Veritas™ File System Administrator's Guide

AIX

5.1 Service Pack 1

Veritas File System Administrator's Guide

The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of the agreement.

Product version: 5.1SP1

Document version: 5.1SP1.2

Legal Notice

Copyright © 2014 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, the Checkmark Logo, Veritas, Veritas Storage Foundation, CommandCentral, NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation/reverse engineering. No part of this document may be reproduced in any form by any means without prior written authorization of Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19 "Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in Commercial Computer Software or Commercial Computer Software Documentation", as applicable, and any successor regulations. Any use, modification, reproduction release, performance, display or disclosure of the Licensed Software and Documentation by the U.S. Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation 350 Ellis Street Mountain View, CA 94043

http://www.symantec.com

Technical Support

Symantec Technical Support maintains support centers globally. Technical Support's primary role is to respond to specific queries about product features and functionality. The Technical Support group also creates content for our online Knowledge Base. The Technical Support group works collaboratively with the other functional areas within Symantec to answer your questions in a timely fashion. For example, the Technical Support group works with Product Engineering and Symantec Security Response to provide alerting services and virus definition updates.

Symantec's support offerings include the following:

- A range of support options that give you the flexibility to select the right amount of service for any size organization
- Telephone and/or Web-based support that provides rapid response and up-to-the-minute information
- Upgrade assurance that delivers software upgrades
- Global support purchased on a regional business hours or 24 hours a day, 7 days a week basis
- Premium service offerings that include Account Management Services

For information about Symantec's support offerings, you can visit our website at the following URL:

www.symantec.com/business/support/index.jsp

All support services will be delivered in accordance with your support agreement and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system requirements that are listed in your product documentation. Also, you should be at the computer on which the problem occurred, in case it is necessary to replicate the problem.

When you contact Technical Support, please have the following information available:

- Product release level
- Hardware information

- Available memory, disk space, and NIC information
- Operating system
- Version and patch level
- Network topology
- Router, gateway, and IP address information
- Problem description:
 - Error messages and log files
 - Troubleshooting that was performed before contacting Symantec
 - Recent software configuration changes and network changes

Licensing and registration

If your Symantec product requires registration or a license key, access our technical support Web page at the following URL:

www.symantec.com/business/support/

Customer service

Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the following types of issues:

- Questions regarding product licensing or serialization
- Product registration updates, such as address or name changes
- General product information (features, language availability, local dealers)
- Latest information about product updates and upgrades
- Information about upgrade assurance and support contracts
- Information about the Symantec Buying Programs
- Advice about Symantec's technical support options
- Nontechnical presales questions
- Issues that are related to CD-ROMs or manuals

Support agreement resources

If you want to contact Symantec regarding an existing support agreement, please contact the support agreement administration team for your region as follows:

Asia-Pacific and Japan	customercare_apac@symantec.com
Europe, Middle-East, and Africa	semea@symantec.com
North America and Latin America	supportsolutions@symantec.com

Documentation

Your feedback on product documentation is important to us. Send suggestions for improvements and reports on errors or omissions. Include the title and document version (located on the second page), and chapter and section titles of the text on which you are reporting. Send feedback to:

docs@symantec.com

For information regarding the latest HOWTO articles, documentation updates, or to ask a question regarding product documentation, visit the Storage and Clustering Documentation forum on Symantec Connect.

https://www-secure.symantec.com/connect/storage-management/ forums/storage-and-clustering-documentation

About Symantec Connect

Symantec Connect is the peer-to-peer technical community site for Symantec's enterprise customers. Participants can connect and share information with other product users, including creating forum posts, articles, videos, downloads, blogs and suggesting ideas, as well as interact with Symantec product teams and Technical Support. Content is rated by the community, and members receive reward points for their contributions.

http://www.symantec.com/connect/storage-management

Contents

Technical Support		4
Chapter 1	Introducing Veritas File System	16
	About Veritas File System	16
	Logging	
	Extents	17
	File system disk layouts	17
	Veritas File System features	17
	Extent-based allocation	19
	Extent attributes	21
	Fast file system recovery	21
	Extended mount options	22
	Enhanced data integrity modes	23
	Enhanced performance mode	24
	Temporary file system mode	24
	Improved synchronous writes	24
	Support for large files	25
	Access Control Lists	25
	Storage Checkpoints	25
	FileSnaps	25
	Quotas	26
	Support for databases	26
	Cluster file systems	26
	Cross-platform data sharing	27
	File Change Log	27
	Multi-volume support	27
	SmartTier	28
	Thin Reclamation of a file system	28
	Veritas File System performance enhancements	28
	About enhanced I/O performance	29
	Using Veritas File System	30
	Veritas Operations Manager	30
	VxFS Administration Using SMIT	
	Online system administration	31
	Application program interface	32

Chapter 2	VxFS performance: creating, mounting, and tuning file systems	34
	Creating a VxFS file system	34
	Block size	
	Intent log size	
	Mounting a VxFS file system	
	The log mode	
	The delaylog mode	
	The tmplog mode	
	The logiosize mode	
	The nodatainlog mode	
	The blkclear mode	39
	The mincache mode	39
	The convosync mode	40
	The ioerror mode	41
	The largefiles nolargefiles option	43
	The cio option	44
	The mntlock mntunlock option	44
	Combining mount command options	45
	Tuning the VxFS file system	45
	Tuning performance optimization of inode allocation	46
	Global tunable parameters	46
	Global tunable parameter table	47
	Veritas Volume Manager maximum I/O size	47
	Monitoring free space	48
	Monitoring fragmentation	48
	Thin Reclamation	50
	Tuning I/O	51
	Tuning VxFS I/O parameters	51
	Tunable I/O parameters	52
	File system tuning guidelines	59
Chapter 3	Extent attributes	61
	About extent attributes	61
	Reservation: preallocating space to a file	62
	Fixed extent size	
	Other controls	63
	Commands related to extent attributes	64
	Example of setting an extent attribute	65
	Example of getting an extent attribute	
	Failure to preserve extent attributes	

Chapter 4	Veritas File System I/O	. 67
	About Veritas File System I/O	. 67
	Buffered and Direct I/O	
	Direct I/O	. 68
	Unbuffered I/O	. 69
	Data synchronous I/O	. 69
	Concurrent I/O	. 70
	Cache advisories	. 71
	Freezing and thawing a file system	. 71
	Getting the I/O size	. 72
	Enabling and disabling Concurrent I/O for a DB2 database	. 72
	Enabling Concurrent I/O	. 72
	Disabling Concurrent I/O	. 74
Chapter 5	Quotas	. 75
	About quota limits	. 75
	About quota files on Veritas File System	
	About quota commands	
	About quota checking with Veritas File System	
	Using quotas	
	Turning on quotas	
	Turning on quotas at mount time	
	Editing user and group quotas	
	Modifying time limits	
	Viewing disk quotas and usage	
	Displaying blocks owned by users or groups	
	Turning off quotas	
Chapter 6	File Change Log	. 82
	About File Change Log	
	About the File Change Log file	
	File Change Log administrative interface	
	File Change Log programmatic interface	
	Summary of API functions	
	Reverse path name lookup	
Chapter 7	Multi-volume file systems	. 90
	About multi-volume support	. 90
	About volume types	. 91
	Features implemented using multi-volume support	. 92
	Volume availability	. 92

About volume sets	93
Creating and managing volume sets	93
Creating multi-volume file systems	95
Example of creating a multi-volume file system	95
Converting a single volume file system to a multi-volume file	
system	96
Adding a volume to and removing a volume from a multi-volume file	
system	98
Adding a volume to a multi-volume file system	98
Removing a volume from a multi-volume file system	98
Forcibly removing a volume	99
Moving volume 0	99
Volume encapsulation	99
Encapsulating a volume	99
Deencapsulating a volume	101
Reporting file extents	
Examples of reporting file extents	102
Load balancing	103
Defining and assigning a load balancing allocation policy	104
Rebalancing extents	104
Converting a multi-volume file system to a single volume file	
system	105
Converting to a single volume file system	105
Quick I/O for Databases	107
About Quick I/O	107
About Quick I/O functionality and performance	
About asynchronous I/O kernel support	
About direct I/O support	
About Kernel write locks avoidance	
About double buffering avoidance	
About using Veritas File System files as raw character devices	
About the Quick I/O naming convention	
About use restrictions	
About creating a Quick I/O file using qiomkfile	
Creating a Quick I/O file using qiomkfile	
Accessing regular VxFS files through symbolic links	
About absolute and relative path names	
Preallocating files using the setext command	
Using Quick I/O with Oracle databases	
Using Quick I/O with DB2 databases	

Chapter 8

	Creating database containers as Quick I/O files using qiomkfile with DB2 databases	115
	Preallocating space for Quick I/O files using the setext command	
	with DB2 databases	. 116
	Displaying Quick I/O status and file attributes with DB2	
	databases	. 117
	Enabling and disabling Quick I/O	. 118
	About Cached Quick I/O for databases	
	Enabling Cached Quick I/O	. 119
	About Quick I/O statistics	
	Increasing database performance using Quick I/O	. 122
Chapter 9	Using Veritas Extension for Oracle Disk	
	Manager	123
	About Oracle Disk Manager	. 123
	How Oracle Disk Manager improves database performance	
	About Oracle Disk Manager and Storage Foundation Cluster File System	
	About Oracle Disk Manager and Oracle Managed Files	
	How Oracle Disk Manager works with Oracle Managed Files	
	Setting up Veritas Extension for Oracle Disk Manager	
	Linking the Veritas extension for Oracle Disk Manager library into	120
	Oracle home	130
	Preparing existing database storage for Oracle Disk Manager	
	Converting Quick I/O files to Oracle Disk Manager files	
	Verifying that Oracle Disk Manager is configured	
	Disabling the Oracle Disk Manager feature	
	Using Cached ODM	
	Enabling Cached ODM for file systems	
	Modifying Cached ODM settings for individual files	
	Adding Cached ODM settings via the cachemap	
	Making the caching settings persistent across mounts	
Appendix A	Quick Reference	. 139
	Command summary	139
	Online manual pages	
	Creating a VxFS file system	
	Example of creating a file system	
	Converting a file system to VxFS	
	Example of converting a file system	
	Mounting a file system	
	Mount options	

	Example of mounting a file system	152
	Editing the filesystems file	152
	Unmounting a file system	152
	Example of unmounting a file system	153
	Displaying information on mounted file systems	153
	Example of displaying information on mounted file systems	153
	Resizing a file system	
	Extending a file system using fsadm	154
	Shrinking a file system	155
	Reorganizing a file system	156
	Using quotas	157
	Turning on quotas	157
	Setting up user quotas	158
	Viewing quotas	159
	Turning off quotas	159
Appendix B	Diagnostic messages	160
	File system response to problems	160
	Recovering a disabled file system	
	About kernel messages	
	About global message IDs	
	Kernel messages	
	About unique message identifiers	
	Unique message identifiers	
	Dewey kernel messages	
	V-2-1	
	V-2-2	208
	V-2-3	209
	V-2-4	209
	V-2-5	210
	V-2-6	210
	V-2-7	211
	V-2-8	211
	V-2-9	212
	V-2-10	212
	V-2-11	
	V-2-12	213
	V-2-13	213
	V-2-14	213
	V-2-15	214
	V-2-16	214
	V-2-17	215

V-2-19	217
V-2-20	
V-2-21	-
V-2-22	
V-2-23	
V-2-24	
V-2-25	
V-2-26	
V-2-27	221
V-2-28	
V-2-29	221
V-2-30	222
V-2-31	222
V-2-32	222
V-2-33	223
V-2-34	223
V-2-35	223
V-2-36	224
V-2-37	224
V-2-38	225
V-2-39	225
V-2-40	226
V-2-41	
V-2-42	
V-2-43	
V-2-44	
V-2-45	
V-2-46	
V-2-47	
V-2-48	
V-2-49	-
V-2-56	
V-2-57	-
V-2-58	
V-2-59	
V-2-60	
V-2-61	
V-2-62	
V-2-62	
V-2-63	
V-2-04 V-2-66	-
V-2-60	
V-2-67	
V-∠-00	233

V-2-69	234
V-2-70	-
V-2-71	
V-2-72	
V-2-75	
V-2-76	
V-2-77	
V-2-78	
V-2-79	
V-2-81	
V-2-82	
V-2-83	
V-2-84	
V-2-85	
V-2-86	
V-2-87	
V-2-88	
V-2-89	
V-2-90	
V-2-91	
V-2-92	
V-2-96	
V-2-97	-
V-2-98	-
V-2-99	
V-2-100	-
V-2-101	
V-2-102	
V-2-103	-
V-2-104	
V-2-105	
V-2-106	
V-2-107	
V-2-108	
V-2-109	
V-2-110	
V-2-111	
Dewey UMI messages	
V-3-20002	
V-3-20002	-
V-3-20005	-
V-3-20012	-
V-3-20076	
	+0

	V-3-21256	249
	V-3-21264	250
	V-3-21268	250
	V-3-21272	
	V-3-23729	251
	V-3-24996	251
Appendix C	Disk layout	252
	About disk layouts	252
	VxFS Version 6 disk layout	253
	VxFS Version 7 disk layout	
	VxFS Version 8 disk layout	255
Glossary		256
Index		261

Chapter

Introducing Veritas File System

This chapter includes the following topics:

- About Veritas File System
- Veritas File System features
- Veritas File System performance enhancements
- Using Veritas File System

About Veritas File System

A file system is simply a method for storing and organizing computer files and the data they contain to make it easy to find and access them. More formally, a file system is a set of abstract data types (such as metadata) that are implemented for the storage, hierarchical organization, manipulation, navigation, access, and retrieval of data.

Veritas File System (VxFS) was the first commercial journaling file system. With journaling, metadata changes are first written to a log (or journal) then to disk. Since changes do not need to be written in multiple places, throughput is much faster as the metadata is written asynchronously.

VxFS is also an extent-based, intent logging file system. VxFS is designed for use in operating environments that require high performance and availability and deal with large amounts of data.

VxFS major components include:

- Logging
- Extents

File system disk layouts

Logging

A key aspect of any file system is how to recover if a system crash occurs. Earlier methods required a time-consuming scan of the entire file system. A better solution is the method of logging (or journaling) the metadata of files.

VxFS logs new attribute information into a reserved area of the file system, whenever file system changes occur. The file system writes the actual data to disk only after the write of the metadata to the log is complete. If and when a system crash occurs, the system recovery code analyzes the metadata log and tries to clean up only those files. Without logging, a file system check (fsck) must look at all of the metadata.

Intent logging minimizes system downtime after abnormal shutdowns by logging file system transactions. When the system is halted unexpectedly, this log can be replayed and outstanding transactions completed. The check and repair time for file systems can be reduced to a few seconds, regardless of the file system size.

By default, VxFS file systems log file transactions before they are committed to disk, reducing time spent checking and repairing file systems after the system is halted unexpectedly.

Extents

An extent is a contiguous area of storage in a computer file system, reserved for a file. When starting to write to a file, a whole extent is allocated. When writing to the file again, the data continues where the previous write left off. This reduces or eliminates file fragmentation.

Since VxFS is an extent-based file system, addressing is done through extents (which can consist of multiple blocks) rather than in single-block segments. Extents can therefore enhance file system throughput.

File system disk layouts

The disk layout is the way file system information is stored on disk. On VxFS, several disk layout versions, numbered 1 through 8, were created to support various new features and specific UNIX environments. Currently, only the Version 6, 7, and 8 disk layouts are supported.

Veritas File System features

VxFS includes the following features:

Extent-based allocation

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated in consecutive blocks.

- Extent attributes
 Extent attributes are the extent allocation policies associated with a file.
- Fast file system recovery
 VxFS provides fast recovery of a file system from system failure.
- Extended mount options

The VxFS file system supports extended mount options to specify enhanced data integrity modes, enhanced performance modes, temporary file system modes, improved synchronous writes, and large file sizes.

- Enhanced performance mode
 VxFS provides mount options to improve performance.
- Large files and file systems support
 VxFS supports files larger than two gigabytes and large file systems up to 256 terabytes.
- Storage Checkpoints

Backup and restore applications can leverage Storage Checkpoints, a disk- and I/O-efficient copying technology for creating periodic frozen images of a file system.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

VxFS file snapshots

A VxFS file snapshot is a space-optimized copy of a file in the same name space, stored in the same file system.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Quotas

VxFS supports quotas, which allocate per-user and per-group quotas and limit the use of two principal resources: files and data blocks.

Cluster File System

Clustered file systems are an extension of VxFS that support concurrent direct media access from multiple systems.

- Improved database performance
- Cross-platform data sharing

Cross-platform data sharing allows data to be serially shared among heterogeneous systems where each system has direct access to the physical devices that hold the data.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

- File Change Log
 The VxFS File Change Log tracks changes to files and directories in a file system.
- Multi-volume support

The multi-volume support feature allows several volumes to be represented by a single logical object.

SmartTier

The SmartTier option allows you to configure policies that automatically relocate files from one volume to another, or relocate files by running file relocation commands, which can improve performance for applications that access specific types of files.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Note: In the previous VxFS 5.x releases, SmartTier was known as Dynamic Storage Tiering.

Storage Foundation Thin Reclamation

The Thin Reclamation feature allows you to release free data blocks of a VxFS file system to the free storage pool of a Thin Storage LUN. This feature is only supported on file systems mounted on a VxVM volume.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Extent-based allocation

Disk space is allocated in 512-byte sectors to form logical blocks. VxFS supports logical block sizes of 1024, 2048, 4096, and 8192 bytes. The default block size is 1K for file system sizes of up to 1 TB, and 8K for file system sizes 1 TB or larger.

An extent is defined as one or more adjacent blocks of data within the file system. An extent is presented as an address-length pair, which identifies the starting block address and the length of the extent (in file system or logical blocks). VxFS allocates storage in groups of extents rather than a block at a time.

Extents allow disk I/O to take place in units of multiple blocks if storage is allocated in consecutive blocks. For sequential I/O, multiple block operations are considerably faster than block-at-a-time operations; almost all disk drives accept I/O operations of multiple blocks.

Extent allocation only slightly alters the interpretation of addressed blocks from the inode structure compared to block based inodes. A VxFS inode references 10 direct extents, each of which are pairs of starting block addresses and lengths in blocks.

The VxFS inode supports different types of extents, namely ext4 and typed. Inodes with ext4 extents also point to two indirect address extents, which contain the addresses of first and second extents:

first	Used for single indirection. Each entry in the extent indicates the starting block number of an indirect data extent
second	Used for double indirection. Each entry in the extent indicates the starting block number of a single indirect address extent.

Each indirect address extent is 8K long and contains 2048 entries. All indirect data extents for a file must be the same size; this size is set when the first indirect data extent is allocated and stored in the inode. Directory inodes always use an 8K indirect data extent size. By default, regular file inodes also use an 8K indirect data extent size that can be altered with vxtunefs; these inodes allocate the indirect data extents in clusters to simulate larger extents.

Typed extents

VxFS has an inode block map organization for indirect extents known as typed extents. Each entry in the block map has a typed descriptor record containing a type, offset, starting block, and number of blocks.

Indirect and data extents use this format to identify logical file offsets and physical disk locations of any given extent.

The extent descriptor fields are defined as follows:

type	Identifies uniquely an extent descriptor record and defines the record's length and format.
offset	Represents the logical file offset in blocks for a given descriptor. Used to optimize lookups and eliminate hole descriptor entries.
starting block	Is the starting file system block of the extent.
number of blocks	Is the number of contiguous blocks in the extent.

Typed extents have the following characteristics:

- Indirect address blocks are fully typed and may have variable lengths up to a maximum and optimum size of 8K. On a fragmented file system, indirect extents may be smaller than 8K depending on space availability. VxFS always tries to obtain 8K indirect extents but resorts to smaller indirects if necessary.
- Indirect data extents are variable in size to allow files to allocate large, contiguous extents and take full advantage of optimized I/O in VxFS.

- Holes in sparse files require no storage and are eliminated by typed records. A
 hole is determined by adding the offset and length of a descriptor and comparing
 the result with the offset of the next record.
- While there are no limits on the levels of indirection, lower levels are expected in this format since data extents have variable lengths.
- This format uses a type indicator that determines its record format and content and accommodates new requirements and functionality for future types.

The current typed format is used on regular files and directories only when indirection is needed. Typed records are longer than the previous format and require less direct entries in the inode. Newly created files start out using the old format, which allows for ten direct extents in the inode. The inode's block map is converted to the typed format when indirection is needed to offer the advantages of both formats.

Extent attributes

VxFS allocates disk space to files in groups of one or more extents. VxFS also allows applications to control some aspects of the extent allocation. Extent attributes are the extent allocation policies associated with a file.

The setext and getext commands allow the administrator to set or view extent attributes associated with a file, as well as to preallocate space for a file.

See the setext(1) and getext(1) manual pages.

The vxtunefs command allows the administrator to set or view the default indirect data extent size of a file system.

See the vxtunefs(1M) manual page.

Fast file system recovery

Most file systems rely on full structural verification by the fsck utility as the only means to recover from a system failure. For large disk configurations, this involves a time-consuming process of checking the entire structure, verifying that the file system is intact, and correcting any inconsistencies. VxFS provides fast recovery with the VxFS intent log and VxFS intent log resizing features.

VxFS intent log

VxFS reduces system failure recovery times by tracking file system activity in the VxFS intent log. This feature records pending changes to the file system structure in a circular intent log. The intent log recovery feature is not readily apparent to users or a system administrator except during a system failure. During system failure recovery, the VxFS fsck utility performs an intent log replay, which scans

the intent log and nullifies or completes file system operations that were active when the system failed. The file system can then be mounted without completing a full structural check of the entire file system. Replaying the intent log may not completely recover the damaged file system structure if there was a disk hardware failure; hardware problems may require a complete system check using the fsck utility provided with VxFS.

The mount command automatically runs the VxFS fsck command to perform an intent log replay if the mount command detects a dirty log in the file system. This functionality is only supported on a file system mounted on a Veritas Volume Manager (VxVM) volume, and is supported on cluster file systems.

See "The log option and data integrity" on page 24.

VxFS intent log resizing

The VxFS intent log is allocated when the file system is first created. The size of the intent log is based on the size of the file system—the larger the file system, the larger the intent log. The maximum default intent log size for disk layout Versions 6, 7 and 8 is 256 megabytes.

With the Version 6, 7, and 8 disk layouts, you can dynamically increase or decrease the intent log size using the <code>logsize</code> option of the <code>fsadm</code> command. Increasing the size of the intent log can improve system performance because it reduces the number of times the log wraps around. However, increasing the intent log size can lead to greater times required for a log replay if there is a system failure.

Note: Inappropriate sizing of the intent log can have a negative impact on system performance.

See the mkfs vxfs(1M) and the fsadm vxfs(1M) manual pages.

Because these facilities are provided using VxFS-specific IOCTL system calls, most existing UNIX system applications do not use them. The cp, cpio, and mv utilities use the facilities to preserve extent attributes and allocate space more efficiently. The current attributes of a file can be listed using the getext command. The facilities can also improve performance for custom applications. For portability reasons, these applications must check which file system type they are using before using these interfaces.

Extended mount options

The VxFS file system provides the following enhancements to the mount command:

Enhanced data integrity modes

- Enhanced performance mode
- Temporary file system mode
- Improved synchronous writes
- Support for large file sizes

See "Mounting a VxFS file system" on page 36.

See the mount vxfs(1M) manual page.

Enhanced data integrity modes

For most UNIX file systems, including VxFS, the default mode for writing to a file is delayed, or buffered, meaning that the data to be written is copied to the file system cache and later flushed to disk.

A delayed write provides much better performance than synchronously writing the data to disk. However, in the event of a system failure, data written shortly before the failure may be lost since it was not flushed to disk. In addition, if space was allocated to the file as part of the write request, and the corresponding data was not flushed to disk before the system failure occurred, uninitialized data can appear in the file.

For the most common type of write, delayed extending writes (a delayed write that increases the file size), VxFS avoids the problem of uninitialized data appearing in the file by waiting until the data has been flushed to disk before updating the new file size to disk. If a system failure occurs before the data has been flushed to disk, the file size has not yet been updated to be uninitialized data, thus no uninitialized data appears in the file. The unused blocks that were allocated are reclaimed.

The blkclear option and data integrity

In environments where performance is more important than absolute data integrity, the preceding situation is not of great concern. However, VxFS supports environments that emphasize data integrity by providing the mount -o blkclear option that ensures uninitialized data does not appear in a file.

The closesync option and data integrity

VxFS provides the mount -o mincache=closesync option, which is useful in desktop environments with users who are likely to shut off the power on machines without halting them first. In closesync mode, only files that are written during the system crash or shutdown can lose data. Any changes to a file are flushed to disk when the file is closed.

The log option and data integrity

File systems are typically asynchronous in that structural changes to the file system are not immediately written to disk, which provides better performance. However, recent changes made to a system can be lost if a system failure occurs. Specifically, attribute changes to files and recently created files may disappear.

The mount $-o \log$ intent logging option guarantees that all structural changes to the file system are logged to disk before the system call returns to the application. With this option, the rename(2) system call flushes the source file to disk to guarantee the persistence of the file data before renaming it. The rename() call is also guaranteed to be persistent when the system call returns. The changes to file system data and metadata caused by the fsync(2) and fdatasync(2) system calls are guaranteed to be persistent once the calls return.

Enhanced performance mode

VxFS has a mount option that improves performance: ${\tt delaylog}.$

The delaylog option and enhanced performance

The default VxFS logging mode, mount -o delaylog, increases performance by delaying the logging of some structural changes. However, delaylog does not provide the equivalent data integrity as the previously described modes because recent changes may be lost during a system failure. This option provides at least the same level of data accuracy that traditional UNIX file systems provide for system failures, along with fast file system recovery.

Temporary file system mode

On most UNIX systems, temporary file system directories, such as /tmp and /usr/tmp, often hold files that do not need to be retained when the system reboots. The underlying file system does not need to maintain a high degree of structural integrity for these temporary directories. VxFS provides the mount -o tmplog option, which allows the user to achieve higher performance on temporary file systems by delaying the logging of most operations.

Improved synchronous writes

VxFS provides superior performance for synchronous write applications. The mount -o datainlog option greatly improves the performance of small synchronous writes.

The mount -o convosync=dsync option improves the performance of applications that require synchronous data writes but not synchronous inode time updates.

Warning: The use of the -o convosync=dsync option violates POSIX semantics.

Support for large files

With VxFS, you can create, mount, and manage file systems containing large files (files larger than two gigabytes).

Warning: Some applications and utilities may not work on large files.

Access Control Lists

An Access Control List (ACL) stores a series of entries that identify specific users or groups and their access privileges for a directory or file. A file may have its own ACL or may share an ACL with other files. ACLs have the advantage of specifying detailed access permissions for multiple users and groups. ACLs can only be modified or displayed with two VxFS-specific commands, vxsetfacl and vxgetfacl.

See the vxsetfacl(1) and vxgetfacl(1) manual pages.

Storage Checkpoints

To increase availability, recoverability, and performance, Veritas File System offers on-disk and online backup and restore capabilities that facilitate frequent and efficient backup strategies. Backup and restore applications can leverage a Storage Checkpoint, a disk- and I/O-efficient copying technology for creating periodic frozen images of a file system. Storage Checkpoints present a view of a file system at a point in time, and subsequently identifies and maintains copies of the original file system blocks. Instead of using a disk-based mirroring method, Storage Checkpoints save disk space and significantly reduce I/O overhead by using the free space pool available to a file system.

Storage Checkpoint functionality is separately licensed.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

FileSnaps

A FileSnap is a space-optimized copy of a file in the same name space, stored in the same file system. VxFS supports FileSnaps in the VxFS 5.1 SP1 release and later, and on file systems with disk layout Version 8 and later.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

See the vxfilesnap(1) manual page.

Quotas

VxFS supports quotas, which allocate per-user and per-group quotas and limit the use of two principal resources: files and data blocks. You can assign quotas for each of these resources. Each quota consists of two limits for each resource: hard limit and soft limit.

The hard limit represents an absolute limit on data blocks or files. A user can never exceed the hard limit under any circumstances.

The soft limit is lower than the hard limit and can be exceeded for a limited amount of time. This allows users to exceed limits temporarily as long as they fall under those limits before the allotted time expires.

See "About quota limits" on page 75.

Support for databases

Databases are usually created on file systems to simplify backup, copying, and moving tasks and are slower compared to databases on raw disks.

Using Quick I/O for Databases feature with VxFS lets systems retain the benefits of having a database on a file system without sacrificing performance. Veritas Quick I/O creates regular, preallocated files to use as character devices. Databases can be created on the character devices to achieve the same performance as databases created on raw disks.

Treating regular VxFS files as raw devices has the following advantages for databases:

 Commercial database servers such as Oracle Server can issue kernel supported asynchronous I/O calls on these pseudo devices. Server can issue kernel supported asynchronous I/O calls on these pseudo devices.

See "About Quick I/O" on page 107.

Cluster file systems

Veritas Storage Foundation Cluster File System (SFCFS) allows clustered severs to mount and use a file system simultaneously as if all applications using the file system were running on the same server. The Veritas Volume Manager cluster functionality (CVM) makes logical volumes and raw device applications accessible through a cluster.

Beginning with SFCFS 5.0, SFCFS uses a symmetric architecture in which all nodes in the cluster can simultaneously function as metadata severs. SFCFS still has some remnants of the old master/slave or primary/secondary concept. The first server to mount each cluster file system becomes its primary; all other nodes in the cluster become secondaries. Applications access the user data in files directly from the server on which they are running. Each SFCFS node has its own intent log. File system operations, such as allocating or deleting files, can originate from any node in the cluster.

Installing VxFS and enabling the cluster feature does not create a cluster file system configuration. File system clustering requires other Veritas products to enable communication services and provide storage resources. These products are packaged with VxFS in the Storage Foundation Cluster File System to provide a complete clustering environment.

See the Veritas Storage Foundation Cluster File System Administrator's Guide.

SFCFS functionality is separately licensed.

Cross-platform data sharing

Cross-platform data sharing (CDS) allows data to be serially shared among heterogeneous systems where each system has direct access to the physical devices that hold the data. This feature can be used only in conjunction with Veritas Volume Manager (VxVM).

See the Veritas Storage Foundation Cross-Platform Data Sharing Administrator's Guide.

File Change Log

The VxFS File Change Log (FCL) tracks changes to files and directories in a file system. The File Change Log can be used by applications such as backup products, webcrawlers, search and indexing engines, and replication software that typically scan an entire file system searching for modifications since a previous scan. FCL functionality is a separately licensed feature.

See "About the File Change Log file" on page 83.

Multi-volume support

The multi-volume support (MVS) feature allows several volumes to be represented by a single logical object. All I/O to and from an underlying logical volume is directed by way of volume sets. This feature can be used only in conjunction with VxVM. MVS functionality is a separately licensed feature.

See "About multi-volume support" on page 90.

SmartTier

The SmartTier option is built on multi-volume support technology. Using SmartTier, you can map more than one volume to a single file system. You can then configure policies that automatically relocate files from one volume to another, or relocate files by running file relocation commands. Having multiple volumes lets you determine where files are located, which can improve performance for applications that access specific types of files. SmartTier functionality is a separately licensed feature.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Note: In the previous VxFS 5.x releases, SmartTier was known as Dynamic Storage Tiering.

Thin Reclamation of a file system

Storage is allocated from a Thin Storage LUN when files are created and written to a file system. This storage is not given back to the Thin Storage LUN when a file is deleted or the file size is shrunk. As such, the file system must perform the explicit task of releasing the free storage to the Thin Storage LUN. This is performed by the Storage Foundation Thin Reclamation feature. Thin Reclamation is only supported on VxFS file systems mounted on a VxVM volume.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Veritas File System performance enhancements

Traditional file systems employ block-based allocation schemes that provide adequate random access and latency for small files, but which limit throughput for larger files. As a result, they are less than optimal for commercial environments.

VxFS addresses this file system performance issue through an alternative allocation method and increased user control over allocation, I/O, and caching policies.

See "Using Veritas File System" on page 30.

VxFS provides the following performance enhancements:

- Data synchronous I/O
- Direct I/O and discovered direct I/O
- Support for file systems up to 1 terabyte on a 32-bit kernel, and 256 terabytes on a 64-bit kernel.

- Support for files up to 2 gigabytes on a 32-bit kernel, and 8 terabytes on a 64-bit kernel.
- Enhanced I/O performance
- Caching advisories
- Enhanced directory features
- Explicit file alignment, extent size, and preallocation controls
- Tunable I/O parameters
- Tunable indirect data extent size
- Integration with VxVM[™]
- Support for large directories

Note: VxFS reduces the file lookup time in directories with an extremely large number of files.

About enhanced I/O performance

VxFS provides enhanced I/O performance by applying an aggressive I/O clustering policy, integrating with VxVM, and allowing application specific parameters to be set on a per-file system basis.

See "Enhanced I/O clustering" on page 29.

See "Veritas Volume Manager integration with Veritas File System for enhanced I/O performance" on page 29.

See "Application-specific parameters for enhanced I/O performance" on page 30.

Enhanced I/O clustering

I/O clustering is a technique of grouping multiple I/O operations together for improved performance. VxFS I/O policies provide more aggressive clustering processes than other file systems and offer higher I/O throughput when using large files. The resulting performance is comparable to that provided by raw disk.

Veritas Volume Manager integration with Veritas File System for enhanced I/O performance

VxFS interfaces with VxVM to determine the I/O characteristics of the underlying volume and perform I/O accordingly. VxFS also uses this information when using

 $\tt mkfs$ to perform proper allocation unit alignments for efficient I/O operations from the kernel.

As part of VxFS/VxVM integration, VxVM exports a set of I/O parameters to achieve better I/O performance. This interface can enhance performance for different volume configurations such as RAID-5, striped, and mirrored volumes. Full stripe writes are important in a RAID-5 volume for strong I/O performance. VxFS uses these parameters to issue appropriate I/O requests to VxVM.

Note: VxFS does not operate on AIX Logical Volume Manager (LVM) volumes. You can convert LVM volumes to VxVM volumes for use by VxFS.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

Application-specific parameters for enhanced I/O performance

You can set application specific parameters on a per-file system basis to improve I/O performance.

- Discovered Direct I/O All sizes above this value would be performed as direct I/O.
- Maximum Direct I/O Size This value defines the maximum size of a single direct I/O.

See the vxtunefs(1M) and tunefstab(4) manual pages.

Using Veritas File System

There are three main methods to use, manage, modify, and tune VxFS:

- See "Veritas Operations Manager" on page 30.
- See "Online system administration" on page 31.
- See "Application program interface" on page 32.

Veritas Operations Manager

Symantec recommends use of Veritas Operations Manager to manage Storage Foundation and Cluster Server environments.

Veritas Operations Manager provides a centralized management console for Veritas Storage Foundation and High Availability products. You can use Veritas Operations Manager to monitor, visualize, and manage storage resources and generate reports. Veritas Operations Manager is not available on the Storage Foundation and High Availability Solutions release. You can download Veritas Operations Manager at no charge at http://go.symantec.com/vom.

Refer to the Veritas Operations Manager documentation for installation, upgrade, and configuration instructions.

VxFS Administration Using SMIT

You can use the AIX System Management Interface Tool (SMIT) to perform VxFS functions such as:

- Administer VxFS file systems
- Administer multi-volume VxFS file systems
- Administer Storage Checkpoints
- Mount snapshot file systems
- Verify VxFS file systems
- Defragment VxFS file systems

To invoke the VxFS menu for SMIT, type the following:

smit vxfs

In the SMIT VxFS menu, you can select any function and press the **F1** key to access Help information for that function.

See the smit online manual page.

Online system administration

VxFS provides command line interface (CLI) operations that are described throughout this guide and in manual pages.

VxFS allows you to run a number of administration tasks while the file system is online. Two of the more important tasks include:

- Defragmentation
- File system resizing

About defragmentation

Free resources are initially aligned and allocated to files in an order that provides optimal performance. On an active file system, the original order of free resources is lost over time as files are created, removed, and resized. The file system is spread farther along the disk, leaving unused gaps or fragments between areas that are in use. This process is known as fragmentation and leads to degraded performance

because the file system has fewer options when assigning a free extent to a file (a group of contiguous data blocks).

VxFS provides the online administration utility fsadm to resolve the problem of fragmentation.

The fsadm utility defragments a mounted file system by performing the following actions:

- Removing unused space from directories
- Making all small files contiguous
- Consolidating free blocks for file system use

This utility can run on demand and should be scheduled regularly as a cron job.

About file system resizing

A file system is assigned a specific size as soon as it is created; the file system may become too small or too large as changes in file system usage take place over time.

VxFS is capable of increasing or decreasing the file system size while in use. Many competing file systems can not do this. The VxFS utility fsadm can expand or shrink a file system without unmounting the file system or interrupting user productivity. However, to expand a file system, the underlying device on which it is mounted must be expandable.

VxVM facilitates expansion using virtual disks that can be increased in size while in use. The VxFS and VxVM packages complement each other to provide online expansion capability. Use the vxresize command when resizing both the volume and the file system. The vxresize command guarantees that the file system shrinks or grows along with the volume. You can also use the the vxassist command combined with the fsadm_vxfs command for this purpose; however, Symantec recommends that you use the vxresize command instead.

See the vxresize(1M) manual page.

See the Veritas Volume Manager Administrator's Guide.

Application program interface

Veritas File System Developer's Kit (SDK) provides developers with the information necessary to use the application programming interfaces (APIs) to modify and tune various features and components of File System.

See the Veritas File System Programmer's Reference Guide.

VxFS conforms to the System V Interface Definition (SVID) requirements and supports user access through the Network File System (NFS). Applications that require performance features not available with other file systems can take advantage of VxFS enhancements.

Expanded application facilities

VxFS provides API functions frequently associated with commercial applications that make it possible to perform the following actions:

- Preallocate space for a file
- Specify a fixed extent size for a file
- Bypass the system buffer cache for file I/O
- Specify the expected access pattern for a file

Because these functions are provided using VxFS-specific IOCTL system calls, most existing UNIX system applications do not use them. For portability reasons, these applications must check which file system type they are using before using these functions.

Chapter

VxFS performance: creating, mounting, and tuning file systems

This chapter includes the following topics:

- Creating a VxFS file system
- Mounting a VxFS file system
- Tuning the VxFS file system
- Monitoring free space
- Tuning I/O

Creating a VxFS file system

When you create a file system with the mkfs command, you can select the following characteristics:

- Block size
 See "Block size" on page 35.
- Intent log size
 See "Intent log size" on page 35.

Block size

The unit of allocation in VxFS is an extent. Unlike some other UNIX file systems, VxFS does not make use of block fragments for allocation because storage is allocated in extents that consist of one or more blocks.

You specify the block size when creating a file system by using the mkfs -o bsize option. The block size cannot be altered after the file system is created. The smallest available block size for VxFS is 1K. The default block size is 1024 bytes for file systems smaller than 1 TB, and 8192 bytes for file systems 1 TB or larger.

Choose a block size based on the type of application being run. For example, if there are many small files, a 1K block size may save space. For large file systems, with relatively few files, a larger block size is more appropriate. Larger block sizes use less disk space in file system overhead, but consume more space for files that are not a multiple of the block size. The easiest way to judge which block sizes provide the greatest system efficiency is to try representative system loads against various sizes and pick the fastest. For most applications, it is best to use the default values.

For 64-bit kernels, the block size and disk layout version determine the maximum size of the file system you can create.

See "About disk layouts" on page 252.

Intent log size

You specify the intent log size when creating a file system by using the mkfs -o logsize option. With the Version 6 and later disk layouts, you can dynamically increase or decrease the intent log size using the logsize option of the fsadm command. The mkfs utility uses a default intent log size of 64 megabytes for disk layout Version 6 and later. The default size is sufficient for most workloads. If the system is used as an NFS server or for intensive synchronous write workloads, performance may be improved using a larger log size.

With larger intent log sizes, recovery time is proportionately longer and the file system may consume more system resources (such as memory) during normal operation.

There are several system performance benchmark suites for which VxFS performs better with larger log sizes. As with block sizes, the best way to pick the log size is to try representative system loads against various sizes and pick the fastest.

Mounting a VxFS file system

In addition to the standard mount mode (delaylog mode), Veritas File System (VxFS) provides the following modes of operation:

- log
- delaylog
- tmplog
- logsize
- nodatainlog
- blkclear
- mincache
- convosync
- ioerror
- largefiles | nolargefiles
- ∎ cio
- mntlock|mntunlock

Caching behavior can be altered with the mincache option, and the behavior of o_SYNC and D_SYNC writes can be altered with the convosync option.

See the fcnt1(2) manual page.

The delaylog and tmplog modes can significantly improve performance. The improvement over log mode is typically about 15 to 20 percent with delaylog; with tmplog, the improvement is even higher. Performance improvement varies, depending on the operations being performed and the workload. Read/write intensive loads should show less improvement, while file system structure intensive loads, such as mkdir, create, and rename, may show over 100 percent improvement. The best way to select a mode is to test representative system loads against the logging modes and compare the performance results.

Most of the modes can be used in combination. For example, a desktop machine might use both the blkclear and mincache=closesync modes.

The mount command automatically runs the VxFS fsck command to clean up the intent log if the mount command detects a dirty log in the file system. This functionality is only supported on file systems mounted on a Veritas Volume Manager (VxVM) volume.

See the mount_vxfs(1M) manual page.

The log mode

In log mode, all system calls other than write(2), writev(2), and pwrite(2) are guaranteed to be persistent after the system call returns to the application.

