Symantec™ Cluster Server
6.1 Agent Developer's Guide
- AlX, Linux, Solaris, Windows

\/fSymantecw

Symantec™ Cluster Server Agent Developer's Guide

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Product version: VCS 6.1

Document version: 6.1 Rev 1

Legal Notice
Copyright © 2014 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, the Checkmark Logo, Veritas, Veritas Storage Foundation,
CommandCentral, NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Symantec
Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation”, as
applicable, and any successor regulations, whether delivered by Symantec as on premises
or hosted services. Any use, modification, reproduction release, performance, display or
disclosure of the Licensed Software and Documentation by the U.S. Government shall be
solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support

Symantec Technical Support maintains support centers globally. Technical Support’s
primary role is to respond to specific queries about product features and functionality.
The Technical Support group also creates content for our online Knowledge Base.
The Technical Support group works collaboratively with the other functional areas
within Symantec to answer your questions in a timely fashion. For example, the
Technical Support group works with Product Engineering and Symantec Security
Response to provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

= Arange of support options that give you the flexibility to select the right amount
of service for any size organization

= Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

» Upgrade assurance that delivers software upgrades

= Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

= Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our website at
the following URL.:

www.symantec.com/business/support/index.jsp
All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support

Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be at
the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

s Product release level

= Hardware information

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/contact_techsupp_static.jsp

= Available memory, disk space, and NIC information
= Operating system
= Version and patch level
= Network topology
= Router, gateway, and IP address information
= Problem description:
= Error messages and log files
= Troubleshooting that was performed before contacting Symantec

= Recent software configuration changes and network changes

Licensing and registration

If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:
www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

= Questions regarding product licensing or serialization

= Product registration updates, such as address or name changes

= General product information (features, language availability, local dealers)
» Latest information about product updates and upgrades

» Information about upgrade assurance and support contracts

= Information about the Symantec Buying Programs

= Advice about Symantec's technical support options

= Nontechnical presales questions

= Issues that are related to CD-ROMs or manuals

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

Support agreement resources

Documentation

If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

Asia-Pacific and Japan customercare_apac@symantec.com
Europe, Middle-East, and Africa semea@symantec.com
North America and Latin America supportsolutions@symantec.com

Product guides are available on the media in PDF format. Make sure that you are
using the current version of the documentation. The document version appears on
page 2 of each guide. The latest product documentation is available on the Symantec
website.

https://sort.symantec.com/documents

Your feedback on product documentation is important to us. Send suggestions for
improvements and reports on errors or omissions. Include the title and document
version (located on the second page), and chapter and section titles of the text on
which you are reporting. Send feedback to:

doc_feedback@symantec.com

For information regarding the latest HOWTO articles, documentation updates, or
to ask a question regarding product documentation, visit the Storage and Clustering
Documentation forum on Symantec Connect.

https://www-secure.symantec.com/connect/storage-management/
forums/storage-and-clustering-documentation

About Symantec Connect

Symantec Connect is the peer-to-peer technical community site for Symantec’s
enterprise customers. Participants can connect and share information with other
product users, including creating forum posts, articles, videos, downloads, blogs
and suggesting ideas, as well as interact with Symantec product teams and
Technical Support. Content is rated by the community, and members receive reward
points for their contributions.

http://www.symantec.com/connect/storage-management

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
https://sort.symantec.com/documents
mailto:doc_feedback@symantec.com
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
http://www.symantec.com/connect/storage-management

Technical SUPPOIt ... 4

Chapter 1

Chapter 2

INtroduction ... 16
AbOUt VCS agents ... 16
What's new in thisrelease ... 17
HOW agents WOrko 18
About the agent framework ... 18
About intelligent monitoring framework (IMF)le 18
Resource type definitions ... 19
About agent functions (entry points) ... 19
About on-off, on-only, and persistent resources 19
About attributeso 20
About intentional offline of applicationsooi 25
About developing an agent ... 25
Considerations for the applicationcocooiiiii 25
High-level overview of the agent development process 26
Agent entry point OVerviewcccocooooviiiiiicee, 28
About agent entry POINtscoiiiiii 28
Supported entry POINtS ..o 28
How the agent framework interacts with entry points 29
Agent entry points described ... 30
About the open entry point ..o 30
About the monitor entry point ... 30
About the online entry pointccooviiiiiiiii 31
About the offline entry point ... 31
About the clean entry point ... 32
About the action entry pointc.oooiiiiiii 33
About the info entry point ..o 34
About the attr_changed entry point ... 36
About the close entry pointcooviiiiiiiii 37
About the shutdown entry pointcocoiiiiiiiii 37
About the imf_init entry point ... 38
About the imf_register entry point ... 38

About the imf_getnotification entry point ..., 38

Chapter 3

Contents

About the migrate entry point ... 39
Return values for entry pointscoooiiiiiiii 39
Considerations for using C++ or script entry pointscooviinanee. 41

About the VCSAgStartup routinecooooiiiiiiiiiens 42
About the agent information file ... 43

Example agent information file (UNIX) ..., 43

Implementing the agent XML information fileoo. 46
About the ArgList and ArgListValues attributesoooil. 47

ArgListValues attribute for agents registered as V50 and

LT e 47

Overview of the name-value tuple formatc.oooiiin, 48

ArgListValues attribute for different agents versions 49

About the entry point timeouts ... 50
Creating entry points in C++ ... 52
About creating entry points in C++o 52

Entry point examples in this chapter ... 53
Data StrUCtUreScveiei 53
Syntax for C++ entry pointscooiiiiiiii 54

Syntax for C++ VCSAGSartupovvveniiiiie e 55

Syntax for C++ MONitorcooiiiiii e 56

Syntax for C++info ... 57

Syntax for C++ onlinecocoiiiiiiii 61

Syntax for C++ offline ... 62

Syntax for C++ cleanooiiiiiii 63

Syntax for C++ actioncoooiiiiiiii 64

Syntax for C++ attr_changedcoooiiiiiiiii 66

Syntax for CH++ OPENiuii e 67

Syntax for C++ ClOSEiuieiii i 68

Syntax for C++ shutdown ... 69

Syntax for C++ migratecooviiiiiiii e 69
Agent framework primitivesc.cooiiiiiiiiii 70

VCSAgGetMonitorLevel ..o 70

VCSAGGEtFWVEISIONoeei e 71

VCSAGGEtREGVEISIONceiiiiic e 71

VCSAQGReGIStErEPSIrUCEeiiii i 72

VCSAGSEtCOOKIEZ ... 72

VCSAGREGISIEN ...t 73

VCSAGUNIEGISIEN . enieeie e 74

VCSAGGEICOOKIE .. e 75

VO S AGSHIICDY ettt e 76

VECSAGSHIICAL .. 76

8

Contents | 9

VCSAGSNPIINGE L. 76
VCSAQGCIOSEFIlE . ..eeieiie e 77
VCSAGDEISHIING .viiiiii e 77
VEOSAGEXEC . .viie i 77
VCSAGEXxecWIthTImeoutcoiiiiiiiii e 79
VCSAGGENSNIMPTIAD ..oniniiieiieie e 80
VCSAGSENATIAD . enieiiteie e 80
VCSAGLOCKFIIE ... 80
VCSAgInitEntryPointStruct ... 80
VCSAQGSetStackSizecooveieiiii 81
VCSAGUNIOCKFIIEveeeieee e 81
VCSAgValidateAndSetEntryPoint ... 82
VCSAGSetLogCategorycuiuiiiiiiiiii e 82
VCSAGGetProductNamecooovuviiiiii 82
VCSAGMONItOrREUIN ... 82
VCSAGSetReSEPTIMEOUL ..., 83
VCSAGDECIYPIKEY ... 83
VCSAGGEtCONIDIN ... 83
VCSAGGEtHOMEDIN ... 84
VCSAGGEILOGDIN ...t 84
VCSAgGetSystemName ..o 84
VCSAG_CONSOLE_LOG_MSGconiiiiiiiiieiieeiee e 84
VCSAG_LOG _MSG ...t 85
VCSAG_LOGDBG_MSG ...t 85
VCSAG_RES_LOG _MSG . .euiiiiiiiiieii e 85
Agent Framework primitives for container supportc.cooceviieinne. 86
VCSAGIsContainerUpc.ovuiiiiii e 86
VCSAgGetContainerTypeENumcooviiiiiiiiiiiiii e, 86
VCSAGEXecINContainer2ccveiiiiiiiiii e 86
VCSAgIsContainerCapableccoviiiiiiii, 87
VCSAgExecInContainerWithTimeoutcoocoiiiiiiiiiens 87
VCSAGGELUID ... 87
VCSAgIsPIdINContainerc.ooiuiiiii 88
VCSAQISProcinContaineroeuiuiiiiiiiiiiii e 88
VCSAgGetContainerID2couiiiiiiiiiiii e 88
VCSAgGetContainerName2cccoviiiiiiiiiiieee 89
VCSAgGetContainerBasePath ... 89
VCSAgGetContainerEnabled ... 90
Chapter 4 Creating entry points in scripts ... 92
About creating entry points in SCriptscccoooiiiiiiii 92

