosure=emc_clariion0 portid=A7

NAME STATE[A]

PATH-TYPE [M]

DMPNODENAME ENCLR-NAME CTLR ATTRS PRIORITY

sdal ENABLED (A)
sdr ENABLED (A)

sdag ENABLED
sdw ENABLED

Active/Optimized
Active/Optimized

emc_clariion0 429 emc clariionO c6 - -

emc_clariion0 429 emc clariionO cl - -

Active/Non-Optimized emc_clariionO_430 emc_clariion0 c6 - -
Active/Non-Optimized emc_clariion0O_430 emc_clariion0 cl - -

For example, to list subpaths through an array port through the WWN:

# vxdmpadm getsubpaths pwwn=50:06:01:67:3e:a0:75:95

NAME STATE [A]

PATH-TYPE [M]

CTLR-NAME ENCLR-TYPE ENCLR-NAME ATTRS PRIORITY

sdal ENABLED (A)
sdr ENABLED (A)

sdag ENABLED
sdw ENABLED

Active/Optimized c6
Active/Optimized(P) cl
Active/Non-Optimized c6
Active/Non-Optimized cl

EMC_CLARiiON emc_clariion0 - -
EMC_CLARiiON emc_clariion0 - -
EMC_CLARiiON emc_clariion0 - -
EMC_CLARiiON emc_clariion0 - -

# vxdmpadm getsubpaths pwwn=20:00:00:E0:8B:06:5F:19

You can use getsubpaths to obtain information about all the subpaths of an
enclosure.

# vxdmpadm getsubpaths enclosure=enclosure name [ctlr=ctlrname]

To list all subpaths of an enclosure:

# vxdmpadm getsubpaths enclosure=emc_clariion0

NAME

STATE [A]

PATH-TYPE[M] DMPNODENAME ENCLR-NAME CTLR ATTRS




sdav
sdbf
sdau
sdbe

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

ENABLED (A) PRIMARY emc_clariion0 1017 emc_clariion0O c3 -
ENABLED SECONDARY emc_clariion0 1017 emc_clariion0O c3 -
ENABLED (A) PRIMARY emc_clariion0 1018 emc clariion0O c3 -
ENABLED SECONDARY emc_clariion0 1018 emc clariion0O c3 -

To list all subpaths of a controller on an enclosure:
# vxdmpadm getsubpaths enclosure=emc_clariion0

By default, the output of the vxdmpadm getsubpaths command is sorted by
enclosure name, DMP node name, and within that, path name.

To sort the output based on the pathname, the DMP node name, the enclosure
name, or the host controller name, use the -s option.

To sort subpaths information, use the following command:

# vxdmpadm -s {path | dmpnode | enclosure | ctlr} getsubpaths \
[all | ctlr=ctlr name | dmpnodename=dmp device name | \
enclosure=enclr name [ctlr=ctlr name | portid=array port ID] | \

pwwn=port WWN | tpdnodename=tpd node name]

See “Setting customized names for DMP nodes” on page 381.

Displaying information about controllers

The following Dynamic Multi-Pathing (DMP) command lists attributes of all HBA
controllers on the system:

# vxdmpadm listctlr all

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME PATH COUNT
cl OTHER ENABLED other0 3

c2 X1 ENABLED jbodO 10

c3 ACME ENABLED encO 24

c4 ACME ENABLED encO 24

This output shows that the controller c1 is connected to disks that are not in any
recognized DMP category as the enclosure type is OTHER.

The other controllers are connected to disks that are in recognized DMP categories.

All the controllers are in the ENABLED state, which indicates that they are available

for 1/O operations.

The state DISABLED is used to indicate that controllers are unavailable for I/O
operations. The unavailability can be due to a hardware failure or due to 1/0

318



Administering Dynamic Multi-Pathing | 319
Administering DMP using the vxdmpadm utility

operations being disabled on that controller by using the vxdmpadm disable
command.

The following forms of the command lists controllers belonging to a specified
enclosure or enclosure type:

# vxdmpadm listctlr enclosure=emcO
or
# vxdmpadm listctlr type=EMC

# vxdmpadm listctlr type=EMC

CTLR NAME ENCLR TYPE STATE ENCLR NAME PATH COUNT
cl EMC ENABLED emcO 6
c6 EMC ENABLED emcO 6

The vxdmpadm getctlr command displays HBA vendor details and the Controller
ID. For iSCSI devices, the Controller ID is the IQN or IEEE-format based name.
For FC devices, the Controller ID is the WWN. Because the WWN is obtained from
ESD, this field is blank if ESD is not running. ESD is a daemon process used to
notify DDL about occurrence of events. The WWN shown as ‘Controller ID’ maps
to the WWN of the HBA port associated with the host controller.

# vxdmpadm getctlr c5

LNAME PNAME VENDOR CTLR-ID

c5 c5 glogic 20:07:00:a0:b8:17:e1:37

Displaying information about enclosures

Dynamic Multi-Pathing (DMP) can display the attributes of the enclosures, including
the enclosure type, enclosure serial number, status, array type, number of LUNs,
and the firmware version, if available.

To display the attributes of a specified enclosure, use the following DMP command:

# vxdmpadm listenclosure emcO
ENCLR_NAME ENCLR TYPE ENCLR_SNO STATUS ARRAY TYPE LUN_COUNT FIRMWARE

emcO EMC 000292601383 CONNECTED A/A 30 5875

To display the attrtibutes for all enclosures in a system, use the following DMP
command:



Administering Dynamic Multi-Pathing | 320
Administering DMP using the vxdmpadm utility

# vxdmpadm listenclosure all

ENCLR NAME ENCLR TYPE ENCLR_ SNO STATUS ARRAY TYPE LUN COUNT FIRMWARE
Disk Disk DISKS CONNECTED Disk 6 -

emcO EMC 000292601383 CONNECTED A/A 1 5875
hitachi usp-vm0 Hitachi USP-VM 25847 CONNECTED A/A 1 6008
emc_clariion0 EMC CLARiiON CK20007040035 CONNECTED CLR-A/PF 2 0324

Displaying information about array ports

Use the Dynamic Multi-Pathing (DMP) commands in this section to display
information about array ports. The information displayed for an array port includes
the name of its enclosure, its ID, and its worldwide name (WWN) identifier.

To display the attributes of an array port that is accessible through a path, DMP
node or HBA controller, use one of the following commands:

# vxdmpadm getportids path=path name
# vxdmpadm getportids dmpnodename=dmpnode name
# vxdmpadm getportids ctlr=ctlr name

The following form of the command displays information about all of the array ports
within the specified enclosure:

# vxdmpadm getportids enclosure=enclr name

The following example shows information about the array port that is accessible
through DMP node sdg:

# vxdmpadm getportids dmpnodename=sdg

NAME ENCLR-NAME ARRAY-PORT-ID pWWN

sdg HDS9500V0 1A 20:00:00:E0:8B:06:5F:19

Displaying information about devices controlled by third-party drivers

The third-party driver (TPD) coexistence feature allows 1/O that is controlled by
third-party multi-pathing drivers to bypass Dynamic Multi-Pathing (DMP) while
retaining the monitoring capabilities of DMP. The following commands allow you
to display the paths that DMP has discovered for a given TPD device, and the TPD
device that corresponds to a given TPD-controlled node discovered by DMP:

# vxdmpadm getsubpaths tpdnodename=TPD node name
# vxdmpadm gettpdnode nodename=TPD path name



Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

See “Changing device naming for enclosures controlled by third-party drivers”

on page 383.

For example, consider the following disks in an EMC Symmetrix array controlled

by PowerPath, which are known to DMP:

# wvxdisk list

DEVICE

emcpowerp
emcpowerq
emcpowerr
emcpowers

emcpowert

TYPE

auto:
auto:
auto:
auto:
:cdsdisk -

auto

DISK
cdsdisk -
cdsdisk -
cdsdisk -
cdsdisk -

GROUP

STATUS
online
online
online
online

online

The following command displays the paths that DMP has discovered, and which
correspond to the PowerPath-controlled node, emcpowerp:

# vxdmpadm getsubpaths tpdnodename=emcpowerp

NAME TPDNODENAME PATH-TYPE[-] DMPNODENAME ENCLR-TYPE ENCLR-NAME

sdt emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sdo emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sdj emcpowerp - emcpowerp PP_EMC_CLARiiON pp emc_clariionO
sde emcpowerp - emcpowerp PP_EMC_CLARiiON

pp_emc_clariion0

Conversely, the next command displays information about the PowerPath node
that corresponds to the path, sdt, discovered by DMP:

# vxdmpadm gettpdnode nodename=sdt

NAME

STATE

PATHS

ENCLR-TYPE

ENCLR-NAME

emcpowerp

ENABLED

PP_EMC CLARiiON pp emc clariionO

Displaying extended device attributes

Device Discovery Layer (DDL) extended attributes are attributes or flags
corresponding to a Veritas Volume Manager (VxVM) or Dynamic Multi-Pathing

(DMP) LUN or disk and that are discovered by DDL. These attributes identify a LUN

to a specific hardware category.

Table 11-5 describes the list of categories.

321



Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

Table 11-5 Categories for extended attributes

Category

Description

Hardware RAID types

Displays what kind of Storage RAID Group the
LUN belongs to

Thin Provisioning Discovery and Displays the LUN'’s thin reclamation abilities

Reclamation

Device Media Type

Displays the type of media —whether SSD (Solid
State Drive)

Storage-based Snapshot/Clone Displays whether the LUN is a SNAPSHOT or a

CLONE of a PRIMARY LUN

Storage-based replication Displays if the LUN is part of a replicated group

across a remote site

Transport

Displays what kind of HBA is used to connect to
this LUN (FC, SATA, iSCSI)

Each LUN can have

extended attributes during device discovery from the Array Support Library (ASL).

one or more of these extended attributes. DDL discovers the

If Veritas Operations Manager (VOM) is present, DDL can also obtain extended
attributes from the VOM Management Server for hosts that are configured as

managed hosts.

The vxdisk -p list command displays DDL extended attributes. For example,
the following command shows attributes of std, fc, and rRa1D_5 for this LUN:

# vxdisk -p list
DISK
DISKID
VID

UDID
REVISION
PID

PHYS CTLR NAME :
LUN_SNO_ORDER
LUN_SERTAL_NO
LIBNAME :
HARDWARE MIRROR:
DMP_DEVICE
DDL_THIN DISK
DDL_DEVICE_ATTR:
CAB_SERTAL_NO

: tagmastore-usp0_0Oel8

1253585985.692.rx2600h11

: HITACHI
: HITACHISSFOPEN-V%5F02742%5F0E18

5001

: OPEN-V

0/4/1/1.0x50060e8005274246
411

0E18

libvxhdsusp.sl

no

: tagmastore-usp0_0Oel8
¢ thick

std fc RAID 5
02742

322



# vxdisk -e list

DEVICE

Administering Dynamic Multi-Pathing | 323
Administering DMP using the vxdmpadm utility

ATYPE : A/A

ARRAY VOLUME_ID: 0E18

ARRAY PORT PWWN: 50:06:0e:80:05:27:42:46
ANAME : TagmaStore-USP
TRANSPORT : FC

The vxdisk -x attribute -p list command displays the one-line listing for the
property list and the attributes. The following example shows two Hitachi LUNs that
support Thin Reclamation through the attribute hdprcim:

# vxdisk -x DDL_DEVICE_ATTR -p list

DEVICE DDL_DEVICE ATTR
tagmastore-usp0_Oa7a std fc RAID 5
tagmastore-usp0_065a hdprclm fc

tagmastore-usp0_065b hdprclm fc

User can specify multiple -x options in the same command to display multiple entries.
For example:

# vxdisk -x DDL_DEVICE_ATTR -x VID -p list

DEVICE DDL DEVICE ATTR VID

tagmastore-usp0 Oa7a std fc RAID 5 HITACHI
tagmastore-usp0 O0a7b std fc RAID 5 HITACHI
tagmastore-usp0 0a78 std fc RAID 5 HITACHI
tagmastore-usp0 0a79 std fc RAID 5 HITACHI
tagmastore-usp0 065a hdprclm fc HITACHI
tagmastore-usp0 065b hdprclm fc HITACHI
tagmastore-usp0 065c hdprclm fc HITACHI
tagmastore-usp0 065d hdprclm fc HITACHI

Use the vxdisk -e list command to show the DLL_DEVICE_ATTR property in
the last column named ATTR.

TYPE DISK GROUP STATUS OS NATIVE NAME ATTR

tagmastore-usp0_ Oa7a
tagmastore-usp0_0Oa7b
tagmastore-usp0 _0a78
tagmastore-usp0 0655
tagmastore-usp0 0656
tagmastore-usp0 0657

auto - - online c¢c10t0d2 std fc RAID 5
auto - - online ¢10t0d3 std fc RAID 5
auto - - online ¢10t0d0 std fc RAID 5
auto - - online ¢13t2d7 hdprclm fc
auto - - online ¢13t3d0 hdprclm fc
auto - - online ¢13t3dl hdprclm fc

For a list of ASLs that supports Extended Attributes, and descriptions of these
attributes, refer to the hardware compatibility list (HCL) at the following URL:



Administering Dynamic Multi-Pathing | 324
Administering DMP using the vxdmpadm utility

https://www.veritas.com/support/en_US/article.000126344

Suppressing or including devices from VxVM control

The vxdmpadm exclude command suppresses devices from Veritas Volume
Manager (VxVM) based on the criteria that you specify. When a device is
suppressed, Dynamic Multi-Pathing (DMP) does not claim the device so that the
device is not available for VxVM to use. You can add the devices back into VxVM
control with the vxdmpadm include command. The devices can be included or
excluded based on VID:PID combination, paths, controllers, or disks. You can use
the bang symbol (!) to exclude or include any paths or controllers except the one
specified.

The root disk cannot be suppressed. The operation fails if the VID:PID of an external
disk is the same VID:PID as the root disk and the root disk is encapsulated under
VXVM.

Note: The ! character is a special character in some shells. The following syntax
shows how to escape it in a bash shell.

# vxdmpadm exclude { all | product=VID:PID |
ctlr=[\!]ctlrname | dmpnodename=diskname [ path=[\!]pathname] }

# vxdmpadm include { all | product=VID:PID |
ctlr=[\!]ctlrname | dmpnodename=diskname [ path=[\!]pathname] }

where:

all all devices

product=VID:PID all devices with the specified VID:PID
ctir=ctirname all devices through the given controller
dmpnodename=diskname all paths under the DMP node

dmpnodename=diskname path=\|pathname all paths under the DMP node except the one
specified

Gathering and displaying /O statistics

You can use the vxdmpadm iostat command to gather and display I/O statistics
for a specified DMP node, enclosure, path, port, or controller.


https://www.veritas.com/support/en_US/article.000126344

Administering Dynamic Multi-Pathing | 325
Administering DMP using the vxdmpadm utility

The statistics displayed are the CPU usage and amount of memory per CPU used
to accumulate statistics, the number of read and write operations, the number of
kilobytes read and written, and the average time in milliseconds per kilobyte that
is read or written.

To enable the gathering of statistics, enter this command:
# vxdmpadm jiostat start [memory=size]

The memory attribute limits the maximum amount of memory that is used to record
I/O statistics for each CPU. The default limit is 32k (32 kilobytes) per CPU.

To reset the 1/O counters to zero, use this command:

# vxdmpadm iostat reset

To display the accumulated statistics at regular intervals, use the following command:
# vxdmpadm iostat show {filter} [interval=seconds [count=N]]

The above command displays /O statistics for the devices specified by the filter.
The filter is one of the following:

m all

m ctlr=ctlr-name

m  dmpnodename=dmp-node

m enclosure=enclr-name [portid=array-portid ] [ctlr=ctlr-name]
m pathname=path-name

m pwwn=array-port-wwn [ctlr=ctlr-name]

Use the interval and count attributes to specify the interval in seconds between
displaying the I/O statistics, and the number of lines to be displayed. The actual
interval may be smaller than the value specified if insufficient memory is available
to record the statistics.

DMP also provides a groupby option to display cumulative I/O statistics, aggregated
by the specified criteria.

See “Displaying cumulative I/O statistics” on page 326.

To disable the gathering of statistics, enter this command:

# vxdmpadm iostat stop



Administering Dynamic Multi-Pathing | 326
Administering DMP using the vxdmpadm utility

Displaying cumulative /O statistics

The vxdmpadm iostat command provides the ability to analyze the I/O load
distribution across various 1/0 channels or parts of I/O channels. Select the
appropriate filter to display the 1/O statistics for the DMP node, controller, array
enclosure, path, port, or virtual machine. Then, use the groupby clause to display
cumulative statistics according to the criteria that you want to analyze. If the groupby
clause is not specified, then the statistics are displayed per path.

When you combine the filter and the groupby clause, you can analyze the 1/O load
for the required use case scenario. For example:

= To compare I/O load across HBAs, enclosures, or array ports, use the groupby
clause with the specified attribute.

= To analyze I/O load across a given I/O channel (HBA to array port link), use
filter by HBA and PWWN or enclosure and array port.

= To analyze I/O load distribution across links to an HBA, use filter by HBA and
groupby array port.

Use the following format of the iostat command to analyze the I/O loads:

# vxdmpadm [-u unit] iostat show [groupby=criteria] {filter} \

[interval=seconds [count=N]]

The above command displays I/O statistics for the devices specified by the filter.
The filter is one of the following:

m all

m ctlr=ctlr-name

m  dmpnodename=dmp-node

m enclosure=enclr-name [portid=array-portid ] [ctlr=ctlr-name]
m pathname=path-name

m pwwn=array-port-wwn[ctlr=ctlr-name]

You can aggregate the statistics by the following groupby criteria:
m arrayport

m ctlr

m  dmpnode

m enclosure

By default, the read/write times are displayed in milliseconds up to 2 decimal places.
The throughput data is displayed in terms of BLOCKS, and the output is scaled,



Administering Dynamic Multi-Pathing | 327
Administering DMP using the vxdmpadm utility

meaning that the small values are displayed in small units and the larger values
are displayed in bigger units, keeping significant digits constant. You can specify
the units in which the statistics data is displayed. The -u option accepts the following
options:

h or H Displays throughput in the highest possible unit.

k Displays throughput in kilobytes.

m Displays throughput in megabytes.

g Displays throughput in gigabytes.

bytes| b Displays throughput in exact number of bytes.

us Displays average read/write time in microseconds.

To group by DMP node:

# vxdmpadm [-u unit] iostat show groupby=dmpnode \

[all | dmpnodename=dmpnodename | enclosure=enclr-name]

To group by controller:

# vxdmpadm [-u unit] iostat show groupby=ctlr [ all | ctlr=ctlr ]
For example:

# vxdmpadm iostat show groupby=ctlr ctlr=c5

OPERATIONS BLOCKS AVG TIME (ms)
CTLRNAME READS WRITES READS WRITES READS WRITES
cb 224 14 54 7 4.20 11.10

To group by arrayport:

# vxdmpadm [-u unit] iostat show groupby=arrayport [ all \

| pwwn=array pwwn | enclosure=enclr portid=array-port-id ]
For example:

# vxdmpadm -u m iostat show groupby=arrayport \
enclosure=HDS9500-ALUAO portid=1A

OPERATIONS BYTES AVG TIME (ms)
PORTNAME READS WRITES READS WRITES READS WRITES
1A 743 1538 1lm 24m 17.13 8.61

To group by enclosure:



Administering Dynamic Multi-Pathing | 328
Administering DMP using the vxdmpadm utility

# vxdmpadm [-u unit] iostat show groupby=enclosure [ all \

| enclosure=enclr ]
For example:

# vxdmpadm -u h iostat show groupby=enclosure enclosure=EMC_CLARiiONO

OPERATIONS BLOCKS AVG TIME (ms)
ENCLOSURENAME READS WRITES READS WRITES READS WRITES
EMC_CLARiiONO 743 1538 11392k 24176k 17.13 8.61

You can also filter out entities for which all data entries are zero. This option is
especially useful in a cluster environment that contains many failover devices. You
can display only the statistics for the active paths.

To filter all zero entries from the output of the iostat show command:

# vxdmpadm [-u unit] -z iostat show [all|ctlr=ctlr name |
dmpnodename=dmp device name | enclosure=enclr name [portid=portid] |

pathname=path name|pwwn=port WWN] [interval=seconds [count=N]]
For example:
# vxdmpadm -z iostat show dmpnodename=emc_clariion(O_893

cpu usage = 9852us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdbc 32 0 258 0 0.04 0.00
sdbw 27 0 216 0 0.03 0.00
sdck 8 0 57 0 0.04 0.00
sdde 11 0 81 0 0.15 0.00

To display average read/write times in microseconds.
# vxdmpadm -u us iostat show pathname=sdck

cpu usage = 9865us per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (us)
PATHNAME READS WRITES READS WRITES READS WRITES
sdck 8 0 57 0 43.04 0.00

Displaying statistics for queued or erroneous 1/Os

Use the vxdmpadm iostat show command with the -q option to display the 1/0s
queued in Dynamic Multi-Pathing (DMP) for a specified DMP node, or for a specified
path or controller. For a DMP node, the -q option displays the I/Os on the specified



Administering Dynamic Multi-Pathing | 329
Administering DMP using the vxdmpadm utility

DMP node that were sent to underlying layers. If a path or controller is specified,
the -q option displays I/Os that were sent to the given path or controller and not
yet returned to DMP.

See the vxdmpadm(1m) manual page for more information about the vxdmpadm
iostat command.

To display queued I/O counts on a DMP node:

# vxdmpadm -q iostat show [filter] [interval=n [count=m]]
For example:

# vxdmpadm -q iostat show dmpnodename=emc_clariion0_352

cpu usage = 338us per cpu memory = 102400b
QUEUED I/0s PENDING I/Os
DMPNODENAME READS WRITES

emc_clariion0_352 0 0 0

To display the count of I/Os that returned with errors on a DMP node, path, or
controller:

# vxdmpadm -e iostat show [filter] [interval=n [count=m]]
For example, to show the 1/0 counts that returned errors on a path:
# vxdmpadm -e iostat show pathname=sdo

cpu usage = 637us per cpu memory = 102400b

ERROR I/Os
PATHNAME READS WRITES
sdo 0 0

Examples of using the vxdmpadm iostat command

Dynamic Multi-Pathing (DMP) enables you to gather and display 1/O statistics with
the vxdmpadm iostat command. This section provides an example session using
the vxdmpadm iostat command.

The first command enables the gathering of I/O statistics:

# vxdmpadm jiostat start

The next command displays the current statistics including the accumulated total
numbers of read and write operations, and the kilobytes read and written, on all
paths.



Administering Dynamic Multi-Pathing | 330
Administering DMP using the vxdmpadm utility

# vxdmpadm -u k iostat show all

cpu usage = 7952us per cpu memory = 8192b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 87 0 44544k 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00
sdg 87 0 44544k 0 0.00 0.00
sdl 0 0 0 0 0.00 0.00
sdh 87 0 44544k 0 0.00 0.00
sdm 0 0 0 0 0.00 0.00
sdi 87 0 44544k 0 0.00 0.00
sdn 0 0 0 0 0.00 0.00
sdj 87 0 44544k 0 0.00 0.00
sdo 0 0 0 0 0.00 0.00
sdj 87 0 44544k 0 0.00 0.00
sdp 0 0 0 0 0.00 0.00

The following command changes the amount of memory that vxdmpadm can use to
accumulate the statistics:

# vxdmpadm iostat start memory=4096

The displayed statistics can be filtered by path name, DMP node name, and
enclosure name (note that the per-CPU memory has changed following the previous
command):

# vxdmpadm -u k iostat show pathname=sdk
cpu usage = 8132us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdk 0 0 0 0 0.00 0.00

# vxdmpadm -u k iostat show dmpnodename=sdf

cpu usage = 8501us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 1088 0 557056k 0 0.00 0.00

# vxdmpadm -u k iostat show enclosure=Disk
cpu usage = 8626us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdf 1088 0 557056k 0 0.00 0.00



Administering Dynamic Multi-Pathing | 331
Administering DMP using the vxdmpadm utility

You can also specify the number of times to display the statistics and the time
interval. Here the incremental statistics for a path are displayed twice with a 2-second
interval:

# vxdmpadm iostat show pathname=sdk interval=2 count=2

cpu usage = 9621lus per cpu memory = 266240b

OPERATIONS BLOCKS AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdk 0 0 0 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00

Setting the attributes of the paths to an enclosure

You can use the vxdmpadm setattr command to set the attributes of the paths to
an enclosure or disk array.

The attributes set for the paths are persistent across reboots or product upgrades.

You can set the following attributes:

active Changes a standby (failover) path to an active path. The following
example specifies an active path for an array:

# vxdmpadm setattr path sde pathtype=active
nomanual Restores the original primary or secondary attributes of a path. This

example restores the path to a JBOD disk:

# vxdmpadm setattr path sdm pathtype=nomanual
nopreferred Restores the normal priority of a path. The following example restores

the default priority to a path:

# vxdmpadm setattr path sdk \
pathtype=nopreferred



Administering Dynamic Multi-Pathing | 332
Administering DMP using the vxdmpadm utility

preferred Specifies a path as preferred, and optionally assigns a priority number

[priority=N] to it. If specified, the priority number must be an integer that is greater
than or equal to one. Higher priority numbers indicate that a path is
able to carry a greater I/O load.

See “Specifying the 1/0 policy” on page 334.

This example first sets the 1/0O policy to priority for an Active/Active
disk array, and then specifies a preferred path with an assigned priority
of 2:

# vxdmpadm setattr enclosure encO \
iopolicy=priority

# vxdmpadm setattr path sdk pathtype=preferred \
priority=2

primary Defines a path as being the primary path for a JBOD disk array. The
following example specifies a primary path for a JBOD disk array:
# vxdmpadm setattr path sdm pathtype=primary
secondary Defines a path as being the secondary path for a JBOD disk array. The
following example specifies a secondary path for a JBOD disk array:
# vxdmpadm setattr path sdn pathtype=secondary
standby Marks a standby (failover) path that it is not used for normal 1/0

scheduling. This path is used if there are no active paths available for
I/0. The next example specifies a standby path for an A/P-C disk array:

# vxdmpadm setattr path sde pathtype=standby

Displaying the redundancy level of a device or enclosure

Use the vxdmpadm getdmpnode command to list the devices with less than the
required redundancy level.

To list the devices on a specified enclosure with fewer than a given number of
enabled paths, use the following command:

# vxdmpadm getdmpnode enclosure=encl name redundancy=value

For example, to list the devices with fewer than 3 enabled paths, use the following
command:

# vxdmpadm getdmpnode enclosure=EMC_CLARiiONO redundancy=3



Administering Dynamic Multi-Pathing | 333
Administering DMP using the vxdmpadm utility

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

emc_clariionO_162 ENABLED EMC CLARiiON
emc_clariionO_182 ENABLED EMC CLARiiON
emc_clariion0O_ 184 ENABLED EMC CLARiiON
emc_clariion0_186 ENABLED EMC CLARiiON

emc_clariion0
emc_clariion0

emc_clariion0

N W N W
NN
o B O B

emc_clariion0

To display the minimum redundancy level for a particular device, use the vxdmpadm
getattr command, as follows:

# vxdmpadm getattr enclosure|arrayname|arraytype \

component-name redundancy

For example, to show the minimum redundancy level for the enclosure
HDS9500-ALUAO:

# vxdmpadm getattr enclosure HDS9500-ALUAO redundancy

ENCLR_NAME DEFAULT CURRENT

HDS9500-ALUAQ 0 4

Specifying the minimum number of active paths

You can set the minimum redundancy level for a device or an enclosure. The
minimum redundancy level is the minimum number of paths that should be active
for the device or the enclosure. If the number of paths falls below the minimum
redundancy level for the enclosure, a message is sent to the system console and
also logged to the Dynamic Multi-Pathing (DMP) log file. Also, notification is sent
to vxnotify clients.

The value set for minimum redundancy level is persistent across reboots and product
upgrades. If no minimum redundancy level is set, the default value is 0.

You can use the vxdmpadm setattr command to set the minimum redundancy
level.



Administering Dynamic Multi-Pathing | 334
Administering DMP using the vxdmpadm utility

To specify the minimum number of active paths

¢ Usethe vxdmpadm setattr command with the redundancy attribute as follows:

# vxdmpadm setattr enclosure|arrayname|arraytype component-name

redundancy=value

where value is the number of active paths.

For example, to set the minimum redundancy level for the enclosure
HDS9500-ALUAO:

# vxdmpadm setattr enclosure HDS9500-ALUAO0 redundancy=2

Displaying the 1/0O policy

To display the current and default settings of the I/O policy for an enclosure, array,
or array type, use the vxdmpadm getattr command.

The following example displays the default and current setting of iopolicy for
JBOD disks:

# vxdmpadm getattr enclosure Disk iopolicy

ENCLR NAME DEFAULT CURRENT

Disk MinimumQ Balanced

The next example displays the setting of partitionsize for the enclosure enco,
on which the balanced I/O policy with a partition size of 2MB has been set:

# vxdmpadm getattr enclosure encO partitionsize

ENCLR_NAME DEFAULT CURRENT

Specifying the 1/O policy

You can use the vxdmpadm setattr command to change the Dynamic Multi-Pathing
(DMP) 1/O policy for distributing 1/O load across multiple paths to a disk array or
enclosure. You can set policies for an enclosure (for example, Epso1), for all
enclosures of a particular type (such as ubps), or for all enclosures of a particular
array type (such as a/a for Active/Active, or a/p for Active/Passive).



Administering Dynamic Multi-Pathing | 335
Administering DMP using the vxdmpadm utility

Note: I/O policies are persistent across reboots of the system.