The rename(2) system call flushes the source file to disk to guarantee the persistence of the file data before renaming it. In both the log and delaylog modes, the rename is also guaranteed to be persistent when the system call returns. This benefits shell scripts and programs that try to update a file atomically by writing the new file contents to a temporary file and then renaming it on top of the target file.

The delaylog mode

The default logging mode is delaylog. In delaylog mode, the effects of most system calls other than write(2), writev(2), and pwrite(2) are guaranteed to be persistent approximately 3 seconds after the system call returns to the application. Contrast this with the behavior of most other file systems in which most system calls are not persistent until approximately 30 seconds or more after the call has returned. Fast file system recovery works with this mode.

The rename(2) system call flushes the source file to disk to guarantee the persistence of the file data before renaming it. In the log and delaylog modes, the rename is also guaranteed to be persistent when the system call returns. This benefits shell scripts and programs that try to update a file atomically by writing the new file contents to a temporary file and then renaming it on top of the target file.

The tmplog mode

In tmplog mode, the effects of system calls have persistence guarantees that are similar to those in delaylog mode. In addition, enhanced flushing of delayed extending writes is disabled, which results in better performance but increases the chances of data being lost or uninitialized data appearing in a file that was being actively written at the time of a system failure. This mode is only recommended for temporary file systems. Fast file system recovery works with this mode.

Note: The term "effects of system calls" refers to changes to file system data and metadata caused by the system call, excluding changes to st atime.

See the stat(2) manual page.

Logging mode persistence guarantees

In all logging modes, VxFS is fully POSIX compliant. The effects of the fsync(2) system call is guaranteed to be persistent after the calls return. The persistence

guarantees for data or metadata modified by write(2), writev(2), or pwrite(2) are not affected by the logging mount options. The effects of these system calls are guaranteed to be persistent only if the o_SYNC, O_DSYNC, VX_DSYNC, or VX_DIRECT flag, as modified by the convosync= mount option, has been specified for the file descriptor.

The behavior of NFS servers on a VxFS file system is unaffected by the log and tmplog mount options, but not delaylog. In all cases except for tmplog, VxFS complies with the persistency requirements of the NFS v2 and NFS v3 standard. Unless a UNIX application has been developed specifically for the VxFS file system in log mode, it expects the persistence guarantees offered by most other file systems and experiences improved robustness when used with a VxFS file system mounted in delaylog mode. Applications that expect better persistence guarantees than that offered by most other file systems can benefit from the log, mincache=, and closesync mount options. However, most commercially available applications work well with the default VxFS mount options, including the delaylog mode.

The logiosize mode

The logiosize=size option enhances the performance of storage devices that employ a read-modify-write feature. If you specify logiosize when you mount a file system, VxFS writes the intent log in the least *size* bytes or a multiple of *size* bytes to obtain the maximum performance from such devices.

See the mount_vxfs(1M) manual page.

The values for *size* can be 512, 1024, 2048, 4096, or 8192.

The nodatainlog mode

Use the nodatainlog mode on systems with disks that do not support bad block revectoring. Usually, a VxFS file system uses the intent log for synchronous writes. The inode update and the data are both logged in the transaction, so a synchronous write only requires one disk write instead of two. When the synchronous write returns to the application, the file system has told the application that the data is already written. If a disk error causes the metadata update to fail, then the file must be marked bad and the entire file is lost.

If a disk supports bad block revectoring, then a failure on the data update is unlikely, so logging synchronous writes should be allowed. If the disk does not support bad block revectoring, then a failure is more likely, so the nodatainlog mode should be used.

A nodatainlog mode file system is approximately 50 percent slower than a standard mode VxFS file system for synchronous writes. Other operations are not affected.

The blkclear mode

The blkclear mode is used in increased data security environments. The blkclear mode guarantees that uninitialized storage never appears in files. The increased integrity is provided by clearing extents on disk when they are allocated within a file. This mode does not affect extending writes. A blkclear mode file system is approximately 10 percent slower than a standard mode VxFS file system, depending on the workload.

The mincache mode

The mincache mode has the following suboptions:

- mincache=closesync
- mincache=direct
- mincache=dsync
- mincache=unbuffered
- mincache=tmpcache

The mincache=closesync mode is useful in desktop environments where users are likely to shut off the power on the machine without halting it first. In this mode, any changes to the file are flushed to disk when the file is closed.

To improve performance, most file systems do not synchronously update data and inode changes to disk. If the system crashes, files that have been updated within the past minute are in danger of losing data. With the mincache=closesync mode, if the system crashes or is switched off, only open files can lose data. A mincache=closesync mode file system could be approximately 15 percent slower than a standard mode VxFS file system, depending on the workload.

The following describes where to use the mincache modes:

- The mincache=direct, mincache=unbuffered, and mincache=dsync modes are used in environments where applications have reliability problems caused by the kernel buffering of I/O and delayed flushing of non-synchronous I/O.
- The mincache=direct and mincache=unbuffered modes guarantee that all non-synchronous I/O requests to files are handled as if the VX_DIRECT or VX_UNBUFFERED caching advisories had been specified.
- The mincache=dsync mode guarantees that all non-synchronous I/O requests to files are handled as if the vx_DSYNC caching advisory had been specified. Refer to the vxfsio(7) manual page for explanations of vx_DIRECT, vx_UNBUFFERED, and vx_DSYNC, as well as for the requirements for direct I/O.

• The mincache=direct, mincache=unbuffered, and mincache=dsync modes also flush file data on close as mincache=closesync does.

Because the mincache=direct, mincache=unbuffered, and mincache=dsync modes change non-synchronous I/O to synchronous I/O, throughput can substantially degrade for small to medium size files with most applications. Since the vx_DIRECT and vx_UNBUFFERED advisories do not allow any caching of data, applications that normally benefit from caching for reads usually experience less degradation with the mincache=dsync mode. mincache=direct and mincache=unbuffered require significantly less CPU time than buffered I/O.

If performance is more important than data integrity, you can use the mincache=tmpcache mode. The mincache=tmpcache mode disables special delayed extending write handling, trading off less integrity for better performance. Unlike the other mincache modes, tmpcache does not flush the file to disk the file is closed. When the mincache=tmpcache option is used, bad data can appear in a file that was being extended when a crash occurred.

The convosync mode

The convosync (convert osync) mode has the following suboptions:

convosync=closesync

Note: The convosync=closesync mode converts synchronous and data synchronous writes to non-synchronous writes and flushes the changes to the file to disk when the file is closed.

- convosync=delay
- convosync=direct
- convosync=dsync

Note: The convosync=dsync option violates POSIX guarantees for synchronous I/O.

convosync=unbuffered

The convosync=delay mode causes synchronous and data synchronous writes to be delayed rather than to take effect immediately. No special action is performed when closing a file. This option effectively cancels any data integrity guarantees normally provided by opening a file with o sync.

See the open(2), fcntl(2), and vxfsio(7) manual pages.

Warning: Be very careful when using the convosync=closesync or convosync=delay mode because they actually change synchronous I/O into non-synchronous I/O. Applications that use synchronous I/O for data reliability may fail if the system crashes and synchronously written data is lost.

The convosync=dsync mode converts synchronous writes to data synchronous writes.

As with closesync, the direct, unbuffered, and dsync modes flush changes to the file to disk when it is closed. These modes can be used to speed up applications that use synchronous I/O. Many applications that are concerned with data integrity specify the o_sync fcntl in order to write the file data synchronously. However, this has the undesirable side effect of updating inode times and therefore slowing down performance. The convosync=dsync, convosync=unbuffered, and convosync=direct modes alleviate this problem by allowing applications to take advantage of synchronous writes without modifying inode times as well.

Before using convosync=dsync, convosync=unbuffered, or convosync=direct, make sure that all applications that use the file system do not require synchronous inode time updates for o sync writes.

The ioerror mode

This mode sets the policy for handling I/O errors on a mounted file system. I/O errors can occur while reading or writing file data or metadata. The file system can respond to these I/O errors either by halting or by gradually degrading. The *ioerror* option provides five policies that determine how the file system responds to the various errors. All policies limit data corruption, either by stopping the file system or by marking a corrupted inode as bad.

The policies are the following:

- disable
- nodisable
- wdisable
- mwdisable
- mdisable

The disable policy

If disable is selected, VxFS disables the file system after detecting any I/O error. You must then unmount the file system and correct the condition causing the I/O error. After the problem is repaired, run fsck and mount the file system again. In most cases, replay fsck to repair the file system. A full fsck is required only in cases of structural damage to the file system's metadata. Select disable in environments where the underlying storage is redundant, such as RAID-5 or mirrored disks.

The nodisable policy

If nodisable is selected, when VxFS detects an I/O error, it sets the appropriate error flags to contain the error, but continues running. Note that the degraded condition indicates possible data or metadata corruption, not the overall performance of the file system.

For file data read and write errors, VxFS sets the <code>vx_dataioern</code> flag in the super-block. For metadata read errors, VxFS sets the <code>vx_fullFsck</code> flag in the super-block. For metadata write errors, VxFS sets the <code>vx_fullFsck</code> and <code>vx_metaioern</code> flags in the super-block and may mark associated metadata as bad on disk. VxFS then prints the appropriate error messages to the console.

See "File system response to problems" on page 160.

You should stop the file system as soon as possible and repair the condition causing the I/O error. After the problem is repaired, run fsck and mount the file system again. Select nodisable if you want to implement the policy that most closely resembles the error handling policy of the previous VxFS release.

The wdisable and mwdisable policies

If wdisable (write disable) or mwdisable (metadata-write disable) is selected, the file system is disabled or degraded, depending on the type of error encountered. Select wdisable or mwdisable for environments where read errors are more likely to persist than write errors, such as when using non-redundant storage. mwdisable is the default icerror mount option for local mounts.

See the mount_vxfs(1M) manual page.

The mdisable policy

If mdisable (metadata disable) is selected, the file system is disabled if a metadata read or write fails. However, the file system continues to operate if the failure is confined to data extents. mdisable is the default icerror mount option for cluster mounts.

The largefiles | no largefiles option

VxFS supports files larger than one gigabyte. Files larger than 32 terabytes can be created only on 64-bit kernel operating systems and on a Veritas Volume Manager volume

Note: Applications and utilities such as backup may experience problems if they are not aware of large files. In such a case, create your file system without large file capability.

See "Creating a file system with large files" on page 43.

See "Mounting a file system with large files" on page 43.

See "Managing a file system with large files" on page 44.

Creating a file system with large files

To create a file system with a large file capability:

```
# mkfs -V vxfs -o largefiles -s size special_device
```

Specifying largefiles sets the largefiles flag. This lets the file system to hold files that are two gigabytes or larger. This is the default option.

To clear the flag and prevent large files from being created:

```
# mkfs -V vxfs -o nolargefiles -s size special_device
```

The largefiles flag is persistent and stored on disk.

Mounting a file system with large files

If a mount succeeds and nolargefiles is specified, the file system cannot contain or create any large files. If a mount succeeds and largefiles is specified, the file system may contain and create large files.

The mount command fails if the specified largefiles | nolargefiles option does not match the on-disk flag.

Because the mount command defaults to match the current setting of the on-disk flag if specified without the largefiles or nolargefiles option, the best practice is not to specify either option. After a file system is mounted, you can use the fsadm utility to change the large files option.

Managing a file system with large files

Managing a file system with large files includes the following tasks:

- Determining the current status of the large files flag
- Switching capabilities on a mounted file system
- Switching capabilities on an unmounted file system

To determine the current status of the largefiles flag:

```
# fsadm -V vxfs mount_point | special_device
```

To switch capabilities on a mounted file system:

fsadm -V vxfs -o [no]largefiles mount_point

To switch capabilities on an unmounted file system:

```
# fsadm -V vxfs -o [no]largefiles special_device
```

You cannot change a file system to nolargefiles if it contains large files.

See the mount vxfs(1M), fsadm vxfs(1M), and mkfs vxfs(1M) manual pages.

The cio option

The cio (Concurrent I/O) option specifies the file system to be mounted for concurrent readers and writers. Concurrent I/O is a separately licensed feature of VxFS. If cio is specified, but the license is not present, the mount command prints an error message and terminates the operation without mounting the file system. The cio option cannot be disabled through a remount. To disable the cio option, the file system must be unmounted and mounted again without the cio option.

Note: There is no separate license required for the cio option, it is a part of the "standard" license.

The mntlock|mntunlock option

The mntlock option prevents a file system from being unmounted by an application. This option is useful for applications that do not want the file systems that the applications are monitoring to be improperly unmounted by other applications or administrators.

The mntunlock option of the umount command reverses the mntlock option if you previously locked the file system.

Combining mount command options

Although mount options can be combined arbitrarily, some combinations do not make sense. The following examples provide some common and reasonable mount option combinations.

To mount a desktop file system using options:

```
# mount -V vxfs -o log,mincache=closesync \
/dev/vx/dsk/diskgroup/volume /mnt
```

This guarantees that when a file is closed, its data is synchronized to disk and cannot be lost. Thus, after an application has exited and its files are closed, no data is lost even if the system is immediately turned off.

To mount a temporary file system or to restore from backup:

```
# mount -V vxfs -o tmplog,convosync=delay,mincache=tmpcache \
/dev/vx/dsk/diskgroup/volume /mnt
```

This combination might be used for a temporary file system where performance is more important than absolute data integrity. Any o_SYNC writes are performed as delayed writes and delayed extending writes are not handled. This could result in a file that contains corrupted data if the system crashes. Any file written 30 seconds or so before a crash may contain corrupted data or be missing if this mount combination is in effect. However, such a file system does significantly less disk writes than a log file system, and should have significantly better performance, depending on the application.

To mount a file system for synchronous writes:

```
# mount -V vxfs -o log,convosync=dsync \
/dev/vx/dsk/diskgroup/volume /mnt
```

This combination can be used to improve the performance of applications that perform o_sync writes, but only require data synchronous write semantics. Performance can be significantly improved if the file system is mounted using convosync=dsync without any loss of data integrity.

Tuning the VxFS file system

This section describes the following kernel tunable parameters in VxFS:

- Tuning performance optimization of inode allocation
- Veritas Volume Manager maximum I/O size
- Global tunable parameters

Global tunable parameter table

Tuning performance optimization of inode allocation

The delicache_enable tunable parameter specifies whether performance optimization of inode allocation and inode reuse during a new file creation is turned on or off. The delicache_enable tunable is not supported for cluster file systems. You can specify the following values fordelicache_enable:

- 0 Disables delicache optimization.
- 1 Enables delicache optimization.

The default value of delicache_enable is 1 for local mounts and 0 for cluster file systems.

Global tunable parameters

There are various VxFS global tunable parameters that are set when VxFS is loaded. The default values calculated for these global tunables are based on the amount of memory available on the system. The default values do not change unless the amount of memory changes and VxFS is reloaded or the system is rebooted.

While the global parameter default values assure good system performance across a wide range of applications, if your system is caching a large number of metadata transactions, or if there is significant virtual memory manager usage, modifying some of the parameters may improve performance. VxFS has three global parameters that can be modified to improve performance under this condition:

vxfs_ninode	Sets the maximum number of inodes. VxFS caches inodes in an inode table and uses the value of $vxfs_ninode$ as the maximum number of entries in the inode table.
vx_bc_bufhwm	Sets the maximum number of buffers in the $VxFS$ buffer cache.
vx_vmm_buf_count	Sets the number of buffers allocated to the virtual memory manager (VMM).

You can use the ${\tt vxfsstat}$ command to monitor buffer cache statistics and inode cache usage.

See the vxfsstat(1M) manual page.

You can also monitor VMM buffer usage.

See "Veritas Volume Manager maximum I/O size" on page 47.

Note: The tunable parameters provide tuning tools that can degrade system performance if not applied correctly. It is best to consult with Symantec Technical Support before altering the default parameters.

Global tunable parameter table

The file /etc/vx/vxfssystem contains VxFS global tuning parameters and is the file used to alter their value. Without this file present, the default values cannot be changed. The global tuning parameters are not the same as the single file system tunables which you can change using the vxtunefs command.vx_vmm_buf_count is an exception as it can be changed by vxtunefs when no VxFS file system is mounted.

An entry in the /etc/vx/vxfssystem file has two fields separated by a tab or space. The first field is the parameter name, the second field is a decimal positive or negative value for the parameter. There can be multiple entries in the file for the same parameter, but the last entry is the only one used. Comment lines must begin with a pound character (#).

The <code>vxkextadm</code> utility loads the values for the tunables specified in /etc/vx/vxfssystem when loading the VxFS kernel extension. If the file contains an invalid entry, <code>vxkextadm</code> rejects the file and does not apply any of the tunable values.

Veritas Volume Manager maximum I/O size

When using VxFS with Veritas Volume Manager (VxVM), VxVM by default breaks up I/O requests larger than 256K. When using striping, to optimize performance, the file system issues I/O requests that are up to a full stripe in size. If the stripe size is larger than 256K, those requests are broken up.

To avoid undesirable I/O breakup, you can increase the maximum I/O size by changing the value of the vol_maxio parameter.

vol_maxio

The vol_maxio parameter controls the maximum size of logical I/O operations that can be performed without breaking up a request. Logical I/O requests larger than this value are broken up and performed synchronously. Physical I/Os are broken up based on the capabilities of the disk device and are unaffected by changes to the vol maxio logical request limit.

Raising the vol_maxio limit can cause problems if the size of an I/O requires more memory or kernel mapping space than exists. The recommended maximum for

<code>vol_maxio</code> is 20% of the smaller of physical memory or kernel virtual memory. It is not advisable to go over this limit. Within this limit, you can generally obtain the best results by setting <code>vol_maxio</code> to the size of your largest stripe. This applies to both RAID-0 striping and RAID-5 striping.

To change or increase vol_maxio , use the VxVM menus under SMIT. In the Volume Manager SMIT screens see this tunable listed as "Maximum I/O size":

```
Maximum I/O size (sectors) [512]
```

This value is in 512-byte sectors. The default value for this tunable is 512 sectors.

See the Veritas Volume Manager Administrator's Guide.

Monitoring free space

In general, VxFS works best if the percentage of free space in the file system does not get below 10 percent. This is because file systems with 10 percent or more free space have less fragmentation and better extent allocation. Regular use of the df command to monitor free space is desirable.

See the df vxfs(1M) manual page.

Full file systems may have an adverse effect on file system performance. Full file systems should therefore have some files removed, or should be expanded.

See the fsadm vxfs(1M) manual page.

Monitoring fragmentation

Fragmentation reduces performance and availability. Regular use of fsadm's fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to schedule regular defragmentation runs using the cron command.

Defragmentation scheduling should range from weekly (for frequently used file systems) to monthly (for infrequently used file systems). Extent fragmentation should be monitored with fsadm command.

To determine the degree of fragmentation, use the following factors:

- Percentage of free space in extents of less than 8 blocks in length
- Percentage of free space in extents of less than 64 blocks in length
- Percentage of free space in extents of length 64 blocks or greater

An unfragmented file system has the following characteristics:

- Less than 1 percent of free space in extents of less than 8 blocks in length
- Less than 5 percent of free space in extents of less than 64 blocks in length
- More than 5 percent of the total file system size available as free extents in lengths of 64 or more blocks

A badly fragmented file system has one or more of the following characteristics:

- Greater than 5 percent of free space in extents of less than 8 blocks in length
- More than 50 percent of free space in extents of less than 64 blocks in length
- Less than 5 percent of the total file system size available as free extents in lengths of 64 or more blocks

The optimal period for scheduling of extent reorganization runs can be determined by choosing a reasonable interval, scheduling fsadm runs at the initial interval, and running the extent fragmentation report feature of fsadm before and after the reorganization.

The "before" result is the degree of fragmentation prior to the reorganization. If the degree of fragmentation is approaching the figures for bad fragmentation, reduce the interval between fsadm runs. If the degree of fragmentation is low, increase the interval between fsadm runs.

The "after" result is an indication of how well the reorganizer has performed. The degree of fragmentation should be close to the characteristics of an unfragmented file system. If not, it may be a good idea to resize the file system; full file systems tend to fragment and are difficult to defragment. It is also possible that the reorganization is not being performed at a time during which the file system in question is relatively idle.

Directory reorganization is not nearly as critical as extent reorganization, but regular directory reorganization improves performance. It is advisable to schedule directory reorganization for file systems when the extent reorganization is scheduled. The following is a sample script that is run periodically at 3:00 A.M. from cron for a number of file systems:

```
export PATH=$PATH:/opt/VRTS/bin
outfile=/var/spool/fsadm.out.'/usr/bin/date +'%m%d''
for i in /home /home2 /project /db
do
    /usr/bin/echo "Reorganizing $i"
    /usr/bin/timex fsadm -V vxfs -e -E -s $i
    /usr/bin/timex fsadm -V vxfs -s -d -D $i
done > $outfile 2>&1
```

Thin Reclamation

Veritas File System (VxFS) supports reclamation of free storage on a Thin Storage LUN.

See "Thin Reclamation of a file system" on page 28.

See the Veritas Storage Foundation Advanced Features Administrator's Guide.

You reclaim free storage using the <code>fsadm</code> command or the <code>vxfs_ts_reclaim</code> API. You can perform the default reclamation or aggressive reclamation. If you used a file system for a long time and must perform reclamation on the file system, Symantec recommends that you run aggressive reclamation. Aggressive reclamation compacts the allocated blocks, which creates larger free blocks that can potentially be reclaimed.

You can specify the following thin reclamation options with the fsadm command:

aggressive Initiates Thin Storage aggressive reclamation.

analyse | analyze Initiates the analyze reclaim option.

auto Initiates the auto reclaim option.

See the fsadm vxfs(1M) and vxfs ts reclaim(3) manual pages.

Thin Reclamation is only supported on file systems mounted on a VxVM volume.

The following example performs default reclamation of free storage to the Thin Storage LUN on a VxFS file system mounted at /mnt1:

fsadm -R /mnt1

The following example performs aggressive reclamation of free storage to the Thin Storage LUN on a VxFS file system mounted at /mnt1:

fsadm -R -o aggressive /mnt1

After performing the reclaim operation, you can verify that the storage was reclaimed using the vxdisk -o thin list command.

Veritas File System also supports reclamation of a portion of the file system using the vxfs_ts_reclaim() API.

See the Veritas File System Programmer's Reference Guide.

Note: Thin Reclamation is a slow process and may take several hours to complete, depending on the file system size. Thin Reclamation is not guaranteed to reclaim 100% of the free space.

You can track the progress of the Thin Reclamation process by using the vxtask list command when using the Veritas Volume Manager (VxVM) command vxdisk reclaim.

See the vxtask(1M) and vxdisk(1M) manual pages.

You can administer Thin Reclamation using VxVM commands.

See the Veritas Volume Manager Administrator's Guide.

Tuning I/O

The performance of a file system can be enhanced by a suitable choice of I/O sizes and proper alignment of the I/O requests based on the requirements of the underlying special device. VxFS provides tools to tune the file systems.

Note: The following tunables and the techniques work on a per file system basis. Use them judiciously based on the underlying device properties and characteristics of the applications that use the file system.

Tuning VxFS I/O parameters

VxFS provides a set of tunable I/O parameters that control some of its behavior. These I/O parameters are useful to help the file system adjust to striped or RAID-5 volumes that could yield performance superior to a single disk. Typically, data streaming applications that access large files see the largest benefit from tuning the file system.

Veritas Volume Manager queries

Veritas Volume Manager (VxVM) receives the following queries during configuration:

 The file system queries VxVM to determine the geometry of the underlying volume and automatically sets the I/O parameters.

Note: When using file systems in multiple volume sets, VxFS sets the VxFS tunables based on the geometry of the first component volume (volume 0) in the volume set.

- The mkfs command queries VxVM when the file system is created to align automatically the file system to the volume geometry.
- The mount command queries VxVM when the file system is mounted and downloads the I/O parameters.

If the default parameters are not acceptable or the file system is being used without VxVM, then the /etc/vx/tunefstab file can be used to set values for I/O parameters. The mount command reads the /etc/vx/tunefstab file and downloads any parameters specified for a file system. The tunefstab file overrides any values obtained from VxVM. While the file system is mounted, any I/O parameters can be changed using the vxtunefs command which can have tunables specified on the command line or can read them from the /etc/vx/tunefstab file.

See the vxtunefs(1M) and tunefstab(4) manual pages.

The $\mathtt{vxtunefs}$ command can be used to print the current values of the I/O parameters.

To print the values, type the following command:

```
# vxtunefs -p /mnt1
```

The following is an example tunefstab file:

```
/dev/vx/dsk/userdg/netbackup
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/metasave
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solbuild
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solrelease
read_pref_io=64k,write_pref_io=64k,read_nstream=4,write_nstream=4
/dev/vx/dsk/userdg/solpatch
read_pref_io=128k,write_pref_io=128k,read_nstream=4,write_nstream=4
```

Tunable I/O parameters

Table 2-1 provides a list and description of these parameters.

Parameter	Description
read_pref_io	The preferred read request size. The file system uses this in conjunction with the read_nstream value to determine how much data to read ahead. The default value is 64K.
write_pref_io	The preferred write request size. The file system uses this in conjunction with the write_nstream value to determine how to do flush behind on writes. The default value is 64K.
read_nstream	The number of parallel read requests of size read_pref_io to have outstanding at one time. The file system uses the product of read_nstream multiplied by read_pref_io to determine its read ahead size. The default value for read_nstream is 1.
write_nstream	The number of parallel write requests of size write_pref_io to have outstanding at one time. The file system uses the product of write_nstream multiplied by write_pref_io to determine when to do flush behind on writes. The default value for write_nstream is 1.
discovered_direct_iosz	Any file I/O requests larger than discovered_direct_iosz are handled as discovered direct I/O. A discovered direct I/O is unbuffered similar to direct I/O, but it does not require a synchronous commit of the inode when the file is extended or blocks are allocated. For larger I/O requests, the CPU time for copying the data into the page cache and the cost of using memory to buffer the I/O data becomes more expensive than the cost of doing the disk I/O. For these I/O requests, using discovered direct I/O is more efficient than regular I/O. The default value of this parameter is 256K.

Table 2-1Tunable VxFS I/O parameters

Parameter	Description
fcl_keeptime	Specifies the minimum amount of time, in seconds, that the VxFS File Change Log (FCL) keeps records in the log. When the oldest 8K block of FCL records have been kept longer than the value of fcl_keeptime, they are purged from the FCL and the extents nearest to the beginning of the FCL file are freed. This process is referred to as "punching a hole." Holes are punched in the FCL file in 8K chunks.
	If the fcl_maxalloc parameter is set, records are purged from the FCL if the amount of space allocated to the FCL exceeds fcl_maxalloc, even if the elapsed time the records have been in the log is less than the value of fcl_keeptime. If the file system runs out of space before fcl_keeptime is reached, the FCL is deactivated.
	Either or both of the fcl_keeptime or fcl_maxalloc parameters must be set before the File Change Log can be activated.
fcl_maxalloc	Specifies the maximum amount of space that can be allocated to the VxFS File Change Log (FCL). The FCL file is a sparse file that grows as changes occur in the file system. When the space allocated to the FCL file reaches the fcl_maxalloc value, the oldest FCL records are purged from the FCL and the extents nearest to the beginning of the FCL file are freed. This process is referred to as "punching a hole." Holes are punched in the FCL file in 8K chunks. If the file system runs out of space before fcl_maxalloc is reached, the FCL is deactivated.
	The minimum value of fcl_maxalloc is 4 MB. The default value is fs_size/33.
	Either or both of the fcl_maxalloc or fcl_keeptime parameters must be set before the File Change Log can be activated. fcl_maxalloc does not apply to disk lay out Versions 1 through 5.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

Parameter	Description
fcl_winterval	Specifies the time, in seconds, that must elapse before the VxFS File Change Log (FCL) records a data overwrite, data extending write, or data truncate for a file. The ability to limit the number of repetitive FCL records for continuous writes to the same file is important for file system performance and for applications processing the FCL. fcl_winterval is best set to an interval less than the shortest interval between reads of the FCL by any application. This way all applications using the FCL can be assured of finding at least one FCL record for any file experiencing continuous data changes.
	fcl_winterval is enforced for all files in the file system. Each file maintains its own time stamps, and the elapsed time between FCL records is per file. This elapsed time can be overridden using the VxFS FCL sync public API.
	See the vxfs_fcl_sync(3) manual page.
hsm_write_ prealloc	For a file managed by a hierarchical storage management (HSM) application, hsm_write_prealloc preallocates disk blocks before data is migrated back into the file system. An HSM application usually migrates the data back through a series of writes to the file, each of which allocates a few blocks. By setting hsm_write_prealloc(hsm_write_ prealloc=1), a sufficient number of disk blocks are allocated on the first write to the empty file so that no disk block allocation is required for subsequent writes. This improves the write performance during migration.
	The hsm_write_ prealloc parameter is implemented outside of the DMAPI specification, and its usage has limitations depending on how the space within an HSM-controlled file is managed. It is advisable to use hsm_write_ prealloc only when recommended by the HSM application controlling the file system.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

Parameter	Description
initial_extent_size	Changes the default initial extent size. VxFS determines, based on the first write to a new file, the size of the first extent to be allocated to the file. Normally the first extent is the smallest power of 2 that is larger than the size of the first write. If that power of 2 is less than 8K, the first extent allocated is 8K. After the initial extent, the file system increases the size of subsequent extents with each allocation.
	See max_seqio_extent_size.
	Since most applications write to files using a buffer size of 8K or less, the increasing extents start doubling from a small initial extent. initial_extent_size can change the default initial extent size to be larger, so the doubling policy starts from a much larger initial size and the file system does not allocate a set of small extents at the start of file. Use this parameter only on file systems that have a very large average file size. On these file systems it results in fewer extents per file and less fragmentation. initial_extent_size is measured in file system blocks.
inode_aging_count	Specifies the maximum number of inodes to place on an inode aging list. Inode aging is used in conjunction with file system Storage Checkpoints to allow quick restoration of large, recently deleted files. The aging list is maintained in first-in-first-out (fifo) order up to maximum number of inodes specified by inode_aging_count. As newer inodes are placed on the list, older inodes are removed to complete their aging process. For best performance, it is advisable to age only a limited number of larger files before completion of the removal process. The default maximum number of inodes to age is 2048.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

Parameter	Description
inode_aging_size	Specifies the minimum size to qualify a deleted inode for inode aging. Inode aging is used in conjunction with file system Storage Checkpoints to allow quick restoration of large, recently deleted files. For best performance, it is advisable to age only a limited number of larger files before completion of the remova process. Setting the size too low can push larger file inodes out of the aging queue to make room for newly removed smaller file inodes.
max_direct_iosz	The maximum size of a direct I/O request that are issued by the file system. If a larger I/O request comes in, then it is broken up into max_direct_iosz chunks. This parameter defines how much memory an I/O request can lock at once, so it should not be set to more than 20 percent of memory.
max_diskq	Limits the maximum disk queue generated by a single file. When the file system is flushing data for a file and the number of pages being flushed exceeds max_diskq, processes are blocked until the amount of data being flushed decreases. Although this does not limit the actual disk queue, it prevents flushing processes from making the system unresponsive. The default value is 1 MB.
max_seqio_extent_size	Increases or decreases the maximum size of an extent When the file system is following its default allocation policy for sequential writes to a file, it allocates an initia extent which is large enough for the first write to the file. When additional extents are allocated, they are progressively larger because the algorithm tries to double the size of the file with each new extent. As such, each extent can hold several writes worth of data This is done to reduce the total number of extents in anticipation of continued sequential writes. When the file stops being written, any unused space is freed for other files to use. Normally, this allocation stops increasing the size of extents at 262144 blocks, which prevents one file from holding too much unused space max_seqio_extent_size is measured in file system blocks. The default and minimum value of this parameter is 2048 blocks.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

Parameter	Description
qio_cache_enable	Enables or disables caching on Quick I/O files. The default behavior is to disable caching. To enable caching, set qio_cache_enable to 1. On systems with large memories, the database cannot always use all of the memory as a cache. By enabling file system caching as a second level cache, performance may be improved. If the database is performing sequential scans of tables, the scans may run faster by enabling file system caching so the file system performs aggressive read-ahead on the files.
thin_friendly_alloc	Enables or disables thin friendly allocations. Specifying a value of 1 enables thin friendly allocations, while specifying a value of 0 disables thin friendly allocations. The default value is 1 for thinrclm volumes, and 0 for all other volume types. You must turn on delicache_enable before you can activate this feature.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

Parameter	Description
write_throttle	The write_throttle parameter is useful in special situations where a computer system has a combination of a large amount of memory and slow storage devices In this configuration, sync operations, such as fsync(may take long enough to complete that a system appears to hang. This behavior occurs because the file system is creating dirty pages (in-memory updates faster than they can be asynchronously flushed to dis without slowing system performance.
	Lowering the value of write_throttle limits the number of dirty pages per file that a file system generates before flushing the pages to disk. After th number of dirty pages for a file reaches the write_throttle threshold, the file system starts flushing pages to disk even if free memory is still available.
	The default value of write_throttle is zero, which puts no limit on the number of dirty pages per file. If non-zero, VxFS limits the number of dirty pages per file to write_throttle pages.
	The default value typically generates a large number of dirty pages, but maintains fast user writes. Depending on the speed of the storage device, if yo lower write_throttle, user write performance ma suffer, but the number of dirty pages is limited, so syn operations completes much faster.
	Because lowering write_throttle may in some cases delay write requests (for example, lowering write_throttle may increase the file disk queue to the max_diskq value, delaying user writes until th disk queue decreases), it is advisable not to change the value of write_throttle unless your system has a combination of large physical memory and slo storage devices.

 Table 2-1
 Tunable VxFS I/O parameters (continued)

File system tuning guidelines

If the file system is being used with VxVM, it is advisable to let the VxFS I/O parameters be set to default values based on the volume geometry.

Note: VxFS does not query VxVM with multiple volume sets. To improve I/O performance when using multiple volume sets, use the vxtunefs command.

If the file system is being used with a hardware disk array or volume manager other than VxVM, try to align the parameters to match the geometry of the logical disk. With striping or RAID-5, it is common to set read_pref_io to the stripe unit size and read_nstream to the number of columns in the stripe. For striped arrays, use the same values for write_pref_io and write_nstream, but for RAID-5 arrays, set write_pref_io to the full stripe size and write_nstream to 1.

For an application to do efficient disk I/O, it should use the following formula to issue read requests:

read requests = read_nstream x by read_pref_io

Generally, any multiple or factor of read_nstream multiplied by read_pref_io should be a good size for performance. For writing, the same rule of thumb applies to the write_pref_io and write_nstream parameters. When tuning a file system, the best thing to do is try out the tuning parameters under a real life workload.

If an application is performing sequential I/O to large files, the application should try to issue requests larger than <code>discovered_direct_iosz</code>. This causes the I/O requests to be performed as discovered direct I/O requests, which are unbuffered like direct I/O but do not require synchronous inode updates when extending the file. If the file is larger than can fit in the cache, using unbuffered I/O avoids removing useful data out of the cache and lessens CPU overhead.

Chapter

Extent attributes

This chapter includes the following topics:

- About extent attributes
- Commands related to extent attributes

About extent attributes

Veritas File System (VxFS) allocates disk space to files in groups of one or more adjacent blocks called extents. VxFS defines an application interface that allows programs to control various aspects of the extent allocation for a given file. The extent allocation policies associated with a file are referred to as extent attributes.

The VxFS $\tt getext$ and $\tt setext$ commands let you view or manipulate file extent attributes.

The two basic extent attributes associated with a file are its reservation and its fixed extent size. You can preallocate space to the file by manipulating a file's reservation, or override the default allocation policy of the file system by setting a fixed extent size.

Other policies determine the way these attributes are expressed during the allocation process.

You can specify the following criteria:

- The space reserved for a file must be contiguous
- No allocations will be made for a file beyond the current reservation
- An unused reservation will be released when the file is closed
- Space will be allocated, but no reservation will be assigned
- The file size will be changed to incorporate the allocated space immediately

Some of the extent attributes are persistent and become part of the on-disk information about the file, while other attributes are temporary and are lost after the file is closed or the system is rebooted. The persistent attributes are similar to the file's permissions and are written in the inode for the file. When a file is copied, moved, or archived, only the persistent attributes of the source file are preserved in the new file.

See "Other controls" on page 63.

In general, the user will only set extent attributes for reservation. Many of the attributes are designed for applications that are tuned to a particular pattern of I/O or disk alignment.

See the setext(1) manual page.

See "About Veritas File System I/O" on page 67.

Reservation: preallocating space to a file

VxFS makes it possible to preallocate space to a file at the time of the request rather than when data is written into the file. This space cannot be allocated to other files in the file system. VxFS prevents any unexpected out-of-space condition on the file system by ensuring that a file's required space will be associated with the file before it is required.

A persistent reservation is not released when a file is truncated. The reservation must be cleared or the file must be removed to free the reserved space.

Fixed extent size

The VxFS default allocation policy uses a variety of methods to determine how to make an allocation to a file when a write requires additional space. The policy attempts to balance the two goals of optimum I/O performance through large allocations and minimal file system fragmentation. VxFS accomplishes these goals by allocating from space available in the file system that best fits the data.

Setting a fixed extent size overrides the default allocation policies for a file and always serves as a persistent attribute. Be careful to choose an extent size appropriate to the application when using fixed extents. An advantage of the VxFS extent-based allocation policies is that they rarely use indirect blocks compared to block based file systems; VxFS eliminates many instances of disk access that stem from indirect references. However, a small extent size can eliminate this advantage.

Files with large extents tend to be more contiguous and have better I/O characteristics. However, the overall performance of the file system degrades because the unused space fragments free space by breaking large extents into

smaller pieces. By erring on the side of minimizing fragmentation for the file system, files may become so non-contiguous that their I/O characteristics would degrade.

Fixed extent sizes are particularly appropriate in the following situations:

- If a file is large and sparse and its write size is fixed, a fixed extent size that is a multiple of the write size can minimize space wasted by blocks that do not contain user data as a result of misalignment of write and extent sizes. The default extent size for a sparse file is 8K.
- If a file is large and contiguous, a large fixed extent size can minimize the number of extents in the file.

Custom applications may also use fixed extent sizes for specific reasons, such as the need to align extents to cylinder or striping boundaries on disk.

Other controls

The auxiliary controls on extent attributes determine the following conditions:

- Whether allocations are aligned
- Whether allocations are contiguous
- Whether the file can be written beyond its reservation
- Whether an unused reservation is released when the file is closed
- Whether the reservation is a persistent attribute of the file
- When the space reserved for a file will actually become part of the file

Alignment

Specific alignment restrictions coordinate a file's allocations with a particular I/O pattern or disk alignment. Alignment can only be specified if a fixed extent size has also been set. Setting alignment restrictions on allocations is best left to well-designed applications.

See the setext(1) manual page.

See "About Veritas File System I/O" on page 67.

Contiguity

A reservation request can specify that its allocation remain contiguous (all one extent). Maximum contiguity of a file optimizes its I/O characteristics.

Note: Fixed extent sizes or alignment cause a file system to return an error message reporting insufficient space if no suitably sized (or aligned) extent is available. This can happen even if the file system has sufficient free space and the fixed extent size is large.

Write operations beyond reservation

A reservation request can specify that no allocations can take place after a write operation fills the last available block in the reservation. This request can be used a way similar to the function of the ulimit command to prevent a file's uncontrolled growth.

Reservation trimming

A reservation request can specify that any unused reservation be released when the file is closed. The file is not completely closed until all processes open against the file have closed it.

Reservation persistence

A reservation request can ensure that the reservation does not become a persistent attribute of the file. The unused reservation is discarded when the file is closed.

Including reservation in the file

A reservation request can make sure the size of the file is adjusted to include the reservation. Normally, the space of the reservation is not included in the file until an extending write operation requires it. A reservation that immediately changes the file size can generate large temporary files. Unlike a ftruncate operation that increases the size of a file, this type of reservation does not perform zeroing of the blocks included in the file and limits this facility to users with appropriate privileges. The data that appears in the file may have been previously contained in another file. For users who do not have the appropriate privileges, there is a variant request that prevents such users from viewing uninitialized data.

Commands related to extent attributes

The VxFS commands for manipulating extent attributes are setext and getext; they allow the user to set up files with a given set of extent attributes or view any attributes that are already associated with a file.

See the setext(1) and getext(1) manual pages.

The VxFS-specific commands vxdump and vxrestore preserve extent attributes when backing up, restoring, moving, or copying files.

Most of these commands include a command line option (-e) for maintaining extent attributes on files. This option specifies dealing with a VxFS file that has extent attribute information including reserved space, a fixed extent size, and extent alignment. The extent attribute information may be lost if the destination file system does not support extent attributes, has a different block size than the source file system, or lacks free extents appropriate to satisfy the extent attribute requirements.

The -e option takes any of the following keywords as an argument:

warn	Issues a warning message if extent attribute information cannot be maintained (the default)
force	Fails the copy if extent attribute information cannot be maintained
ignore	Ignores extent attribute information entirely

The AIX 1s command has an -e option, which prints the extent attributes of the file.

Example of setting an extent attribute

The following example creates a file named file1 and preallocates 2 GB of disk space for the file.

To set an extent attribute

1 Create the file file1:

touch file1

2 Preallocate 2 GB of disk space for the file file1:

```
# setext -V vxfs -r 2g -f chgsize file1
```

Since the example specifies the -f chgsize option, VxFS immediately incorporates the reservation into the file and updates the file's inode with size and block count information that is increased to include the reserved space. Only users with root privileges can use the -f chgsize option.

Example of getting an extent attribute

The following example gets the extent atribute information of a file named file1.