Rules for using script entry pointscoooiiiiiiiii 93

Contents | 10

Parameters and values for script entry pointsc.coociinia. 93
ArgList attributes ... 93
EXampIes ... 93
Syntax for script entry pointsoooiiiiiii 94
Syntax for the monitor scriptccooviiiiiii 94
Syntax for the online Script ..o 95
Syntax for the offline script ... 95
Syntax for the clean scripto 95
Syntax for the action SCriptcoooiiiiiiii 96
Syntax for the attr_changed script ..o 96
Syntax for the info sCriptoooiiiii 96
Syntax for the open SCriptcoviiiiiii 96
Syntax for the close SCriptccouiiiiiii 97
Syntax for the shutdown script ... 97
Syntax for the imf_init script ... 97
Syntax for the imf_register scriptocoiiiiii 97
Syntax for the imf_getnotification scriptc.coocoiiiis 98
Syntax for migrate SCriptccoviiiiii 98
Agent framework primitivescoooviiiii 98
VCSAG_GET_MONITOR_LEVELcviiiiiiiiiiie 98
VCSAG_GET_AGFW_VERSION ..ot 100
VCSAG_GET_REG_VERSION ...t 100
VCSAG_SET_RES_EP_TIMEOUT ...ttt 100
VCSAG_GET_ATTR_VALUE ... 101
VCSAG_SET_RESINFO ..ot 103
VCSAG_MONITOR_EXIT ..oeiiiii e 103
VCSAG_SYSTEM ..o 105
VEOSAG_SU .o 105
VCSAG_RETURN_IMF_RESIDooiiiiiiiii e 106
VCSAG_RETURN_IMF_EVENT ..., 106
VCSAG_BLD_PSCOMMcuiiiiiiiii e 106
VCSAG_PHANTOM_STATE ..ot 106
VCSAG_SET_ENVS .. 107
VCSAG_LOG_MSG ...t 107
VCSAG_LOGDBG_MSG ...viiiiiiiiiiiiieiee e 107
VCSAG_SQUEEZE_SPACES ..o 107
Agent Framework primitives with container supportc.oeenee. 108
VCSAG_GET_CONTAINER_BASE_PATHccoiviiiiiiiiiiieen 108
VCSAG_GET_CONTAINER_INFO ...t 109
VCSAG_IS_PROC_IN_CONTAINERcooiiiiiiiiiiiiiice 110
VCSAG_EXEC_IN_CONTAINERcooiiiiiiiiece 111
Example script entry pointsooiiiii 111

Online entry point for FileOnOffcooiiiiiii 112

Chapter 5

Chapter 6

Monitor entry point for FileOnOff ...
Monitor entry point with intentional offlineo
Offline entry point for FileOnOff ...
Monitor entry point for agent having basic (level-1) and detailed
(level-2) Monitoringc.vvieiiii i
Logging agent MesSSagesooovoviovioeeeeeeeeeeee
About l0gging agent MEeSSAgESscvviiiiiiiiiii s
Logging in C++ and script-based entry pointscccooeviiiininn.
Agent messages: format ...
C++ agent 1ogging APIS ...
Agent application logging macros for C++ entry points
Agent debug logging macros for C++ entry points
Severity arguments for C++ mMacroscoeoveiiiiiiiiiaieienn.
Initializing function_name using VCSAG_LOG_INIT
0T I 7= 1 (=T o] o P
Examples of logging APIs used ina C++agentcccoeeeene.
Script entry point logging functionscooiiiiiiiii i
Using functions in SCriptscooiiiiiii e
VCSAG_SET_ENVS ..o
VCSAG_LOG _MSG ...iiiiiiiiiiee et
VCSAG_LOGDBG_MSG ...couiiiiiiiiiiii et
Example of logging functions used in a script agent
Building a custom agent ...
Files for use in agent development ..o,
Script based agent binariescoooviiiiii
C++ based agent binariesccooviiiiiii
Creating the type definition file for a custom agent
Naming convention for the type definition file
Example: FileOnOffTypes.Cfovuiiiiiii e
Example: Type definition for a custom agent that supports
intentional offline ..o
Requirements for creating the agentTypes.cffile
Adding the custom type definition to the configuration
Building a custom agent on UNIX ...,
Implementing entry points using SCriptsc..cocoviiiiiiiiiinn,
Example: Using script entry points on UNIX ...ty
Example: Using VCSAgStartup() and script entry points on
UN DX
Implementing entry points using C++ ...,

Example: Using C++ entry points on UNIXcoooiinn.

Contents

11

Chapter 7

Chapter 8

Example: Using C++ and script entry points on UNIX
Installing the custom agent ...
Defining resources for the custom resource typecocoviiieinnn.

Sample resource definitionc.coooiiiiii
Agent framework versions detailsocooiiii

Building a script based IMF-aware custom
AGENT Lo

About building a script based IMF-aware custom agent
Linking AMF plugins with script agent ...,
Creating XML file required for AMF plugins to do resource registration
for online and offline state monitoringcooooi
Example of amfregister.xml for registration of process-based
resource with AMF for online monitoringc..cccocoveinis
Example of amfregister.xml for registration of process-based
resource with AMF for offline monitoringcooeinis
Example of amfregister.xml for online and offline IMF monitoring
fOr @ given ProCESScvviiiriii e
Examples for adding RepearName tag in amfregister.xml
Adding IMF and IMFRegList attributes in configuration
Monitor without IMF integration ..o,
Monitor without IMF but with LevelTwo monitor frequency
Monitor with IMF integrationcoooiiiiiii
Monitor with IMF but with LevelTwo monitor frequency
Installing the IMF-aware script-based custom agent

Testing agents ...

About testing agents ..o
Using debug MeSSagESviviniiiiiii i
Debugging agent functions (entry points).cccovviiiiiiiiinent.
Debugging the agent frameworkccccooiiiiiiiiiiiiiiii
Debugging using AdvDbg attribute ...
Working of AdvDbg attributeoooiii
Impact of AdvDbg attribute on existing functionality of the entry
0]] | Pt
Using the engine process to testagentscoooviiiiiiiiiiiic s
Test CoOmMMaANAS ...
Using the AgentServer utility to testagentsc.cocooii.

Contents

12

Contents | 13

Chapter 9 Static type attributes ... 179
About static attributes ... 179
Overriding static type attributes ... 179
Static type attribute definitions ... 180
ActionTiMeOUL ... 180
AAVDDG .o 180
AEPTIMEOUL ... 182
AGENICIASS ... 182
AGENIDIFECIONY ..o 183
AgentFailedOn ... 183
AgentFile ... 183
AGENPIIONLY ... 183
AgentReplyTimeouto 183
AgentStartTimeout 184
AlertOnMonitorTimeoutsooiiiiiiii e 184
ArgLISt e 184
AttrChangedTimeouto 185
CleanRetryLimito 185
CleanTimeout ... 185
CloseTiMeOULo 186
CoNtaiNErOPLS ... 186
Conflnterval ... 186
EPCIASsS ..o 187
EPPIONtY ..o 187
ExternalStateChange ..o 187
FaultOnMonitorTimeoutscoiiiiii e 188
FaultPropagationo 188
FIreDrill ..o 188
VI 189
IMFREQGLIST ...t 189
Infolntervalo 190
INfOTIMEOUL 190
IntentionalOfflineo 190
LevelTWOMONItOrFreqoovivii e 191
LOgDDg e 191
LOGFileSIZE ... e 192
ManageFaults ... 192
Monitorinterval ... 193
MonitorStatsParam ... 193
MonitorTimeouto 194
MigrateTimeouto 194

MigrateWaitLimito 194

Chapter 10

Chapter 11

Contents

NUMTRrEadsooiii e 195
OfflineMonitorinterval ... 195
OffliNn€TIMEOUL ..., 195
OfflineWaitLimitcoieeiiiii 196
ONHNECIASS ..eiieii e 196
ONINEPTIONEY ...oeeie e 196
OnlineRetryLimit ... 196
ONlNETIMEOUL ... e 197
OnlineWaitLimit ... 197
OpPenTIMEOUL ...t 197
OPEratioNSieiii i 197
RegLIST ..ot 198
RestartLimit ... 199
SCHPICIASS ... 199
SCHPPTIONLY .ot 200
SOUrCEFIIE ... 200
SUpPPOrtedACIONSviie 200
SupportedOperationscocveiiiiiiiii 201
ToleranceLimit ..o 201
State transition diagram ... 202
State transitions ... 202
State transitions with respect to ManageFaults attribute 216
Internationalized messages ..o, 221
About internationalized MmesSagesccoeveiiiiiiiiiii 221
Creating SMC files ..., 222
SMC fOrmMat ... 222
Example SMC file ... 222
Formatting SMC filesoiuiiiiiii 223
Naming SMC files, BMC filescooiiiiiii 223
Message examplesc.ouiiuiiiiii 224
Using format specifierscoooviiiiiiiii 224
Converting SMC files to BMC filescoiiiiiiii 224
Storing BMC files ..o 225
Displaying the contents of BMC filescccoviiiiiiiiiiinenn. 225
Using BMC Map Filesooiiniiiii e 225
Location of BMC Map Filesccoiiiiiiiieee 225
Creating BMC Map Filescoooiuiiiiiii e 226
Example BMC Map File ..o, 226

Updating BMC Filesoouiniiii e 227

14

Appendix A

Contents

Using pre-5.0 VCS agents ..., 228
Using pre-5.0 VCS agents and registering them with V50 or later 228
Outline of steps to change V40 agents to V50 or later 228
Example scriptin V40 and V50 orlatercoiiiiiiiiiiiiinns 229
Sourcing ag_i18n_inc modules in script entry points 229
Guidelines for using pre-VCS 4.0 Agentscocoiiiiiiiiiiiiiiiiiiiieee 230
Log messages in pre-VCS 4.0 agentsccooieiiiiiiiiiii 230
Mapping of log tags (pre-VCS 4.0) to log severities (VCS

40 231

How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and
LAt er et 231
Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros 231
Pre-VCS 4.0 Message APIS ... 232
VCSAGLOGCONSOIEMSG ...enenininiiee i 232
VCSAGLOGITBNMSG ..t 233
VCSAGLOGIMBNMSGEX ...eeieieiieiie e 234
VCSAGLOGI18NCONSOIEMSG ... 234
VCSAgL0ogI18NCOoNSOleMSGEXouiviiiiiiiiiii e 235
... 237

15

Introduction

This chapter includes the following topics:

About VCS agents
What's new in this release
How agents work

About developing an agent

About VCS agents

Agents are programs that manage resources, such as a disk group or a mount
point, within a cluster environment. Each type of resource requires an agent. The
agent acts as an intermediary between VCS and the resources it manages, typically
by bringing them online, monitoring their state, or taking them offline.