Table 11-6 describes the I/O policies that may be set.

Table 11-6 DMP /O policies
Policy Description
adaptive This policy attempts to maximize overall I/0O throughput from/to the disks by dynamically

scheduling I/0 on the paths. It is suggested for use where I/O loads can vary over time.
For example, I/0O from/to a database may exhibit both long transfers (table scans) and
short transfers (random look ups). The policy is also useful for a SAN environment where
different paths may have different number of hops. No further configuration is possible
as this policy is automatically managed by DMP.

In this example, the adaptive 1/O policy is set for the enclosure enc1:

# vxdmpadm setattr enclosure encl \
iopolicy=adaptive

adaptiveming Similar to the adaptive policy, except that I/O is scheduled according to the length of
the 1/0 queue on each path. The path with the shortest queue is assigned the highest
priority.




Administering Dynamic Multi-Pathing | 336
Administering DMP using the vxdmpadm utility

Table 11-6 DMP 1/O policies (continued)
Policy Description
balanced This policy is designed to optimize the use of caching in disk drives and RAID controllers.

[partitionsize=size]

The size of the cache typically ranges from 120KB to 500KB or more, depending on the
characteristics of the particular hardware. During normal operation, the disks (or LUNSs)
are logically divided into a number of regions (or partitions), and I/O from/to a given region
is sent on only one of the active paths. Should that path fail, the workload is automatically
redistributed across the remaining paths.

You can use the partitionsize attribute to specify the size for the partition. The partition
size in blocks is adjustable in powers of 2 from 2 up to 231. A value that is not a power
of 2 is silently rounded down to the nearest acceptable value.

Specifying a partition size of 0 is equivalent to specifying the default partition size.

The default value for the partition size is 512 blocks (256k). Specifying a partition size
of 0 is equivalent to the default partition size of 512 blocks (256k).

The default value can be changed by adjusting the value of the
dmp pathswitch blks shift tunable parameter.

See “DMP tunable parameters” on page 1121.
Note: The benefit of this policy is lost if the value is set larger than the cache size.
For example, the suggested partition size for an Hitachi HDS 9960 A/A array is from

32,768 to 131,072 blocks (16MB to 64MB) for an 1/0O activity pattern that consists mostly
of sequential reads or writes.

The next example sets the balanced I/O policy with a partition size of 4096 blocks (2MB)
on the enclosure enc0:

# vxdmpadm setattr enclosure encO \
iopolicy=balanced partitionsize=4096

minimumg

This policy sends I/O on paths that have the minimum number of outstanding I/O requests
in the queue for a LUN. No further configuration is possible as DMP automatically
determines the path with the shortest queue.

The following example sets the I/O policy to minimumg for a JBOD:

# vxdmpadm setattr enclosure Disk \
iopolicy=minimumqgq

This is the default I/O policy for all arrays.




Administering Dynamic Multi-Pathing | 337
Administering DMP using the vxdmpadm utility

Table 11-6 DMP 1/O policies (continued)
Policy Description
priority This policy is useful when the paths in a SAN have unequal performance, and you want

to enforce load balancing manually. You can assign priorities to each path based on your
knowledge of the configuration and performance characteristics of the available paths,
and of other aspects of your system.

See “Setting the attributes of the paths to an enclosure” on page 331.

In this example, the 1/O policy is set to priority for all SENA arrays:

# vxdmpadm setattr arrayname SENA \
iopolicy=priority

round-robin

This policy shares I/0 equally between the paths in a round-robin sequence. For example,
if there are three paths, the first I/O request would use one path, the second would use
a different path, the third would be sent down the remaining path, the fourth would go
down the first path, and so on. No further configuration is possible as this policy is
automatically managed by DMP.

The next example sets the I/O policy to round-robin for all Active/Active arrays:

# vxdmpadm setattr arraytype A/A \
iopolicy=round-robin

singleactive

This policy routes I/O down the single active path. This policy can be configured for A/P
arrays with one active path per controller, where the other paths are used in case of
failover. If configured for A/A arrays, there is no load balancing across the paths, and
the alternate paths are only used to provide high availability (HA). If the current active
path fails, 1/0 is switched to an alternate active path. No further configuration is possible
as the single active path is selected by DMP.

The following example sets the 1/0 policy to singleactive for JBOD disks:

# vxdmpadm setattr arrayname Disk \
iopolicy=singleactive

Scheduling I/O on the paths of an Asymmetric
Active/Active or an ALUA array

You can specify the use_all paths attribute in conjunction with the adaptive,
balanced, minimumg, priority, and round-robin I/O policies to specify whether
I/O requests are to be scheduled on the secondary paths in addition to the primary
paths of an Asymmetric Active/Active (A/A-A) array or an ALUA array. Depending
on the characteristics of the array, the consequent improved load balancing can



Administering Dynamic Multi-Pathing | 338
Administering DMP using the vxdmpadm utility

increase the total I/O throughput. However, this feature should only be enabled if
recommended by the array vendor. It has no effect for array types other than A/A-A
or ALUA.

For example, the following command sets the balanced I/O policy with a partition
size of 4096 blocks (2MB) on the enclosure enco, and allows scheduling of I/O
requests on the secondary paths:

# vxdmpadm setattr enclosure encO iopolicy=balanced \

partitionsize=4096 use_all paths=yes

The default setting for this attribute is use_a11 paths=no.

You can display the current setting for use_al11 paths for an enclosure, arrayname,
or arraytype. To do this, specify the use_all paths option to the vxdmpadm
gettattr command.

# vxdmpadm getattr enclosure HDS9500-ALUAO use_all paths

ENCLR_NAME ATTR_NAME DEFAULT CURRENT

HDS9500-ALUAO use_all paths no yes

The use_all paths attribute only applies to A/A-A arrays and ALUA arrays. For
other arrays, the above command displays the message:

Attribute is not applicable for this array.

Example of applying load balancing in a SAN

This example describes how to use Dynamic Multi-Pathing (DMP) to configure load
balancing in a SAN environment where there are multiple primary paths to an
Active/Passive device through several SAN switches.

As shown in this sample output from the vxdisk 1ist command, the device sdm
has eight primary paths:

# vxdisk list sdq

Device: sdg

numpaths: 8

sdj state=enabled type=primary
sdk state=enabled type=primary
sdl state=enabled type=primary



sdm
sdn
sdo
sdp
sdqg

state=enabled
state=enabled
state=enabled
state=enabled

state=enabled

type=primary
type=primary
type=primary
type=primary
type=primary

Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

339

In addition, the device is in the enclosure Enco, belongs to the disk group mydg, and
contains a simple concatenated volume myvol1.

The first step is to enable the gathering of DMP statistics:

# vxdmpadm iostat start

Next, use the dd command to apply an input workload from the volume:
# dd if=/dev/vx/rdsk/mydg/myvoll of=/dev/null &

By running the vxdmpadm iostat command to display the DMP statistics for the
device, it can be seen that all I/O is being directed to one path, sdq:

# vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

cpu usage = 11294us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdj 0 0 0 0 0.00 0.00
sdk 0 0 0 0 0.00 0.00
sdl 0 0 0 0 0.00 0.00
sdm 0 0 0 0 0.00 0.00
sdn 0 0 0 0 0.00 0.00
sdo 0 0 0 0 0.00 0.00
sdp 0 0 0 0 0.00 0.00
sdq 10986 0 5493 0 0.41 0.00

The vxdmpadm command is used to display the I/O policy for the enclosure that
contains the device:

# vxdmpadm getattr enclosure ENCO iopolicy

ENCLR_NAME DEFAULT CURRENT

ENCO MinimumQ Single-Active



Administering Dynamic Multi-Pathing | 340
Administering DMP using the vxdmpadm utility

This shows that the policy for the enclosure is set to singleactive, which explains
why all the I/O is taking place on one path.

To balance the 1/O load across the multiple primary paths, the policy is set to
round-robin as shown here:

# vxdmpadm setattr enclosure ENCO iopolicy=round-robin

# vxdmpadm getattr enclosure ENCO iopolicy

ENCLR NAME DEFAULT CURRENT

ENCO MinimumQ Round-Robin
The DMP statistics are now reset:
# vxdmpadm jiostat reset

With the workload still running, the effect of changing the 1/0 policy to balance the
load across the primary paths can now be seen.

# vxdmpadm iostat show dmpnodename=sdq interval=5 count=2

cpu usage = 14403us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
sdj 2041 0 1021 0 0.39 0.00
sdk 1894 0 947 0 0.39 0.00
sdl 2008 0 1004 0 0.39 0.00
sdm 2054 0 1027 0 0.40 0.00
sdn 2171 0 1086 0 0.39 0.00
sdo 2095 0 1048 0 0.39 0.00
sdp 2073 0 1036 0 0.39 0.00
sdg 2042 0 1021 0 0.39 0.00

The enclosure can be returned to the single active I/O policy by entering the following
command:

# vxdmpadm setattr enclosure ENCO iopolicy=singleactive

Disabling I/O for paths, controllers, array ports, or DMP nodes

Disabling 1/O through a path, HBA controller, array port, or Dynamic Multi-Pathing
(DMP) node prevents DMP from issuing I/O requests through the specified path,
or the paths that are connected to the specified controller, array port, or DMP node.



Administering Dynamic Multi-Pathing | 341
Administering DMP using the vxdmpadm utility

If the specified paths have pending I/Os, the vxdmpadm disable command waits
until the I/Os are completed before disabling the paths.

Note: From release 5.0 of Veritas Volume Manager (VxVM), this operation is
supported for controllers that are used to access disk arrays on which
cluster-shareable disk groups are configured.

DMP does not support the operation to disable I/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To disable I/O for one or more paths, use the following command:
# vxdmpadm [-c|-f] disable path=path namel[,path name2,path nameN]

To disable 1/O for the paths connected to one or more HBA controllers, use the
following command:

# vxdmpadm [-c|-f] disable ctlr=ctlr namel[,ctlr name2,ctlr nameN]

To disable I/O for the paths connected to an array port, use one of the following
commands:

# vxdmpadm [-c|-f] disable enclosure=enclr name portid=array port ID
# vxdmpadm [-c|-f] disable pwwn=array port WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following examples show how to disable 1/O on an array port:

# vxdmpadm disable enclosure=HDS9500V0 portid=1A
# vxdmpadm disable pwwn=20:00:00:E0:8B:06:5F:19

To disable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

# vxdmpadm [-c|-f] disable ctlr=ctlr name enclosure=enclr name \

portid=array port ID
To disable I/O for a particular DMP node, specify the DMP node name.
# vxdmpadm [-c|-f] disable dmpnodename=dmpnode

You can use the -c option to check if there is only a single active path to the disk.

Use the -f option to disable the last path, irrespective of whether the device is in
use or not.



Administering Dynamic Multi-Pathing | 342
Administering DMP using the vxdmpadm utility

The disable operation fails if it is issued to a controller that is connected to the
root disk through a single path, and there are no root disk mirrors configured on
alternate paths. If such mirrors exist, the command succeeds. The disable operation
fails if it is issued to a controller that is connected to the swap device through a
single path.

Enabling 1/O for paths, controllers, array ports, or DMP nodes

Enabling a controller allows a previously disabled path, HBA controller, array port,
or Dynamic Multi-Pathing (DMP) node to accept I/O again. This operation succeeds
only if the path, controller, array port, or DMP node is accessible to the host, and
I/O can be performed on it. When connecting Active/Passive disk arrays, the enable
operation results in failback of 1/0 to the primary path. The enable operation can
also be used to allow I/O to the controllers on a system board that was previously
detached.

Note: This operation is supported for controllers that are used to access disk arrays
on which cluster-shareable disk groups are configured.

DMP does not support the operation to enable 1/O for the controllers that use
Third-Party Drivers (TPD) for multi-pathing.

To enable I/O for one or more paths, use the following command:
# vxdmpadm enable path=path namel[,path name2,path nameN]

To enable /O for the paths connected to one or more HBA controllers, use the
following command:

# vxdmpadm enable ctlr=ctlr namel[,ctlr name2,ctlr nameN]

To enable 1/O for the paths connected to an array port, use one of the following
commands:

# vxdmpadm enable enclosure=enclr name portid=array port ID
# vxdmpadm enable pwwn=array port WWN

where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.

The following are examples of using the command to enable I/O on an array port:

# vxdmpadm enable enclosure=HDS9500V0 portid=1A
# vxdmpadm enable pwwn=20:00:00:E0:8B:06:5F:19



Administering Dynamic Multi-Pathing | 343
Administering DMP using the vxdmpadm utility

To enable I/O for a particular path, specify both the controller and the portID, which
represent the two ends of the fabric:

# vxdmpadm enable ctlr=ctlr name enclosure=enclr name \

portid=array port ID
To enable I/O for a particular DMP node, specify the DMP node name.

# vxdmpadm enable dmpnodename=dmpnode

Renaming an enclosure

The vxdmpadm setattr command can be used to assign a meaningful name to an
existing enclosure, for example:

# vxdmpadm setattr enclosure emcO name=GRP1l

This example changes the name of an enclosure from emc0 to Grp1.

Note: The maximum length of the enclosure name prefix is 23 characters.

The following command shows the changed name:

# vxdmpadm listenclosure all

ENCLR NAME ENCLR TYPE ENCLR_ SNO STATUS ARRAY TYPE LUN COUNT
Disk Disk DISKS CONNECTED Disk 6
GRP1 EMC 000292601383 CONNECTED A/A 1
hitachi usp-vm0 Hitachi USP-VM 25847 CONNECTED A/A 1
emc_clariion0 EMC CLARiiON CK20007040035 CONNECTED CLR-A/PF 2

Configuring the response to I/O failures

You can configure how Dynamic Multi-Pathing (DMP) responds to failed I/O requests
on the paths to a specified enclosure, disk array name, or type of array. By default,
DMP is configured to retry a failed I/O request up to five minutes on various active
paths.

To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name, or array type, use the vxdmpadm getattr
command.

See “Displaying recovery option values” on page 347.

O o U



Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

To set a limit for the number of times that DMP attempts to retry sending an 1/0
request on a path, use the following command:

# vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=fixedretry retrycount=n

The value of the argument to retrycount specifies the number of retries to be
attempted before DMP reschedules the 1/0 request on another available path, or
fails the request altogether.

As an alternative to specifying a fixed number of retries, you can specify the amount
of time DMP allows for handling an 1/O request. If the I/O request does not succeed
within that time, DMP fails the I/O request. To specify an iotimeout value, use the
following command:

# vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=timebound iotimeout=seconds

The default value of iotimeout is 300 seconds. For some applications such as
Oracle, it may be desirable to set i ot imeout to a larger value. The iotimeout value
for DMP should be greater than the 1/0O service time of the underlying operating
system layers.

Note: The fixedretry and timebound settings are mutually exclusive.

The following example configures time-bound recovery for the enclosure enco, and
sets the value of iotimeout to 360 seconds:

# vxdmpadm setattr enclosure enc0O recoveryoption=timebound \

iotimeout=360

The next example sets a fixed-retry limit of 10 for the paths to all Active/Active
arrays:

# vxdmpadm setattr arraytype A/A recoveryoption=fixedretry \
retrycount=10

Specifying recoveryoption=default resets DMP to the default settings for recovery.

For example, the following command sets the default settings:

# vxdmpadm setattr arraytype A/A recoveryoption=default

344



Administering Dynamic Multi-Pathing | 345
Administering DMP using the vxdmpadm utility

For PCI devices, the default settings are recoveryoption=fixedretry

retrycount=5.

For all other devices, the default settings are recoveryoption=timebound

iotimeout=300

Specifying recoveryoption=defaultalso has the effect of configuring I/O throttling
with the default settings.

See “Configuring the 1/O throttling mechanism” on page 345.

Note: The response to I/O failure settings is persistent across reboots of the system.

Configuring the 1/O throttling mechanism

By default, Dynamic Multi-Pathing (DMP) is configured with 1/O throttling turned off
for all paths. To display the current settings for I/O throttling that are applied to the
paths to an enclosure, array name, or array type, use the vxdmpadm getattr
command.

See “Displaying recovery option values” on page 347.

If enabled, 1/O throttling imposes a small overhead on CPU and memory usage
because of the activity of the statistics-gathering daemon. If I/O throttling is disabled,
the daemon no longer collects statistics, and remains inactive until I/O throttling is
re-enabled.

To turn off I/O throttling, use the following form of the vxdmpadm setattr command:
# vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption=nothrottle

The following example shows how to disable 1/O throttling for the paths to the
enclosure enco:

# vxdmpadm setattr enclosure encO recoveryoption=nothrottle

The vxdmpadm setattr command can be used to enable I/O throttling on the paths
to a specified enclosure, disk array name, or type of array:

# vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type}\

recoveryoption=throttle [iotimeout=seconds]

If the iotimeout attribute is specified, its argument specifies the time in seconds
that DMP waits for an outstanding I/O request to succeed before invoking I/O



Administering Dynamic Multi-Pathing | 346
Administering DMP using the vxdmpadm utility

throttling on the path. The default value of iotimeout is 10 seconds. Setting
iotimeout to alarger value potentially causes more I/O requests to become queued
up in the SCSI driver before 1/O throttling is invoked.

The following example sets the value of iotimeout to 60 seconds for the enclosure

encO:

# vxdmpadm setattr enclosure enc0O recoveryoption=throttle \
jotimeout=60

Specify recoveryoption=default to reset I/O throttling to the default settings, as
follows:

# vxdmpadm setattr arraytype A/A recoveryoption=default

The above command configures the default behavior, corresponding to
recoveryoption=nothrottle. The above command also configures the default
behavior for the response to 1/O failures.

See “Configuring the response to I/O failures” on page 343.

Note: The I/O throttling settings are persistent across reboots of the system.

Configuring Low Impact Path Probing (LIPP)

The Low Impact Path Probing (LIPP) feature can be turned on or off using the
vxdmpadm settune command:

# vxdmpadm settune dmp_low_impact_ probe=[on|off]

Path probing will be optimized by probing a subset of paths connected to the same
HBA and array port. The size of the subset of paths can be controlled by the
dmp_probe threshold tunable. The default value is set to 5.

# vxdmpadm settune dmp_ probe_ threshold=N

Configuring Subpaths Failover Groups (SFG)

The Subpaths Failover Groups (SFG) feature can be turned on or off using the
tunable dmp_sfg threshold. The default value of the tunable is 1, which represents
that the feature is on.

To turn off the feature, set the tunable dmp sfg threshold value to 0:

# vxdmpadm settune dmp sfg threshold=0



Administering Dynamic Multi-Pathing | 347
Administering DMP using the vxdmpadm utility

To turn on the feature, set the dmp sfg threshold value to the required number
of path failures that triggers SFG.

# vxdmpadm settune dmp_ sfg threshold=N
To see the Subpaths Failover Groups ID, use the following command:

# vxdmpadm getportids {ctlr=ctlr name | dmpnodename=dmp device name \

| enclosure=enclr name | path=path name}

Displaying recovery option values

To display the current settings for handling I/O request failures that are applied to
the paths to an enclosure, array name, or array type, use the following Dynamic
Multi-Pathing (DMP) command:

# vxdmpadm getattr \
{enclosure enc-name|arrayname name|arraytype type} \

recoveryoption

The following example shows the vxdmpadm getattr command being used to
display the recoveryoption option values that are set on an enclosure.

# vxdmpadm getattr enclosure HDS9500-ALUAO recoveryoption

ENCLR-NAME RECOVERY-OPTION DEFAULT[VAL] CURRENT [VAL]
HDS9500-ALUAO Throttle Nothrottle[0] Nothrottle[0]
HDS9500-ALUAO Error-Retry Timebound[300] Timebound[300]

The command output shows the default and current policy options and their values.

Table 11-7 summarizes the possible recovery option settings for retrying 1/0 after

an error.
Table 11-7 Recovery options for retrying I/O after an error
Recovery option Possible settings Description
recoveryoption=fixedretry Fixed-Retry (retrycount) DMP retries a failed I/O
request for the specified
number of times if I/O fails.
recoveryoption=timebound | Timebound (iotimeout) DMP retries a failed /0
request for the specified time
in seconds if I/O fails.

Table 11-8 summarizes the possible recovery option settings for throttling 1/0.



Administering Dynamic Multi-Pathing | 348
Administering DMP using the vxdmpadm utility

Table 11-8 Recovery options for 1/O throttling
Recovery option Possible settings Description
recoveryoption=nothrottle None 1/0 throttling is not used.
recoveryoption=throttle Timebound (iotimeout) DMP throttles the path if an

1/0 request does not return
within the specified time in
seconds.

Configuring DMP path restoration policies

Dynamic Multi-Pathing (DMP) maintains a kernel task that re-examines the condition
of paths at a specified interval. The type of analysis that is performed on the paths
depends on the checking policy that is configured.

Note: The DMP path restoration task does not change the disabled state of the
path through a controller that you have disabled using vxdmpadm disable.

When configuring DMP path restoration policies, you must stop the path restoration
thread, and then restart it with new attributes.

See “Stopping the DMP path restoration thread” on page 349.

Use the vxdmpadm settune dmp restore policy command to configure one of
the following restore policies. The policy remains in effect until the restore thread
is stopped or the values are changed using the vxdmpadm settune command.

m  check all
The path restoration thread analyzes all paths in the system and revives the
paths that are back online, as well as disabling the paths that are inaccessible.
The command to configure this policy is:

# vxdmpadm settune dmp restore_policy=check_all

m check alternate
The path restoration thread checks that at least one alternate path is healthy.
It generates a notification if this condition is not met. This policy avoids inquiry
commands on all healthy paths, and is less costly than check all in cases
where a large number of paths are available. This policy is the same as
check_all if there are only two paths per DMP node. The command to configure
this policy is:

# vxdmpadm settune dmp_ restore_policy=check_alternate



Administering Dynamic Multi-Pathing | 349
Administering DMP using the vxdmpadm utility

m check disabled
This is the default path restoration policy. The path restoration thread checks
the condition of paths that were previously disabled due to hardware failures,
and revives them if they are back online. The command to configure this policy
is:

# vxdmpadm settune dmp_ restore policy=check disabled

m check periodic
The path restoration thread performs check_all once in a given number of
cycles, and check_disabled in the remainder of the cycles. This policy may
lead to periodic slowing down (due to check_al1)if a large number of paths are
available. The command to configure this policy is:

# vxdmpadm settune dmp_restore_policy=check_periodic

The default number of cycles between running the check_al1 policy is 10.

The dmp restore interval tunable parameter specifies how often the path
restoration thread examines the paths. For example, the following command sets
the polling interval to 400 seconds:

# vxdmpadm settune dmp_ restore_interval=400

The settings are immediately applied and are persistent across reboots. Use the
vxdmpadm gettune command to view the current settings.

See “DMP tunable parameters” on page 1121.

If the vxdmpadm start restore command is given without specifying a policy or
interval, the path restoration thread is started with the persistent policy and interval
settings previously set by the administrator with the vxdmpadm settune command.
If the administrator has not set a policy or interval, the system defaults are used.
The system default restore policy is check disabled. The system default interval
is 300 seconds.

Warning: Decreasing the interval below the system default can adversely affect
system performance.

Stopping the DMP path restoration thread

Use the following command to stop the Dynamic Multi-Pathing (DMP) path
restoration thread:

# vxdmpadm stop restore



Administering Dynamic Multi-Pathing | 350
Administering DMP using the vxdmpadm utility

Warning: Automatic path failback stops if the path restoration thread is stopped.

Displaying the status of the DMP path restoration thread
Use the vxdmpadm gettune command to display the tunable parameter values that
show the status of the Dynamic Multi-Pathing (DMP) path restoration thread. These
tunables include:
dmp_restore_state the status of the automatic path restoration kernel thread.

dmp_restore_interval the polling interval for the DMP path restoration thread.

dmp_restore_policy the policy that DMP uses to check the condition of paths.

To display the status of the DMP path restoration thread

¢ Use the following commands:
# vxdmpadm gettune dmp_restore_state
# vxdmpadm gettune dmp_restore_interval

# vxdmpadm gettune dmp_ restore_policy

Configuring Array Policy Modules

Dynamic Multi-Pathing (DMP) provides Array Policy Modules (APMs) for use with
an array. An APM is a dynamically loadable kernel module (or plug-in) that defines
array-specific procedures and commands to:

= Select an I/0 path when multiple paths to a disk within the array are available.
» Select the path failover mechanism.

» Select the alternate path in the case of a path failure.

= Put a path change into effect.

= Respond to SCSI reservation or release requests.

DMP supplies default procedures for these functions when an array is registered.
An APM may modify some or all of the existing procedures that DMP provides, or
that another version of the APM provides.

You can use the following command to display all the APMs that are configured for
a system:

# vxdmpadm listapm all



Administering Dynamic Multi-Pathing
Administering DMP using the vxdmpadm utility

The output from this command includes the file name of each module, the supported
array type, the APM name, the APM version, and whether the module is currently
loaded and in use.

To see detailed information for an individual module, specify the module name as
the argument to the command:

# vxdmpadm listapm module name
To add and configure an APM, use the following command:

# vxdmpadm -a cfgapm module name [attrl=valuel \
[attr2=value2 ...]]

The optional configuration attributes and their values are specific to the APM for
an array. Consult the documentation from the array vendor for details.

Note: By default, DMP uses the most recent APM that is available. Specify the -u
option instead of the -a option if you want to force DMP to use an earlier version
of the APM. The current version of an APM is replaced only if it is not in use.

Specify the -r option to remove an APM that is not currently loaded:
# vxdmpadm -r cfgapm module name

See the vxdmpadm(1M) manual page.

351



Dynamic Reconfiguration
of devices

This chapter includes the following topics:

About online dynamic reconfiguration

Reconfiguring a LUN online that is under DMP control using the Dynamic
Reconfiguration tool

Manually reconfiguring a LUN online that is under DMP control
Changing the characteristics of a LUN from the array side
Upgrading the array controller firmware online

Reformatting NVMe devices manually

About online dynamic reconfiguration

You can perform the following kinds of online dynamic reconfigurations:

Reconfiguring a LUN online that is under DMP control
See “Manually reconfiguring a LUN online that is under DMP control” on page 361.

Updating the array controller firmware, also known as a nondisruptive upgrade
See “Upgrading the array controller firmware online” on page 372.

Reconfiguring a LUN online that is under DMP
control using the Dynamic Reconfiguration tool

Perform the following tasks to reconfigure a LUN online that is under DMP control
using the Dynamic Reconfiguration tool:



Dynamic Reconfiguration of devices

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Table 12-1

Task

Topic

Removing LUNs dynamically
from an existing target ID

See “Removing LUNs dynamically from an existing target
ID” on page 353.

Adding LUNs dynamically to a
new target ID

See “Adding new LUNs dynamically to a target ID”
on page 356.

Replacing a LUN on an existing
target ID

See “Replacing LUNs dynamically from an existing target
ID” on page 359.

Dynamic LUN expansion

See Dynamic LUN expansion

Changing the LUN
characteristics

See “Changing the characteristics of a LUN from the array
side” on page 370.

Removing LUNs dynamically from an existing target ID

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify

the removal of LUNs from an existing target ID. Each LUN is unmapped from the
host. DMP issues an operating system device scan and cleans up the operating

system device tree.

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all nodes in the cluster.

To remove LUNs dynamically from an existing target ID

1 Stop all applications and volumes that are hosted on the LUNSs that are to be

removed.

If the device is in use by Veritas Volume Manager (VxVM), perform the following

steps:

= If the device is part of a disk group, move the disk out of the disk group.

# vxdg -g dgname rmdisk daname

= Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.

# vxdisk rm da-name

For example:

353



Dynamic Reconfiguration of devices | 354
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

# vxdisk rm eva4k6k0_0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group.

# vgreduce vgname

devicepath

2 Start the vxdiskadm utility:

# vxdiskadm

3 Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Remove LUNs option.

5 Type list or press Return to display a list of LUNs that are available for removal.
A LUN is available for removal if it is not in use.

The following shows an example output:

Select disk devices to remove: [<pattern-list>,all,list]: 1list
LUN (s) available for removal:

evadk6k0 0

evadk6k0 1

evadk6k0 2

evadk6k0 3

evadk6k0 4

emcO_0119

6 Enter the name of a LUN, a comma-separated list of LUNs, or a regular
expression to specify the LUNs to remove.

For example, enter emco 0119.

Select disk devices to Remove: [<pattern-list>,all,list,

file=<filename>,q] (default:list): emcO 0119

7 Atthe prompt, confirm the LUN selection.
DMP removes the LUN from VxVM usage.



Dynamic Reconfiguration of devices | 355
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

8 At the following prompt, remove the LUN from the array/target.

Remove Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/RemovelLuns

INFO: Removing Lun [emcO 0119] from VxVM

INFO: LUN [emcO 0119] removed successfully from VxVM.
Enclosure=emcO AVID=0119

Device=emcO 0119 Serial=2200119000

PATH=sdad ctlr=cll port=1l6c-0 [-]
PATH=sdah ctlr=cl2 port=1l6c-0 [-]
PATH=sdaj ctlr=cl2 port=le6c-1 [-]
PATH=sdaf ctlr=cll port=le6c-1 [-]

Please remove LUNs with Above details from array and press 'y' to

continue removal or 'g' to quit

9 The following are sample EMC Symmetrix commands:

# symmask -sid 822 -wwn 2001000elec307de -dir 16c -p 0 remove devs 0119
# symmask -sid 822 -wwn 2001000elec307de -dir 16c -p 1 remove devs 0119
# symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 0 remove devs 0119
# symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 1 remove dev 0119

# symmask -sid 822 refresh -nopr

Symmetrix FA/SE directors updated with contents of SymMask
Database 000290300822

When complete, respond to previous array prompt.