To get an extent attribute's information

Get the extent attribute information for the file file1:

```
# getext -V vxfs file1
file1: Bsize 1024 Reserve 36 Extent Size 3 align noextend
```

The file file1 has a block size of 1024 bytes, 36 blocks reserved, a fixed extent size of 3 blocks, and all extents aligned to 3 block boundaries. The file size cannot be increased after the current reservation is exhausted. Reservations and fixed extent sizes are allocated in units of the file system block size.

Failure to preserve extent attributes

Whenever a file is copied, moved, or archived using commands that preserve extent attributes, there is nevertheless the possibility of losing the attributes.

Such a failure might occur for one of the following reasons:

- The file system receiving a copied, moved, or restored file from an archive is not a VxFS type. Since other file system types do not support the extent attributes of the VxFS file system, the attributes of the source file are lost during the migration.
- The file system receiving a copied, moved, or restored file is a VxFS type but does not have enough free space to satisfy the extent attributes. For example, consider a 50K file and a reservation of 1 MB. If the target file system has 500K free, it could easily hold the file but fail to satisfy the reservation.
- The file system receiving a copied, moved, or restored file from an archive is a VxFS type but the different block sizes of the source and target file system make extent attributes impossible to maintain. For example, consider a source file system of block size 1024, a target file system of block size 4096, and a file that has a fixed extent size of 3 blocks (3072 bytes). This fixed extent size adapts to the source file system but cannot translate onto the target file system.

The same source and target file systems in the preceding example with a file carrying a fixed extent size of 4 could preserve the attribute; a 4 block (4096 byte) extent on the source file system would translate into a 1 block extent on the target.

On a system with mixed block sizes, a copy, move, or restoration operation may or may not succeed in preserving attributes. It is recommended that the same block size be used for all file systems on a given system.

Chapter

Veritas File System I/O

This chapter includes the following topics:

- About Veritas File System I/O
- Buffered and Direct I/O
- Concurrent I/O
- Cache advisories
- Freezing and thawing a file system
- Getting the I/O size
- Enabling and disabling Concurrent I/O for a DB2 database

About Veritas File System I/O

VxFS processes two basic types of file system I/O:

- Sequential
- Random or I/O that is not sequential

For sequential I/O, VxFS employs a read-ahead policy by default when the application is reading data. For writing, it allocates contiguous blocks if possible. In most cases, VxFS handles I/O that is sequential through buffered I/O. VxFS handles random or nonsequential I/O using direct I/O without buffering.

VxFS provides a set of I/O cache advisories for use when accessing files.

See the Veritas File System Programmer's Reference Guide.

See the vxfsio(7) manual page.

Buffered and Direct I/O

VxFS responds with read-ahead for sequential read I/O. This results in buffered I/O. The data is prefetched and retained in buffers for the application. The data buffers are commonly referred to as VxFS buffer cache. This is the default VxFS behavior.

On the other hand, direct I/O does not buffer the data when the I/O to the underlying device is completed. This saves system resources like memory and CPU usage. Direct I/O is possible only when alignment and sizing criteria are satisfied.

See "Direct I/O requirements" on page 68.

All of the supported platforms have a VxFS buffered cache. Each platform also has either a page cache or its own buffer cache. These caches are commonly known as the file system caches.

Direct I/O does not use these caches. The memory used for direct I/O is discarded after the I/O is complete,

Direct I/O

Direct I/O is an unbuffered form of I/O. If the vx_DIRECT advisory is set, the user is requesting direct data transfer between the disk and the user-supplied buffer for reads and writes. This bypasses the kernel buffering of data, and reduces the CPU overhead associated with I/O by eliminating the data copy between the kernel buffer and the user's buffer. This also avoids taking up space in the buffer cache that might be better used for something else. The direct I/O feature can provide significant performance gains for some applications.

The direct I/O and $\mathtt{VX_DIRECT}$ advisories are maintained on a per-file-descriptor basis.

Direct I/O requirements

For an I/O operation to be performed as direct I/O, it must meet certain alignment criteria. The alignment constraints are usually determined by the disk driver, the disk controller, and the system memory management hardware and software.

The requirements for direct I/O are as follows:

- The starting file offset must be aligned to a 512-byte boundary.
- The ending file offset must be aligned to a 512-byte boundary, or the length must be a multiple of 512 bytes.
- The memory buffer must start on an 8-byte boundary.

Direct I/O versus synchronous I/O

Because direct I/O maintains the same data integrity as synchronous I/O, it can be used in many applications that currently use synchronous I/O. If a direct I/O request does not allocate storage or extend the file, the inode is not immediately written.

Direct I/O CPU overhead

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential I/O to very large files, using direct I/O with large transfer sizes can provide the same speed as buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write the inode change before returning to the application. This eliminates some of the performance advantages of direct I/O.

Discovered Direct I/O

Discovered Direct I/O is a file system tunable that is set using the vxtunefs command. When the file system gets an I/O request larger than the discovered_direct_iosz, it tries to use direct I/O on the request. For large I/O sizes, Discovered Direct I/O can perform much better than buffered I/O.

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment constraints, except writes that allocate storage or extend the file size do not require writing the inode changes before returning to the application.

See "Tuning I/O" on page 51.

Unbuffered I/O

If the vx_UNBUFFERED advisory is set, I/O behavior is the same as direct I/O with the vx_DIRECT advisory set, so the alignment constraints that apply to direct I/O also apply to unbuffered I/O. For unbuffered I/O, however, if the file is being extended, or storage is being allocated to the file, inode changes are not updated synchronously before the write returns to the user. The vx_UNBUFFERED advisory is maintained on a per-file-descriptor basis.

See "Tuning I/O" on page 51.

Data synchronous I/O

If the vx_dsync advisory is set, the user is requesting data synchronous I/O. In synchronous I/O, the data is written, and the inode is written with updated times and, if necessary, an increased file size. In data synchronous I/O, the data is transferred to disk synchronously before the write returns to the user. If the file is

not extended by the write, the times are updated in memory, and the call returns to the user. If the file is extended by the operation, the inode is written before the write returns.

The direct I/O and VX_DSYNC advisories are maintained on a per-file-descriptor basis.

Data synchronous I/O vs. synchronous I/O

Like direct I/O, the data synchronous I/O feature can provide significant application performance gains. Because data synchronous I/O maintains the same data integrity as synchronous I/O, it can be used in many applications that currently use synchronous I/O. If the data synchronous I/O does not allocate storage or extend the file, the inode is not immediately written. The data synchronous I/O does not have any alignment constraints, so applications that find it difficult to meet the alignment constraints of direct I/O should use data synchronous I/O.

If the file is being extended or storage is allocated, data synchronous I/O must write the inode change before returning to the application. This case eliminates the performance advantage of data synchronous I/O.

Concurrent I/O

Concurrent I/O (VX_CONCURRENT) allows multiple processes to read from or write to the same file without blocking other read(2) or write(2) calls. POSIX semantics requires read and write calls to be serialized on a file with other read and write calls. With POSIX semantics, a read call either reads the data before or after the write call occurred. With the VX_CONCURRENT advisory set, the read and write operations are not serialized as in the case of a character device. This advisory is generally used by applications that require high performance for accessing data and do not perform overlapping writes to the same file. It is the responsibility of the application or the running threads to coordinate the write activities to the same file when using Concurrent I/O.

Concurrent I/O can be enabled in the following ways:

- By specifying the o_cio open flag for the open() system call. The o_cio flag is exclusive. If a file is opened using the o_cio flag, then any non-CIO open() call fails, and vice versa. The o_cio flag does not allow the mmap() and the shmat() subroutines to access the file. The length of data to be read or written and the file offset must be page-aligned to be transferred as direct I/O with concurrent reads and writes.
- By using the cio mount option. The read(2) and write(2) operations occurring on all of the files in this particular file system will use concurrent I/O.

See "The cio option" on page 44. See the mount vxfs(1M) manual page.

Cache advisories

VxFS allows an application to set cache advisories for use when accessing files. VxFS cache advisories enable applications to help monitor the buffer cache and provide information on how better to tune the buffer cache to improve performance gain.

The basic function of the cache advisory is to let you know whether you could have avoided a later re-read of block X if the buffer cache had been a little larger. Conversely, the cache advisory can also let you know that you could safely reduce the buffer cache size without putting block X into jeopardy.

These advisories are in memory only and do not persist across reboots. Some advisories are currently maintained on a per-file, not a per-file-descriptor, basis. Only one set of advisories can be in effect for all accesses to the file. If two conflicting applications set different advisories, both must use the advisories that were last set.

All advisories are set using the VX_SETCACHE ioctl command. The current set of advisories can be obtained with the VX GETCACHE ioctl command.

See the vxfsio(7) manual page.

Freezing and thawing a file system

Freezing a file system is a necessary step for obtaining a stable and consistent image of the file system at the volume level. Consistent volume-level file system images can be obtained and used with a file system snapshot tool. The freeze operation flushes all buffers and pages in the file system cache that contain dirty metadata and user data. The operation then suspends any new activity on the file system until the file system is thawed.

The vx_freeze ioctl command is used to freeze a file system. Freezing a file system temporarily blocks all I/O operations to a file system and then performs a sync on the file system. When the vx_freeze ioctl is issued, all access to the file system is blocked at the system call level. Current operations are completed and the file system is synchronized to disk.

When the file system is frozen, any attempt to use the frozen file system, except for a VX_THAW ioctl command, is blocked until a process executes the VX_THAW ioctl command or the time-out on the freeze expires.

Getting the I/O size

VxFS provides the vx_GET_IOPARAMETERS ioctl to get the recommended I/O sizes to use on a file system. This ioctl can be used by the application to make decisions about the I/O sizes issued to VxFS for a file or file device.

See the vxtunefs(1M) and vxfsio(7) manual pages.

See "Tuning I/O" on page 51.

Enabling and disabling Concurrent I/O for a DB2 database

Concurrent I/O is not turned on by default and must be enabled manually. You must manually disable Concurrent I/O if you choose not to use it in the future.

Enabling Concurrent I/O

Because you do not need to extend name spaces and present the files as devices, you can enable Concurrent I/O on regular files.

Warning: If you use the -o cio option with the mount command to mount your primary database file systems, the Concurrent I/O settings will not be preserved when using Database FlashSnap commands or the db2ed clonedb command.

Before enabling Concurrent I/O, review the following information:

Prerequisites To use the Concurrent I/O feature, the file system must be a VxFS file system.

- Make sure the mount point on which you plan to mount the file system exists.
- Make sure the DBA can access the mount point.

- Usage notes
 Files that are open and using Concurrent I/O cannot be opened simultaneously by a different user not using the Concurrent I/O feature.
 - Veritas NetBackup cannot backup a database file if the file is open and using Concurrent I/O. However, you can still backup the database online using the utility.
 - When a file system is mounted with the Concurrent I/O option, do not enable Quick I/O. DB2 will not be able to open the Quick I/O files and the instance start up will fail. Quick I/O is not available on Linux.
 - If the Quick I/O feature is availabe, do not use any Quick I/O tools if the database is using Concurrent I/O.
 - See the mount_vxfs(1M) manual page for more information about mount settings.

Enabling Concurrent I/O on a file system using mount with the -o cio option

You can enable Concurrent I/O by using mount with the -o cio option.

To enable Concurrent I/O on a file system using mount with the -o cio option

♦ Mount the file system using the -o cio option:

```
# /usr/sbin/mount -V vxfs -o cio special /mount_point
```

- special is a block special device
- *Imount_point* is the directory where the file system will be mounted.

For example, to mount a file system named /datavol on a mount point named /db2data:

/usr/sbin/mount -V vxfs -o cio /dev/vx/dsk/db2dg/datavol \
/db2data

Enabling Concurrent I/O on a DB2 tablespace

Alternately, you can enable Concurrent I/O on a new DB2 tablespace by using the $db2\,$ –v command.

To enable Concurrent I/O on a new DB2 tablespace

- 1 Use the db2 -v "create regular tablespace..." command with the no file system caching option when you create the new tablespace.
- 2 Set all other parameters according to your system requirements.

To enable Concurrent I/O on an existing DB2 tablespace

• Use the DB2 no file system caching option:

db2 -v "alter tablespace tablespace_name no file system caching"

tablespace_name is the name of the tablespace for which you are enabling Concurrent I/O.

To verify that Concurrent I/O has been set for a particular DB2 tablespace

1 Use the DB2 get snapshot option to check for Concurrent I/O:

db2 -v "get snapshot for tablespaces on dbname"

dbname is the database name.

2 Find the tablespace that you want to check and look for the File system caching attribute. If you see File system caching = No, then Concurrent I/O is enabled.

Disabling Concurrent I/O

If you must disable Concurrent I/O, unmount the VxFS file system and mount it again without the $-\circ$ cio mount option.

To disable Concurrent I/O on a file system using the mount command

- 1 Shutdown the DB2 instance.
- 2 Unmount the file sytem using the umount command.
- 3 Mount the file system again using the $\tt mount$ command without using the $\tt -o$ cio option.

Chapter

Quotas

This chapter includes the following topics:

- About quota limits
- About quota files on Veritas File System
- About quota commands
- About quota checking with Veritas File System
- Using quotas

About quota limits

Veritas File System (VxFS) supports user and group quotas. The quota system limits the use of two principal resources of a file system: files and data blocks. For each of these resources, you can assign quotas to individual users and groups to limit their usage.

You can set the following kinds of limits for each of the two resources:

hard limit	An absolute limit that cannot be exceeded under any circumstances.
soft limit	Must be lower than the hard limit, and can be exceeded, but only for a limited time. The time limit can be configured on a per-file system basis only. The VxFS default limit is seven days.

Soft limits are typically used when a user must run an application that could generate large temporary files. In this case, you can allow the user to exceed the quota limit for a limited time. No allocations are allowed after the expiration of the time limit. Use the vxedquota command to set limits.

See "Using quotas" on page 78.

Although file and data block limits can be set individually for each user and group, the time limits apply to the file system as a whole. The quota limit information is associated with user and group IDs and is stored in a user or group quota file.

See "About quota files on Veritas File System" on page 76.

The quota soft limit can be exceeded when VxFS preallocates space to a file.

See "About extent attributes" on page 61.

About quota files on Veritas File System

A quotas file (named quotas) must exist in the root directory of a file system for any of the quota commands to work. For group quotas to work, there must be a quotas.grp file. The files in the file system's mount point are referred to as the external quotas file. VxFS also maintains an internal quotas file for its own use.

The quota administration commands read and write to the external quotas file to obtain or change usage limits. VxFS uses the internal file to maintain counts of data blocks and inodes used by each user. When quotas are turned on, the quota limits are copied from the external quotas file into the internal quotas file. While quotas are on, all the changes in the usage information and changes to quotas are registered in the internal quotas file. When quotas are turned off, the contents of the internal quotas file are copied into the external quotas file so that all data between the two files is synchronized.

VxFS supports group quotas in addition to user quotas. Just as user quotas limit file system resource (disk blocks and the number of inodes) usage on individual users, group quotas specify and limit resource usage on a group basis. As with user quotas, group quotas provide a soft and hard limit for file system resources. If both user and group quotas are enabled, resource utilization is based on the most restrictive of the two limits for a given user.

To distinguish between group and user quotas, VxFS quota commands use a -g and -u option. The default is user quotas if neither option is specified. One exception to this rule is when you specify the -o quota option as a mount command option. In this case, both user and group quotas are enabled. Support for group quotas also requires a separate group quotas file. The VxFS group quota file is named quotas.grp. The VxFS user quotas file is named quotas. This name was used to distinguish it from the quotas.user file used by other file systems under AIX.

About quota commands

In general, quota administration for VxFS is performed using commands similar to AIX quota commands; however, the VxFS commands work only for VxFS file systems.

Note: Most of the quota commands in VxFS are similar to BSD quota commands. However, the quotacheck command is an exception—VxFS does not support an equivalent command.

See "About quota checking with Veritas File System" on page 77.

VxFS supports the following quota-related commands:

vxedquota	Edits quota limits for users and groups. The limit changes made by $vxedquota$ are reflected both in the internal quotas file and the external quotas file.
vxrepquota	Provides a summary of quotas and disk usage.
vxquot	Provides file ownership and usage summaries.
vxquota	Views quota limits and usage.
vxquotaon	Turns quotas on for a mounted VxFS file system.
vxquotaoff	Turns quotas off for a mounted VxFS file system.

Beside these commands, the VxFS mount command supports a special mount option (-o guotaluserquotalgroupquota), which can be used to turn on quotas at mount time.

For additional information on the quota commands, see the corresponding manual pages.

Note: When VxFS file systems are exported via NFS, the VxFS quota commands on the NFS client cannot query or edit quotas. You can use the VxFS quota commands on the server to query or edit quotas.

About quota checking with Veritas File System

The standard practice with most quota implementations is to mount all file systems and then run a quota check on each one. The quota check reads all the inodes on disk and calculates the usage for each user and group. This can be time consuming, and because the file system is mounted, the usage can change while quotacheck is running.

VxFS does not support a quotacheck command. With VxFS, quota checking is performed automatically (if necessary) at the time quotas are turned on. A quota check is necessary if the file system has changed with respect to the usage information as recorded in the internal quotas file. This happens only if the file system was written with quotas turned off, or if there was structural damage to the file system that required a full file system check.

See the fsck_vxfs(1M) manual page.

A quota check generally reads information for each inode on disk and rebuilds the internal quotas file. It is possible that while quotas were not on, quota limits were changed by the system administrator. These changes are stored in the external quotas file. As part of enabling quotas processing, quota limits are read from the external quotas file into the internal quotas file.

Using quotas

The VxFS quota commands are used to manipulate quotas.

Turning on quotas

To use the quota functionality on a file system, quotas must be turned on. You can turn quotas on at mount time or after a file system is mounted.

Note: Before turning on quotas, the root directory of the file system must contain a file for user quotas named quotas, and a file for group quotas named quotas.grp owned by root.

To turn on quotas

1 To turn on user and group quotas for a VxFS file system, enter:

```
# vxquotaon /mount_point
```

2 To turn on only user quotas for a VxFS file system, enter:

```
# vxquotaon -u /mount_point
```

3 To turn on only group quotas for a VxFS file system, enter:

```
# vxquotaon -g /mount_point
```

Turning on quotas at mount time

Quotas can be turned on with the mount command when you mount a file system.

To turn on quotas at mount time

1 To turn on user or group quotas for a file system at mount time, enter:

mount -V vxfs -o quota special /mount_point

2 To turn on only user quotas, enter:

mount -V vxfs -o usrquota special /mount_point

3 To turn on only group quotas, enter:

```
# mount -V vxfs -o grpquota special /mount_point
```

Editing user and group quotas

You can set up user and group quotas using the vxedquota command. You must have superuser privileges to edit quotas.

vxedquota creates a temporary file for the given user; this file contains on-disk quotas for each mounted file system that has a quotas file. It is not necessary that quotas be turned on for vxedquota to work. However, the quota limits are applicable only after quotas are turned on for a given file system.

To edit quotas

1 Specify the -u option to edit the quotas of one or more users specified by username:

vxedquota [-u] username

Editing the quotas of one or more users is the default behavior if the -u option is not specified.

2 Specify the -g option to edit the quotas of one or more groups specified by groupname:

vxedquota -g groupname

Modifying time limits

The soft and hard limits can be modified or assigned values. For any user or group, usage can never exceed the hard limit after quotas are turned on.

Modified time limits apply to the entire file system and cannot be set selectively for each user or group.

To modify time limits

1 Specify the -t option to modify time limits for any user:

vxedquota [-u] -t

2 Specify the -g and -t options to modify time limits for any group:

```
# vxedquota -g -t
```

Viewing disk quotas and usage

Use the $_{\rm vxquota}$ command to view a user's or group's disk quotas and usage on VxFS file systems.

To display disk quotas and usage

1 To display a user's quotas and disk usage on all mounted VxFS file systems where the quotas file exists, enter:

vxquota -v [-u] username

2 To display a group's quotas and disk usage on all mounted VxFS file systems where the quotas.grp file exists, enter:

vxquota -v -g groupname

Displaying blocks owned by users or groups

Use the ${\tt vxquot}$ command to display the number of blocks owned by each user or group in a file system.

To display the number of blocks owned by users or groups

1 To display the number of files and the space owned by each user, enter:

vxquot [-u] -f filesystem

2 To display the number of files and the space owned by each group, enter:

vxquot -g -f filesystem

Turning off quotas

Use the vxquotaoff command to turn off quotas.

To turn off quotas

- 1 To turn off quotas for a mounted file system, enter:
 - # vxquotaoff /mount_point
- 2 To turn off only user quotas for a VxFS file system, enter:

vxquotaoff -u /mount_point

3 To turn off only group quotas for a VxFS file system, enter:

```
# vxquotaoff -g /mount_point
```

Chapter

File Change Log

This chapter includes the following topics:

- About File Change Log
- About the File Change Log file
- File Change Log administrative interface
- File Change Log programmatic interface
- Summary of API functions
- Reverse path name lookup

About File Change Log

The VxFS File Change Log (FCL) tracks changes to files and directories in a file system.

Applications that typically use the FCL are usually required to:

- scan an entire file system or a subset
- discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines, and replication programs.

Note: The FCL tracks when the data has changed and records the change type, but does not track the actual data changes. It is the responsibility of the application to examine the files to determine the changed data.

FCL functionality is a separately licensable feature.

See the Veritas Storage Foundation Release Notes.

About the File Change Log file

File Change Log records file system changes such as creates, links, unlinks, renaming, data appended, data overwritten, data truncated, extended attribute modifications, holes punched, and miscellaneous file property updates.

FCL stores changes in a sparse file in the file system namespace. The FCL file is located in mount_point/lost+found/changelog. The FCL file behaves like a regular file, but some operations are prohibited. The standard system calls open(2), lseek(2), read(2) and close(2) can access the data in the FCL, while the write(2), mmap(2) and rename(2) calls are not allowed.

Warning: Although some standard system calls are currently supported, the FCL file might be pulled out of the namespace in future VxFS release and these system calls may no longer work. It is recommended that all new applications be developed using the programmatic interface.

The FCL log file contains both the information about the FCL, which is stored in the FCL superblock, and the changes to files and directories in the file system, which is stored as FCL records.

See "File Change Log programmatic interface" on page 86.

In 4.1, the structure of the File Change Log file was exposed through the /opt/VRTS/include/sys/fs/fcl.h header file. In this release, the internal structure of the FCL file is opaque. The recommended mechanism to access the FCL is through the API described by the

/opt/VRTSfssdk/5.1.100.000/include/vxfsutil.h header file.

The /opt/VRTS/include/sys/fs/fcl.h header file is included in this release to ensure that applications accessing the FCL with the 4.1 header file do not break. New applications should use the new FCL API described in

/opt/VRTSfssdk/5.1.100.000/include/vxfsutil.h. Existing applications should also be modified to use the new FCL API.

To provide backward compatibility for the existing applications, this release supports multiple FCL versions. Users have the flexibility of specifying the FCL version for new FCLs. The default FCL version is 4.

See the fcladm(1M) man page.

File Change Log administrative interface

The FCL can be set up and tuned through the $\tt fcladm$ and $\tt vxtunefs$ VxFS administrative commands.

See the fcladm(1M) and vxtunefs(1M) manual pages.

The FCL keywords for fcladm are as follows:

clear	Disables the recording of the audit, open, close, and statistical events after it has been set.	
dump	Creates a regular file image of the FCL file that can be downloaded to an off-host processing system. This file has a different format than the FCL file.	
on	Activates the FCL on a mounted file system. VxFS 5.0 and later releases support either FCL Versions 3 or 4. If no version is specified, the default is Version 4. Use fcladm on to specify the version.	
print	Prints the contents of the FCL file starting from the specified offset.	
restore	Restores the FCL file from the regular file image of the FCL file created by the dump keyword.	
rm	Removes the FCL file. You must first deactivate the FCL with the $\tt off$ keyword, before you can remove the FCL file.	
set	Enables the recording of events specified by the 'eventlist' optic	
	See the fcladm(1M) manual page.	
state	Writes the current state of the FCL to the standard output.	
sync	Brings the FCL to a stable state by flushing the associated data of an FCL recording interval.	

The FCL tunable parameters for vxtunefs are as follows:

fcl_keeptime Specifies the duration in seconds that FCL records stay in the FCL file before they can be purged. The first records to be purged are the oldest ones, which are located at the beginning of the file. Additionally, records at the beginning of the file can be purged if allocation to the FCL file exceeds fcl_maxalloc bytes. The default value of fcl_keeptime is 0. If the fcl_maxalloc parameter is set, records are purged from the FCL file if the amount of space allocated to the FCL file exceeds fcl_maxalloc. This is true even if the elapsed time the records have been in the log is less than the value of fcl_keeptime. fcl_maxalloc Specifies the maximum number of spaces in bytes to be allocated to the FCL file. When the space allocated exceeds fcl_maxalloc, a hole is punched at the beginning of the file. As a result, records are purged and the first valid offset (fc_foff) is updated. In addition, fcl_maxalloc may be violated if the oldest record has not reached fcl keeptime.

The minimum value of fcl_maxalloc is 4 MB. The default value is fs size/33.

- fcl_winterval Specifies the time in seconds that must elapse before the FCL records an overwrite, extending write, or a truncate. This helps to reduce the number of repetitive records in the FCL. The fcl_winterval timeout is per inode. If an inode happens to go out of cache and returns, its write interval is reset. As a result, there could be more than one write record for that file in the same write interval. The default value is 3600 seconds.
- fcl_ointerval The time interval in seconds within which subsequent opens of a file do not produce an additional FCL record. This helps to reduce the number of repetitive records logged in the FCL file. If the tracking of access information is also enabled, a subsequent file open even within the fcl_ointerval may produce a record, if it is opened by a different user. Similarly, if the inode is bumped out of cache, this may also produce more than one record within the same open interval.

The default value is 600 sec.

Either or both fcl_maxalloc and fcl_keeptime must be set to activate the FCL feature. The following are examples of using the fcladm command.

To activate FCL for a mounted file system, type the following:

fcladm on mount_point

To deactivate the FCL for a mounted file system, type the following:

fcladm off mount_point

To remove the FCL file for a mounted file system, on which FCL must be turned off, type the following:

fcladm rm mount_point

To obtain the current FCL state for a mounted file system, type the following:

fcladm state mount_point

To enable tracking of the file opens along with access information with each event in the FCL, type the following:

```
# fcladm set fileopen,accessinfo mount_point
```

To stop tracking file I/O statistics in the FCL, type the following:

```
# fcladm clear filestats mount_point
```

Print the on-disk FCL super-block in text format to obtain information about the FCL file by using offset 0. Because the FCL on-disk super-block occupies the first block of the FCL file, the first and last valid offsets into the FCL file can be determined by reading the FCL super-block and checking the fc_foff field. Enter:

```
# fcladm print 0 mount_point
```

To print the contents of the FCL in text format, of which the offset used must be 32-byte aligned, enter:

```
# fcladm print offset mount_point
```

File Change Log programmatic interface

VxFS provides an enhanced API to simplify reading and parsing the FCL file in two ways:

Simplified reading	The API simplifies user tasks by reducing additional code needed to parse FCL file entries. In 4.1, to obtain event information such as a remove or link, the user was required to write additional code to get the name of the removed or linked file. In this release, the API allows the user to directly read an assembled record. The API also allows the user to specify a filter to indicate a subset of the event records of interest.
Backward compatibility	Providing API access for the FCL feature allows backward compatibility for applications. The API allows applications to parse the FCL file independent of the FCL layout changes. Even if the hidden disk layout of the FCL changes, the API automatically translates the returned data to match the expected output record.

The following sample code fragment reads the FCL superblock, checks that the state of the FCL is vx_rcls_on , issues a call to $vxfs_fcl_sync$ to obtain a finishing offset to read to, determines the first valid offset in the FCL file, then reads the

As a result, the user does not need to modify or recompile the application due to changes in the on-disk FCL layout.

entries in 8K chunks from this offset. The section process fcl entries is what an application developer must supply to process the entries in the FCL file.

```
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/fcntl.h>
#include <errno.h>
#include <fcl.h>
#include <vxfsutil.h>
#define FCL READSZ 8192
char* fclname = "/mnt/lost+found/changelog";
int read fcl(fclname) char* fclname;
{
    struct fcl sb fclsb;
    uint64 t off, lastoff;
    size t size;
    char buf[FCL READSZ], *bufp = buf;
    int fd;
    int err = 0;
    if ((fd = open(fclname, O RDONLY)) < 0) {
        return ENOENT;
    }
    if ((off = lseek(fd, 0, SEEK SET)) != 0) {
        close(fd);
        return EIO;
    }
    size = read(fd, &fclsb, sizeof (struct fcl sb));
    if (size < 0) {
        close(fd);
        return EIO;
    }
    if (fclsb.fc state == VX FCLS OFF) {
       close(fd);
       return 0;
    }
    if (err = vxfs fcl sync(fclname, &lastoff)) {
       close(fd);
       return err;
    }
    if ((off = lseek(fd, off t, uint64 t)) != uint64 t) {
        close(fd);
```

```
return EIO;
}
while (off < lastoff) {
    if ((size = read(fd, bufp, FCL_READSZ)) <= 0) {
        close(fd);
        return errno;
    }
    /* process fcl entries */
    off += size;
}
close(fd);
return 0;</pre>
```

Summary of API functions

}

The following is a brief summary of File Change Log API functions:

vxfs_fcl_close()	Closes the FCL file and cleans up resources associated with the handle.
vxfs_fcl_cookie()	Returns an opaque structure that embeds the current FCL activation time and the current offset. This cookie can be saved and later passed to $vxfs_fcl_seek()$ function to continue reading from where the application last stopped.
vxfs_fcl_getinfo()	Returns information such as the state and version of the FCL file.
vxfs_fcl_open()	Opens the FCL file and returns a handle that can be used for further operations.
vxfs_fcl_read()	Reads FCL records of interest into a buffer specified by the user.
vxfs_fcl_seek()	Extracts data from the specified cookie and then seeks to the specified offset.
vxfs_fcl_seektime()	Seeks to the first record in the FCL after the specified time.

Reverse path name lookup

The reverse path name lookup feature obtains the full path name of a file or directory from the inode number of that file or directory. The inode number is provided as an argument to the vxlsino administrative command, or the $vxfs_inotopath_gen(3)$ application programming interface library function.

The reverse path name lookup feature can be useful for a variety of applications, such as for clients of the VxFS File Change Log feature, in backup and restore utilities, and for replication products. Typically, these applications store information by inode numbers because a path name for a file or directory can be very long, thus the need for an easy method of obtaining a path name.

An inode is a unique identification number for each file in a file system. An inode contains the data and metadata associated with that file, but does not include the file name to which the inode corresponds. It is therefore relatively difficult to determine the name of a file from an inode number. The ncheck command provides a mechanism for obtaining a file name from an inode identifier by scanning each directory in the file system, but this process can take a long period of time. The VxFS reverse path name lookup feature obtains path names relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path name lookup feature cannot track symbolic links to files.

Because of the possibility of errors with processes renaming or unlinking and creating new files, it is advisable to perform a lookup or open with the path name and verify that the inode number matches the path names obtained.

See the vxlsino(1M), vxfs_inotopath_gen(3), and vxfs_inotopath(3) manual pages.

Chapter

Multi-volume file systems

This chapter includes the following topics:

- About multi-volume support
- About volume types
- Features implemented using multi-volume support
- About volume sets
- Creating multi-volume file systems
- Converting a single volume file system to a multi-volume file system
- Adding a volume to and removing a volume from a multi-volume file system
- Volume encapsulation
- Reporting file extents
- Load balancing
- Converting a multi-volume file system to a single volume file system

About multi-volume support

VxFS provides support for multi-volume file systems when used in conjunction with the Veritas Volume Manager. Using multi-volume support (MVS), a single file system can be created over multiple volumes, each volume having its own properties. For example, it is possible to place metadata on mirrored storage while placing file data on better-performing volume types such as RAID-1+0 (striped and mirrored). The volume must be in the same disk group as the volume set, and it cannot already be a member of another volume set.

The MVS feature also allows file systems to reside on different classes of devices, so that a file system can be supported from both inexpensive disks and from expensive arrays. Using the MVS administrative interface, you can control which data goes on which volume types.

Note: Multi-volume support is available only on file systems using disk layout Version 6 or later.

See "About disk layouts" on page 252.

See "About volume types" on page 91.

See "Features implemented using multi-volume support" on page 92.

See "Creating multi-volume file systems" on page 95.

See "Converting a single volume file system to a multi-volume file system" on page 96.

See "Adding a volume to and removing a volume from a multi-volume file system" on page 98.

See "Volume encapsulation" on page 99.

See "Reporting file extents" on page 101.

See "Load balancing" on page 103.

See "Converting a multi-volume file system to a single volume file system" on page 105.

See "Volume availability" on page 92.

About volume types

VxFS utilizes two types of volumes, one of which contains only data, referred to as dataonly, and the other of which can contain metadata or data, referred to as metadataok.

Data refers to direct extents, which contain user data, of regular files and named data streams in a file system.

Metadata refers to all extents that are not regular file or named data stream extents. This includes certain files that appear to be regular files, but are not, such as the File Change Log file.

A volume availability flag is set to specify if a volume is dataonly or metadataok. The volume availability flag can be set, cleared, and listed with the fsvoladm command.

See the fsvoladm(1M) manual page.

Features implemented using multi-volume support

The following features can be implemented using multi-volume support:

- Controlling where files are stored can be selected at multiple levels so that specific files or file hierarchies can be assigned to different volumes. This functionality is available in the Veritas File System SmartTier feature.
- Placing the VxFS intent log on its own volume to minimize disk head movement and thereby increase performance.
- Separating Storage Checkpoints so that data allocated to a Storage Checkpoint is isolated from the rest of the file system.
- Separating metadata from file data.
- Encapsulating volumes so that a volume appears in the file system as a file.
 This is particularly useful for databases that are running on raw volumes.
- Guaranteeing that a dataonly volume being unavailable does not cause a metadataok volume to be unavailable.

To use the multi-volume file system features, Veritas Volume Manager must be installed and the volume set feature must be accessible. The volume set feature is separately licensed.

Volume availability

MVS guarantees that a dataonly volume being unavailable does not cause a metadataok volume to be unavailable. This allows you to mount a multi-volume file system even if one or more component dataonly volumes are missing.

The volumes are separated by whether metadata is allowed on the volume. An I/O error on a dataonly volume does not affect access to any other volumes. All VxFS operations that do not access the missing dataonly volume function normally.

Some VxFS operations that do not access the missing dataonly volume and function normally include the following:

- Mounting the multi-volume file system, regardless if the file system is read-only or read/write.
- Kernel operations.
- Performing a fsck replay. Logged writes are converted to normal writes if the corresponding volume is dataonly.
- Performing a full fsck.

Using all other commands that do not access data on a missing volume.

Some operations that could fail if a dataonly volume is missing include:

- Reading or writing file data if the file's data extents were allocated from the missing dataonly volume.
- Using the vxdump command.

Volume availability is supported only on a file system with disk layout Version 7 or later.

Note: Do not mount a multi-volume system with the icerror=disable or icerror=wdisable mount options if the volumes have different availability properties. Symantec recommends the icerror=mdisable mount option both for cluster mounts and for local mounts.

About volume sets

Veritas Volume Manager exports a data object called a volume set. A volume set is a container for one or more volumes, each of which can have its own geometry. Unlike the traditional Volume Manager volume, which can be used for raw I/O access or to contain a file system, a volume set can only be used to contain a VxFS file system.

The Volume Manager <code>vxvset</code> command is used to create and manage volume sets. Volume sets cannot be empty. When the last entry is removed, so is the volume set.

Creating and managing volume sets

The following command examples show how to create and manage volume sets.

See the Veritas Volume Manager Administrator's Guide, vxassist(1M) manual page, and vxvset(1M) manual page.

To create and manage volume sets

1 Create a new volume set from vol1:

vxassist -g dg1 make vol1 10m
vxvset -g dg1 make myvset vol1

2 Create two new volumes and add them to the volume set:

vxassist -g dg1 make vol2 50m
vxassist -g dg1 make vol3 50m
vxvset -g dg1 addvol myvset vol2
vxvset -g dg1 addvol myvset vol3

3 List the component volumes of the previously created volume set:

<pre># vxvset</pre>	-g dg1	list myvse	t	
VOLUME	INDEX	LENGTH	STATE	CONTEXT
vol1	0	20480	ACTIVE	-
vol2	1	102400	ACTIVE	-
vol3	2	102400	ACTIVE	-

4 Use the ls command to see that when a volume set is created, the volumes contained by the volume set are removed from the namespace and are instead accessed through the volume set name:

5 Create a volume, add it to the volume set, and use the ls command to see that when a volume is added to the volume set, it is no longer visible in the namespace:

Creating multi-volume file systems

When a multi-volume file system is created, all volumes are dataonly, except volume zero, which is used to store the file system's metadata. The volume availability flag of volume zero cannot be set to dataonly.

As metadata cannot be allocated from dataonly volumes, enough metadata space should be allocated using metadataok volumes. The "file system out of space" error occurs if there is insufficient metadata space available, even if the df command shows that there is free space in the file system. The fsvoladm command can be used to see the free space in each volume and set the availability flag of the volume.

Unless otherwise specified, VxFS commands function the same on multi-volume file systems as the commands do on single-volume file systems.

See "Example of creating a multi-volume file system" on page 95.

Example of creating a multi-volume file system

The following procedure is an example of creating a multi-volume file system.

To create a multi-volume file system

1 After a volume set is created, create a VxFS file system by specifying the volume set name as an argument to mkfs:

```
# mkfs -V vxfs /dev/vx/rdsk/rootdg/myvset
version 7 layout
327680 sectors, 163840 blocks of size 1024,
log size 1024 blocks largefiles supported
```

After the file system is created, VxFS allocates space from the different volumes within the volume set.

2 List the component volumes of the volume set using of the fsvoladm command:

```
# mount -V vxfs /dev/vx/dsk/rootdg/myvset /mnt1
# fsvoladm list /mnt1
devid
      size
              used
                    avail name
0
      10240
              1280
                    8960 vol1
1
      51200
              16
                    51184 vol2
2
      51200
             16
                    51184 vol3
3
      51200
              16
                    51184 vol4
```

3 Add a new volume by adding the volume to the volume set, then adding the volume to the file system:

```
# vxassist -g dg1 make vol5 50m
# vxvset -g dg1 addvol myvset vol5
# fsvoladm add /mnt1 vol5 50m
# fsvoladm list /mnt1
devid
      size
              used avail
                          name
0
      10240
             1300 8940 vol1
1
      51200
             16
                   51184 vol2
      51200
             16
2
                   51184 vol3
3
      51200
             16
                   51184 vol4
4
      51200 16 51184 vol5
```

4 List the volume availability flags using the fsvoladm command:

fsvoladm queryflags /mnt1

volname	flags
voll	metadataok
vol2	dataonly
vol3	dataonly
vol4	dataonly
vol5	dataonly

5 Increase the metadata space in the file system using the fsvoladm command:

```
# fsvoladm clearflags dataonly /mnt1 vol2
# fsvoladm queryflags /mnt1
volname flags
vol1 metadataok
vol2 metadataok
vol3 dataonly
vol4 dataonly
vol5 dataonly
```

Converting a single volume file system to a multi-volume file system

The following procedure converts a traditional, single volume file system, /mnt1, on a single volume vol1 in the diskgroup dg1 to a multi-volume file system.

To convert a single volume file system

1 Determine the version of the volume's diskgroup:

```
# vxdg list dg1 | grep version: | awk '{ print $2 }'
105
```

2 If the version is less than 110, upgrade the diskgroup:

```
# vxdg upgrade dg1
```

3 Determine the disk layout version of the file system:

```
# vxupgrade /mnt1
Version 6
```

If the disk layout version is 6, upgrade to Version 7:

vxupgrade -n 7 /mnt1

If the disk layout version is less than 6, upgrade to Version 7. For example, if the disk layout version is 5, upgrade to Version 7 as follows:

```
# vxupgrade -n 6 /mnt1
# vxupgrade -n 7 /mnt1
```

- 4 Unmount the file system:
 - # umount /mnt1
- 5 Convert the volume into a volume set:

vxvset -g dg1 make vset1 vol1

Edit the /etc/filesystems file to replace the volume device name, vol1, with the volume set name, vset1.

6 Mount the file system:

mount -V vxfs /dev/vx/dsk/dg1/vset1 /mnt1

7 As necessary, create and add volumes to the volume set:

```
# vxassist -g dg1 make vol2 256M
# vxvset -g dg1 addvol vset1 vol2
```

8 Set the placement class tags on all volumes that do not have a tag:

```
# vxassist -g dg1 settag vol1 vxfs.placement_class.tier1
# vxassist -g dg1 settag vol2 vxfs.placement_class.tier2
```

Adding a volume to and removing a volume from a multi-volume file system

You can add volumes to and remove volumes from a multi-volume file system using the fsvoladm command.

See "Adding a volume to a multi-volume file system" on page 98.

See "Removing a volume from a multi-volume file system" on page 98.

See "Forcibly removing a volume" on page 99.

See "Moving volume 0" on page 99.

Adding a volume to a multi-volume file system

Use the fsvoladm add command to add a volume to a multi-volume file system.

To add a volume to a multi-volume file system

- Add a new volume to a multi-volume file system:
 - # fsvoladm add /mnt1 vol2 256m

Removing a volume from a multi-volume file system

Use the fsvoladm remove command to remove a volume from a multi-volume file system. The fsvoladm remove command fails if the volume being removed is the only volume in any allocation policy.

