Veritas™ File System

Programmer's Reference
Guide

AlX

5.1 Service Pack 1

v Symantec.

Veritas File System Programmer's Reference Guide

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Product version: 5.1SP1

Document version: 5.1SP1.1

Legal Notice
Copyright © 2010 Symantec Corporation. All rights reserved.

Symantec, the Symantec logo, Veritas, Veritas Storage Foundation, CommandCentral,
NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered trademarks of
Symantec corporation or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THEDOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BELEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLEFORINCIDENTAL
OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED
IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software and Documentation by the U.S.
Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support

Symantec Technical Support maintains support centers globally. Technical
Support’s primary role is to respond to specific queries about product features
and functionality. The Technical Support group also creates content for our online
Knowledge Base. The Technical Support group works collaboratively with the
other functional areas within Symantec to answer your questions in a timely
fashion. For example, the Technical Support group works with Product Engineering
and Symantec Security Response to provide alerting services and virus definition
updates.

Symantec’s support offerings include the following:

m A range of support options that give you the flexibility to select the right
amount of service for any size organization

m Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

m Upgrade assurance that delivers software upgrades

m Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

m Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our Web site
at the following URL:

www.symantec.com/business/support/index.jsp
All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be
at the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

m Product release level

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/contact_techsupp_static.jsp

Hardware information

Available memory, disk space, and NIC information

Operating system

Version and patch level

Network topology

Router, gateway, and IP address information

Problem description:

m Error messages and log files

m Troubleshooting that was performed before contacting Symantec

m Recent software configuration changes and network changes

Licensing and registration

If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service

Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

Questions regarding product licensing or serialization

Product registration updates, such as address or name changes

General product information (features, language availability, local dealers)
Latest information about product updates and upgrades

Information about upgrade assurance and support contracts

Information about the Symantec Buying Programs

Advice about Symantec's technical support options

Nontechnical presales questions

Issues that are related to CD-ROMs or manuals

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

Support agreement resources

Documentation

If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

Asia-Pacific and Japan customercare_apac@symantec.com
Europe, Middle-East, and Africa semea@symantec.com
North America and Latin America supportsolutions@symantec.com

Your feedback on product documentation is important to us. Send suggestions
for improvements and reports on errors or omissions. Include the title and
document version (located on the second page), and chapter and section titles of
the text on which you are reporting. Send feedback to:

docs@symantec.com

About Symantec Connect

Symantec Connect is the peer-to-peer technical community site for Symantec’s
enterprise customers. Participants can connect and share information with other
product users, including creating forum posts, articles, videos, downloads, blogs
and suggesting ideas, as well as interact with Symantec product teams and
Technical Support. Content is rated by the community, and members receive
reward points for their contributions.

http://www.symantec.com/connect/storage-management

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
mailto:docs@symantec.com
http://www.symantec.com/connect/storage-management

Technical SUPPOIt ..o 4

Chapter 1

Chapter 2

Veritas File System software developer’s kit 11
About the software developer’s Kitcooooiiiiiiiiiii 11
File System software developer’s kit featuresccocevviiniinnnnn.n. 11
API library interfacescooovviiiiiiiiiiiii e 12
File Change LOg . .ovuvuiiiiiieie et aeaas 12
Multi-volume SUPPOItoviviniii i 13
Veritas File System I/Oovniiniiiiiiiiii e 13
Software developer’s Kit packagesc.oevuiiiiiiiiiiiiieiieiieieieieanes 13
Required libraries and header filescooiiiiiiiiiii, 14
Compiling environmentc.coouviiiiiiiiiiiii s 14
Recompiling with a different compilercocoviiiiininnnn.n. 14
File Change LOg ..o, 17
About the File Change Log fileccooviiiiiiiiiiiiiiiiieee e, 17
Recorded Changesc.vvuiuiiiiiiie e 17
Using the File Change Log fileocooiiiiiiiiiiiiiieeeeen 18
File Change Log logging activationccoeviiiiiiininnnnn.n. 19
File Change Log file layoutcooviiiiiiiiiiieee e, 20
RECOTA LY DS vnvnetieiei e e 22
Special TeCOTAS ...ouvnininii i 24
Typical 1ecord SEQUENCES ..ouvniniiiinieeiiieeieiee e e ee e aeanans 24
File Change Log tunablesc.coiviiiiiiiiiiiiee s 25
How tunables handle File Change Log growth size 26
Application programming interface for File Change Log 27
Ease Of USE euniinii et 27
Backward compatibilityooviiiiiiiiii 28
APT fUNCHIONS ..evniiieiie e 28
File Change Log recordcovininiiniiiiiieee e, 36
Copying File Change Log recordsccovviniviiiiiiieiiieieinenenes. 43
Veritas File System and File Change Log upgrade and
dOWNZTade ...ovvnieiiii e 47
Reverse path name 10oKUpcooviiiiiiiiii e 48

IO e 48

8

Contents

Chapter 3

Chapter 4

Chapter 5

vxfs_inotopath_gencccoeiiiiiiiiiiiiii 49
Multi-volume support ... 51
About multi-volume SUPPOTTovnieiiiiiiiiie e 51
Uses for multi-volume Supportooeoviiieiiieiiiiieiieieeiee e, 52
Volume application programming interfacesccooeviiiieinninns. 52

Administering volume Setscoveuviiiiiiiiiiiiiiiirenn 53

Querying the volume set for a file systemcceeieiiiinnn. 53

Modifying a volume within a file systemcoccoiiiiininn, 54

Encapsulationg and de-encapsulating a volume 54
Allocation policy application programming interfaces 54

Directing file allocationscceeuuviuiiiiieiiieiieeie e 55

Creating and assigning policiesc..covevviiviiiiiiiiiiiniinninennen. 56

Querying the defined policiescccoeiviiiiiiiiiiiiiiieieeeen, 57

Enforcing @ policyoveniineiiiii e 58
Data SEIUCTUIES ...oeeeie e 58
Using policies and application programming interfaces 59

Defining and assigning allocation policiesccccceeiieennnenn. 59

Using volume application programming interfaces 60
Named data Streams ... 63
About named data Streamsoeuuiiiiieiiiie e 63
Uses for named data Streamscoveiiniiniiniieiiiieee e 64
Named data streams application programming interface 64
Listing named data Streamsccoeeviiiiiiiiiiiiiiieeeeeeee e 66
Namespace for named data Streamscc.oevveiiiiiriiiiieiiieiennne. 67
Behavior changes in other system callscoooiiiiiiiiiiiiinin, 67
Querying named data Streamsccoeueviiiiiiniiiieiiiiieeeeeeaeaans 68
Application programming interfacecocooiiiiiiiiiiiiie 69
Command TeferenCeoouuiuniinii i 69
Veritas File System 1/O ..., 71
About Veritas File System I/Oooooiiiiiiiiiiiiiieieeeeeee e 71
Freeze and thawoooiiiiiiiiiiiiii e 71
Caching adviSOTiesoviniriiiiiiie e 73

DIFCt I/O oot 74

ConecUrrent I/ .o 75

Unbuffered I/O ..., 76

Other adViSOTIESovuiiniiniie e 76
EXEONtS oo e 77

Extent attributesco.oviririiiii e 78

Chapter 6

Contents

Reservation: preallocating space to a filecooeeviiiiinnnnn. 79
Fixed eXtent SiZ€oeviininiiiiii e 79
Application programming interface for extent attributes 80
Allocation flagsovviiniiii i 81
Allocation flags with fixed extent sizecocooiviiiiiiiininnnns, 83
How to use extent attribute APISccovviiiiiiiiiiiiiiieieeeans 84
Setting fixed extent Sizeccoevviiiiiiiiiiiiiiiie e 84
Thin Reclamation ... 87
About Thin StOragecccuviuiiiiiiiii e 87
About Thin Reclamationocoiiiiiiiiii e 87
Thin Reclamation application programming interface 87
vxfs_ts_reclaim return valuescocoeiiiiiiiiiiiiiiieieineann, 90

9

10 | Contents

Veritas File System
software developer’s kit

This chapter includes the following topics:

m About the software developer’s kit

m File System software developer’s kit features
m Software developer’s kit packages

m Required libraries and header files

m Compiling environment

About the software developer’s kit

Veritas File System (VXFS) Software Developer’s Kit (SDK) provides developers
with the information necessary to use the application programming interfaces
(APIs) to modify and tune various features and components of the Veritas File
System. These APIs are provided with the VXFS Software Developer’s Kit.

Most of the APIs covered in this document are available in the VXFS 4.0 release
and subsequent releases.

File System software developer’s kit features

This section provides an overview of the VXFS features that are accessible with
the SDK.

12 | Veritas File System software developer’s kit
File System software developer’s kit features

APl library interfaces

The API library interfaces highlighted in this SDK are the vxfsuti1 library and
VxXFS IOCTL directives. The library contains a collection of API calls that
applications can use to take advantage of the features of the VXFS file system.
Manual pages are available for all of the API interfaces.

Table 1-1 describes the API calls and features available in the VXFS API library.

Table 1-1 Library APIs and features
APIs Feature
inotopath Inode-to-path lookup
nattr Named Data Stream
FCL File Change Log
MVS Multi-volume support
Caching IOCTL directives
Advisories
Extents IOCTL directives
Freeze/Thaw IOCTL directives

The VXFS API library, vxfsutil, can be installed independent of the Veritas File
System product. This library is implemented using a stubs library and dynamic
library combination. Applications are compiled with the stubs library
libvxfsutil.a, making the application portable to any VxFS target environment.
The application can then be run on a VXFS target, and the stubs library finds the
dynamic library that is provided with the VxFS target.