Please remove LUNs with Above details from array and

press 'y' to continue removal or 'gq' to quit : vy



Dynamic Reconfiguration of devices | 356
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

10 DMP completes the removal of the device from VxVM usage. Output similar
to the following is displayed:

Remove Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/RemovelLuns

INFO: Checking/Removing stale device entries (if any).
INFO: Refreshing OS device Tree
INFO: Updating VxVM device tree

Press <Enter> or <Return> to continue:

11 Specify the dynamic reconfiguration operation to be done:

Specify Dynamic Reconfiguration Operation to be done:

Menu: VolumeManager/Disk/DynamicReconfigurationOperations

Add Luns

Remove Luns
Replace Luns
Replace HBA

Sw N

? Display help about menu
?? Display help about the menuing system
q Exit

To exit the Dynamic Reconfiguration tool, enter: g

Adding new LUNs dynamically to a target ID

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the addition of new LUNSs to a new or existing target ID. One or more new LUNs
are mapped to the host by way of multiple HBA ports. An operating system device
scan is issued for the LUNs to be recognized and added to DMP control.



Dynamic Reconfiguration of devices

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all the nodes in the cluster.

To add new LUNs dynamically to a target ID

1

Start the vxdiskadm utility:

# vxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Add LUNs option.

Output similar to the following is displayed:

Add Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/AddLuns

INFO: Refreshing OS device Tree
INFO: Updating VxVM device tree
Add LUNs from array, once done then press 'y' to continue

or 'g' to quit.

The following are sample EMC Symmetrix commands:

# symmask -sid 822 -wwn 2001000elec307de -dir 1l6c -p 0 add devs
0119 -nopr
# symmask -sid 822 -wwn 2001000elec307de -dir 1l6c -p 1 add devs
0119 -nopr
# symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 0 add devs
0119 -nopr
# symmask -sid 822 -wwn 2001000elec307df -dir 16c -p 1 add devs
0119 -nopr

# symmask -sid 822 refresh -nopr

Symmetrix FA/SE directors updated with contents of SymMask
Database 000290300822

357



Dynamic Reconfiguration of devices | 358
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

5 When the prompt displays, add the LUNs from the array.

Output similar to the following is displayed:

Add LUNs from array, once done then press 'y' to continue

or 'gq' to quit. : vy

Add Luns

Menu: VolumeManager/Disk/DynamicReconfigurationOperations/AddLuns

INFO: Refreshing OS device Tree

INFO: Updating VxVM device tree

INFO: Updating partition table information and disk size
INFO: Number of Paths for Lun [emcO_0119] presented=4
INFO: Updating VxVM device tree



Dynamic Reconfiguration of devices
Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

6 Selecty to continue to add the LUNs to DMP.

DMP updates the operating system device tree and the VxVM device tree. The
newly-discovered devices are now visible.

Enclosure=emcO AVID=0119
Device=emcO 0119 Serial=2200119000
PATH=sdaf ctlr=cll port=l6c-1 [-]

PATH=sdah ctlr=cl2 port=1l6c-0 [-]

PATH=sdaj ctlr=cl2 port=l6c-1 [-]

PATH=sdad ctlr=cll port=1l6c-0 [-]

Press <Enter> or <Return> to continue:

7 Specify the dynamic reconfiguration operation to be done:

Specify Dynamic Reconfiguration Operation to be done:

Menu: VolumeManager/Disk/DynamicReconfigurationOperations

Add Luns

Remove Luns
Replace Luns
Replace HBA

Sw N

? Display help about menu
?? Display help about the menuing system
q Exit

Select an operation to perform : g

To exit the Dynamic Reconfiguration tool, enter: g

Replacing LUNs dynamically from an existing target 1D

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the replacement of new LUNs from an existing target ID. Each LUN is unmapped
from the host. DMP issues an operating system device scan and cleans up the
operating system device tree.

359



Dynamic Reconfiguration of devices | 360

Reconfiguring a LUN online that is under DMP control using the Dynamic Reconfiguration tool

Warning: Do not run any device discovery operations outside of the Dynamic
Reconfiguration tool until the device operation is completed.

In a cluster, perform the steps on all the nodes in the cluster.

To replace LUNs dynamically from an existing target ID

1

Stop all applications and volumes that are hosted on the LUNSs that are to be
removed.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

» If the device is part of a disk group, move the disk out of the disk group.
# vxdg -g dgname rmdisk daname
= Remove the disk from the vxdisk list.
In a cluster, perform this step from all of the nodes.
# vxdisk rm da-name
For example:
# vxdisk rm evadkék0_0
For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group
# vgreduce vgname
devicepath
Start the vxdiskadm utility:
# vxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Replace LUNs option.

The output displays a list of LUNs that are available for replacement. A LUN
is available for replacement if there is no open on the LUN, and the state is
online or nolabel.

Select one or more LUNSs to replace.

At the prompt, confirm the LUN selection.



Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Remove the LUN from the array/target.
Return to the Dynamic Reconfiguration tool and select y to continue the removal.

After the removal completes successfully, the Dynamic Reconfiguration tool
prompts you to add a LUN.

When the prompt displays, add the LUNs from the array/target.
Select y to continue to add the LUNSs.

DMP updates the operating system device tree and the VxVM device tree. The
newly-discovered devices are now visible.

Replacing a host bus adapter online

Dynamic Multi-Pathing (DMP) provides a Dynamic Reconfiguration tool to simplify
the removal of host bus adapters from an existing system.

To replace a host bus adapter online

1

N o o A~

Start the vxdiskadm utility:

# wvxdiskadm

Select the Dynamic Reconfiguration operations option from the vxdiskadm
menu.

Select the Replace HBAs option.

The output displays a list of HBAs that are available to DMP.
Select one or more HBAs to replace.

At the prompt, confirm the HBA selection.

Replace the host bus adapter.

Return to the Dynamic Reconfiguration tool and select y to continue the
replacement process.

DMP updates the operating system device tree.

Manually reconfiguring a LUN online that is under

DMP control

Dynamic LUN reconfigurations require array configuration commands, operating
system commands, and Veritas Volume manager commands. To complete the
operations correctly, you must issue the commands in the proper sequence on the
host.

361



Dynamic Reconfiguration of devices

Manually reconfiguring a LUN online that is under DMP control

Overview of manually reconfiguring a LUN

This section only provides an overview of the prechecks and the procedure to
manually add or remove a LUN. The procedures have been elaborately documented
in the topics listed in the following table:

Table 12-2

Task

Topic

Removing LUN dynamically
from an existing target ID

See “Manually removing LUNs dynamically from an
existing target ID” on page 365.

Cleaning up the operating
system device tree after
removing LUNs

See “Manually cleaning up the operating system device
tree after removing LUNs” on page 370.

Scanning an operating system
device tree after adding or
removing LUNs

See “Scanning an operating system device tree after
adding or removing LUNs” on page 369.

Adding LUN dynamically to a
new target ID

See “Manually adding new LUNs dynamically to a new
target ID” on page 367.

Dynamic LUN expansion

Changing the LUN
characteristics

See “Changing the characteristics of a LUN from the array
side” on page 370.

362



Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Figure 12-1 LUN reconfiguration overview

*

[ vxdisk rm da-name |

*

Refresh fetc/vx/disk.info

Procedure
to add a
vxdmpadm —f disable
Félampnnds Refresh VxVM and LUN to the
l DMP server
Remove LUN Soar G5 o ttecinew
LUN
Clean-up stale OS5 T
device handles
l Refresh array database
Refresh VxVM and T
DMP
‘L Add LUN
Refrash /etc/iv/disk.info |
Prechecks

Perform the following prechecks before manually reconfiguring a LUN:

Table 12-3 Prechecks

Task

Command

Check the /etc/vx/disk.info file

# grep “Oxffff” /etc/vx/disk.info

Refresh the OS layer

# echo '- - -' >

/sys/class/scsi_host/host$i/scan

List OS device handles

# lsscsi

Refresh VxVM and DMP

# vxdisk scandisks

363



Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

Table 12-3 Prechecks (continued)
Task Command
Refresh DDL layer/dev_t (device # vxddladm assign names
number) list

Note: Ensure that the OS and VxVM are both clean prior to provisioning any new
LUNSs.

Manually removing a LUN

Perform the following steps to manually remove a LUN:

Table 12-4 LUN removal steps
Task Validation
Unmount file system (s) Confirm whether the disk has been removed from

the disk group.

Close the VxVM device: Confirm whether the VxVM device has been

. closed:
# vxdisk rm da-name

# vxdisk list

Disable DMP paths: Confirm whether the DMP paths have been

disabled:
# vxdmpadm —-f disable

dmpnodename=da-name # vxdmpadm getsubpaths
dmpnodename=da-name

Mask LUN from the server Confirm whether the LUN has been removed at
the array level.

Clean-up OS device handles: Confirm whether OS device handles are clean:

# echo 1 > # lsscsi

/sys/block/device name/device/delete

Refresh VxVM and DMP:

# vxdisk scandisks

Refresh DDL layer/dev_t (device number) list:

# vxddladm assign names

364



Dynamic Reconfiguration of devices | 365
Manually reconfiguring a LUN online that is under DMP control

Manually adding a LUN
To manually add a LUN

1

a h~h WODN

Mask LUN to HBA worldwide name (WWN) in the server.
Refresh the array database.

Refresh OS device handles.

Refresh VxVM and DMP.

Refresh the /etc/vx/disk.info file.

Manually removing LUNs dynamically from an existing target ID

In this case, a group of LUNs is unmapped from the host HBA ports and an operating
system device scan is issued. To add subsequent LUNs seamlessly, perform
additional steps to clean up the operating system device tree.

The high-level procedure and the SFCFSHA commands are generic. However, the
operating system commands may vary depending on the Linux version. For example,
the following procedure uses Linux Suse0.

To remove LUNs dynamically from an existing target ID

1

Prior to any dynamic reconfiguration, ensure that the dmp cache open tunable
is set to on. This setting is the default.

# vxdmpadm gettune dmp_cache_open
If the tunable is set to ot £, set the dmp_cache open tunable to on.

# vxdmpadm settune dmp_cache_open=on

Identify which LUNs to remove from the host. Do one of the following:

= Use Storage Array Management to identify the Array Volume ID (AVID) for
the LUNSs.

= If the array does not report the AVID, use the LUN index.
For LUNs under VxVM, perform the following steps:

» Evacuate the data from the LUNs using the vxevac command.
See the vxevac(1M) online manual page.

After the data has been evacuated, enter the following command to remove
the LUNs from the disk group:

# vxdg -g diskgroup rmdisk da-name



Dynamic Reconfiguration of devices | 366
Manually reconfiguring a LUN online that is under DMP control

= If the data has not been evacuated and the LUN is part of a subdisk or disk
group, enter the following command to remove the LUNs from the disk
group. If the disk is part of a shared disk group, you must use the -x option
to force the removal.

# vxdg -g diskgroup -k rmdisk da-name

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

# vgreduce vgname

devicepath

Using the AVID or LUN index, use Storage Array Management to unmap or
unmask the LUNs you identified in step 2.

Remove the LUNs from the vxdisk list. Enter the following command on all
nodes in a cluster:

# vxdisk rm da-name

This is a required step. If you do not perform this step, the DMP device tree
shows ghost paths.

Clean up the Linux SCSI device tree for the devices that you removed in step
6.

See “Manually cleaning up the operating system device tree after removing
LUNs” on page 370.

This step is required. You must clean up the operating system SCSI device
tree to release the SCSI target ID for reuse if a new LUN is added to the host
later.

Scan the operating system device tree.

See “Scanning an operating system device tree after adding or removing LUNs”
on page 369.

Use SFCFSHA to perform a device scan. You must perform this operation on
all nodes in a cluster. Enter one of the following commands:

m # vxdctl enable

m # vxdisk scandisks



Dynamic Reconfiguration of devices | 367
Manually reconfiguring a LUN online that is under DMP control

10 Refresh the DMP device name database using the following command:

# vxddladm assign names

11 Verify that the LUNs were removed cleanly by answering the following
questions:

= Is the device tree clean?
Verify that the operating system metanodes are removed from the
/sys/block directory.

= Were all the appropriate LUNs removed?
Use the DMP disk reporting tools such as the vxdisk 1ist command output
to determine if the LUNs have been cleaned up successfully.

» Isthe vxdisk 1ist output correct?
Verify that the vxdisk 1ist output shows the correct number of paths and
does not include any ghost disks.

If the answer to any of these questions is "No," return to step 5 and perform
the required steps.

If the answer to all of the questions is "Yes," the LUN remove operation is
successful.

Manually adding new LUNs dynamically to a new target ID

In this case, a new group of LUNs is mapped to the host via multiple HBA ports.
An operating system device scan is issued for the LUNs to be recognized and added
to DMP control.

The high-level procedure and the SFCFSHA commands are generic. However, the
operating system commands may vary depending on the Linux version. For example,
the following procedure uses Linux Suse10.

To add new LUNs dynamically to a new target ID

1  Prior to any dynamic reconfiguration, ensure that the dmp_cache open tunable
is set to on. This setting is the default.

# vxdmpadm gettune dmp_cache_open
If the tunable is set to of £, set the dmp _cache open tunable to on.

# vxdmpadm settune dmp_cache_open=on

2 Identify which LUNs to add to the host. Do one of the following:



Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

» Use Storage Array Management to identify the Array Volume ID (AVID) for
the LUNSs.

= If the array does not report the AVID, use the LUN index.
3 Map/mask the LUNSs to the new target IDs on multiple hosts.
Scan the operating system device.

See “Scanning an operating system device tree after adding or removing LUNs”
on page 369.

Repeat step 2 and step 3 until you see that all the LUNs have been added.

5 Use SFCFSHA to perform a device scan. You must perform this operation on
all nodes in a cluster. Enter one of the following commands:

m # vxdctl enable
m # vxdisk scandisks

6 Refresh the DMP device name database using the following command:

# vxddladm assign names

7 Verify that the LUNs were added correctly by answering the following questions:
= Do the newly provisioned LUNs appear in the vxdisk 1ist output?
= Are the configured paths present for each LUN?

If the answer to any of these questions is "No," return to step 2 and begin the
procedure again.

If the answer to all of the questions is "Yes," the LUNs have been successfully
added. You can now add the LUNs to a disk group, create new volumes, or
grow existing volumes.

If the dmp_native_support tunable is set to ON and the new LUN does not
have a VxVM label or is not claimed by a TPD driver then the LUN is available
for use by LVM.

About detecting target ID reuse if the operating system device tree
is not cleaned up

If you try to reprovision a LUN or set of LUNs whose previously-valid operating
system device entries are not cleaned up, the following messages are displayed.
Also, DMP reconfiguration during the DMP device scan and DMP reconfiguration
are temporarily inhibited.

368



Dynamic Reconfiguration of devices
Manually reconfiguring a LUN online that is under DMP control

See “Manually cleaning up the operating system device tree after removing LUNs”
on page 370.

VxVM vxdisk ERROR V-5-1-14519 Data Corruption Protection Activated

- User Corrective Action Needed

VxVM vxdisk INFO V-5-1-14521 To recover, first ensure that the 0S

device tree is up to date (requires OS specific commands) .

VxVM vxdisk INFO V-5-1-14520 Then, execute 'vxdisk rm' on the

following devices before reinitiating device discovery. <DA names>

The message above indicates that a new LUN is trying to reuse the target ID of an
older LUN. The device entries have not been cleaned, so the new LUN cannot use
the target ID. Until the operating system device tree is cleaned up, DMP prevents
this operation.

Scanning an operating system device tree after adding or removing

LUNs

After you add or remove LUNs, scan the operating system device tree to verify that
the operation completed successfully.

Linux provides several methods for rescanning the SCSI bus and identifying the
devices mapped to it. These methods include the following:

m The SCSI scan function in the /sys directory
= HBA vendor utilities
To scan using the SCSI scan function

¢ Enter the following command:
# echo '- - -' > /sys/class/scsi_host/host$i/scan

where the three dashes refer to the channel, target, and LUN numbers, and
host$i is the host bus adapter instance. This example scans every channel,
target, and LUN visible via this host bus adapter instance.

To scan using HBA vendor utilities

¢ Follow the vendor's instructions for the HBA utility. Examples include the
following:

= QLogic provides a script that dynamically scans for newly-added LUNs.
You can download it from the QLogic Web site. To run the script, enter the
following command:

# ./ql-dynamic-tgt-lun-disc.sh

369



Dynamic Reconfiguration of devices
Changing the characteristics of a LUN from the array side

= Emulex provides an HBAnywhere script. You can download it from the
Emulex web site. The script has a LUN Scan Utility that dynamically scans
for newly-added LUNs. To run the utility, enter the following command:

# lun_scan all

Manually cleaning up the operating system device tree after removing
LUNSs

After you remove LUNSs, you must clean up the operating system device tree.

The operating system commands may vary, depending on the Linux version. The
following procedure uses SUSE 10. If any of these steps do not produce the desired
result, contact Novell support.

To clean up the operating system device tree after removing LUNs

1 Remove the device from the operating system database. Enter the following
command:

# echo 1 > /sys/block/$PATH _SYS/device/delete

where PATH_SYS is the name of the device you want to remove.

2 When you enter the following command, no devices should be displayed. This
step verifies that the LUNs have been removed.

# lsscsi | grep PATH SYS

3  After you remove the LUNS, clean up the device. Enter the following command:
# echo "- - -" > /sys/class/scsi_host/host$I/scan

where the three dashes refer to the channel, target, and LUN numbers, and
host$iis the host bus adapter instance. This example cleans up every channel,
target, and LUN visible via this host bus adapter instance.

Changing the characteristics of a LUN from the
array side

Some arrays provide a way to change the properties of LUNs. In most cases, you
must completely stop usage of the device before the device shows the changed
characteristics. We recommend taking the device offline before changing the LUN
properties, and bringing the device back online again afterwards.

370



Dynamic Reconfiguration of devices
Changing the characteristics of a LUN from the array side

In certain cases, such as EMC BCV and SRDF operations, the device can remain
online during this procedure.

In a cluster, perform the steps on all the nodes in the cluster.

To change the properties of a LUN

1

Stop all applications and volumes that are hosted on the device.

If the device is in use by Veritas Volume Manager (VxVM), perform the following
steps:

= If the device is part of a disk group, move the disk out of the disk group.
# vxdg -g dgname rmdisk da_name
= Bring the disk offline.
In a cluster, perform this step from all of the nodes.
# vxdisk offline da_name
For example:

# vxdisk offline eva4ké6k0_ 0

For LUNs using Linux LVM over DMP devices, remove the device from the
LVM volume group

# vgreduce vgname

devicepath

Change the LUN characteristics.
Bring the device online.
For a Veritas Volume Manager disk:

= Bring the device online.

# vxdisk online da_ name

= Add the disk back into the disk group.

# vxdg -g dgname adddisk da name

For LUNs using Linux LVM over DMP devices, add the device back into the
LVM volume group

371



Dynamic Reconfiguration of devices | 372
Upgrading the array controller firmware online

# vgreduce vgname

devicepath

4 Use DMP to perform a device scan.

In a cluster, perform this command on all the nodes.

# vxdisk scandisks

Upgrading the array controller firmware online

Storage array subsystems need code upgrades as fixes, patches, or feature
upgrades. You can perform these upgrades online when the file system is mounted
and I/Os are being served to the storage.

Storage subsystems contain multiple controllers for redundancy. An online upgrade
is done one controller at a time. Dynamic Multi-Pathing (DMP) fails over all I/O to
an alternate controller while one of the controllers is undergoing an Online Controller
Upgrade. After the controller has completely staged the code, it reboots, resets,
and comes online with the new version of the code. The other controller goes
through the same process, and I/O fails over to the alternate controller.

Note: Throughout this process, application I/O is not affected.

Array vendors have different names for this process. For example, EMC calls it a
nondisruptive upgrade (NDU) for CLARIiON arrays.

A/A type arrays require no special handling during this online upgrade process. For
A/P, A/IPF, and ALUA type arrays, DMP performs array-specific handling through
vendor-specific array policy modules (APMs) during an online controller code
upgrade.

When a controller resets and reboots during a code upgrade, DMP detects this
state through the SCSI status. DMP immediately fails over all I/O to the next
controller.

If the array does not fully support NDU, all paths to the controllers may be
unavailable for I/O for a short period of time. Before beginning the upgrade, set the
dmp_lun_retry timeout tunable to a period greater than the time that you expect
the controllers to be unavailable for /0. DMP does not fail the 1/0Os until the end of
the dmp_lun retry timeout period, or until the I/O succeeds, whichever happens
first. Therefore, you can perform the firmware upgrade without interrupting the
application 1/Os.



Dynamic Reconfiguration of devices | 373
Reformatting NVMe devices manually

For example, if you expect the paths to be unavailable for 1/0 for 300 seconds, use
the following command:

# vxdmpadm settune dmp_lun_retry timeout=300

DMP does not fail the 1/Os for 300 seconds, or until the 1/0 succeeds.

To verify which arrays support Online Controller Upgrade or NDU, see the hardware
compatibility list (HCL) at the following URL:

https://www.veritas.com/support/en_US/article.000126344

Reformatting NVMe devices manually

You can modify the sector size of NVMe devices by removing the device from VxVM
and reformatting it.

To reformat NVMe devices manually

1 Take the disk offline.

# vxdisk offline r720xd-114217_ intel nvmeO_0

2 Remove the device from VxVM.

# vxdisk rm r720xd-114217_intel nvmeO_0

3 Removing the NVMe device from the operating system.

# echo 1 > /sys/block/nvmeOnl/device/device/remove

4 Refresh the VxVM device tree.

# vxdisk scandisks

5 \Verify that device is not present.

# vxdisk list | grep nvme

6 Rescan the NVMe PCI device to add it to the operating system device tree.

# echo 1 > /sys/bus/pci/rescan
# echo 1 > /sys/bus/pci/drivers/nvme/0000\:05\:00.0/rescan


https://www.veritas.com/support/en_US/article.000126344

Dynamic Reconfiguration of devices | 374
Reformatting NVMe devices manually

Format the NVMe device to the required sector size using the Intel® SSD Data
Center Tool (ISDCT).

# isdct start -intelssd 0 -nvmeformat LBAFormat=3 SecureEraseSetting=0 \
ProtectionInformation=0 MetadataSettings=0

WARNING! You have selected to format the drive!

Proceed with the format? (YIN): y

Formatting...
- Intel SSD DC P3700 Series CVFT5456000V2POEGN -

Status : NVMeFormat successful.

Refresh the VxVM device tree.

# vxdisk scandisks

Verify the device.

# vxdisk list | grep nvme

r720xd-114217 intel nvmeO 0 auto:none - - online invalid



Managing devices

This chapter includes the following topics:

= Displaying disk information

= Changing the disk device naming scheme
= About disk installation and formatting

= Adding and removing disks

= Renaming a disk

Displaying disk information

Before you use a disk, you need to know if it has been initialized and placed under
Veritas Volume Manager (VxVM) control. You also need to know if the disk is part
of a disk group, because you cannot create volumes on a disk that is not part of a
disk group. The vxdisk 1ist command displays device names for all recognized
disks, the disk names, the disk group names associated with each disk, and the
status of each disk.



To display information on all disks that are known to VxVM

¢ Use the following command:

# vxdisk list

VxVM displays output similar to the following:

DEVICE TYPE

emc_clariion0_ 26
emc_clariion0_ 27
emc_clariion0_107
emc_clariion0O_108
emc_clariion0O_110
emc_clariion0O_ 111

emc_clariion0_ 144

auto

auto:
auto:
auto:
auto:
auto:

auto:

DISK
:cdsdisk

cdsdisk
cdsdisk
cdsdisk
cdsdisk
cdsdisk

none

Managing devices | 376

Displaying disk information

GROUP STATUS

- - online

- - online
dskO tcdg online
dskl tcdg online
dsk2 tcdg online
dsk3 tcdg online

online invalid

The phrase online invalid in the sTaTus line indicates that a disk has not
yet been added to VxVM control. These disks may or may not have been
initialized by VxVM previously. Disks that are listed as online are already

under VxVM control.

To display information about an individual disk

¢ Use the following command:

# vxdisk [-v] list diskname

The -v option causes the command to additionally list all tags and tag values
that are defined for the disk. By default, tags are not displayed.

VxVM leverages 4K sector device support by using Media Format Discovery, -o
mfd option along with the existing vxdisk 1ist command.

About Media Format Discovery

The media format discovery or the -o mfd option helps to identify the correct format
of disk and also prevents an accidental erasure of disk when the disk is moved

within different operating system environments.

Viewing information about the native layouts of operating system

To view information about the native layouts across operating systems, use the

following command:

# vxdisk -o mfd list



Managing devices | 377
Displaying disk information

Following examples illustrates the importance of -o mfd option with vxdisk list
for different operating system environments:

Example 1: In Linux environment
With -o mfd option:

nwA g

# vxdisk -o mfd list sda | egrep info:|flags:"
info: format=linux:ext4

flags: unusable online ready private autoconfig invalid

Without -0 mfd option:

nAg

# vxdisk list sda egrep info:|flags:"
info: format=none
flags: online ready private autoconfig invalid

Example 2: In Solaris environment

With -0 mfd option:

# vxdisk -o mfd list disk 0 | egrep ""info:|flags:"

info: format=solaris:ZFS

flags: unusable online ready private autoconfig invalid
Without -o mfd option:

nwA g

# vxdisk list disk 0 | egrep info:|flags:"
info: format=7ZFS

flags: ZFS online ready private autoconfig invalid

Note: Veritas Volume Manager cannot directly initialize the disks which are flagged
as unusabile. In this case, the vxdisk init command fails with an error message
and requests you to remove the foreign format.

For example:
#vxdisk init disk 0

VxVM vxdisk ERROR V-5-1-0 Device disk 0 is in use.

If it is still desired to initialize this device for VxVM use, please remove



Managing devices | 378
Displaying disk information

the foreign format signatures from each of the following partition(s)
using 'dd' command or some other tool.
PARTITION TYPE

0 solaris:zfs

Viewing information about the disk sector size

To view information about the disk sector size, you can use the vxdisk 1ist and
vxmediadisc commands.

See the following examples for more details:

Example 1: Using the vxdisk 1ist coOmmand

# vxdisk list sdz | grep ""iosize"

iosize: min=4096 (bytes) max=1024 (blocks)

Example 2: Using the vxmediadgisc cOmmand
# /etc/vx/diag.d/vxmediadisc -p /dev/sdz | grep "Sector size"

vxmediadisc: Sector size: 4096

Supported operating systems

Viewing information about the native layouts of operating system and disk sector
size is supported on the following operating systems:

1. Linux (RHEL, SLES, and supported RHEL compatible distributions)
2. Solaris 11
3. AIX7.1and7.2

Displaying disk information with vxdiskadm

Veritas Volume Manager (VxVM) enables you to see disk information using the
vxdiskadm program. Disk information shows you which disks are initialized, to which
disk groups they belong, and the disk status. The 1ist option displays device names
for all recognized disks, the disk names, the disk group names associated with
each disk, and the status of each disk.



Managing devices
Changing the disk device naming scheme

To display disk information

1 Start the vxdiskadm program, and select 1ist (List disk information)
from the main menu.

2 Atthe following prompt, enter the name of the device you want to see, or enter
al1 for a list of all devices:

List disk information

Menu: VolumeManager/Disk/ListDisk

VxVM INFO V-5-2-475 Use this menu operation to display a list of
disks. You can also choose to list detailed information about

the disk at a specific disk device address.

Enter disk device or "all" [<address>,all,q,?] (default: all)

= If you enter a11, VXVM displays the device name, disk name, group, and
status of all the devices.

= Ifyou enter the name of a device, VxVM displays complete disk information
(including the device name, the type of disk, and information about the
public and private areas of the disk) of that device.

Once you have examined this information, press Return to return to the main
menu.

Changing the disk device naming scheme

You can either use enclosure-based naming for disks or the operating system’s
naming scheme. DMP commands display device names according to the current
naming scheme.

The default naming scheme is enclosure-based naming (EBN).

When you use Dynamic Multi-Pathing (DMP) with native volumes, the disk naming
scheme must be EBN, the use avid attribute must be yes, and the persistence
attribute must be set to yes.

379



Managing devices | 380
Changing the disk device naming scheme

To change the disk-naming scheme

& Select change the disk naming scheme from the vxdiskadm main menu to
change the disk-naming scheme that you want SFCFSHA to use. When
prompted, enter y to change the naming scheme.

OR

Change the naming scheme from the command line. Use the following
command to select enclosure-based naming:

# vxddladm set namingscheme=ebn [persistence={yes|no}] \

[use_avid={yes|no}] [lowercase={yes|no}]
Use the following command to select operating system-based naming:

# vxddladm set namingscheme=osn [persistence={yes|no}] \

[lowercase=yes|no]

The optional persistence argument allows you to select whether the names
of disk devices that are displayed by SFCFSHA remain unchanged after disk
hardware has been reconfigured and the system rebooted. By default,
enclosure-based naming is persistent. Operating system-based naming is not
persistent by default.

To change only the naming persistence without changing the naming scheme,
run the vxddladm set namingscheme command for the current naming scheme,
and specify the persistence attribute.

By default, the names of the enclosure are converted to lowercase, regardless
of the case of the name specified by the ASL. The enclosure-based device
names are therefore in lowercase. Set the 1owercase=no option to suppress
the conversion to lowercase.