To remove a volume from a multi-volume file system

Remove a volume from a multi-volume file system:

```
# fsvoladm remove /mnt1 vol2
```

Forcibly removing a volume

If you must forcibly remove a volume from a file system, such as if a volume is permanently destroyed and you want to clean up the dangling pointers to the lost volume, use the fsck -o zapvol=volname command. The zapvol option performs a full file system check and zaps all inodes that refer to the specified volume. The fsck command prints the inode numbers of all files that the command destroys; the file names are not printed. The zapvol option only affects regular files if used on a dataonly volume. However, it could destroy structural files if used on a metadataok volume, which can make the file system unrecoverable. Therefore, the zapvol option should be used with caution on metadataok volumes.

Moving volume 0

Volume 0 in a multi-volume file system cannot be removed from the file system, but you can move volume 0 to different storage using the <code>vxassist move</code> command. The <code>vxassist</code> command creates any necessary temporary mirrors and cleans up the mirrors at the end of the operation.

To move volume 0

- Move volume 0:
 - # vxassist -g mydg move vol1 \!mydg

Volume encapsulation

Multi-volume support enables the ability to encapsulate an existing raw volume and make the volume contents appear as a file in the file system.

Encapsulating a volume involves the following actions:

- Adding the volume to an existing volume set.
- Adding the volume to the file system using fsvoladm.

See "Encapsulating a volume" on page 99.

See "Deencapsulating a volume" on page 101.

Encapsulating a volume

The following example illustrates how to encapsulate a volume.

To encapsulate a volume

1 List the volumes:

 # vxvset
 -g dgl
 list myvset

 VOLUME
 INDEX
 LENGTH
 STATE
 CONTEXT

 vol1
 0
 102400
 ACTIVE

 vol2
 1
 102400
 ACTIVE

The volume set has two volumes.

2 Create a third volume and copy the passwd file to the third volume:

```
# vxassist -g dg1 make dbvol 100m
# dd if=/etc/passwd of=/dev/vx/rdsk/rootdg/dbvol count=1
1+0 records in
1+0 records out
```

The third volume will be used to demonstrate how the volume can be accessed as a file, as shown later.

3 Create a file system on the volume set:

```
# mkfs -V vxfs /dev/vx/rdsk/rootdg/myvset
version 7 layout
204800 sectors, 102400 blocks of size 1024,
log size 1024 blocks
largefiles supported
```

4 Mount the volume set:

mount -V vxfs /dev/vx/dsk/rootdg/myvset /mnt1

5 Add the new volume to the volume set:

vxvset -g dg1 addvol myvset dbvol

6 Encapsulate dbvol:

```
# fsvoladm encapsulate /mnt1/dbfile dbvol 100m
# ls -l /mnt1/dbfile
-rw------ 1 root other 104857600 May 22 11:30 /mnt1/dbfile
```

7 Examine the contents of dbfile to see that it can be accessed as a file:

```
# head -2 /mnt1/dbfile
root:x:0:1:Super-User:/:/sbin/sh
daemon:x:1:1::/:
```

The passwd file that was written to the raw volume is now visible in the new file.

Note: If the encapsulated file is changed in any way, such as if the file is extended, truncated, or moved with an allocation policy or resized volume, or the volume is encapsulated with a bias, the file cannot be de-encapsulated.

Deencapsulating a volume

The following example illustrates how to deencapsulate a volume.

To deencapsulate a volume

1 List the volumes:

vxvset-g dgllist myvsetVOLUMEINDEXLENGTHSTATECONTEXTvol10102400ACTIVE-vol21102400ACTIVE-dbvol2102400ACTIVE-

The volume set has three volumes.

- 2 Deencapsulate dbvol:
 - # fsvoladm deencapsulate /mnt1/dbfile

Reporting file extents

MVS feature provides the capability for file-to-volume mapping and volume-to-file mapping via the fsmap and fsvmap commands. The fsmap command reports the

volume name, logical offset, and size of data extents, or the volume name and size of indirect extents associated with a file on a multi-volume file system. The fsvmap command maps volumes to the files that have extents on those volumes.

See the fsmap(1M) and fsvmap(1M) manual pages.

The fsmap command requires open() permission for each file or directory specified. Root permission is required to report the list of files with extents on a particular volume.

See "Examples of reporting file extents" on page 102.

Examples of reporting file extents

The following examples show typical uses of the fsmap and fsymap commands.

Using the fsmap command

 Use the find command to descend directories recursively and run fsmap on the list of files:

<pre># find</pre>	. fsmap -	
Volume	Extent Type	File
vol2	Data	./file1
vol1	Data	./file2

Using the fsvmap command

1 Report the extents of files on multiple volumes:

```
# fsvmap /dev/vx/rdsk/fstest/testvset vol1 vol2
vol1 /.
vol1 /ns2
vol1 /ns3
vol1 /file1
vol2 /file1
vol2 /file1
```

2 Report the extents of files that have either data or metadata on a single volume in all Storage Checkpoints, and indicate if the volume has file system metadata:

```
# fsvmap -mvC /dev/vx/rdsk/fstest/testvset vol1
Meta Structural vol1 //volume has filesystem metadata//
Data UNNAMED vol1 /.
Data UNNAMED vol1 /ns2
Data UNNAMED vol1 /ns3
Data UNNAMED vol1 /file1
Meta UNNAMED vol1 /file1
```

Load balancing

An allocation policy with the balance allocation order can be defined and assigned to files that must have their allocations distributed at random between a set of specified volumes. Each extent associated with these files are limited to a maximum size that is defined as the required chunk size in the allocation policy. The distribution of the extents is mostly equal if none of the volumes are full or disabled.

Load balancing allocation policies can be assigned to individual files or for all files in the file system. Although intended for balancing data extents across volumes, a load balancing policy can be assigned as a metadata policy if desired, without any restrictions. **Note:** If a file has both a fixed extent size set and an allocation policy for load balancing, certain behavior can be expected. If the chunk size in the allocation policy is greater than the fixed extent size, all extents for the file are limited by the chunk size. For example, if the chunk size is 16 MB and the fixed extent size is 3 MB, then the largest extent that satisfies both the conditions is 15 MB. If the fixed extent size, all extents are limited to the fixed extent size. For example, if the chunk size, all extents are limited to the fixed extent size. For example, if the chunk size, all extents are limited to the fixed extent size. For example, if the chunk size is 2 MB and the fixed extent size is 3 MB, then all extents for the file are limited to 3 MB.

See "Defining and assigning a load balancing allocation policy" on page 104. See "Rebalancing extents" on page 104.

Defining and assigning a load balancing allocation policy

The following example defines a load balancing policy and assigns the policy to the file, $/{\tt mnt/file.db}.$

To define and assign the policy

- 1 Define the policy by specifying the -o balance and -c options:
 - # fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol3 vol4
- 2 Assign the policy:
 - # fsapadm assign /mnt/filedb loadbal meta

Rebalancing extents

Extents can be rebalanced by strictly enforcing the allocation policy. Rebalancing is generally required when volumes are added or removed from the policy or when the chunk size is modified. When volumes are removed from the volume set, any extents on the volumes being removed are automatically relocated to other volumes within the policy.

The following example redefines a policy that has four volumes by adding two new volumes, removing an existing volume, and enforcing the policy for rebalancing.

To rebalance extents

1 Define the policy by specifying the -o balance and -c options:

fsapadm define -o balance -c 2m /mnt loadbal vol1 vol2 vol4 \backslash vol5 vol6

- 2 Enforce the policy:
 - # fsapadm enforcefile -f strict /mnt/filedb

Converting a multi-volume file system to a single volume file system

Because data can be relocated among volumes in a multi-volume file system, you can convert a multi-volume file system to a traditional, single volume file system by moving all file system data onto a single volume. Such a conversion is useful to users who would like to try using a multi-volume file system or SmartTier, but are not committed to using a multi-volume file system permanently.

There are three restrictions to this operation:

- The single volume must be the first volume in the volume set
- The first volume must have sufficient space to hold all of the data and file system metadata
- The volume cannot have any allocation policies that restrict the movement of data

See "Converting to a single volume file system" on page 105.

Converting to a single volume file system

The following procedure converts an existing multi-volume file system, /mnt1, of the volume set vset1, to a single volume file system, /mnt1, on volume vol1 in diskgroup dg1.

Note: Steps 5, 6, 7, and 8 are optional, and can be performed if you prefer to remove the wrapper of the volume set object.

Converting to a single volume file system

1 Determine if the first volume in the volume set, which is identified as device number 0, has the capacity to receive the data from the other volumes that will be removed:

```
# df /mnt1
/mnt1 (/dev/vx/dsk/dg1/vol1):16777216 blocks 3443528 files
```

2 If the first volume does not have sufficient capacity, grow the volume to a sufficient size:

fsvoladm resize /mnt1 vol1 150g

3 Remove all existing allocation policies:

fsppadm unassign /mnt1

4 Remove all volumes except the first volume in the volume set:

```
# fsvoladm remove /mnt1 vol2
# vxvset -g dg1 rmvol vset1 vol2
# fsvoladm remove /mnt1 vol3
# vxvset -g dg1 rmvol vset1 vol3
```

Before removing a volume, the file system attempts to relocate the files on that volume. Successful relocation requires space on another volume, and no allocation policies can be enforced that pin files to that volume. The time for the command to complete is proportional to the amount of data that must be relocated.

5 Unmount the file system:

```
# umount /mnt1
```

6 Remove the volume from the volume set:

vxvset -g dg1 rmvol vset1 vol1

Edit the /etc/filesystems file to replace the volume set name, vset1, with the volume device name, vol1.

7 Mount the file system:

```
# mount -V vxfs /dev/vx/dsk/dg1/vol1 /mnt1
```

Chapter

Quick I/O for Databases

This chapter includes the following topics:

- About Quick I/O
- About Quick I/O functionality and performance
- About using Veritas File System files as raw character devices
- About creating a Quick I/O file using qiomkfile
- Accessing regular VxFS files through symbolic links
- Using Quick I/O with Oracle databases
- Using Quick I/O with DB2 databases
- Enabling and disabling Quick I/O
- About Cached Quick I/O for databases
- About Quick I/O statistics
- Increasing database performance using Quick I/O

About Quick I/O

Quick I/O for Databases (referred to as Quick I/O) allows applications to access preallocated VxFS files as raw character devices. This provides the administrative benefits of running databases on file systems without the performance degradation usually associated with databases created on file systems.

Quick I/O is part of the VRTSVXfs package, but is available for use only with other Symantec products.

See the Veritas Storage Foundation Release Notes.

About Quick I/O functionality and performance

Many database administrators (DBAs) create databases on file systems because file systems make common administrative tasks, such as moving, copying, and backing up, much simpler. However, putting databases on file systems significantly reduces database performance. By using Quick I/O, you can retain the advantages of having databases on file systems without performance degradation.

Quick I/O uses a special naming convention to allow database applications to access regular files as raw character devices.

Quick I/O provides higher database performance in the following ways:

- Supporting kernel asynchronous I/O
- Supporting direct I/O
- Avoiding kernel write locks
- Avoiding double buffering

About asynchronous I/O kernel support

Some operating systems provide kernel support for asynchronous I/O on raw devices, but not on regular files. As a result, even if the database server is capable of using asynchronous I/O, it cannot issue asynchronous I/O requests when the database is built on a file system. Lack of asynchronous I/O significantly degrades performance. Quick I/O allows the database server to take advantage of kernel supported asynchronous I/O on file system files accessed via the Quick I/O interface by providing a character device node that is treated by the OS as a raw device.

About direct I/O support

I/O on files using read() and write() system calls typically results in data being copied twice: once between user and kernel space, and later between kernel space and disk. In contrast, I/O on raw devices is direct. That is, data is copied directly between user space and disk, saving one level of copying. As with I/O on raw devices, Quick I/O avoids the extra copying.

About Kernel write locks avoidance

When database I/O is performed via the write() system call, each system call acquires and releases a write lock inside the kernel. This lock prevents simultaneous write operations on the same file. Because database systems usually implement their own locks for managing concurrent access to files, write locks unnecessarily

serialize I/O operations. Quick I/O bypasses file system locking and lets the database server control data access.

About double buffering avoidance

Most database servers implement their own buffer cache and do not need the system buffer cache. Thus, the memory used by the system buffer cache is wasted and results in data being cached twice: first in the database cache and then in the system buffer cache. By using direct I/O, Quick I/O does not waste memory on double buffering. This frees up memory that can then be used by the database server buffer cache, leading to increased performance.

About using Veritas File System files as raw character devices

When VxFS with Quick I/O is installed, files may be accessed by the following ways:

- The VxFS interface treats the file as a regular VxFS file
- The Quick I/O interface treats the same file as if it were a raw character device, having performance similar to a raw device

Quick I/O allows a database server to use the Quick I/O interface while a backup server uses the VxFS interface.

About the Quick I/O naming convention

To treat a file as a raw character device, Quick I/O requires a file name extension to create an alias for a regular VxFS file. Quick I/O recognizes the alias when you add the following suffix to a file name:

::cdev:vxfs:

The cdev portion is an acronym for character device. Whenever an application opens an existing VxFS file with the suffix ::cdev:vxfs, Quick I/O treats the file as if it were a raw device. For example, if the file xxx is a regular VxFS file, then an application can access xxx as a raw character device by opening it with the name:

xxx::cdev:vxfs:

Note: When Quick I/O is enabled, you cannot create a regular VxFS file with a name that uses the ::cdev:vxfs: extension. If an application tries to create a regular file named xxx::cdev:vxfs:, the create fails. If Quick I/O is not available, it is possible to create a regular file with the ::cdev:vxfs: extension, but this could cause problems if Quick I/O is later enabled. Symantec advises you to reserve the extension only for Quick I/O files.

About use restrictions

There are restrictions to using regular VxFS files as Quick I/O files.

- The name xxx::cdev:vxfs: is recognized as a special name by VxFS only when the following conditions are met:
 - The gio module is loaded
 - Quick I/O has a valid license
 - The regular file xxx is physically present on the VxFS file system
 - There is no regular file named xxx::cdev:vxfs: on the system
- If the file xxx is being used for memory mapped I/O, it cannot be accessed as a Quick I/O file.
- An I/O fails if the file xxx has a logical hole and the I/O is done to that hole on xxx::cdev:vxfs:.
- The size of the file cannot be extended by writes through the Quick I/O interface.

About creating a Quick I/O file using qiomkfile

The best way to make regular files accessible to the Quick I/O interface and preallocate space for them is to use the <code>qiomkfile</code> command. Unlike the VxFS <code>setext</code> command, which requires superuser privileges, only a root user can run <code>qiomkfile</code> to create the files. The <code>qiomkfile</code> command has five options:

- -a Creates a symbolic link with an absolute path name for a specified file. The default is to create a symbolic link with a relative path name.
- -e For Oracle database files to allow tablespace resizing. Extends the file size by the specified amount.
- -h For Oracle database files. Creates a file with additional space allocated for the Oracle header.

- -r For Oracle database files to allow tablespace resizing.)Increases the file to the specified size.
- -s Preallocates space for a file.

You can specify file size in terms of bytes (the default), or in kilobytes, megabytes, gigabytes, or sectors (512 bytes) by adding a k, K, m, M, g, G, s, or S suffix. If the size of the file including the header is not a multiple of the file system block size, it is rounded to a multiple of the file system block size before preallocation.

The giomkfile command creates two files: a regular file with preallocated, contiguous space; and a symbolic link pointing to the Quick I/O name extension.

Creating a Quick I/O file using qiomkfile

The following example shows how to create a Quick I/O file using the ${\tt qiomkfile}$ command.

See the qiomkfile(1) manual page.

To create a Quick I/O file using qiomkfile

1 Create a 100 MB file named dbfile in /database:

```
# qiomkfile -s 100m /database/dbfile
```

The first file created is a regular file named /database/.dbfile, which has the real space allocated. The second file is a symbolic link named /database/dbfile. This is a relative link to /database/.dbfile via the Quick I/O interface. That is, to .dbfile::cdev:vxfs:. This allows .dbfile to be accessed by any database or application as a raw character device.

 If you specify the -a option with giomkfile, an absolute path name is used, such as the following:

/database/dbfile points to /database/.dbfile::cdev:vxfs:

See "About absolute and relative path names" on page 112.

2 Change the ownership of the /database/.dbfile file to oracle:dba:

chown oracle:dba /database/.dbfile

3 Check the results:

```
# ls -al
-rw-r--r-- 1 oracle dba 104857600 Oct 22 15:03 .dbfile
lrwxrwxrwx 1 oracle dba 19 Oct 22 15:03 dbfile -> .dbfile::cdev:vx
```

/database/.dbfile::cdev:vxfs:

```
or:
    # ls -lL
    crw-r---- 1 oracle dba 43,0 Oct 22 15:04 dbfile
    -rw-r--r-- 1 oracle dba 10485760 Oct 22 15:04 .dbfile

    If you specified the -a option with qiomkfile, the results are as follows:
    # ls -al
    -rw-r--r-- 1 oracle dba 104857600 Oct 22 15:05 .dbfile
    lrwxrwxrwx 1 oracle dba 31 Oct 22 15:05 dbfile ->
```

```
Accessing regular VxFS files through symbolic links
```

One way to use Quick I/O is to create a symbolic link for each file in your database and use the symbolic link to access the regular files as Quick I/O files. Any database or application can then access the file as a raw character device.

See the Veritas Editions product documentation.

The following example creates a 100 MB Quick I/O file named dbfile on the VxFS file system /database that can be accessed through a symbolic link.

To access a file through a symbolic link

1 Go to the /database file system:

\$ cd /database

2 Create a 100 MB Quick I/O file named dbfile:

```
$ dd if=/dev/zero of=/database/.dbfile bs=128k count=800
```

The dd command preallocates the file space.

- 3 Create a symbolic link to dbfile:
 - \$ ln -s .dbfile::cdev:vxfs: /database/dbfile

About absolute and relative path names

It is usually better to use relative path names instead of absolute path names when creating symbolic links to access regular files as Quick I/O files. Using relative path names prevents copies of the symbolic link from referring to the original file. This is important if you are backing up or moving database files with a command that

preserves the symbolic link. However, some applications, such as SAP, require absolute path names.

If you create a symbolic link using a relative path name, both the symbolic link and the file are under the same parent directory. If you want to relocate the file, both the file and the symbolic link must be moved.

It is also possible to use the absolute path name when creating a symbolic link. If the database file is relocated to another directory, you must change the symbolic link to use the new absolute path. You can put all the symbolic links in a directory separate from the data directories. For example, you can create a directory named /database and put in all the symbolic links, with the symbolic links pointing to absolute path names.

Preallocating files using the setext command

You can use the VxFS setext command to preallocate file space, but the setext command requires superuser privileges. You may need to use the chown and chgrp commands to change the owner and group permissions on the file after it is created.

See the setext(1) manual page.

The following example shows how to use setext to create a 100 MB database file for an Oracle database.

To preallocate files using setext

- 1 Go to the /database file system:
 - # cd /database
- 2 Create the .dbfile file:
 - # touch .dbfile
- **3** Reserve 100 MB for the .dbfile file using setext:
 - # setext -r 102400 -f noreserve -f chgsize .dbfile
- 4 Create a symbolic link to .dbfile:
 - # ln -s .dbfile::cdev:vxfs: dbfile

- 5 Change the owner of dbfile to oracle:
 - # chown oracle dbfile
- 6 Change the group of dbfile to dba:
 - # chgrp dba dbfile

Using Quick I/O with Oracle databases

The following example shows how a file can be used by an Oracle database to create a tablespace. This command would be run by the Oracle DBA, typically user ID oracle. Oracle requires additional space for one Oracle header size. In the following example, although 100 MB was allocated to /database/dbfile, the Oracle database can use only up to 100 MB minus the Oracle parameter db_block_size .

To create a tablespace with an Oracle database

1 Create the file dbfile and preallocate 100 MB for the file:

qiomkfile -h headersize -s 100m /database/dbfile

- 2 Start the Oracle database:
 - # sqlplus /nolog
- 3 Create the tablespace:

```
SQL> connect / as sysdba
SQL> create tablespace ts1 datafile '/database/dbfile' size 99M;
SQL> exit;
```

Using Quick I/O with DB2 databases

This section describes how a DB2 database can use a Quick I/O file to create a tablespace.

Note: Storage Foundation does not support Quick I/O for DB2 9.5.

Creating database containers as Quick I/O files using qiomkfile with DB2 databases

You can create Database Managed Space (DMS) containers with the type 'DEVICE' using Quick I/O. The best way to preallocate space for tablespace containers and to make them accessible using the Quick I/O interface is to use the <code>qiomkfile</code> command. You can use the <code>qiomkfile</code> command to create the Quick I/O files for either temporary or permanent tablespaces.

	 If you are creating containers on an existing file system, run fsadm or a similar utility to report and eliminate fragmentation. You must have read/write permissions on the directory in which you intend to create DB2 Quick I/Ofiles.
Usage notes	When you create the DB2 DMS tablespace using a Quick I/O file and the DEVICE container type, you cannot extend the size of the tablespace container.

Warning: Exercise caution when using absolute path names. Extra steps can be required during database backup and restore procedures to preserve symbolic links. If you restore files to directories different from the original paths, you must change the symbolic links that use absolute path names to point to the new path names before the database is restarted.

To create a container as a Quick I/O file using qiomkfile

1 Create a Quick I/O-capable file using the qiomkfile command:

```
# /opt/VRTS/bin/qiomkfile -s file_size /mnt1/file1
```

2 As the DB2 instance owner, create tablespace containers using the Quick I/O-capable file with the following SQL statements:

```
$ db2 connect to database
$ db2 create tablespace tbsname managed by database using \
( DEVICE /mnt1/file1 size )
$ db2 terminate
```

The following example shows how to create a 100MB Quick I/O-capable file named dbfile on the VxFS file system /db01 using a relative path name:

```
# /opt/VRTS/bin/qiomkfile -s 100m /db01/dbfile
# ls -al
-rw-r--r-- 1 db2inst1 db2iadm1 104857600 Oct 2 13:42 .dbfile
```

lrwxrwxrwx 1 db2inst1 db2iadm1 19 Oct 2 13:42 dbfile ->
.dbfile::cdev:vxfs:

In the example, <code>qiomkfile</code> creates a regular file named /db01/.dbfile, which has the real space allocated. Then, <code>qiomkfile</code> creates a symbolic link named /db01/dbfile. This symbolic link is a relative link to the Quick I/O interface for /db01/.dbfile, that is, to the .dbfile::cdev:vxfs: file. The symbolic link allows .dbfile to be accessed by any database or application using its Quick I/O interface.

You can then add the file to the DB2 database PROD:

```
$ db2 connect to PROD
$ db2 create tablespace NEWTBS managed by database using \
( DEVICE '/db01/dbfile' 100m )
$ db2 terminate
```

Preallocating space for Quick I/O files using the setext command with DB2 databases

As an alternative to using the <code>qiomkfile</code> command, you can also use the VxFS <code>setext</code> command to preallocate space for database files.

Before preallocating space with ${\tt setext},$ make sure the following conditions have been met:

- Prerequisites The setext command requires superuser (root) privileges.
- You can use the chown command to change the owner and group permissions on the file after you create it.
 See the setext (1M) manual page for more information.

To create a Quick I/O database file using setext

- 1 Access the VxFS mount point and create a file:
 - # cd /mnt1
 - # touch .filename
- 2 Use the setext command to preallocate space for the file:
 - # /opt/VRTS/bin/setext -r size -f noreserve -f chgsize .filename

3 Create a symbolic link to allow databases or applications access to the file using its Quick I/O interface:

ln -s .filename::cdev:vxfs: filename

4 Change the owner and group permissions on the file:

```
# chown db2inst1:db2iadm1 .filename
```

chmod 660 .filename

An example to show how to access the mount point /db01, create a container, preallocate the space, and change the permissions:

```
# cd /db01
# touch .dbfile
# /opt/VRTS/bin/setext -r 100M -f noreserve -f chqsize .dbfile
# ln -s .dbfile::cdev:vxfs: dbfile
# chown db2inst1:db2iadm1 .dbfile
# chmod 660 .dbfile
```

Displaying Quick I/O status and file attributes with DB2 databases

You can obtain and display information about Quick I/O status and file attributes using various options of the ls command:

- -al Lists all files on a file system, including Quick I/O files and their links.
- -1L Shows if Quick I/O was successfully installed and enabled.
- -a1L Shows how a Quick I/O file name is resolved to that of a raw device.

To list all files on the current file system, including Quick I/O files and their links

Use the ls -al command with the file names:

\$ ls -al filename .filename

The following example shows how to use the -a option to display the absolute path name created using <code>qiomkfile</code>:

```
$ 1s -al d* .d*
-rw-r--r- 1 db2inst1 db2iadm1 104890368 Oct 2 13:42 .dbfile
lrwxrwxrwx 1 db2inst1 db2iadm1 19 Oct 2 13:42 dbfile ->
.dbfile::cdev:vxfs:
```

To show a Quick I/O file resolved to a raw device

Use the ls command with the file names:

```
$ ls -alL filename .filename
```

The following example shows how the Quick I/O file name dbfile is resolved to that of a raw device:

```
$ ls -alL d* .d*
crw-r--r- 1 db2inst1 db2iadm1 45, 1 Oct 2 13:42 dbfile
-rw-r--r- 1 db2inst1 db2iadm1 104890368 Oct 2 13:42 .dbfile
```

Enabling and disabling Quick I/O

If the Quick I/O feature is licensed and installed, Quick I/O is enabled by default when a file system is mounted. The $-\circ$ gio and $-\circ$ nogio mount options enable and disable, respectively, Quick I/O when a file system is mounted.

If Quick I/O is not installed or licensed, a file system mounts by default without Quick I/O and no error message is displayed. However, if you specify the $-\circ$ gio option, the mount command prints the following error message and terminates without mounting the file system.

VxFDD: You don't have a license to run this program vxfs mount: Quick I/O not available

To enable or disable Quick I/O

1 Specify the -o gio mount option to enable Quick I/O:

mount -V vxfs -o qio MyFS

2 Specify the -o noqio mount option to disable Quick I/O:

```
# mount -V vxfs -o noqio MyFS
```

About Cached Quick I/O for databases

A 32-bit application (such as a 32-bit database) can use a maximum of only 4 GB of memory because of the 32-bit address limitation. The Cached Quick I/O feature improves database performance on machines with sufficient memory by also using the file system cache to store data.

For read operations through the Quick I/O interface, data is cached in the system page cache, so subsequent reads of the same data can access this cached copy and avoid doing disk I/O. To maintain the correct data in its buffer for write operations, Cached Quick I/O keeps the page cache in sync with the data written to disk.

With 64-bit applications, for which limited memory is not a critical problem, using the file system cache still provides performance benefits by using the read-ahead functionality. Because of the read-ahead functionality, sequential table scans will benefit the most from using Cached Quick I/O by significantly reducing the query response time.

Enabling Cached Quick I/O

Caching for Quick I/O files can be enabled online when the database is running by using the vxtunefs utility and the gloadmin command.

See the vxtunefs(1M) and qioadmin(1) manual pages.

Note: Quick I/O must be enabled on the file system for Cached Quick I/O to operate.

To enable caching

- 1 Set the qio_cache_enable parameter of vxtunefs to enable caching on a file system.
- 2 Enable the Cached Quick I/O feature for specific files using the gloadmin command.

Enabling Cached Quick I/O for file systems

Caching is initially disabled on a file system. You enable Cached Quick I/O for a file system by setting the <code>qio_cache_enable</code> option of the <code>vxtunefs</code> command after the file system is mounted.

Note: The $\mathtt{vxtunefs}$ command enables caching for all the Quick I/O files on the file system.

The following example enables Cached Quick I/O for the file system /database01.

To enable Cached Quick I/O for a file system

1 Enable Cached Quick I/O:

```
# vxtunefs -s -o qio_cache_enable=1 /database01
```

/database01 is a VxFS file system containing the Quick I/O files.

2 If desired, make this setting persistent across mounts by adding a file system entry in the file /etc/vx/tunefstab:

/dev/vx/dsk/datadg/database01 qio_cache_enable=1
/dev/vx/dsk/datadg/database02 qio cache enable=1

See the tunefstab(4) manual page.

Manipulating Cached Quick I/O settings for individual files

A Quick I/O file's Cached Quick I/O settings are manipulated with the vxtunefs utility and the qioadmin command.

See the vxtunefs(1M) and qioadmin(1) manual pages.

Note: The cache advisories operate only if Cached Quick I/O is enabled for the file system. If the <code>qio_cache_enable</code> flag is zero, Cached Quick I/O is OFF for all the files in that file system even if the individual file cache advisory for a file is ON.

To enable caching on a file

- Enable caching on a file:
 - # qioadmin -S filename=on /mnt1

To disable caching on a file

Disable caching on a file:

```
# qioadmin -S filename=off /mnt1
```

To make the caching setting persistent across mounts

 Create a giotab file, /etc/vx/gioadmin, to list files and their caching advisories. Based on the following example, the file /database/sell.dbf will have caching turned on whenever the file system /database is mounted:

```
device=/dev/vx/dsk/datadg/database01
dates.dbf,off
names.dbf,off
sell.dbf,on
```

To check on the current cache advisory settings for a file

Check the current cache advisory settings:

```
# qioadmin -P filename /mnt1
filename,OFF
```

To check the setting of the qio_cache_enable flag for a file system

Check the setting of the qio_cache_enable flag:

```
# vxtunefs -p /database01
qio cache enable = 1
```

Check the setting of the flag qio_cache_enable using the vxtunefs command, and the individual cache advisories for each file, to verify caching.

About Quick I/O statistics

Quick I/O provides the qiostat utility to collect database I/O statistics generated over a period of time. qiostat reports statistics, such as the number of read and write operations, the number of blocks read or written, and the average time spent on read and write operations during an interval.

```
See the giostat(1) manual page.
```

Increasing database performance using Quick I/O

Perform the following steps to increase database performance on a VxFS file system using Quick I/O.

See the Veritas Editions product documentation.

See the qioadmin(1) and vxtunefs(1M) manual pages.

To increase database performance

- 1 Verify that the Quick I/O module is loaded.
 - # /etc/methods/vxkextadm qio status
- 2 Create a regular VxFS file and preallocate it to the required size, or use the qiomkfile command. The size of this preallocation depends on the size requirement of the database server.
- 3 Create and access the database using the file name xxx::cdev:vxfs:.

Chapter

Using Veritas Extension for Oracle Disk Manager

This chapter includes the following topics:

- About Oracle Disk Manager
- About Oracle Disk Manager and Storage Foundation Cluster File System
- About Oracle Disk Manager and Oracle Managed Files
- Setting up Veritas Extension for Oracle Disk Manager
- Preparing existing database storage for Oracle Disk Manager
- Converting Quick I/O files to Oracle Disk Manager files
- Verifying that Oracle Disk Manager is configured
- Disabling the Oracle Disk Manager feature
- Using Cached ODM

About Oracle Disk Manager

Veritas Extension for Oracle Disk Manager is specifically designed for Oracle10g or later to enhance file management and disk I/O throughput. The features of Oracle Disk Manager are best suited for databases that reside in a file system contained in Veritas File System. Oracle Disk Manager allows Oracle10g or later users to improve database throughput for I/O intensive workloads with special I/O optimization.

Veritas Extension for Oracle Disk Manager supports Oracle Resilvering. With Oracle Resilvering, the storage layer receives information from the Oracle database as to

which regions or blocks of a mirrored datafile to resync after a system crash. Oracle Resilvering avoids overhead from the VxVM DRL, which increases performance.

Oracle Disk Manager reduces administrative overhead by providing enhanced support for Oracle Managed Files. Veritas Extension for Oracle Disk Manager has Quick I/O-like capabilities, but is transparent to the user. Unlike Veritas Quick I/O, files managed using Veritas Extension for Oracle Disk Manager do not require special file naming conventions. The Oracle Disk Manager interface uses regular database files. If you are upgrading to Oracle10g or later, you should convert from Quick I/O to Oracle Disk Manager.

Database administrators can choose the datafile type used with the Oracle product. Historically, choosing between file system files and raw devices was based on manageability and performance. The exception to this is a database intended for use with Oracle Parallel Server, which requires raw devices on most platforms. If performance is not as important as administrative ease, file system files are typically the preferred file type. However, while an application may not have substantial I/O requirements when it is first implemented, I/O requirements may change. If an application becomes dependent upon I/O throughput, converting datafiles from file system to raw devices is often necessary.

Oracle Disk Manager was designed to work with Oracle10g or later to provide both performance and manageability. Oracle Disk Manager provides support for Oracle's file management and I/O calls for database storage on VxFS file systems and on raw volumes or partitions. This feature is provided as a dynamically-loaded shared library with which Oracle binds when it is loaded. The Oracle Disk Manager library works with an Oracle Disk Manager driver that is loaded in the kernel to perform its functions.

If you are upgrading to Oracle10g or later, you should convert from Quick I/O to Oracle Disk Manager.

The benefits of using Oracle Disk Manager are as follows:

- True kernel asynchronous I/O for files and raw devices
- Reduced system call overhead
- Improved file system layout by preallocating contiguous files on a VxFS file system
- Performance on file system files that is equal to raw devices
- Transparent to users
- Contiguous datafile allocation

How Oracle Disk Manager improves database performance

Oracle Disk Manager improves database I/O performance to VxFS file systems by:

- Supporting kernel asynchronous I/O
- Supporting direct I/O and avoiding double buffering
- Avoiding kernel write locks on database files
- Supporting many concurrent I/Os in one system call
- Avoiding duplicate opening of files per Oracle instance
- Allocating contiguous datafiles

About kernel asynchronous I/O support

Asynchronous I/O performs non-blocking system level reads and writes, allowing the system to perform multiple I/O requests simultaneously. Kernel asynchronous I/O is better than library asynchronous I/O because the I/O is queued to the disk device drivers in the kernel, minimizing context switches to accomplish the work.

About direct I/O support and avoiding double buffering

I/O on files using read() and write() system calls typically results in data being copied twice: once between the user and kernel space, and the other between kernel space and the disk. In contrast, I/O on raw devices is copied directly between user space and disk, saving one level of copying. As with I/O on raw devices, Oracle Disk Manager I/O avoids the extra copying. Oracle Disk Manager bypasses the system cache and accesses the files with the same efficiency as raw devices. Avoiding double buffering reduces the memory overhead on the system. Eliminating the copies from kernel to user address space significantly reduces kernel mode processor utilization, freeing more processor cycles to execute the application code.

About avoiding kernel write locks on database files

When database I/O is performed by way of the write() system call, each system call acquires and releases a kernel write lock on the file. This lock prevents simultaneous write operations on the same file. Because database systems usually implement their own locks for managing concurrent access to files, write locks unnecessarily serialize I/O writes. Oracle Disk Manager bypasses file system locking and lets the database server control data access.

About supporting many concurrent I/Os in one system call

When performing asynchronous I/O, an Oracle process may try to issue additional I/O requests while collecting completed I/Os, or it may try to wait for particular I/O

requests synchronously, as it can do no other work until the I/O is completed. The Oracle process may also try to issue requests to different files. All this activity can be accomplished with one system call when Oracle uses the Oracle Disk Manager I/O interface. This interface reduces the number of system calls performed to accomplish the same work, reducing the number of user space/kernel space context switches.

Note: With Oracle10g Release 2 (9.2) or later, you can use the FILESYSTEMIO_OPTIONS initialization parameter to enable or disable asynchronous I/O, direct I/O, or Concurrent I/O on file system files. This parameter is applicable to JFS and JFS2 files only. This parameter is not applicable to VxFS files, ODM files, or QIO files. For further information, please refer to Oracle Disk Manager documentation provided by Oracle.

About avoiding duplicate file open calls

Oracle Disk Manager allows files to be opened once, providing a "file identifier." This is called "identifying" the files. The same file identifiers can be used by any other processes in the Oracle instance. The file status is maintained by the Oracle Disk Manager driver in the kernel. The reduction in file open calls reduces processing overhead at process initialization and termination, and it reduces the number of file status structures required in the kernel.

About allocating contiguous datafiles

Oracle Disk Manager can improve performance for queries, such as sort and parallel queries, that use temporary tablespaces. Without Oracle Disk Manager, Oracle does not initialize the datafiles for the temporary tablespaces. Therefore, the datafiles become sparse files and are generally fragmented. Sparse or fragmented files lead to poor query performance. When using Oracle Disk Manager, the datafiles are initialized for the temporary tablespaces and are allocated in a contiguous fashion, so that they are not sparse.

About Oracle Disk Manager and Storage Foundation Cluster File System

Oracle Disk Manager supports access to clustered files in the SFCFS environment. With a Veritas Storage Foundation Cluster File System license, ODM supports SFCFS files in a serially-exclusive mode which allows access to each SFCFS file by one node at a time, but does not allow simultaneous access from multiple nodes.

See the mount_odm(1) man page for more information on its cluster support modes.

About Oracle Disk Manager and Oracle Managed Files

Oracle10g or later offers a feature known as Oracle Managed Files (OMF). OMF manages datafile attributes such as file names, file location, storage attributes, and whether or not the file is in use by the database. OMF is only supported for databases that reside in file systems. OMF functionality is greatly enhanced by Oracle Disk Manager.

OMF is a file management feature that:

- Eliminates the task of providing unique file names
- Offers dynamic space management by way of the tablespace auto-extend functionality of Oracle10g or later

The main requirement for OMF is that the database be placed in file system files. There are additional prerequisites imposed upon the file system itself.

OMF should only be used in file systems that reside within striped logical volumes, which support dynamic file system growth. File systems intended for OMF use must also support large, extensible files in order to facilitate tablespace auto-extension. Raw partitions cannot be used for OMF.

By default, OMF datafiles are created with auto-extensibility. This attribute reduces capacity planning associated with maintaining existing databases and implementing new applications. Due to disk fragmentation that occurs as the tablespace grows over time, database administrators have been somewhat cautious when considering auto-extensible tablespaces. Oracle Disk Manager eliminates this concern.

When Oracle Disk Manager is used in conjunction with OMF, special care is given within Veritas Extension for Disk Manager to ensure that contiguous disk space is allocated to datafiles, including space allocated to a tablespace when it is auto-extended. The table and index scan throughput does not decay as the tablespace grows.

How Oracle Disk Manager works with Oracle Managed Files

The following example illustrates the relationship between Oracle Disk Manager and Oracle Managed Files (OMF). The example shows the init.ora contents and the command for starting the database instance. To simplify Oracle UNDO management, the new Oracle10g or later init.ora parameter UNDO_MANAGEMENT is set to AUTO. This is known as System-Managed Undo.

Note: Before building an OMF database, you need the appropriate init.ora default values. These values control the location of the SYSTEM tablespace, online redo logs, and control files after the CREATE DATABASE statement is executed.

```
$ cat initPROD.ora
UNDO_MANAGEMENT = AUTO
DB_CREATE_FILE_DEST = '/PROD'
DB_CREATE_ONLINE_LOG_DEST_1 = '/PROD'
db_block_size = 4096
db_name = PROD
$ sqlplus /nolog
$QL> connect / as sysdba
$QL> startup nomount pfile= initPROD.ora
```

The Oracle instance starts.

Total System Global Area 93094616 bytes Fixed Size 279256 bytes Variable Size 41943040 bytes Database Buffers 50331648 bytes Redo Buffers 540672 bytes

To implement a layout that places files associated with the EMP_TABLE tablespace in a directory separate from the EMP_INDEX tablespace, use the ALTER SYSTEM statement. This example shows how OMF handles file names and storage clauses and paths. The layout allows you to think of the tablespaces as objects in a file system as opposed to a collection of datafiles. Since OMF uses the Oracle Disk Manager file resize function, the tablespace files are initially created with the default size of 100 MB and ODM increases the size as needed. Use the MAXSIZE attribute to limit growth.

The following example shows the commands for creating an OMF database and for creating the EMP TABLE and EMP INDEX tablespaces in their own locale:

```
SQL> create database PROD;
```

Note: The directory must exist for OMF to work, so the SQL*Plus HOST command is used to create the directories:

The database is created.

```
SQL> HOST mkdir /PROD/EMP_TABLE;
SQL> ALTER SYSTEM SET DB_CREATE_FILE_DEST = '/PROD/EMP_TABLE';
```

The system is altered.

 ${\tt SQL}>$ create tablespace EMP_TABLE DATAFILE AUTOEXTEND ON MAXSIZE $\$ 500M;

A tablespace is created.

```
SQL> ALTER SYSTEM SET DB CREATE FILE DEST = '/PROD/EMP INDEX';
```

The system is altered.

SQL> create tablespace EMP_INDEX DATAFILE AUTOEXTEND ON MAXSIZE \ 100M;

A tablespace is created.

Use the ls command to show the newly created database:

```
$ ls -lfR
```

```
total 638062
drwxr-xr-x 2 oracle10g dba 96 May 3 15:43 EMP_INDEX/
drwxr-xr-x 2 oracle10g dba 96 May 3 15:43 EMP_TABLE/
-rw-r--r-- 1 oracle10g dba 104858112 May 3 17:28 ora_1_BEhYgcOm.log
-rw-r--r-- 1 oracle10g dba 104858112 May 3 17:27 ora_2_BEhYu4NA.log
-rw-r--r-- 1 oracle10g dba 806912 May 3 15:43 ora_BEahlfUX.ctl
-rw-r--r-- 1 oracle10g dba 10489856 May 3 15:43 ora_sys_undo_BEajPSVq.dbf
-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:4 ora_system_BEaiFE8v.dbf
-rw-r--r-- 1 oracle10g dba 186 May 3 15:03 PROD.ora
```

```
./EMP_INDEX:
total 204808
-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:43
ora emp inde BEakGfun.dbf
```

```
./EMP_TABLE:
total 204808
-rw-r--r-- 1 oracle10g dba 104861696 May 3 15:43
ora emp tabl BEak1LqK.dbf
```

Setting up Veritas Extension for Oracle Disk Manager

Veritas Extension for Oracle Disk Manager is part of Veritas Storage Foundation Standard and Enterprise products. Veritas Extension for Oracle Disk Manager is enabled once your Veritas Storage Foundation Standard or Enterprise product and Oracle10g or later are installed. The Veritas Extension for Oracle Disk Manager library is linked to the library in the {ORACLE_HOME}/lib directory.