The stubs library uses a default path for the location of the vxfsutil.so dynamic
library. In most cases, the default path should be used. However, the default path
can be overridden by setting the environment variable, LIBVXFSUTII,_DLI, PATH,
to the path of the vxfsutil.so library. This structure allows an application to be
deployed with minimal issues related to compatibility with other releases of VXFS.

File Change Log

The VxXFS File Change Log (FCL) tracks changes to files and directories in a file
system. Applications such as backup products, Web crawlers, search and indexing
engines, and replication software that typically scan an entire file system searching
for modifications since a previous scan can use the File Change Log.

Veritas File System software developer’s kit | 13
Software developer’s kit packages

See “About the File Change Log file” on page 17.

Multi-volume support

The multi-volume support (MVS) feature allows a VXFS file system to use multiple
Veritas™ Volume Manager (VxVM) volumes as underlying storage. Administrators
and applications can control where files go to maximize effective performance,
while minimizing cost. This feature can be used only with Veritas Volume Manager.
In addition, some of the functionality requires additional license keys.

See “About multi-volume support” on page 51.

Veritas File System |/O

VXFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems, can take
advantage of VXFS enhancements.

Software developer’s kit packages

The vrRTsfssdk package comprises the SDK. The vRTsfssdk package contains
libraries, header files, and sample programs in source and binary formats that
demonstrate usage of the VXFS APIinterfaces to develop and compile applications.
The vRTSfssdk package also contains this guide and the API manual pages.

The directory structure in the vRTSfssdk package is as follows:

src Contains several subdirectories with sample programs and GNU-based
Makefile files on each topic of interest.

bin Contains symlinks to all the sample programs in the sources directory
for easy access to binaries.

include Contains the header files for API library and ioctl interfaces.
lib Contains the pre-compiled vxfsutil API interface stubs library.
libsrc Contains the source code for the vxfsut il APIinterface stubs library.

The vRTSfssdk package can be obtained separately from the VxFS package. To
run the applications or sample programs, a licensed VXFS target is required. In
addition, the VXFS license of the required features should be installed on the
target system.

14 | Veritas File System software developer’s kit
Required libraries and header files

Required libraries and header files

The vrRTsfssdk package is installed in the /opt directory. The associated libraries
and header files are installed in the following locations:

m /opt/VRTSfssdk/5.0/lib/libvxfsutil.a

m /opt/VRTSfssdk/5.0/include/vxfsutil.h

m /opt/VRTSfssdk/5.0/include/sys/fs/fcl.h

m /opt/VRTSfssdk/5.0/include/sys/fs/vx_ioctl.h

There are also symlinks to these files from the standard Veritas paths:
/opt/VRTS/1liband /opt /VRTS/include. The standard paths are the default paths
in the latest releases of VXFS and the VXFS SDK.

Compiling environment
The SDK package installs sample programs with compiled binaries.
The requirements for running the sample programs are as follows:
m A target system with the appropriate version of vRTsvxfs installed
m Root permission, which some programs require

m A mounted VXFS 4.1 or later file system. Some may require a file system that
is mounted on a Veritas Volume Set.

Note: Some programs may require special volume configurations (volume sets).

In addition, some programs require a file system to be mounted on a volume set.

Recompiling with a different compiler
The required tools for recompiling the src or 1ibsrc directory are as follows:
B gmake Or make command
B gmake command
B gnake command
B gmake command
m gcc compiler or cc command
B gcc compiler

m gcc compiler

Veritas File System software developer’s kit
Compiling environment

B gcc compiler

To recompile the src and libsrc directories

1 Edit the make.env file and modify it with the path to your compiler.
2 Change to the src or 1ibsrc directory and run the gmake command:

3 After writing the application, compile it as follows:

gece -I /opt/VRTSfssdk/5.0/include
-L /opt/VRTSfssdk/5.0/1lib -1dl1 -o MyApp \
MyApp.c libvxfsutil.a

To compile the src or libsrc directory, edit the /opt /VRTSfssdk/5.0/make.env file
as follows:

1 Select the compiler path on your local system. Set the cc variable to be the
path on your system:

CC=/opt/bin/cc
#CC=/usr/local/bin/gcc

Use whichever path is appropriate for your compiler.

2 Change to the src or 1ibsrc directory and type:
gmake
or

make

15

16 | Veritas File System software developer’s kit
Compiling environment

File Change Log

This chapter includes the following topics:

m About the File Change Log file

m Record types

m File Change Log tunables

m Application programming interface for File Change Log

m Reverse path name lookup

About the File Change Log file

The VXFS File Change Log (FCL) tracks changes to files and directories in a file
system.

Applications that typically use the FCL are usually required to perform the
following:

m Scan an entire file system or a subset
m Discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines,
and replication programs.

Note: The FCL tracks when the data has changed and records the change type,
but does not track the actual data changes. It is the responsibility of the application
to examine the files to determine the changed data.

Recorded changes
The File Change Log records the following file system changes:

18

File Change Log

About the File Change Log file

m Creates

m Links

m Unlinks

m Renaming

m Data appended

m Data overwritten

m Data truncated

m Extended attribute modifications
m Holes punched

m Miscellaneous file property updates

Note: The FCL is supported only on disk layout Version 6 and later.

The FCL stores changes in a sparse file, referred to as the FCL file, in the file system
namespace. The FCL file is always located in
/mount_point/lost+found/changelog. The FCL file behaves like a regular file,
however, some user-level operations are prohibited, such as writes. The standard
system calls open(2), 1seek(2), read(2) and close(2) can access the data in the FCL
file. All other system calls such as mmap(2), un1ink(2), and ioct1(2) are not allowed
on the FCL file.

Warning: For compatibility with future VxFS releases, the FCL file might be pulled
out of the namespace, and these standard system calls may no longer work.
Therefore, Symantec recommends that all new applications be developed using
the programmatic interface.

See “Application programming interface for File Change Log” on page 27.

Using the File Change Log file

VXFS tracks changes to the file system by appending the FCL file with information
pertaining to those changes.

This enables you to do the following:

m Usethe FCL to determine the sequence of operations that have been performed
on the file system in general or on a specific file after a particular point in
time.

File Change Log | 19
About the File Change Log file

For example, an incremental backup application can scan the FCL file to
determine which files have been added or modified since the file system was
last backed up.

m Configure the FCL to track additional information, such as file opens, I/0
statistics, and access information, such as user ID.

You can then use this information to gather the following data:

m Space usage statistics to determine how the space usage for different types
of data.

m Usage profile for the different files on a file system across different users
to help determine which data has been recently accessed and by whom.

Space usage

You can use the FCL file to track space usage when a file system gets close to being
full. The FCL file can be searched for recently created files (file creates) or write
records to determine newly added files or existing files that have grown recently.

Depending on the application needs, the search can be done on the entire FCL file,
or on a portion of the FCL file corresponding to a specific time frame. Additionally,
you can look for files created with particular names. For example, if users are
downloading * .mp3 files that are taking up too much space, the FCL file can be
read to find files created with the name * .mp3.

Full system scan reductions

VXFS creates and logs an FCL record for every update operation performed on an
FCL-enabled file system. These operations include creates, deletes, rename, mode
changes, and writes. Therefore, incremental backup applications or applications
that maintain an index of a file system based on the filename, file attributes, or
content can avoid a full system scan by reading the FCL file to detect the files that
have changed since the previous backup or previous index update.

File history traces

You can trace a file’s history by scanning the FCL file and coalescing FCL record
sequences for a file. You can also use the related FCL records from a file’s creation,
attribute changes, write records, and deletion to track the file’s history.

File Change Log logging activation

By default, FCL logging is deactivated and can be activated on a per-file system
basis using the fc1adm command.

20

File Change Log

About the File Change Log file

See the fc1adm(1M) manual page.

When FCL loggin is activated, new FCL records are appended to the FCL file as
file system changes occur. When FCL logging is turned off, further recording
stops, but the FCL file remains as /1ost+found/changelog. You can only remove
an FCL file by using the fc1adm command.

The FCL file has an associated version that represents the layout or is the internal
representation of the FCL file, along with the list of events recorded in the FCL
file.

Whenever a new version of VXFS is released, the following occurs:
m There may either be additional events recorded in the FCL file
m The internal representation of the FCL file may change

This results in the FCL file version getting updated. For example, in VXFS 4.1, the
default was Version 3. However, because VXFS 5.0 and later releases record
additional sets of events that are not available in Version 3 (such as file opens),
the default version in VXFS 5.0 and later releases is 4. To provide backward
compatibility for applications developed on VXFS 4.1, VXFS 5.0 and later releases
provide an option to specify an FCL version during activation. Depending on the
specified version, the logging of the new record types is either allowed or
disallowed.

The logging of most of the newly added records in VXFS 5.0 and later releases,
such as file opens and I/0O statistics, is optional and is turned off by default.
Recording of these events can be enabled or disabled using the [set] and [clear]
options of the fc1adm command.

The FCL meta-information comprising of the file system state, version, and the
set of events being tracked is persistent across reboots and file system unmounts
or mounts. The version and event information is also persistent across
re-activations of FCL logging.