VCS agents are classified as follows:

Bundled agents

These agents are part of the VCS infrastructure and are packaged along with
VCS. Examples of bundled agents include the IP (Internet Protocol) and NIC
(network interface card) agents. For more information on VCS bundled agents,
including their attributes and modes of operation, see the Symantec Cluster
Server Bundled Agents Reference Guide.

Enterprise agents

These agents manage enterprise databases including Oracle, Sybase, and DB2,
and are packaged along with VCS.

High availability agents
High availability agents manage various applications and are available through
a release vehicle called Agent Pack. The Agent Pack is released every quarter

Introduction
What's new in this release

independent of the VCS release. The agents are classified based on the
application type as follows:

= Application agents
These agents manage enterprise applications, such as WebLogic,
WebSphere, and SAP.

= Database agents

These agents manage database applications, such as MySQL, SAP MaxDB,
and Informix.

= Replication agents
These agents manage hardware and software replication technologies, such
as SRDF and HP EVACA.

The Agent Pack is available as a free download from the following locations:

= Symantec Operations Readiness Tool (SORT)
The agents are available as individual tarballs from:
https://sort.symantec.com/agents

Custom agents: These are agents that are developed outside of Symantec and
are not supported by Symantec Technical Support.

What's new in this release

The following features/updates are introduced in VCS 6.1:

Added a new agent Script60Agent in this release.
See “Script based agent binaries” on page 136.

Support for migration is added in Script60Agent with the help of new entry point
migrate.

See “About the migrate entry point” on page 39.
New attributes:

= MigrateWaitLimit - You can set a number of monitor intervals to wait for a
resource to migrate.
See “MigrateWaitLimit” on page 194.

= MigrateTimeout - You can set a time limit (in seconds) within which the
migrate procedure must complete or the migration process gets terminated.
See “MigrateTimeout” on page 194.

17

https://sort.symantec.com/agents

Introduction | 18
How agents work

How agents work

A single agent manages multiple resources of the same type on one system. For
example, the NIC agent manages all NIC resources. The resources to be managed
are those defined within the VCS configuration.

As part of the VCS processes, a high availability daemon (HAD) is responsible for
making applications highly available on a system.

When the VCS process HAD comes up on a system, it automatically starts the
agents required for the types of resources that are to be managed on the system.

The VCS HAD process provides the agents with the specific configuration information
for the resources that are configured under VCS.

An agent carries out the commands eceived from HAD to bring resources online,
offline, migrate, and monitor their status, as needed. When an agent crashes or
hangs, VCS detects the fault and restarts the agent.

About the agent framework

The agent framework is a set of predefined functions compiled into the agent for
each resource type. These functions include the ability to connect to the VCS engine
and to understand the common configuration attributes, such as RestartLimit and
Monitorlnterval. When an agent is built using C++, the agent framework is compiled
in the agent with an include statement. When an agent is built using script languages,
such as shell or Perl, the user can use the different agent binaries on UNIX shipped
with VCS that provides framework functions. The agent framework handles much
of the complexity that need not concern the agent developer.

See “Script based agent binaries” on page 136.

About intelligent monitoring framework (IMF)

With the IMF, VCS supports intelligent resource monitoring in addition to the
poll-based monitoring. IMF is an extension to the VCS agent framework. Many VCS
agents use IMF for monitoring resources. You can enable and disable the IMF
functionality of the VCS agents as needed. However, IMF is enabled by default for
all agents that can use IMF.

The benefits of intelligent monitoring over poll-based monitoring are as follows:
= Provides faster notification of resource state changes.

= Reduces VCS system utilization due to reduced monitor function footprint, which
enables VCS to effectively monitor a large number of resources.

Introduction | 19
How agents work

Resource type definitions

The agent for each type of resource requires a resource type definition that describes
the information an agent needs to control resources of that type. The type definition
file can be considered similar to a header file in a C program. The type definition
defines the attributes and their data types, and provides default values for certain
attributes that affect all resources of that resource type.

For example, one of the attributes that is defined for the IP resource type is the
Address attribute, which stores the IP address of a specific IP resource. This attribute
is defined as a ‘string-scalar’.

About agent functions (entry points)

An entry point is either a C++ function or a script (shell or Perl, for example) used
by the agent to carry out a specific task on a resource. The agent framework
supports a specific set of entry points, each of which is expected to do a different
task and return. For example, the online entry point brings a resource online.

See “Supported entry points ” on page 28.

An agent developer should implement the entry points for a resource type that the
agent uses to carry out the required tasks on the resources of that type. For example,
in the online entry point for the Mount resource type, the agent developer includes
the logic to mount a file system based on the parameters provided to the entry point.
These parameters are attributes for a particular resource, for example, mount point,
device name, and mount options. In the monitor entry point, the agent developer
checks the state of the mount resource and returns a code to indicate whether the
mount resource is online or offline.

See “About agent entry points” on page 28.

About on-off, on-only, and persistent resources

Different types of resources require different types of control. Resources can be
classified as on-off, on-only, or persistent.

= On-off resources
Most resources are on-off, meaning agents start and stop them as required. For
example, VCS assigns an IP address to a specified NIC when bringing a resource
online and removes the assigned IP address when taking the resource offline.
Another example is the DiskGroup resource. VCS imports a disk group when
needed and deports it when it is no longer needed. For agents of on-off
resources, all entry points can be implemented.

= On-only resources

Introduction | 20
How agents work

An on-only resource is brought online, but it is not taken offline when the
associated service group is taken offline. For example, in the case of the
FileOnOnly resource, the engine creates the specified file when required, but
does not delete the file if the associated service group is taken offline. For agents
of on-only resources, the offline entry point is not needed or invoked.

= Persistent resources

Persistent resource has an operation value of None. It cannot be brought online
or taken offline, yet the resource must be present in the configuration to allow
the resource to be monitored. For example, a NIC resource cannot be started
or stopped, but it is required to be operational in order for the associated IP
address to function properly. The agent monitors persistent resources to ensure
their status and operation. An agent for a persistent resource does not require
or invoke the online or offline entry points. It uses only the monitor entry points.

About attributes

VCS has the following types of attributes, depending on the object the attribute
applies to.

Resource type
attributes

Introduction
How agents work

Attributes associated with resource types in VCS. These can be further
classified as:

Type-independent—Attributes that all agents (or resource types)
understand.

Examples: RestartLimit, MonitorInterval, Enabled, and Probed; these
can be set for any resource type.

Typically, these attributes are set for all resources of a specific type.
For example, if you set the Monitorinterval for the IP resource type,
the same value applies to all resources of type IP. You can also
override the values of these attributes, that is, you can configure a
different attribute value for each resource of this type.
Type-dependent—Attributes that apply to a particular resource type.
Examples: The MountPoint attribute applies only to the Mount
resource type. The Address attribute applies only to the IP resource
type.

Attributes defined in the types file (types.cf) apply to all resources
of the resource type. When you configure resources, you can assign
resource-specific values to these attributes, which appear in the
main.cf file.

For example, the PathName attribute for the FileOnOff resource
type is type-dependent, and can take a resource-specific value when
configured.

Static—These attributes apply to all resource types and can have
a different value per resource type. You can override some static
attributes and assign them resource-specific values. These attributes
are prefixed with the term static and are not included in the
resource's argument list.

Examples: Monitorinterval and ToleranceLimit.

Attribute data types

VCS supports the following data types for attributes.

String

Integer

A string is a sequence of characters. If the string contains double quotes,
the quotes must be immediately preceded by a backslash. A backslash
is represented in a string as \\. Quotes are not required if a string begins
with a letter, and contains only letters, numbers, dashes (-), and
underscores (_). For example, a string defining a network interface
such as hme0 or ethO does not require quotes as it contains only letters
and numbers. However a string defining an IP address contains periods
and requires quotes, such as: "192.168.100.1"

Signed integer constants are a sequence of digits from 0 to 9. They
may be preceded by a dash, and are interpreted in base 10. Integers
cannot exceed the value of a 32-bit signed integer: 21471183247.

21

Introduction
How agents work

Boolean A Boolean is an integer, the possible values of which are 0 (false) and
1 (true).

Attribute dimensions

VCS attributes have the following dimensions.

Scalar A scalar has only one value.