For enclosure-based naming, the use_avid option specifies whether the Array
Volume ID is used for the index number in the device name. By default,
use_avid=yes, indicating the devices are named as enclosure_avid. If use_avid
is set to no, DMP devices are named as enclosure_index. The index number
is assigned after the devices are sorted by LUN serial number.

The change is immediate whichever method you use.

See “Regenerating persistent device names” on page 382.

Displaying the disk-naming scheme

In Dynamic Multi-Pathing (DMP), disk naming can be operating system-based
naming or enclosure-based naming.



Managing devices | 381
Changing the disk device naming scheme

The following command displays whether the SFCFSHA disk-naming scheme is
currently set. It also displays the attributes for the disk naming scheme, such as
whether persistence is enabled.

To display the current disk-naming scheme and its mode of operations, use the
following command:

# vxddladm get namingscheme
NAMING SCHEME PERSISTENCE LOWERCASE USE AVID

Enclosure Based Yes Yes Yes

Setting customized names for DMP nodes

The Dynamic Multi-Pathing (DMP) node name is the metadevice name that
represents the multiple paths to a disk. The Device Discovery Layer (DDL) generates
the DMP node name from the device name according to the Storage Foundation
Cluster File System High Availability (SFCFSHA) naming scheme.

You can specify a customized name for a DMP node. User-specified names are
persistent even if names persistence is turned off.

You cannot assign a customized name that is already in use by a device. However,
if you assign names that follow the same naming conventions as the names that
the DDL generates, a name collision can potentially occur when a device is added.
If the user-defined name for a DMP device is the same as the DDL-generated name
for another DMP device, the vxdisk 1ist command output displays one of the
devices as 'error'.

To specify a custom name for a DMP node

¢ Use the following command:

# vxdmpadm setattr dmpnode dmpnodename name=name
You can also assign names from an input file. This enables you to customize the
DMP nodes on the system with meaningful names.
To specify a custom name for an enclosure

¢ Use the following command:

# vxdmpadm setattr enclosure enc name name=custom name



Managing devices | 382
Changing the disk device naming scheme

To assign DMP nodes from a file

1 To obtain a file populated with the names of the devices in your configuration,
use the following command:

# vxddladm -1 assign names > filename

The sample file shows the format required and serves as a template to specify
your customized names.

You can also use the script vxgetdmpnames to get a sample file populated from
the devices in your configuration.

Modify the file as required. Be sure to maintain the correct format in the file.

To assign the names, specify the name and path of the file to the following
command:

# vxddladm assign names file=pathname

To clear custom names

& To clear the names, and use the default operating system-based naming or
enclosure-based naming, use the following command:

# vxddladm -c assign names

Regenerating persistent device names

The persistent device naming feature makes the names of disk devices persistent
across system reboots. The Device Discovery Layer (DDL) assigns device names
according to the persistent device name database.

If operating system-based naming is selected, each disk name is usually set to the
name of one of the paths to the disk. After hardware reconfiguration and a
subsequent reboot, the operating system may generate different names for the
paths to the disks. Therefore, the persistent device names may no longer correspond
to the actual paths. This does not prevent the disks from being used, but the
association between the disk name and one of its paths is lost.

Similarly, if enclosure-based naming is selected, the device name depends on the
name of the enclosure and an index number. If a hardware configuration changes
the order of the LUNs exposed by the array, the persistent device name may not
reflect the current index.



Managing devices | 383

Changing the disk device naming scheme

To regenerate persistent device names

& To regenerate the persistent names repository, use the following command:

# vxddladm [-c] assign names
The -c option clears all user-specified names and replaces them with
autogenerated names.

If the -c option is not specified, existing user-specified names are maintained,
but operating system-based and enclosure-based names are regenerated.

Changing device naming for enclosures controlled by third-party

drivers

By default, enclosures controlled by third-party drivers (TPD) use pseudo device
names based on the TPD-assigned node names. If you change the device naming
to native, the devices are named in the same format as other Storage Foundation
Cluster File System High Availability (SFCFSHA) devices. The devices use either
operating system names (OSN) or enclosure-based names (EBN), depending on
which naming scheme is set.

See “Displaying the disk-naming scheme” on page 380.
To change device naming for TPD-controlled enclosures

& Fordisk enclosures that are controlled by third-party drivers (TPD) whose
coexistence is supported by an appropriate Array Support Library (ASL), the
default behavior is to assign device names that are based on the TPD-assigned
node names. You can use the vxdmpadm command to switch between these
names and the device names that are known to the operating system:

# vxdmpadm setattr enclosure enclosure name tpdmode=native|pseudo

The argument to the tpdmode attribute selects names that are based on those
used by the operating system (native), or TPD-assigned node names (pseudo).

The use of this command to change between TPD and operating system-based
naming is illustrated in the following example for the enclosure named
pp_emc_clariiono. Inthis example, the device-naming scheme is set to OSN.

# vxdisk list

DEVICE TYPE DISK GROUP STATUS
emcpowerp auto:cdsdisk - - online
emcpowerq auto:cdsdisk - - online

emcpowerr auto:cdsdisk - - online



Managing devices | 384
Changing the disk device naming scheme

emcpowers auto:cdsdisk - - online

emcpowert auto:cdsdisk - - online
# vxdmpadm setattr enclosure pp_emc_clariion0 tpdmode=native

# wvxdisk list

DEVICE TYPE DISK GROUP STATUS
sde auto:cdsdisk - - online
sdf auto:cdsdisk - - online
sdg auto:cdsdisk - - online
sdh auto:cdsdisk - - online
sdi auto:cdsdisk - - online

If tpdmode is set to native, the path with the smallest device number is
displayed.

About the Array Volume Identifier (AVID) attribute

DMP assigns enclosure-based names to DMP metadevices using an array-specific
attribute called the Array Volume ID (AVID). The AVID is a unique identifier for the
LUN that is provided by the array. The Array Support Library (ASL) corresponding
to the array provides the AVID property. Within an array enclosure, DMP uses the
Array Volume Ildentifier (AVID) as an index in the DMP metanode name. The DMP
metanode name is in the format enclosureIp avip.

The SFCFSHA utilities such as vxdmpadm getdmpnode display the DMP metanode
name, which includes the AVID property. Use the AVID to correlate the DMP
metanode name to the LUN displayed in the array management interface (GUI or
CLl).

If the ASL does not provide the array volume ID property, then DMP generates an
index number. DMP sorts the devices seen from an array by the LUN serial number
and then assigns the index number. In this case, the DMP metanode name is in
the format enclosureID index.

Enclosure based naming with the Array Volume Identifier
(AVID) attribute

By default, Dynamic Multi-Pathing (DMP) assigns enclosure-based names to DMP
metadevices using an array-specific attribute called the Array Volume ID (AVID).
The AVID provides a unique identifier for the LUN that is provided by the array. The
ASL corresponding to the array provides the AVID property. Within an array
enclosure, DMP uses the Array Volume Identifier (AVID) as an index in the DMP
metanode name. The DMP metanode name is in the format enclosurerp avip.



Managing devices | 385
Changing the disk device naming scheme

With the introduction of AVID to the enclosure-based naming (EBN) naming scheme,
identifying storage devices becomes much easier. The array volume identifier (AVID)
enables you to have consistent device naming across multiple nodes connected to
the same storage. The disk access name never changes, because it is based on
the name defined by the array itself.

Note: DMP does not support AVID with third party drivers.

If DMP does not have access to a device’s AVID, it retrieves another unique LUN
identifier called the LUN serial number. DMP sorts the devices based on the LUN
Serial Number (LSN), and then assigns the index number. All hosts see the same
set of devices, so all hosts will have the same sorted list, leading to consistent
device indices across the cluster. In this case, the DMP metanode name is in the
format enclosureID index.

DMP also supports a scalable framework, that allows you to fully customize the
device names on a host by applying a device naming file that associates custom
names with cabinet and LUN serial numbers.

If a Cluster Volume Manager (CVM) cluster is symmetric, each node in the cluster
accesses the same set of disks. Enclosure-based names provide a consistent
naming system so that the device names are the same on each node.

The Storage Foundation Cluster File System High Availability (SFCFSHA) utilities
such as vxdisk list display the DMP metanode name, which includes the AVID
property. Use the AVID to correlate the DMP metanode name to the LUN displayed
in the array management interface (GUI or CLI) .

For example, on an EMC CX array where the enclosure is emc_clariion0 and the
array volume ID provided by the ASL is 91, the DMP metanode name is
emc_clariion0_91. The following sample output shows the DMP metanode names:

S wvxdisk list

emc_clariion0_91 auto:cdsdisk emc_clariion0_91 dgl online shared
emc_clariion0_92 auto:cdsdisk emc_clariion0_92 dgl online shared
emc_clariion0_93 auto:cdsdisk emc_clariion0_93 dgl online shared

emc_clariion0_282 auto:cdsdisk emc_clariion0_282 dgl online shared
emc_clariion0_283 auto:cdsdisk emc_clariion0_283 dgl online shared

emc_clariion0_284 auto:cdsdisk emc_clariion0_284 dgl online shared

# vxddladm get namingscheme
NAMING SCHEME PERSISTENCE LOWERCASE USE_AVID

Enclosure Based Yes Yes Yes



Managing devices | 386
About disk installation and formatting

About disk installation and formatting

Depending on the hardware capabilities of your disks and of your system, you may
either need to shut down and power off your system before installing the disks, or
you may be able to hot-insert the disks into the live system. Many operating systems
can detect the presence of the new disks on being rebooted. If the disks are inserted
while the system is live, you may need to enter an operating system-specific
command to notify the system.

If the disks require low or intermediate-level formatting before use, use the operating
system-specific formatting command to do this.

Note: SCSI disks are usually preformatted. Reformatting is needed only if the
existing formatting has become damaged.

See “Adding a disk to VxVM” on page 386.

Adding and removing disks

This section describes managing devices.

Adding a disk to VxVM

Note: Root Disk Encapsulation (RDE) is not supported on Linux from 7.3.1 onwards.

Formatted disks being placed under Veritas Volume Manager (VxVM) control may
be new or previously used outside VxVM.

The set of disks can consist of all disks on a controller, selected disks, or a
combination of these.

Depending on the circumstances, all of the disks may not be processed in the same
way.

For example, some disks may be initialized, while others may be encapsulated to
preserve existing data on the disks.

When initializing multiple disks at one time, it is possible to exclude certain disks
or certain controllers.

You can also exclude certain disks or certain controllers when encapsulating multiple
disks at one time.



Managing devices | 387
Adding and removing disks

To exclude a device from the view of VxXVM, select prevent
multipathing/Suppress devices from VxVM’s view from the vxdiskadm main
menu.

Warning: Initialization does not preserve the existing data on the disks.

A disk cannot be initialized if it does not have a valid useable partition table. You
can use the £disk command to create an empty partition table on a disk as shown
here:

# fdisk /dev/sdX

Command (m for help): o

Command (m for help): w

where /dev/sdx is the name of the disk device, for example, /dev/sdi.

Warning: The £disk command can destroy data on the disk. Do not use this
command if the disk contains data that you want to preserve.

See “Making devices invisible to VxVM” on page 305.



Managing devices | 388
Adding and removing disks

To initialize disks for VxVM use

1

Select Add or initialize one or more disks from the vxdiskadm main
menu.

At the following prompt, enter the disk device name of the disk to be added to
VxVM control (or enter 1ist for a list of disks):

Select disk devices to add:
[<pattern-list>,all,list,q,?]

The pattern-list can be a single disk, or a series of disks. If pattern-list consists
of multiple items, separate them using white space. For example, specify four
disks as follows:

sde sdf sdg sdh

If you enter 1ist at the prompt, the vxdiskadm program displays a list of the
disks available to the system:

DEVICE DISK GROUP STATUS
sdb mydg01 mydg online
sdc mydg02 mydg online
sdd mydg03 mydg online
sde - - online
sdf mydg04 mydg online
sdg - - online invalid

The phrase online invalid inthe sTaTUS line indicates that a disk has yet
to be added or initialized for VxVM control. Disks that are listed as on1ine with
a disk name and disk group are already under VxVM control.

Enter the device name or pattern of the disks that you want to initialize at the
prompt and press Return.

To continue with the operation, enter y (or press Return) at the following prompt:

Here are the disks selected. Output format: [Device]
list of device names

Continue operation? [y,n,q,?] (default: y) y



Managing devices
Adding and removing disks

At the following prompt, specify the disk group to which the disk should be
added, or none to reserve the disks for future use:

You can choose to add these disks to an existing disk group,

a new disk group, or you can leave these disks available for use
by future add or replacement operations. To create a new disk
group, select a disk group name that does not yet exist. To
leave the disks available for future use, specify a disk group

name of none.
Which disk group [<group>,none,list,q, ?]
If you specified the name of a disk group that does not already exist, vxdiskadm

prompts for confirmation that you really want to create this new disk group:

There is no active disk group named disk group name.

Create a new group named disk group name? [y,n,d,?]

(default: y)y

You are then prompted to confirm whether the disk group should support the
Cross-platform Data Sharing (CDS) feature:

Create the disk group as a CDS disk group? [y,n,q,?]
(default: vy)

If the new disk group may be moved between different operating system
platforms, enter y. Otherwise, enter n.

At the following prompt, either press Return to accept the default disk name
or enter n to allow you to define your own disk names:

Use default disk names for the disks? [y,n,q,?] (default: y) n

When prompted whether the disks should become hot-relocation spares, enter
n (or press Return):

Add disks as spare disks for disk group name? [y,n,q,?]
(default: n) n

When prompted whether to exclude the disks from hot-relocation use, enter n
(or press Return).

Exclude disks from hot-relocation use? [y,n,q,?}
(default: n) n

389



10

11

Managing devices
Adding and removing disks

You are next prompted to choose whether you want to add a site tag to the
disks:

Add site tag to disks? [y,n,q,?] (default: n)

A site tag is usually applied to disk arrays or enclosures, and is not required
unless you want to use the Remote Mirror feature.

If you enter y to choose to add a site tag, you are prompted to the site name
at step 11.

To continue with the operation, enter v (or press Return) at the following prompt:

The selected disks will be added to the disk group
disk group name with default disk names.
list of device names

Continue with operation? [y,n,q,?] (default: y) y
If you chose to tag the disks with a site in step 9, you are now prompted to
enter the site name that should be applied to the disks in each enclosure:

The following disk(s):

list of device names

belong to enclosure(s):

list of enclosure names

Enter site tag for disks on enclosure enclosure name

[<name>, q,?] site name

390



Managing devices | 391
Adding and removing disks

12 If you see the following prompt, it lists any disks that have already been
initialized for use by VxVM:

The following disk devices appear to have been initialized
already.
The disks are currently available as replacement disks.

Output format: [Device]
list of device names

Use these devices? [Y,N,S(elect),q,?] (default: Y) Y

This prompt allows you to indicate “yes” or “no” for all of these disks (v or )
or to select how to process each of these disks on an individual basis (s).

If you are sure that you want to reinitialize all of these disks, enter v at the
following prompt:

VxVM NOTICE V-5-2-366 The following disks you selected for use
appear to already have been initialized for the Volume
Manager. If you are certain the disks already have been
initialized for the Volume Manager, then you do not need to
reinitialize these disk devices.

Output format: [Device]
list of device names

Reinitialize these devices? [Y,N,S(elect),q,?] (default: Y) ¥



Managing devices
Adding and removing disks

13 vxdiskadm may now indicate that one or more disks is a candidate for
encapsulation. Encapsulation allows you to add an active disk to VxVM control
and preserve the data on that disk.If you want to preserve the data on the disk,

enter y. If you are sure that there is no data on the disk that you want to
preserve, enter n to avoid encapsulation.

VxVM NOTICE V-5-2-355 The following disk device has a valid
partition table, but does not appear to have been initialized
for the Volume Manager. If there is data on the disk that
should NOT be destroyed you should encapsulate the existing
disk partitions as volumes instead of adding the disk as a new
disk.

Output format: [Device]
device name

Encapsulate this device? [y,n,q,?] (default: y)

392



Managing devices | 393
Adding and removing disks

14 If you choose to encapsulate the disk, vxdiskadm confirms its device name
and prompts you for permission to proceed. Enter y (or press Return) to
continue encapsulation:

VxVM NOTICE V-5-2-311 The following disk device has been
selected for encapsulation.

Output format: [Device]
device name

Continue with encapsulation? [y,n,q,?] (default: y) y

vxdiskadm now displays an encapsulation status and informs you
that you must perform a shutdown and reboot as soon as

possible:

VxVM INFO V-5-2-333 The disk device device name will be
encapsulated and added to the disk group disk group name with the

disk name disk name.

You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]
(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

If you entered cdsdisk as the format, you are prompted for the action to be
taken if the disk cannot be converted to this format:

Do you want to use sliced as the format should cdsdisk fail?

ly,n,gq,?] (default: y)

If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.



15

16

17

Managing devices | 394
Adding and removing disks

vxdiskadm then proceeds to encapsulate the disks. You should now reboot
your system at the earliest possible opportunity, for example by running this
command:

# shutdown -r now

The /etc/fstab file is updated to include the volume devices that are used to
mount any encapsulated file systems. You may need to update any other
references in backup scripts, databases, or manually created swap devices.
The original /etc/fstab file is saved as /etc/fstab.bdvxvm.

If you choose not to encapsulate the disk, vxdiskadm asks if you want to
initialize the disk instead. Enter y to confirm this:

Instead of encapsulating, initialize? [y,n,q,?] (default: n) yvxdiskadm now
confirms those disks that are being initialized and added to VxVM control with
messages similar to the following. In addition, you may be prompted to perform
surface analysis.

VxVM INFO V-5-2-205 Initializing device device name.

You can now choose whether the disk is to be formatted as a CDS disk that
is portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]
(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is the
default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default private
region size of 65536 blocks (32MB). Press Return to confirm that you want to
use the default value, or enter a different value. (The maximum value that you
can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

vxdiskadm then proceeds to add the disks.

VxVM INFO V-5-2-88 Adding disk device device name to disk group
disk group name with disk name disk name.



Managing devices
Adding and removing disks

18 If you choose not to use the default disk names, vxdiskadm prompts you to
enter the disk name.

19 Atthe following prompt, indicate whether you want to continue to initialize more
disks (y) or return to the vxdiskadm main menu (n):

Add or initialize other disks? [y,n,q,?] (default: n)

You can change the default layout for disks using the vxdisk command or the
vxdiskadm utility.

See the vxdisk(1M) manual page.

See the vxdiskadm(1M) manual page.

Disk reinitialization

You can reinitialize a disk that has previously been initialized for use by Veritas
Volume Manager (VxVM) by putting it under VxVM control as you would a new
disk.

See “Adding a disk to VxVM” on page 386.

Warning: Reinitialization does not preserve data on the disk. If you want to
reinitialize the disk, make sure that it does not contain data that should be preserved.

If the disk you want to add has been used before, but not with a volume manager,
you can encapsulate the disk to preserve its information. If the disk you want to add
has previously been under LVM control, you can preserve the data it contains on
a VxVM disk by the process of conversion.

For detailed information about migrating volumes, see the Veritas InfoScale Solutions
Guide.

Using vxdiskadd to put a disk under VxVM control

You can add a disk to Veritas Volume Manager (VxVM) control with the vxdiskadd
command.

395



Managing devices | 396
Adding and removing disks

To use the vxdiskadd command to put a disk under VxVM control.

¢ Type the following command:
# vxdiskadd disk
For example, to initialize the disk sdb:
# vxdiskadd sdb

The vxdiskadd command examines your disk to determine whether it has
been initialized and also checks for disks that have been added to VxVM, and
for other conditions.

The vxdiskadd command also checks for disks that can be encapsulated.
See “Encapsulating a disk” on page 1071.

If you are adding an uninitialized disk, the vxdiskadd command displays
warning and error messages on the console. Ignore these messages. These
messages should not appear after the disk has been fully initialized; the
vxdiskadd command displays a success message when the initialization
completes.

The interactive dialog for adding a disk using vxdiskadd is similar to that for

vxdiskadm.

See “Adding a disk to VxVM” on page 386.

Removing disks
This section describes how to remove a Veritas Volume Manager (VxVM) disk.
You must disable a disk group before you can remove the last disk in that group.
See “Disabling a disk group” on page 1025.
As an alternative to disabling the disk group, you can destroy the disk group.
See “Destroying a disk group” on page 1025.

You can remove a disk from a system and move it to another system if the disk is
failing or has failed.



Managing devices | 397
Adding and removing disks

To remove a disk

1 Stop all activity by applications to volumes that are configured on the disk that
is to be removed. Unmount file systems and shut down databases that are
configured on the volumes.

2 Use the following command to stop the volumes:

# vxvol [-g diskgroup] stop voll vol2 ...

3 Move the volumes to other disks or back up the volumes. To move a volume,
use vxdiskadm to mirror the volume on one or more disks, then remove the
original copy of the volume. If the volumes are no longer needed, they can be
removed instead of moved.

4 Check that any data on the disk has either been moved to other disks or is no
longer needed.

Select Remove a disk from the vxdiskadm main menu.

6 At the following prompt, enter the disk name of the disk to be removed:
Enter disk name [<disk>,list,q,?] mydg0l

7 If there are any volumes on the disk, VxVM asks you whether they should be

evacuated from the disk. If you wish to keep the volumes, answer y. Otherwise,
answer n.

8 At the following verification prompt, press Return to continue:

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg0l from group mydg.

Continue with operation? [y,n,q,?] (default: y)

The vxdiskadm utility removes the disk from the disk group and displays the
following success message:

VxVM INFO V-5-2-268 Removal of disk mydg0l is complete.

You can now remove the disk or leave it on your system as a replacement.

9 At the following prompt, indicate whether you want to remove other disks (y)
or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)



Managing devices
Adding and removing disks

Removing a disk with subdisks

You can remove a Veritas Volume Manager (VxVM) disk on which some subdisks
are defined. For example, you can consolidate all the volumes onto one disk. If you
use the vxdiskadm program to remove a disk, you can choose to move volumes
off that disk.

Some subdisks are not movable. A subdisk may not be movable for one of the
following reasons:

= There is not enough space on the remaining disks in the subdisks disk group.

= Plexes or striped subdisks cannot be allocated on different disks from existing
plexes or striped subdisks in the volume.

If the vxdiskadm program cannot move some subdisks, remove some plexes from
some disks to free more space before proceeding with the disk removal operation.

See “Removing a volume” on page 1061.
To remove a disk with subdisks
1 Run the vxdiskadm program and select Remove a disk from the main menu.

If the disk is used by some subdisks, the following message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of
disk mydg02:

home usrvol
Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

2 Choose y to move all subdisks off the disk, if possible.

Removing a disk with no subdisks

You can remove a Veritas Volume Manager (VxVM) disk that contains no subdisks.

398



Managing devices | 399
Renaming a disk

To remove a disk that contains no subdisks from its disk group
¢ Run the vxdiskadm program and select Remove a disk from the main menu,
and respond to the prompts as shown in this example to remove mydg02:

Enter disk name [<disk>,list,q,?] mydg02

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg02 from group mydg.

Continue with operation? [y,n,q,?] (default: y) y
VxVM INFO V-5-2-268 Removal of disk mydg02 is complete.
Clobber disk headers? [y,n,q,?] (default: n) y

Enter y to remove the disk completely from VxVM control. If you do not want
to remove the disk completely from VxVM control, enter n.

Renaming a disk

Veritas Volume Manager (VxVM) gives the disk a default name when you add the
disk to VxVM control, unless you specify a VxVM disk name. VxVM uses the VxVM
disk name to identify the location of the disk or the disk type.



To rename a disk

¢ Type the following command:

Managing devices
Renaming a disk

# vxedit [-g diskgroup] rename old diskname new_diskname

By default, VxXVM names subdisk objects after the VxVM disk on which they
are located. Renaming a VxVM disk does not automatically rename the subdisks

on that disk.

For example, you might want to rename disk mydg03, as shown in the following

output from vxdisk list, t0 mydg02:

# wvxdisk list

DEVICE
sdb
sdc
sdd

TYPE
auto
auto

auto

:sliced
:sliced

:sliced

DISK
mydg01
mydg03

GROUP STATUS
mydg online
mydg online
- online

You would use the following command to rename the disk.

# vxedit -g mydg rename mydg03 mydg02

To confirm that the name change took place, use the vxdisk 1ist command

again:

# wvxdisk list

DEVICE
sdb
sdc
sdd

TYPE
auto
auto

auto

:sliced
:sliced
:sliced

DISK
mydg01
mydg02

GROUP STATUS
mydg online
mydg online

online

400



Event monitoring

This chapter includes the following topics:

About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)
Fabric Monitoring and proactive error detection

Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology

DMP event logging

Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

About the Dynamic Multi-Pathing (DMP) event
source daemon (vxesd)

The event source daemon (vxesd) is a Dynamic Multi-Pathing (DMP) component
process that receives notifications of any device-related events that are used to
take appropriate actions. The benefits of vxesd include:

Monitoring of SAN fabric events and proactive error detection (SAN event)
See “Fabric Monitoring and proactive error detection” on page 402.

Logging of DMP events for troubleshooting (DMP event)
See “DMP event logging” on page 403.

Automated device discovery (OS event)

Discovery of SAN components and HBA-array port connectivity (Fibre Channel
and iSCSI)

See “Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel
topology” on page 403.



Event monitoring | 402
Fabric Monitoring and proactive error detection

See “Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon”
on page 404.

Fabric Monitoring and proactive error detection

DMP takes a proactive role in detecting errors on paths.

The DMP event source daemon vxesd uses the Storage Networking Industry
Association (SNIA) HBA API library to receive SAN fabric events from the HBA.

DMP checks devices that are suspect based on the information from the SAN
events, even if there is no active 1/0. New I/O is directed to healthy paths while
DMP verifies the suspect devices.

During startup, vxesd queries the HBA (by way of the SNIA library) to obtain the
SAN topology. The vxesd daemon determines the Port World Wide Names (PWWN)
that correspond to each of the device paths that are visible to the operating system.
After the vxesd daemon obtains the topology, vxesd registers with the HBA for SAN
event notification. If LUNs are disconnected from a SAN, the HBA notifies vxesd
of the SAN event, specifying the PWWNs that are affected. The vxesd daemon
uses this event information and correlates it with the previous topology information
to determine which set of device paths have been affected.

The vxesd daemon sends the affected set to the vxconfigd daemon (DDL) so that
the device paths can be marked as suspect.

When the path is marked as suspect, DMP does not send new /O to the path unless
it is the last path to the device. In the background, the DMP restore task checks
the accessibility of the paths on its next periodic cycle using a SCSI inquiry probe.
If the SCSI inquiry fails, DMP disables the path to the affected LUNs, which is also
logged in the event log.

If the LUNSs are reconnected at a later time, the HBA informs vxesd of the SAN
event. When the DMP restore task runs its next test cycle, the disabled paths are
checked with the SCSI probe and re-enabled if successful.

Note: If vxesd receives an HBA LINK UP event, the DMP restore task is restarted
and the SCSI probes run immediately, without waiting for the next periodic cycle.
When the DMP restore task is restarted, it starts a new periodic cycle. If the disabled
paths are not accessible by the time of the first SCSI probe, they are re-tested on
the next cycle (300s by default).

The fabric monitor functionality is enabled by default. The value of the
dmp_monitor fabric tunable is persistent across restarts.



Event monitoring | 403
Dynamic Multi-Pathing (DMP) discovery of iSCSI and SAN Fibre Channel topology

To display the current value of the dmp monitor fabric tunable, use the following
command:

# vxdmpadm gettune dmp monitor fabric

To disable the Fabric Monitoring functionality, use the following command:
# vxdmpadm settune dmp monitor fabric=off

To enable the Fabric Monitoring functionality, use the following command:

# vxdmpadm settune dmp monitor fabric=on

Dynamic Multi-Pathing (DMP) discovery of iISCSI
and SAN Fibre Channel topology

The vxesd builds a topology of iISCSI and Fibre Channel (FC) devices that are
visible to the host. The vxesd daemon uses the SNIA Fibre Channel HBA API to
obtain the SAN topology. If IMA is not available, then the iISCSI management CLI
is used to obtain the iISCSI SAN topology.

To display the hierarchical listing of Fibre Channel and iSCSI devices, use the
following command:

# vxddladm list

See the vxddladm (1M) manual page.

DMP event logging

See “About the Dynamic Multi-Pathing (DMP) event source daemon (vxesd)”
on page 401.

The event source daemon (vxesd) is a Dynamic Multi-Pathing (DMP) component
process that receives notifications of any device-related events that are used to
take appropriate actions.

DMP notifies vxesd of major events, and vxesd logs the event in a log file. These
events include:

= Marking paths or dmpnodes enabled
= Marking paths or dmpnodes disabled
= Throttling of paths

= |/O error analysis



Event monitoring | 404
Starting and stopping the Dynamic Multi-Pathing (DMP) event source daemon

= HBA and SAN events

You can change the level of detail that is displayed in the system or console log
about the DMP events. Use the tunable dmp 1og_level. Valid values are 1 through
9. The default level is 1.

# vxdmpadm settune dmp log level=X
The current value of dmp_log_level can be displayed with:
# vxdmpadm gettune dmp_log level

For details on the various log levels, see the vxdmpadm(1M) manual page.

Starting and stopping the Dynamic Multi-Pathing
(DMP) event source daemon

By default, Dynamic Multi-Pathing (DMP) starts the event source daemon, vxesd,
at boot time.