File Change Log file layout

In VXFS 4.1, the internal layout of the FCL file was exposed to the user and the
applications were expected to access the FCL file using standard file system
interfaces, such as open(2), read(2), and 1seek(2). However, this methodology may
lead to future compatibility issues, because if the underlying FCL layout and the
FCL version changes, the application must be changed and recompiled to
accommodate these changes.

VXFS 5.0 introduced a new programming interface that provides improved
compatibility, even when the on-disk FCL layout changes. With this API, the FCL

File Change Log | 21
About the File Change Log file

layout is not a concern for applications. Consequently, this section provides only
arudimentary description of the FCL layout.

The FCL file is usually a sparse file containing the FCL superblock and the FCL
records. The first information block in the FCL file is the FCL superblock. This
block may be followed by an optional hole as well as the FCL records which contain
information about the changes in the file system.

Figure 2-1 depicts the FCL file format.

Figure 2-1 FCL file format
Offset Ox0—»
Superblock
First Offset—» «—File System Block Boundary
Record
Record

<€—File System Block Boundary
Record

Record
Last Offset—pp|

File Change Log superblock

Changes to files and directories in the file system are stored as FCL records. The
superblock, which is currently stored in the first block of the FCL file, describes
the state of the FCL file.

The superblock indicates the following:

m Whether FCL logging is enabled

m What time it was activated

m The current offsets of the first and last FCL records

m The FCL file version

m The event mask for the set of events currently being tracked
m The time that the event mask was last changed

The FCL file containing just the superblock is created when FCL is first activated
using the fcladm on command. The superblock gets removed only when the FCL
file is removed using the fcladm rm command.

22 | File Change Log
Record types

When the FCL is activated using fcladm on, the state in the superblock and its
activation time are changed. Whenever any file system activity results in arecord
being appended to the FCL file, the last offset gets updated.

As the FCL file grows in size, depending on the file system tunables fc1 maxalloc
and fcl_keeptime, the oldest records at the start of the FCL file are thrown away
to free up some space, as the first offset gets updated. When the set of events
tracked in the FCL file is changed using the [set] or [clear] options of the fc1adm
command, the event mask and the event mask change time are updated. An event
mask change also results in an event mask change record containing the old event
mask and the new event mask change being logged in the FCL file.

File Change Log record
The FCL records contain information about these typical changes:

m The inode number of the file that has changed
See “Inodes” on page 48.

m The time of change
m The type of change

m Optional information depending on the record type

Depending on the record type, the FCL record may also include the following
information:

m A parent inode number

m A filename for file deletes, links, and similar operations
m A command name for a file open record

m The actual statistics for an I/0 statistics record

See Figure 2-1 on page 21.

Record types

Table 2-1 lists actions that generate FCL record types.

Table 2-1 FCL record types

Action to create an FCL record |Record type

Add a link to an existing file or VX_FCL_LINK
directory

Appending write to a file VX_FCL_DATA_EXTNDWRITE

Table 2-1

FCL record types (continued)

File Change Log | 23
Record types

Action to create an FCL record

Record type

Create a file or directory

VX_FCL_CREATE

Create a named data stream
directory

VX_FCL_CREATE

Create a symbolic link

VX_FCL_SYMLINK

Perform an mmap on a file in a
shared and writable mode

VX_FCL_DATA_OVERWRITE

Promote a file from a Storage
Checkpoint

VX_FCL_UNDELETE

Punch a hole into a file

VX_FCL_HOLE_PUNCHED

Remove a file or directory

VX_FCL_UNLINK

Remove a named data stream
directory

VX_FCL_UNLINK

Rename a file or directory

VX_FCL_RENAME

Rename a file to an existing file

VX_FCL_UNLINKVX_FCL_RENAME

Set file attributes (allocation
policies, ACLs, and extended
attributes)

VX_FCL_EATTR_CHG

Set file extent reservation

VX_FCL_INORES_CHG

Set file extent size

VX_FCL_INOEX_CHG

Set file group ownership

VX_FCL_IGRP_CHG

Set file mode

VX_FCL_IMODE_CHG

Set file size

VX_FCL_DATA_TRUNCATE

Set file user ownership

VX_FCL_IOWN_CHG

Set mtime of a file

VX_FCL_MTIME_CHG

Truncate a file

VX_FCL_DATA_TRUNCATE

Write to an existing block in a file

VX_FCL_DATA_OVERWRITE

Open a file

VX_FCL_FILEOPEN

24 | File Change Log
Record types

Table 2-1 FCL record types (continued)

Action to create an FCL record | Record type

Write I/O statistics of a file to FCL | VX_FCL_FILESTATS

Change the set of events tracked in | VX_FCL_EVNTMSK_CHG
the FCL

Note: Table 2-1 lists all the events recorded by default when the fcladm on
command activates FCL logging, except fileopen and filestat.

Access information for each of these events is also not recorded by default. Use
the [set] option of the fc1adm command to record opens, I/0 statistics and access
information.

See the fc1adm(1M) manual page.

These record types belong to fc1 _chgtype.t. fcl chgtype.t, whichis an
enumeration that is defined in the £c1.n header file.

See Table 2-2 on page 41.

Special records

The following record types are no longer visible through the API:
m VX _FCL_HEADER

m VX_FCL_NOCHANGE

m VX_FCL_ACCESSINFO

Typical record sequences

The life cycle of a file in a file system is recorded in the FCL file from creation to
deletion.

When creating a file, the following is a typical sequence of FCL records written
to the log:

VX_FCL_CREATE

VX _FCL_FILEOPEN (if tracking file opens is enabled)
VX_FCL_DATA EXTNDWRITE

VX_FCL_IMODE_CHG

File Change Log | 25
File Change Log tunables

When writing a file, one of the following FCL records is written to the log for every
write operation. The record depends on whether the write is past the current end
of the file or within the file.

VX_FCL DATA EXTNDWRITE
VX_FCL DATA OVERWRITE

The following shows a typical sequence of FCL records written to the log, when
file a is renamed to b and both files are in the file system:

vx FCL_UNLINK (for file b, if it already exists)

vx_FcL_RENAME (for a rename from a to b)

File Change Log tunables

You can set four FCL tunable parameters using the vxtunefs command.
See the vxtunefs(1M) manual page.

The following are the four available FCL tunable parameters:

fcl keeptime Specifies the duration in seconds that FCL records stay in the FCL file
before they can be purged. The first records to be purged are the oldest
ones, which are located at the beginning of the file. Additionally,
records at the beginning of the file can be purged if the allocation to
the FCL file exceeds fc1 maxalloc bytes. The default value is “0”.
Note that fc1 keeptime takes precedence over fcl maxalloc.No
hole is punched if the FCL file exceeds £c1 maxalloc bytes and the
life of the oldest record has not reached fc1 keeptime seconds.

Tuning recommendation: The fc1 keeptime tunable parameter
needs to be tuned only when the administrator wants to ensure that
records are kept in the FCL for fc1 keeptime length of time. The

fcl keeptime parameter should be set to any value greater than
the time between FCL scans. For example, if the FCL is scanned every
24 hours, fc1 keeptime could be set to 25 hours. This prevents FCL
records from being purged before they are read and processed.

fcl maxalloc Specifies the maximum amount of space in bytes to be allocated to
the FCL file. When the space allocated exceeds fc1 maxalloc,ahole
is punched at the beginning of the file. As a result, records are purged
and the first valid offset is updated in the FCL superblock. The
minimum value of fc1 maxalloc is 4MB. The default value is
fs_size/33.

26

File Change Log
File Change Log tunables

fcl winterval Specifies the time in seconds that must elapse before the FCL records
multiple overwrite, extending write, or truncation records for the
same inode. This helps to reduce the number of repetitive records in
the FCL. The fc1_winterval time-out is per inode. If an inode
happens to go out of cache and returns, its write interval is reset. As
aresult, there could be more than one write record for that file in the
same write interval. The default value is 3600 seconds.

Tuning recommendation: The fc1 winterval tunable parameter
should be set to a value that is less than the time between FCL scans.
For example, if the FCL is scanned every 24 hours, fcl1 winterval
should be set to less than 24 hours. This ensures that there is at least
one record in the FCL for each file being overwritten, extended, or
truncated between scans.

fcl ointerval Specifies the time intervalin seconds within which subsequent opens
of a file do not produce an additional FCL record. This helps to reduce
the number of repetitive file-open records logged in the FCL, especially
in the case of frequent accesses through NFS. If the tracking of access
information is also enabled, a subsequent file open event within
fcl ointerval might produce arecord, if the latter open is by a
different user. Similar to fc1_ointerval, if an inode goes out of
cache and returns, or if there is an FCL sync, there might be more than
one file open record within the same open interval. The default value
is 600 seconds.

Tuning recommendations: If the application using file-open records
only needs to know if a file has been accessed by any user from the
last time it scanned the FCL, fc1 ointerval can be set to a time
period in the range of the time between the scans. If the application
is interested in tracking every access, the tunable can be set to zero.

In the case where the file system is extensively accessed over NFS,
depending on the platform and the NFS implementation, there might
be a large number of file open records logged. In such cases, it is
recommended to set the tunable to a higher value to avoid flooding
the FCL with repetitive records.

How tunables handle File Change Log growth size

Figure 2-2 illustrates an example of record purging as an FCL file grows in size.

The FCL file on the left contains 8K blocks and no holes. When activity occurs on
the file system, it is recorded in the FCL and the growth results in the FCL file on
the right.