For example:

MountPoint = "/Backup"

Vector A vector is an ordered list of values. Each value is indexed using a
positive integer beginning with zero.

Use a comma (,) or a semi-colon (;) to separate values.

A set of brackets ([]) after the attribute name denotes that the dimension
is a vector.

Example snippet from the type definition file for an agent:

str BackupSys/[]

When values are assigned to a vector attribute in the main.cf
configuration file, the attribute definition might resemble:

BackupSys[] = { sysA, sysB, sysC }
For example, an agent's ArgList is defined as:

static str ArgList[] = {RVG, DiskGroup, Primary,
SRL, Links}

22

Keylist

Association

Introduction
How agents work

A Keylist is an unordered list of strings, and each string is unique within
the list.

Use a comma (,) or a semi-colon (;) to separate values.

For example, to designate the list of systems on which a service group
will be started with VCS (usually at system boot):

AutoStartList = {SystemA; SystemB; SystemC}

For example:

keylist BackupVols = {}

When values are assigned to a keylist attribute in the main.cf file, it
might resemble:

BackupVols = { voll, vol2 }

An association is an unordered list of name-value pairs.
Use a comma (,) or a semi-colon (;) to separate values.

A set of braces ({}) after the attribute name denotes that an attribute is
an association.

For example, to designate the list of systems on which the service group
is configured to run and the system's priorities:

SystemList = {SystemA=1, SystemB=2, SystemC=3}

For example:

int BackupSysList {}

When values are assigned to an association attribute in the main.cffile,

it might resemble:

BackupSysList{} = { sysa=1l, sysb=2, sysc=3 }

Attribute scope across systems: global and local attributes

An attribute whose value is the same across all systems on which the service group
is configured global in scope. An attribute whose value applies on a per-system
basis is local in scope.

The at operator (@) indicates the system to which a local value applies.

23

Introduction | 24
How agents work

In the following example of the MultiNICA resource type, attributes applying locally
are indicated by "@system" following the attribute name:

MultiNICA mnic (

Devicel@sysa = { le0 = "166.98.16.103", gfe3d =
"166.98.16.105" }
Device@sysb = { le0 = "166.98.16.104", gfe3 =

"166.98.16.106" }
NetMask = "255.255.255.0"
ArpDelay = 5
RouteOptions@sysa = "default 166.98.16.103 0"
RouteOptions@sysb = "default 166.98.16.104 O"
)

In the preceding example, the value of the NetMask attribute is "255.255.255.0" on
all systems, whereas the values of the Device attribute and the RouteOptions
attribute are different on sysa and sysb.

Attribute life: temporary attributes

You can define temporary attributes in the types file. The values of temporary
attributes remain in memory as long as the VCS HAD process is running. Values
of temporary attributes are not available when the HAD process is restarted.

These attribute values are not stored in the main.cf file.

Temporary attributes cannot be converted to permanent and vice-versa. When you
save a configuration, VCS saves the temporary attribute definitions and their default
values in the type definition file.

You can modify attribute values only while VCS is running.

In the following example of RVGSnapshot resource type, FDFile is the temporary
attribute.

type RVGSnapshot (

static keylist Reglist = { Prefix }

static int NumThreads = 1

static str ArgList[] = { RvgResourceName, CacheObj,
Prefix, DestroyOnOffline }

str RvgResourceName

str CacheObj

str Prefix

boolean DestroyOnOffline = 1

temp str FDFile

Introduction
About developing an agent

About intentional offline of applications

Certain agents can identify when an application has been intentionally shut down
outside of VCS control.

If an administrator intentionally shuts down an application outside of VCS control,
VCS does not treat it as a fault. VCS sets the service group state as offline or partial,
depending on the state of other resources in the service group.

This feature allows administrators to stop applications without causing failovers.

See “IntentionalOffline” on page 190.

About developing an agent

Before creating the agent, some considerations and planning are required, especially
regarding the type of the resource for which the agent is being created.

Considerations for the application

The application for which an agent for VCS is developed must lend itself to being
controlled by the agent and be able to operate in a cluster environment. The following
criteria describe an application that can successfully operate in a cluster:

The application must be capable of being started by a defined procedure if new
agent is of type OnOff or OnOnly. There must be some means of starting the
application's external resources such as file systems that store databases, or
IP addresses used for listener processes, and so on.

Each instance of an application must be capable of being stopped by a defined
procedure if new agent is of type OnOff. Other instances of the application must
not be affected.

The application must be capable of being stopped cleanly, by forcible means if
necessary.

Each instance of an application must be capable of being monitored uniquely.
Monitoring can be simple or in-depth so as to achieve a high level of confidence
in the operation of the application. Monitoring an application becomes more
effective when the monitoring procedure resembles the actual activity of the
application's user.

For failover capability, the application must be capable of storing data on shared
disks rather than locally or in memory, and each system must be capable of
accessing the data and all information required to run the application.

The application must be crash-tolerant. It must be capable of being run on a
system that crashes and of being started on a failover node in a known state.

25

Introduction | 26
About developing an agent

This typically means that data is regularly written to shared storage rather than
stored in memory.

= The application must be host-independent within a cluster; that is, there are no
licensing requirements or host name dependencies that prevent successful
failover.

= The application must run properly with other applications in the cluster.

= The applications configured under VCS control must not write data on stdout
and stderr stream. This may interfere with VCS agent functionality. For such
applications to run under VCS control, you must redirect the application's stdout
and stderr stream.

High-level overview of the agent development process

The steps to create and implement an agent are described by example in later
chapters.

Creating the type definition file

The types definition file contains definitions of resource types. Place a custom
resource type definition in a file that specifies the name of the custom resource; for
example, MyResourceTypes.cf . This file is referenced as an "include" statement
in the VCS configuration file, main.cf.

Decide about attributes, attribute types, and attribute dimension of this new agent.
Based on these create the type definition file for this agent.

See “Creating the type definition file for a custom agent” on page 137.

Developing the entry points

Decide whether to implement the agent entry points using C++ code, scripts, or a
combination of the two.

See “Considerations for using C++ or script entry points” on page 41.
Create the entry points.

For more information on developing entry points, refer to the following links.
See “About creating entry points in C++” on page 52.

See “About creating entry points in scripts” on page 92.

Building the agent

Build the agent, create required files, and place the agent in specific directories.

Introduction | 27
About developing an agent

See “Creating the type definition file for a custom agent” on page 137.
See “Files for use in agent development” on page 136.

For building an agent, sample files are provided.

Testing the agent

Test the agent using the Agent Server utility or by defining the resource type in a
configuration.

See “About testing agents” on page 169.

Agent entry point overview

This chapter includes the following topics:

= About agent entry points

= Agent entry points described

= Return values for entry points

» Considerations for using C++ or script entry points
= About the agent information file

= About the ArgList and ArgListValues attributes

About agent entry points

Developing an agent involves developing the entry points that the agent can call
to perform operations on a resource, such as to bring a resource online, to take a
resource offline, or to monitor the resource.

Supported entry points
The agent framework supports the following entry points:

= open - initializes the environment for a resource before the agent starts to
manage it

s monitor - determines the status of a resource
= online - brings a resource online
m offline - takes a resource offline

= clean - terminates ongoing tasks associated with an online or partially-online
resource and then forcefully brings the resource offline

Agent entry point overview | 29
About agent entry points

= action - starts a defined action for a resource
m info - provides information about an online resource
m attr changed - responds to a resource's attribute's value change

= close - terminates the environment associated with a resource before the agent
stops managing it

= shutdown - called when the agent shuts down
= imf init- initializes the agent to interface with the IMF notification module

» imf register -registers or unregisters resource entities with the IMF notification
module

» imf getnotification - gets notifications about the resource state changes
from IMF notification module

Note: IMF entry points are supported only on V51 or later versions of agent.

= migrate - migrates a resource.

Note: The migration is supported only on V60 or later agent versions.

See “Agent entry points described” on page 30.

How the agent framework interacts with entry points

The agent framework ensures that only one entry point is running for a given
resource at one time. If multiple requests are received or multiple events are
scheduled for the same resource, the agent queues them and processes them one
at a time. An exception to this behavior is an optimization such that the agent
framework discards internally generated periodic monitoring requests for a resource
that is already being monitored or that has a monitor request as the last request in
resource command queue.

The agent framework is multithreaded. This means a single agent process can run
entry points for multiple resources simultaneously. However, if an agent receives
a request to take a given resource offline and simultaneously receives a request
to close it, it calls the of£1ine entry point first. The c1ose entry point is called only
after the off1ine request returns or times out. If the off1ine request is received
for one resource, and the c1ose request is received for another, the agent can call
both simultaneously.

Agent entry point overview | 30
Agent entry points described

The entry points supported by agent framework are described in the following
sections. With the exception of monitor, other entry points are optional. Each may
be implemented in C++ or scripts.

Agent entry points described

This section describes each entry point in detail.

About the open entry point

The status of the open entry point is passed as an argument to the next monitor
entry point. The name of the argument is OpenStatus. The possible value for
OpenStatus is 0 and 2. A value of 0 means that the open entry point completed
successfully. A value of 2 means that the open entry point has timed out.

When an agent starts, the open entry point of each configured and enabled resource
is called before its online, offline, Or monitor entry points are called. This allows
you to include initialization for specific resources. Most agents do not require this
functionality and will not implement this entry point.