To stop the vxesd daemon, use the vxddladm utility:

# vxddladm stop eventsource

To start the vxesd daemon, use the vxddladm utility:

# vxddladm start eventsource [logfile=logfilename]

To view the status of the vxesd daemon, use the vxddladm utility:

# vxddladm status eventsource



Administering Storage
Foundation Cluster File
System High Availability

= Chapter 15. Administering Storage Foundation Cluster File System High
Availability and its components

= Chapter 16. Using Clustered NFS

= Chapter 17. Using Common Internet File System

= Chapter 18. Deploying Oracle with Clustered NFS

= Chapter 19. Using SFCFSHA utilities for the Oracle database
» Chapter 20. Administering sites and remote mirrors

= Chapter 21. Administering iISCSI with SFCFSHA

= Chapter 22. Administering datastores with SFCFSHA



Administering Storage
Foundation Cluster File
System High Availability
and its components

This chapter includes the following topics:

About Storage Foundation Cluster File System High Availability administration
Administering CFS

Administering VCS

Administering CVM

Administering Flexible Storage Sharing

Administering ODM

About administering 1/O fencing

Administering SFCFSHA global clusters

About Storage Foundation Cluster File System
High Availability administration

The Storage Foundation Cluster File System High Availability (SFCFSHA) is a
shared file system that enables multiple hosts to mount and perform file operations
concurrently on the same file. To operate in a cluster configuration, SFCFSHA



Administering Storage Foundation Cluster File System High Availability and its components | 407
Administering CFS

requires the integrated set of Veritas products included in the Storage Foundation
Cluster File System High Availability.

To configure a cluster, SFCFSHA requires the Cluster Server (VCS). VCS supplies
two major components integral to SFCFSHA. The LLT RPM provides node-to-node
communications and monitors network communications. The GAB RPM provides
cluster state, configuration, and membership service, and monitors the heartbeat

links between systems to ensure that they are active. There are several other RPMs
supplied by VCS that provide application failover support when installing SFCFSHA.

See the Storage Foundation Cluster File System High Availability Installation Guide.

For more information on VCS, refer to the Cluster Server documentation.

Administering CFS

This section describes some of the major aspects of Cluster File System (CFS)
administration.

If you encounter issues while administering CFS, refer to the Veritas InfoScale
Troubleshooting Guide for assistance.

Adding CFS file systems to a VCS configuration

Run the following command to add a Cluster File System (CFS) file system to the
Cluster Server (VCS) main.cf file without using an editor.

For example:

# cfsmntadm add oradatadg oradatavol \

/oradatal all=suid,rw

Mount Point is being added...

/oradatal added to the cluster-configuration



Administering Storage Foundation Cluster File System High Availability and its components

Administering CFS

Uses of cfsmount to mount and cfsumount to unmount CFS file

system
To mount a CFS file system

¢ Mount a CFS file system:

# cfsmntadm add sdg voll /oradatal all=

# cfsmount /oradatal

Mounting. ..

[/dev/vx/dsk/sdg/voll]

mounted successfully at /oradatal on
[/dev/vx/dsk/sdg/voll]

mounted successfully at /oradatal on

To unmount a CFS file system

¢ Unmount a CFS file system:

# cfsumount /oradatal

Unmounting...

/oradatal got successfully unmounted
/oradatal got successfully unmounted

sysl

sys2

from

from

sysl
sys2

Removing CFS file systems from VCS configuration

To remove CFS file systems from VCS configuration

¢ Run the following command to remove a Cluster File System (CFS) from Cluster
Server (VCS) main.cf file without using an editor:

# cfsmntadm delete /oradatal

Mount Point is being removed...

/oradatal deleted successfully from cluster-configuration

Resizing CFS file systems

If you see a message on the console indicating that a Cluster File System (CFS)
file system is full, you may want to resize the file system. The vxresize command
lets you resize a CFS file system. It extends the file system and the underlying

volume.

See the vxresize (1M) manual page for information on various options.

408



Administering Storage Foundation Cluster File System High Availability and its components | 409
Administering CFS

The following command resizes an Oracle data CFS file system (the Oracle data
volume is CFS mounted):

# vxresize -g oradatadg oradatavol +2G

where oradatadg is the CVM disk group

where oradatavol is the volume

where +2¢ indicates the increase in volume size by 2 Gigabytes.

The following command shrinks an Oracle data CFS file system (the Oracle data
volume is CFS mounted):

# vxresize -g oradatadg oradatavol -2G

where -2G indicates the decrease in volume size by 2 Gigabytes

Verifying the status of CFS file system nodes and their mount points

Run the cfscluster status command to see the status of the nodes and their
mount points:

# cfscluster status

Node : sys2
Cluster Manager : not-running
CVM state : not-running
MOUNT POINT SHARED VOLUME DISK GROUP STATUS
/ocrvote ocrvotevol sysl ocr NOT MOUNTED
/oracle ora vol sysl ora NOT MOUNTED
/crshome ora crs_vol sysl crs NOT MOUNTED
/oradatal ora datal vol sysl datal NOT MOUNTED
/arch archivol sysl datal NOT MOUNTED
Node : sysl
Cluster Manager : running
CVM state ¢ running
MOUNT POINT SHARED VOLUME DISK GROUP STATUS
/ocrvote ocrvotevol sysl_ocr MOUNTED
/oracle ora_vol sysl_ora MOUNTED
/crshome ora_crs_vol sysl_crs MOUNTED
/oradatal ora_datal_vol sysl datal MOUNTED

/arch archivol sysl_datal MOUNTED



Administering Storage Foundation Cluster File System High Availability and its components | 410
Administering CFS

Verifying the state of the CFS port

Cluster File System (CFS) uses port f for communication between nodes. Port f is
the GAB port used for CFS membership.

The CFS port state can be verified as follows:

# gabconfig -a | grep "Port f£"

CFS agents and AMF support

The Cluster File System (CFS) agents (CFSMount and CFSfsckd) are Asynchronous
Monitoring Framework (AMF) aware. In this release the CFS agents use the V51
framework.

CFS agent log files

You can use the Cluster File System (CFS) agent log files that are located in the
/var/VRTSvcs/1log directory to debug CFS issues.

# cd /var/VRTSvcs/log
# 1ls

CFSMount_A.log
CFSfsckd _A.log
engine A.log
CmdServer-log A.log
healthview A.log
uuidconfig.log
HostMonitor A.log
hastart.log

tmp

vxfen

The agent framework information is located in the engine Aa.1og file while the agent
entry point information is located in the CFsMount_A.logand CFsfsckd A.log files.

CFS commands
Table 15-1 describes the Cluster File System (CFS) commands.



Administering Storage Foundation Cluster File System High Availability and its components

Table 15-1

Administering CFS

CFS commands

Commands

Description

cfscluster

Cluster configuration command

See the cfscluster(1M) manual page for more information.

cfsmntadm

Adds, deletes, modifies, and sets policy on cluster mounted file systems

See the cfsmntadm(1M) manual page for more information.

cfsdgadm

Adds or deletes shared disk groups to and from a cluster configuration

See the cfsdgadm(1M) manual page for more information.

cfsmount

Mounts a cluster file system on a shared volume

See the cfsmount(1M) manual page for more information.

cfsumount

Unmounts a cluster file system on a shared volume

See the cfsumount(1M) manual page for more information.

cfsshare

Clustered NFS (CNFS) and Common Internet File System (CIFS)
configuration command

See the cfsshare(1M) manual page for more information.

About the mount, fsclustadm, and fsadm commands

The £sadm command performs online administration functions on VxFS file systems,

Storage Checkpoints, or individual files and directories. The fsadm command
supports file system resizing, extent reorganization, directory reorganization,

querying or changing the largefiles flag, and Thin Storage Reclamation. The fsadm

command operates on file systems mounted for read and write access; however,

the -o option can also operate on a special device containing a clean, unmounted
file system. Only a privileged user can change the largefiles flag on a mounted file
system, or resize or reorganize a file system. You can invoke only one instance of

fsadm per file system at a time. If mount_point is a Storage Checkpoint, £sadm
performs the specified operation on the entire file system, including all of the file
system’s Storage Checkpoints.

See the fsadm vxfs(1M) manual page.

The mount and fsclustadm commands are important for configuring cluster file

systems.

41



Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

About the mount command

The mount command with the -o cluster option lets you access shared file
systems.

See the mount_vx£s(1M) manual page.

About the fsclustadm command

The fsclustadm command reports various attributes of a cluster file system. Using
fsclustadm you can show and set the primary node in a cluster, translate node
IDs to host names and vice versa, list all nodes that currently have a cluster mount
of the specified file system mount point, and determine whether a mount is a local
or a cluster mount. The £sclustadm command operates from any node in a cluster
on which the file system is mounted, and can control the location of the primary
node for a specified mount point.

See the fsclustadm(1M) manual page.

About the fsadm command

The £sadm command performs online administration functions on VxFS file systems,
Storage Checkpoints, or individual files and directories. The fsadm command
supports file system resizing, extent reorganization, directory reorganization,
querying or changing the largefiles flag, Thin Storage Reclamation, and free space
defragmentation.

The £sadm command can be invoked from the primary or secondary node.

See the fsadm vxfs(1M) manual page.

Running UNIX commands safely in a shared environment

Any UNIX command that can write to a raw device must be used carefully in a
shared environment to prevent data from being corrupted. For shared VxVM
volumes, SFCFSHA provides protection by reserving the volumes in a cluster to
prevent VxFS commands, such as fsck and mkfs, from inadvertently damaging a
mounted file system from another node in a cluster. However, commands such as
dd execute without any reservation, and can damage a file system mounted from
another node. Before running this kind of command on a file system, be sure the
file system is not mounted on a cluster. You can run the mount command to see if
a file system is a shared or a local mount.

412



Administering Storage Foundation Cluster File System High Availability and its components | 413
Administering CFS

Synchronizing system clocks on all nodes

Ensure that the system clocks on all nodes are synchronized using some external
component such as the Network Time Protocol (NTP). If the nodes are not in sync,
timestamps for creation (ctime) and modification (mt ime) may not be consistent
with the sequence in which operations actually happened.

Growing a CFS file system

There is a master node for Cluster Volume Manager (CVM) as well as a primary
node for the Cluster File System (CFS). When growing a file system, you grow the
volume and slaves from the CVM master, and then grow the file system from any
CFS node. The CVM master and the CFS node can be different nodes.

To determine the primary file system in a cluster

& To determine the primary file system in a cluster, type the following command:

# fsclustadm -v showprimary mount point

To determine that the current node is the master CVM node

¢ To determine if the current node is the master CVM node, type the following
comannd:

# vxdctl -c mode

To actually increase the size of the file system

1 On the master CVM node, type the following command:

# vxassist -g shared disk group growto volume name newlength

2 On any SFCFSHA node, type the following command:

# fsadm -t vxfs -b newsize -r device name mount point

About the /etc/fstab file

In the /etc/fstab file, do not specify any cluster file systems to mount-at-boot
because mounts initiated from £stab occur before cluster configuration begins. For
cluster mounts, use the Cluster Server (VCS) configuration file to determine which
file systems to enable following a reboot.



Administering Storage Foundation Cluster File System High Availability and its components | 414
Administering CFS

When the CFS primary node fails

If the server on which the Cluster File System (CFS) primary node is running fails,
the remaining cluster nodes elect a new primary node. The new primary node reads
the file system intent log and completes any metadata updates that were in process
at the time of the failure. Application I/O from other nodes may block during this
process and cause a delay. When the file system is again consistent, application
processing resumes.

Because nodes using a cluster file system in secondary node do not update file

system metadata directly, failure of a secondary node does not require metadata
repair. CFS recovery from secondary node failure is therefore faster than from a
primary node failure.

See the fsclustadm(1M) manual page for more information.

About distributing the workload on a cluster
Distributing the workload in a cluster provides performance and failover advantages.

For example, if you have eight file systems and four nodes, designating two file
systems per node as the primary would be beneficial. Primaryship is determined
by which node first mounts the file system. You can also use the fsclustadm
command to designate a CFS primary node. The fsclustadm setprimary command
can also define the order in which primaryship is assumed if the current primary
node fails. After setup, the policy is in effect as long as one or more nodes in the
cluster have the file system mounted.

About Storage Checkpoints on SFCFSHA

The creation of Storage Checkpoints works the same on cluster file systems as
they do on local mount file systems.

More information on how to create and maintain Storage Checkpoints is available.

See “About Storage Checkpoints” on page 741.

About Snapshots on SFCFSHA

A snapshot provides a consistent point-in-time image of a VxFS file system. A
snapshot can be accessed as a read-only mounted file system to perform efficient
online backups of the file system. Snapshots implement copy-on-write semantics
that incrementally copy data blocks when they are overwritten on the snapped file
system.

See “About snapshot file systems” on page 682.



Administering Storage Foundation Cluster File System High Availability and its components
Administering CFS

Snapshots for cluster file systems extend the same copy-on-write mechanism for
the I/0 originating from any node in the cluster.

About cluster snapshot characteristics
A cluster snapshot has the following characteristics:

= A snapshot for a cluster-mounted file system can be mounted on any node in
a cluster. The file system can be a primary, secondary, or secondary-only. A
stable image of the file system is provided for writes from any node.

= Multiple snapshots of a cluster file system can be mounted on the same or a
different node in a cluster.

= A snapshot is accessible only on the node mounting a snapshot. The snapshot
device cannot be mounted on two different nodes simultaneously.

= The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable from
other nodes in a cluster as long as the snapshot is active on that device.

= Onthe node mounting a snapshot, the snapped file system cannot be unmounted
while the snapshot is mounted.

» A cluster file system snapshot ceases to exist if it is unmounted or the node
mounting the snapshot fails. A snapshot, however, is not affected if any other
node leaves or joins the cluster.

= A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount a snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

Performance considerations

Mounting a snapshot file system for backup increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the primary
server. Overhead from remote snapshots is small when compared to overall
snapshot overhead. Therefore, running a backup application by mounting a snapshot
from a relatively less loaded node is beneficial to overall cluster performance.

Creating a snapshot on a cluster

To create and mount a snapshot on a two-node cluster using cluster file system
administrative interface commands.

415



Administering Storage Foundation Cluster File System High Availability and its components

Administering VCS

To create a snapshot on a cluster file system

1

To create a VxFS file system on a shared VxVM volume, type the following
command:

# mkfs -t vxfs /dev/vx/rdsk/cfsdg/voll

version 11 layout

104857600 sectors, 52428800 blocks of size 1024, log size
16384 blocks unlimited inodes, largefiles not supported
52428800 data blocks, 52399152 free data blocks 1600
allocation units of 32768 blocks, 32768 data blocks

To mount the file system on all nodes, type the following commands:

# cfsmntadm add cfsdg voll /mntl all=cluster

# cfsmount /mntl

The cfsmntadm command adds an entry to the cluster manager configuration,
then the cfsmount command mounts the file system on all nodes.

Add the snapshot on a previously created volume (snapvol in this example)
to the cluster manager configuration. For example:

# cfsmntadm add snapshot cfsdg snapvol /mntl /mntlsnap sysl=ro

The snapshot of a cluster file system is accessible only on the node where it
is created; the snapshot file system itself cannot be cluster mounted.

Create and locally mount the snapshot file system on sys1, type the following
command:

# cfsmount /mntlsnap

A snapped file system cannot be unmounted until all of its snapshots are
unmounted. Unmount and destroy the snapshot before trying to unmount the
snapped cluster file system, type the following command:

# cfsumount /mntlsnap

Administering VCS

This section provides instructions for the following VCS administration tasks:

Configuring VCS to start Oracle with a specified Pfile
Verifying VCS configuration

416



Administering Storage Foundation Cluster File System High Availability and its components | 417
Administering VCS

= Starting and stopping VCS

If you encounter issues while administering VCS, refer to the troubleshooting section
for assistance.

Configuring VCS to start Oracle with a specified Pfile

If you want to configure Cluster Server (VCS) such that Oracle starts with a specified
Pfile, modify the main.cf file for the Oracle group as follows:

Oracle oral (
Sid @sysl = vrtsl
Sid @sys2 = vrts2
Owner = oracle
Home = "/app/oracle/orahome"
StartUpOpt = SRVCTLSTART
ShutDownOpt = SRVCTLSTOP
pfile="/app/oracle/orahome/dbs/initprodl.ora"
)

Verifying VCS configuration

To verify the VCS configuration:

# cd /etc/VRTSvcs/conf/config
# hacf -verify .

Starting and stopping VCS
This section describes how to start and stop the VCS.
To start VCS
& On each node, start VCS:

# hastart

To stop VCS
¢ On each node, stop VCS:

# hastop -local
You can also use the command hastop -all to stop the VCS cluster on all the

nodes in cluster at the same time; however, make sure that you wait for port 'h' to
close before restarting VCS.



Administering Storage Foundation Cluster File System High Availability and its components | 418
Administering CVM

Configuring destination-based load balancing for LLT

Destination-based load balancing for Low Latency Transport (LLT) is turned off by
default. Veritas recommends destination-based load balancing when the cluster
setup has more than two nodes and more active LLT ports.

To configure destination-based load balancing for LLT

¢ Run the following command to configure destination-based load balancing:

lltconfig -F linkburst:0

Administering CVM

This section describes the tasks to administer Cluster Volume Manager (CVM).

Listing all the CVM shared disks

Use the following command to list all the Cluster Volume Manager shared disks:

# vxdisk -o alldgs list |grep shared

Viewing all available disks in a cluster

Use the -o cluster option with the vxdisk command to obtain a global view of
local and shared disks in the cluster. The command displays the size of the disk,
the physically allocated storage size on the LUN and the allocation unit size, the
disk group, the media type of the disks, and the number of nodes to which each
disk is connected. If the physical allocation is not available, it is marked as N/A in
the command output.

# vxdisk -o cluster list

DEVICE GROUP TYPE SIZE (MB) STATE
sysl disk 0 - hdd 2048 online
sysl disk 1 - hdd 2048 online
sysl disk 2 - hdd 2048 online
sysl disk 3 - hdd 1024 online
sysl disk 4 - hdd 1024 online

To obtain a detailed view for a particular disk in the cluster.

# vxdisk -o cluster list disk name

device : sysl disk O

dg HE

udid : VMware%5FVirtual%20disk$5FDISKS%5F6000C291A7E43F02BF3E8CB06706



Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

dgid

mediatype :  hdd

site HE

status : online
size : 2147483648

connectivity: sysl.example.com

Additionally, the vxsan helper utility provides a summary view of the storage for
individual nodes and disk groups as well as for the complete cluster.

# vxsan list

nodes: total=16 storage=16

diskgroups: total=15 imported=0

hdd: total=67 capacity=187392 MB free=166912 MB
ssd: total=0 capacity=0 MB free=0 MB

# vxsan list devices

DEVICE MEDIA SIZE (MB) GROUP
STATE

emcO_019b hdd 30720 -
online

emcO0 019c hdd 30720 -
online

emcO_019d hdd 30720 -

# vxsan list nodes

HDD SSD
NODE COUNT TOTAL (MB) FREE (MB) COUNT TOTAL (MB) FREE (MB)
sysl 4 4096 2048 0 0 0
sys2 8 126976 125952 0 0 0
sys3 4 4096 2048 0 0 0
sys4 4 4096 3072 0 0 0

# vxsan list devices node=sysl

DEVICE MEDIA SIZE (MB) GROUP
STATE

sysl vmdkO_ 0 hdd 1024 sdg2
online

sysl vmdkO_ 1 hdd 1024 -
online

sysl vmdk0_ 2 hdd 1024 -
online

sysl vmdkO_3 hdd 1024 fssdgl

online

419

NODES

NODES



Administering Storage Foundation Cluster File System High Availability and its components | 420
Administering CVM

# vxsan list devices dg=testdg

DEVICE MEDIA SIZE (MB) GROUP NODES
STATE

sys2_ vmdk0 0 hdd 1024 testdg 1
online

sys2 vmdk0 4 hdd 1024 testdg 1
online

See the vxsan(1M) manual page.

Establishing CVM cluster membership manually

In most cases you do not have to start Cluster Volume Manager (CVM) manually;
it normally starts when Cluster Server (VCS) is started.

Run the following command to start CVM manually:
# vxclustadm -m vecs -t gab startnode

Note that vxclustadm reads the main.cf configuration file for cluster configuration
information and is therefore not dependent upon VCS to be running. You do not
need to run the vxclustadm startnode command as normally the hastart (VCS
start) command starts CVM automatically.

To verify whether CVM is started properly, run the following command:

# vxclustadm nidmap

Name CVM Nid CM Nid State
sysl 0 0 Joined: Master
sys2 1 1 Joined: Slave

Methods to control CVM master selection

When a master node leaves, Cluster Volume Manager (CVM) fails over the master
role to another node in the cluster. CVM selects the node in the cluster that is best
suited to take over the master role. CVM gives preference to nodes that have
connectivity to the maximum number of disks in the shared disk groups. This
behavior is an enhancement over previous releases of CVM.

During regular operations, CVM dynamically assigns an offset preference value to
each node. The preference assignment is automatic, and generally does not require
any intervention from the storage administrator. However, if you need greater control
over the master selection, you can also set customized preference values. When

a master failover occurs, CVM uses the custom node preferences together with the
offset preference values to select the new master node.

See “About setting cluster node preferences for master failover” on page 421.



Administering Storage Foundation Cluster File System High Availability and its components | 421
Administering CVM

To perform scheduled maintenance on a master node, you can manually migrate
the master role to another node in the cluster.

See “About changing the CVM master manually” on page 426.

About setting cluster node preferences for master failover

Cluster Volume Manager (CVM) dynamically assigns an offset preference value to
each node, depending on criteria such as the connectivity to the disks in the disk
group. The preference assignment is automatic and generally does not require any
intervention from the storage administrator.

If you need greater control over the master selection, you can set customized
preference values. Determine which nodes in the CVM cluster are the most
appropriate candidates to run the master role. Assign high or low preference values
to the nodes so that CVM selects the master node from the pool of the most
appropriate nodes. CVM uses the custom node preferences together with the offset
preference values to select the new master node. CVM fails over the master role
to the preferred node.

Cluster node preference for master failover

Cluster Volume Manager (CVM) assigns weight values to each node in the cluster
based on internal criteria, such as the disk connectivity. CVM assigns weight values
from -100 to 100. A negative value means that the node is less likely to become
the new master node in case of failover. A positive value means that the node is
more likely to become the new master node.

If the CVM default values produce the desired behavior, you need not adjust the
preference values. In some cases, you as administrator want more control over
which nodes may become master during a failover. You can assign a positive value
or a negative value as a custom weight on certain nodes. The customized preference
values are static and persistent.

The custom weight values do not prevent CVM from assigning weights. CVM
increases or decreases the weight values, starting from the custom value instead
of starting from the default value of 0. To make sure that your preference has the
effect that you want, consider the effect of the values that CVM generates.

For example, you want to ensure that NodeA always has preference for failover
over NodeB. If NodeA loses connectivity to some disks, CVM reduces the weight
value of NodeA. CVM also might increase the weight value of NodeB. To override
the preference weights that CVM assigns, the custom preference value of NodeA
must be at least 200 more than the custom value of NodeB. For example, CVM
assigns a value of -100 to NodeA and a value of 100 to NodeB. If you want NodeB



Administering Storage Foundation Cluster File System High Availability and its components | 422
Administering CVM

to be the master failover candidate in case NodeA loses connectivity to all disks,
assign NodeA a value of 99.

Considerations for setting CVM node preferences

You can determine which nodes in the Cluster Volume Manager (CVM) cluster are
the most appropriate candidates to run the master role. Assign high or low preference
values to the nodes so that CVM selects the master node from the pool of the most
appropriate nodes.

Set the preference value with the CVM resource agent or the vxclustadm command.
The preference values are in the range from -2147483648 to 2147483647.

If you do not specify custom preferences, CVM gives preference to the node with
the maximum visibility to the storage to become the CVM master node.

To set CVM preferences for master failover, the cluster must be running at cluster
protocol version 110 or greater.

The following scenarios can indicate that you specify preference values:

= A cluster running an I/O intensive application
Set the preferences for master failover so that after a failover, the application
runs on the new master node. After the application crashes due to master node
panic, the application fails over to the new master. During recovery, the failover
does not incur the cost of exchanging messages between slave node and master
node if the I/O intensive application is co-located on the master. This behavior
improves the failover and recovery time.

= A cluster where frequent administrative operations create high loads of internal
I/Os.
Set the preferences for master failover so that after a failover, the application
runs on a slave node.
Storage Foundation issues 1/Os for administrative operations such as creating
volumes or snapshots. In this release, Veritas Volume Manager (VxVM) throttles
the administrative 1/0Os when the application I/O load is high. Throttling reduces
the effect of Storage Foundation generated 1/Os on the application 1/Os.
If your environment requires frequent administrative operations, you can also
set master failover preferences to minimize the effect of the administrative I/Os.
Set lower preference values for master failover on the nodes to which the
applications may failover.

= A cluster where nodes have different storage and processing capacities.
If your cluster contains some nodes with high processing capacity, you want
CVM to prefer those nodes to serve as the master role and to run the
applications. After considering application placement options, decide how to



Administering Storage Foundation Cluster File System High Availability and its components

Administering CVM

prioritize the cluster nodes. Assign high preference values to nodes that have
higher processing capacity or better throughput.

On the other hand, your cluster may contain a few low-capacity nodes, which
are used for regular backup of data or an internal low-priority job. These
low-capacity nodes may not have visibility to all the shared storage so you do
not want the master role to run on these nodes. Set negative preference values
on these nodes so that CVM does not select them as the CVM master over a
more favorable candidate.

A campus cluster where the master node should be on the same site as the
application.

You may want to keep the master node co-located with the site where the
application is running. If you have defined a scheme where application failover
happens within a site, you also want the CVM master to fail over to a node within
the site. Set high preference values at all the nodes of a site, so that the master
stays within the site during master failure. Currently, CVM does not automatically
give preference based on the site.

Setting the cluster node preference using the CVMCluster
agent

On a cluster node, you can set the preference values for master failover using the
CVMCluster agent. Preferences set with this method are persistent across reboots.

To set the cluster node preference using the CVMCluster agent

1

Make the configuration writable.

# haconf -makerw

View the preferences of the node at the current time:
# hares -display cvm_clus -attribute CVMNodePreference

The command displays an integer value specifying the preference of the local
node to become the next master. Run the command on all the nodes and then
check to see which node has the highest preference to become the next master.

Set new preference values:

# hares -modify cvm _clus CVMNodePreference \

"nodel=weightl, node2=weight2, ..."

423



Administering Storage Foundation Cluster File System High Availability and its components | 424
Administering CVM

Setting the cluster node preference value for master
failover using the vxclustadm command

The procedures in this section describe how to set the cluster node preference
value for master failover using the vxclustadm command. Preferences set with this
method are not persistent across reboots.

To set the cluster node preference using the vxclustadm command

1 To view the existing preferences, use the following command:

# vxclustadm getpreference

2 To set a new preference, use the following command:

# vxclustadm setpreference value

Example of setting the cluster node preference value for
master failover

This example describes a case where the cluster environment includes three types
of nodes. You can define master preferences for each type of node, so that Cluster
Volume Manager (CVM) fails over the master role to the best candidate.

Consider the three types of nodes as the following pools:

= Pool1 (Node1, Node2, Node3)
These nodes have high capacity (storage and processing) and have full storage
visibility. An 1/O intensive application is running at these nodes of the cluster.
You are OK to choose a node from this pool over nodes from the other pool
even if it loses 30% of its disks.

= Pool2 (Node4, Nodeb)
The cluster has a few low capacity (storage and processing) nodes. Internal
(in-house) applications use these nodes to do post-processing over the data.
Some of these nodes are also used for snapshots and backups. You want to
choose a node from this pool:
If there are no nodes to choose from Pool1 OR
If all the nodes in Pool1 have lost access to substantial disks reducing their
preference values below the preference values of nodes from Pool2.

= Pool3 (Node6, Node7)
These nodes run applications that do not need to work on all the volumes. These

nodes may have a restricted view to the storage (limited storage visibility). CVM
internally offsets the preference values of nodes in this pool, because they do



Administering Storage Foundation Cluster File System High Availability and its components | 425
Administering CVM

not see all of the storage. To reduce the likelihood that one of these nodes
becomes the master node, you can assign negative preference values.

If you do not define any custom preferences, CVM determines the preference as
an offset depending on disk availability. Suppose at time A, the current master,
Node1, leaves the cluster. CVM calculates the preferences, and chooses Node5
since it has the best connectivity. If Node5 leaves, CVM selects Node4. Nodes from
Pool2 are preferred over nodes in Pool1.

Pool Node CVM offset at time A
Pool1 Node1 (Current master) 0

Pool1 Node2 -30

Pool1 Node3 -25

Pool2 Node4. -20

Pool2 Node5 0

Pool3 Node6 -50

Pool3 Node7 -50

In this example, you want to specify higher preference values to nodes in Pool1
and lower preferences to the nodes in Pool3. The following diagram shows possible
preference values to the nodes in the cluster:

Pool1 Pool2 Pool3

[Preference 30] [Preference 0] [Preference -50]

To set the cluster node preference

1 Foreach node in Pool1, set the preference to 30.

# hares -modify cvm_clus CVMNodePreference \
"nodel=30, node2=30, node3=30"

2 For each node in Pool3, set the preference to -50.
# hares -modify cvm_clus CVMNodePreference '"node6=-50, node7=-50"
After you set the preference values as above, the behavior reflects the desired

behavior in case of failover. If Node1 fails, the other nodes in Pool1 are the most
likely candidates to take over the master. Node3 has lost 25 percent of its disks,



Administering Storage Foundation Cluster File System High Availability and its components | 426
Administering CVM

but it is still preferred over the nodes in the other pools. Although Node5 has good
connectivity, the nodes in Pool1 are preferred over Node5.