When the FCL file size reaches the maximum allowable size that is specified by
the fc1 maxalloc tunable, older records are purged and space is freed. The FCL

File Change Log | 27
Application programming interface for File Change Log

feature only purges records that are older than a time specified by fc1 keeptime.
The freed space is always in units of an internal hole size.

Figure 2-2 displays the file system freeing up space in the FCL file in 8K units.

When the FCL file surpasses the maximum allocation for the first time and the
number of older records is 20K, the program purges 16K. This leaves a 16K hole
following the FCL superblock. The first valid offset in the FCL superblock is then

updated to 24K.
Figure 2-2 FCL record purging example
Offset 0Ox0 —» Offset 0x0 >
Superblock Superblock
first offset = 8K Record : !
Record] :
16K Hole
Record } 1
Record] :
: Y o
Record first offset = 24KB Record
Record Record
FCL Before: No holes FCL After:

A 16 K hole exists at offset 8K

Application programming interface for File Change
Log

In addition to the existing programmatic interface exposed through 1ibvxfsutil:
vxfs_fcl sync,VXFS 5.0 and later releases provide a new set of programmatic
interfaces which replace the mechanism to access an FCL file via the set of standard
system calls: open(2), 1seek(2), read(2) and c1ose(2). This API provides the
following improvements:

Ease of use
The API reduces the need to write additional code to parse FCL entries.

Most of the on-disk FCL records are of a fixed size and contain only the default
information such as the inode number or time-stamp. However, some records can

28

File Change Log

Application programming interface for File Change Log

be of variable sizes, such as a file remove or rename record. These records contain
additional information, such as the name of a file that is removed or renamed.

To ensure that the first few bytes at the start of any file system block is always a
valid FCL record (if the filename crosses a block boundary), the file system block
may be split across multiple on-disk records. Previously, you were required to
write additional code to assemble these records to get the filename. The API in
the VXFS 5.0 and later releases provides a mechanism to directly read a single
assembled logical record. This makes it easier for applications using the API. The
API also lets the application specify a filter to indicate a subset of the events of
interest and return only required records.

Backward compatibility

API functions

The API lets applications read the FCL independent of the FCL layout changes.
For example, consider a scenario where an application directly accesses and
interprets the on-disk FCL records. If the next VXFS release adds new records or
changes the way the records are stored in the FCL file, the application needs to
be rewritten or at least re-compiled to accommodate for the changes (under
previous VXFS versions).

With an intermediate API, the on-disk layout of FCL is hidden from the application,
so even if the disk layout of FCL changes, the API internally translates the data
returns the expected output record to the user. The user application can then
continue without a recompilation or a rewrite.This insulates programs from FCL
layout changes and provides greater compatibility for existing applications.

The API uses the following type of functions:
m Functions for accessing FCL records

m Functions for seeking offsets and time stamps

Functions for accessing File Change Log records
The following are general functions for accessing FCL records:
vxfs_fcl open Opens the FCL file and returns a handle which can be used for

further operations. All subsequent accesses of the FCL file through
the API must use this handle.

vxfs_fcl close Closes the FCL file and cleans up resources associated with the
handle

File Change Log | 29
Application programming interface for File Change Log

vxfs_fcl_getinfo Returns the FCL version number along with the state (on/off) of
the FCL file

vxfs_fcl_read Reads FCL records of interest to the user into a buffer passed in
by the user

vxfs_fcl_copyrec Copies an FCL record. If the source record contains pointers, it

relocates them to point to the new location.

Functions for seeking offsets and time stamps in the File
Change Log

Users have the option to seek to a particular point in the File Change Log based
on the offset from where they left off, or to the first record after a specified time.

The following functions can seek offsets and time stamps in the FCL:

vxfs_fcl_getcookie Returns an opaque structure (referred to hereinafter as a cookie)
which embeds the current FCL activation time and the current
offset. This cookie can be saved and later passed into
vxfs_fcl seektocontinuereading from where the application
left off last time.

vxfs_fcl_seek Extracts data from the cookie passed and seeks to the specified
offset. A cookie is embedded with the FCL activation time and file
offset.

vxfs_fcl seektime Seeks to the first record in the FCL after the specified time

vxfs_fcl_open

The following is the syntax for the vxfs fc1 open() function:
int vxfs fcl open(char *pathname, int flags, void **handle);

This function opens the FCL file and returns a handle which should be used for
all further accesses to the FCL through the API (for example, vxfs fcl read,
vxfs fcl seek, etc.).

vxfs_fcl open has two parameters: *pathname and **handle. The *pathname
can be a pointer to an FCL filename or a mount point. If *pathname is a mount
point, vxfs fcl open automatically determines if the FCL is activated on the
mount point and opens the FCL file associated with the mount point (currently
mount_point/lost+found/ changelog).

vxfs fcl open then determines if it is a valid FCL file, and if the FCL file version
is compatible with the library. The vxfs fcl open() function then assimilates

30

File Change Log

Application programming interface for File Change Log

meta-information about the FCL file into an opaque internal data structure and
populates **handle with a pointer.

Just like the 1seek(2) and read(2) system calls, the FCL file **handle has an internal
offset to indicate the position in the file from where the next read starts. When
the FCL file is successfully opened, this offset is set to the first valid offset in the
FCL file.

Return value

Upon successful completion, a “0” is returned to the caller and the handle is
non-NULL. Otherwise, the API returns a non-zero value is and the handle is set
to NULL. The global value errno is also set to indicate the error.

vxfs_fcl_close

vxfs_fcl close closes the FCL file referenced by handle. All data structures
allocated with this handle are cleaned. You should not use this handle after a call

tovxfs fcl close.

Parameters

void vxfs fcl close(void *handle)

*handleis a valid handle returned by the previous call to vxfs fcl open.

vxfs_fcl_getinfo

int vxfs fcl getinfo(void *handle, struct fcl info*fclinfo);

The vxfs fcl getinfo() function returns information about the FCL file in the
FCL information structure pointed to by fci1_info. It obtains this information
from the FCL superblock.

struct fcl info {
uint32 tfcl version;
uint32 tfcl state;
i

An intelligent application that is aware of the record types associated with each
can decide from fc1_ version, whether the FCL file contains the needed
information. For instance, a Version 3 FCL file never contains access information
along with an FCLrecord. If fc1 stateis FcLs OFF, the application can then infer
that there are no records added to the FCL file due to file system activity.

File Change Log
Application programming interface for File Change Log

Return values

A “0” indicates success; otherwise, the errno is set to error and a non-zero value
is returned.

vxfs_fcl_read

This function lets the application read the actual file or directory change
information recorded in the FCL as logical records. Each record returns a struct
fcl recordtype. vxfs fcl read lets the application specify a filter comprising
a set of desired events.

Parameters

The following is the syntax for the vxfs fcl read() function:

int vxfs fcl read(void *hndl, char *buf, size t *bufsz,

uint64 t eventmask, uint32 t *nentries);

Input
This function has the following input:

B +hndlis a pointer returned by a previous call to vxfs fcl open
m ~“bufis a pointer to a buffer of size at least *bursz
m *bufsz specifies the buffer size

B cventmask is a bit-mask that specifies a set of events which is of interest to
the application. It should be a “logical or” of a set of event masks specified in
the fc1.nh header. For example, if the eventmaskis (vXx_FCL_CREATE MASK |
VX_FCL_UNLINK MASK), vxfs_fcl read returns only file create and delete
records.

If an application needs to read all of the record types, the application can
specify a default eventmask mask as rFcL_ALL v4 EVENTS. This returns all valid
Version 4 FCL records in the FCL file.

See Table 2-1 on page 22.

Note: If vXx_FCL, EVENTMASKCHG MASK is set in eventmask and the records
returned by vxfs_fcl read contain a vX_FCL_EVENTMASK_ CHG record, it is
always the last record in the buffer. This lets the application to readjust the
eventmask if required. In addition, if the application discovers from the
eventmask change record that a particular event is no longer recorded, it can
decide to stop further reading.

31

32 | File Change Log

Application programming interface for File Change Log

B ~nentries specifies the number of entries that should be read into the buffer
in this call to vxfs fcl read.If #nentriesis “0,” vxfs fcl readreads as
many entries as well fit in the buffer.

Output

*puf contains *nentries FCL records of the struct fcl record type if there is
no error.

If the requested number of entries cannot fit in a buffer of the passed size, an
FCL_ENOSPC error is returned. In this case, *bufszis updated to contain the buffer
size required for the requested number of records. The application may use this
toreallocate a larger sized buffer and invoke vxfs_fcl readagain. *bufszisnot
changed if there is no error.

*nentries is updated to contain the number of entries read in the buffer when
vxfs_fcl readis called and there is no error. *nentries and the returned value
are both zero when the application has reached the end of file and there are no
more records to be read.

Return values

A "0" indicates success; a non-zero indicates an error.

Note: Fc1, ENOSPC is returned if there is not enough space in the buffer to store
the current record. The minimum size the buffer must be is returned in *bufsz.

After a successful call to vxfs fcl read, the current file position is advanced, so
that the next call to vxfs fcl read reads the next set of records.

vxfs_fcl_getcookie

The vxfs fcl getcookie and vxfs fcl seek() functions are effective methods
for remembering a position in the FCL file that the application has processed
earlier. This then can be used as a restarting point. This is a highly useful tool for
applications.