The open entry point is also called whenever the Enabled attribute for the resource
changes from 0 to 1. The entry point receives the resource name and argList
attribute values as input and returns no value.

A resource can be brought online, taken offline, and monitored only if it is managed
by an agent. For an agent to manage a resource, the value of the resource's Enabled
attribute must be set to 1. The open entry point creates the environment needed
for other entry points to function. For example, the entry point could create files
required by other entry points for the resource, or perform some resource-specific
setup.

About the monitor entry point

The monitor entry point typically contains the logic to determine the status of a
resource. For example, the monitor entry point of the IP agent checks whether or
not an IP address is configured, and returns the state online, offline, or unknown.

Note: This entry point is mandatory.

The agent framework calls the monitor entry point after completing the online,
offline and migrate entry points to determine if bringing the resource online,
offline or migration operations were effective. The agent framework also calls this

Agent entry point overview | 31
Agent entry points described

entry point periodically to detect if the resource was brought online or taken offline
unexpectedly.

By default, the monitor entry point runs every 60 seconds (the default value of the
Monitorinterval attribute) when a resource is online.

When a resource is expected to be offline, the entry point runs every 300 seconds
(the default value for the offlineMonitorInterval attribute).

The monitor entry point receives a resource name and argList attribute values
as input (See “ArgList reference attributes” on page 185.).

The entry point returns the resource status and the confidence level.
See “Return values for entry points ” on page 39.

The entry point returns confidence level only when the resource status is online.
The confidence level is informative only and is not used by the engine. It can be
referenced by examining the value of ConfidencelLevel attribute.

A C++ entry point can return a confidence level of 0—100. A script entry point
combines the status and the confidence level in a single number.

See “Syntax for script entry points” on page 94.

About the online entry point

The online entry point typically contains the code to bring a resource online. For
example, the online entry point for an IP agent configures an IP address. When
the online procedure completes, the monitor entry point is automatically called by
the framework to verify that the resource is online.

The online entry point receives a resource name and ArgList attribute values as
input. It returns an integer indicating the number of seconds to wait for the online
to take effect. The typical return value is 0. If the return value is not zero, the agent
framework waits the number of seconds indicated by the return value before calling
the monitor entry point for the resource.

About the offline entry point

The offline entry point takes a resource offline. For example, the off1ine entry
point for an IP agent removes an IP address from the system. When the offline
procedure completes, the monitor entry point is automatically called by the
framework to verify that the resource is offline.

The offline entry point receives a resource name and argList attribute values
as input. It returns an integer indicating the number of seconds to wait for the offline
to take effect. The typical return value is 0. If the return value is not zero, the agent

Agent entry point overview
Agent entry points described

framework waits the number of seconds indicated by the return value to call the
monitor entry point for the resource.

About the clean entry point

The c1ean entry point is called by the agent framework when all ongoing tasks
associated with a resource must be terminated and the resource must be taken
offline, perhaps forcibly. The entry point receives as input the resource name, an
encoded reason describing why the entry point is being called, and the ArgList
attribute values. It must return 0O if the operation is successful and 1 if unsuccessful.

The reason for calling the entry point is encoded according to the following enum
type:

enum VCSAgWhyClean {
VCSAgCleanOfflineHung,
VCSAgCleanOfflineIneffective,
VCSAgCleanOnlineHung,
VCSAgCleanOnlineIneffective,
VCSAgCleanUnexpectedOffline,
VCSAgCleanMonitorHung

i

For script-based Clean entry points, the Clean reason is passed as an integer:

=> offline hung
=> offline ineffective
online hung
=> online ineffective

=> unexpected offline

a S~ W N o
[
\4

=> monitor hung

The above is an enum type, so same integer value is passed irrespective of whether
the entry point is written in C++ or is script-based.

= VCSAgCleanOfflineHung
The offline entry point did not complete within the expected time.
See “OfflineTimeout” on page 195.
s VCSAgCleanOfflinelneffective
The off1ine entry point was ineffective. The monitor entry point scheduled for

the resource after the off1ine entry point invocation returned a status other
than OFFLINE.

= VCSAgCleanOnlineHung
The online entry point did not complete within the expected time.

32

Agent entry point overview | 33
Agent entry points described

(See “OnlineTimeout” on page 197.)

= VCSAgCleanOnlinelneffective
The online entry point was ineffective. The monitor entry point scheduled for
the resource after the on1ine entry point invocation returned a status other than
ONLINE.

» VCSAgCleanUnexpectedOffline
The online resource faulted because it was taken offline unexpectedly.
(See “ToleranceLimit” on page 201.)

= VCSAgCleanMonitorHung
The online resource faulted because the monitor entry point consistently failed
to complete within the expected time.
(See “FaultOnMonitorTimeouts” on page 188.)

The agent supports the following tasks when the c1ean entry point is implemented:

» Automatically restarts a resource on the local system when the resource faults.
See “RestartLimit” on page 199.

= Automatically retries the online entry point when the attempt to bring a resource
online fails.
See “OnlineRetryLimit” on page 196.

= Enables the engine to bring a resource online on another system when the
resource faults on the local system.

For the above actions to occur, the c1ean entry point must run successfully, that
is, return an exit code of 0.

About the action entry point

Runs a pre-specified action on a resource. Use the entry point to run non-periodic
actions like suspending a database or resuming the suspended database.

The SupportedActions attribute is a keylist attribute that lists all the actions that are
intended on being supported. Each action is identified by a name (action_token).

See “SupportedActions” on page 200.

For an agent, all action entry points must be either C++ or script-based; you cannot
use both C++ and scripts.

If all actions are script based, make sure the action scripts reside within an actions
directory under the agent directory. Create a script for each action. Use the correct
action_token as the script name.

For example, a script called suspend defines the actions to be performed when the
action_token "suspend" is invoked via the hares -action command.

Agent entry point overview | 34
Agent entry points described

For C++ entry points, actions are implemented via a switch statement that defines
a case for each possible action_token.

See “Syntax for C++ action” on page 64.

The following shows the syntax for the -action option used with the hares
command:

hares -action <res> <token> [-actionargs <argl> ...]

-sys <system> [-clus <cluster> | -localclus]

The following example commands show the invocation of the action entry point
using the example action tokens, DBsuspend and DBResume:

hares -action DBResource DBSuspend -actionargs dbsuspend -sys
Sysl

Also,

hares -action DBResource DBResume -actionargs dbstart -sys Sysl

Return values for action entry point

The action entry point exits with a 0 if it is successful, or 1 if not successful. The
command hares -action exits with O if the action entry point exits with a 0 and
1 if the action entry point is not successful.

The agent framework limits the output of the script-based action entry point to 2048
bytes.

Output refers to information that the script prints to stdout or stderr. When users
run the hares -action command, the command prints this output. The output is also
logged to the HAD log file.

About the info entry point

The info entry point enables agents to obtain information about an online resource.
For example, the Mount agent's info entry point could be used to report on space
available in the file system. All information the info entry point collects is stored in
the "temp" attribute rResourceInfo.

See “About the Resourcelnfo attribute” on page 35.
See the Administrator's Guide for information about "temp" attributes.

The entry point can optionally modify a resource's ResourceInfo attribute by adding
or updating other name-value pairs using the following commands:

hares -modify res ResourceInfo -add key value

or

Agent entry point overview
Agent entry points described

hares -modify res ResourceInfo -update key value

Refer to the hares manual page for more information on modifying values of
string-association attributes.

See “About the Resourcelnfo attribute” on page 35.

See “Syntax for C++ entry points” on page 54.

Return values for info entry point

If the info entry point exits with 0 (success), the output captured on stdout for
the script entry point, or the contents of the info output argument for C++
entry point, is dumped to the Msg key of the ResourceInfo attribute. The Msg
key is updated only when the info entry point is successful. The state key is
set to the value: valid.

If the entry point exits with a non-zero value, ResourceInfo is updated to indicate
the error; the script's stdout or the C++ entry point's info_output is ignored.
The state key is set to the value: 1nvalid. The error message is written to the
agent's log file.

If the info entry point times out, output from the entry point is ignored. The
state key is set to the value: 1nvalid. The error message is written to the
agent's log file.

If a user kills the info entry point (for example, ki1l -15 pid), the state key
is set to the value: 1nvalid. The error message is written to the agent's log file.
See “About logging agent messages” on page 118.

If the resource for which the entry point is invoked goes offline or faults, the
State key is set to the value: stale.

If the info entry point is not implemented, the state key is set to the value:
stale. The error message is written to the agent's log file.

About the Resourcelnfo attribute

The resourceInfo attribute is a string association that stores name-value pairs.
By default, there are three such name-value pairs:

State indicates the status (valid, invalid, stale) of the information contained in
the ResourceInfo attribute.

Msg indicates the output of the info entry point, if any.

TS indicates the timestamp of when the ResourceInfo attribute was last updated.

35

Agent entry point overview | 36
Agent entry points described

These keys are updated only by the agent framework, not the entry point. The entry
point can define and add other keys (name-value pairs) and update them.

The rResourceInfo (string-association) is a temporary attribute, the scope of which
is set by the engine to be global for failover groups or local for parallel groups.
Because resourceInfo is a temporary attribute, its values are never dumped to
the configuration file.

You can display the value of the ResourceInfo by using the hares command. The
output of hares -display shows the first 20 characters of the current value; the
output of hares -value resource ResourceInfo shows all name-value pairs in
the keylist.