Before setting up Veritas Extension for Oracle Disk Manager, the following conditions must be met:

Prerequisites	 Oracle10g, or later, must be installed on your system. If Cached Quick I/O is available, do not enable Oracle Disk Manager when Cached Quick I/O is enabled for datafiles.
Usage Notes	 When the Quick I/O feature is available, Oracle Disk Manager uses the Quick I/O driver to perform asynchronous I/O. Do not turn off the Quick I/O mount option, which is the default.

Linking the Veritas extension for Oracle Disk Manager library into Oracle home

You must use the following procedures to link the Veritas extension for Oracle Disk Manager library into Oracle home for Oracle 11g and Oracle 10g.

To link the Veritas extension for Oracle Disk Manager library into Oracle home for Oracle 11g

• Use the rm and ln commands.

rm \${ORACLE_HOME}/lib/libodm11.so
ln -s /opt/VRTSodm/lib/libodm64.so \
\${ORACLE HOME}/lib/libodm11.so

To link the Veritas extension for Oracle Disk Manager library into Oracle home for Oracle 10g

• Use the rm and ln commands.

```
# rm ${ORACLE_HOME}/lib/libodm10.so
# ln -s /opt/VRTSodm/lib/libodm64.so \
${ORACLE_HOME}/lib/libodm10.so
```

Preparing existing database storage for Oracle Disk Manager

Non-Quick I/O files in a VxFS file system work with Oracle Disk Manager without any changes. The files are found and identified for Oracle Disk Manager I/O by default. To take full advantage of Oracle Disk Manager datafiles, files should not be fragmented.

If you are using Quick I/O files in a VxFS file system and you want to move to Oracle Disk Manager, convert the Quick I/O files to normal files using the qio convertdbfiles -u command.

You must be running Oracle10g or later to use Oracle Disk Manager.

Converting Quick I/O files to Oracle Disk Manager files

If you plan to run the Veritas product with Oracle10g or later, and you have been using Quick I/O files, Symantec recommends that you convert your Quick I/O files to regular files. This should be done after you upgrade.

Note: If you are running an earlier version of Oracle (Oracle 8.x or lower), you should not convert your Quick I/O files because Oracle Disk Manager is for Oracle10g or later only.

The Oracle Disk Manager uses the Quick I/O driver to perform asynchronous I/O, do not turn off the Quick I/O mount option, which is the default.

To convert Quick I/O files to Oracle Disk Manager files

1 As Oracle DBA, run qio_getdbfiles to retrieve a list of all datafiles.

\$ /opt/VRTS/bin/qio_getdbfiles -T ora -a

The list is compiled in a file named mkqio.dat.

- 2 Shutdown the database.
- 3 As Oracle DBA, run gio_convertdbfiles in the directory containing the mkgio.dat file. The gio_convertdbfiles script converts all Quick I/O files to ODM files.
 - \$ /opt/VRTS/bin/qio_convertdbfiles -T ora -u
- 4 Restart the database instance.

Verifying that Oracle Disk Manager is configured

Before verifying that Oracle Disk Manager is configured, make sure that the following conditions are met:

Prerequisites

- /opt/VRTSodm/lib/libodm64.so must exist.
- If you are using Oracle 10g, \$ORACLE_HOME/lib/libodm10.so is linked to /opt/VRTSodm/lib/libodm64.so.
- If you are using Oracle 11g, \$ORACLE_HOME/lib/libodm11.so is linked to /opt/VRTSodm/lib/libodm64.so.
- The VRTSdbed license must be valid.
- The VRTSodm package must be installed.

To verify that Oracle Disk Manager is configured

1 Verify that the ODM feature is included in the license:

```
# /opt/VRTS/bin/vxlicrep | grep ODM
```

The output verifies that ODM is enabled.

Note: Verify that the license key containing the ODM feature is not expired. If the license key has expired, you will not be able to use the ODM feature.

2 Check that the VRTSodm package is installed:

? -- Inconsistent State...Run lppchk -v.

Type codes:

- F -- Installp Fileset
- P -- Product
- C -- Component
- T -- Feature
- R -- RPM Package
- 3 Check that libodm64.so is present.

```
# ls -lL /opt/VRTSodm/lib/libodm64.so
```

-r-xr-xr-x 1 bin bin 103500 Aug 16 08:42 /opt/VRTSodm/lib/libodm64.so

To verify that Oracle Disk Manager is running

- 1 Start the Oracle database.
- 2 Check that the instance is using the Oracle Disk Manager function:

```
# cat /dev/odm/stats
# echo $?
0
```

3 Verify that the Oracle Disk Manager is loaded:

You can use the genkld or the genkex commands:

genkld | grep odm
or
genkex | grep odm

4 In the alert log, verify the Oracle instance is running. The log should contain output similar to the following:

```
Oracle instance running with ODM: Veritas 5.1.100.00 ODM Library, Version 2.0
```

Disabling the Oracle Disk Manager feature

Since the Oracle Disk Manager feature uses regular files, you can access these files as regular VxFS files as soon as the feature is disabled.

Note: To convert to VxFS with Quick I/O, disable Oracle Disk Manager using the following procedure, then convert the files to Quick I/O files.

See "Converting Quick I/O files to Oracle Disk Manager files" on page 131.

Before disabling the Oracle Disk Manager feature, you may want to back up your files.

To disable the Oracle Disk Manager feature in an Oracle instance

- 1 Shut down the database instance.
- 2 Use the rm and ln commands to remove the link to the Oracle Disk Manager Library.

For Oracle 11g, enter:

rm \${ORACLE_HOME}/lib/libodm11.so
ln -s \${ORACLE_HOME}/lib/libodm.so \
\${ORACLE HOME}/lib/libodm11.so

For Oracle 10g, enter:

rm \${ORACLE_HOME}/lib/libodm10.so
ln -s \${ORACLE_HOME}/lib/libodm.so \
\${ORACLE_HOME}/lib/libodm10.so

3 Restart the database instance.

Using Cached ODM

ODM I/O normally bypasses the file system cache and directly reads from and writes to disk. Cached ODM enables some I/O to use caching and read ahead, which can improve ODM I/O performance. Cached ODM performs a conditional form of caching that is based on per-I/O hints from Oracle. The hints indicate what Oracle does with the data. ODM uses these hints to perform caching and read ahead for some reads, but ODM avoids caching other reads, even for the same file.

You can enable cached ODM only for local mount files.

You can enable cached ODM for local mount files and cluster mount files.

See "Enabling Cached ODM for file systems" on page 136.

Cached ODM can be configured in two ways. The primary configuration method is to turn caching on or off for all I/O on a per-file basis. The secondary configuration method is to adjust the ODM cachemap. The cachemap maps file type and I/O type combinations into caching advisories.

See "Modifying Cached ODM settings for individual files" on page 136.

See "Adding Cached ODM settings via the cachemap" on page 137.

Enabling Cached ODM for file systems

Cached ODM is initially disabled on a file system. You enable Cached ODM for a file system by setting the <code>odm_cache_enable</code> option of the <code>vxtunefs</code> command after the file system is mounted.

See the vxtunefs(1M) manual page.

Note: The vxtunefs command enables conditional caching for all of the ODM files on the file system.

To enable Cached ODM for a file system

1 Enable Cached ODM on the VxFS file system /database01:

```
# vxtunefs -s -o odm_cache_enable=1 /database01
```

2 Optionally, you can make this setting persistent across mounts by adding a file system entry in the file /etc/vx/tunefstab:

```
/dev/vx/dsk/datadg/database01 odm cache enable=1
```

See the tunefstab(4) manual page.

Modifying Cached ODM settings for individual files

You can use the odmadm setcachefile command to override the cachemap for a specific file so that ODM caches either all or none of the I/O to the file. The caching state can be ON, OFF, or DEF (default). The DEF caching state is conditional caching, meaning that for each I/O, ODM consults the cachemap and determines whether the specified file type and I/O type combination should be cached. The ON caching state causes the specified file always to be cached, while the OFF caching state causes the specified file never to be cached.

See the odmadm(1M) manual page.

Note: The cache advisories operate only if Cached ODM is enabled for the file system. If the <code>odm_cache_enable</code> flag is zero, Cached ODM is OFF for all of the files in that file system, even if the individual file cache advisory for a file is ON.

To enable unconditional caching on a file

Enable unconditional caching on the file /mnt1/file1:

```
# odmadm setcachefile /mnt1/file1=on
```

With this command, ODM caches all reads from file1.

To disable caching on a file

Disable caching on the file /mnt1/file1:

```
# odmadm setcachefile /mnt1/file1=off
```

With this command, ODM does not cache reads from file1.

To check on the current cache advisory settings for a file

Check the current cache advisory settings of the files /mnt1/file1 and /mnt2/file2:

```
# odmadm getcachefile /mnt1/file1 /mnt2/file2
/mnt1/file1,ON
/mnt2/file2,OFF
```

To reset all files to the default cache advisory

Reset all files to the default cache advisory:

```
# odmadm resetcachefiles
```

Adding Cached ODM settings via the cachemap

You can use the <code>odmadm setcachemap</code> command to configure the cachemap. The cachemap maps file type and I/O type combinations to caching advisories. ODM uses the cachemap for all files that have the default conditional cache setting. Such files are those for which caching has not been turned on or off by the <code>odmadm setcachefile</code> command.

See the odmadm(1M) manual page.

By default, the cachemap is empty, but you can add caching advisories by using the odmadm setcachemap command.

To add caching advisories to the cachemap

Add a caching advisory to the cachemap:

```
# odmadm setcachemap data/data_read_seq=cache,readahead
```

With this example command, ODM uses caching and readahead for I/O to online log files (data) that have the data_read_seq I/O type. You can view the valid file type and I/O type values from the output of the odmadm getcachemap command.

See the odmadm(1M) manual page.

Making the caching settings persistent across mounts

By default, the Cached ODM settings are not persistent across mounts. You can make the settings persistent by creating the /etc/vx/odmadm file and listing the caching advisory settings in the file

To make the caching setting persistent across mounts

 Create the /etc/vx/odmadm file to list files and their caching advisories. In the following example of the /etc/vx/odmadm file, if you mount the /dev/vx/dsk/rootdg/vol1 device at /mnt1, odmadm turns off caching for /mnt1/oradata/file1:

```
setcachemap data/read_data_header=cache
setcachemap all/datapump=cache,readahead
device /dev/vx/dsk/rootdg/vol1
setcachefile oradata/file1=off
```

Appendix

Quick Reference

This appendix includes the following topics:

- Command summary
- Online manual pages
- Creating a VxFS file system
- Converting a file system to VxFS
- Mounting a file system
- Unmounting a file system
- Displaying information on mounted file systems
- Resizing a file system
- Using quotas

Command summary

Symbolic links to all VxFS command executables are installed in the <code>/opt/VRTS/bin</code> directory. Add this directory to the end of your <code>PATH</code> environment variable to access the commands.

Table A-1 describes the VxFS-specific commands.

Table A-1	VxFS commands

Command	Description
df	Reports the number of free disk blocks and inodes for a VxFS file system.
fcladm	Administers VxFS File Change Logs.

	Table A-1VxFS commands (continued)
Command	Description
ff	Lists file names and inode information for a VxFS file system.
fiostat	Administers file I/O statistics
fsadm	Resizes or defragments a VxFS file system.
fsapadm	Administers VxFS allocation policies.
fscat	Cats a VxFS file system.
fscdsadm	Performs online CDS operations.
fscdsconv	Performs offline CDS migration tasks on VxFS file systems.
fscdstask	Performs various CDS operations.
fsck	Checks and repairs a VxFS file system.
fsckpt_restore	Restores file systems from VxFS Storage Checkpoints.
fsckptadm	Administers VxFS Storage Checkpoints.
fsclustadm	Manages cluster-mounted VxFS file systems.
fsdb	Debugs VxFS file systems.
fsdbencap	Encapsulates databases.
fsfreeze	Freezes VxFS file systems and executes a user command on the file systems.
fsmap	Displays VxFS file system extent information.
fsmigadm	Administers file system online migrations.
fsppadm	Administers VxFS placement policies.
fsppmk	Creates placement policies.
fstag	Creates, deletes, or lists file tags.
fstyp	Returns the type of file system on a specified disk partition.
fsvmap	Maps volumes of VxFS file systems to files.
fsvoladm	Administers VxFS volumes.
glmdump	Reports stuck Group Lock Managers (GLM) locks in a cluster file system.

	Table A-1VxFS commands (continued)
Command	Description
glmstat	Group Lock Managers (GLM) statistics gathering utility.
mkdstfs	SmartTier file system creation utility.
mkfs	Constructs a VxFS file system.
mount	Mounts a VxFS file system.
ncheck	Generates path names from inode numbers for a VxFS file system.
qioadmin	Administers VxFS Quick I/O for Databases cache.
qiomkfile	Creates a VxFS Quick I/O device file. This functionality is available only with the Veritas Quick I/O for Databases feature.
qiostat	Displays statistics for VxFS Quick I/O for Databases. This functionality is available only with the Veritas Quick I/O for Databases feature.
setext	Sets extent attributes on a file in a VxFS file system.
umount	Unmounts a VxFS file system.
vxdiskusg	Generates VxFS disk accounting data by user ID.
vxdump	Incrementally dumps file systems.
vxedquota	Edits user quotas for a VxFS file system.
vxenable	Enables specific VxFS features.
vxfilesnap	Makes a copy-on-write copy of a file in a VxFS file system.
vxfsconvert	Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.
vxfsstat	Displays file system statistics.
vxgetfacl	Displays the access control list for a VxFS file or directory.
vxlsino	Looks up VxFS reverse path names.
vxquot	Displays file system ownership summaries for a VxFS file system.
vxquota	Displays user disk quotas and usage on a VxFS file system.
vxquotaoff vxquotaon	Turns quotas on and off for a VxFS file system.
vxrepquota	Summarizes quotas for a VxFS file system.

Table A-1VxFS commands (continued)	
Command	Description
vxrestore	Restores a file system incrementally.
vxsetfacl	Modifies the access control list for a VxFS file or directory.
vxtunefs	Tunes a VxFS file system.
vxupgrade	Upgrades the disk layout of a mounted VxFS file system.

Online manual pages

This release includes the following online manual pages as part of the VRTSVXfs package. These are installed in the appropriate directories under /opt/VRTS/man (add this to your MANPATH environment variable), but does not update the windex database. To ensure that new VxFS manual pages display correctly, update the windex database after installing VRTSVxfs.

See the catman(1M) manual page.

Table A-2 describes the VxFS-specific section 1 manual pages.

Section 1	Description
ff_vxfs	Lists file names and inode information for a VxFS file system.
fiostat	Administers file I/O statistics.
fsmap	Displays VxFS file system extent information.
getext	Gets extent attributes for a VxFS file system.
qioadmin	Administers VxFS Quick I/O for Databases cache. This functionality is available only with the Veritas Quick I/O for Databases feature.
qiomkfile	Creates a VxFS Quick I/O device file. This functionality is available only with the Veritas Quick I/O for Databases feature.
qiostat	Displays statistics for VxFS Quick I/O for Databases. This functionality is available only with the Veritas Quick I/O for Databases feature.
setext	Sets extent attributes on a file in a VxFS file system.
vxfilesnap	Makes a copy-on-write copy of a file in a VxFS file system.

Table A-2Section 1 manual pages

Table A-3 describes the VxFS-specific section 1M manual pages.

Table A-3Section 1M manual pages

Section 1M	Description
df_vxfs	Reports the number of free disk blocks and inodes for a VxFS file system.
fcladm	Administers VxFS File Change Logs.
fsadm_vxfs	Resizes or reorganizes a VxFS file system.
fsapadm	Administers VxFS allocation policies.
fscat_vxfs	Cats a VxFS file system.
fscdsadm	Performs online CDS operations.
fscdsconv	Performs offline CDS migration tasks on VxFS file systems.
fscdstask	Performs various CDS operations.
fsck_vxfs	Checks and repairs a VxFS file system.
fsckptadm	Administers VxFS Storage Checkpoints.
fsckpt_restore	Restores file systems from VxFS Storage Checkpoints.
fsclustadm	
fsdbencap	Encapsulates databases.
fsdb_vxfs	Debugs VxFS file systems.
fsfreeze	Freezes VxFS file systems and executes a user command on the file systems.
fsmigadm	Administers file system online migrations.
fsppadm	Administers VxFS placement policies.
fsvmap	Maps volumes of VxFS file systems to files.
fsvoladm	Administers VxFS volumes.
glmdump	Reports stuck Group Lock Managers (GLM) locks in a cluster file system.
mkdstfs	SmartTier file system creation utility.
mkfs_vxfs	Constructs a VxFS file system.
mount_vxfs	Mounts a VxFS file system.

	Table A-3Section 1M manual pages (continued)	
Section 1M	Description	
ncheck_vxfs	Generates path names from inode numbers for a VxFS file system.	
quot	Summarizes ownership on a VxFS file system.	
quotacheck_vxfs	Checks VxFS file system quota consistency.	
umount_vxfs	Unmounts a VxFS file system.	
vxdiskusg	Generates VxFS disk accounting data by user ID.	
vxdump	Incrementally dumps file systems.	
vxedquota	Edits user quotas for a VxFS file system.	
vxenable	Enables specific VxFS features.	
vxfsconvert	Converts an unmounted file system to VxFS or upgrades a VxFS disk layout version.	
vxfsstat	Displays file system statistics.	
vxlsino	Looks up VxFS reverse path names.	
vxquot	Displays file system ownership summaries for a VxFS file system.	
vxquota	Displays user disk quotas and usage on a VxFS file system.	
vxquotaoff vxquotaon	Turns quotas on and off for a VxFS file system.	
vxrepquota	Summarizes quotas for a VxFS file system.	
vxrestore	Restores a file system incrementally.	
vxtunefs	Tunes a VxFS file system.	
vxupgrade	Upgrades the disk layout of a mounted VxFS file system.	

Section 1M manual pages (continued)

Table A-4 describes the VxFS-specific section 3 manual pages.

Table A-4 Section 3 manual pages

Section 3	Description
vxacl	Gets or sets a VxFS file's Access Con trol List entries.
vxfacl	
vxfs_ap_alloc2	Allocates an fsap_info2 structure.

Table A-4	Section 3 manual pages (continued)
Section 3	Description
vxfs_ap_assign_ckpt	Assigns an allocation policy to file data and metadata in a Storage Checkpoint.
vxfs_ap_assign_ckptchain	Assigns an allocation policy for all of the Storage Checkpoints of a VxFS file system.
vxfs_ap_assign_ckptdef	Assigns a default allocation policy for new Storage Checkpoints of a VxFS file system.
vxfs_ap_assign_file	Assigns an allocation policy for file data and metadata.
vxfs_ap_assign_file_pat	Assigns a pattern-based allocation policy for a directory.
vxfs_ap_assign_fs	Assigns an allocation policy for all file data and metadata within a specified file system.
vxfs_ap_assign_fs_pat	Assigns an pattern-based allocation policy for a file system.
vxfs_ap_define	Defines a new allocation policy.
vxfs_ap_define2	Defines a new allocation policy.
vxfs_ap_enforce_ckpt	Reorganizes blocks in a Storage Checkpoint to match a specified allocation policy.
vxfs_ap_enforce_ckptchain	Enforces the allocation policy for all of the Storage Checkpoints of a VxFS file system.
vxfs_ap_enforce_file	Ensures that all blocks in a specified file match the file allocation policy.
vxfs_ap_enforce_file2	Reallocates blocks in a file to match allocation policies.
vxfs_ap_enforce_range	Reallocates blocks in a file within a specified range to match allocation policies.
vxfs_ap_enumerate	Returns information about all allocation policies.
vxfs_ap_enumerate2	Returns information about all allocation policies.
vxf_ap_free2	Frees one or more fsap_info2 structures.
vxfs_ap_query	Returns information about a specific allocation policy.
vxfs_ap_query2	Returns information about a specific allocation policy.
vxfs_ap_query_ckpt	Returns information about allocation policies for each Storage Checkpoint.

Table A-4	Section 3 manual pages (continued)
Section 3	Description
vxfs_ap_query_ckptdef	Retrieves the default allocation policies for new Storage Checkpoints of a VxFS file system
vxfs_ap_query_file	Returns information about allocation policies assigned to a specified file.
vxfs_ap_query_file_pat	Returns information about the pattern-based allocation policy assigned to a directory.
vxfs_ap_query_fs	Retrieves allocation policies assigned to a specified file system.
vxfs_ap_query_fs_pat	Returns information about the pattern-based allocation policy assigned to a file system.
vxfs_ap_remove	Deletes a specified allocation policy.
vxfs_fcl_sync	Sets a synchronization point in the VxFS File Change Log.
vxfs_fiostats_dump	Returns file and file range I/O statistics.
vxfs_fiostats_getconfig	Gets file range I/O statistics configuration values.
vxfs_fiostats_set	Turns on and off file range I/O statistics and resets statistics counters.
vxfs_get_ioffsets	Obtains VxFS inode field offsets.
vxfs_inotopath	Returns path names for a given inode number.
vxfs_inostat	Gets the file statistics based on the inode number.
vxfs_inotofd	Gets the file descriptor based on the inode number.
vxfs_nattr_check	Checks for the existence of named data streams.
vxfs_nattr_fcheck	
vxfs_nattr_link	Links to a named data stream.
vxfs_nattr_open	Opens a named data stream.
vxfs_nattr_rename	Renames a named data stream.
vxfs_nattr_unlink	Removes a named data stream.
vxfs_nattr_utimes	Sets access and modification times for named data streams.
vxfs_vol_add	Adds a volume to a multi-volume file system.
vxfs_vol_clearflags	Clears specified flags on volumes in a multi-volume file system.

Table A-4	Section 3 manual pages (continued)
Section 3	Description
vxfs_vol_deencapsulate	De-encapsulates a volume from a multi-volume file system.
vxfs_vol_encapsulate	Encapsulates a volume within a multi-volume file system.
vxfs_vol_encapsulate_bias	Encapsulates a volume within a multi-volume file system.
vxfs_vol_enumerate	Returns information about the volumes within a multi-volume file system.
vxfs_vol_queryflags	Queries flags on volumes in a multi-volume file system.
vxfs_vol_remove	Removes a volume from a multi-volume file system.
vxfs_vol_resize	Resizes a specific volume within a multi-volume file system.
vxfs_vol_setflags	Sets specified flags on volumes in a multi-volume file system.
vxfs_vol_stat	Returns free space information about a component volume within a multi-volume file system.

Table A-5 describes the VxFS-specific section 4 manual pages.

Section 4 Description fs_vxfs Provides the format of a VxFS file system volume. inode_vxfs Provides the format of a VxFS file system inode.		Table A-5	Section 4 manual pages
	Section 4	Description	
inode_vxfs Provides the format of a VxFS file system inode.	fs_vxfs	Provides the format of	a VxFS file system volume.
	inode_vxfs	Provides the format of	a VxFS file system inode.
tunefstab Describes the VxFS file system tuning parameters table.	tunefstab	Describes the VxFS file	e system tuning parameters table.

Table A-6 describes the VxFS-specific section 7 manual pages.

Table A-6	Section 7 manual pages
-----------	------------------------

Section 7	Description
vxfsio	Describes the VxFS file system control functions.

Creating a VxFS file system

The mkfs or crfs commands create a VxFS file system by writing to a special character device file. The special character device must be a Veritas Volume

Manager (VxVM) volume. mkfs builds a file system with a root directory and a lost+found directory.

Before creating a file system, you must create the target device. Refer to your operating system documentation for more information. If you are using a logical device, see the VxVM documentation for instructions on device initialization.

Note: Entries for every file system created by the crfs command are added to the /etc/filesystems file. The mkfs command does not add entries to /etc/filesystems. Also by using crfs, the fsck command can automatically determine the vfs type of a new file system. This eliminates the need to call the VxFS-specific fsck command (/opt/VRTS/bin/fsck).

See the crfs, mkfs(1M), and mkfs vxfs(1M) manual pages.

To create a file system

Use the mkfs or crfs command to create a file system:

```
mkfs [-V vxfs] [generic options] [-o specific options] \
  [size] special
  crfs -v vxfs -d special -m mount point [-a attributes]
-V vxfs
                       Specifies the VxFS file system type.
                       Displays the command line that was used to create the file
-m
                       system. The file system must already exist. This option enables
                       you to determine the parameters used to construct the file
                       system.
generic_options
                       Options common to most other file system types.
-o specific_options
                       Options specific to VxFS.
-0 N
                       Displays the geometry of the file system and does not write
                       to the device.
-o largefiles
                       Allows users to create files larger than two gigabytes. The
                       default option is largefiles.
special
                       Specifies the special device file location or character device
                       node of a particular storage device.
                       Specifies the number of 512-byte sectors in the file system.
size
                       If size is not specified, mkfs determines the size of the special
                       device.
```

Example of creating a file system

The following example creates a VxFS file system of 12288 sectors in size on a VxVM volume.

To create a VxFS file system

1 Create the file system:

```
# mkfs -V vxfs /dev/vx/rdsk/diskgroup/volume 12288
version 7 layout
12288 sectors, 6144 blocks of size 1024, log size 512 blocks
largefiles supported
```

2 Mount the newly created file system.

```
# mount -V vxfs /dev/vx/rdsk/diskgroup/volume /mnt1
```

Converting a file system to VxFS

The ${\tt vxfsconvert}$ command can be used to convert a JFS file system to a VxFS file system.

See the vxfsconvert(1M) manual page.

To convert a JFS file system to a VxFS file system

• Use the vxfsconvert or crfs command to convert a JFS file system to VxFS:

vxfsconvert [-l logsize] [-s size] [-efnNvyY] special

- -e Estimates the amount of space required to complete the conversion.
- -f Displays the list of supported file system types.
- -1 *logsize* Specifies the size of the file system intent log.
- -n|N Assumes a no response to all questions asked by vxfsconvert.
- -s siz Directs vxfsconvert to use free disk space past the current end of the file system to store VxFS metadata.
- -v Specifies verbose mode.
- -y | Y Assumes a yes response to all questions asked by vxfsconvert.
- *special* Specifies the name of the character (raw) device that contains the file system to convert.

Example of converting a file system

The following example converts a JFS file system to a VxFS file system with an intent log size of 4096 blocks.

To convert a JFS file system to a VxFS file system

- Convert the file system:
 - # vxfsconvert -1 4096 /dev/vx/rdsk/diskgroup/volume

Mounting a file system

You can mount a VxFS file system by using the mount command. When you enter the mount command, the generic mount command parses the arguments and the -v FSType option executes the mount command specific to that file system type. If the -v option is not supplied, the command searches the file /etc/filesystems for a file system and an FSType matching the special file or mount point provided. If no file system type is specified, mount uses the default file system.

The <code>mount</code> command automatically runs the VxFS <code>fsck</code> command to clean up the intent log if the <code>mount</code> command detects a dirty log in the file system. This functionality is only supported on file systems mounted on a Veritas Volume Manager (VxVM) volume.

To mount a file system

• Use the mount command to mount a file system:

```
mount [-V vxfs] [generic_options] [-r] [-o specific_options] \
speciall/mount point
```

vxfs	File system type.
generic_options	Options common to most other file system types.
specific_options	Options specific to VxFS.
-o ckpt= <i>ckpt_name</i>	Mounts a Storage Checkpoint.
-o cluster	Mounts a file system in shared mode. Available only with the VxFS cluster file system feature.
special	A VxFS block special device.
mount_point	Directory on which to mount the file system.

Mounts the file system as read-only.

Mount options

-r

The mount command has numerous options to tailor a file system for various functions and environments.

The following table lists some of the *specific_options*:

Security feature	If security is important, use <pre>blkclear</pre> to ensure that deleted files are completely erased before the space is reused.
Support for large files	If you specify the largefiles option, you can create files larger than two gigabytes on the file system. The default option is largefiles.
Using Storage Checkpoints	The ckpt=checkpoint_name option mounts a Storage Checkpoint of a mounted file system that was previously created by the fsckptadm command.
Using databases	If you are using databases with VxFS and if you have installed a license key for the Veritas Quick I/O for Databases feature, the mount command enables Quick I/O by default (the same as specifying the qio option). The noqio option disables Quick I/O. If you do not have Quick I/O, mount ignores the qio option. Alternatively, you can increase database performance using the mount option convosync=direct, which utilizes direct I/O.
	See "About Quick I/O" on page 107.
News file systems	If you are using cnews, use delaylog (or tmplog), mincache=closesync because cnews does an fsync() on each news file before marking it received. The fsync() is performed synchronously as required, but other options are delayed.
Temporary file systems	For a temporary file system such as /tmp, where performance is more important than data integrity, use tmplog, mincache=tmpcache.
Locking a file system	If you specify the mntlock option, you can lock a file system to disallow unmounting the file system except if the mntunlock option is specified. The mntlock is useful for applications for which you do not want the file systems that the applications are monitoring to be improperly unmounted by other applications or administrators.

See "Mounting a VxFS file system" on page 36.

See the filesystems, fsckptadm(1M), mount, and mount vxfs(1M) manual pages.

Example of mounting a file system

The following example mounts the file system /dev/vx/dsk/fsvol/vol1 on the /mnt1 directory with read/write access and delayed logging.

To mount the file system

- Mount the file system:
 - # mount -V vxfs -o delaylog /dev/vx/dsk/fsvol/vol1 /mnt1

Editing the filesystems file

You can edit the /etc/filesystems file to mount a file system automatically at boot time.

You must specify the following:

- The special block device name to mount
- The special character device name used by fsck
- The mount point
- The mount options
- The file system type (vxfs)
- Which fsck pass looks at the file system
- Whether to mount the file system at boot time

Each entry must be on a single line.

See the filesystems manual page.

Unmounting a file system

Use the umount command to unmount a currently mounted file system.

See the umount_vxfs(1M) manual page.

To unmount a file system

• Use the umount command to unmount a file system:

```
umount [-V vxfs] [generic_options] [-0 [force]] {special|mount_point}
umount [generic options] [-0 [force]] {special|mount point}
```

Specify the file system to be unmounted as a *mount_point* or *special*. *special* is the VxFS block special device on which the file system resides.

Example of unmounting a file system

The following are examples of unmounting file systems.

To unmount the file system /dev/vx/dsk/fsvol/vol1

- Unmount the file system:
 - # umount /dev/vx/dsk/fsvol/vol1

Displaying information on mounted file systems

Use the ${\tt mount}$ command without flags to display information about the mounted file systems.

See the mount and mount_vxfs(1M) manual pages.

To view the status of mounted file systems

• Use the mount command to view the status of mounted file systems:

mount

This shows the file system type and ${\tt mount}$ options for all mounted file systems.

Example of displaying information on mounted file systems

The following example shows the result of invoking the $\tt mount$ command without options.

To display information on mounted file systems

- Invoke the mount command without options:
 - # mount

node	mounted	mounted over	vfs	date	options
	/dev/hd4	1	jfs	Nov 05 23:09	rw,log=/dev/hd8
	/dev/hd2	/usr	jfs	Nov 05 23:09	rw,log=/dev/hd8
	/dev/hd9var	/var	jfs	Nov 05 23:10	rw,log=/dev/hd8
	/dev/hd3	/tmp	jfs	Nov 05 23:10	rw,log=/dev/hd8
	/dev/hd1	/home	jfs	Nov 05 23:11	rw,log=/dev/hd8
	/dev/aix	/aix	jfs	Nov 05 23:11	rw,log=/dev/loglv00
	/dev/V433	/aix/V433	jfs	Nov 05 23:11	rw,log=/dev/loglv01
	/dev/lv02	/vxfs	jfs	Nov 05 23:11	rw,log=/dev/loglv02

Resizing a file system

You can extend or shrink mounted VxFS file systems using the fsadm command. A file system using the Version 6 or later disk layout can be up to 8 exabytes in size. The size to which a Version 6 or later disk layout file system can be increased depends on the file system block size.

See "About disk layouts" on page 252.

See the fsadm_vxfs(1M) manual page.

Extending a file system using fsadm

vxfs

If a VxFS file system is not large enough, you can increase its size. The size of the file system is specified in units of 1024-byte blocks (or sectors).

The device must have enough space to contain the larger file system.

See the Veritas Volume Manager Administrator's Guide.

To extend a VxFS file system

Use the fsadm command to extend a VxFS file system:

fsadm [-V vxfs] [-b newsize] [-r rawdev] \
mount point

The file system type.

newsize	The size to which the file system will increase. The default units is sectors, but you can specify k or κ for kilobytes, m or M for megabytes, or g or G for gigabytes.
mount_point	The file system's mount point.
-r <i>rawdev</i>	Specifies the path name of the raw device if there is no entry in /etc/filesystems and fsadm cannot determine the raw device.

Examples of extending a file system

The following example extends a file system mounted at /mnt1 to 22528 sectors.

To extend a file system to 22528 sectors

Extend the VxFS file system mounted on /mnt1 to 22528 sectors:

fsadm -V vxfs -b 22528 /mnt1

The following example extends a file system mounted at /mnt1 to 500 gigabytes.

To extend a file system to 500 gigabytes

Extend the VxFS file system mounted on /mnt1 to 500 gigabytes:

```
# fsadm -V vxfs -b 500g /mnt1
```

Shrinking a file system

vxfs

You can decrease the size of the file system using fsadm, even while the file system is mounted.

Warning: After this operation, there is unused space at the end of the device. You can then resize the device, but be careful not to make the device smaller than the new size of the file system.

To decrease the size of a VxFS file system

Use the fsadm command to decrease the size of a VxFS file system:

```
fsadm [-V vxfs] [-b newsize] [-r rawdev] mount point
```

The file system type.

newsize	The size to which the file system will shrink. The default units is sectors, but you can specify k or K for kilobytes, m or M for megabytes, or g or G for gigabytes.
mount_point	The file system's mount point.
-r rawdev	Specifies the path name of the raw device if there is no entry in /etc/filesystems and fsadm cannot determine the raw device.

Examples of shrinking a file system

The following example shrinks a VxFS file system mounted at $/\tt{mntl}$ to 20480 sectors.

To shrink a file system to 20480 sectors

Shrink a VxFS file system mounted at /mnt1 to 20480 sectors:

fsadm -V vxfs -b 20480 /mnt1

The following example shrinks a file system mounted at /mnt1 to 450 gigabytes.

To shrink a file system to 450 gigabytes

Shrink the VxFS file system mounted on /mnt1 to 450 gigabytes:

fsadm -V vxfs -b 450g /mnt1

Reorganizing a file system

You can reorganize or compact a fragmented file system using fsadm, even while the file system is mounted. This may help shrink a file system that could not previously be decreased.

To reorganize a VxFS file system

• Use the fsadm command to reorganize a VxFS file system:

fsadm [-V vxfs] [-e] [-d] [-E] [-D] [-r rawdev] mount_point

vxfs	The file system type.
-d	Reorders directory entries to put subdirectory entries first, then all other entries in decreasing order of time of last access. Also compacts directories to remove free space.
-D	Reports on directory fragmentation.

-e	Minimizes file system fragmentation. Files are reorganized to have the minimum number of extents.
-E	Reports on extent fragmentation.
mount_point	The file system's mount point.
-r rawdev	Specifies the path name of the raw device if there is no entry in /etc/filesystems and fsadm cannot determine the raw device.

Example of reorganizing a file system

The following example reorganizes the file system mounted at /mnt1.

To reorganize a VxFS file system

Reorganize the VxFS file system mounted at /mnt1:

```
# fsadm -V vxfs -EeDd /mnt1
```

Using quotas

You can use quotas to allocate per-user and per-group quotas on VxFS file systems.

See "Using quotas" on page 78.

```
See the {\tt vxquota(1M)}, {\tt vxquotaon(1M)}, {\tt vxquotaoff(1M)}, and {\tt vxedquota(1M)} manual pages.
```

Turning on quotas

You can enable quotas at mount time or after a file system is mounted. The root directory of the file system must contain a file named quotas that is owned by root.

To turn on quotas

1 Turn on quotas for a mounted file system:

```
vxquotaon mount_point
```

2 Mount a file system and turn on quotas at the same time:

```
mount -V vxfs -o quota special
mount point
```

If the root directory does not contain a quotas file, the mount command succeeds, but quotas are not turned on.

Example of turning on quotas for a mounted file system

The following example creates a quoatas file and turns on quotas for a VxFS file system mounted at $/\tt{mnt}.$

To turn on quotas for a mounted file system

- Create a quotas file if it does not already exist and turn on quotas for a VxFS file system mounted at /mnt:
 - # touch /mnt/quotas
 - # vxquotaon /mnt

Example of turning on quotas at mount time

The following example turns on quotas when the /dev/vx/dsk/fsvol/vol1 file system is mounted.

To turn on quotas for a file system at mount time

Turn on quotas at mount time by specifying the -o quota option:

```
# mount -V vxfs -o quota /dev/vx/dsk/fsvol/vol1 /mnt
```

Setting up user quotas

You can set user quotas with the vxedquota command if you have superuser privileges. User quotas can have a soft limit and hard limit. You can modify the limits or assign them specific values. Users are allowed to exceed the soft limit, but only for a specified time. Disk usage can never exceed the hard limit. The default time limit for exceeding the soft limit is seven days on VxFS file systems.

vxedquota creates a temporary file for a specified user. This file contains on-disk quotas for each mounted VxFS file system that has a quotas file. The temporary file has one or more lines similar to the following:

```
fs /mnt blocks (soft = 0, hard = 0) inodes (soft=0, hard=0)
fs /mnt1 blocks (soft = 100, hard = 200) inodes (soft=10, hard=20)
```

Quotas do not need to be turned on for vxedquota to work. However, the quota limits apply only after quotas are turned on for a given file system.

vxedquota has an option to modify time limits. Modified time limits apply to the entire file system; you cannot set time limits for an individual user.

To set up user quotas

1 Invoke the quota editor:

vxedquota username

2 Modify the time limit:

vxedquota -t

Viewing quotas

The superuser or individual user can view disk quotas and usage on VxFS file systems using the vxquota command. This command displays the user's quotas and disk usage on all mounted VxFS file systems where the quotas file exists. You will see all established quotas regardless of whether or not the quotas are actually turned on.

To view quotas for a specific user

Use the vxquota command to view quotas for a specific user:

vxquota -v username

Turning off quotas

You can turn off quotas for a mounted file system using the vxquotaoff command.

To turn off quotas for a file system

• Turn off quotas for a file system:

vxquotaoff mount_point

Example of turning off quotas

The following example turns off quotas for a VxFS file system mounted at /mnt.

To turn off quotas

- Turn off quotas for a VxFS file system mounted at /mnt:
 - # vxquotaoff /mnt

Appendix

Diagnostic messages

This appendix includes the following topics:

- File system response to problems
- About kernel messages
- Kernel messages
- About unique message identifiers
- Unique message identifiers
- Dewey kernel messages
- Dewey UMI messages

File system response to problems

When the file system encounters problems, it responds in one of the following ways:

Marking an inode bad	Inodes can be marked bad if an inode update or a directory-block update fails. In these types of failures, the file system does not know what information is on the disk, and considers all the information that it finds to be invalid. After an inode is marked bad, the kernel still permits access to the file name, but any attempt to access the data in the file or change the inode fails.
Disabling transactions	If the file system detects an error while writing the intent log, it disables transactions. After transactions are disabled, the files in the file system can still be read or written, but no block or inode frees or allocations, structural changes, directory entry changes, or other changes to metadata are allowed.

Disabling a file system If an error occurs that compromises the integrity of the file system, VxFS disables itself. If the intent log fails or an inode-list error occurs, the super-block is ordinarily updated (setting the VX_FULLFSCK flag) so that the next fsck does a full structural check. If this super-block update fails, any further changes to the file system can cause inconsistencies that are undetectable by the intent log replay. To avoid this situation, the file system disables itself.

Recovering a disabled file system

When the file system is disabled, no data can be written to the disk. Although some minor file system operations still work, most simply return EIO. The only thing that can be done when the file system is disabled is to do a umount and run a full fsck.

Although a log replay may produce a clean file system, do a full structural check to be safe.

The file system usually becomes disabled because of disk errors. Disk failures that disable a file system should be fixed as quickly as possible.

See the fsck_vxfs(1M) manual page.

To execute a full structural check

• Use the fsck command to execute a full structural check:

```
# fsck -V vxfs -o full -y /dev/vx/rdsk/diskgroup/volume
```

Warning: Be careful when running this command. By specifying the -y option, all fsck user prompts are answered with a "yes", which can make irreversible changes if it performs a full file system check.

About kernel messages

Kernel messages are diagnostic or error messages generated by the Veritas File System (VxFS) kernel. Each message has a description and a suggestion on how to handle or correct the underlying problem.

About global message IDs

When a VxFS kernel message displays on the system console, it is preceded by a numerical ID shown in the msgcnt field. This ID number increases with each instance

of the message to guarantee that the sequence of events is known when analyzing file system problems.