Node CVM offset at Custom preference  Total preference
time A

Node1 (current 0 30 30

master)

Node2 -29 30 1

Node3 -25 30 5

Node4. -20 0 -20

Nodeb 0 0 0

Node6 -50 -50 -100

.Node7 -50 -50 -100

About changing the CVM master manually

When you migrate the master role manually, you must specify the node that you
want to take over the master role. You can view the preference values set on the
node to help you determine the best node to take over the master role.

When you change the master node manually, the cluster stays online, and none of
the nodes are required to leave the cluster. However, Cluster Volume Manager
(CVM) quiesces the application I/Os. Therefore, schedule the master switch
operation at an appropriate time to minimize the effect on performance.

After a master failover, if you decide that CVM selected an inappropriate node to
be the master, you can change the master role manually. In this case, you may
also want to change the customized failover preference values for the cluster nodes.

See “About setting cluster node preferences for master failover” on page 421.

Considerations for changing the master manually

If the master is not running on the node best suited to be the master of the cluster,
you can manually change the master. Here are some scenarios when this might
occur.

= The currently running master lost access to some of its disks.
By default, CVM uses I/O shipping to handle this scenario. However, you may
want to failover the application to a node that has access to the disks. When
you move the application, you may also want to relocate the master role to a



Administering Storage Foundation Cluster File System High Availability and its components | 427
Administering CVM

new node. For example, you may want the master node and the application to
be on the same node.

You can use the master switching operation to move the master role without
causing the original master node to leave the cluster. After the master role and
the application are both switched to other nodes, you may want to remove the
original node from the cluster. You can unmount the file systems and cleanly
shut down the node. You can then do maintenance on the node.

= The master node is not scaling well with the overlap of application load and the
internally-generated administrative 1/0Os.
You may choose to reevaluate the placement strategy and relocate the master
node.

See “Considerations for setting CVM node preferences” on page 422.

Changing the CVM master manually

You can change the Cluster Volume Manager (CVM) master manually from one
node in the cluster to another node, while the cluster is online. CVM migrates the
master node, and reconfigures the cluster.

Veritas recommends that you switch the master when the cluster is not handling
Veritas Volume Manager (VxVM) configuration changes or cluster reconfiguration
operations. In most cases, CVM aborts the operation to change the master, if CVM
detects that any configuration changes are occurring in the VxVM or the cluster.
After the master change operation starts reconfiguring the cluster, other commands
that require configuration changes will fail until the master switch completes.

See “Errors during CVM master switching” on page 429.

To change the master online, the cluster must be cluster protocol version 100 or
greater.



Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

To change the CVM master manually

1

To view the current master, use one of the following commands:

# vxclustadm nidmap

Name CVM Nid CM Nid State
sysl 0 0 Joined: Slave
sys2 1 1 Joined: Master

# vxdctl -c mode
mode: enabled: cluster active - MASTER

master: sys2

In this example, the CVM master is sys2.

From any node on the cluster, run the following command to change the CVM

master:
# vxclustadm setmaster nodename

where nodename specifies the name of the new CVM master.

The following example shows changing the master on a cluster from sys2 to

sys1:

# vxclustadm setmaster sysl

428



Administering Storage Foundation Cluster File System High Availability and its components | 429
Administering CVM

3 To monitor the master switching, use the following command:

# vxclustadm -v nodestate

state: cluster member
nodeId=0
masterId=0
neighborId=1

members [0]=0xf
joiners[0]=0x0
leavers[0]=0x0
members [1]=0x0
joiners[1]1=0x0
leavers[1]=0x0

reconfig segqnum=0x9£9767
vxfen=off
state: master switching in progress

reconfig: vxconfigd in join

In this example, the state indicates that switching of the master is in progress.

4  To verify whether the master has successfully changed, use one of the following
commands:

# vxclustadm nidmap

Name CVM Nid CM Nid State
sysl 0 0 Joined: Master
sys2 1 1 Joined: Slave

# vxdctl -c mode
mode: enabled: cluster active - MASTER

master: sysl

Errors during CVM master switching

Veritas recommends that you switch the master when the cluster is not handling
Veritas Volume Manager (VxVM) or cluster configuration changes.

In most cases, Cluster Volume Manager (CVM) aborts the operation to change the
master, if CVM detects any configuration changes in progress. CVM logs the reason
for the failure into the system logs. In some cases, the failure is displayed in the
vxclustadm setmaster output as follows:

# vxclustadm setmaster sysl
VxVM vxclustadm ERROR V-5-1-15837 Master switching, a reconfiguration or
a transaction is in progress.

Try again



Administering Storage Foundation Cluster File System High Availability and its components | 430
Administering CVM

In some cases, if the master switching operation is interrupted with another
reconfiguration operation, the master change fails. In this case, the existing master
remains the master of the cluster. After the reconfiguration is complete, reissue the
vxclustadm setmaster command to change the master.

If the master switching operation has started the reconfiguration, any command
that initiates a configuration change fails with the following error:

Node processing a master-switch request. Retry operation.

If you see this message, retry the command after the master switching has
completed.

Enabling the application isolation feature in CVM environments

Enabling the application isolation feature involves taking applications offline resulting
in application downtime. The VCS configuration is updated to set the cvMpGsubClust
attribute of the CVMCluster resource to 1. The change is persistent across cluster
reboots.

The VCS port ‘h’ must be active for enabling the application isolation feature.
To enable the application isolation feature

1  Verify that the GAB port h is active.

# hastatus

2 Take the CVM group offline on all nodes in the cluster:

# hagrp -offline cvm -sys sys name

3 Enable the cvMpGsubclust attribute of the CVMCluster resource:

# haconf -makerw
# hares -modify cvm_clus CVMDGSubClust 1
# haconf -dump -makero

4  Bring the CVM group online on all nodes:

# hagrp -online cvm -sys sys name

The application isolation capability is enabled and ready for use after the CVM
group is brought online on all nodes.



Administering Storage Foundation Cluster File System High Availability and its components | 431
Administering CVM

5 Import the disk groups to nodes in the cluster.

Since the disk group is not auto-imported on any node in the cluster, you must
configure VCS to import the disk groups to the required nodes in the cluster.
Use one of the following commands, depending on your need.

cfsdgadm Use this option if you are using a block device.
cfsmntadm Use this option if you plan to create a cluster file system on the
block device.

# cfsdgadm add dgname sysl sys2

This will update the VCS configuration file as follows:

group vrts vea cfs int cvmvoldg2 (
SystemList = { sysl = 5, sys2 = 6 }
AutoFailOver = 0
Parallel =1
AutoStartlList = { sysl, sys2 }
)
CVMVolDg cvmvoldg2 (
Critical = 0
CVMDiskGroup = bdg
CVMActivation @sysl = sw
CVMActivation @sys2 = sw
NodeList = { sysl, sys2 }
)
requires group cvm online local firm

// resource dependency tree

//

// group vrts vea cfs int cvmvoldg2
// {

// CVMVolDg cvmvoldg?2

// }

# cfsmntadm add dgname volname /mntl \

sysl=cluster sys2=cluster
This will update the VCS configuration file as follows:
group vrts vea cfs int cfsmountl (

SystemList = { sysl = 5, sys2 = 7 }
AutoFailOver = 0



Administering Storage Foundation Cluster File System High Availability and its components | 432
Administering CVM

Parallel =1
AutoStartlList = { sysl, sys2 }
)
CFSMount cfsmountl (
Critical = 0
MountPoint = "/mntl"
BlockDevice = "/dev/vx/dsk/adg/avoll"
MountOpt @sysl = "cluster"
MountOpt @sys2 = "cluster"
NodeList = { sysl, sys2 }
)
CVMVolDg cvmvoldgl (
Critical = 0
CVMDiskGroup = adg
CVMVolume = { avoll }
CVMActivation @sysl = sw
CVMActivation @sys2 = sw
NodeList = { sysl, sys2 }
)
requires group cvm online local firm
cfsmountl requires cvmvoldgl

// resource dependency tree

//

!/ group vrts_vea_ cfs_int_ cfsmountl
/7 {

!/ CFSMount cfsmountl

/7 {

// CVMVolDg cvmvoldgl

/7 }

/7 }

6 Verify that the application isolation feature is enabled:

# hares -display cvm clus | grep CVMDGSubClust
cvm_clus CVMDGSubClust global 1

Disabling the application isolation feature in a CVM cluster

When you disable the application isolation feature, the traditional CVM behavior is
restored. The VCS port ‘h’ must be active.



Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

To disable the application isolation feature

1

Verify that the GAB port 1 is active.

# hastatus

Take the CVM group offline on all nodes in the cluster:

# hagrp -offline cvm -sys sys name

Disable the cvMbpGsubclust attribute of the CVMCluster resource:

# haconf -makerw
# hares -modify cvm_clus CVMDGSubClust 0

# haconf -dump -makero

Bring the CVM group online on all nodes:

# hagrp -online cvm -sys sys name

Verify that the application isolation feature is disabled:

# hares -display cvm _clus | grep CVMDGSubClust
cvm_clus CVMDGSubClust global 0

Changing the disk group master manually

You can change the disk group master manually from one node in the sub-cluster
to another node, while the sub-cluster is online. CVM migrates the master node,

and reconfigures the sub-cluster.

433



Administering Storage Foundation Cluster File System High Availability and its components | 434
Administering CVM

To change the disk group master manually

1

View the current master, run the following command:

# vxdg nidmap
Nidmap of DG cluster dgl

Name
sysl
sys2
sys3
sys4

Nidmap of DG cluster dg2

Name
sys3
sys2

Nidmap of DG cluster dg3

Name
sysl
sys4
sys3

CVM Nid
0

1
2
3
CVM Nid

CVM Nid

CM Nid

10

CM Nid

CM Nid

10

State

Joined:
Joined:
Joined:
Joined:

State

Joined:
Joined:

State

Joined:
Joined:
Joined:

Master
Slave
Slave
Slave

Slave
Master

Slave
Master
Slave



Administering Storage Foundation Cluster File System High Availability and its components | 435

Administering CVM

From any node in the disk group sub-cluster, run the following command to
change the master:

# vxdg -g dgname setmaster nodename

where nodename specifies the name of the new disk group master.

The following example shows changing the master on the disk group dg2 from
sys2 to sys3:

# vxdg -g dg2 setmaster sys3

Verify that the master has changed successfully:

# vxdg nidmap dg2
Nidmap of DG cluster dg2

Name CVM Nid CM Nid State
sys3 1 0 Joined: Master
sys2 0 1 Joined: Slave

Setting the sub-cluster node preference value for master failover

The preference value determines the best candidate for failing over the master
node in a disk group sub-cluster. This value is not persistent across reboots. The
preference mechanism remains the same as for traditional CVM environments.

To set the sub-cluster node preference value for master failover

1

To view the existing preferences, use the following command:

# vxdg getpreference
preference = 10

preference delta = -0

To set a new preference, use the following command:

# vxdg -g dgname setpreference value

Importing a shared disk group manually

You can use the following command to manually import a shared disk group:

# vxdg -s import dg name



Administering Storage Foundation Cluster File System High Availability and its components | 436
Administering CVM

Deporting a shared disk group manually

You can use the following command to manually deport a shared disk group:
# vxdg deport dg name

Note that the deport of a shared disk group removes the SCSI-3 PGR keys on the
disks.

Mapping remote storage to a node in the cluster

You can map disks or disk groups that are available on remote nodes in the cluster
on a local node. The remote storage can be used just like locally connected disks
though they are not directly connected to the node. You can map the same storage,
if required, to multiple nodes in the cluster. The mapped storage can also be used
to create shared or private disk groups on the local node. After mapping the device
successfully, the remote storage appears just like any other visible local storage
on the node.

When you map a disk group, all the disks present in the disk group are mapped to
the node.

Note: Mappings of remote individual disks are not persistent across cluster reboots.
However if you import the disk group created on the disks, it would automatically
map them to the node. Split or join operations on a mapped disk group do not affect
the mapping. As before, importing the same disk group on more than one node
requires it to be imported in shared mode wherein the associated disks are mapped
to all the nodes in the cluster.




Administering Storage Foundation Cluster File System High Availability and its components | 437

Administering CVM

To map remote storage to a node in the cluster

1

View the list of CVM nodes in the cluster.

[root@sys2~]# /etc/vx/bin/vxclustadm nidmap

Name CVM Nid CM Nid State

sysl 1 0 Joined: Slave
sys2 3 1 Joined: Slave
sys3 2 2 Joined: Slave
sysé 0 3 Joined: Master

View the list of available disks in the cluster.

[root@sys2~]# vxdisk -o cluster list

DEVICE MEDIA SIZE (MB) GROUP
emc_clariion0O 105 hdd 2048 -

emcO0_ 03ce hdd 2048 -

sysl disk 0 hdd 200 - 1
sysl disk 1 hdd 200 - 1
sys2 disk 0 hdd 200 - 1
sys2 disk 1 hdd 200 - 1
sys2_disk_2 hdd 2048 - 4
sys2_disk_3 hdd 2048 - 4
sys3 disk 0 hdd 200 - 1
sys3 disk 1 hdd 200 - 1
sys4 disk 0 hdd 200 - 1
sys4 disk 1 hdd 200 - 1

To map a disk to the local node, run the following command:
[root@sys2~]# vxdisk map sysl disk 1

Where sys1_disk_1 is the name of the remote disk

To map a disk group to the local node, run the following command:
[root@sys2~]# vxdisk map -G sysl dg 1

Where sys1_dg_1 is the name of the remote disk group
Verify the mapping.

[root@sys2 ~]# vxdisk list | grep sysl disk 1

sysl disk 1 auto:cdsdisk - - online remote

NODES

onl
onl
onl
onl
onl
onl
onl
onl
onl
onl



Administering Storage Foundation Cluster File System High Availability and its components | 438
Administering CVM

Removing remote storage mappings from a node in the cluster

Use the vxdisk unmap command to remove remote storage mappings from a node.
The storage is removed from the local storage list of the node. When you remove
a disk group mapping, all disks present in the disk group are removed from the
local storage list of the node.

To remove a disk mapping:

# vxdisk unmap sysl disk 1

Where sys1_disk_1 is the name of the remote disk
To remove a disk group mapping:

# vxdisk unmap -G sysl disk 1

Where sys1_dg_1 is the name of the remote disk group

Starting shared volumes manually

Following a manual Cluster Volume Manager (CVM) shared disk group import, the
volumes in the disk group need to be started manually, as follows:

# vxvol -g dg_name startall
To verify that the volumes are started, run the following command:
# vxprint -htrg dg_name | grep “v

The volumes that are started will display the state "enabled."

Evaluating the state of CVM ports

Cluster Volume Manager (CVM) kernel (vxio driver) uses port ‘v’ for kernel
messaging, port ‘W’ for vxconfigd communication between the cluster nodes, port
'm' for Group Lock Manager (GLM) communication for SmartlO VxVM cache
coherency, and port 'u' for shipping commands from the slave node to the master
node. The following command displays the state of CVM ports:

# gabconfig -a | egrep "Port [vwmu]"

Verifying if CVM is running in an SFCFSHA cluster

You can use the following options to verify whether Cluster Volume Manager is up
or not in an SFCFSHA cluster.

The following output is displayed on a node that is not a member of the cluster:



Administering Storage Foundation Cluster File System High Availability and its components | 439
Administering CVM

# vxdctl -c mode
mode: enabled: cluster inactive
# vxclustadm -v nodestate

state: out of cluster
On the master node, the following output is displayed:
# vxdctl -c mode

mode: enabled: cluster active - MASTER

master: sysl
On the slave nodes, the following output is displayed:
# vxdctl -c mode

mode: enabled: cluster active - SLAVE

master: sys2
The following command lets you view all the CVM nodes at the same time:

# vxclustadm nidmap

Name CVM Nid CM Nid State
sysl 0 0 Joined: Master
sys2 1 1 Joined: Slave

Verifying CVM membership state

The state of CVM can be verified as follows:

# wvxclustadm -v nodestate
state: joining
nodeId=0
masterId=0
neighborId=1
members=0x3
joiners=0x0
leavers=0x0
reconfig segnum=0x72al0b

vxfen=on
The state indicates that CVM has completed its kernel level join and is in the middle
of vxconfigd level join.

The vxdctl -c mode command indicates whether a node is a CVM master or CVM
slave.



Administering Storage Foundation Cluster File System High Availability and its components | 440
Administering CVM

Verifying the state of CVM shared disk groups

You can use the following command to list the shared disk groups currently imported
in the SFCFSHA cluster:

# vxdg list |grep shared

oradatadg enabled, shared 1052685125.1485.sys1

Verifying the activation mode

CVM log files

In an SFCFSHA cluster, the activation of shared disk groups should be set to
“shared-write” on each of the cluster nodes.

To verify whether the “shared-write” activation is set:

# vxdg list dg name |grep activation
local-activation: shared-write

If "shared-write" activation is not set, run the following command:

# vxdg -g dg name set activation=sw

The /var/VRTSvcs/log directory contains the agent log files.

# ed /var/VRTSvcs/log
# 1s -1 *CVM* engine_A.log

CVMCluster A.log CVM Agent log
CVMVolDg_A.log CVM VolDg Agent log
CvMVxconfigd A.log

engine A.log

#
#
# CVM vxconfigd Agent log

# VCS log

You can use the cmd1og file to view the list of Cluster Volume Manager (CVM)
commands that have been executed. The file is located at /var/adm/vx/cmdlog.

Requesting node status and discovering the master node

The vxdct1 utility controls the operation of the vxconfigd volume configuration
daemon. The -c option can be used to request cluster information and to find out
which node is the master. To determine whether the vxconfigd daemon is enabled
and/or running, use the following command:

vxdctl -c mode



Administering Storage Foundation Cluster File System High Availability and its components | 441
Administering CVM

Table 15-2 shows the various messages that may be output according to the current
status of the cluster node.

Table 15-2 Cluster status messages
Status message Description
mode: enabled: The node is the master.

cluster active - MASTER
master: mozart

mode: enabled: The node is a slave.
cluster active - SLAVE
master: mozart

mode: enabled: The node has not yet been assigned a role,
cluster active - role not set and is in the process of joining the cluster.
master: mozart

state: joining
reconfig: master update

mode: enabled: The node is configured as a slave, and is in
cluster active - SLAVE the process of joining the cluster.

master: mozart
state: joining

mode: enabled: The cluster is not active on this node.
cluster inactive

mode: booted: Enable root disk encapsulation but not
master: ts4200-04 transactions.
mode: disabled: Disable transactions.

If the vxconfigd daemon is disabled, no cluster information is displayed.

See the vxdct1(1M) manual page.

Determining if a LUN is in a shareable disk group

The vxdisk utility manages Veritas Volume Manager (VxVM) disks. To use the
vxdisk utility to determine whether a LUN is part of a cluster-shareable disk group,
use the following command:



Administering Storage Foundation Cluster File System High Availability and its components | 442
Administering CVM

# vxdisk list accessname

where accessname is the disk access name (or device name).

For example, a portion of the output from this command (for the device sde) is
shown here:

Device: sde

devicetag: sde

type: auto

clusterid: cvm2

disk: name=shdg0l 1d=963616090.1034.cvm2
timeout: 30

group: name=shdg 1d=963616065.1032.cvm2

flags: online ready autoconfig shared imported

Note that the c1usterid field is set to cvm2 (the name of the cluster), and the f1ags
field includes an entry for shared. The imported flag is only set if a node is a part
of the cluster and the disk group is imported.

Listing shared disk groups

vxdg can be used to list information about shared disk groups. To display information
for all disk groups, use the following command:

# vxdg list

Example output from this command is displayed here:

NAME STATE ID
group?2 enabled, shared 774575420.1170.teal
groupl enabled, shared 774222028.1090.teal

Shared disk groups are designated with the flag shared.

To display information for shared disk groups only, use the following command:
# vxdg -s list
Example output from this command is as follows:

NAME STATE ID
group2 enabled, shared 774575420.1170.teal
groupl enabled, shared 774222028.1090.teal

To display information about one specific disk group, use the following command:



Administering Storage Foundation Cluster File System High Availability and its components | 443
Administering CVM

# vxdg list diskgroup

The following is example output for the command vxdg 1ist groupl onthe master:

Group: groupl

dgid: 774222028.1090.teal
import-id: 32768.1749

flags: shared

version: 140

alignment: 8192 (bytes)

ssb: on

local-activation: exclusive-write
cluster-actv-modes: nodeO=ew nodel=off
detach-policy: local

dg-fail-policy: leave

copies: nconfig=2 nlog=2
config: seqno=0.1976 permlen=1456 free=1448 templen=6
loglen=220

config disk sdk copy 1 len=1456 state=clean online
config disk sdk copy 1 len=1456 state=clean online
log disk sdk copy 1 len=220
log disk sdk copy 1 len=220

Note that the f1ags field is set to shared. The output for the same command when
run on a slave is slightly different. The 1ocal-activationand cluster-actv-modes
fields display the activation mode for this node and for each node in the cluster
respectively. The detach-policy and dg-fail-policy fields indicate how the
cluster behaves in the event of loss of connectivity to the disks, and to the
configuration and log copies on the disks.

Creating a shared disk group

Veritas Volume Manager (VxVM) allows you to create a shared disk group. You
can run the vxdg command to create a shared disk group on a master node or a
slave node. If you create the disk group on a slave node, the vxdg command is
shipped to the master and executed on the master.

If the cluster software has been run to set up the cluster, a shared disk group can
be created using the following command:

# vxdg -s init diskgroup [diskname=]devicenames

where diskgroup is the disk group name, diskname is the administrative name
chosen for a VxVM disk, and devicename is the device name (or disk access name).



Administering Storage Foundation Cluster File System High Availability and its components | 444
Administering CVM

Warning: The operating system cannot tell if a disk is shared. To protect data
integrity when dealing with disks that can be accessed by multiple systems, use
the correct designation when adding a disk to a disk group. VxVM allows you to
add a disk that is not physically shared to a shared disk group if the node where
the disk is accessible is the only node in the cluster. However, this means that other
nodes cannot join the cluster. Furthermore, if you attempt to add the same disk to
different disk groups (private or shared) on two nodes at the same time, the results
are undefined. Perform all configuration on one node only, and preferably on the
master node.

Importing disk groups as shared

You can import shared disk groups on a master node or a slave node. If you run
the vxdg command to import the shared disk group on a slave node, the command
is shipped to the master and executed on the master.

Disk groups can be imported as shared using the vxdg -s import command. If
the disk groups are set up before the cluster software is run, the disk groups can
be imported into the cluster arrangement using the following command:

# vxdg -s import diskgroup

where diskgroup is the disk group name or ID. On subsequent cluster restarts, the
disk group is automatically imported as shared. Note that it can be necessary to
deport the disk group (using the vxdg deport diskgroup command) before invoking
the vxdg utility.

Forcibly importing a disk group

You can use the -£ option to the vxdg command to import a disk group forcibly.

Warning: The force option (-£) must be used with caution and only if you are fully
aware of the consequences such as possible data corruption.

When a cluster is restarted, Veritas Volume Manager (VxVM) can refuse to
auto-import a disk group for one of the following reasons:

= Adisk in the disk group is no longer accessible because of hardware errors on
the disk. In this case, use the following command to forcibly reimport the disk
group:

# vxdg -s -f import diskgroup



Administering Storage Foundation Cluster File System High Availability and its components | 445
Administering CVM

Note: After a forced import, the data on the volumes may not be available and
some of the volumes may be in the disabled state.

= Some of the disks in the shared disk group are not accessible, so the disk group
cannot access all of its disks. In this case, a forced import is unsafe and must
not be attempted because it can result in inconsistent mirrors.

Converting a disk group from shared to private

You can convert shared disk groups on a master node or a slave node. If you run
the vxdg command to convert the shared disk group on a slave node, the command
is shipped to the master and executed on the master.

To convert a shared disk group to a private disk group, first deport it on the master
node using this command:

# vxdg deport diskgroup

Then reimport the disk group on any cluster node using this command:

# vxdg import diskgroup

Moving objects between shared disk groups

You can move objects between shared disk groups on a master node or a slave
node. If you run the vxdg move command to move objects between shared disk

groups on a slave node, the command is shipped to the master and executed on
the master.

You can use the vxdg move command to move a self-contained set of Veritas
Volume Manager (VxVM) objects such as disks and top-level volumes between
disk groups. In a cluster, you can move such objects between private disk groups
on any cluster node where those disk groups are imported.

See “Moving objects between disk groups” on page 965.

Splitting shared disk groups

You can use the vxdg split command to remove a self-contained set of Veritas
Volume Manager (VxVM) objects from an imported disk group, and move them to
a newly created disk group.

See “Splitting disk groups” on page 968.

Splitting a private disk group creates a private disk group, and splitting a shared
disk group creates a shared disk group. You can split a private disk group on any
cluster node where that disk group is imported.



Administering Storage Foundation Cluster File System High Availability and its components | 446
Administering CVM

You can split a shared disk group or create a shared target disk group on a master
node or a slave node. If you run the command to split a shared disk group or to
create a shared target disk group on a slave node, the command is sent to the
master and executed on the master.

Joining shared disk groups
You cannot join a private disk group and a shared disk group.

You can use the vxdg join command to merge the contents of two imported disk

groups. In a cluster, you can join two private disk groups on any cluster node where
those disk groups are imported.

If the source disk group and the target disk group are both shared, you can perform
the join from a master node or a slave node. If you run the command to perform
the join on a slave node, the command is sent to the master and executed on the
master.

See “Joining disk groups” on page 970.

Changing the activation mode on a shared disk group

The activation mode for access by a cluster node to a shared disk group is set
directly on that node.

The activation mode of a shared disk group can be changed using the following
command:

# vxdg -g diskgroup set activation=mode

The activation mode is one of exclusivewrite OF ew, readonly Of ro, sharedread
Or sr, sharedwrite Or sw, Or off.

If you use this command to change the activation mode of a shared disk group, you
must first change the activation mode to of £ before setting it to any other value, as
shown here:

# vxdg -g myshdg set activation=off

# vxdg -g myshdg set activation=readonly

See “Activation modes of shared disk groups” on page 172.

Enabling 1/O shipping for shared disk groups

The default for the I/O ship policy is o££. You can turn on I/O shipping for all nodes.



Administering Storage Foundation Cluster File System High Availability and its components | 447
Administering CVM

To enable 1/0 shipping on a shared disk group
& Set the I/O shipping policy to on for the specified disk group.

# vxdg -g diskgroup set ioship=on

To disable 1/0 shipping on a shared disk group
¢ Set the 1/0O shipping policy to off for the specified disk group.

# vxdg -g diskgroup set ioship=off

Setting the detach policy for shared disk groups
The default for the detach policy is global.
To change the detach policy on a shared disk group

& To set the detach policy to 10cal on a shared disk group.
# vxdg -g diskgroup set diskdetpolicy=local
To set the detach policy to global (the default).

# vxdg -g diskgroup set diskdetpolicy=global

Volume-level 1/O shipping

Dirty region logging (DRL), if enabled, speeds up the recovery of mirrored volumes
after a system crash. When an application writes a stream of data to a mirrored
volume, the DRL logging and data writes take place in a serial manner, which
impacts the application latency. Network delays within the cluster interconnections
may further increase the latency in the 1/0 performance.

Veritas Volume Manager (VxVM) provides enhanced I/O performance with the
volume-level I/0O shipping feature. Volume-level I/O shipping clubs the DRL logging
and data writes before sending it over the network. However, this clubbing does
not change the order in which DRL logging and data writes are performed. It only
reduces the network hops that are involved in the write 1/0 operation and thus
reduce the latency of the write operation.

The support for volume-level I/O shipping is limited only to:
» Local disks
= Disk group version 260 and later

= CVM protocol version 210 and later



Administering Storage Foundation Cluster File System High Availability and its components | 448
Administering CVM

Enabling or disabling volume-level I/O shipping

To ensure fewer network hops during volume-level I/O shipping, the data volume
and the associated DCO volume must be connected to the same node. When
volume-level 1/0 shipping is enabled for a volume, it may change the DCO volume
configuration if required. For example, if the connectivity for the data volume and
the associated DCO volume does not match, additional mirrors are added to the
DCO volume to match the connectivity. However, if the add mirror operation on the
DCO volume fails, volume-level I/O shipping is not enabled.

If the data volume or the associated DCO volume plexes are detached or disabled,
volume-level I/O shipping is automatically disabled. The volume or the associated
plexes may be detached or disabled if the node that contributes storage to the
volume leaves the cluster or if the underlying storage fails. However, this feature
is automatically enabled when the detached plexes are reattached and the
connectivity is restored.

If you manually disable volume-level I/O shipping, the additional DCO mirrors, if
any, that are added when this feature is enabled are removed.



Administering Storage Foundation Cluster File System High Availability and its components | 449
Administering CVM

To enable volume-level I/O shipping in FSS environments

1 Enable volume-level I/O shipping for a specific volume using the following
command:

# vxvol -g <dgname> set obj ioship=on <volname>

2 \Verify that volume-level I/O shipping is enabled by using use the vxkprint
command and checking the kf1ag3 value of the volume for which it was
enabled.

Note: If volume-level I/O shipping is enabled, the ioship capable and the
ioship_enable flags are set for the given volume.