The resource for which the info entry point is invoked must be online.

When a resource goes offline or faults, the state key is marked "Stale" because
the information is not current. If the info entry point exits abnormally, the state
key is marked "Invalid" because not all of the information is known to be valid. Other
key data, including Msg and Ts keys, are not touched. You can manually clear values
of the ResourceInfo attribute by using the hares -flushinfo command. This
command deletes any optional keys for the rResourceInfo attribute and sets the
three mandatory keys to their default values.

For more information on hares -flushinfo command, refer the hares manual
page.

Invoking the info entry point

You can invoke the info entry point from the command line for a given online
resource using the hares -refreshinfo command.

By setting the InfoInterval attribute to some value other than 0, you can configure
the agent to invoke the info entry point periodically for an online resource.

See “Infolnterval” on page 190.

About the attr_changed entry point

This entry point provides a way to respond to resource attribute value changes.
The attr changed entry point is called when a resource attribute is modified, and
only if that resource attribute is registered with the agent framework for notification.

Registering can be accomplished either through VCSAgRegister api or by definition
in the RegList. Script-based agents can register only through the RegList attribute
definition.

See “VCSAgRegister” on page 73.

Agent entry point overview | 37
Agent entry points described

See “VCSAgUnregister” on page 74.
See “RegList” on page 198.

The attr_changed entry point receives as input the resource name registered with
the agent framework for notification, the name of the changed resource, the name
of the changed attribute, and the new attribute value. It does not return a value.

About the close entry point

The close entry point is called whenever the Enabled attribute for a resource
changes from 1 to 0, or when a resource is deleted from the configuration on a
running cluster and the state of the resource permits running the close entry point.

Note that a resource is monitored only if it is managed by an agent. For an agent
to manage a resource, the resource's Enabled attribute value must be set to 1.

See the table below to find out which states of the resource allow running of the

close entry point when the resource is deleted on a running cluster. It receives a

resource name and ArgList attribute values as input and returns no value. This

entry point typically deinitializes the resource if implemented. Most agents do not
require this functionality and will not implement this entry point.

Table 2-1 States in which CLOSE entry point runs - based on operations type
of resource

Resource Type | Online Offline Probing Going Going

State State Offline Online
Waiting Waiting

None (persistent) | Yes N/A Yes Yes N/A

OnOnly Yes Yes Yes Yes Yes

OnOff Yes Yes Yes Yes Yes

The open and close entry points are related in the sense that the open entry point
creates the environment needed for other entry points, while the close entry points
clean the setup created by the open entry point.

About the shutdown entry point

The shutdown entry point is called before the agent shuts down. It performs any
agent cleanup required before the agent exits. It receives no input and returns no
value. Most agents do not require this functionality and do not implement this entry
point.

Agent entry point overview | 38
Agent entry points described

About the imf_init entry point

This is a type-specific entry point. The agent framework invokes this entry point
when the agent starts. Agent developers can use this entry point to initialize the
agent to interface with the IMF notification module.

About the imf_register entry point

The agent framework invokes this entry point to either register or unregister a
resource with IMF.

The agent framework schedules a command to register a resource with IMF after
resource is in either steady ONLINE or steady OFFLINE state. In steady ONLINE
state, the previous and current state of the resource is ONLINE as reported by the
monitor entry point. In steady OFFLINE, the previous and current state of the
resource is OFFLINE, as reported by the monitor entry point.

The agent framework schedules the command to unregister a resource from IMF
under following circumstances:

= When MonitorFreq key of IMF attribute has non-zero values and traditional
monitor entry point detects any of the following state changes of a resource:

= ONLINE to OFFLINE
= OFFLINE to ONLINE
= ONLINE to UNKNOWN
= OFFLINE to UNKNOWN
= When you modify Mode key of the IMF attribute.
= When the Containerinfo attribute of a resource is changed.
» If IMFRegList attribute or any attribute defined in IMFRegList is changed.

» If IMFRegList is undefined and if ArgList attribute or any attribute defined in
ArgList gets changed.

About the imf_getnotification entry point

The Agent framework invokes this entry point after agent is started and the imf_init
entry point returns success. Agent framework expects this as a blocking entry point
and remains blocked until an event is received. After processing the event, agent
framework again blocks on this entry point. When agent framework receives a
notification for some resource then it confirms the resource state changes of the
scheduled monitor entry point.

This is a type-specific entry point like shutdown and imf_init entry points.

Agent entry point overview | 39
Return values for entry points

About the migrate entry point

The migrate entry point migrates a resource. For example, the migrate entry point
for an LDom agent migrates the LDom resource from a source system to a target
system. When the migration is complete, the monitor entry point is automatically

called by the framework to verify whether the resource has migrated. The migrate
entry point receives a resource name, ArgList attribute and VCSInfo values as input.
VCSinfo is an internally-generated information that contains the TargetHost name.

Return values for entry points

The following table summarizes the return values for each entry point.

Table 2-2 Return values for entry points
Entry Point Return Values
Monitor C++ Based Returns ResStateValues:

= VCSAgResOnline

» VCSAgResOffline

s VCSAgResUnknown

s VCSAgResiIntentionalOffline

Script-Based Exit values:

= 99 - Unknown

= 100 - Offline

= 101-110 - Online

= 200 - Intentional Offline
s Other values - Unknown.

Info 0 if successful; non-zero value if not successful

Online Integer specifying number of seconds to wait before monitor can check
the state of the resource; typically 0, that is, check resource state
immediately.

Offline Integer specifying number of seconds to wait before monitor can check

the state of the resource; typically 0, that is, check resource state
immediately.

Agent entry point overview
Return values for entry points

Table 2-2 Return values for entry points (continued)
Entry Point Return Values
Clean 0 if successful; non-zero value if not successful
If clean fails, the resource remains in a transition state awaiting the next
periodic monitor. After the periodic monitor, clean is attempted again.
The sequence of clean attempt followed by monitoring continues until
clean succeeds or CleanRetryLimit is not reached if it is set to non-zero
value.
For detailed descriptions of internal transition states, See “State
transitions” on page 202.
Action 0 if successful; non-zero value if not successful
Attr_changed None
Open None
Close None
Shutdown None
imf_init 0 if successful; 1 if unsuccessful
imf_register 0 if successful; 1 if unsuccessful

imf_getnotification

0 if successful; 1 if failure; 3 if interrupted (failure case); 4 if critical
failure

40

Table 2-2

Agent entry point overview
Considerations for using C++ or script entry points

Return values for entry points (continued)

Entry Point

Return Values

migrate

An integer in the range of 0 to 100. The typical return value is 0. If
the return value is not zero, the agent framework waits for the
number of seconds indicated by the (return value * 10) to call the
monitor entry point for the resource. For example, for a return value
of 1, agent framework schedules monitor after 1*10=10 seconds.
Similarly, for a return value of 5 monitor is scheduled after 50
seconds.

255 indicating that migration verification has failed and there is no
need to schedule a monitor to verify whether resource has migrated.
The subsequent monitor is a scheduled based on the Monitorinterval
value.

All other values in the range of 101 to 254 are reserved for future use.
Agent framework ignores any value returned between this range and
returns to previous state to continue with rest of the operations. Refer
to MigrateWaitLimit and MigrateTimeout, before implementing this entry
point.

See “MigrateTimeout” on page 194.
See “MigrateWaitLimit” on page 194.
See “SupportedOperations” on page 201.

Considerations for using C++ or script entry points

You may implement an entry point as a C++ function or a script.

The advantage to using C++ is that entry points are compiled and linked with
the agent framework library. They run as part of the agent process, so no system
overhead for creating a new process is required when they are called. Also,
since the entry point invocation is just a function call, the execution of the entry
point is relatively faster. However, if the functionality of an entry point needs to
be changed, the agent would need to be recompiled to make the changes take

effect.

The advantage to using scripts is that you can modify the entry points
dynamically. However, to run the script, a new process is created for each entry
point invocation, so the execution of an entry point is relatively slower and uses
more system resource compared to the C++ implementation.

Note that you may use C++ or scripts in any combination to implement multiple
entry points for a single agent. This allows you to implement each entry point in the
most advantageous manner. For example, you may use scripts to implement most

41

Agent entry point overview | 42
Considerations for using C++ or script entry points

entry points while using C++ to implement the monitor entry point, which is called
often. If the monitor entry point were written in script, the agent must create a new
process to run the monitor entry point each time it is called.

See “About creating entry points in C++” on page 52.

See “About creating entry points in scripts” on page 92.

About the VCSAgStartup routine

When an agent starts, it uses the routine named vcsagstartup to initialize the
agent's data structures.

If you implement entry points using scripts
If you implement all of the agent's entry points as scripts:

On UNIX, the user can use one of the different agent binaries which are provided
with VCS.

See “Script based agent binaries” on page 136.

The built-in implementation of VCSAgStartup() in these binaries initializes the agent's
data structures such that it causes the agent to look for and execute the scripts for
the entry points.

See “About creating entry points in scripts” on page 92.

If you implement all or some of the entry points in C++

If you develop an agent with at least one entry pointimplemented in C++, you must
implement the function VCSAgStartup() and use the required C++ primitives to
register the C++ entry point with the agent framework.

Example: VCSAgStartup with C++ and script entry points

When using C++ to implement an entry point, use the
VCSAgValidateAndSetEntryPoint APl and specify the entry point and the function
name. In the following example, the function my_shutdown is defined as the
Shutdown entry point.