Kernel messages

Some commonly encountered kernel messages are described on the following table:

Fable B-1 Kernel messages	
Message Number	Message and Definition
001	NOTICE: msgcnt x: mesg 001: V-2-1: vx_nospace - mount_point file system full (n block extent)
	 Description The file system is out of space. Often, there is plenty of space and one runaway process used up all the remaining free space. In other cases, the available free space becomes fragmented and unusable for some files. Action
	Monitor the free space in the file system and prevent it from becoming full. If a runaway process has used up all the space, stop that process, find the files created by the process, and remove them. If the file system is out of space, remove files, defragment, or expand the file system.
	To remove files, use the find command to locate the files that are to be removed. To get the most space with the least amount of work, remove large files or file trees that are no longer needed. To defragment or expand the file system, use the fsadm command. See the fsadm_vxfs(1M) manual page.
002	WARNING: msgcnt x: mesg 002: V-2-2: vx_snap_strategy - mount_point file system write attempt to read-only file system
	WARNING: msgcnt x: mesg 002: V-2-2: vx_snap_copyblk - mount_point file system write attempt to read-only file system
	 Description The kernel tried to write to a read-only file system. This is an unlikely problem, but if it occurs, the file system is disabled. Action
	The file system was not written, so no action is required. Report this as a bug to your customer support organization.

Message Number	Message and Definition
003, 004, 005	WARNING: msgcnt <i>x</i> : mesg 003: V-2-3: vx_mapbad - <i>mount_point</i> file system free extent bitmap in au <i>aun</i> marked bad
	WARNING: msgcnt <i>x</i> : mesg 004: V-2-4: vx_mapbad - <i>mount_point</i> file system free inode bitmap in au <i>aun</i> marked bad
	WARNING: msgcnt x: mesg 005: V-2-5: vx_mapbad - <i>mount_point</i> file system inode extended operation bitmap in au <i>aun</i> marked bad
	 Description If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report out of space or out of inode error messages even though df may report an adequate amount of free space. This error may also occur due to bitmap inconsistencies. If a bitmap fails a consistency check, or blocks are freed that are already free in the bitmap, the file system has been corrupted. This may have occurred because a user or process wrote directly to the device or used fsdb to change the file system. The vx_FULLFSCK flag is set. If the map that failed was a free extent bitmap, and the vX_FULLFSCK flag cannot be set, then the file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

Message Number	Message and Definition
006, 007	WARNING: msgcnt x: mesg 006: V-2-6: vx_sumupd - mount_point fil system summary update in au aun failed
	WARNING: msgcnt <i>x</i> : mesg 007: V-2-7: vx_sumupd - <i>mount_point</i> fil system summary update in inode au <i>iaun</i> failed
	 Description An I/O error occurred while writing the allocation unit or inode allocation unit bitmap summary to disk. This sets the VX_FULLFSC flag on the file system. If the VX_FULLFSCK flag cannot be set, the file system is disabled. Action
	Check the console log for I/O errors. If the problem was caused be a disk failure, replace the disk before the file system is mounted for write access, and use fack to run a full structural check.
008, 009	WARNING: msgcnt <i>x</i> : mesg 008: V-2-8: vx_direrr: function - <i>mount_poi</i> file system dir inode <i>dir_inumber</i> dev/block <i>device_ID/block</i> dirent inod <i>dirent_inumber</i> error <i>errno</i>
	WARNING: msgcnt <i>x</i> : mesg 009: V-2-9: vx_direrr: function - <i>mount_poi</i> file system dir inode <i>dir_inumber</i> dirent inode <i>dirent_inumber</i> immediat directory error <i>errno</i>
	 Description A directory operation failed in an unexpected manner. The mounpoint, inode, and block number identify the failing directory. If the inode is an immediate directory, the directory entries are stored in the inode, so no block number is reported. If the error is ENOENT CENOTDIR, an inconsistency was detected in the directory block. This inconsistency could be a bad free count, a corrupted hash chain, or any similar directory structure error. If the error is EIO OENXIO, an I/O failure occurred while reading or writing the disk bloc The VX_FULLFSCK flag is set in the super-block so that fsck wild o a full structural check the next time it is run.
	Check the console log for I/O errors. If the problem was caused be a disk failure, replace the disk before the file system is mounted for write access. Unmount the file system and use fsck to run a full structural check.

Message Number	Message and Definition
010	WARNING: msgcnt x: mesg 010: V-2-10: vx_ialloc - mount_point file system inode inumber not free
	 Description When the kernel allocates an inode from the free inode bitmap, it checks the mode and link count of the inode. If either is non-zero, the free inode bitmap or the inode list is corrupted. The VX_FULLFSCK flag is set in the super-block so that fsck will do a full structural check the next time it is run. Action Unmount the file system and use fsck to run a full structural check.
011	NOTICE: msgcnt x: mesg 011: V-2-11: vx_noinode - <i>mount_point</i> file system out of inodes
	 Description The file system is out of inodes. Action
	 Action Monitor the free inodes in the file system. If the file system is getting full, create more inodes either by removing files or by expanding the file system.
	See the $fsadm_vxfs(1M)$ online manual page.
012	WARNING: msgcnt x: mesg 012: V-2-12: vx_iget - mount_point file system invalid inode number inumber
	 Description When the kernel tries to read an inode, it checks the inode number against the valid range. If the inode number is out of range, the data structure that referenced the inode number is incorrect and must be fixed. The VX_FULLFSCK flag is set in the super-block so that fsck will do a full structural check the next time it is run. Action
	Unmount the file system and use ${\tt fsck}$ to run a full structural check

Table B-1Kernel messages (continued)

Message Number	ber Message and Definition	
013	WARNING: msgcnt <i>x</i> : mesg 013: V-2-13: vx_iposition - <i>mount_point</i> file system inode <i>inumber</i> invalid inode list extent	
	 Description For a Version 2 and above disk layout, the inode list is dynamically allocated. When the kernel tries to read an inode, it must look up the location of the inode in the inode list file. If the kernel finds a bac extent, the inode cannot be accessed. All of the inode list extents are validated when the file system is mounted, so if the kernel finds a bad extent, the integrity of the inode list is questionable. This is a very serious error. The VX_FULLFSCK flag is set in the super-block and the file system is disabled. Action Image: Action Action Image: Action Image: Action Image: Action Image: Action Action Image: Action	
	Unmount the file system and use fsck to run a full structural check	
014	 WARNING: msgcnt x: mesg 014: V-2-14: vx_iget - inode table overflow Description All the system in-memory inodes are busy and an attempt was made to use a new inode. Action 	
	Look at the processes that are running and determine which processes are using inodes. If it appears there are runaway processes, they might be tying up the inodes. If the system load appears normal, increase the <i>vxfs_ninode</i> parameter in the kernel See "Tuning the VxFS file system" on page 45.	
015	WARNING: msgcnt <i>x</i> : mesg 015: V-2-15: vx_ibadinactive - <i>mount_poin</i> file system cannot mark inode <i>inumber</i> bad	
	WARNING: msgcnt <i>x</i> : mesg 015: V-2-15: vx_ilisterr - <i>mount_point</i> file system cannot mark inode <i>inumber</i> bad	
	 Description An attempt to mark an inode bad on disk, and the super-block update to set the VX_FULLFSCK flag, failed. This indicates that a catastrophic disk error may have occurred since both an inode list block and the super-block had I/O failures. The file system is disabled to preserve file system integrity. Action 	

Kernel messages (continued)

Table B-1

Message Number	Message and Definition
016	WARNING: msgcnt <i>x</i> : mesg 016: V-2-16: vx_ilisterr - <i>mount_point</i> file system error reading inode <i>inumber</i>
	 Description An I/O error occurred while reading the inode list. The VX_FULLFSCK flag is set. Action Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access. Unmount the file system and use fsck to run a full structural check.

Table B-1	Kernel messages ((continued)
-----------	-------------------	-------------

Message Number	Message and Definition
017	WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_getblk - mount_poir file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_attr_iget - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indadd - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indtrunc - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iremove - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_bmap - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_bmap_indirect_ext4 - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_delbuf_flush - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_dio_iovec - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_dirbread - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_dircreate - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_dirlook - <i>mount_point</i> fil system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_doextop_iau - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_doextop_now - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_do_getpage - <i>mount_poin</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_enter_ext4 - mount_poir file system inode inumber marked bad in core

Table B-1	Kernel messages (continued)
-----------	-----------------------------

Message Number	Message and Definition
017 (continued)	WARNING: msgcnt <i>x</i> : mesg 017: V-2-17: vx_exttrunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_get_alloc - <i>mount_poin</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_ilisterr - <i>mount_point</i> fil system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_indtrunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_iread - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove_attr - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_logwrite_flush - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_oltmount_iget - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_overlay_bmap - mount_point file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_readnomap - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_reorg_trunc - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_stablestore - mount_poin file system inode inumber marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_tranitimes - <i>mount_poin</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_trunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad in core
	WARNING: msgcnt x: mesg 017: V-2-17: vx_write_alloc2 - mount_poin file system inode inumber marked bad in core

Table B-1	Kernel messages (continued)

Message and Definition
WARNING: msgcnt x: mesg 017: V-2-17: vx_write_default - mount_poin file system inode inumber marked bad in core
WARNING: msgcnt x: mesg 017: V-2-17: vx_zero_alloc - mount_poin file system inode inumber marked bad in core
 Description When inode information is no longer dependable, the kernel market it bad in memory. This is followed by a message to mark it bad on disk as well unless the mount command ioerror option is set to disable, or there is subsequent I/O failure when updating the inode on disk. No further operations can be performed on the inode. The most common reason for marking an inode bad is a disk I/O failure. If there is an I/O failure in the inode list, on a directory block or an indirect address extent, the integrity of the data in the inode or the data the kernel tried to write to the inode list, is questionable. In these cases, the disk driver prints an error message and one o more inodes are marked bad. The kernel also marks an inode bad if it finds a bad extent address invalid inode fields, or corruption in directory data blocks during a validation check. A validation check failure indicates the file system has been corrupted. This usually occurs because a user or process has written directly to the device or used fsdb to change the file system. The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural check the next time it is run. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find
out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support

Table B-1	Kernel messages (continued)
-----------	-----------------------------

Message Number	Message and Definition
019	WARNING: msgcnt x: mesg 019: V-2-19: vx_log_add - mount_point file system log overflow
	 Description Log ID overflow. When the log ID reaches VX_MAXLOGID (approximately one billion by default), a flag is set so the file system resets the log ID at the next opportunity. If the log ID has not been reset, when the log ID reaches VX_DISLOGID (approximately VX_MAXLOGID plus 500 million by default), the file system is disabled. Since a log reset will occur at the next 60 second sync interval, this should never happen. Action Unmount the file system and use fsck to run a full structural check.
020	WARNING: msgcnt <i>x</i> : mesg 020: V-2-20: vx_logerr - <i>mount_point</i> file system log error <i>errno</i>
	 Description Intent log failed. The kernel will try to set the VX_FULLFSCK and VX_LOGBAD flags in the super-block to prevent running a log replay. If the super-block cannot be updated, the file system is disabled. Action Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the disk failed, replace it before remounting the file system.

Message Number	Message and Definition
021	WARNING: msgcnt <i>x</i> : mesg 021: V-2-21: vx_fs_init - <i>mount_point</i> file system validation failure
	 Description When a VxFS file system is mounted, the structure is read from disk. If the file system is marked clean, the structure is correct and the first block of the intent log is cleared. If there is any I/O problem or the structure is inconsistent, the kernel sets the VX_FULLFSCK flag and the mount fails. If the error is not related to an I/O failure, this may have occurred because a user or process has written directly to the device or used <i>fsdb</i> to change the file system. Action
	Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsck to run a full structural check.

Message Number	Message and Definition
022	WARNING: msgcnt x: mesg 022: V-2-22: vx_mountroot - root file system remount failed
	 Description The remount of the root file system failed. The system will not be usable if the root file system cannot be remounted for read/write access. When a root Veritas File System is first mounted, it is mounted for read-only access. After fsck is run, the file system is remounted for read/write access. The remount fails if fsck completed a resiz operation or modified a file that was opened before the fsck was run. It also fails if an I/O error occurred during the remount. Usually, the system halts or reboots automatically. Action Reboot the system. The system either remounts the root cleanly or runs a full structural fsck and remounts cleanly. If the remount succeeds, no further action is necessary. Check the console log for I/O errors. If the disk has failed, replace it before the file system on a backup root and manually run a full structural fsck. If the problem persists after the full structural fsc and there are no I/O errors, contact your customer support organization.
023	WARNING: msgcnt <i>x</i> : mesg 023: V-2-23: vx_unmountroot - root file system is busy and cannot be unmounted cleanly
	 Description There were active files in the file system and they caused the unmount to fail. When the system is halted, the root file system is unmounted. Thi happens occasionally when a process is hung and it cannot be kille before unmounting the root. Action fsck will run when the system is rebooted. It should clean up the file system. No other action is necessary. If the problem occurs every time the system is halted, determine the cause and contact your customer support organization.

Message Number	Message and Definition
024	WARNING: msgcnt x: mesg 024: V-2-24: vx_cutwait - mount_point file system current usage table update error
	 Description Update to the current usage table (CUT) failed. For a Version 2 disk layout, the CUT contains a fileset version number and total number of blocks used by each fileset. The VX_FULLFSCK flag is set in the super-block. If the super-block cannot be written, the file system is disabled. Action Unmount the file system and use fsck to run a full structural check
025	WARNING: msgcnt x: mesg 025: V-2-25: vx_wsuper - mount_point file system super-block update failed
	 Description An I/O error occurred while writing the super-block during a resize operation. The file system is disabled. Action Unmount the file system and use fsck to run a full structural check Check the console log for I/O errors. If the problem is a disk failure replace the disk before the file system is mounted for write access
026	WARNING: msgcnt <i>x</i> : mesg 026: V-2-26: vx_snap_copyblk - mount_point primary file system read error
	 Description Snapshot file system error. When the primary file system is written, copies of the original data must be written to the snapshot file system. If a read error occurs on a primary file system during the copy, any snapshot file system that doesn't already have a copy of the data is out of date and must be disabled. Action An error message for the primary file system prints. Resolve the error on the primary file system and rerun any backups or other applications that were using the snapshot that failed when the error occurred.

Table B-1 Kernel messages (continued)

Message Number	Message and Definition
027	WARNING: msgcnt <i>x</i> : mesg 027: V-2-27: vx_snap_bpcopy - mount_point snapshot file system write error
	 Description A write to the snapshot file system failed. As the primary file system is updated, copies of the original data are read from the primary file system and written to the snapshot file system. If one of these writes fails, the snapshot file system is disabled. Action Check the console log for I/O errors. If the disk has failed, replace it. Resolve the error on the disk and rerun any backups or other applications that were using the snapshot that failed when the error occurred.
028	 WARNING: msgcnt x: mesg 028: V-2-28: vx_snap_alloc - mount_point snapshot file system out of space Description The snapshot file system ran out of space to store changes. During a snapshot backup, as the primary file system is modified, the original data is copied to the snapshot file system. This error can occur if the snapshot file system was given too little disk space, or the primary file system had an unexpected burst of activity. The snapshot file system is disabled.
	 Action Make sure the snapshot file system was given the correct amoun of space. If it was, determine the activity level on the primary file system. If the primary file system was unusually busy, rerun the backup. If the primary file system is no busier than normal, move the backup to a time when the primary file system is relatively idle or increase the amount of disk space allocated to the snapshot fil system. Rerun any backups that failed when the error occurred.

ssages (continued)

Message Number	Message and Definition
029, 030	WARNING: msgcnt x: mesg 029: V-2-29: vx_snap_getbp - mount_poin snapshot file system block map write error
	WARNING: msgcnt x: mesg 030: V-2-30: vx_snap_getbp - mount_poin snapshot file system block map read error
	 Description During a snapshot backup, each snapshot file system maintains a block map on disk. The block map tells the snapshot file system where data from the primary file system is stored in the snapshot file system. If an I/O operation to the block map fails, the snapshot file system is disabled. Action
	Check the console log for I/O errors. If the disk has failed, replace it. Resolve the error on the disk and rerun any backups that failed when the error occurred.
031	WARNING: msgcnt <i>x</i> : mesg 031: V-2-31: vx_disable - <i>mount_point</i> file system disabled
	 Description File system disabled, preceded by a message that specifies the reason. This usually indicates a serious disk problem. Action
	Unmount the file system and use fsck to run a full structural check If the problem is a disk failure, replace the disk before the file system is mounted for write access.
032	WARNING: msgcnt <i>x</i> : mesg 032: V-2-32: vx_disable - <i>mount_point</i> snapshot file system disabled
	 Description Snapshot file system disabled, preceded by a message that specifies the reason. Action
	 Action Unmount the snapshot file system, correct the problem specified by the message, and rerun any backups that failed due to the error.

Message Number	Message and Definition
033	WARNING: msgcnt <i>x</i> : mesg 033: V-2-33: vx_check_badblock - <i>mount_point</i> file system had an I/O error, setting VX_FULLFSCK
	 Description When the disk driver encounters an I/O error, it sets a flag in the super-block structure. If the flag is set, the kernel will set the VX_FULLFSCK flag as a precautionary measure. Since no other error has set the VX_FULLFSCK flag, the failure probably occurred on a data block. Action
	Unmount the file system and use fsck to run a full structural check Check the console log for I/O errors. If the problem is a disk failure replace the disk before the file system is mounted for write access
034	WARNING: msgcnt x: mesg 034: V-2-34: vx_resetlog - mount_point file system cannot reset log Description
	The kernel encountered an error while resetting the log ID on the file system. This happens only if the super-block update or log writ encountered a device failure. The file system is disabled to preserv its integrity.
	 Action Unmount the file system and use fsck to run a full structural check check the console log for I/O errors. If the problem is a disk failure replace the disk before the file system is mounted for write access
035	WARNING: msgcnt <i>x</i> : mesg 035: V-2-35: vx_inactive - <i>mount_point</i> fil system inactive of locked inode <i>inumber</i>
	 Description VOP_INACTIVE was called for an inode while the inode was being used. This should never happen, but if it does, the file system is disabled.
	 Action Unmount the file system and use fsck to run a full structural check Report as a bug to your customer support organization.

Table B-1	Kernel messages (continued)
-----------	-----------------------------

Message Number	Message and Definition
036	WARNING: msgcnt <i>x</i> : mesg 036: V-2-36: vx_lctbad - <i>mount_point</i> file system link count table <i>lctnumber</i> bad
	 Description Update to the link count table (LCT) failed. For a Version 2 and above disk layout, the LCT contains the link count for all the structural inodes. The VX_FULLFSCK flag is set i the super-block. If the super-block cannot be written, the file system is disabled. Action Unmount the file system and use fsck to run a full structural check
037	WARNING: msgcnt x: mesg 037: V-2-37: vx_metaioerr - function - volume_name file system meta data [read write] error in dev/block device_ID/block
	 Description A read or a write error occurred while accessing file system metadata. The full fsck flag on the file system was set. The message specifies whether the disk I/O that failed was a read or write. File system metadata includes inodes, directory blocks, and the fil system log. If the error was a write error, it is likely that some data was lost. This message should be accompanied by another file system metadata affected, as well as a message from the disk driver containing
	 information about the disk I/O error. Action Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cable etc. Unmount the file system and use fsck to run a full structura check (possibly with loss of data).
	In case of an actual disk error, if it was a read error and the disk driver remaps bad sectors on write, it may be fixed when fsck is run since fsck is likely to rewrite the sector with the read error. I other cases, you replace or reformat the disk drive and restore th file system from backups. Consult the documentation specific to your system for information on how to recover from disk errors. Th disk driver should have printed a message that may provide more information.

Table B-1 Remei messages (continued)	Table B-1	Kernel messages (continued)
--------------------------------------	-----------	-----------------------------

Message Number	Message and Definition
038	WARNING: msgcnt <i>x</i> : mesg 038: V-2-38: vx_dataioerr - <i>volume_nam</i> file system file data [read write] error in dev/block <i>device_ID/block</i>
	 Description A read or a write error occurred while accessing file data. The message specifies whether the disk I/O that failed was a read or write. File data includes data currently in files and free blocks. If th message is printed because of a read or write error to a file, another message that includes the inode number of the file will print. The message may be printed as the result of a read or write error to a free block, since some operations allocate an extent and immediatel perform I/O to it. If the I/O fails, the extent is freed and the operation fails. The message is accompanied by a message from the disk driver regarding the disk I/O error. Action Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cables etc. If any file data was lost, restore the files from backups. Determine the file names from the inode number. See the ncheck(1M) manual page. If an actual disk error occurred, make a backup of the file system replace or reformat the disk drive, and restore the file system from the backup. Consult the documentation specific to your system for information on how to recover from disk errors. The disk driver should have printed a message that may provide more information

Message Number	Message and Definition
039	WARNING: msgcnt <i>x</i> : mesg 039: V-2-39: vx_writesuper - file system super-block write error
	 Description An attempt to write the file system super block failed due to a disk I/O error. If the file system was being mounted at the time, the mour will fail. If the file system was mounted at the time and the full fsc: flag was being set, the file system will probably be disabled and Message 031 will also be printed. If the super-block was being written as a result of a sync operation, no other action is taken. Action
	Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cables etc. Unmount the file system and use fsck to run a full structural check.
	If an actual disk error occurred, make a backup of the file system, replace or reformat the disk drive, and restore the file system from backups. Consult the documentation specific to your system for information on how to recover from disk errors. The disk driver should have printed a message that may provide more information
040	WARNING: msgcnt <i>x</i> : mesg 040: V-2-40: vx_dqbad - <i>mount_point</i> file system user group quota file update error for id <i>id</i>
	 Description An update to the user quotas file failed for the user ID. The quotas file keeps track of the total number of blocks and inode: used by each user, and also contains soft and hard limits for each user ID. The VX_FULLFSCK flag is set in the super-block. If the super-block cannot be written, the file system is disabled. Action Unmount the file system and use fsck to run a full structural check Check the console log for I/O errors. If the disk has a hardware failure, it should be repaired before the file system is mounted for

Message Number	Message and Definition
041	WARNING: msgcnt <i>x</i> : mesg 041: V-2-41: vx_dqget - <i>mount_point</i> file system user group quota file cannot read quota for id <i>id</i>
	 Description A read of the user quotas file failed for the uid. The quotas file keeps track of the total number of blocks and inode used by each user, and contains soft and hard limits for each use ID. The VX_FULLFSCK flag is set in the super-block. If the super-block cannot be written, the file system is disabled. Action Unmount the file system and use fsck to run a full structural check Check the console log for I/O errors. If the disk has a hardware failure, it should be repaired before the file system is mounted for write access.
042	 WARNING: msgcnt <i>x</i>: mesg 042: V-2-42: vx_bsdquotaupdate - <i>mount_point</i> file system <i>user group_id</i> disk limit reached Description The hard limit on blocks was reached. Further attempts to allocat blocks for files owned by the user will fail. Action Remove some files to free up space.
043	 WARNING: msgcnt <i>x</i>: mesg 043: V-2-43: vx_bsdquotaupdate - <i>mount_point</i> file system <i>user group_id</i> disk quota exceeded too long Description The soft limit on blocks was exceeded continuously for longer tha the soft quota time limit. Further attempts to allocate blocks for file will fail. Action Remove some files to free up space.
044	 WARNING: msgcnt x: mesg 044: V-2-44: vx_bsdquotaupdate - mount_point file system user group_id disk quota exceeded Description The soft limit on blocks is exceeded. Users can exceed the soft limit for a limited amount of time before allocations begin to fail. After th soft quota time limit has expired, subsequent attempts to allocate blocks for files fail. Action Remove some files to free up space.

Table B-1Kernel messages (continued)	Table B-1	Kernel messages (continued)
--------------------------------------	-----------	-----------------------------

Message Number	Message and Definition
045	WARNING: msgcnt x: mesg 045: V-2-45: vx_bsdiquotaupdate - mount_point file system user group_id inode limit reached
	 Description The hard limit on inodes was exceeded. Further attempts to create files owned by the user will fail. Action Remove some files to free inodes.
046	 WARNING: msgcnt <i>x</i>: mesg 046: V-2-46: vx_bsdiquotaupdate - <i>mount_point</i> file system <i>user group_id</i> inode quota exceeded too long Description The soft limit on inodes has been exceeded continuously for longe than the soft quota time limit. Further attempts to create files owned by the user will fail. Action Remove some files to free inodes.
047	 WARNING: msgcnt <i>x</i>: mesg 047: V-2-47: vx_bsdiquotaupdate - warning <i>mount_point</i> file system <i>user</i>[<i>group_id</i> inode quota exceeded Description The soft limit on inodes was exceeded. The soft limit can be exceeded for a certain amount of time before attempts to create new files begin to fail. Once the time limit has expired, further attempts to create files owned by the user will fail. Action Remove some files to free inodes.

Table B-1Kernel messages (continued)

Message Number	Message and Definition
048, 049	WARNING: msgcnt x: mesg 048: V-2-48: vx_dqread - warning: mount_point file system external user group quota file read failed
	WARNING: msgcnt x: mesg 049: V-2-49: vx_dqwrite - warning: mount_point file system external user group quota file write failed
	 Description To maintain reliable usage counts, VxFS maintains the user quotas file as a structural file in the structural fileset. These files are updated as part of the transactions that allocate and free blocks and inodes. For compatibility with the quota administration utilities, VxFS also supports the standard user visible quota files. When quotas are turned off, synced, or new limits are added, VxFS tries to update the external quota files. When quotas are enabled, VxFS tries to read the quota limits from the external quotas file. If these reads or writes fail, the external quotas file is out of date. Action Action Description The structure of the transaction of th
	Determine the reason for the failure on the external quotas file and correct it. Recreate the quotas file.

Message Number	Message and Definition
056	WARNING: msgcnt <i>x</i> : mesg 056: V-2-56: vx_mapbad - <i>mount_point</i> file system extent allocation unit state bitmap number <i>number</i> marke bad
	 Description If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report "out of space" or "out of inode" error messages even though df may report an adequate amount of free space. This error may also occur due to bitmap inconsistencies. If a bitmat fails a consistency check, or blocks are freed that are already free in the bitmap, the file system has been corrupted. This may have occurred because a user or process wrote directly to the device of used <i>fsdb</i> to change the file system. The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure, find out how the disk became corrupted. If no user or process was writin to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.
057	WARNING: msgcnt <i>x</i> : mesg 057: V-2-57: vx_esum_bad - <i>mount_poin</i> file system extent allocation unit summary number <i>number</i> marked ba Description
	 An I/O error occurred reading or writing an extent allocation unit summary. The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot b set, the file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writin to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full

Message Number	Message and Definition
058	WARNING: msgcnt <i>x</i> : mesg 058: V-2-58: vx_isum_bad - <i>mount_poin</i> file system inode allocation unit summary number <i>number</i> marked ba
	 Description An I/O error occurred reading or writing an inode allocation unit summary. The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot b set, the file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writin to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.
059	 WARNING: msgcnt <i>x</i>: mesg 059: V-2-59: vx_snap_getbitbp - <i>mount_point</i> snapshot file system bitmap write error Description An I/O error occurred while writing to the snapshot file system bitmap. There is no problem with the snapped file system, but the snapshot file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writin to the device, report the problem to your customer support organization. Restart the snapshot on an error free disk partition. Rerun any backups that failed when the error occurred.

Message Number	Message and Definition
060	 WARNING: msgcnt <i>x</i>: mesg 060: V-2-60: vx_snap_getbitbp - <i>mount_point</i> snapshot file system bitmap read error Description An I/O error occurred while reading the snapshot file system bitmap There is no problem with snapped file system, but the snapshot file system is disabled. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Restart the snapshot on an error free disk partition. Rerun any backups that failed when the error occurred.
061	 WARNING: msgcnt x: mesg 061: V-2-61: vx_resize - mount_point file system remount failed Description During a file system resize, the remount to the new size failed. The VX_FULLFSCK flag is set and the file system is disabled. Action Unmount the file system and use fsck to run a full structural check After the check, the file system shows the new size.
062	 NOTICE: msgcnt x: mesg 062: V-2-62: vx_attr_creatop - invalid disposition returned by attribute driver Description A registered extended attribute intervention routine returned an invalid return code to the VxFS driver during extended attribute inheritance. Action Determine which vendor supplied the registered extended attribute intervention routine and contact their customer support organization

Table B-1Kernel messages (continued)

Message Number	Message and Definition
063	WARNING: msgcnt <i>x</i> : mesg 063: V-2-63: vx_fset_markbad - <i>mount_point</i> file system <i>mount_point</i> fileset (index <i>number</i>) marked bad
	 Description An error occurred while reading or writing a fileset structure. VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set the file system is disabled. Action Unmount the file system and use fsck to run a full structural check
064	WARNING: msgcnt <i>x</i> : mesg 064: V-2-64: vx_ivalidate - <i>mount_point</i> file system inode number version number exceeds fileset's
	 Description During inode validation, a discrepancy was found between the inode version number and the fileset version number. The inode may be marked bad, or the fileset version number may be changed, depending on the ratio of the mismatched version numbers. VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set the file system is disabled. Action Check the cancel lag for I/O errors. If the problem is a disk failure
	Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writin to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsc to run a full structural check.
066	NOTICE: msgcnt x: mesg 066: V-2-66: DMAPI mount event - buffer
	 Description An HSM (Hierarchical Storage Management) agent responded to a DMAPI mount event and returned a message in buffer. Action
	Consult the HSM product documentation for the appropriate response to the message.

Table B-1	Kernel messages (continued)	
-----------	-----------------------------	--

Message Number	Message and Definition
067	WARNING: msgcnt x: mesg 067: V-2-67: mount of <i>device_path</i> requires HSM agent
	 Description The file system mount failed because the file system was marked as being under the management of an HSM agent, and no HSM agent was found during the mount. Action Restart the HSM agent and try to mount the file system again.
068	WARNING: msgcnt <i>x</i> : mesg 068: V-2-68: <i>ncsize</i> parameter is greater than 80% of the <i>vxfs_ninode</i> parameter; increasing the value of vxfs: <i>vxfs_ninode</i>
	 Description The value auto-tuned for the vxfs_ninode parameter is less than 125% of the ncsize parameter. Action To prevent this message from occurring, set vxfs_ninode to at leas 125% of the value of ncsize. The best way to do this is to adjust ncsize down, rather than adjusting vxfs_ninode up. See "Tuning the VxFS file system" on page 45.
069	WARNING: msgcnt <i>x</i> : mesg 069: V-2-69: memory usage specified by the vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds available memory; the system may hang under heavy load
	 Description The value of the system tunable parameters—vxfs_ninode and vx_bc_bufhwm—add up to a value that is more than 66% of the kernel virtual address space or more than 50% of the physical system memory. VxFS inodes require approximately one kilobyte each, so both values can be treated as if they are in units of one kilobyte. Action To avoid a system hang, reduce the value of one or both parameters to less than 50% of physical memory or to 66% of kernel virtual memory.

Kernel messages (continued)

Table B-1

Message Number	Message and Definition
070	WARNING: msgcnt <i>x</i> : mesg 070: V-2-70: checkpoint <i>checkpoint_nam</i> removed from file system <i>mount_point</i>
	 Description The file system ran out of space while updating a Storage Checkpoint. The Storage Checkpoint was removed to allow the operation to complete. Action Increase the size of the file system. If the file system size cannot be increased, remove files to create sufficient space for new Storag Checkpoints. Monitor capacity of the file system closely to ensure it does not run out of space.
	See the fsadm_vxfs(1M) manual page.
071	 NOTICE: msgcnt x: mesg 071: V-2-71: cleared data I/O error flag in <i>mount_point</i> file system Description Description The user data I/O error flag was reset when the file system was mounted. This message indicates that a read or write error occurre while the file system was previously mounted. See Message Number 038. Action Informational only, no action required.
072	 WARNING: msgcnt <i>x</i>: vxfs: mesg 072: could not failover for <i>volume_name</i> file system Description This message is specific to the cluster file system. The message indicates a problem in a scenario where a node failure has occurre in the cluster and the newly selected primary node encounters a failure. Action Save the system logs and core dump of the node along with the disk image (metasave) and contact your customer support

Table B-1 Kernel messages (continued)	Table B-1	Kernel messages (continued)
---	-----------	-----------------------------

Message Number	Message and Definition
075	WARNING: msgcnt <i>x</i> : mesg 075: V-2-75: replay fsck failed for mount_point file system
	 Description The log replay failed during a failover or while migrating the CFS primary-ship to one of the secondary cluster nodes. The file syster was disabled. Action Unmount the file system from the cluster. Use fsck to run a full
	structural check and mount the file system again.
076	NOTICE: msgcnt x: mesg 076: V-2-76: checkpoint asynchronous operation on <i>mount_point</i> file system still in progress
	 Description
	An EBUSY message was received while trying to unmount a file system The unmount failure was caused by a pending asynchronous fileset operation, such as a fileset removal or fileset conversion to a nodata Storage Checkpoint.
	Action
	The operation may take a considerable length of time. You can de a forced unmount, or simply wait for the operation to complete so file system can be unmounted cleanly.
	See the umount_vxfs(1M) manual page.
077	WARNING: msgcnt <i>x</i> : mesg 077: V-2-77: vx_fshdchange - <i>mount_poin</i> file system number fileset, fileset header: checksum failed
	 Description Disk corruption was detected while changing fileset headers. This can occur when writing a new inode allocation unit, preventing th allocation of new inodes in the fileset. Action
	Unmount the file system and use fsck to run a full structural check

Message Number	Message and Definition
078	WARNING: msgcnt x: mesg 078: V-2-78: vx_ilealloc - <i>mount_point</i> file system <i>mount_point</i> fileset (index number) ilist corrupt
	 Description The inode list for the fileset was corrupted and the corruption was detected while allocating new inodes. The failed system call returns an ENOSPC error. Any subsequent inode allocations will fail unless a sufficient number of files are removed. Action Unmount the file system and use fsck to run a full structural check.

Table B-1	Kernel messages (continued)
-----------	-----------------------------

Table B-1	Kernel messages (continued)
Message Number	Message and Definition
079	

Message Number	Message and Definition
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_attr_getblk - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_attr_iget - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indadd - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indtrunc - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_iremove - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_bmap - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_bmap_indirect_ext4 - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_delbuf_flush - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_dio_iovec - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_dirbread - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_dircreate - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_dirlook - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_doextop_iau - <i>mount_poin</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_doextop_now - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_do_getpage - <i>mount_poin</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_enter_ext4 - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_exttrunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_get_alloc - mount_point

Message Number	Message and Definition
	file system inode inumber marked bad on disk
079 (continued)	WARNING: msgcnt x: mesg 017: V-2-79: vx_ilisterr - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_indtrunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_iread - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_iremove - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove_attr - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_logwrite_flush - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_oltmount_iget - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_overlay_bmap - mount_point file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_readnomap - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_reorg_trunc - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_stablestore - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_tranitimes - <i>mount_poir</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_trunc - <i>mount_point</i> file system inode <i>inumber</i> marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_write_alloc2 - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt x: mesg 017: V-2-79: vx_write_default - mount_poin file system inode inumber marked bad on disk
	WARNING: msgcnt <i>x</i> : mesg 017: V-2-79: vx_zero_alloc - <i>mount_poir</i> file system inode <i>inumber</i> marked bad on disk

Idble D-1 Neitier messages (continued)	Table B-1	Kernel messages (continued)
--	-----------	-----------------------------

Message Number	Message and Definition
079 (continued)	 Description When inode information is no longer dependable, the kernel mark it bad on disk. The most common reason for marking an inode ba is a disk I/O failure. If there is an I/O failure in the inode list, on a directory block, or an indirect address extent, the integrity of the data in the inode, or the data the kernel tried to write to the inode list, is questionable. In these cases, the disk driver prints an error message and one or more inodes are marked bad. The kernel also marks an inode bad if it finds a bad extent address invalid inode fields, or corruption in directory data blocks during a validation check. A validation check failure indicates the file syster has been corrupted. This usually occurs because a user or process has written directly to the device or used <i>fsdb</i> to change the file system. The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural check the next time it is run. Action Check the console log for I/O errors. If the problem is a disk failure replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writin to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsc
081	 WARNING: msgcnt <i>x</i>: mesg 081: V-2-81: possible network partition detected Description This message displays when CFS detects a possible network partition and disables the file system locally, that is, on the node where the message appears. Action There are one or more private network links for communication between the nodes in a cluster. At least one link must be active to maintain the integrity of the cluster. If all the links go down, after the last network link is broken, the node can no longer communicate with other nodes in the cluster. Check the network connections. After verifying that the network connections is operating correctly, unmount the disabled file system and mount it again.

Message Number	Message and Definition
082	WARNING: msgcnt x: mesg 082: V-2-82: volume_name file system i on shared volume. It may get damaged if cluster is in partitioned state
	 Description If a cluster node is in a partitioned state, and if the file system is o a shared VxVM volume, this volume may become corrupted by accidental access from another node in the cluster. Action These shared disks can also be seen by nodes in a different partition, so they can inadvertently be corrupted. So the second message 082 tells that the device mentioned is on shared volume and damage can happen only if it is a real partition problem. Do not use it on any other node until the file system is unmounted from the mounted nodes.
083	WARNING: msgcnt <i>x</i> : mesg 083: V-2-83: <i>mount_point</i> file system log is not compatible with the specified intent log I/O size
	 Description Either the specified mount logiosize size is not compatible with the file system layout, or the file system is corrupted. Action Mount the file system again without specifying the logiosize option or use a logiosize value compatible with the intent log specified when the file system was created. If the error persists, unmount the file system and use fsck to run a full structural check.
084	WARNING: msgcnt <i>x</i> : mesg 084: V-2-84: in <i>volume_name</i> quota on failed during assumption. (stage <i>stage_number</i>)
	 Description In a cluster file system, when the primary of the file system fails, a secondary file system is chosen to assume the role of the primary. The assuming node will be able to enforce quotas after becoming the primary. If the new primary is unable to enforce quotas this message will b displayed. Action Issue the quotaon command from any of the nodes that have the

Table B-1	Kernel messages (continued)
	Kerner messages (continued)

Message Number	Message and Definition
085	WARNING: msgcnt x: mesg 085: V-2-85: Checkpoint quota - warning file_system file system fileset quota hard limit exceeded
	 Description The system administrator sets the quotas for Storage Checkpoint in the form of a soft limit and hard limit. This message displays whe the hard limit is exceeded. Action Delete Storage Checkpoints or increase the hard limit.
086	WARNING: msgcnt <i>x</i> : mesg 086: V-2-86: Checkpoint quota - warning <i>file_system</i> file system fileset quota soft limit exceeded
	 Description The system administrator sets the quotas for Storage Checkpoint in the form of a soft limit and hard limit. This message displays whe the soft limit is exceeded. Action Delete Storage Checkpoints or increase the soft limit. This is not
007	mandatory action, but is recommended.
087	WARNING: msgcnt <i>x</i> : mesg 087: V-2-87: vx_dotdot_manipulate: file_system file system inumber inode ddnumber dotdot inode error Description
	 When performing an operation that changes an inode entry, if the inode is incorrect, this message will display. Action
	Run a full file system check using $fsck$ to correct the errors.
088	WARNING: msgcnt x: mesg 088: V-2-88: quotaon on <i>file_system</i> failed limits exceed limit
	 Description The external quota file, quotas, contains the quota values, which range from 0 up to 2147483647. When quotas are turned on by th quotaon command, this message displays when a user exceeds the quota limit. Action Correct the quota values in the quotas file.

Table B-1Kernel messages (continued)

Message Number	Message and Definition
089	WARNING: msgcnt x: mesg 089: V-2-89: quotaon on <i>file_system</i> invalid disk usage for group/user id <i>uid</i> exceeds sectors sectors
	 Description The supported quota limit is up to 2147483647 sectors. When quotase are turned on by the quotaon command, this message displays when a user exceeds the supported quota limit. Action Ask the user to delete files to lower the quota below the limit.
090	WARNING: msgcnt <i>x</i> : mesg 090: V-2-90: quota on <i>file_system</i> failed; soft limits greater than hard limits
	 Description One or more users or groups has a soft limit set greater than the hard limit, preventing the BSD quota from being turned on. Action Check the soft limit and hard limit for every user and group and confirm that the soft limit is not set greater than the hard limit.
091	WARNING: msgcnt x: mesg 091: V-2-91: vx_fcl_truncate - failure to punch hole at offset offset for bytes bytes in File Change Log file; erro error_number
	 Description The vxfs kernel has experienced an error while trying to manage the space consumed by the File Change Log file. Because the space cannot be actively managed at this time, the FCL has been deactivated and has been truncated to 1 file system block, which contains the FCL superblock. Action Re-activate the FCL.
092	 WARNING: msgcnt x: mesg 092: V-2-92: vx_mkfcltran - failure to may offset offset in File Change Log file Description The vxfs kernel was unable to map actual storage to the next offsee in the File Change Log file. This is mostly likely caused by a problem with allocating to the FCL file. Because no new FCL records can be written to the FCL file, the FCL has been deactivated. Action Re-activate the FCL.