See “vxfs_fcl_seek” on page 33.

The vxfs_ fcl getcookie() function returns an opaque fcl cookie structure
which embeds information comprising the current activation time of the FCL file
and an offset indicating the current position in the FCL file. This cookie can be
passed into vxfs_fcl seek to seek to the position in the FCL file defined by the
cookie.

File Change Log
Application programming interface for File Change Log

A typical incremental backup or index-update program can read to the end of the
FCL file and perform actions based on the FCL records. The application can get
information about the current position in the FCL file using vxfs fcl getcookie
and then store the cookie in a persistent structure such as a file. The next time
the application needs to perform an incremental operation, it reads the cookie
and passes it to vxfs fcl seek to seek to the point where it left off. This enables
the application to read only the new FCL records.

Parameters

The following is the syntax for the vxfs fcl getcookie() function:
int vxfs fcl getcookie(void *handle, struct fcl cookie *cookie)

The function parameters are as follows:
B ~*handleis the FCL file handle returned by a call to vxf fcl open

B *cookieis a pointer to an opaque data block defined as follows:

struct fcl cookie {
char fc_bytes[24];
}i

The data stored in the cookie is internal to the VXFS library. The application should
not assume any internal representation for the cookie or tamper with the data in
the cookie.

vxfs_fcl_seek

You can use vxfs_fcl seek to seek to the start or end of an FCL file depending
on the flag passed to it.

See “vxfs_fcl_getcookie” on page 32.

Parameters

The following is the syntax for the vxfs fcl seek() function:
int vxfs fcl seek(void *handle, struct fcl cookie *cookie, int where)

The function parameters are as follows:

m The *handle parameter should be the same handle that was returned by the
most recent call to vxfs fcl open(). This is not necessarily the same handle
usedin vxfs fcl getcookie(). The application may open the FCL file, get the
cookie, and close the FCL file in one session, and then open the FCL file and

33

34 | File Change Log

Application programming interface for File Change Log

submit the saved cookie in a later session. For each open session on the FCL
file, the valid handle is the one returned by vxfs_fcl open() for that session.

The *cookie parameter should point to a valid cookie that has been returned
from a call to vxfs fcl getcookie() on the same FCL file or one of its
checkpoints or one of the dumped or restored copies of the same FCL file. It
is the responsibility of the user application to decide which FCL file is valid
for a particular cookie and to use them in a sensible combination.

Note: The *cookie parameter may be NULL if wherehas avalue of FC1, SEEK SET
Or FCL_SEEK_END.

The where parameter should have a value of FCL_SEEK SET, FCL_SEEK_END, Or
FCL SEEK COOOKIE.

m If whereis FCL_SEEK_SET Or FCL_SEEK_END, the *cookie parameter is ignored
and vxfs_fcl seek() seeks to either the start or end of the FCL file
respectively, that is, where the first FCL record starts or where the last
record ends.

m If where has a value of FCL_SEEK_COOKIE, vxfs fcl seek() extracts the
activation time and offset stored in the *cookie parameter.

If the FCL has been deactivated (switched off) from the time the application
last called the vxfs fcl getcookie() function, or if the record at the offset
contained in the *cookie was purged by a hole-punch, vxfs fcl seek() returns
an FCL_EMISSEDRECORD error. If not, vxfs fcl seek then sets the current file
position to the offset contained in the cookie. Further calls to vxfs_fcl read()
return records from this offset.

Return values

A "0" indicates success; a non-zero indicates an error.

Note: vxfs fcl seek()returns rc1, EMISSEDRECORD if the FCL has been reactivated,
that is, the activation time in FCL is different than that passed in the cookie, or
the first valid offset in the FCL file is greater than the offset present in the cookie.

vxfs_fcl_seektime

The vxfs fcl seektime() function seeks to the first record in the FCL file that
has a timestamp greater than or equal to the specified time.

File Change Log
Application programming interface for File Change Log

Parameters

The following is the syntax for the vxfs fcl seektime() function:
int vxfs fcl seektime(void *handle, struct fcl timeval time)

The function parameters are as follows:
B ~“handleis avalid handle returned by a previous call to vxfs fcl open

B timeisan fcl time t structure type defined as follows:

struct fcl time {
uint32 t tv sec;
unit32 t tv nsec;
} fcl time t;

Note: The time specified in fc1 time t is in seconds or nanoseconds, while
the time that is returned by a standard system call such as gettimeofday may
be in seconds or microseconds. Therefore, a conversion may be needed.

vxfs fcl seektime assumes that the entries in the FCL are in a non-decreasing
order of the time-stamps and does a faster-than-linear (binary) search to determine
the FCL record with a time-stamp greater than the specified time. This means
that vxfs fcl seektime can seek to a different record when compared to a seek
done through alinear search. As aresult, the vxfs fcl seektime interfaceisnot
100% reliable.

The time-stamps in the FCL might be out-of-order under the following
circumstances:

m If the system time is modified

m Ifthe FCLfile is on a cluster-mounted file system and the times on the different
nodes are out-of-sync

Warning: On a cluster file system, you must use a mechanism to keep the system
clocks in sync (for example, Network Time Protocol—-NTP), to help ensure that
the vxfs fcl seektime interface is kept reasonably accurate.

Return values

vxfs_fcl seektime returns "0" on success. If there are no records in the FCL file
newer than the time indicated in the time parameter, vxfs fcl seektimereturns
EINVAL.

35

36

File Change Log
Application programming interface for File Change Log

vxfs_fcl_sync

The vxfs_fcl sync() function sets a synchronization point within the FCL file.
This function is kept for backward compatibility.

Before the availability of the VXFS 5.0 API to access the FCL file, applications
would typically call vxfs fcl sync to get the FCL to a stable state and set an
offset in the FCL file to use as a reference point to stop reading. The application
would then store the offset and use it to determine files changes since the last
FCLread time. A vxfs_fcl sync() call ensured that if a file had been written to
or opened, there would be at least one corresponding write or open record in the
FCL after the synchronization offset. This would happen even if the time specified
by fcl winterval or fcl_ointerval had not elapsed since the last record was
written.

With FCL access API in the VXFS 5.0 and later releases, synchronization is done
automatically when the FCL file is opened through vxfs fcl open(). The
vxfs fcl open()function sets a synchronization point and determines a reference
end offset internally.

Parameters

The following is the syntax for the vxfs fcl sync() function:
int vxfs fcl sync(char *fname, uinté64 t *offp);

The function parameters are as follows:
W “rname is a pointer to the FCL filename
m *orrpis the address of a 64-bit offset

vxfs_fcl sync brings the FCL file to a stable state and updates *ofrfp with an
offset that can be used by the application as a reference point.

File Change Log record
An application reads the FCL file through the vxfs fcl read() function.
vxfs_fcl read performs the following tasks:
m Reads the data from the FCL file
m Assembles the data into fcl_record structures
m Fills the buffer passed in by the application with these records

Each fcl record structure represents a logical event recorded in the FCL. It is
defined as the following:

File Change Log | 37
Application programming interface for File Change Log

struct fcl record {

uint32 t fr reclen; /* Record length */

uintlé t fr op; /* Operation type. */

uintlé t fr unusedl; /* unused field */

uint32 t fr acsinfovalid : 1; /* fr acsinfo field valid */
uint32 t fr newnmvalid : 1; /* fr newfilename field is valid */

uint32 t fr pinogenvalid : 1; /* fr fr pinogen field is valid */

uint32 t fr unused2 : 29; /* Future use */

uint64 t fr inonum; /* Inode Number. */

uint32 t fr inogen; /* Inode Generation Count. */
fcl time t fr time; /* Time. */

union fcl vardata {

char *fv_cmdname;

struct fcl nminfo fv_nm;

struct fcl iostats *fv_stats;

struct fcl evmaskinfo fv_evmask;

} fr_var;

uint64 t fr tdino; /* Target dir ino */
char *fr newfilename; /* For rename */
struct fcl acsinfo *fr acsinfo; /* Access Info */

ri

struct fcl nminfo {
uint64 tfn pinonum;/* Parent Inode Number. */
uint32 tfn pinogen;/* Parent Inode Gen cnt. */
char*fn filename;

ri

struct fcl evmaskinfo {
uint64 toldmask;/* O0ld event mask. */
uint64 tnewmask;/* New event mask. */

bi

Defines

These defines are provided for easier access:

#define fr cmdname fr var.fv_cmdname
#define fr stats fr var.fv_stats

#define fr oldmask fr var.fv_evmask.oldmask
#define fr newmask fr var.fv_evmask.newmask
#define fr pinonum fr var.fv_nm.fn pinonum
#define fr pinogen fr var.fv_nm.fn pinogen

#define fr filename fr var.fv_nm.fn filename

38

File Change Log

Application programming interface for File Change Log

fcl_iostats structure

VXFS 5.0 and later releases let you gather statistics such as the number of reads
and writes occurring on afile. You can enable this through the fiostat command.
The gathered stats are maintained in a per-file in-core structure and the File
Change Log acts as a persistent backing store for the statistics.