#include "VCSAgApi.h"
void my shutdown () {

void VCSAgStartup ()

Agent entry point overview | 43
About the agent information file

VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (v51);

VCSAgValidateAndSetEntryPoint (VCSAgEPShutdown, my shutdown);
}

Note that the monitor entry point, which is mandatory, is not specified. This indicates
that it is implemented using scripts. For an entry point whose field is not set, the
agent automatically looks for the correct script to execute as per following path:

UNIX: $vCs_HOME/bin/<resource type>/<entry point>

The path where agent searches the entry piont can be different, given that the
AgentDirectory attribute is set. You can refer to the Symantec Cluster Server
Administrator's Guide for information on AgentDirectory attribute.

See “AgentDirectory” on page 183.

About the agent information file

The graphical user interface (GUI), Cluster Manager, can display information about
the attributes of a given resource type. For each custom agent, developers can
create an XML file that contains the attribute information for use by the GUI. The
XML file also contains information to be used by the GUI to allow or disallow certain
operations on resources managed by the agent.

Example agent information file (UNIX)

The agent's information file is an XML file, named agent_name.xml, located in the
agent directory. The file contains information about the agent, such as its name
and version, and the description of the arguments for the resource type attributes.
For example, the following file contains information for the FileOnOff agent:

<?xml version="1.0" encoding="us-ascii"?>

<agent name="FileOnOff" version="version">
<agent_description>Creates, removes,
and monitors files.</agent description>
<!--Platform the agent runs on-->
<platform>Cross-Platform</platform>
<!--Type of agent : script-Binary-Mixed-->
<agenttype>Binary</agenttype>

<!--The minimum VCS version needed for this agent-->

Agent entry point overview
About the agent information file

<minvcsversion>5.0</minvcsversion>
<!--The agent vendor name-->
<vendor>VendorName</vendor>
<!--Is Info Entry Point Implemented-->
<info implemented>No</info implemented>
<!--Attributes list for this agent-->
<attributes>
<PathName type="str" dimension="Scalar" editable="True"
important="True" mustconfigure="True" unique="True"
persistent="True" range="" default="" displayname="File Name">
<attr description>Specifies the complete pathname,
starting with the slash (/) preceding the file name.
</attr_description>
</PathName>
</attributes>
<!--List of files installed by this agent-->
<agentfiles>
<file name="S$VCS_ HOME/bin/FileOnOff/FileOnOffAgent" />
</agentfiles>
</agent>

Agent information

The information describing the agent is contained in the first section of the XML
file. The following table describes this information, which is also contained in the
previous file example:

Table 2-3 Agent information in the agent information XML file
Agent Information Example

Agent name name="FileOnOff"

Version version="x.y"

Agent description <agent description>Creates,

removes, and monitors
files.</agent description>

Platform. For example, AlX, HP-UX, Linux, |<platform>Cross-Platform</platform>
Solaris, or Cross-Platform.

Agent vendor <vendor>VendorName</vendor>

44

Table 2-3

Agent entry point overview | 45
About the agent information file

Agent information in the agent information XML file (continued)

Agent Information Example

info entry pointimplemented or not; Yes, or | <info_ implemented>No</info implemented>

No; if not indicated, info entry point is
assumed not implemented

Agent type, for example, Binary, Script or <agenttype>Binary</agenttype>

Mixed

Compatibility with Cluster Server; the <minvcsversion>5.0</minvcsversion>

minimum version required to support the

agent

Attribute argument details

The agent's attribute information is described by several arguments. The following
table describes them. Refer also to the previous XML file example for the FileOnOff
agent and see how the pathName attribute information is included in the file.

Table 2-4 Description of attribute argument details in XML file

Argument Description

type Possible values for attribute type, such as "str" for strings.
See “Attribute data types” on page 21.

dimension Values for the attribute dimension, such as "Scalar;"
See “About attributes” on page 20.

editable Possible Values = "True" or "False"
Indicates if the attribute is editable or not. In most cases, the resource
attributes are editable.

important Possible Values = "True" or "False"

Indicates whether or not the attribute is important enough to display. In
most cases, the value is True.

Table 2-4

Agent entry point overview
About the agent information file

Description of attribute argument details in XML file (continued)

Argument

Description

mustconfigure

Possible Values = "True" or "False"

Indicates whether the attribute must be configured to bring the resource
online. The GUI displays such attributes with a special indication.

If no value is specified for an attribute where the mustconfigure
argument is true, the resource state becomes "UNKNOWN" in the first
monitor cycle. Example of such attributes are Address for the IP agent,
Device for the NIC agent, and FsckOpt for the Mount agent).

unique

Possible Values = "True" or "False"

Indicates if the attribute value must be unique in the configuration; that
is, whether or not two resources of same resource type may have the
same value for this attribute. Example of such an attribute is Address
for the IP agent. Not used in the GUI.

persistent

Possible Values = "True". This argument should always be set to "True";
it is reserved for future use.

range

Defines the acceptable range of the attribute value. GUI or any other
client can use this value for attribute value validation.

Value Format: The range is specified in the form {a,b} or [a,b]. Square
brackets indicate that the adjacent value is included in the range. The
curly brackets indicate that the adjacent value is not included in the
range. For example, {a,b] indicates that the range is from a to b, contains
b, and excludes a. In cases where the range is greater than "a" and
does not have an upper limit, it can be represented as {a,] and, similarly,
as {,b] when there is no minimum value.

default

It indicates the default value of attribute

displayname

Itis used by GUI or clients to show the attribute in user friendly manner.
For example, for FsckOpt its value could be "fsck option".

Implementing the agent XML information file

When the agent XML information file is created, you can implement it as follows:

To implement the agent XML information file in the GUI

1 Make sure the XML file, agent.xml, is in the svCs_HOME/bin/resource type
directory or in the directory mentioned in the AgentDirectory attribute.

Make sure that the command server is running on each node in the cluster.

Restart the GUI to have the agent's information shown in the GUI.

46

Agent entry point overview
About the ArgList and ArgListValues attributes

About the ArgList and ArgListValues attributes

ArgListValues

The ArgList attribute specifies which attributes need to be passed to agent entry
points. The agent framework populates the ArgListValues attribute with the list of
attributes and their associated values.

In C++ agents, the value of the ArgListValues attribute is passed through a
parameter of type void **. For example, the signature of the online entry point is:

unsigned int

res_online(const char *res name, void **attr val);

In script agents, the value of the ArgListValues attribute is passed as command-line
arguments to the entry point script.

The number of values in the ArgListValues should not exceed more than 425. This
requirement becomes a consideration if an attribute in the ArgList is a keylist, a
vector, or an association. Such type of non-scalar attributes can typically take any
number of values, and when they appear in the ArgList, the agent has to compute
ArgListValues from the value of such attributes. If the non-scalar attribute contains
many values, it will increase the size of ArglListValues. Hence when developing an
agent, this consideration should be kept in mind when adding a non-scalar attribute
in the ArgList. Users of the agent need to be notified that the attribute should not
be configured to be so large that it pushes that number of values in the ArgListValues
attribute to be more than 425.

attribute for agents registered as V50 and later

For agents registered as V50 or later, the ArgListValues attribute specifies the
attributes and their values in tuple format.

= For scalar attributes, there are three components that define the ArgListValues
attribute.

= The name of the attribute
= The number of elements in the value, which for scalar attributes is always 1

s The value itself

= For non-scalar attributes (vector, keylist, and association), for each attribute
there are N+2 components in the ArglListValues attribute, where N equals the
number of elements in the attribute's value.

= The name of the attribute

s The number of elements in the attribute's value

47

Agent entry point overview | 48
About the ArgList and ArgListValues attributes

= The remaining N elements correspond to the attribute's value. Note that N
could be zero.

Overview of the name-value tuple format

For agents registered with agent version V40 and earlier, it's required that the
arguments passed to the entry point to be in the order indicated by the ArgList
attribute as it was defined in the resource type. The order of parsing the arguments
was determined by their position in the resource type definition.

With the agent framework for V50 and later, agents can use entry points that can
be passed attributes and their values in a format of name-value tuples. Such a
format means that attributes and their values are parsed by the name of the attribute
and not by their position in the ArgList Attribute.

The general tuple format for attributes in the ArgList is:

<name> <number_of elements_in_value> <value>

Scalar attribute format

For scalar attributes, whether string, integer, or Boolean, the formatting is:
<attribute_name> 1 <value>

Example is:

DiskGroupName 1 mydg

Vector attribute format

For vector attributes, whether string or integer, the formatting is:
<attribute_name> <number_of_values_in_vector> <values_in_vector>
Examples are:

MyVector 3 aa cc dd

MyEmptyVector 0

Keylist attribute format

For string keylist attributes, the formatting is:
<attribute_name> <number_of_keys_in_keylist> <keys>
Examples are:

DiskAttr 4 hdisk3 hdisk4 hdisk5 hdisk6

DiskAttr O

Agent entry point overview | 49
About the ArgList and ArgListValues attributes

Association attribute format

For association attributes, whether string or integer, the formatting is:
<attribute_name> <number_of_keys_and_values> <key_value_pair>
Examples are:

MyAssoc 4 key1 vall key2 val2

MyAssoc 0

ArgListValues attribute for different agents versions

For agents registered as V40 and earlier, the ArgListValues attribute is an ordered
list of attribute values. The attribute values are listed in the same order as in the
ArgList attribute.