Message Number	Message and Definition
096	WARNING: msgcnt x: mesg 096: V-2-96: <i>file_system</i> file system fullfsc flag set - <i>function_name</i> .
	 Description The next time the file system is mounted, a full fsck must be performed. Action No immediate action required. When the file system is unmounted run a full file system check using fsck before mounting it again.
097	WARNING: msgcnt <i>x</i> : mesg 097: V-2-97: VxFS failed to create new thread (<i>error_number, function_address:argument_address</i>)
	 Description VxFS failed to create a kernel thread due to resource constraints, which is often a memory shortage. Action
	VxFS will retry the thread creation until it succeeds; no immediate action is required. Kernel resources, such as kernel memory, migh be overcommitted. If so, reconfigure the system accordingly.
098	WARNING: msgcnt <i>x</i> : mesg 098: V-2-98: VxFS failed to initialize File Change Log for fileset fileset (index number) of <i>mount_point</i> file system Description
	 VxFS mount failed to initialize FCL structures for the current filese mount. As a result, FCL could not be turned on. The FCL file will have no logging records. Action
	Reactivate the FCL.
099	WARNING: msgcnt <i>x</i> : mesg 099: V-2-99: The specified value for <i>vx_ninode</i> is less than the recommended minimum value of <i>min_valu</i>
	 Description Auto-tuning or the value specified by the system administrator resulted in a value lower than the recommended minimum for the total number of inodes that can be present in the inode cache. VxFs will ignore the newly tuned value and will keep the value specified in the message (VX_MINNINODE). Action

Message Number	Message and Definition
100	WARNING: msgcnt <i>x</i> : mesg 100: V-2-100: Inode <i>inumber</i> can not be accessed: file size exceeds OS limitations.
	 Description The specified inode's size is larger than the file size limit of the current operating system. The file cannot be opened on the currer platform. This can happen when a file is created on one OS and th filesystem is then moved to a machine running an OS with a smalle file size limit. Action If the file system is moved to the platform on which the file was created, the file can be accessed from there. It can then be converted to multiple smaller files in a manner appropriate to the
	application and the file's format, or simply be deleted if it is no longe required.
101	 WARNING: msgcnt <i>x</i>: mesg 101: V-2-101: File Change Log on <i>mount_point</i> for file set <i>index</i> approaching max file size supported. Fil Change Log will be reactivated when its size hits max file size supported. Description
	The size of the FCL file is approching the maximum file size supported This size is platform specific. When the FCL file is reaches the maximum file size, the FCL will be deactivated and reactivated. All logging information gathered so far will be lost.
	 Action Take any corrective action possible to restrict the loss due to the FCL being deactivated and reactivated.
102	WARNING: msgcnt <i>x</i> : mesg 102: V-2-102: File Change Log of <i>mount_point</i> for file set <i>index</i> has been reactivated.
	 Description
	The size of FCL file reached the maximum supported file size and th FCL has been reactivated. All records stored in the FCL file, starting from the current fc_loff up to the maximum file size, have been purged. New records will be recorded in the FCL file starting from offset fs_bsize . The activation time in the FCL is reset to the time of reactivation. The impact is equivalent to File Change Log being deactivated and activated
	 Action Informational only; no action required.

Message Number	Message and Definition
103	WARNING: msgcnt <i>x</i> : mesg 103: V-2-103: File Change Log merge of mount_point for file set index failed.
	Description
	The VxFS kernel has experienced an error while merging internal per-node File Change Log files into the external File Change Log file Since the File Change Log cannot be maintained correctly without this the File Change Log has been deactivated.
	Action
	Re-activate the File Change Log.
104	WARNING: msgcnt <i>x</i> : mesg 104: V-2-104: File System <i>mount_point</i> device <i>volume_name</i> disabled
	Description
	The volume manager detected that the specified volume has failed, and the volume manager has disabled the volume. No further I/O requests are sent to the disabled volume.
	Action
	The volume must be repaired.
105	WARNING: msgcnt <i>x</i> : mesg 105: V-2-105: File System <i>mount_point</i> device <i>volume_name</i> re-enabled
	Description
	The volume manager detected that a previously disabled volume is now operational, and the volume manager has re-enabled the volume
	Action
	Informational only; no action required.

Message Number	Message and Definition
106	WARNING: msgcnt <i>x</i> : mesg 106: V-2-106: File System <i>mount_point</i> device <i>volume_name</i> has BAD label
	 Description
	A file system's label does not match the label that the multi-volume support feature expects the file system to have. The file system's volum is effectively disabled.
	 Action If the label is bad because the volume does not match the assigner label, use the vxvset command to fix the label. Otherwise, the label might have been overwritten and the volume's contents may be lost. Call technical support so that the issue can be investigated
107	WARNING: msgcnt x: mesg 107: V-2-107: File System <i>mount_point</i> device <i>volume_name</i> valid label found
	Description
	The label of a file system that had a bad label was somehow restored. The underlying volume is functional.
	 Action Informational only; no action required.
108	WARNING: msgcnt <i>x</i> : mesg 108: V-2-108: vx_dexh_error - <i>error</i> : filese fileset, directory inode number <i>dir_inumber</i> , bad hash inode <i>hash_inode</i> seg <i>segment</i> bno <i>block_number</i>
	Description
	The supplemental hash for a directory is corrupt.
	 Action If the file system is mounted read/write, the hash for the directory will be automatically removed and recreated. If the removal or recreation fails, subsequent messages indicate the type of prolem If there are no further messages, the removal and recreation of the hash succeeded.

Table B-1Kernel messages (continued)

Message Number	Message and Definition
109	WARNING: msgcnt <i>x</i> : mesg 109: V-2-109: failed to tune down <i>tunable_name</i> to <i>tunable_value</i> possibly due to <i>tunable_object</i> in use could free up only up to <i>suggested_tunable_value</i>
	Description
	When the value of a tunable, such as <i>ninode</i> or <i>bufhwm</i> , is modified, sometimes the tunable cannot be tuned down to the specified value because of the current system usage. The minimum value to which the tunable can be tuned is also provided as part of the warning message
	 Action Tune down the tunable to the minimum possible value indicated b the warning message.
	See "Tuning the VxFS file system" on page 45.
110	WARNING: msgcnt <i>x</i> : mesg 110: V-2-110: The specified value for <i>vx_bc_bufhwm</i> is less than the recommended minimum value of <i>recommended_minimum_value</i> .
	 Description
	Setting the vx_bc_bufhwm tunable to restrict the memory used by th VxFS buffer cache to a value that is too low has a degrading effect of the system performance on a wide range of applications. Symantec does not recommend setting vx_bc_bufhwm to a value less than the recommended minimum value, which is provided as part of the warnin message.
	Action
	Tune the vx_bc_bufhwm tunable to a value greater than the recommended minimum indicated by the warning message.

Message Number	Message and Definition
111	WARNING: msgcnt <i>x</i> : mesg 111: V-2-111: You have exceeded the authorized usage (maximum <i>maxfs</i> unique mounted user-data file systems) for this product and are out of compliance with your License Agreement. Please email sales_mail@symantec.com or contact your Symantec sales representative for information on how to obtain additional licenses for this product.
	 Description
	As per your Storage Foundation Basic license agreement, you are allowed to have only a limited number of VxFS file systems, and you have exceeded this number.
	 Action Email sales_mail@symantec.com or contact your Symantec sales representative for information on how to obtain additional licenses for this product.

About unique message identifiers

VxFS generates diagnostic or error messages for issues not related to the kernel, which are displayed along with a unique message identifier (UMI). Each message has a description and a suggestion on how to handle or correct the underlying problem. The UMI is used to identify the issue should you need to call Technical Support for assistance.

Unique message identifiers

Some commonly encountered UMIs and the associated messages are described on the following table:

Table B-2	Unique message identifiers and messages
Message Number	Message and Definition
20002	 UX:vxfs command: ERROR: V-3-20002: message Description The command attempted to call stat() on a device path to ensure that the path refers to a character device before opening the device, but the stat() call failed. The error message will include the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory". Action The corrective action depends on the particular error.
20003	 UX:vxfs command: ERROR: V-3-20003: message Description The command attempted to open a disk device, but the open() call failed. The error message includes the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory". Action The corrective action depends on the particular error.
20005	 UX:vxfs command: ERROR: V-3-20005: message Description The command attempted to read the superblock from a device, but the read() call failed. The error message will include the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory". Action The corrective action depends on the particular error.
20012	 UX:vxfs command: ERROR: V-3-20012: message Description The command was invoked on a device that did not contain a valid VxFS file system. Action Check that the path specified is what was intended.

 UX:vxfs command: ERROR: V-3-20076: message Description The command called stat() on a file, which is usually a file system mount point, but the call failed. Action Check that the path specified is what was intended and that the use
The command called stat() on a file, which is usually a file system mount point, but the call failed.Action
has permission to access that path.
UX:vxfs command: ERROR: V-3-21256: message
 Description The attempt to mount the file system failed because either the request was to mount a particular Storage Checkpoint that does not exist, or the file system is managed by an HSM and the HSM is not running. Action In the first case, use the fsckptadm list command to see which Storage Checkpoints exist and mount the appropriate Storage Checkpoint. In the second case, make sure the HSM is running.
UX:vxfs command: ERROR: V-3-21264: message
 Description The attempt to mount a VxFS file system has failed because either the volume being mounted or the directory which is to be the mour point is busy. The reason that a VxVM volume could be busy is if the volume is in a shared disk group and the volume is currently being accesse by a VxFS command, such as fsck, on a node in the cluster. One reason that the mount point could be busy is if a process has the directory open or has the directory as its current directory. Another reason that the mount point could be busy is if the director is NFS-exported. Action For a busy mount point, if a process has the directory open or has the directory, use the fuser command to

Table B-2Unique message identifiers and messages (continued)

Message Number	Message and Definition
21268	 UX:vxfs command: ERROR: V-3-21268: message Description This message is printed by two different commands: fsckpt_restore and mount. In both cases, the kernel's attemp to mount the file system failed because of I/O errors or corruption of the VxFS metadata. Action Check the console log for I/O errors and fix any problems reported there. Run a full fsck.
21272	 UX:vxfs command: ERROR: V-3-21272: message Description The mount options specified contain mutually-exclusive options, of in the case of a remount, the new mount options differed from the existing mount options in a way that is not allowed to change in a remount. Action Change the requested mount options so that they are all mutually compatible and retry the mount.
23729	 UX:vxfs command: ERROR: V-3-23729: message Description Cluster mounts require the vxfsckd daemon to be running, which is controlled by Veritas Cluster Server (VCS). Action Check the VCS status to see why this service is not running. After starting the daemon via VCS, try the mount again.
24996	 UX:vxfs command: ERROR: V-3-24996: message Description In some releases of VxFS, before the VxFS mount command attempts to mount a file system, mount tries to read the VxFS superblock to determine the disk layout version of the file system being mounted so that mount can check if that disk layout versior is supported by the installed release of VxFS. If the attempt to read the superblock fails for any reason, this message is displayed. This message will usually be preceded by another error message that gives more information as to why the superblock could not be read Action The corrective action depends on the preceding error, if any.

Table B-2Unique message identifiers and messages (continued)

Dewey kernel messages

This section contains all the Kernel error code sources in Dewey format.

V-2-1

NOTICE: msgcnt x: mesg 001: V-2-1: vx_nospace - *mount_point* file system full (n block extent)

Description:

The file system is out of space.

Often, there is plenty of space and one runaway process used up all the remaining free space. In other cases, the available free space becomes fragmented and unusable for some files.

Recommended action:

Monitor the free space in the file system and prevent it from becoming full. If a runaway process has used up all thespace, stop that process, find the files created by the process, and remove them. If the file system is out of space, remove files, defragment, or expand the file system.

To remove files, use the find command to locate the files that are to be removed. To get the most space with the least amount of work, remove large files or file trees that are no longer needed. To defragment or expand the file system, use the fsadm command.

See the fsadm_vxfs(1M) manual page.

V-2-2

WARNING: msgcnt *x*: mesg 002: V-2-2: vx_snap_strategy - *mount_point* file system write attempt to read-only file system

WARNING: msgcnt x: mesg 002: V-2-2: vx_snap_copyblk - *mount_point* file system write attempt to read-only file system

Description:

The kernel tried to write to a read-only file system. This is an unlikely problem, but if it occurs, the file system is disabled.

Recommended action:

The file system was not written, so no action is required. Report this as a bug to your customer support organization.

V-2-3

WARNING: msgcnt *x*: mesg 003: V-2-3: vx_mapbad - *mount_point* file system free extent bitmap in au *aun* marked bad

Description:

If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report out of space or out of inode error messages even though df may report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a consistency check, or blocks are freed that are already free in the bitmap, the file system has been corrupted. This may have occurred because a user or process wrote directly to the device or used fsdb to change the file system.

The <code>vx_FullFSCK</code> flag is set. If the map that failed was a free extent bitmap, and the <code>vx_FullFSCK</code> flag cannot be set, then the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-4

WARNING: msgcnt *x*: mesg 004: V-2-4: vx_mapbad - *mount_point* file system free inode bitmap in au *aun* marked bad

Description:

If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report out of space or out of inode error messages even though df may report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a consistency check, or blocks are freed that are already free in the bitmap, the file system has been corrupted. This may have occurred because a user or process wrote directly to the device or used fsdb to change the file system.

The <code>vx_FullFSCK</code> flag is set. If the map that failed was a free extent bitmap, and the <code>vx_FullFSCK</code> flag cannot be set, then the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-5

WARNING: msgcnt x: mesg 005: V-2-5: vx_mapbad - *mount_point* file system inode extended operation bitmap in au *aun* marked bad

Description:

If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report out of space or out of inode error messages even though df may report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a consistency check, or blocks are freed that are already free in the bitmap, the file system has been corrupted. This may have occurred because a user or process wrote directly to the device or used fsdb to change the file system.

The VX_FULLFSCK flag is set. If the map that failed was a free extent bitmap, and the VX_FULLFSCK flag cannot be set, then the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-6

WARNING: msgcnt x: mesg 006: V-2-6: vx_sumupd - *mount_point* file system summary update in au *aun* failed

Description:

An I/O error occurred while writing the allocation unit or inode allocation unit bitmap summary to disk. This sets the VX_FULLFSCK flag on the file system. If the VX_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access, and use fack to run a full structural check.

V-2-7

WARNING: msgcnt *x*: mesg 007: V-2-7: vx_sumupd - *mount_point* file system summary update in inode au *iaun* failed

Description:

An I/O error occurred while writing the allocation unit or inode allocation unit bitmap summary to disk. This sets the VX_FULLFSCK flag on the file system. If the VX_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access, and use fsck to run a full structural check.

V-2-8

WARNING: msgcnt x: mesg 008: V-2-8: vx_direrr: function - *mount_point* file system dir inode *dir_inumber* dev/block *device_ID/block* dirent inode *dirent_inumber* error *errno*

Description:

A directory operation failed in an unexpected manner. The mount point, inode, and block number identify the failing directory. If the inode is an immediate directory, the directory entries are stored in the inode, so no block number is reported. If the error is ENGENT OF ENGTDIR, an inconsistency was detected in the directory block. This inconsistency could be a bad free count, a corrupted hash chain, or any similar directory structure error. If the error is EIO OF ENXIO, an I/O failure occurred while reading or writing the disk block.

The <code>vx_FullFSCK</code> flag is set in the super-block so that <code>fsck</code> will do a full structural check the next time it is run.

Recommended action:

Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access. Unmount the file system and use fack to run a full structural check.

V-2-9

WARNING: msgcnt x: mesg 009: V-2-9: vx_direrr: function - *mount_point* file system dir inode *dir_inumber* dirent inode *dirent_inumber* immediate directory error *errno*

Description:

A directory operation failed in an unexpected manner. The mount point, inode, and block number identify the failing directory. If the inode is an immediate directory, the directory entries are stored in the inode, so no block number is reported. If the error is ENOENT OF ENOTDIR, an inconsistency was detected in the directory block. This inconsistency could be a bad free count, a corrupted hash chain, or any similar directory structure error. If the error is EIO OF ENXIO, an I/O failure occurred while reading or writing the disk block.

The <code>vx_fullfsck</code> flag is set in the super-block so that <code>fsck</code> will do a full structural check the next time it is run.

Recommended action:

Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access. Unmount the file system and use fack to run a full structural check.

V-2-10

WARNING: msgcnt x: mesg 010: V-2-10: vx_ialloc - *mount_point* file system inode *inumber* not free

Description:

When the kernel allocates an inode from the free inode bitmap, it checks the mode and link count of the inode. If either is non-zero, the free inode bitmap or the inode list is corrupted.

The <code>vx_fullfsck</code> flag is set in the super-block so that <code>fsck</code> will do a full structural check the next time it is run.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-11

NOTICE: msgcnt x: mesg 011: V-2-11: vx_noinode - *mount_point* file system out of inodes

Description:

The file system is out of inodes.

Recommended action:

Monitor the free inodes in the file system. If the file system is getting full, create more inodes either by removing files or by expanding the file system.

See the fsadm vxfs(1M) online manual page.

V-2-12

WARNING: msgcnt x: mesg 012: V-2-12: vx_iget - *mount_point* file system invalid inode number *inumber*

Description:

When the kernel tries to read an inode, it checks the inode number against the valid range. If the inode number is out of range, the data structure that referenced the inode number is incorrect and must be fixed.

The <code>vx_fullfsck</code> flag is set in the super-block so that <code>fsck</code> will do a full structural check the next time it is run.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-13

WARNING: msgcnt *x*: mesg 013: V-2-13: vx_iposition - *mount_point* file system inode *inumber* invalid inode list extent

Description:

For a Version 2 and above disk layout, the inode list is dynamically allocated. When the kernel tries to read an inode, it must look up the location of the inode in the inode list file. If the kernel finds a bad extent, the inode cannot be accessed. All of the inode list extents are validated when the file system is mounted, so if the kernel finds a bad extent, the integrity of the inode list is questionable. This is a very serious error.

The VX FULLFSCK flag is set in the super-block and the file system is disabled.

Recommended Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-14

WARNING: msgcnt *x*: mesg 014: V-2-14: vx_iget - inode table overflow **Description:**

All the system in-memory inodes are busy and an attempt was made to use a new inode.

Recommended action:

Look at the processes that are running and determine which processes are using inodes. If it appears there are runaway processes, they might be tying up the inodes. If the system load appears normal, increase the *vxfs_ninode* parameter in the kernel.

See "Tuning the VxFS file system" on page 45.

V-2-15

WARNING: msgcnt *x*: mesg 015: V-2-15: vx_ibadinactive - *mount_point* file system cannot mark inode *inumber* bad

WARNING: msgcnt *x*: mesg 015: V-2-15: vx_ilisterr - *mount_point* file system cannot mark inode *inumber* bad

Description:

An attempt to mark an inode bad on disk, and the super-block update to set the VX_FULLFSCK flag, failed. This indicates that a catastrophic disk error may have occurred since both an inode list block and the super-block had I/O failures. The file system is disabled to preserve file system integrity.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the disk failed, replace it before remounting the file system.

V-2-16

WARNING: msgcnt x: mesg 016: V-2-16: vx_ilisterr - *mount_point* file system error reading inode *inumber*

Description:

An I/O error occurred while reading the inode list. The VX_FULLFSCK flag is set.

Recommended action:

Check the console log for I/O errors. If the problem was caused by a disk failure, replace the disk before the file system is mounted for write access. Unmount the file system and use f_{sck} to run a full structural check.

V-2-17

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_attr_getblk - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iget - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_indadd - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_attr_indtrunc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_attr_iremove - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_bmap - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_bmap_indirect_ext4 - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_delbuf_flush - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_dio_iovec - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dirbread - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_dircreate - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_dirlook - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_doextop_iau - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_doextop_now - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_do_getpage - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_enter_ext4 - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_exttrunc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_get_alloc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_ilisterr - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_indtrunc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iread - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_iremove_attr - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_logwrite_flush - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_oltmount_iget - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_overlay_bmap - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_readnomap - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_reorg_trunc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_stablestore - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt *x*: mesg 017: V-2-17: vx_tranitimes - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_trunc - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_alloc2 - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_write_default - *mount_point* file system inode *inumber* marked bad in core

WARNING: msgcnt x: mesg 017: V-2-17: vx_zero_alloc - *mount_point* file system inode *inumber* marked bad in core

Description:

When inode information is no longer dependable, the kernel marks it bad in memory. This is followed by a message to mark it bad on disk as well unless the mount command ioerror option is set to disable, or there is subsequent I/O failure when updating the inode on disk. No further operations can be performed on the inode.

The most common reason for marking an inode bad is a disk I/O failure. If there is an I/O failure in the inode list, on a directory block, or an indirect address extent, the integrity of the data in the inode, or the data the kernel tried to write to the inode list, is questionable. In these cases, the disk driver prints an error message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid inode fields, or corruption in directory data blocks during a validation check. A validation check failure indicates the file system has been corrupted. This usually occurs because a user or process has written directly to the device or used fsdb to change the file system.

The <code>vx_FullFSCK</code> flag is set in the super-block so <code>fsck</code> will do a full structural check the next time it is run.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support organization. In either case, unmount the file system. The file system can be remounted without a full fsck unless the $VX_FULLFSCK$ flag is set for the file system.

V-2-19

WARNING: msgcnt x: mesg 019: V-2-19: vx_log_add - *mount_point* file system log overflow

Description:

Log ID overflow. When the log ID reaches <code>vx_MAXLOGID</code> (approximately one billion by default), a flag is set so the file system resets the log ID at the next opportunity. If the log ID has not been reset, when the log ID reaches <code>vx_DISLOGID</code> (approximately <code>vx_MAXLOGID</code> plus 500 million by default), the file system is disabled. Since a log reset will occur at the next 60 second sync interval, this should never happen.

Recommended action:

Unmount the file system and use ${\tt fsck}$ to run a full structural check.

WARNING: msgcnt x: mesg 020: V-2-20: vx_logerr - *mount_point* file system log error *errno*

Description:

Intent log failed. The kernel will try to set the $vx_FULLFSCK$ and vx_LOGBAD flags in the super-block to prevent running a log replay. If the super-block cannot be updated, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the disk failed, replace it before remounting the file system.

V-2-21

WARNING: msgcnt *x*: mesg 021: V-2-21: vx_fs_init - *mount_point* file system validation failure

Description:

When a VxFS file system is mounted, the structure is read from disk. If the file system is marked clean, the structure is correct and the first block of the intent log is cleared.

If there is any I/O problem or the structure is inconsistent, the kernel sets the $vx\$ <code>FULLFSCK</code> flag and the mount fails.

If the error is not related to an I/O failure, this may have occurred because a user or process has written directly to the device or used *fsdb* to change the file system.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsck to run a full structural check.

V-2-22

WARNING: msgcnt *x*: mesg 022: V-2-22: vx_mountroot - root file system remount failed

Description:

The remount of the root file system failed. The system will not be usable if the root file system cannot be remounted for read/write access.

When a root Veritas File System is first mounted, it is mounted for read-only access. After fsck is run, the file system is remounted for read/write access. The remount fails if fsck completed a resize operation or modified a file that was opened before the fsck was run. It also fails if an I/O error occurred during the remount.

Usually, the system halts or reboots automatically.

Recommended action:

Reboot the system. The system either remounts the root cleanly or runs a full structural fsck and remounts cleanly. If the remount succeeds, no further action is necessary.

Check the console log for I/O errors. If the disk has failed, replace it before the file system is mounted for write access.

If the system won't come up and a full structural fsck hasn't been run, reboot the system on a backup root and manually run a full structural fsck. If the problem persists after the full structural fsck and there are no I/O errors, contact your customer support organization.

V-2-23

WARNING: msgcnt *x*: mesg 023: V-2-23: vx_unmountroot - root file system is busy and cannot be unmounted cleanly

Description:

There were active files in the file system and they caused the unmount to fail.

When the system is halted, the root file system is unmounted. This happens occasionally when a process is hung and it cannot be killed before unmounting the root.

Recommended action:

fsck will run when the system is rebooted. It should clean up the file system. No other action is necessary.

If the problem occurs every time the system is halted, determine the cause and contact your customer support organization.

V-2-24

WARNING: msgcnt *x*: mesg 024: V-2-24: vx_cutwait - *mount_point* file system current usage table update error

Description:

Update to the current usage table (CUT) failed.

For a Version 2 disk layout, the CUT contains a fileset version number and total number of blocks used by each fileset.

The $vx_{FULLFSCK}$ flag is set in the super-block. If the super-block cannot be written, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-25

WARNING: msgcnt *x*: mesg 025: V-2-25: vx_wsuper - *mount_point* file system super-block update failed

Description:

An I/O error occurred while writing the super-block during a resize operation. The file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the problem is a disk failure, replace the disk before the file system is mounted for write access.

V-2-26

WARNING: msgcnt *x*: mesg 026: V-2-26: vx_snap_copyblk - *mount_point* primary file system read error

Description:

Snapshot file system error.

When the primary file system is written, copies of the original data must be written to the snapshot file system. If a read error occurs on a primary file system during the copy, any snapshot file system that doesn't already have a copy of the data is out of date and must be disabled.

Recommended action:

An error message for the primary file system prints. Resolve the error on the primary file system and rerun any backups or other applications that were using the snapshot that failed when the error occurred.

WARNING: msgcnt *x*: mesg 027: V-2-27: vx_snap_bpcopy - *mount_point* snapshot file system write error

Description:

A write to the snapshot file system failed.

As the primary file system is updated, copies of the original data are read from the primary file system and written to the snapshot file system. If one of these writes fails, the snapshot file system is disabled.

Recommended action:

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the error on the disk and rerun any backups or other applications that were using the snapshot that failed when the error occurred.

V-2-28

WARNING: msgcnt *x*: mesg 028: V-2-28: vx_snap_alloc - *mount_point* snapshot file system out of space

Description:

The snapshot file system ran out of space to store changes.

During a snapshot backup, as the primary file system is modified, the original data is copied to the snapshot file system. This error can occur if the snapshot file system is left mounted by mistake, if the snapshot file system was given too little disk space, or the primary file system had an unexpected burst of activity. The snapshot file system is disabled.

Recommended action:

Make sure the snapshot file system was given the correct amount of space. If it was, determine the activity level on the primary file system. If the primary file system was unusually busy, rerun the backup. If the primary file system is no busier than normal, move the backup to a time when the primary file system is relatively idle or increase the amount of disk space allocated to the snapshot file system.

Rerun any backups that failed when the error occurred.

V-2-29

WARNING: msgcnt *x*: mesg 029: V-2-29: vx_snap_getbp - *mount_point* snapshot file system block map write error

Description:

During a snapshot backup, each snapshot file system maintains a block map on disk. The block map tells the snapshot file system where data from the primary file system is stored in the snapshot file system. If an I/O operation to the block map fails, the snapshot file system is disabled.

Recommended action:

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the error on the disk and rerun any backups that failed when the error occurred.

V-2-30

WARNING: msgcnt *x*: mesg 030: V-2-30: vx_snap_getbp - *mount_point* snapshot file system block map read error

Description:

During a snapshot backup, each snapshot file system maintains a block map on disk. The block map tells the snapshot file system where data from the primary file system is stored in the snapshot file system. If an I/O operation to the block map fails, the snapshot file system is disabled.

Recommended action:

Check the console log for I/O errors. If the disk has failed, replace it. Resolve the error on the disk and rerun any backups that failed when the error occurred.

V-2-31

WARNING: msgcnt *x*: mesg 031: V-2-31: vx_disable - *mount_point* file system disabled

Description:

File system disabled, preceded by a message that specifies the reason. This usually indicates a serious disk problem.

Recommended action:

Unmount the file system and use fsck to run a full structural check. If the problem is a disk failure, replace the disk before the file system is mounted for write access.

V-2-32

WARNING: msgcnt x: mesg 032: V-2-32: vx_disable - *mount_point* snapshot file system disabled

Description:

Snapshot file system disabled, preceded by a message that specifies the reason.

Recommended action:

Unmount the snapshot file system, correct the problem specified by the message, and rerun any backups that failed due to the error.

V-2-33

WARNING: msgcnt x: mesg 033: V-2-33: vx_check_badblock - mount_point file system had an I/O error, setting vx_FULLFSCK

Description:

When the disk driver encounters an I/O error, it sets a flag in the super-block structure. If the flag is set, the kernel will set the VX_FULLFSCK flag as a precautionary measure. Since no other error has set the VX_FULLFSCK flag, the failure probably occurred on a data block.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the problem is a disk failure, replace the disk before the file system is mounted for write access.

V-2-34

WARNING: msgcnt *x*: mesg 034: V-2-34: vx_resetlog - *mount_point* file system cannot reset log

Description:

The kernel encountered an error while resetting the log ID on the file system. This happens only if the super-block update or log write encountered a device failure. The file system is disabled to preserve its integrity.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the problem is a disk failure, replace the disk before the file system is mounted for write access.

V-2-35

WARNING: msgcnt *x*: mesg 035: V-2-35: vx_inactive - *mount_point* file system inactive of locked inode *inumber*

Description:

VOP_INACTIVE was called for an inode while the inode was being used. This should never happen, but if it does, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Report as a bug to your customer support organization.

V-2-36

WARNING: msgcnt *x*: mesg 036: V-2-36: vx_lctbad - *mount_point* file system link count table *lctnumber* bad

Description:

Update to the link count table (LCT) failed.

For a Version 2 and above disk layout, the LCT contains the link count for all the structural inodes. The $vx_FullFSCK$ flag is set in the super-block. If the super-block cannot be written, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-37

WARNING: msgcnt x: mesg 037: V-2-37: vx_metaioerr - function - volume_name file system meta data [read|write] error in dev/block device_ID/block

Description:

A read or a write error occurred while accessing file system metadata. The full fsck flag on the file system was set. The message specifies whether the disk I/O that failed was a read or a write.

File system metadata includes inodes, directory blocks, and the file system log. If the error was a write error, it is likely that some data was lost. This message should be accompanied by another file system message describing the particular file system metadata affected, as well as a message from the disk driver containing information about the disk I/O error.

Recommended action:

Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cables, etc. Unmount the file system and use fsck to run a full structural check (possibly with loss of data).

In case of an actual disk error, if it was a read error and the disk driver remaps bad sectors on write, it may be fixed when fsck is run since fsck is likely to rewrite the sector with the read error. In other cases, you replace or reformat the disk drive and restore the file system from backups. Consult the documentation specific to

your system for information on how to recover from disk errors. The disk driver should have printed a message that may provide more information.

V-2-38

WARNING: msgcnt x: mesg 038: V-2-38: vx_dataioerr - *volume_name* file system file data [read|write] error in dev/block *device_ID/block*

Description:

A read or a write error occurred while accessing file data. The message specifies whether the disk I/O that failed was a read or a write. File data includes data currently in files and free blocks. If the message is printed because of a read or write error to a file, another message that includes the inode number of the file will print. The message may be printed as the result of a read or write error to a free block, since some operations allocate an extent and immediately perform I/O to it. If the I/O fails, the extent is freed and the operation fails. The message is accompanied by a message from the disk driver regarding the disk I/O error.

Recommended action:

Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cables, etc. If any file data was lost, restore the files from backups. Determine the file names from the inode number.

See the ncheck(1M) manual page.

If an actual disk error occurred, make a backup of the file system, replace or reformat the disk drive, and restore the file system from the backup. Consult the documentation specific to your system for information on how to recover from disk errors. The disk driver should have printed a message that may provide more information.

V-2-39

WARNING: msgcnt *x*: mesg 039: V-2-39: vx_writesuper - file system super-block write error

Description:

An attempt to write the file system super block failed due to a disk I/O error. If the file system was being mounted at the time, the mount will fail. If the file system was mounted at the time and the full fsck flag was being set, the file system will probably be disabled and Message 031 will also be printed. If the super-block was being written as a result of a sync operation, no other action is taken.

Recommended action:

Resolve the condition causing the disk error. If the error was the result of a temporary condition (such as accidentally turning off a disk or a loose cable), correct the condition. Check for loose cables, etc. Unmount the file system and use fsck to run a full structural check.

If an actual disk error occurred, make a backup of the file system, replace or reformat the disk drive, and restore the file system from backups. Consult the documentation specific to your system for information on how to recover from disk errors. The disk driver should have printed a message that may provide more information.

V-2-40

WARNING: msgcnt *x*: mesg 040: V-2-40: vx_dqbad - *mount_point* file system user|group quota file update error for id *id*

Description:

An update to the user quotas file failed for the user ID.

The quotas file keeps track of the total number of blocks and inodes used by each user, and also contains soft and hard limits for each user ID. The $vx_FULLFSCK$ flag is set in the super-block. If the super-block cannot be written, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the disk has a hardware failure, it should be repaired before the file system is mounted for write access.

V-2-41

WARNING: msgcnt x: mesg 041: V-2-41: vx_dqget - *mount_point* file system user|group quota file cannot read quota for id *id*

Description:

A read of the user quotas file failed for the uid.

The quotas file keeps track of the total number of blocks and inodes used by each user, and contains soft and hard limits for each user ID. The VX_FULLFSCK flag is set in the super-block. If the super-block cannot be written, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. Check the console log for I/O errors. If the disk has a hardware failure, it should be repaired before the file system is mounted for write access.

WARNING: msgcnt x: mesg 042: V-2-42: vx_bsdquotaupdate - *mount_point* file system *user*|*group_id* disk limit reached

Description:

The hard limit on blocks was reached. Further attempts to allocate blocks for files owned by the user will fail.

Recommended action:

Remove some files to free up space.

V-2-43

WARNING: msgcnt x: mesg 043: V-2-43: vx_bsdquotaupdate - mount_point file system user|group_id disk quota exceeded too long

Description:

The soft limit on blocks was exceeded continuously for longer than the soft quota time limit. Further attempts to allocate blocks for files will fail.

Recommended action:

Remove some files to free up space.

V-2-44

WARNING: msgcnt x: mesg 044: V-2-44: vx_bsdquotaupdate - *mount_point* file system *user*|*group_id* disk quota exceeded

Description:

The soft limit on blocks is exceeded. Users can exceed the soft limit for a limited amount of time before allocations begin to fail. After the soft quota time limit has expired, subsequent attempts to allocate blocks for files fail.

Recommended action:

Remove some files to free up space.

V-2-45

WARNING: msgcnt x: mesg 045: V-2-45: vx_bsdiquotaupdate - *mount_point* file system *user*|*group_id* inode limit reached

Description:

The hard limit on inodes was exceeded. Further attempts to create files owned by the user will fail.

Recommended action:

Remove some files to free inodes.

V-2-46

WARNING: msgcnt x: mesg 046: V-2-46: vx_bsdiquotaupdate - mount_point file system user|group_id inode quota exceeded too long

Description:

The soft limit on inodes has been exceeded continuously for longer than the soft quota time limit. Further attempts to create files owned by the user will fail.

Recommended action:

Remove some files to free inodes.

V-2-47

WARNING: msgcnt *x*: mesg 047: V-2-47: vx_bsdiquotaupdate - warning: *mount_point* file system *user*[*group_id* inode quota exceeded

Description:

The soft limit on inodes was exceeded. The soft limit can be exceeded for a certain amount of time before attempts to create new files begin to fail. Once the time limit has expired, further attempts to create files owned by the user will fail.

Recommended action:

Remove some files to free inodes.

V-2-48

WARNING: msgcnt x: mesg 048: V-2-48: vx_dqread - warning: *mount_point* file system external user|group quota file read failed

Description:

To maintain reliable usage counts, VxFS maintains the user quotas file as a structural file in the structural fileset.

These files are updated as part of the transactions that allocate and free blocks and inodes. For compatibility with the quota administration utilities, VxFS also supports the standard user visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries to update the external quota files. When quotas are enabled, VxFS tries to read the quota limits from the external quotas file. If these reads or writes fail, the external quotas file is out of date.

Recommended action:

Determine the reason for the failure on the external quotas file and correct it. Recreate the quotas file.

V-2-49

WARNING: msgcnt x: mesg 049: V-2-49: vx_dqwrite - warning: *mount_point* file system external user|group quota file write failed

Description:

To maintain reliable usage counts, VxFS maintains the user quotas file as a structural file in the structural fileset.

These files are updated as part of the transactions that allocate and free blocks and inodes. For compatibility with the quota administration utilities, VxFS also supports the standard user visible quota files.

When quotas are turned off, synced, or new limits are added, VxFS tries to update the external quota files. When quotas are enabled, VxFS tries to read the quota limits from the external quotas file. If these reads or writes fail, the external quotas file is out of date.

Recommended action:

Determine the reason for the failure on the external quotas file and correct it. Recreate the quotas file.

V-2-56

WARNING: msgcnt *x*: mesg 056: V-2-56: vx_mapbad - *mount_point* file system extent allocation unit state bitmap number *number* marked bad

Description:

If there is an I/O failure while writing a bitmap, the map is marked bad. The kernel considers the maps to be invalid, so does not do any more resource allocation from maps. This situation can cause the file system to report \hat{A} "out of space \hat{A} " or \hat{A} "out of inode \hat{A} " error messages even though df may report an adequate amount of free space.

This error may also occur due to bitmap inconsistencies. If a bitmap fails a consistency check, or blocks are freed that are already free in the bitmap, the file

system has been corrupted. This may have occurred because a user or process wrote directly to the device or used *fsdb* to change the file system.

The <code>vx_fullfsck</code> flag is set. If the <code>vx_fullfsck</code> flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-57

WARNING: msgcnt *x*: mesg 057: V-2-57: vx_esum_bad - *mount_point* file system extent allocation unit summary number *number* marked bad

Description:

An I/O error occurred reading or writing an extent allocation unit summary.

The vx_FULLFSCK flag is set. If the vx_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-58

WARNING: msgcnt *x*: mesg 058: V-2-58: vx_isum_bad - *mount_point* file system inode allocation unit summary number *number* marked bad

Description:

An I/O error occurred reading or writing an inode allocation unit summary.

The VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became

corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Unmount the file system and use fsck to run a full structural check.

V-2-59

WARNING: msgcnt x: mesg 059: V-2-59: vx_snap_getbitbp - *mount_point* snapshot file system bitmap write error

Description:

An I/O error occurred while writing to the snapshot file system bitmap. There is no problem with the snapped file system, but the snapshot file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Restart the snapshot on an error free disk partition. Rerun any backups that failed when the error occurred.

V-2-60

WARNING: msgcnt *x*: mesg 060: V-2-60: vx_snap_getbitbp - *mount_point* snapshot file system bitmap read error

Description:

An I/O error occurred while reading the snapshot file system bitmap. There is no problem with snapped file system, but the snapshot file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process was writing to the device, report the problem to your customer support organization. Restart the snapshot on an error free disk partition. Rerun any backups that failed when the error occurred.

V-2-61

WARNING: msgcnt *x*: mesg 061: V-2-61: vx_resize - *mount_point* file system remount failed

Description:

During a file system resize, the remount to the new size failed. The $vx_FULLFSCK$ flag is set and the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check. After the check, the file system shows the new size.

V-2-62

NOTICE: msgcnt *x*: mesg 062: V-2-62: vx_attr_creatop - invalid disposition returned by attribute driver

Description:

A registered extended attribute intervention routine returned an invalid return code to the VxFS driver during extended attribute inheritance.

Recommended action:

Determine which vendor supplied the registered extended attribute intervention routine and contact their customer support organization.

V-2-63

WARNING: msgcnt x: mesg 063: V-2-63: vx_fset_markbad - mount_point file system mount_point fileset (index number) marked bad

Description:

An error occurred while reading or writing a fileset structure. VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-64

WARNING: msgcnt *x*: mesg 064: V-2-64: vx_ivalidate - *mount_point* file system inode number version number exceeds fileset's

Description:

During inode validation, a discrepancy was found between the inode version number and the fileset version number. The inode may be marked bad, or the fileset version number may be changed, depending on the ratio of the mismatched version numbers.

VX_FULLFSCK flag is set. If the VX_FULLFSCK flag cannot be set, the file system is disabled.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsck to run a full structural check.

V-2-66

NOTICE: msgcnt x: mesg 066: V-2-66: DMAPI mount event - buffer

Description:

An HSM (Hierarchical Storage Management) agent responded to a DMAPI mount event and returned a message in buffer.

Recommended action:

Consult the HSM product documentation for the appropriate response to the message.

V-2-67

WARNING: msgcnt x: mesg 067: V-2-67: mount of device_path requires HSM agent

Description:

The file system mount failed because the file system was marked as being under the management of an HSM agent, and no HSM agent was found during the mount.

Recommended action:

Restart the HSM agent and try to mount the file system again.

V-2-68

WARNING: msgcnt *x*: mesg 068: V-2-68: *ncsize* parameter is greater than 80% of the *vxfs_ninode* parameter; increasing the value of vxfs:*vxfs_ninode*

Description:

The value auto-tuned for the *vxfs_ninode* parameter is less than 125% of the *ncsize* parameter.

Recommended action:

To prevent this message from occurring, set *vxfs_ninode* to at least 125% of the value of *ncsize*. The best way to do this is to adjust *ncsize* down, rather than adjusting *vxfs_ninode* up.

See "Tuning the VxFS file system" on page 45.

WARNING: msgcnt x: mesg 069: V-2-69: memory usage specified by the vxfs:vxfs_ninode and vxfs:vx_bc_bufhwm parameters exceeds available memory; the system may hang under heavy load

Description:

The value of the system tunable parameters \hat{A} —vxfs_ninode and vx_bc_bufhwm \hat{A} —add up to a value that is more than 66% of the kernel virtual address space or more than 50% of the physical system memory. VxFS inodes require approximately one kilobyte each, so both values can be treated as if they are in units of one kilobyte.

Recommended action:

To avoid a system hang, reduce the value of one or both parameters to less than 50% of physical memory or to 66% of kernel virtual memory.

See "Tuning the VxFS file system" on page 45.

V-2-70

WARNING: msgcnt *x*: mesg 070: V-2-70: checkpoint *checkpoint_name* removed from file system *mount_point*

Description:

The file system ran out of space while updating a Storage Checkpoint. The Storage Checkpoint was removed to allow the operation to complete.

Recommended action:

Increase the size of the file system. If the file system size cannot be increased, remove files to create sufficient space for new Storage Checkpoints. Monitor capacity of the file system closely to ensure it does not run out of space.

See the fsadm_vxfs(1M) manual page.