For example:

# /etc/vx/diag.d/vxkprint
# Group-Objects: (cnt: 10)
Mirrorvol voll: rid=0.1032 assoc=0.0

update tid=0.1063

1en=1024000 poolid=1 cdsrecover=0/0 (clean) ap_ recover seqno: 0

ap_recover segno _done: 0

kflag=(enabled|rdwr|fastresync|except-det-sparse|writeback]

writecopy|unknown=0x200000)
kflag2=(instant-ready|init-drl|enable-drl|cache-implicit|iomode-req)

kflag3=(write ack auto|ioship capable|ioship enable)

sflag=()
guid = {723f4aa2-b8ce-1le7-%9ae4-db37e6453020}
vvr_tag = 0

proxy rid = 0.0 mediatype = hdd
iocount = 0
maxiops = 0

volgrp =



Administering Storage Foundation Cluster File System High Availability and its components | 450
Administering CVM

To disable volume-level I/O shipping in FSS environments

1 Disable volume-level I/O shipping for a specific volume using the following
command:

# vxvol -g <dgname> set obj ioship=off <volname>

2 \Verify that volume-level I/O shipping is disabled by using the vxkprint
command and checking the kf1ag3 value of the volume for which it was
disabled.

Note: If volume-level I/O shipping is disabled, neither the ioship capable flag
nor the ioship_enable flag is set for the volume.

For example:

# /etc/vx/diag.d/vxkprint

# Group-Objects: (cnt: 10)

Mirrorvol voll: rid=0.1032 assoc=0.0
update tid=0.1063

1en=1024000 poolid=1 cdsrecover=0/0 (clean) ap recover seqgno: 0

ap_recover segno _done: 0

kflag=(enabled|rdwr|fastresync|except-det-sparse|writeback]

writecopy|unknown=0x200000)
kflag2=(instant-ready|init-drl|enable-drl|cache-implicit|iomode-req)

kflag3=(write ack auto)

sflag=()
guid = {723f4aa2-b8ce-1le7-%9ae4-db37e6453020}
vvr_tag = 0

proxy rid = 0.0 mediatype = hdd

iocount = 0

Note: If volume-level I/O shipping is automatically disabled, only the ioship capable
flag is set.

# /etc/vx/diag.d/vxkprint

kflag3=(write_ack_auto|ioship_capable)




Administering Storage Foundation Cluster File System High Availability and its components

Administering CVM

Controlling the CVM tolerance to storage disconnectivity

By default, CVM enables a node to join the cluster as long as it has access to all
of the disks through another node. Similarly, as long as at least one node can access
the disks in a shared disk group, CVM can import the shared disk group. This
behavior occurs when the tunable parameter storage_connectivity is set to
asymmetric.

If required, you can configure CVM to require that a node has access to all of the
disks in a shared disk group before the node can join the cluster. The connectivity
is also required before a shared disk group can be imported. This behavior occurs
when the tunable parameter storage_connectivity is set to resilient.

The disk group version and cluster protocol version must be set to levels that support
the asymmetric behavior.

To set the storage connectivity parameter to resilient

1

Display the current setting for the CVM tolerance to storage disconnectivity.

# vxtune storage_connectivity
KEYWORD CURRENT-VALUE DEFAULT-VALUE

storage connectivity asymmetric asymmetric

If the output shows that the current value is asymmetric, you can enable the
resilient behavior with the following command:

# vxtune storage_connectivity resilient

Verify the changed setting.

# vxtune storage_connectivity
KEYWORD CURRENT-VALUE DEFAULT-VALUE

storage connectivity resilient asymmetric

Handling cloned disks in a shared disk group

If a disk is cloned or copied in such a way to created a duplicate disk ID, you must
perform special actions to import the disk into Veritas Volume Manager (VxVM).
The procedures are the same for shared disk groups as for private disk groups.
When you are ready to import the disk, specify the -s option to the vxdg import
command:

# vxdg -s import diskgroup

See “Importing a disk group containing hardware cloned disks ” on page 1009.

451



Administering Storage Foundation Cluster File System High Availability and its components | 452
Administering CVM

Creating volumes with exclusive open access by a node

When using the vxassist command to create a volume, you can use the

exclusive=on attribute to specify that the volume may only be opened by one node
in the cluster at a time. For example, to create the mirrored volume volmir in the
disk group dskgrp, and configure it for exclusive open, use the following command:

# vxassist -g dskgrp make volmir 5g layout=mirror exclusive=on

Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster can
open a volume simultaneously. This is the default behavior.

Setting exclusive open access to a volume by a node

Exclusive open access on a volume can be set from the any node in the cluster.
Ensure that none of the nodes in the cluster have the volume open when setting
this attribute.

You can set the exclusive=on attribute with the vxvol command to specify that
an existing volume may only be opened by one node in the cluster at a time.

For example, to set exclusive open on the volume volmir in the disk group dskgrp,
use the following command:

# vxvol -g dskgrp set exclusive=on volmir

Multiple opens by the same node are also supported. Any attempts by other nodes
to open the volume fail until the final close of the volume by the node that opened
it.

Specifying exclusive=off instead means that more than one node in a cluster can
open a volume simultaneously. This is the default behavior.

Displaying the cluster protocol version

The following command displays the cluster protocol version running on a node:
# vxdctl list
This command produces output similar to the following:

Volboot file
version: 3/1

seqno: 0.19



Administering Storage Foundation Cluster File System High Availability and its components | 453
Administering CVM

cluster protocol version: 160
hostid: giga
hostguid: {2d7702ba-eba8-11e5-bf2d-6def043d7adc}

You can also check the existing cluster protocol version using the following
command:

# vxdctl protocolversion
This produces output similar to the following:

Cluster running at protocol 160

Displaying the supported cluster protocol version range

The following command displays the maximum and minimum protocol version
supported by the node and the current protocol version:

# vxdctl support
This command produces output similar to the following:

Support information:

vxconfigd vrsn: 39
dg_minimum: 20
dg_maximum: 220
kernel: 39
protocol minimum: 90

protocol maximum: 160

protocol current: 160

You can also use the following command to display the maximum and minimum
cluster protocol version supported by the current Veritas Volume Manager (VxVM)
release:

# vxdctl protocolrange
This produces output similar to the following:

minprotoversion: 90, maxprotoversion: 160

Recovering volumes in shared disk groups

The vxrecover utility is used to recover plexes and volumes after disk replacement.
When a node leaves a cluster, it can leave some mirrors in an inconsistent state.
The vxrecover utility can be used to recover such volumes. The -c option to



Administering Storage Foundation Cluster File System High Availability and its components | 454
Administering CVM

vxrecover causes it to recover all volumes in shared disk groups. The vxconfigd
daemon automatically calls the vxrecover utility with the -c option when necessary.

Warning: While the vxrecover utility is active, there can be some degradation in
system performance.

Obtaining cluster performance statistics

The vxstat utility returns statistics for specified objects. In a cluster environment,
vxstat gathers statistics from all of the nodes in the cluster. The statistics give the
total usage, by all nodes, for the requested objects. If a local object is specified, its
local usage is returned.

You can optionally specify a subset of nodes using the following form of the
command:

# vxstat -g diskgroup -n node[,node...]

where node is the Cluster Volume Manager (CVM) node ID number. You can find
out the CVM node ID by using the following command:

# vxclustadm nidmap

If a comma-separated list of nodes is supplied, the vxstat utility displays the sum
of the statistics for the nodes in the list.

For example, to obtain statistics for node 2, volume vo11,use the following command:
# vxstat -g diskgroup -n 2 voll

This command produces output similar to the following:

OPERATIONS BLOCKS AVG TIME (ms)
TYP NAME READ WRITE READ WRITE READ WRITE
vol wvoll 2421 0 600000 0 99.0 0.0

To obtain and display statistics for the entire cluster, use the following command:

# vxstat -b

The statistics for all nodes are summed. For example, if node 1 performed 100 I/O
operations and node 2 performed 200 I/O operations, vxstat -b displays a total
of 300 I/O operations.



Administering

Administering Storage Foundation Cluster File System High Availability and its components
Administering CVM

CVM from the slave node

Cluster Volume Manager (CVM) requires that the master node of the cluster
executes configuration commands, which change the object configuration of a CVM
shared disk group. Examples of configuration changes include creating shared disk
groups, importing shared disk groups, deporting shared disk groups, and creating
volumes or snapshots in a shared disk group.

Starting in 5.1 Service Pack 1 release of SFCFSHA, you can issue most
configuration commands that operate on the shared disk group from any node in
the cluster. If you issue the command on the slave node, CVM sends the commands
from the slave node to the master node. CVM then executes the command on the
master node. In normal conditions, Veritas recommends that you issue
configuration-changing commands for a shared disk group on the master node. If
the circumstances require, you can issue these commands from the slave node.

Commands that operate on private disk groups are not sent to the master node.
Similarly, CVM does not send commands that operate locally on the slave node,
such as vxprint and vxdisk list.

CVM uses the Group Membership Services and Atomic Broadcast (GAB) transport
mechanism of Cluster Server (VCS) to send the commands from the slave node
to the master node.

When you issue a command on the slave that is executed on the master, the
command output (on the slave node) displays the object names corresponding to
the master node. For example, the command displays the disk access name
(daname) from the master node.

When run from a slave node, a query command such as vxtask oOr vxstat displays
the status of the commands on the slave node. The command does not show the
status of commands that originated from the slave node and that are executing on
the master node.

Note the following error handling for commands that you originate from the slave
node, which CVM executes on the master:

» If the vxconfigd daemon on either the slave node or on the master node fails,
the command exits. The instance of the command on the master also exits. To
determine if the command executed successfully, use the vxprint command
to check the status of the Veritas Volume Manager (VxVM) objects.

= If the slave node that sent the command or the master node leaves the cluster
while the master is executing the command, the command exits on the master
node as well as on the slave node. To determine if the command executed
successfully, use the vxprint command to check the status of the VxVM objects.

Note the following limitations for issuing CVM commands from the slave node:

455



Administering Storage Foundation Cluster File System High Availability and its components | 456
Administering Flexible Storage Sharing

= The CVM protocol version must be at least 100 on all nodes in the cluster.
See “Displaying the cluster protocol version” on page 452.

s CVM uses the values in the defaults file on the master node when CVM executes
the command. To avoid any ambiguity, Veritas recommends that you use the
same values in the defaults file for each of the nodes in the cluster.

= CVM does not support executing all commands on the slave node. You must
issue the following commands only on the master node:

= Commands that specify a controller name. For example:

# vxassist -g shareddg make sharedvol 20M ctlr:fscsiO

= Commands that specify both a shared disk group and a private disk group.
For example:

# vxdg destroy privatedg shareddg

= Commands that include the defaults file as an argument. For example:

# vxassist -d defaults file

= Veritas Volume Replicator (VVR) commands including vxibc, vxrlink,

vxrsync,vxrvg,vrport,vrstat,and vradmin

s The vxdisk command options that act on shared disk groups.
See “CVM commands supported for executing on the slave node” on page 1201.

Administering Flexible Storage Sharing

Installing SFCFSHA automatically enables the Flexible Storage Sharing feature
(FSS). No additional installation steps are required. LLT, GAB, and fencing must
be configured before administering FSS. The fencing coordination points can either
be SCSI-3 PR capable shared storage or CP servers.

See the Storage Foundation Cluster File System High Availability Configuration
and UpgradeGuide.

FSS administrative tasks include exporting a disk for FSS, setting the FSS option
on a disk group, setting the host prefix for intuitive naming of devices connected to
the host, displaying exported disks and network shared disks, and optionally tuning
FSS memory consumption.

See “About Flexible Storage Sharing” on page 200.
See “About Flexible Storage Sharing disk support” on page 457.



Administering Storage Foundation Cluster File System High Availability and its components | 457
Administering Flexible Storage Sharing

About Flexible Storage Sharing disk support

CVM relies on unique disk IDs (UDIDS) for identifying disks across different nodes
in the cluster. FSS only supports disks that have the capability of generating unique
IDs.

FSS supports the following disks:

= Disks that are listed in the Hardware Compatibility List (HCL):
https://www.veritas.com/support/en_US/article.000126344

= Disks that have a JBOD definition specified using the vxddladm addjbod CLI.
You must ensure that the specification is such that it provides a unique way of
identifying a specific disk in your environment.

» SCSI-3 disks that provide an IEEE certified NAA ID in the VPD page 0x83 inquiry
data

The vxddladm checkfss diskname command can be used to test if the disk
complies with the required conditions. If the conditions are not met, adding the disks
to an FSS configuration using the vxdisk export diskname command fails.

About the volume layout for Flexible Storage Sharing disk groups

By default, a volume in disk groups with the FSS attribute set is mirrored across
hosts. This default layout ensures that data is available if any one host becomes
unavailable. Associated instant data change object (DCO) log volumes are also
created by default.

The following volume attributes are assumed by default:
m mirror=host

m nmirror=2

m logtype=dco

m ndcomirror=2

m dcoversion=30

You can specify the hosts on which to allocate the volume by using the host disk
class.

See “Using the host disk class and allocating storage” on page 461.

Traditionally with disk groups without the FSS attribute set, the default volume layout
is concatenated. However, you can still choose to create concatenated volumes in
disk groups with the FSS attribute set by explicitly using the 1ayout=concat option
of the vxassist command.


https://www.veritas.com/support/en_US/article.000126344

Administering Storage Foundation Cluster File System High Availability and its components | 458
Administering Flexible Storage Sharing

By default, the mirrored volume is allocated across hosts. If host-specific storage
is not available to meet this criteria, then the volume is allocated on external storage,
with the default layout as concatenated as with traditional disk groups.

Existing disk classes, such as dm, can be used with FSS. The host prefix in a disk
access name indicates the host to which the disk is connected.

For example, you can create a volume with one plex on a local disk (disk1), and
another plex on a remote disk(hostA_disk2) where the host prefix (hostA) for the
remote disk represents another host in the cluster:

# vxassist -g mydg make voll 10g layout=mirror dm:diskl dm:hostA disk2

See “Administering mirrored volumes using vxassist” on page 462.

You can also use the vxdisk list accessname command to display connectivity
information, such as information about which hosts are connected to the disk.

Setting the host prefix

The host prefix provides a way to intuitively identify the origin of the disk, for example,
the host to which the disk is physically connected. The vxdct1 command sets the
host prefix. By setting the instance for the host prefix, you can set an alternate host
identifier that satisfies the disk access name length constraint.

Note: Disks from an array enclosure are not displayed with a host prefix.

In the case of direct attached storage (DAS) disks, a host prefix is added to the disk
at the time of disk discovery itself to avoid disk naming conflicts.

In the case of array based enclosures connected through the SAN or Fibre Channel
(FC), it is possible to connect different enclosures of the same type (same vendor,
same model) to different nodes exclusively and thus create a DAS-type topology.
In such cases, there is also the possibility of the same VxVM device name getting
assigned to different disks on different nodes. If such disks are exported for use in
an FSS environment, the same confusion over names can arise. In such cases
however, the hostprefix will not be attached to the exported disks. The naming
conflicts are resolved by adding a serial number to the VxVM device name for disks
with same name. However, it is recommended that the name of the enclosure be
changed for easy identification and readability.

The difference of naming behavior between DAS disks and enclosure based disks
exists due to the following reasons. It is possible for the enclosure to be connected
to only one node at any given instance of a CVM cluster. However, with a node join
there could be two (or more) nodes connected to the enclosure at another instance.
With nodes dynamically joining and leaving the cluster, connectivity to array



Administering Storage Foundation Cluster File System High Availability and its components | 459
Administering Flexible Storage Sharing

enclosures can also change dynamically. Therefore, it is not reliable to use the
connectivity information to decide if the topology is SAN or DAS, to decide whether
the host-prefix needs to be added or not. As a result, CVM does not add a hostprefix
to VxVM devices based on enclosure connectivity. Instead when a naming conflict
occurs, a serial number is added to the VxVM device name. On the other hand
DAS disks can be attached to only one node at a time, and thus it is safe to add a
hostprefix by default (without waiting for the naming conflict to occur).

By default Cluster Volume Manager (CVM) uses the host name from the Cluster
Server (VCS) configuration file as the host prefix. If the hostid in /etc/vx/volboot
file is greater than 15 characters, and if a shorter host prefix is not set using vxdct1,
Cluster Manager node IDs (CMID) are used as prefixes.

For more information, see the vxdct1 (1M) manual page.

The following command sets/modifies the logical name for the host as the failure
domain:

# vxdctl set hostprefix=logicalname

To unset the logical name for the host as the failure domain, use the following
command:

# vxdctl unset hostprefix

The vxdctl 1ist command displays the logical name set as the host prefix.

Exporting a disk for Flexible Storage Sharing

To use disks that are not physically shared across all nodes of a cluster (disks that
are connected to one or more nodes of the cluster), the disks must first be exported
for network sharing. Exporting a device makes the device available to all nodes in
the cluster. The vxdisk command lets you export or unexport one or more disks
for or from network sharing.

Note: To ensure data protection, FSS uses PGR-based data disk fencing. For disks
that are purely locally attached, fencing is implicitly handled within FSS, since all
the 1/Os to the disk go through the node to which the disk is directly connected.
Therefore, devices that do not support SCSI3 PGR are supported with FSS with
fencing. For disks that are connected to multiple hosts but do not support SCSI3
PGR, there is no way to ensure that fencing is enabled and thus this configuration
is not supported when fencing is enabled.

The following command exports one or more disks for network sharing:



Administering Storage Foundation Cluster File System High Availability and its components | 460
Administering Flexible Storage Sharing

# vxdisk export accessnamel accessname2

where accessname1 and accessname?2 are the access names of the disks you
want to export for network sharing.

In addition, you can use the -o alldisks and -o local options to export all local
and all shared disks, and all locally connected disks, respectively.

Note: Boot disks, opaque disks, disks part of imported or deported disks groups,
and non-VxVM disks cannot be exported.

Alternately, the following command unexports one or more disks from network
sharing:

# vxdisk unexport accessnamel accessnameZ2
where accessname1 and accessname?2 are the disk access names of the disks
you want to unexport from network sharing.

In addition, you can use the -o alldisks and -o local options to unexport all
local and shared disks, and all locally connected disks, respectively.

Disks can also be configured for FSS by exporting them during initialization using
the vxdisksetup and vxdisk init commands.

Initialize the disks with network sharing enabled, using one of the following
commands:

# vxdisksetup -i disk address export
# vxdisk [-f] init accessname export

where disk_address is the device that corresponds to the disk being operated on
and accessname is the system-specific name that relates to the disk address.

After exporting a disk, you can use the vxdisk list and vxprint commands to
list network shared disks, and identify disks that are remote to the node on which
you run the command.

See “Displaying exported disks and network shared disk groups” on page 463.

Once a disk is exported, you can create shared disk groups using any combination
of network shared disks and physically shared disks. Before adding an exported
disk to a disk group, the Flexible Storage Sharing attribute needs to be set on the
shared disk group.

See “Setting the Flexible Storage Sharing attribute on a disk group” on page 461.



Administering Storage Foundation Cluster File System High Availability and its components | 461
Administering Flexible Storage Sharing

Setting the Flexible Storage Sharing attribute on a disk group

The FSS attribute needs to be set on a disk group before any exported disks can
be added to the disk group. This prevents the accidental addition of exported disks
to disk groups. In addition, the tunable parameter storage connectivity mustbe
set to asymmetric. The FSS attribute can only be set on shared disk groups.

The vxdg command lets you create a disk group with the FSS attribute turned on
or set the FSS attribute on an existing disk group.

Note: The disk group version must be set to 190 or higher in order to create or set
an FSS disk group. When setting the FSS attribute on a disk group or importing an
existing disk group as an FSS disk group, you may need to upgrade the disk group
version.

The following command sets the FSS attribute on a disk group during initialization:
# vxdg -s -o fss init diskgroup [medianame=] accessname

where diskgroup is the disk group name, medianame is the administrative name
chosen for a VM disk, and accessname is the device name or disk access name.

The following command sets the FSS attribute on a disk group:
# vxdg -g diskgroup set fss=on

The following command sets the FSS attribute on a disk group during a disk group
import:

# vxdg -s -o fss=on import diskgroup

After setting the FSS attribute on a disk group, you can use the vxdg 1ist command
on a specified disk group to list all hosts in the cluster contributing their local disks
to the disk group, and storage enclosures from which disks have been added to
the disk group. Once you have created a disk group with the FSS attribute turned
on or set the FSS attribute on an existing disk group, the ioship policy is set to on
and the disk detach policy is set to local detach policy.

See “Displaying exported disks and network shared disk groups” on page 463.

Using the host disk class and allocating storage

You can use the vxassist command to use the host disk class for storage allocation.
The host class specifies the host from which to allocate storage. The host class
only applies to disk groups configured for FSS.



Administering

Administering Storage Foundation Cluster File System High Availability and its components | 462
Administering Flexible Storage Sharing

The host disk class instance is the same as the host name from the Cluster Server
(VCS) configuration file, which can be displayed using the vxclustadm nidmap
command.

Mirrored volumes can be created with mirrors across hosts using the host disk class
using the mirror=host parameter:

# vxassist -g mydg make voll 10g host:vm240v5 host:vm240v6

# vxassist -g mydg make voll 10g mirror=host

mirrored volumes using vxassist

By default, a volume in disk groups with the FSS attribute set is mirrored across
hosts. You can use the vxassist command to create mirrored volume sets spanning
across mixed media types, or using a combination of internal disks and external
shared disks (i.e. SAN-attached disks).

To create a mirrored volume with HDD and SSD disks

1 Create a volume on either the HDD or the SSD disk:
# vxassist -g diskgroup make voll maxsize layout=concat init=none

Where diskgroup is the diskgroup name. HDD is selected by default.
2 Add aplex based on SSD(s):

# vxassist -g diskgroup mirror voll mediatype:ssd

3 Activate the volume:

# vxvol -g diskgroup init active voll

Note: The mirrored volume may not preserve allocation constraints set.

If you have created a mirrored volume on an SSD disk using the init=none option,
you can manually add a new mirror for a DCO volume using the following command:

# vxassist -g diskgroup mirror volume-dcl diskname

Where diskgroup is the diskgroup name and diskname is the name of a disk from
the host on which the new data mirror was added. Veritas recommends that you
specify the name of a disk on which the data mirror was created.



Administering Storage Foundation Cluster File System High Availability and its components | 463
Administering Flexible Storage Sharing

To create a mirrored volume using internal disks and external physically
shared disks

1 Create a volume on either the internal disk or the external physically shared
disks:

# vxassist -g diskgroup make voll maxsize layout=concat init=none
host:hostl

Where diskgroup is the diskgroup name.

2 Add a plex based on external shared disks:

# vxassist -g diskgroup mirror voll enclr:emcO

3 Activate the volume:

# vxvol -g diskgroup init active voll

Note: Specifying the host disk class allocates the volume on the internal storage
that is connected to the specified host.

See “Using the host disk class and allocating storage” on page 461.

Displaying exported disks and network shared disk groups

The vxdisk list and vxprint commands list network shared disks identifying the
disks that are remote to the host from which the command is run. The vxdisk 1ist
command also provides an option to list disks while filtering out all remote disks.

To display exported disks, use the vxdisk 1ist command:

# vxdisk list

DEVICE TYPE DISK GROUP STATUS

disk_ 01 auto:cdsdisk - - online exported
disk_ 02 auto:cdsdisk - - online exported
vm240v6_disk 01 auto:cdsdisk - - online remote
vm240v6_disk 02 auto:cdsdisk - - online remote

The disk name includes a prefix that indicates the host to which the disk is attached.
For example, for disk vm240v6 disk 01, vm240vé is the host prefix. The exported
status flag denotes disks that have been exported for FSS. The remote flag denotes
disks that are not local to the host on which the command is run.



TY
dg
dm
dm
dm

NAME
sdg
disk 1
disk 4
disk 5

Administering Storage Foundation Cluster File System High Availability and its components | 464
Administering Flexible Storage Sharing

If the accessname argument is specified, disk connectivity information is displayed
in the long listing output. This information is available only if the node on which the
command is run is part of a CVM cluster.

The -0 1ocal option of the vxdisk 1ist command filters out all remote disks.

For example:

# vxdisk -o local list

DEVICE TYPE DISK GROUP STATUS
disk 01 auto:cdsdisk - - online exported
disk 02 auto:cdsdisk - - online

The -0 fullshared option displays all disks that are shared across all active nodes.

The -o partialshared option displays all disks that are partially shared. Partially
shared disks are connected to more than one node but not all the active nodes in
the cluster.

Alternately, you can use the vxprint command to display remote disks in a disk
group:

# vxprint

Disk group: sdg

ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
sdg - - - - - -
vm240v6_disk 1 - 2027264 - REMOTE - -
vm240v6_disk 4 - 2027264 - REMOTE - -
disk5 - 2027264 - - - -

The vxdg 1ist command displays hosts in the cluster that contribute their local
disks to the disk group and storage enclosures from which disks have been added
to the disk group. The hosts contributing their local disks to the disk groups and
storage enclosures from which disks have been added to the disk group are listed
Underthestorage—sourcesﬁem.

Example output from this command is as follows:

Group: mydg

dgid: 1343697721.24.vm240v5
import-id: 33792.24

flags: shared cds

version: 190

alignment: 8192 (bytes)
detach-policy:local
ioship: on

fss: on



Administering Storage Foundation Cluster File System High Availability and its components | 465
Administering ODM

local-activation: shared-write

storage-sources: vm240v5 vm240v6 emcO

Tuning LLT for memory and performance in FSS environments

In remote direct memory access (RDMA) environments, you can limit the memory
consumption for shipping I/O over the network by assigning the buffer pool memory
in the LLT configuration file. The LT BUFPOOL MaxMEM tunable lets you specify a
minimum amount of memory that can be pre-allocated and the maximum amount
of memory that can be allocated for the LLT buffer pool. This buffer pool is used to
allocate memory for RDMA operations and packet allocation, which are delivered
to the LLT clients. The default value is 4GB, the minimum value is 1GB, and the
maximum value is 10GB. You must specify the value in GB.

For more information on tunables and LLT configuration files, see the appendix:
“Tuning LLT for memory and performance in FSS environment” in the Cluster Server
Configuration and Upgrade Guide.

Administering ODM

This section provides instructions for the following Oracle Disk Manager (ODM)
administration tasks:

= Verifying the ODM port
= Starting ODM

If you encounter issues while administering ODM, refer to the troubleshooting
section for assistance.

Verifying the ODM port

It is recommended to enable Oracle Disk Manager (ODM) in SFCFSHA. Run the
following command to verify that ODM is running:

# gabconfig -a | grep "Port 4"

Starting ODM

The following procedure provides instructions for starting Oracle Disk Manager
(ODM).



Administering Storage Foundation Cluster File System High Availability and its components

To start ODM

About administering 1/O fencing

¢ Run the following command:

For RHEL 7, SLES 12, and supported RHEL-compatible distributions:

# systemctl start vxodm

For earlier versions of RHEL, SLES and supported RHEL-compatible

distributions:

# /etc/init.d/vxodm start

About administering I/0 fencing

The I/O fencing feature provides the following utilities that are available through the

VRTSvxfen RPM:

vxfentsthdw

vxfenconfig

vxfenadm

vxfenclearpre

vxfenswap

vxfendisk

The I/O fencing commands reside in the /opt/VRTS/bin folder. Make sure you added

Tests SCSI-3 functionality of the disks for 1/O fencing
See “About the vxfentsthdw utility” on page 467.

Configures and unconfigures 1/O fencing

Lists the coordination points used by the vxfen driver.

Displays information on I/O fencing operations and manages
SCSI-3 disk registrations and reservations for 1/0 fencing

See “About the vxfenadm utility” on page 474.

Removes SCSI-3 registrations and reservations from disks

See “About the vxfenclearpre utility” on page 479.

Replaces coordination points without stopping I/O fencing
See “About the vxfenswap utility” on page 483.
Generates the list of paths of disks in the disk group. This utility

requires that Veritas Volume Manager (VxVM) is installed and
configured.

this folder path to the PATH environment variable.

Refer to the corresponding manual page for more information on the commands.

466



Administering Storage Foundation Cluster File System High Availability and its components | 467

About administering 1/O fencing

About the vxfentsthdw utility

You can use the vxfentsthdw utility to verify that shared storage arrays to be used
for data support SCSI-3 persistent reservations and 1/O fencing. During the /O
fencing configuration, the testing utility is used to test a single disk. The utility has
other options that may be more suitable for testing storage devices in other
configurations. You also need to test coordinator disk groups.

See the Storage Foundation Cluster File System High Availability Configuration
and Upgrade Guide to set up I/O fencing.

The utility, which you can run from one system in the cluster, tests the storage used
for data by setting and verifying SCSI-3 registrations on the disk or disks you specify,
setting and verifying persistent reservations on the disks, writing data to the disks
and reading it, and removing the registrations from the disks.

Refer also to the vxfentsthdw(1M) manual page.

General guidelines for using the vxfentsthdw utility

Review the following guidelines to use the vxfentsthdw utility:

The utility requires two systems connected to the shared storage.

Caution: The tests overwrite and destroy data on the disks, unless you use the
-r option.

The two nodes must have SSH (default) or rsh communication. If you use rsh,
launch the vxfentsthdw utility with the -n option.

After completing the testing process, you can remove permissions for
communication and restore public network connections.

To ensure both systems are connected to the same disk during the testing, you
can use the vxfenadm -i diskpath command to verify a disk’s serial number.
See “Verifying that the nodes see the same disk” on page 479.

For disk arrays with many disks, use the -m option to sample a few disks before
creating a disk group and using the -g option to test them all.

The utility indicates a disk can be used for I/O fencing with a message
resembling:

The disk /dev/sdx is ready to be configured for
I/0 Fencing on node sysl

If the utility does not show a message stating a disk is ready, verification has
failed.