The stats are written to the FCL under the following circumstances:
m When the in-core structures need to be freed

m When the stats are reset

m At periodic intervals

These statistics can be read from the FCL as vx_rcL_FILESTAT records. Eachrecord
contains information as defined by the following fc1 iostat structure:

struct fcl iostats {
uint64 t nbytesread; /* Number of bytes read from the file*/
uint64 t nbyteswrite;/* Number of bytes written to the file*/

uint32 t nreads; /* Number of reads from the file */
uint32 t nwrites; /* Number of writes to the file */
uint32 t readtime; /* Total time in seconds for the reads */
uint32 t writetime; /* Total time in seconds for the writes */
struct {

uint32 t tv_sec;

uint32 t tv_nsec;

} lastreset;/* Last reset time for the stats */
uint32 tnodeid; /* Node from which the record was written */
uint32 treset; /* Stats have been written due to a reset */

}i

Each iostat record in the FCL contains I/O statistics accumulated over the time
interval from the lastreset time to when the FCL record is written.

Over a period of time, the cumulative statistics and aggregate can be computed
by the following:

m Traversing the FCL
m Looking for records of type VX_FCL_FILESTATS

For example, computing the aggregate for the total number of reads over a period
of time requires traversing a set of FCL files to obtain I/O statistics records. This
informations contains a sequence of records of the type vx_rc1 FILESTATS with
the same 1astreset time followed by another sequence of records with a later
lastreset time for a specific file.

File Change Log
Application programming interface for File Change Log

The aggregation considers values only from the latest record from records with
the same lastreset time and then sums up the number of reads for each such
record.

fcl_acsinfo structure

When tracking access-info is enabled, VXFS logs the access information such as:
m The real and effective user and group ID of the accessing application

m The node from where the file was accessed

m The process id of the user application along with each record

When the application reads the FCL, the information is returned in the fr_acsinfo
field.

The fr acsinfo points to an FCL acsinfo structure, defined as follows:

struct fcl acsinfo {
uint32 tfa ruid;
uint32 tfa rgid;
uint32 tfa euid;
uint32 tfa egid;
uint32 tfa pid;
uint32 tfa nodeid;

bi

Note: The accessinfo is not returned as a separate record type but as additional
information along with the other records. In addition, the accessinfo information
is not always present with every record (for example, when tracking accessinfo
is not enabled). However, even when accessinfo is enabled in some file system
internal operations (for example, truncating a file when it is removed), the access
information may not be present. To help determine if access information is
available, the FCL record contains a flag called fc1_acsinfovalid which is
non-zero only if the accessinfo is present with a particular record.

Several of the fields in the fc1_acsinfo structure are pointers and need memory
to store the actual contents. This is handled by storing the actual dataimmediately
after the FCL record, and updating the pointer to point to the data. The record
length fr recienfield is updated to account for the whole data. Thus, each FCL
record returned by vxfs fcl readis avariable size record, whose length is
indicated by fr reclen field.

Figure 2-3 illustrates how the data is laid out in a sample link record.

39

40 | File Change Log
Application programming interface for File Change Log

Figure 2-3 Sample link record

Scruct fcl record {
WYY OO e OO YOO Y
fr reclen
Fr inonuwm
Fr inogen
Fr _time (secs, nsecs)
Fr_acsinfovalid = 1

Fr ginogenvalid =il
Fr op = VI FCL LINK
VAT — -—

Fxr_ pinonum
Fr_ pinogen fr reclen

Fr filename
'\A)\AA'..'..\AAAAAJV_\AMMAAN
Fr acsinfo

Filename string

fcl acsinfo {
euid, egid,
ruid, rgid

nodeid, pid /

Y

The following code sample traverses the set of records returned by a call to
vxfs fcl read and prints the user ID:

Struct fcl record*fr;
Char *tbuf;

error = vxfs fcl read(fh, buf, &bufsz,
FCL_ALL V4 EVENTS,
&nentries) ;
tbuf = buf;
while (--nentries) {
fr = (struct fcl record *)tbuf;
if (fr->fr _acsinfovalid) {

printf (“Uid $1d\n”, fr->fr acsinfo->uid;

tbuf += fr->fr reclen;

Note: FCI, ALL v4 EVENTS are event masks.

File Change Log | 41
Application programming interface for File Change Log

See “vxfs_fcl read” on page 31.

Record structure fields

Table 2-2 briefly describes each field of the fcl_record structure and indicates the
record types for which it is valid.

Table 2-2

FCL record structure fields

Field

Description

Validity

fr_reclen

Length of the FCL record. This
includes length of the FCL record
structure and length of the data
stored immediately following the
structure. This length should be
used while traversing fcl records
returned in the buffer by
vxfs fcl read.

Valid for all records.

fr_inonum

The inode number of the file being
changed. To generate the full path
name of the changed object, the
inode number and generation
count (fr_inogen) can be used
with vxfs inotopath gen.

Valid for all FCL records except
when the record is
FCL_EVNTMSK_CHG. For event
mask change the file is implicitly
the FCL file.

fr_op

The operation for this FCL record.
For example, creation, unlink,
write, file attributes change, or
other change. fr op takes onone
of the values for the record types
listed in Table 2-1.

Use this parameter to determine
which fields of the FCL record are
valid.

Valid for all records.

fr_time

The approximate time when the
change was recorded in the FCL
file. Use the ctime() call to
interpret this field.

Valid for all records.

42 | File Change Log

Application programming interface for File Change Log

Table 2-2

FCL record structure fields (continued)

Field

Description

Validity

fr_inogen

The generation count of the
changed file. The generation count
in combination with the inode
number (of the file) is passed to
vxfs inotopath gentoprovide
the exact full path name of the
object. Without the generation
count, the returned path name can
be a re-used inode.

Valid for all FCL records except
for event mask changes and
unlinks. For event mask changes,
the inode number and generation
count are implicit. For unlink, the
generation count is not needed to
get the filename via reverse name
lookup, since it is already present
with the record.

fr_pinonum
fr_pinogen

fr_filename

For FCL records like file remove
or rename, where the directory
entry is removed, the filename
cannot be determined by reverse
name lookup. Similarly in the case
of link record, the filename cannot
be determined unambiguously.
Therefore in these cases, the
filename, inode number, and
generation count of the parent
directory (containing the file being
changed) is recorded. The parent
directoryinode (fr pinonum)and
generation count (fr pinogen)
can be used with the reverse name
lookup API to identify the full path
name of the parent directory.
Adding the trailing filename yields
the object’s full name.

Valid when the FCL record is
VX_FCL_UNLINK,
VX_FCL_RENAME or
VX_FCL_LINK. The unlink and
rename; filename and the parent
inode number; and generation
count, contain information about
the old file that was removed. For
the link, they represent the new
filename.

fr_cmdname

A short name of the command
which opened the file represented
by fr inonumand fr inogen.

Valid only when the FCL record is
VX_FCL_FILEOPEN.

File Change Log | 43
Application programming interface for File Change Log

Table 2-2 FCL record structure fields (continued)
Field Description Validity
fr_stats A pointer to an FCL_iostat Valid only when the FCL record is

record. The fc1 iostatrecord |VX_FCL_FILESTATS.
contains I/O statistics such as the
number of reads / writes that
happened on the file, average time
for aread / write, etc. These
point-in-time records can be used
to compute the aggregate or
average I/0 statistics for a file
over a period of time.

fr_oldmask These fields contain the old and | Valid only when the FCL record is
new event masks, respectively. | VX FCL EVNTMASK CHG.

Each event mask is a “logical or”
of a set of masks defined in fc1.h.

fr_newmask

fr_acsinfo A pointer to an FCL_acsinfo Validity is determined by the
structure. This structure contains | fc1_acsinfovalid
information such as the user and | bit-field. It can potentially
group ID of the application that | exist with all kinds of records.
performed the particular This is an optional field.
operation, the process id and the
ID of the accessing node.

Copying File Change Log records

Each FCLrecord returned by vxfs fcl readis of variable size and consists of the
fcl_recordstructure, followed by the additional data associated with the record.
The pointers in the fc1_record structure point to the data stored after the
fcl_record structure and the record length specifies the size of the variable sized
record. However, making an in-core copy of the FCL record involves more than
replicating fr reclen bytes of data from the source to the copy.

A simple memory copy just copies over the pointers from the source record to the
target record. This leaves the pointers in the target record pointing to data from
the source. Eventually, this can cause problems when the memory for the source
record is re-used or freed. The pointers in the replica must be modified to point
to datain the target record. Therefore, to make an in-core copy of the FCL record,
the application must use the vxfs fcl copyrec() function to copy and perform
the pointer relocation. The user application must allocate the memory needed for
the copy.

44 | File Change Log
Application programming interface for File Change Log

Index maintenance application

This sample application is for a system that maintains an index of all files in the
file system to enable a fast search similar to the 10cate program in Linux. The
system needs to update the index periodically, or as required with respect to the
file changes since the last index update. The following lists the basic steps to
perform and shows a sample call to the FCL API.

To prepare the application

1 Enable the FCL.

$ fcladm on mount point

2 Tune fcl keeptime and fcl maxalloc to the required values.

$ vxtunefs -o fcl_keeptime=value mount point

$ vxtunefs -o fcl _maxalloc=value mount point

To test the application
1 Open the FCL file.