V-2-71

NOTICE: msgcnt *x*: mesg 071: V-2-71: cleared data I/O error flag in *mount_point* file system

Description:

The user data I/O error flag was reset when the file system was mounted. This message indicates that a read or write error occurred while the file system was previously mounted.

See Message Number 038.

Recommended action:

Informational only, no action required.

V-2-72

WARNING: msgcnt x: vxfs: mesg 072: could not failover for volume_name file system

Description:

This message is specific to the cluster file system. The message indicates a problem in a scenario where a node failure has occurred in the cluster and the newly selected primary node encounters a failure.

Recommended action:

Save the system logs and core dump of the node along with the disk image (metasave) and contact your customer support organization. The node can be rebooted to join the cluster.

V-2-75

WARNING: msgcnt x: mesg 075: V-2-75: replay fsck failed for *mount_point* file system

Description:

The log replay failed during a failover or while migrating the CFS primary-ship to one of the secondary cluster nodes. The file system was disabled.

Recommended action:

Unmount the file system from the cluster. Use fsck to run a full structural check and mount the file system again.

V-2-76

NOTICE: msgcnt *x*: mesg 076: V-2-76: checkpoint asynchronous operation on *mount_point* file system still in progress

An EBUSY message was received while trying to unmount a file system. The unmount failure was caused by a pending asynchronous fileset operation, such as a fileset removal or fileset conversion to a nodata Storage Checkpoint.

Description:

Action

The operation may take a considerable length of time. You can do a forced unmount, or simply wait for the operation to complete so file system can be unmounted cleanly.

See the umount vxfs(1M) manual page.

V-2-77

WARNING: msgcnt *x*: mesg 077: V-2-77: vx_fshdchange - *mount_point* file system number fileset, fileset header: checksum failed

Description:

Disk corruption was detected while changing fileset headers. This can occur when writing a new inode allocation unit, preventing the allocation of new inodes in the fileset.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-78

WARNING: msgcnt *x*: mesg 078: V-2-78: vx_ilealloc - *mount_point* file system *mount_point* fileset (index number) ilist corrupt

Description:

The inode list for the fileset was corrupted and the corruption was detected while allocating new inodes. The failed system call returns an ENOSPC error. Any subsequent inode allocations will fail unless a sufficient number of files are removed.

Recommended action:

Unmount the file system and use fsck to run a full structural check.

V-2-79

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_attr_getblk - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_attr_iget - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_attr_indadd - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_attr_indtrunc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_attr_iremove - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_bmap - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_bmap_indirect_ext4 - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_delbuf_flush - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_dio_iovec - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_dirbread - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_dircreate - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_dirlook - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_doextop_iau - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_doextop_now - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_do_getpage - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_enter_ext4 - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_exttrunc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_get_alloc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_ilisterr - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_indtrunc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_iread - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_iremove - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_iremove_attr - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_logwrite_flush - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_oltmount_iget - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_overlay_bmap - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_readnomap - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_reorg_trunc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_stablestore - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_tranitimes - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_trunc - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_write_alloc2 - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt x: mesg 017: V-2-79: vx_write_default - *mount_point* file system inode *inumber* marked bad on disk

WARNING: msgcnt *x*: mesg 017: V-2-79: vx_zero_alloc - *mount_point* file system inode *inumber* marked bad on disk

Description:

When inode information is no longer dependable, the kernel marks it bad on disk. The most common reason for marking an inode bad is a disk I/O failure. If there is an I/O failure in the inode list, on a directory block, or an indirect address extent, the integrity of the data in the inode, or the data the kernel tried to write to the inode list, is questionable. In these cases, the disk driver prints an error message and one or more inodes are marked bad.

The kernel also marks an inode bad if it finds a bad extent address, invalid inode fields, or corruption in directory data blocks during a validation check. A validation check failure indicates the file system has been corrupted. This usually occurs because a user or process has written directly to the device or used *fsdb* to change the file system.

The VX_FULLFSCK flag is set in the super-block so fsck will do a full structural check the next time it is run.

Recommended action:

Check the console log for I/O errors. If the problem is a disk failure, replace the disk. If the problem is not related to an I/O failure, find out how the disk became corrupted. If no user or process is writing to the device, report the problem to your customer support organization. In either case, unmount the file system and use fsck to run a full structural check.

V-2-81

WARNING: msgcnt x: mesg 081: V-2-81: possible network partition detected

Description:

This message displays when CFS detects a possible network partition and disables the file system locally, that is, on the node where the message appears.

Recommended action:

There are one or more private network links for communication between the nodes in a cluster. At least one link must be active to maintain the integrity of the cluster. If all the links go down, after the last network link is broken, the node can no longer communicate with other nodes in the cluster.

Check the network connections. After verifying that the network connections is operating correctly, unmount the disabled file system and mount it again.

V-2-82

WARNING: msgcnt *x*: mesg 082: V-2-82: *volume_name* file system is on shared volume. It may get damaged if cluster is in partitioned state.

Description:

If a cluster node is in a partitioned state, and if the file system is on a shared VxVM volume, this volume may become corrupted by accidental access from another node in the cluster.

Recommended action:

These shared disks can also be seen by nodes in a different partition, so they can inadvertently be corrupted. So the second message 082 tells that the device mentioned is on shared volume and damage can happen only if it is a real partition problem. Do not use it on any other node until the file system is unmounted from the mounted nodes.

V-2-83

WARNING: msgcnt *x*: mesg 083: V-2-83: *mount_point* file system log is not compatible with the specified intent log I/O size

Description:

Either the specified mount logiosize size is not compatible with the file system layout, or the file system is corrupted.

Recommended action:

Mount the file system again without specifying the logiosize option, or use a logiosize value compatible with the intent log specified when the file system was created. If the error persists, unmount the file system and use fack to run a full structural check.

V-2-84

WARNING: msgcnt *x*: mesg 084: V-2-84: in *volume_name* quota on failed during assumption. (stage *stage_number*)

Description:

In a cluster file system, when the primary of the file system fails, a secondary file system is chosen to assume the role of the primary. The assuming node will be able to enforce quotas after becoming the primary.

If the new primary is unable to enforce quotas this message will be displayed.

Recommended action:

Issue the quotaon command from any of the nodes that have the file system mounted.

V-2-85

WARNING: msgcnt x: mesg 085: V-2-85: Checkpoint quota - warning: *file_system* file system fileset quota hard limit exceeded

Description:

The system administrator sets the quotas for Storage Checkpoints in the form of a soft limit and hard limit. This message displays when the hard limit is exceeded.

Recommended action:

Delete Storage Checkpoints or increase the hard limit.

V-2-86

WARNING: msgcnt *x*: mesg 086: V-2-86: Checkpoint quota - warning: *file_system* file system fileset quota soft limit exceeded

Description:

The system administrator sets the quotas for Storage Checkpoints in the form of a soft limit and hard limit. This message displays when the soft limit is exceeded.

Recommended action:

Delete Storage Checkpoints or increase the soft limit. This is not a mandatory action, but is recommended.

V-2-87

WARNING: msgcnt x: mesg 087: V-2-87: vx_dotdot_manipulate: *file_system* file system *inumber* inode *ddnumber* dotdot inode error

Description:

When performing an operation that changes an inode entry, if the inode is incorrect, this message will display.

Recommended action:

Run a full file system check using fsck to correct the errors.

V-2-88

WARNING: msgcnt *x*: mesg 088: V-2-88: quotaon on *file_system* failed; limits exceed limit

Description:

The external quota file, quotas, contains the quota values, which range from 0 up to 2147483647. When quotas are turned on by the quotaon command, this message displays when a user exceeds the quota limit.

Recommended action:

Correct the quota values in the quotas file.

V-2-89

WARNING: msgcnt x: mesg 089: V-2-89: quotaon on *file_system* invalid; disk usage for group/user id *uid* exceeds sectors sectors

Description:

The supported quota limit is up to 2147483647 sectors. When quotas are turned on by the quotaon command, this message displays when a user exceeds the supported quota limit.

Recommended action:

Ask the user to delete files to lower the quota below the limit.

WARNING: msgcnt *x*: mesg 090: V-2-90: quota on *file_system* failed; soft limits greater than hard limits

Description:

One or more users or groups has a soft limit set greater than the hard limit, preventing the BSD quota from being turned on.

Recommended action:

Check the soft limit and hard limit for every user and group and confirm that the soft limit is not set greater than the hard limit.

V-2-91

WARNING: msgcnt *x*: mesg 091: V-2-91: vx_fcl_truncate - failure to punch hole at offset offset for bytes bytes in File Change Log file; error *error_number*

Description:

The vxfs kernel has experienced an error while trying to manage the space consumed by the File Change Log file. Because the space cannot be actively managed at this time, the FCL has been deactivated and has been truncated to 1 file system block, which contains the FCL superblock.

Recommended action:

Re-activate the FCL.

V-2-92

WARNING: msgcnt *x*: mesg 092: V-2-92: vx_mkfcltran - failure to map offset *offset* in File Change Log file

Description:

The vxfs kernel was unable to map actual storage to the next offset in the File Change Log file. This is mostly likely caused by a problem with allocating to the FCL file. Because no new FCL records can be written to the FCL file, the FCL has been deactivated.

Recommended action:

Re-activate the FCL.

WARNING: msgcnt *x*: mesg 096: V-2-96: *file_system* file system fullfsck flag set - *function_name*.

Description:

The next time the file system is mounted, a full $\tt fsck$ must be performed.

Recommended action:

No immediate action required. When the file system is unmounted, run a full file system check using fsck before mounting it again.

V-2-97

WARNING: msgcnt x: mesg 097: V-2-97: VxFS failed to create new thread (*error_number*, *function_address:argument_address*)

Description:

VxFS failed to create a kernel thread due to resource constraints, which is often a memory shortage.

Recommended action:

VxFS will retry the thread creation until it succeeds; no immediate action is required. Kernel resources, such as kernel memory, might be overcommitted. If so, reconfigure the system accordingly.

V-2-98

WARNING: msgcnt *x*: mesg 098: V-2-98: VxFS failed to initialize File Change Log for fileset (index number) of *mount_point* file system

Description:

VxFS mount failed to initialize FCL structures for the current fileset mount. As a result, FCL could not be turned on. The FCL file will have no logging records.

Recommended action:

Reactivate the FCL.

V-2-99

WARNING: msgcnt *x*: mesg 099: V-2-99: The specified value for *vx_ninode* is less than the recommended minimum value of *min_value*

Description:

Auto-tuning or the value specified by the system administrator resulted in a value lower than the recommended minimum for the total number of inodes that can be present in the inode cache. VxFS will ignore the newly tuned value and will keep the value specified in the message (VX MINNINODE).

Recommended action:

Informational only; no action required.

V-2-100

WARNING: msgcnt *x*: mesg 100: V-2-100: Inode *inumber* can not be accessed: file size exceeds OS limitations.

Description:

The specified inode's size is larger than the file size limit of the current operating system. The file cannot be opened on the current platform. This can happen when a file is created on one OS and the filesystem is then moved to a machine running an OS with a smaller file size limit.

Recommended action:

If the file system is moved to the platform on which the file was created, the file can be accessed from there. It can then be converted to multiple smaller files in a manner appropriate to the application and the file's format, or simply be deleted if it is no longer required.

V-2-101

WARNING: msgcnt *x*: mesg 101: V-2-101: File Change Log on *mount_point* for file set *index* approaching max file size supported. File Change Log will be reactivated when its size hits max file size supported.

Description:

The size of the FCL file is approching the maximum file size supported. This size is platform specific. When the FCL file is reaches the maximum file size, the FCL will be deactivated and reactivated. All logging information gathered so far will be lost.

Recommended action:

Take any corrective action possible to restrict the loss due to the FCL being deactivated and reactivated.

WARNING: msgcnt *x*: mesg 102: V-2-102: File Change Log of *mount_point* for file set *index* has been reactivated.

Description:

The size of FCL file reached the maximum supported file size and the FCL has been reactivated. All records stored in the FCL file, starting from the current *fc_loff* up to the maximum file size, have been purged. New records will be recorded in the FCL file starting from offset *fs_bsize*. The activation time in the FCL is reset to the time of reactivation. The impact is equivalent to File Change Log being deactivated and activated.

Recommended action:

Informational only; no action required.

V-2-103

WARNING: msgcnt *x*: mesg 103: V-2-103: File Change Log merge on *mount_point* for file set *index* failed.

Description:

The VxFS kernel has experienced an error while merging internal per-node File Change Log files into the external File Change Log file. Since the File Change Log cannot be maintained correctly without this, the File Change Log has been deactivated.

Recommended action:

Re-activate the File Change Log.

V-2-104

WARNING: msgcnt *x*: mesg 104: V-2-104: File System *mount_point* device *volume_name* disabled

Description:

The volume manager detected that the specified volume has failed, and the volume manager has disabled the volume. No further I/O requests are sent to the disabled volume.

Recommended action:

The volume must be repaired.

WARNING: msgcnt x: mesg 105: V-2-105: File System mount_point device volume_name re-enabled

Description:

The volume manager detected that a previously disabled volume is now operational, and the volume manager has re-enabled the volume.

Recommended action:

Informational only; no action required.

V-2-106

WARNING: msgcnt x: mesg 106: V-2-106: File System mount_point device volume_name has BAD label

Description:

A file system's label does not match the label that the multi-volume support feature expects the file system to have. The file system's volume is effectively disabled.

Recommended action:

If the label is bad because the volume does not match the assigned label, use the vxvset command to fix the label. Otherwise, the label might have been overwritten and the volume's contents may be lost. Call technical support so that the issue can be investigated.

V-2-107

WARNING: msgcnt x: mesg 107: V-2-107: File System *mount_point* device *volume_name* valid label found

Description:

The label of a file system that had a bad label was somehow restored. The underlying volume is functional.

Recommended action:

Informational only; no action required.

V-2-108

WARNING: msgcnt *x*: mesg 108: V-2-108: vx_dexh_error - *error*: fileset *fileset*, directory inode number *dir_inumber*, bad hash inode *hash_inode*, seg *segment* bno *block_number*

Description:

The supplemental hash for a directory is corrupt.

Recommended action:

If the file system is mounted read/write, the hash for the directory will be automatically removed and recreated. If the removal or recreation fails, subsequent messages indicate the type of prolem. If there are no further messages, the removal and recreation of the hash succeeded.

V-2-109

WARNING: msgcnt x: mesg 109: V-2-109: failed to tune down *tunable_name* to *tunable_value* possibly due to *tunable_object* in use, could free up only up to *suggested_tunable_value*

Description:

When the value of a tunable, such as *ninode* or *bufhwm*, is modified, sometimes the tunable cannot be tuned down to the specified value because of the current system usage. The minimum value to which the tunable can be tuned is also provided as part of the warning message.

Recommended action:

Tune down the tunable to the minimum possible value indicated by the warning message.

See "Tuning the VxFS file system" on page 45.

V-2-110

WARNING: msgcnt *x*: mesg 110: V-2-110: The specified value for *vx_bc_bufhwm* is less than the recommended minimum value of *recommended_minimum_value*.

Description:

Setting the *vx_bc_bufhwm* tunable to restrict the memory used by the VxFS buffer cache to a value that is too low has a degrading effect on the system performance on a wide range of applications. Symantec does not recommend setting *vx_bc_bufhwm* to a value less than the recommended minimum value, which is provided as part of the warning message.

Recommended action:

Tune the *vx_bc_bufhwm* tunable to a value greater than the recommended minimum indicated by the warning message.

WARNING: msgcnt x: mesg 111: V-2-111: You have exceeded the authorized usage (maximum *maxfs* unique mounted user-data file systems) for this product and are out of compliance with your License Agreement. Please email **sales_mail@symantec.com** or contact your Symantec sales representative for information on how to obtain additional licenses for this product.

Description:

As per your Storage Foundation Basic license agreement, you are allowed to have only a limited number of VxFS file systems, and you have exceeded this number.

Recommended action:

Email **sales_mail@symantec.com** or contact your Symantec sales representative for information on how to obtain additional licenses for this product.

Dewey UMI messages

This section contains all the UMI error code sources in Dewey format.

V-3-20002

UX:vxfs command: ERROR: V-3-20002: message

Description:

The command attempted to call stat() on a device path to ensure that the path refers to a character device before opening the device, but the stat() call failed. The error message will include the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory".

Recommended action:

The corrective action depends on the particular error.

V-3-20003

UX:vxfs command: ERROR: V-3-20003: message

Description:

The command attempted to open a disk device, but the open() call failed. The error message includes the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory".

Recommended action:

The corrective action depends on the particular error.

V-3-20005

UX:vxfs command: ERROR: V-3-20005: message

Description:

The command attempted to read the superblock from a device, but the read() call failed. The error message will include the platform-specific message for the particular error that was encountered, such as "Access denied" or "No such file or directory".

Recommended action:

The corrective action depends on the particular error.

V-3-20012

UX:vxfs command: ERROR: V-3-20012: message

Description:

The command was invoked on a device that did not contain a valid VxFS file system.

Recommended action:

Check that the path specified is what was intended.

V-3-20076

UX:vxfs command: ERROR: V-3-20076: message

Description:

The command called stat() on a file, which is usually a file system mount point, but the call failed.

Recommended action:

Check that the path specified is what was intended and that the user has permission to access that path.

V-3-21256

UX:vxfs command: ERROR: V-3-21256: message

Description:

The attempt to mount the file system failed because either the request was to mount a particular Storage Checkpoint that does not exist, or the file system is managed by an HSM and the HSM is not running.

Recommended action:

In the first case, use the fsckptadm list command to see which Storage Checkpoints exist and mount the appropriate Storage Checkpoint. In the second case, make sure the HSM is running. If the HSM is not running, start and mount the file system again.

V-3-21264

UX:vxfs command: ERROR: V-3-21264: message

Description:

The attempt to mount a VxFS file system has failed because either the volume being mounted or the directory which is to be the mount point is busy.

The reason that a VxVM volume could be busy is if the volume is in a shared disk group and the volume is currently being accessed by a VxFS command, such as fsck, on a node in the cluster.

One reason that the mount point could be busy is if a process has the directory open or has the directory as its current directory.

Another reason that the mount point could be busy is if the directory is NFS-exported.

Recommended action:

For a busy mount point, if a process has the directory open or has the directory as its current directory, use the fuser command to locate the processes and either get them to release their references to the directory or kill the processes. Afterward, attempt to mount the file system again.

V-3-21268

UX:vxfs command: ERROR: V-3-21268: message

Description:

This message is printed by two different commands: fsckpt_restore and mount. In both cases, the kernel's attempt to mount the file system failed because of I/O errors or corruption of the VxFS metadata.

Recommended action:

Check the console log for I/O errors and fix any problems reported there. Run a full $\tt fsck.$

V-3-21272

UX:vxfs command: ERROR: V-3-21272: message

Description:

The mount options specified contain mutually-exclusive options, or in the case of a remount, the new mount options differed from the existing mount options in a way that is not allowed to change in a remount.

Recommended action:

Change the requested mount options so that they are all mutually compatible and retry the mount.

V-3-23729

UX:vxfs command: ERROR: V-3-23729: message

Description:

Cluster mounts require the vxfsckd daemon to be running, which is controlled by Veritas Cluster Server (VCS).

Recommended action:

Check the VCS status to see why this service is not running. After starting the daemon via VCS, try the mount again.

V-3-24996

UX:vxfs command: ERROR: V-3-24996: message

Description:

In some releases of VxFS, before the VxFS mount command attempts to mount a file system, mount tries to read the VxFS superblock to determine the disk layout version of the file system being mounted so that mount can check if that disk layout version is supported by the installed release of VxFS. If the attempt to read the superblock fails for any reason, this message is displayed. This message will usually be preceded by another error message that gives more information as to why the superblock could not be read.

Recommended action:

The corrective action depends on the preceding error, if any.

Appendix

Disk layout

This appendix includes the following topics:

- About disk layouts
- VxFS Version 6 disk layout
- VxFS Version 7 disk layout
- VxFS Version 8 disk layout

About disk layouts

The disk layout is the way file system information is stored on disk. On VxFS, several different disk layout versions were created to take advantage of evolving technological developments.

The disk layout versions used on VxFS are:

Version 1	Version 1 disk layout is the original VxFS disk layout provided with pre-2.0 versions of VxFS.	Not Supported
Version 2	Version 2 disk layout supports features such as filesets, dynamic inode allocation, and enhanced security. The Version 2 layout is available with and without quotas support.	Not Supported
Version 3	Version 3 disk layout encompasses all file system structural information in files, rather than at fixed locations on disk, allowing for greater scalability. Version 3 supports files and file systems up to one terabyte in size.	Not Supported

Version 4	Version 4 disk layout encompasses all file system structural information in files, rather than at fixed locations on disk, allowing for greater scalability. Version 4 supports files and file systems up to one terabyte in size.	Not Supported
Version 5	Version 5 enables the creation of file system sizes up to 32 terabytes. File sizes can be a maximum of 4 billion file system blocks. File systems larger than 1TB must be created on a Veritas Volume Manager volume.	Not Supported
Version 6	Version 6 disk layout enables features such as multi-volume support, cross-platform data sharing, named data streams, and File Change Log.	Supported
Version 7	Version 7 disk layout enables support for variable and large size history log records, more than 2048 volumes, large directory hash, and SmartTier.	Supported
Version 8	Version 8 disk layout enables support for file-level snapshots.	Supported

Some of the disk layout versions were not supported on all UNIX operating systems. Currently, only the Version 6 and later disk layouts are supported and can be created and mounted. Version 1, 2, 3, 4, and 5 disk layout file systems cannot be created nor mounted. Version 7 is the default disk layout version.

The vxupgrade command is provided to upgrade an existing VxFS file system to the Version 7 layout while the file system remains online.

See the vxupgrade(1M) manual page.

VxFS Version 6 disk layout

Disk layout Version 6 enables features such as multi-volume support, cross-platform data sharing, named data streams, and File Change Log. The Version 6 disk layout can theoretically support files up to 8 terabytes (2^{40}) and file systems up to 8 exabytes (2^{63}). The maximum file system size that can be created is currently restricted to 2^{35} blocks. For a file system to take advantage of greater than 1 terabyte support, it must be created on a Veritas Volume Manager volume. For the 64-bit kernel versions of AIX 5.2 and 5.3, the maximum file size is 8 terabytes with the largefiles flag set and 2 gigabytes with the nolargefiles flag set, while the maximum size of the file system you can create depends on the block size:

Block Size	Currently-Supported Theoretical Maximum File System Size
1001 hites	00 740 470 004 as share (-:20 TD)

1024 bytes 68,719,472,624 sectors (≈32 TB)

Block Size	Currently-Supported Theoretical Maximum File System Size
2048 bytes	137,438,945,248 sectors (≈64 TB)
4096 bytes	274,877,890,496 sectors (≈128 TB)
8192 bytes	549,755,780,992 sectors (≈256 TB)

If you specify the file system size when creating a file system, the block size defaults to the appropriate value as shown above.

See the mkfs(1M) manual page.

The Version 6 disk layout also supports group quotas.

See "About quota files on Veritas File System" on page 76.

VxFS Version 7 disk layout

Disk layout Version 7 enables support for variable and large size history log records, more than 2048 volumes, large directory hash, and SmartTier. The Version 7 disk layout can theoretically support files up to 8 terabytes (2^{40}) and file systems up to 8 exabytes (2^{63}) . The maximum file system size that can be created is currently restricted to 2^{35} blocks. For a file system to take advantage of greater than 1 terabyte support, it must be created on a Veritas Volume Manager volume. For the 64-bit kernel versions of AIX 5.2 and 5.3, the maximum file size is 8 terabytes with the largefiles flag set and 2 gigabytes with the nolargefiles flag set, while the maximum size of the file system you can create depends on the block size:

Block Size	Currently-Supported Theoretical Maximum File System Size
1024 bytes	68,719,472,624 sectors (≈32 TB)
2048 bytes	137,438,945,248 sectors (≈64 TB)
4096 bytes	274,877,890,496 sectors (≈128 TB)
8192 bytes	549,755,780,992 sectors (≈256 TB)

If you specify the file system size when creating a file system, the block size defaults to the appropriate value as shown above.

See the mkfs(1M) manual page.

The Version 7 disk layout supports group quotas.

See "About quota files on Veritas File System" on page 76.

VxFS Version 8 disk layout

VxFS disk layout Version 8 is similar to Version 7, except that Version 8 enables support for file-level snapshots. The Version 8 disk layout can theoretically support files up to 8 terabytes (2^{40}) and file systems up to 8 exabytes (2^{63}). The maximum file system size that can be created is currently restricted to 2^{35} blocks. For a file system to take advantage of greater than 1 terabyte support, it must be created on a Veritas Volume Manager volume. For the 64-bit kernel versions of AIX 5.2 and 5.3, the maximum file size is 8 terabytes with the largefiles flag set and 2 gigabytes with the nolargefiles flag set, while the maximum size of the file system you can create depends on the block size:

Block Size	Currently-Supported Theoretical Maximum File System Size
1024 bytes	68,719,472,624 sectors (≈32 TB)
2048 bytes	137,438,945,248 sectors (≈64 TB)
4096 bytes	274,877,890,496 sectors (≈128 TB)
8192 bytes	549,755,780,992 sectors (≈256 TB)

If you specify the file system size when creating a file system, the block size defaults to the appropriate value as shown above.

See the mkfs(1M) manual page.

The Version 8 disk layout supports group quotas.

See "About quota files on Veritas File System" on page 76.

Glossary

access control list (ACL)	The information that identifies specific users or groups and their access privileges for a particular file or directory.
agent	A process that manages predefined Veritas Cluster Server (VCS) resource types. Agents bring resources online, take resources offline, and monitor resources to report any state changes to VCS. When an agent is started, it obtains configuration information from VCS and periodically monitors the resources and updates VCS with the resource status.
allocation unit	A group of consecutive blocks on a file system that contain resource summaries, free resource maps, and data blocks. Allocation units also contain copies of the super-block.
API	Application Programming Interface.
asynchronous writes	A delayed write in which the data is written to a page in the system's page cache, but is not written to disk before the write returns to the caller. This improves performance, but carries the risk of data loss if the system crashes before the data is flushed to disk.
atomic operation	An operation that either succeeds completely or fails and leaves everything as it was before the operation was started. If the operation succeeds, all aspects of the operation take effect at once and the intermediate states of change are invisible. If any aspect of the operation fails, then the operation aborts without leaving partial changes.
Block-Level Incremental Backup (BLI Backup)	A Symantec backup capability that does not store and retrieve entire files. Instead, only the data blocks that have changed since the previous backup are backed up.
buffered I/O	During a read or write operation, data usually goes through an intermediate kernel buffer before being copied between the user buffer and disk. If the same data is repeatedly read or written, this kernel buffer acts as a cache, which can improve performance. See unbuffered I/O and direct I/O.
contiguous file	A file in which data blocks are physically adjacent on the underlying media.
data block	A block that contains the actual data belonging to files and directories.
data synchronous writes	A form of synchronous I/O that writes the file data to disk before the write returns, but only marks the inode for later update. If the file size changes, the inode will be written before the write returns. In this mode, the file data is guaranteed to be on

	the disk before the write returns, but the inode modification times may be lost if the system crashes.
defragmentation	The process of reorganizing data on disk by making file data blocks physically adjacent to reduce access times.
direct extent	An extent that is referenced directly by an inode.
direct I/O	An unbuffered form of I/O that bypasses the kernel's buffering of data. With direct I/O, the file system transfers data directly between the disk and the user-supplied buffer. See buffered I/O and unbuffered I/O.
discovered direct I/O	Discovered Direct I/O behavior is similar to direct I/O and has the same alignment constraints, except writes that allocate storage or extend the file size do not require writing the inode changes before returning to the application.
encapsulation	A process that converts existing partitions on a specified disk to volumes. If any partitions contain file systems, /etc/filesystems entries are modified so that the file systems are mounted on volumes instead. Encapsulation is not applicable on some systems.
extent	A group of contiguous file system data blocks treated as a single unit. An extent is defined by the address of the starting block and a length.
extent attribute	A policy that determines how a file allocates extents.
external quotas file	A quotas file (named quotas) must exist in the root directory of a file system for quota-related commands to work. See quotas file and internal quotas file.
file system block	The fundamental minimum size of allocation in a file system. This is equivalent to the fragment size on some UNIX file systems.
fileset	A collection of files within a file system.
fixed extent size	An extent attribute used to override the default allocation policy of the file system and set all allocations for a file to a specific fixed size.
fragmentation	The on-going process on an active file system in which the file system is spread further and further along the disk, leaving unused gaps or fragments between areas that are in use. This leads to degraded performance because the file system has fewer options when assigning a file to an extent.
GB	Gigabyte (2 ³⁰ bytes or 1024 megabytes).
hard limit	The hard limit is an absolute limit on system resources for individual users for file and data block usage on a file system. See quota.
indirect address extent	An extent that contains references to other extents, as opposed to file data itself. A single indirect address extent references indirect data extents. A double indirect address extent references single indirect address extents.
indirect data extent	An extent that contains file data and is referenced via an indirect address extent.

inode	A unique identifier for each file within a file system that contains the data and metadata associated with that file.
inode allocation unit	A group of consecutive blocks containing inode allocation information for a given fileset. This information is in the form of a resource summary and a free inode map.
intent logging	A method of recording pending changes to the file system structure. These changes are recorded in a circular intent log file.
internal quotas file	VxFS maintains an internal quotas file for its internal usage. The internal quotas file maintains counts of blocks and indices used by each user. See quotas and external quotas file.
К	Kilobyte (2 ¹⁰ bytes or 1024 bytes).
large file	A file larger than two terabytes. VxFS supports files up to 8 exabytes in size.
large file system	A file system larger than one terabytes. VxFS supports file systems up to 8 exabytes in size.
latency	For file systems, this typically refers to the amount of time it takes a given file system operation to return to the user.
metadata	Structural data describing the attributes of files on a disk.
МВ	Megabyte (2 ²⁰ bytes or 1024 kilobytes).
mirror	A duplicate copy of a volume and the data therein (in the form of an ordered collection of subdisks). Each mirror is one copy of the volume with which the mirror is associated.
multi-volume file system	A single file system that has been created over multiple volumes, with each volume having its own properties.
MVS	Multi-volume support.
object location table (OLT)	The information needed to locate important file system structural elements. The OLT is written to a fixed location on the underlying media (or disk).
object location table replica	A copy of the OLT in case of data corruption. The OLT replica is written to a fixed location on the underlying media (or disk).
page file	A fixed-size block of virtual address space that can be mapped onto any of the physical addresses available on a system.
preallocation	A method of allowing an application to guarantee that a specified amount of space is available for a file, even if the file system is otherwise out of space.
primary fileset	The files that are visible and accessible to the user.
quotas	Quota limits on system resources for individual users for file and data block usage on a file system. See hard limit and soft limit.

quotas file	The quotas commands read and write the external quotas file to get or change usage limits. When quotas are turned on, the quota limits are copied from the external quotas file to the internal quotas file. See quotas, internal quotas file, and external quotas file.
reservation	An extent attribute used to preallocate space for a file.
root disk group	A special private disk group that always exists on the system. The root disk group is named rootdg.
shared disk group	A disk group in which the disks are shared by multiple hosts (also referred to as a cluster-shareable disk group).
shared volume	A volume that belongs to a shared disk group and is open on more than one node at the same time.
snapshot file system	An exact copy of a mounted file system at a specific point in time. Used to do online backups.
snapped file system	A file system whose exact image has been used to create a snapshot file system.
soft limit	The soft limit is lower than a hard limit. The soft limit can be exceeded for a limited time. There are separate time limits for files and blocks. See hard limit and quotas.
Storage Checkpoint	A facility that provides a consistent and stable view of a file system or database image and keeps track of modified data blocks since the last Storage Checkpoint.
structural fileset	The files that define the structure of the file system. These files are not visible or accessible to the user.
super-block	A block containing critical information about the file system such as the file system type, layout, and size. The VxFS super-block is always located 8192 bytes from the beginning of the file system and is 8192 bytes long.
synchronous writes	A form of synchronous I/O that writes the file data to disk, updates the inode times, and writes the updated inode to disk. When the write returns to the caller, both the data and the inode have been written to disk.
ТВ	Terabyte (2 ⁴⁰ bytes or 1024 gigabytes).
transaction	Updates to the file system structure that are grouped together to ensure they are all completed.
throughput	For file systems, this typically refers to the number of I/O operations in a given unit of time.
unbuffered I/O	I/O that bypasses the kernel cache to increase I/O performance. This is similar to direct I/O, except when a file is extended; for direct I/O, the inode is written to disk synchronously, for unbuffered I/O, the inode update is delayed. See buffered I/O and direct I/O.

volume	A virtual disk which represents an addressable range of disk blocks used by applications such as file systems or databases.
volume set	A container for multiple different volumes. Each volume can have its own geometry.
vxfs	The Veritas File System type. Used as a parameter in some commands.
VxFS	Veritas File System.
VxVM	Veritas Volume Manager.

Index

A

access control lists 25 alias for Quick I/O files 109 allocation policies 62 default 62 extent 19 extent based 19

В

bad block revectoring 38 blkclear 23 blkclear mount option 39 block based architecture 28 block size 19 buffered file systems 23 buffered I/O 69

С

cache advisories 71 Cached Quick I/O 119 Cached Quick I/O read-ahead 119 chgrp command 116 chown command 116 cio Concurrent I/O 44 closesync 23 commands charp 116 chown 116 cron 32 fsadm 32 getext 64 ls 117 giostat 121 setext 64, 116 Concurrent I/O disabling 74 enabling 72 contiguous reservation 63 convosync mount option 36, 40

creating Quick I/O files 115 creating a multi-volume support file system 95 creating file systems with large files 43 creating files with mkfs 149 creating Quick I/O files 110 crfs 148 cron 32, 48 cron sample script 49

D

data copy 68 data integrity 23 data synchronous I/O 39, 69 data transfer 68 default allocation policy 62 block size 19 defragmentation 32 extent 48 scheduling with cron 48 delaylog mount option 37 direct data transfer 68 direct I/O 68 directory reorganization 49 disabled file system transactions 160 disabling Concurrent I/O 74 discovered direct I/O 69 discovered_direct_iosize tunable parameter 53 disk layout Version 1 252 Version 2 252 Version 3 252 Version 4 253 Version 5 253 Version 6 253 Version 7 253 Version 8 253 disk space allocation 19 displaying mounted file systems 153

Ε

enabling Concurrent I/O 72 enabling Quick I/O 119 encapsulating volumes 92 enhanced data integrity modes 23 ENOENT 164, 211-212 ENOTDIR 164, 211-212 expansion 32 extensions of Quick I/O files 109 extent 19, 61 attributes 61 indirect 20 reorganization 49 extent allocation 19 aligned 62 control 61 fixed size 61 extent size indirect 20 external quotas file 76

F

fc foff 85 fcl_inode_aging_count tunable parameter 56 fcl_inode_aging_size tunable parameter 57 fcl_keeptime tunable parameter 54 fcl_maxalloc tunable parameter 54 fcl_winterval tunable parameter 55 file sparse 63 file change log 54 file system block size 66 buffering 23 displaying mounted 153 increasing size 154 filesystems file editing 152 fixed extent size 61 fixed write size 63 fragmentation monitoring 48-49 reorganization facilities 48 reporting 48 fragmented file system characteristics 49 free space monitoring 48 freeze 71 fsadm 32 how to reorganize a file system 156

fsadm *(continued)* how to resize a file system 154 reporting extent fragmentation 49 scheduling defragmentation using cron 49 fsadm_vxfs 44 fsvoladm 95

G

get I/O parameter ioctl 72 getext 64 global message IDs 161 global tunable parmeter vx_bc_bufhvm 46 vx_vmm_buf_count 46 vxfs_ninode 46

Η

how to display mounted file systems 152 how to edit the filesystems file 152 how to reorganize a file system 156 how to resize a file system 154 how to set up user quotas 158 how to turn off quotas 159 how to turn on quotas 157 how to view quotas 159 HSM agent error message 187–188, 233 hsm_write_prealloc 55

I

I/O direct 68 sequential 69 synchronous 69 I/O requests asynchronous 39 synchronous 38 increasing file system size 154 indirect extent address size 20 double 20 single 20 initial_extent_size tunable parameter 56 inode list error 161 inode table 47 internal 47 sizes 47 inodes, block based 19

intent log 21 multi-volume support 92 intent log resizing 22 internal inode table 47 internal quotas file 76 ioctl interface 61

Κ

kernel asynchronous I/O 108 kernel tunable parameters 45

L

large files 25, 43 creating file systems with 43 mounting file systems with 43 largefiles mount option 43 log failure 161 log mount option 36 logiosize mount option 38 ls command 117

Μ

max direct iosize tunable parameter 57 max diskg tunable parameter 57 max segio extent size tunable parameter 57 maximum I/O size 47 metadata multi-volume support 92 mincache mount option 36, 39 mkfs creating files with 148-149 creating large files 44 modes enhanced data integrity 23 monitoring fragmentation 48 mount 23.44 how to display mounted file systems 152 how to mount a file system 150 mount options 35 blkclear 39 choosing 35 combining 45 convosync 36, 40 delaylog 24, 37 extended 22 largefiles 43 log 24, 36 logiosize 38

mount options *(continued)* mincache 36, 39 nodatainlog 36, 38 tmplog 37 mounted file system displaying 153 mounting a file system 150 option combinations 45 with large files 43 msgcnt field 162 multi-volume support 90 creating a MVS file system 95 multiple block operations 19

Ν

naming convention, Quick I/O 109 ncheck 89 nodatainlog mount option 36, 38

0

O_SYNC 36 OMF 127 working with Oracle Disk Manager 127 Oracle Disk Manager 123 benefits 124 converting Quick I/O files 131 disabling 135 migrating files to 131 preparing existing databases for use with 130 setting up 129 Oracle Managed Files 127 working with Oracle Disk Manager 127

Ρ

parameters default 52 tunable 52 tuning 51 performance overall 35 preallocating space for Quick I/O files 113, 116

Q

qio_cache_enable tunable parameter 58, 119 qiomkfile 110 qiostat 121 Quick I/O 107 access Quick I/O files as raw devices 109 Quick I/O (continued) access regular UNIX files 112 converting files to Oracle Disk Manager 131 creating Quick I/O files 110 direct I/O 108 double buffering 109 extension 109 preallocating space for files 116 read/write locks 109 restrictions 110 showing resolution to a raw device 118 special naming convention 109 Quick I/O files access regular UNIX files 112 preallocating space 113 statistics 121 using relative and absolute path names 113 quota commands 77 quotacheck 78 quotas 75 exceeding the soft limit 76 hard limit 75 soft limit 75 quotas file 76 quotas.grp file 76

R

read-ahead functionality in Cached Quick I/O 119 read_nstream tunable parameter 53 read_pref_io tunable parameter 53 relative and absolute path names used with symbolic links 113 reorganization directory 49 extent 49 report extent fragmentation 48 reservation space 61 restrictions on Quick I/O 110 Reverse Path Name Lookup 88

S

sequential I/O 69 setext 64 setext command 116 showing Quick I/O file resolved to raw device 118 SmartTier multi-volume support 92

SMIT 31 snapshot file systems errors 174, 220 sparse file 63 statistics generated for Quick I/O 121 storage clearing 39 uninitialized 39 Storage Checkpoints multi-volume support 92 SVID requirement VxFS conformance to 33 symbolic links accessing Quick I/O files 112 synchronous I/O 69 system failure recovery 21 system performance overall 35

Т

temporary directories 24 thaw 71 Thin Reclamation 28, 50 tmplog mount option 37 transaction disabling 160 tunable I/O parameters 52 discovered direct iosize 53 fcl keeptime 54 fcl maxalloc 54 fcl winterval 55 initial_extent_size 56 inode aging count 56 inode_aging_size 57 max direct iosize 57 max diskg 57 max_seqio_extent_size 57 gio cache enable 58, 119 read_nstream 53 read pref io 53 Volume Manager maximum I/O size 47 write nstream 53 write pref io 53 write throttle 59 tuning I/O parameters 51 tuning VxFS 45 typed extents 20

U

umount command 152 uninitialized storage, clearing 39 unmount 161 upgrade from raw devices 131

V

Veritas Operations Manager 30 Version 1 disk layout 252 Version 2 disk layout 252 Version 3 disk layout 252 Version 4 disk layout 253 Version 5 disk layout 253 Version 6 disk layout 253 Version 7 disk layout 253 Version 8 disk layout 253 virtual disks 32 vol_maxio tunable I/O parameter 47 volume sets 93 VOP_INACTIVE 177, 223 vx_bc_bufhwm tunable parameter 46 VX_DSYNC 70 VX_FREEZE 71, 78 VX_FULLFSCK 161, 163-167, 170-172, 174, 177-178, 180-181, 184-187, 195, 209-214, 217-218, 220, 223–224, 226, 230–232, 238 VX_GETCACHE 71 VX SETCACHE 71 VX_THAW 71 VX UNBUFFERED 69 vx_vmm_buf_count tunable parameter 46 vxdump 65 vxedquota how to set up user quotas 158 VxFS storage allocation 35 vxfs_inotopath 88 vxfs_ninode tunable parameter 46 vxfssystem file 47 vxfsu_fcl_sync 55 vxgetfacl 25 vxlsino 88 vxquota how to view quotas 159 vxquotaoff how to turn off quotas 159 vxquotaon 157 vxrestore 65

vxsetfacl 25 vxtunefs changing extent size 20 vxvset 93

W

write size 63 write_nstream tunable parameter 53 write_pref_io tunable parameter 53 write_throttle tunable parameter 59