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

= The -o option overrides disk size-related errors and the utility proceeds with
other tests, however, the disk may not setup correctly as the size may be smaller
than the supported size. The supported disk size for data disks is 256 MB and
for coordinator disks is 128 MB.

» [fthe disk you intend to test has existing SCSI-3 registration keys, the test issues
a warning before proceeding.

About the vxfentsthdw command options

Table 15-3 describes the methods that the utility provides to test storage devices.

Table 15-3

vxfentsthdw options

vxfentsthdw option

Description

When to use

-n Utility uses rsh for Use when rsh is used for
communication. communication.
-r Non-destructive testing. Testing | Use during non-destructive
of the disks for SCSI-3 persistent | testing.
reservatlons.occurs ina . See “Performing non-destructive
non-destructive way; that is, ) ; .
) . testing on the disks using the -r
there is only testing for reads, not option” on page 471
writes. Can be used with -m, - £, ’
or —g options.
-t Testing of the return value of When you want to perform TUR
SCSI TEST UNIT (TUR) testing.
command under SCSI-3
reservations. A warning is printed
on failure of TUR testing.
-d Use Dynamic Multi-Pathing By default, the vxfentsthdw
(DMP) devices. script picks up the DMP paths for
Can be used with —c or g disks in the c'!lsk group. If you
options want the script to use the raw
P ’ paths for disks in the disk group,
use the -w option.
-w Use raw devices. With the -w option, the

Can be used with -c or -g
options.

vxfentsthdw script picks the
operating system paths for disks
in the disk group. By default, the
script uses the —d option to pick
up the DMP paths for disks in the
disk group.

468



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

Table 15-3

vxfentsthdw options (continued)

vxfentsthdw option

Description

When to use

-C

Utility tests the coordinator disk
group prompting for systems and
devices, and reporting success
or failure.

For testing disks in coordinator
disk group.

See “Testing the coordinator disk
group using the -c option of
vxfentsthdw” on page 469.

-m

Utility runs manually, in
interactive mode, prompting for
systems and devices, and
reporting success or failure.

Can be used with -r and -t
options. -m is the default option.

For testing a few disks or for
sampling disks in larger arrays.

See “Testing the shared disks
using the vxfentsthdw -m option”
on page 471.

-f filename

Utility tests system and device
combinations listed in a text file.

Can be used with -r and -t
options.

For testing several disks.

See “Testing the shared disks
listed in a file using the
vxfentsthdw -f option”

on page 473.

-g disk_group

Utility tests all disk devices in a
specified disk group.

Can be used with -r and -t
options.

For testing many disks and
arrays of disks. Disk groups may
be temporarily created for testing
purposes and destroyed
(ungrouped) after testing.

See “Testing all the disks in a
disk group using the vxfentsthdw
-g option” on page 473.

-0

Utility overrrides disk size-related
errors.

For testing SCSI-3 Reservation
compliance of disks, but,
overrides disk size-related errors.

Testing the coordinator disk group using the -c option of

vxfentsthdw

Use the vxfentsthdw utility to verify disks are configured to support I/O fencing. In
this procedure, the vxfentsthdw utility tests the three disks, one disk at a time from

each node.

The procedure in this section uses the following disks for example:

= From the node sys1, the disks are seen as /dev/sdg, /dev/sdh, and /dev/sdi.

469



Administering Storage Foundation Cluster File System High Availability and its components

About administering 1/O fencing

= From the node sys2, the same disks are seen as /dev/sdx, /dev/sdy, and

/dev/sdz.

Note: To test the coordinator disk group using the vxfentsthdw utility, the utility
requires that the coordinator disk group, vxfencoorddg, be accessible from two

nodes.

To test the coordinator disk group using vxfentsthdw -c

1 Use the vxfentsthdw command with the -c option. For example:

# vxfentsthdw -c vxfencoorddg

2 Enter the nodes you are using to test the coordinator disks:

Enter the first node of the cluster: sysl

Enter the second node

of the cluster: sys2

3 Review the output of the testing process for both nodes for all disks in the
coordinator disk group. Each disk should display output that resembles:

ALL tests on the disk
The disk is now ready
sysl as a COORDINATOR

ALL tests on the disk
The disk is now ready
sys2 as a COORDINATOR

4  After you test all disks in the disk group, the vxfencoorddg disk group is ready

for use.

/dev/sdg have PASSED.
to be configured for I/O Fencing on node
DISK.

/dev/sdx have PASSED.
to be configured for I/O Fencing on node
DISK.

Removing and replacing a failed disk

If a disk in the coordinator disk group fails verification, remove the failed disk or

LUN from the vxfencoorddg disk group, replace it with another, and retest the disk

group.

470



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

To remove and replace a failed disk

1 Use the vxdiskadm utility to remove the failed disk from the disk group.
Refer to the Storage Foundation Administrator’s Guide.

2 Add anew disk to the node, initialize it, and add it to the coordinator disk group.

See the Storage Foundation Cluster File System High Availability Configuration
and Upgrade Guide for instructions to initialize disks for I/O fencing and to set
up coordinator disk groups.

If necessary, start the disk group.

See the Storage Foundation Cluster File System High Availability Administrator’s
Guide for instructions to start the disk group.

3 Retest the disk group.

See “Testing the coordinator disk group using the -c option of vxfentsthdw”
on page 469.

Performing non-destructive testing on the disks using the
-r option

You can perform non-destructive testing on the disk devices when you want to
preserve the data.

To perform non-destructive testing on disks

& To test disk devices containing data you want to preserve, you can use the -r
option with the -m, -£, or -g options.

For example, to use the -m option and the -r option, you can run the utility as
follows:

# vxfentsthdw -rm

When invoked with the -r option, the utility does not use tests that write to the
disks. Therefore, it does not test the disks for all of the usual conditions of use.

Testing the shared disks using the vxfentsthdw -m option

Review the procedure to test the shared disks. By default, the utility uses the -m
option.

This procedure uses the /dev/sdx disk in the steps.

If the utility does not show a message stating a disk is ready, verification has failed.

Failure of verification can be the result of an improperly configured disk array. It
can also be caused by a bad disk.

471



Administering Storage Foundation Cluster File System High Availability and its components

About administering 1/O fencing

If the failure is due to a bad disk, remove and replace it. The vxfentsthdw utility
indicates a disk can be used for I/O fencing with a message resembling:

The disk /dev/sdx is ready to be configured for

I/0 Fencing on node sysl

Note: For A/P arrays, run the vxfentsthdw command only on active enabled paths.

To test disks using the vxfentsthdw script

1
2

Make sure system-to-system communication is functioning properly.

From one node, start the utility.

# vxfentsthdw [-n]

After reviewing the overview and warning that the tests overwrite data on the
disks, confirm to continue the process and enter the node names.

* Kk ok Kk ok ok koK WARNING! T ,kkxkkkhx

THIS UTILITY WILL DESTROY THE DATA ON THE DISK!!

Do you still want to continue : [y/n] (default: n) y
Enter the first node of the cluster: sysl

Enter the second node of the cluster: sys2

Enter the names of the disks you are checking. For each node, the disk may
be known by the same name:

Enter the disk name to be checked for SCSI-3 PGR on node
sysl in the format:

for dmp: /dev/vx/rdmp/sdx

for raw: /dev/sdx
Make sure it's the same disk as seen by nodes sysl and sys2
/dev/sdr

Enter the disk name to be checked for SCSI-3 PGR on node
sys2 in the format:

for dmp: /dev/vx/rdmp/sdx

for raw: /dev/sdx
Make sure it's the same disk as seen by nodes sysl and sys2
/dev/sdr

If the serial numbers of the disks are not identical, then the test terminates.

472



Administering Storage Foundation Cluster File System High Availability and its components

About administering 1/O fencing

Review the output as the utility performs the checks and report its activities.

If a disk is ready for 1/0 fencing on each node, the utility reports success:

ALL tests on the disk /dev/sdx have PASSED
The disk is now ready to be configured for I/0 Fencing on node

sysl

Removing test keys and temporary files, if any ...

7 Run the vxfentsthdw utility for each disk you intend to verify.

Testing the shared disks listed in a file using the
vxfentsthdw -f option

Use the -f option to test disks that are listed in a text file. Review the following
example procedure.

To test the shared disks listed in a file

1

Create a text file disks_test to test two disks shared by systems sys1 and
sys2 that might resemble:

sysl /dev/sdz sys2 /dev/sdy
sysl /dev/sdu sys2 /dev/sdw

where the first disk is listed in the first line and is seen by sys1 as /dev/sdz
and by sys2 as /dev/sdy. The other disk, in the second line, is seen as
/dev/sdu from sys1 and /dev/sdw from sys2. Typically, the list of disks could
be extensive.

To test the disks, enter the following command:

# vxfentsthdw -f disks test

The utility reports the test results one disk at a time, just as for the -m option.

Testing all the disks in a disk group using the vxfentsthdw
-g option

Use the -g option to test all disks within a disk group. For example, you create a
temporary disk group consisting of all disks in a disk array and test the group.

473



Administering Storage Foundation Cluster File System High Availability and its components | 474
About administering 1/O fencing

Note: Do not import the test disk group as shared; that is, do not use the -s option
with the vxdg import command.

After testing, destroy the disk group and put the disks into disk groups as you need.
To test all the disks in a disk group
1 Create a disk group for the disks that you want to test.

2 Enter the following command to test the disk group test_disks_dg:
# vxfentsthdw -g test_disks_dg

The utility reports the test results one disk at a time.

Testing a disk with existing keys

If the utility detects that a coordinator disk has existing keys, you see a message
that resembles:

There are Veritas I/0 fencing keys on the disk. Please make sure
that I/0 fencing is shut down on all nodes of the cluster before

continuing.

Frxxxxxx WARNING! I xxxxxxxx

THIS SCRIPT CAN ONLY BE USED IF THERE ARE NO OTHER ACTIVE NODES
IN THE CLUSTER! VERIFY ALL OTHER NODES ARE POWERED OFF OR
INCAPABLE OF ACCESSING SHARED STORAGE.

If this is not the case, data corruption will result.

Do you still want to continue : [y/n] (default: n) y

The utility prompts you with a warning before proceeding. You may continue as
long as I/O fencing is not yet configured.

About the vxfenadm utility

Administrators can use the vxfenadm command to troubleshoot and test fencing
configurations.

The command’s options for use by administrators are as follows:



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

-S read the keys on a disk and display the keys in numeric, character, and
node format

Note: The -g and -G options are deprecated. Use the -s option.

-i read SCSI inquiry information from device

-m register with disks

-n make a reservation with disks

-p remove registrations made by other systems
-r read reservations

-X remove registrations

Refer to the vxfenadm(1M) manual page for a complete list of the command options.

About the I/0 fencing registration key format

The keys that the vxfen driver registers on the data disks and the coordinator disks
consist of eight bytes. The key format is different for the coordinator disks and data
disks.

The key format of the coordinator disks is as follows:

Byte 0 1 2 3 4 5 6 7
Value \ F clDOx cIiD0Ox «cIDOx cID 0x niD 0x nlID Ox
where:

» VF is the unique identifier that carves out a namespace for the keys (consumes
two bytes)

= cID Ox is the LLT cluster ID in hexadecimal (consumes four bytes)

= nID Ox is the LLT node ID in hexadecimal (consumes two bytes)

The vxfen driver uses this key format in both sybase mode of I/O fencing.

The key format of the data disks that are configured as failover disk groups under

VCS is as follows:

Byte 0 1 2 3 4 5 6 7

Value A+niD V C S

where nID is the LLT node ID

475



Administering Storage Foundation Cluster File System High Availability and its components | 476
About administering 1/O fencing

For example: If the node ID is 1, then the first byte has the value as B (‘A + 1 = B).

The key format of the data disks configured as parallel disk groups under Cluster
Volume Manager (CVM) is as follows:

Byte 0 1 2 3 4 5 6 7

Value A+nID P G R DGcount DGcount DGcount DGcount

where DGcount is the count of disk groups in the configuration (consumes four
bytes).

By default, CVM uses a unique fencing key for each disk group. However, some
arrays have a restriction on the total number of unique keys that can be registered.
In such cases, you can use the same_key for alldgs tunable parameterto change
the default behavior. The default value of the parameter is of £. If your configuration
hits the storage array limit on total number of unique keys, you can change the
value to on using the vxdefault command as follows:

# vxdefault set same_key for_ alldgs on
# vxdefault list
KEYWORD CURRENT-VALUE DEFAULT-VALUE

same_key for alldgs on off

If the tunable is changed to on, all subsequent keys that the CVM generates on
disk group imports or creates have '0000' as their last four bytes (DGcount is 0).
You must deport and re-import all the disk groups that are already imported for the
changed value of the same_key for alldgs tunable to take effect.

Displaying the 1/O fencing registration keys

You can display the keys that are currently assigned to the disks using the vxfenadm
command.

The variables such as disk_7, disk_8, and disk_9 in the following procedure
represent the disk names in your setup.

To display the I/0 fencing registration keys

1 To display the key for the disks, run the following command:
# vxfenadm -s disk name

For example:



Administering Storage Foundation Cluster File System High Availability and its components

About administering 1/O fencing

To display the key for the coordinator disk /dev/sdx from the system with
node ID 1, enter the following command:

# vxfenadm -s /dev/sdx
key[1l]:

*

[Numeric Format]: 86,70,68,69,69,68,48,48
[Character Format]: VFDEEDOO
[Node Format]: Cluster ID: 57069 Node ID: 0 Node Name: sysl

The -s option of vxfenadm displays all eight bytes of a key value in three
formats. In the numeric format,

The first two bytes, represent the identifier VF, contains the ASCII value
86, 70.

The next four bytes contain the ASCII value of the cluster ID 57069
encoded in hex (OxDEED) which are 68, 69, 69, 68.

The remaining bytes contain the ASCII value of the node ID 0 (0x00)
which are 48, 48. Node ID 1 would be 01 and node ID 10 would be 0A.

An asterisk before the Node Format indicates that the vxfenadm command
is run from the node of a cluster where LLT is configured and is running.

To display the keys on a CVM parallel disk group:

# vxfenadm -s /dev/vx/rdmp/disk 7

Reading SCSI Registration Keys...

Device Name: /dev/vx/rdmp/disk 7
Total Number Of Keys: 1
key[0]:

[Numeric Format]: 66,80,71,82,48,48,48,49
[Character Format]: BPGRO0O1

477

[Node Format]: Cluster ID: unknown Node ID: 1 Node Name: sys2

To display the keys on a Cluster Server (VCS) failover disk group:

# vxfenadm -s /dev/vx/rdmp/disk 8

Reading SCSI Registration Keys...

Device Name: /dev/vx/rdmp/disk 8
Total Number Of Keys: 1
key[0]:

[Numeric Format]: 65,86,67,83,0,0,0,0



Administering Storage Foundation Cluster File System High Availability and its components | 478
About administering 1/O fencing

[Character Format]: AVCS
[Node Format]: Cluster ID: unknown Node ID: 0 Node Name: sysl

2 To display the keys that are registered in all the disks specified in a disk file:
# vxfenadm -s all -f disk filename

For example:

To display all the keys on coordinator disks:

# vxfenadm -s all -f /etc/vxfentab

Device Name: /dev/vx/rdmp/disk 9

Total Number Of Keys: 2

key[0]:

[Numeric Format]: 86,70,70,68,57,52,48,49

[Character Format]: VFFD9401

* [Node Format]: Cluster ID: 64916 Node ID: 1 Node Name: sys2
key[1l]:

[Numeric Format]: 86,70,70,68,57,52,48,48

[Character Format]: VFFD9400

* [Node Format]: Cluster ID: 64916 Node ID: O Node Name: sysl

You can verify the cluster ID using the 11tstat -c command, and the node
ID using the 11tstat -N command. For example:

# lltstat -C
57069

If the disk has keys that do not belong to a specific cluster, then the vxfenadm
command cannot look up the node name for the node ID, and hence prints the
node name as unknown. For example:

Device Name: /dev/vx/rdmp/disk 7
Total Number Of Keys: 1

key[0]:
[Numeric Format]: 86,70,45,45,45,45,48,49
[Character Format]: VF----01

[Node Format]: Cluster ID: unknown Node ID: 1 ©Node Name: sys2

For disks with arbitrary format of keys, the vxfenadm command prints all the
fields as unknown. For example:

[Numeric Format]: 65,66,67,68,49,50,51,45
[Character Format]: ABCD123-



Administering Storage Foundation Cluster File System High Availability and its components | 479
About administering 1/O fencing

[Node Format]: Cluster ID: unknown Node ID: unknown

Node Name: unknown

Verifying that the nodes see the same disk

To confirm whether a disk (or LUN) supports SCSI-3 persistent reservations, two
nodes must simultaneously have access to the same disks. Because a shared disk
is likely to have a different name on each node, check the serial number to verify
the identity of the disk. Use the vxfenadm command with the -i option to verify that
the same serial number for the LUN is returned on all paths to the LUN.

For example, an EMC disk is accessible by the /dev/sdr path on node A and the
/dev/sdt path on node B.

To verify that the nodes see the same disks

1  Verify the connection of the shared storage for data to two of the nodes on
which you installed Storage Foundation Cluster File System High Availability.

2 From node A, enter the following command:

# vxfenadm -i /dev/sdr

Vendor id : EMC
Product id : SYMMETRIX
Revision : 5567
Serial Number : 42031000a

The same serial number information should appear when you enter the
equivalent command on node B using the /dev/sdt path.

On a disk from another manufacturer, Hitachi Data Systems, the output is
different and may resemble:

# vxfenadm -i /dev/sdt

Vendor id : HITACHI
Product id : OPEN-3
Revision : 0117

Serial Number : 0401EB6F0002

Refer to the vxfenadm(1M) manual page for more information.

About the vxfenclearpre utility

You can use the vxfenclearpre utility to remove SCSI-3 registrations and reservations
on the disks as well as coordination point servers.



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

See “Removing preexisting keys” on page 480.

This utility now supports server-based fencing. You can use the vxfenclearpre utility
to clear registrations from coordination point servers (CP servers) for the current
cluster. The local node from where you run the utility must have the UUID of the
current cluster at the /etc/vx/.uuids directory in the clusuuid file. If the UUID file for
that cluster is not available on the local node, the utility does not clear registrations
from the coordination point servers.

Note: You can use the utility to remove the registration keys and the registrations
(reservations) from the set of coordinator disks for any cluster you specify in the
command, but you can only clear registrations of your current cluster from the CP
servers. Also, you may experience delays while clearing registrations on the
coordination point servers because the utility tries to establish a network connection
with the IP addresses used by the coordination point servers. The delay may occur
because of a network issue or if the IP address is not reachable or is incorrect.

For any issues you encounter with the vxfenclearpre utility, you can you can refer
to the log file at, /var/VRTSvecs/log/vxfen/vxfen. log file.

Removing preexisting keys

If you encountered a split-brain condition, use the vxfenclearpre utility to remove
CP Servers, SCSI-3 registrations, and reservations on the coordinator disks,
Coordination Point servers, as well as on the data disks in all shared disk groups.

You can also use this procedure to remove the registration and reservation keys
of another node or other nodes on shared disks or CP server.

To clear keys after split-brain
1 Stop VCS on all nodes.

# hastop -all

2 Make sure that the port h is closed on all the nodes. Run the following command
on each node to verify that the port h is closed:

# gabconfig -a

Port h must not appear in the output.

480



Administering Storage Foundation Cluster File System High Availability and its components | 481
About administering 1/O fencing

3  Stop I/O fencing on all nodes. Enter the following command on each node:
For RHEL 7, SLES 12, and supported RHEL distributions:
# systemctl stop vxfen
For earlier versions of RHEL, SLES, and supported RHEL distributions:
# /etc/init.d/vxfen stop

4 If you have any applications that run outside of VCS control that have access
to the shared storage, then shut down all other nodes in the cluster that have
access to the shared storage. This prevents data corruption.

5 Start the vxfenclearpre script:

# /opt/VRTSvcs/vxfen/bin/vxfenclearpre



Administering Storage Foundation Cluster File System High Availability and its components | 482
About administering 1/O fencing

6 Read the script’s introduction and warning. Then, you can choose to let the
script run.

Do you still want to continue: [y/n] (default : n) y

In some cases, informational messages resembling the following may appear
on the console of one of the nodes in the cluster when a node is ejected from
a disk/LUN. You can ignore these informational messages.

<date> <system name> scsi: WARNING: /sbus@3,0/1pfs@0,0/
sd@0,1 (sd91) :

<date> <system name> Error for Command: <undecoded

cmd 0x5f> Error Level: Informational

<date> <system name> scsi: Requested Block: 0 Error Block 0
<date> <system name> scsi: Vendor: <vendor> Serial Number:
0400759B006E

<date> <system name> scsi: Sense Key: Unit Attention
<date> <system name> scsi: ASC: Ox2a (<vendor unique code
Ox2a>), ASCQ: 0Ox4, FRU: 0x0

The script cleans up the disks and displays the following status messages.

Cleaning up the coordinator disks...

Cleared keys from n out of n disks,

where n is the total number of disks.

Successfully removed SCSI-3 persistent registrations

from the coordinator disks.

Cleaning up the Coordination Point Servers...

[10.209.80.194]1:50001: Cleared all registrations
[10.209.75.118]:443: Cleared all registrations

Successfully removed registrations from the Coordination Point Servers.
Cleaning up the data disks for all shared disk groups

Successfully removed SCSI-3 persistent registration and

reservations from the shared data disks.

See the log file /var/VRTSvcs/log/vxfen/vxfen.log



Administering Storage Foundation Cluster File System High Availability and its components | 483

About administering 1/O fencing

You can retry starting fencing module. In order to restart the whole

product, you might want to reboot the system.

Start the fencing module on all the nodes.

For RHEL 7, SLES 12, and supported RHEL distributions:

# systemctl start vxfen

For earlier versions of RHEL, SLES, and supported RHEL distributions:
# /etc/init.d/vxfen start

Start VCS on all nodes.

# hastart

About the vxfenswap utility

The vxfenswap utility allows you to add, remove, and replace coordinator points in
a cluster that is online. The utility verifies that the serial number of the new disks
are identical on all the nodes and the new disks can support I/O fencing.

This utility supports both disk-based and server-based fencing.

The utility uses SSH, RSH, or hacli for communication between nodes in the cluster.
Before you execute the utility, ensure that communication between nodes is set up
in one these communication protocols.

Refer to the vxfenswap(1M) manual page.

See the Storage Foundation Cluster File System High Availability Configuration
and Upgrade Guide for details on the I/O fencing requirements.

You can replace the coordinator disks without stopping I/O fencing in the following
cases:

The disk becomes defective or inoperable and you want to switch to a new disk
group.

See “Replacing I/0O fencing coordinator disks when the cluster is online”

on page 484.

See “Replacing the coordinator disk group in a cluster that is online” on page 488.
If you want to replace the coordinator disks when the cluster is offline, you cannot
use the vxfenswap utility. You must manually perform the steps that the utility
does to replace the coordinator disks.

The keys that are registered on the coordinator disks are lost.



Administering Storage Foundation Cluster File System High Availability and its components | 484
About administering 1/O fencing

In such a case, the cluster might panic when a network partition occurs. You
can replace the coordinator disks with the same disks using the vxfenswap
command. During the disk replacement, the missing keys register again without
any risk of data corruption.

See “Refreshing lost keys on coordinator disks” on page 494.

In server-based fencing configuration, you can use the vxfenswap utility to perform
the following tasks:

= Perform a planned replacement of customized coordination points (CP servers
or SCSI-3 disks).
See “Replacing coordination points for server-based fencing in an online cluster”
on page 504.

= Refresh the I/O fencing keys that are registered on the coordination points.
See “Refreshing registration keys on the coordination points for server-based
fencing” on page 506.

You can also use the vxfenswap utility to migrate between the disk-based and the
server-based fencing without incurring application downtime in the SFCFSHA
cluster.

See “Migrating from disk-based to server-based fencing in an online cluster”
on page 518.

See “Migrating from server-based to disk-based fencing in an online cluster”
on page 518.

If the vxfenswap operation is unsuccessful, then you can use the -a cancel of the
vxfenswap command to manually roll back the changes that the vxfenswap utility
does.

» Fordisk-based fencing, use the vxfenswap -g diskgroup -a cancel command
to cancel the vxfenswap operation.
You must run this command if a node fails during the process of disk
replacement, or if you aborted the disk replacement.

= For server-based fencing, use the vxfenswap -a cancel command to cancel
the vxfenswap operation.

Replacing I/O fencing coordinator disks when the cluster
is online

Review the procedures to add, remove, or replace one or more coordinator disks
in a cluster that is operational.



Administering Storage Foundation Cluster File System High Availability and its components | 485

About administering 1/O fencing

Warning: The cluster might panic if any node leaves the cluster membership before
the vxfenswap script replaces the set of coordinator disks.

To replace a disk in a coordinator disk group when the cluster is online

1
2

Make sure system-to-system communication is functioning properly.
Determine the value of the FaultTolerance attribute.
# hares -display coordpoint -attribute FaultTolerance -localclus

Estimate the number of coordination points you plan to use as part of the
fencing configuration.

Set the value of the FaultTolerance attribute to 0.

Note: It is necessary to set the value to 0 because later in the procedure you
need to reset the value of this attribute to a value that is lower than the number
of coordination points. This ensures that the Coordpoint Agent does not fault.

Check the existing value of the LevelTwoMonitorFreq attribute.

#hares -display coordpoint -attribute LevelTwoMonitorFreq -localclus

Note: Make a note of the attribute value before you proceed to the next step.
After migration, when you re-enable the attribute you want to set it to the same
value.

You can also run the hares -display coordpoint to find out whether the
LevelTwoMonitorFreq value is set.

Disable level two monitoring of CoordPoint agent.

# hares -modify coordpoint LevelTwoMonitorFreq 0



Administering Storage Foundation Cluster File System High Availability and its components

10

11

About administering 1/O fencing

Make sure that the cluster is online.
# vxfenadm -d

I/0 Fencing Cluster Information:

Fencing Protocol Version: 201
Fencing Mode: SCSI3
Fencing SCSI3 Disk Policy: dmp
Cluster Members:

* 0 (sysl)

1 (sys2)
RFSM State Information:

node 0 in state 8 (running)

node 1 in state 8 (running)

Import the coordinator disk group.

The file /etc/vxfendg includes the name of the disk group (typically,
vxfencoorddg) that contains the coordinator disks, so use the command:

# vxdg -tfC import ‘cat /etc/vxfendg’

where:
-t specifies that the disk group is imported only until the node restarts.

-f specifies that the import is to be done forcibly, which is necessary if one or
more disks is not accessible.

-C specifies that any import locks are removed.

If your setup uses vRTsvxvm version, then skip to step 10. You need not set
coordinator=off to add or remove disks. For other VxXVM versions, perform
this step:

Where version is the specific release version.

Turn off the coordinator attribute value for the coordinator disk group.

# vxdg -g vxfencoorddg set coordinator=off

To remove disks from the coordinator disk group, use the VxVM disk
administrator utility vxdiskadm.

Perform the following steps to add new disks to the coordinator disk group:
» Add new disks to the node.

» Initialize the new disks as VxVM disks.

486



Administering Storage Foundation Cluster File System High Availability and its components | 487
About administering 1/O fencing

= Check the disks for I/O fencing compliance.

= Add the new disks to the coordinator disk group and set the coordinator
attribute value as "on" for the coordinator disk group.

See the Storage Foundation Cluster File System High Availability Configuration
and Upgrade Guide for detailed instructions.

Note that though the disk group content changes, the 1/O fencing remains in
the same state.

12 From one node, start the vxfenswap utility. You must specify the disk group to
the utility.

The utility performs the following tasks:
= Backs up the existing /etc/vxfentab file.

n Creates atestfile /etc/vxfentab.test for the disk group that is modified
on each node.

= Reads the disk group you specified in the vxfenswap command and adds
the disk group to the /etc/vxfentab.test file on each node.

» Verifies that the serial number of the new disks are identical on all the nodes.
The script terminates if the check fails.

» Verifies that the new disks can support I/O fencing on each node.

13 If the disk verification passes, the utility reports success and asks if you want
to commit the new set of coordinator disks.

14 Confirm whether you want to clear the keys on the coordination points and
proceed with the vxfenswap operation.

Do you want to clear the keys on the coordination points
and proceed with the vxfenswap operation? [y/n] (default: n) y
15 Review the message that the utility displays and confirm that you want to

commit the new set of coordinator disks. Else skip to step 16.

Do you wish to commit this change? [y/n] (default: n) y

If the utility successfully commits, the utility moves the /etc/vxfentab.test
file to the /etc/vxfentab file.

16 If you do not want to commit the new set of coordinator disks, answer n.
The vxfenswap utility rolls back the disk replacement operation.

17 If coordinator flag was set to off in step 9, then set it on.

# vxdg -g vxfencoorddg set coordinator=on



Administering Storage Foundation Cluster File System High Availability and its components
About administering 1/O fencing

18 Deport the diskgroup.

# vxdg deport vxfencoorddg

19 Re-enable the LevelTwoMonitorFreq attribute of the CoordPoint agent.You
may want to use the value that was set before disabling the attribute.

# hares -modify coordpoint LevelTwoMonitorFreq Frequencyvalue

where Frequencyvalue is the value of the attribute.

20 Set the FaultTolerance attribute to a value that is lower than 50% of the total
number of coordination points.

For example, if there are four (4) coordination points in your configuration, then
the attribute value must be lower than two (2).If you set it to a higher value
than two (2) the CoordPoint agent faults.

Replacing the coordinator disk group in a cluster that is
online

You can also replace the coordinator disk group using the vxfenswap utility. The