$ vxfs fcl open(mount point, 0, &fh);

2 Seekto the end.

$ vxfs fcl seek(fh, NULL, FCL_SEEK END) ;

3 Get the cookie and store it in a file.

$ vxfs_fcl getcookie(fh, &cookie)

write (fd, cookie, sizeof(struct fcl_cookie)) ;

4 Create the index.
To update the application
1 Open the FCL file.

$ vxfs fcl open(mount point, 0, &fh);

2 Read the cookie and seek to the cookie.

$ read(fd, &cookie, sizeof(struct fcl_cookie))
$ vxfs fcl seek(fh, cookie, FCL_SEEK COOKIE)

File Change Log | 45

Application programming interface for File Change Log

3 Read the FCL file and update the index accordingly.

$ vxfs_fcl read(fh, buf, BUFSZ, FCL_ALL_v4_EVENTS, é&nentries)

4 Get the cookie and store it back in the file.

$ vxfs_fcl_getcookie(fh, &cookie)

$ write(fd, cookie, sizeof(struct fcl_cookie)) ;

Computing a usage profile
This sample application computes the usage profile of a particular file, that is,

the users who have accessed a particular file in the last hour.

Initial setup

This sample application needs additional information such as tracking file opens
and access information, which are available only with FCL Version 4. Be sure to
enable the correct FCL version.

The following steps perform the required initial setup.
To set up the application

1 Switch on the FCL with Version 4.

$ fcladm -o version=4 on mount point

If this step fails, use fcladm print to check for an existing FCL Version 3
file. If present, remove it with fcladm rmand then try switching on FCL with
Version 4.

In VXFS 5.0 and later releases, the default FCL version is 4. If there is no
existing FCL file, the fcladm on mount point command automatically creates
a Version 4 FCL.

2 Enabletracking of access information, file-opens, and I/O statistics as needed.

$ fcladm set fileopen,accessinfo mount point

3 Settunables fcl keeptime, fcl maxalloc,andfcl ointerval asrequired.
For example:

$ vxtunefs fcl ointerval=value mount point

Sample steps

The following provides sample steps for possible application use.

46

File Change Log

Application programming interface for File Change Log

Sample application setup

1 Open the FCL file.

vxfs fcl open (mount point, 0, &fh);

Set up the time to perform the seek.
Get current time using gettimeofday.

Fabricate the fc1_time_t for the time an hour before.

g b~ W N

Seek to the record in the FCL file at that time.

gettimeofday (&tm, NULL) ;
tm.sec -= 3600

vxfs fcl seektime (fh, tm);

6 Read the file with the appropriate event masks until the end of file is reached.
The application is interested in only the file open records and the access
information.

7 Check if the file inode number and generation count are same as the ones
being sought for each FCL record.

8 Print information about the user who has accessed the file, if applicable.

vxfs fcl read(fh, buf, BUFSZ, VX FCL FILEOPEN MASK |
\VX_FCL_ACCESSINFO_MASK, &nentries);

Off host processing

In some scenarios, a user application may choose to save the bandwidth of the
actual production server and outsource the job of processing the FCL to a different
system. For off-host processing, the FCL file needs to be shipped to the off-host
system. Since the FCL file is not a regular file, a command such as cp or ftp does
not work.

To be ”"shippable,” the FCL file must first be dumped into a regular file using the
fcladm dump command. The file can then be sent to the off-host system using
normal file transfer programs. See the following example.

$ fcladm -s savefile dump mount point$ rcp savefile offhost-path

On the off-host system, the FCL file must be then restored using the restore
option through the fc1adm command. Unlike the original FCL file, the restored
file is a regular file.

$ fcladm -s savefile restore restorefile

File Change Log | 47
Application programming interface for File Change Log

The restored FCL file can be passed as an argument to vxfs fcl open for further
use with the FCL APL

Warning: The reverse name lookup API does not work on the off-host system. The
off-host processing mechanism should only be used when the application can
work with the inode number and generation count, or when it has an independent
method to determine the filenames from the inode number.

Veritas File System and File Change Log upgrade and downgrade

VXFS 4.1 supported only FCL Version 3. VXFS 5.0 and later releases support both
FCL Version 3 and 4, with Version 4 as the default. When a system is upgraded
from VXFS 4.1 to VXFS 5.0 or a later release, and the file system has FCL switched
on, the existing Version 3 FCL files remains as is. VXFS 5.0 and later releases
continue tracking file system changes in the Version 3 FCL exactly as it was done
by VXFS 4.1.

A VxXFS 4.1 application that directly accesses the FCL file using the read(2) system
call can still continue to work in VXFS 5.0 and later releases, provided that the
FCL file is Version 3. However, you must develop any new applications using the
API. The API has support for both FCL Versions 3 and 4.

If anew application uses the record types that were added in the VXFS 5.0 release,
such as file opens or access information, the FCL needs to be at Version 4.

If you are running applications that still read FCL Version 3 directly, you cannot
upgrade to FCL Version 4 until those applications are rewritten to use the new
API. The API can interpret both Version 3 and Version 4, so applications can be
upgraded to use the API while Version 3 is still in effect.

Converting File Change Log version 3 files to version 4
To convert VCL Version 3 files to Version 4

1 Switch off the FCL.

$ fcladm off mount point

2 Remove the existing FCL file.

$ fcladm rm mount point

3 Re-activate with the required version.

$ fcladm [-oversion=4] on mount point

48

File Change Log

Reverse path name lookup

Downgrading Veritas File System versions

In the future, the VXFS version on a particular system may need to be downgraded
from a newer VXFS release to VXFS 5.0. This may happen when a file system is
migrated from one operating system using the newer VXFS release to another
using the VXFS 5.0 release. If the FCL file created by this future VxFS version is
Version 3 or 4, it can then be used as is by the VXFS 5.0 installation. Changes will
continue to be tracked in the same FCL.

However, if the FCL version is higher than 4, then the FCL can not be activated
and the calls to the API functions fail. In this case, the existing FCL file needs to
be removed using fcladm rmand re-activated with FCL Version 3 or 4.

Reverse path name lookup

Inodes

The reverse path name lookup feature obtains the full path name of a file or
directory from the inode number of that file or directory. The inode number is
provided as an argument to the vxfs_inotopath gen library function. See the
vxfs_inotopath_gen(3) online manual page for more information.

The reverse path name lookup feature can be useful for a variety of applications
including the following:

m Clients of the VXFS file change log feature
m Backup and restore utilities
m Replication products

Typically, these applications store information by inode numbers because a path
name for a file or directory can be very long and the applications require an easy
method to obtain a path name.

An inode is a unique identification number for each file in a file system. An inode
contains the data and metadata associated with that file, but does not include the
filenames to which the inode corresponds. It is therefore relatively difficult to
determine the name of a file from an inode number. The ncheck command provides
amechanism for obtaining a filename from an inode identifier by scanning each
directory in the file system, but this process can take a long time. The VXFS reverse
path name lookup feature obtains path names relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path
name lookup feature cannot track symbolic links to files.

File Change Log | 49
Reverse path name lookup

A file inode number, generation count, and, in the case of a vx_rc1_LINK,

VX _FCL_UNLINK,Or VX FCL RENAME record, trailing filename, when combined with
the use of reverse path name lookup, can generate full path names for each FCL
record.

vxfs_inotopath_gen

The vxfs_inotopath_gen() function takes a mount point name, inode number,
and inode generation count and returns a buffer that contains one or more (in the
case of multiple links to an inode) full path names representing the inode. The
inode generation count parameter ensures that the returned path name is not a
false value of a re-used inode. Because of this, use the vxfs_inotopath_gen()
function whenever possible.

The vxfs_inotopath() function is included only for backward compatibility. The
vxfs_inotopath() function does not take the inode generation count.

The following is the syntax for vxfs_inotopath and vxfs_inotopath_gen:

int vxfs inotopath(char *mount point, uinté64 t inode number,
int all, char ***bufp, int *inentries)

int vxfs inotopath gen(char *mnt pt, uint64 t inode number,
unint32 t inode generation, int all,

char ***bufp, int *nentries)

For the vxfs_inotopath() call, the all argument must be “0” to obtain a single
path name or “1” to obtain all path names. The mount point argument specifies
the file system mount point. Upon successful return, burp points to a
two-dimensional character pointer containing the path names and nentries
contains the number of entries. Each entry of the returned two-dimensional array
is MAXPATHLEN in size and must be freed, along with the array itself, by the calling
application.

The vxfs_inotopath_gen() call is identical to the vxfs_inotopath() call, except
that it uses an additional parameter, inode generation. The
vxfs_inotopath_gen() function returns one or more path names associated with
the given inode number, if the inode generation passed matches the current
generation of the inode number. If the generations differ, it returns an error.
Specify inode generation=0 when the generation count is unknown. This is
equivalent to using the vxfs_inotopath() call.

The vxfs_ inotopath gen() and vxfs_inotopath() calls are supported only on
Version 6 and later disk layouts.

50 | File Change Log
Reverse path name lookup

Multi-volume support

This chapter includes the following topics:

m About multi-volume support

m Uses for multi-volume support

m Volume application programming interfaces

m Allocation policy application programming interfaces
m Data structures

m Using policies and application programming interfaces

About multi-volume support

The multi-volume support (MVS) feature lets a VXFS file system use multiple
VxVM volumes as underlying storage instead of the traditional single volume per
file system. These different volumes can have different characteristics, such as
performance, redundancy, or cost, or they could be used to isolate different parts
of the file system from each other for performance or administrative purposes.

Administrators and applications can control which files and metadata go into
which volumes by using allocation policies. Each file system operation that
allocates space examines the applicable allocation policies to see which volumes
are specified for that operation. Allocation policies normally only affect new
allocations, but there are also interfaces to move existing data to match a new
allocation policy.

The following levels of policies can apply to each allocation:
m Per-file policies

m Per-Storage Checkpoint policies

52

Multi-volume support

Uses for multi-volume support

m Per-file-system policies

The most specific allocation policy in effect for a given allocation operation is
used.

The MVS APIs fall into the following basic categories:
m Manipulation of volumes within a file system

m Manipulation of allocation policy definitions

m Application of allocation policies

Each of the APIs is also available via options to the fsvoladm(1M) and fsapadm(1M)
commands.

See the fsvoladm(1M) and fsapadm(1M) manual pages.

Uses for multi-volume support

Possible uses for the multi-volume support feature include the following:

m Controlling where files are stored so that specific files or file hierarchies can
be assigned to different volumes

m Placing the VXFS intent log on its own volume to minimize disk head movement
and thereby increase performance.

m Separating Storage Checkpoints so that data allocated to a Storage Checkpoint
is isolated from the rest of the file system

m Separating file system metadata from file data

m Encapsulating volumes so that a volume appears in the file system as a file;
this is particularly useful for databases that are running on raw volumes

m Migrating files off a volume so that the volume can be replaced or serviced

m Implementing a storage optimization application that periodically scans the
file system and modifies the allocation policies in response to changing patterns
of storage use

Volume application programming interfaces

The volume APIs can be used to add volumes to a file system, remove volumes
from afile system, list which volumes are in a file system, and retrieve information
on usage and availability of space in a volume.

Multi-volume file systems can only be used with VxVM volume sets. Volume sets
are administered via the vxvset command.

Multi-volume support | 53
Volume application programming interfaces

See the Veritas Volume Manager Administrator’s Guide.

Administering volume sets

The following examples show how to administer volume sets.
To convert a volume to a volume set

m To convert myvoll to a volume set, use the following function call:
vxvset make myvset myvoll

To add a volume to a volume set

m To add myvo12 to the volume set myvset, use the following function call:
vxvset addvol myvset myvol2

To list volumes of a volume set

m To list the volumes of myvset, use the following function call:
vxvset list myvset

To remove a volume from a volume set

m Toremove myvol2 from myvset, use the following function call:

vxvset rmvol myvset myvol2

Querying the volume set for a file system

The following function calls query a volume set for a file system.
To query all volumes associated with the file system

m To query all volumes associated with the file system, use the following function
call:

vxfs vol enumerate(fd, &count, infop);

To query a single volume

m To query a single volume, use the following function call:

vxfs vol stat(fd, vol name, infop);

54 | Multi-volume support
Allocation policy application programming interfaces

Modifying a volume within a file system
The following function calls modify a volume within a file system.
To grow or shrink a volume

m To grow or shrink a volume, use the following function call:

vxfs vol resize(fd, vol name, new vol size);

To remove a volume from a file system

m Toremove a volume from a file system, use the following function call:

vxfs vol remove (fd, vol name);

Add a volume to a file system

m To add a volume to a file system, use the following function call:

vxfs_vol add(fd, new_vol name, new vol size);

Encapsulationg and de-encapsulating a volume
The following function calls encapsulate a volume.
To encapsulate a raw volume

m Toencapsulate an existing raw volume and make the volume contents appear
as a file in the file system, use the following function call:

vxfs vol encapsulate (encapsulate name, vol name, vol size);

To de-encapsulate a raw volume

m To de-encapsulate an existing raw volume to remove the file from the file
system, use the following function call:

vxfs vol deencapsulate(encapsulate name) ;

See the Veritas File System Administrator’s Guide.

Allocation policy application programming interfaces

To make full use of multi-volume support features, VxFS supports allocation
policies that allow files or groups of files to be assigned to specified volumes within
the volume set.

Multi-volume support | 55
Allocation policy application programming interfaces

An allocation policy specifies a list of volumes and the order in which to attempt
allocations. A policy can be assigned to a file, file system, or Storage Checkpoint
created from a file system. When policies are assigned to objects in the file system,
you must specify how the policy maps to both metadata and file data. For example,
if a policy is assigned to a single file, the file system must know where to place
both the file data and metadata. If no policies are specified, the file system places
data randomly.

The allocation policies are defined per file system and are persistent. There is no
fixed limit on the number of allocation policy definitions in a file system. Once a
policy is assigned, new file allocations are governed by the policy. For files allocated
before a policy was defined or assigned or when a policy on a file has been changed,
the policy can be enforced, causing the file to be re-allocated to the appropriate
volumes. Allocation policies can be inherited by a newly created file from its parent
directory. This is accomplished by specifying the rsap_InHERIT flag when
assigning the policy to the parent directory.

Currently, there is no interface for determining where an existing file is currently
allocated. However, these APIs can be used to assign and enforce a policy on a file
to assure that the blocks are allocated properly.

Directing file allocations

Figure 3-1 shows how you might use the allocation policies to direct file allocations.

Figure 3-1 Directing File Allocations

/mnt
meta_policy = “policyl”
data_policy = “policy2”

dirl (inherit flag) } dir2
meta_policy = “policy3”
data_policy = “policy3”
/ \ file3 filea
meta_policy = “policy3”

filel file2 data_policy = “policy3”
The /mnt file system has 3 volumes in its volume set: vo1-01, vo1-02,andvol-03.
These volumes correspond to policyl, policy2,and policy3, respectively.

The file system has a policy assignment that allocates data as directed by policyl
and metadata as directed by po1icy2. These policies cause files to be allocated on

56 | Multi-volume support
Allocation policy application programming interfaces

vol-01 and vol-02, except for dir1, which has overriding assignments for
allocation on vo1-03.

When the file3 and file4 files are created, they are allocated on vo1-02 as
directed by the policyl and policy2 assignments. When filel and file2 are
created, they are allocated on vo1-03, as specified by policy3.

When file4 is created, the initial allocation is on vo1-01 and vo1-02. To move
file4 tovol-03,assign policy3to file4 and enforce that policy on the file. This
reallocates file4 to vol-03.

To direct file allocations
1 Create the allocation policies on the /mnt file system.

2 Assign the data and metadata allocation policies to the /mnt file system as
policyl and policy?2.

3 Assign the data and metadata allocation policies to dir1 with the INHERIT
flag, with both as po1licy3.

Create file4 (100MB), which becomes allocated to vo1-02.
Create £ile3 (10MB), which becomes allocated to vo1-02.
Create file2 (100MB), which becomes allocated to vo1-03.

Create £ilel (100MB), which becomes allocated to vo1-03.

0 N o u b

Assign the data and metadata allocation policies to f£i1e4, with both as
policy3.

9 Enforce the allocation policies on fi1e4, which reallocates the file to vo1-03.

Creating and assigning policies

The following function calls create and assign a policy using the multi-volume
APL

m To define a policy for a file system, use the following function call:

vxfs ap define(fd, fsap info ptr, 0);

m To assign a policy to a file system, use the following function call:

vxfs_ap_assign_ fs(fd, data policy, meta policy);

m To assign a policy to a file or directory, use the following function call:

vxfs ap assign file(fd, data policy, meta policy, 0);

Multi-volume support | 57
Allocation policy application programming interfaces

To assign a policy to a Storage Checkpoint, use the following function call:

vxfs ap assign ckpt (fd, checkpoint name, data policy, meta policy);

To assign a policy to all Storage Checkpoints, use the following function call:

vxfs ap_assign ckptchain(fd, data policy, meta policy);

To set the default allocation policies for newly created Storage Checkpoints,
use the following function call:

vxfs ap assign ckptdef (fd, data policy, meta policy);

Querying the defined policies

The following function calls query defined policies.

To query all policies on a file system, use the following function call:

vxfs ap_enumerate (fd, &count, fsap info ptr);

To query a single defined policy, use the following function call:

vxfs ap query(fd, fsap info ptr);

To query a file for its assigned policies, use the following function call:

vxfs ap query file(fd, data policy, meta policy, 0);

To query a Storage Checkpoint for its assigned policies, use the following
function call:

vxfs ap query ckpt(fd, check point name, data policy, meta policy);

To query a file system for its assigned policies, use the following function call:

vxfs ap query(fd, data policy, meta policy);

To query a file system for the default Storage Checkpoint policies, use the
following function call:

vxfs ap query ckptdef(fd, data policy, meta policy);

58

Multi-volume support
Data structures

Enforcing a policy
The following function calls enforce a policy.

m To enforce a policy on a file, use the following function call:
vxfs ap enforce file(fd, data policy, meta policy);

Enforcing the policy may cause the file to be reallocated to another volume.

m To enforce a policy on all files in a Storage Checkpoint, use the following
function call:

vxfs ap enforce ckpt(fd, check point name, data policy, meta policy,
m To enforce a policy on a primary fileset and all of the fileset's Storage
Checkpoint, use the following function call:

vxfs ap enforce ckptchain(fd, data policy, meta policy, flags);

Data structures

You can view the fsap info and fsdev info data structures in the vxfsutil.h
header file and 1ibvxfsutil.a library file.

See the vxfsutil.n header file and 1ibvxfsutil.a library file.

The data structures are provided here for quick reference:

#define FSAP NAMESZ 64
#define FSAP_MAXDEVS 256
#define FSDEV_NAMESZ 32
struct fsap_info { /* policy structure */
char ap name[FSAP NAMESZ];/* policy name */
uint32 t ap_flags; /* FSAP_CREATE | FSAP_INHERIT |
FSAP_ANYUSER */
uint32 t ap_order; /* FSAP_ORDER_A