For example, if Type "Foo" is defined in the file types.cf as:

Type Foo (
str Name
int IntAttr
str StringAttr
str VectorAttr[]
str AssocAttr{}
static str ArgList[] = { IntAttr, StringAttr,
VectorAttr, AssocAttr }
)

And if a resource "Bar" is defined in the file main.cf as:

Foo Bar (
IntAttr = 100
StringAttr = "Oracle"
VectorAttr = { "voll", "vol2", "vol3" }
AssocAttr = { "diskl" = "1024", "disk2" = "512" }

)

Then, for V50 and later, the parameter attr_val is:

attr val[0] = "IntAttr"

attr val[l] = "1" // Number of components in
// IntAttr attr value

attr val[2] = "100" // Value of IntAttr

attr val[3] = "StringAttr"

attr _val[4] = "1" // Number of components in

// StringAttr attr value

attr vall[5]
attr val[6]
attr vall[7]

attr vall[
attr vall[
attr vall[
attr vall[

[

attr val

attr val[13]
attr val[1l4]
attr val[15]
attr val[1l6]

[17]

attr val

Agent entry point overview
About the ArgList and ArgListValues attributes

"Oracle" // Value of StringAttr

"VectorAttr"

"3n // Number of components in
// VectorAttr attr value

"voll"

"vol2"

"vol3"

"AssocAttr"

"4n // Number of components in
// AssocAttr attr value

"diskl"

"1024"

"disk2"

"512"

NULL // Last element

Or, for V40 and earlier, the parameter attr_val is:

attr val[0] ===> "100" // Value of IntAttr, the first
// ArgList attribute.

attr val[l] ===> "Oracle" // Value of StringAttr.

attr val[2] ===> "3" // Number of components in
// VectorAttr.

attr val[3] ===> "voll"

attr val[4] ===> "vol2"

attr val[5] ===> "vol3"

attr val[6] ===> "4" // Number of components in
// AssocAttr.

attr val[7] ===> "diskl"

attr val[8] ===> "1024"

attr val[9] ===> "disk2"

attr val[10]===> "512"

attr val[ll]===> NULL // Last element.

About the entry point timeouts

Use the AEPTimeout attribute to append the timeout value for a particular entry

point.

This feature does not apply to pre-V50 agents.

If you set AEPTimeout to 1, the agent framework passes the timeout value for an
entry point as an argument for the entry point in the name-value tuple format.

50

Agent entry point overview
About the ArgList and ArgListValues attributes

The name of the attribute that gets passed is called AEPTimeout.

This makes the task of retrieving information about entry point timeout values easy
for agent developers. Instead of looking for different strings like MonitorTimeout
and CleanTimeout, agent developers just need to look for the string AEPTimeout.

For example, if an agent uses an attribute called PathName set to /tmp/foo, the
parameters passed to the monitor entry point are:

If AEPTimeout is setto 0: <resource-name> PathName 1 /tmp/foo

If AEPTimeout set to 1: <resource-name> PathName 1 /tmp/foo AEPTimeout 1 <value
of MonitorTimeout attribute>

Applying the same example for the clean entry point, the parameters are:

If AEPTimeout is setto 0: <resource-name> <clean reason> PathName 1 /tmp/foo
If AEPTimeout is setto 1: <resource-name> <clean reason> PathName 1 /tmp/foo

AEPTimeout 1 <value of CleanTimeout attribute>

If the timeout attribute is overridden at the resource level, this mechanism takes
care of passing the overridden value to the entry points for that resource.

See “AEPTimeout” on page 182.

Creating entry points in

C++

This chapter includes the following topics:

About creating entry points in C++
Data Structures

Syntax for C++ entry points

Agent framework primitives

Agent Framework primitives for container support

About creating entry points in C++

Because the agent framework is multithreaded, all C++ code written by the agent
developer must be MT-safe. For best results, avoid using global variables. If you
do use them, access must be serialized (for example, by using mutex locks).

The following guidelines also apply:

Do not use C library functions that are unsafe in multithreaded applications.
Instead, use the equivalent reentrant versions, such as readdir r()instead of
readdir(). Access manual pages for either of these commands by entering:

man command.

When acquiring resources (dynamically allocating memory or opening a file, for
example), use thread-cancellation handlers to ensure that resources are freed
properly. See the manual pages for pthread cleanup push and

pthread cleanup pop for details. Access manual pages for either of these
commands by entering: man command.

Creating entry points in C++ | 53
Data Structures

If you develop an agent with at least one entry pointimplemented in C++, you must
implement the function VCSAgStartup() and use the required C++ primitives to
register the C++ entry point with the agent framework.

A sample file containing templates for creating an agent using C++ entry points is
located in:

UNIX: $VCS_HOME/src/agent/Sample

You can use C++ to develop agents for monitoring applications that run in containers,
including non-global zones. VCS provides APIs for container support.

See “Agent Framework primitives for container support” on page 86.

Entry point examples in this chapter

In this chapter, the example entry points are shown for an agent named Foo. The
example agent has the following resource type definition:

In the types.cf format:
type Foo (
str PathName

static str ArgList[]= {PathName}
)

For this resource type, the entry points defined are as follows:

online Creates a file as specified by the Pathname attribute

monitor Checks for the existence of a file specified by the PathName attribute
offline Deletes the file specified by the PathName attribute

clean Forcibly deletes the file specified by the PathName attribute

action Runs a pre-specified action

info Populates the Resourcelnfo attribute with the values of the attributes

specified by the PathName attribute

Data Structures

This section describes the various enumerations in relation to the entry points.

= VCSAgResState:
The VCSAgResState enumeration describes what state the monitor entry point
can return.

Creating entry points in C++ | 54
Syntax for C++ entry points

enum VCSAgResState {

VCSAgResOffline, // Resource is OFFLINE

VCSAgResOnline, // Resource is ONLINE

VCSAgResUnknown, // Resource state is UNKNOWN
VCSAgResIntentionalOffline// Resource state is OFFLINE, but is
intentionally done. Only in V51 and later agents)

bi

» VCSAgWhyClean
This VCSAgWhyClean enumeration describes the reason why the clean entry
point is called.

enum VCSAgWhyClean {

VCSAgCleanOfflinehung,// offline entry point did not complete
within the expected time.

VCSAgCleanOfflineIneffective,// offline entry point was
ineffective.

VCSAgCleanOnlineHung,// online entry point did not complete
within the expected time.

VCSAgCleanOnlineIneffective,// online entry point was
ineffective.

VCSAgCleanUnexpectedOffline,// The resource became offline
unexpectedly.

VCSAgCleanMonitorHung// monitor entry point did not complete
within the expected time.

}i

= VCSAgResInfoOp
The VCSAgResInfoOp enumeration indicates whether to initialize or update the
data in the Resourcelnfo attribute.

enum VCSAgResInfoOp {

VCSAgResInfoAdd = 1,// Add non-default keys to the
ResourceInfo attribute.

VCSAgResInfoUpdate// Update only the non-default
key-value data pairs in the ResourceInfo attribute.

}i

Syntax for C++ entry points

This section describes the syntax for C++ entry points.

Creating entry points in C++ | 55
Syntax for C++ entry points

Syntax for C++ VCSAgStartup

void VCSAgStartup () ;

Note that the name of the C++ function must be vcsagstartup ().

For example:

// This example shows the VCSAgStartup() function

// implementation,assuming that the monitor, online, offline
// and clean entry points are implemented in C++ and the

// respective function names are res monitor, res online,

// res_offline, and res_clean.

#include "VCSAgApi.h"
void VCSAgStartup ()
{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51);

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor, res monitor);
VCSAgValidateAndSetEntryPoint (VCSAgEPOnline, res online);
VCSAgValidateAndSetEntryPoint (VCSAQEPOffline, res offline);

(
(
(
VCSAgValidateAndSetEntryPoint (VCSAgEPClean, res clean);

VCSAgResState res_monitor (const char *res name, void
**attr val, int

*conf level) {

unsigned int res online(const char *res_name,

void **attr val) {

}
unsigned int res offline(const char *res name,

void **attr val) {

}

unsigned int res clean(const char *res name,

Creating entry points in C++ | 56
Syntax for C++ entry points

VCSAgWhyClean reason, void **attr val) ({

Syntax for C++ monitor

VCSAgResState
res monitor (const char *res name, void **attr val,int

*conf level);

You may select any name for the function.

The parameter conf_level is an output parameter. The return value, which indicates
the resource status, must be a defined vcsagresstate value.

See “Return values for entry points ” on page 39.

For example:

#include "VCSAgApi.h"

VCSAgResState
res_monitor (const char *res_name, void **attr val, int
*conf level)

{

// Code to determine the state of a resource.

VCSAgResState res_state =

if (res_state == VCSAgResOnline) {

// Determine the confidence level (0 to 100).
*conf level =

}

else {
*conf_ level = 0;

}

return res_state;

void VCSAgStartup ()
{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

Creating entry points in C++ | 57
Syntax for C++ entry points

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor, res monitor);

Syntax for C++ info

unsigned int res info (const char *res name,
VCSAgResInfoOp resinfo op, void **attr val, char
info output, char *opt update args, char
***opt add args);

You may select any name for the function.

resinfo_op

The resinfo_op parameter indicates whether to initialize or update the data in the
ResourceInfo attribute. The values of this field and their significance are described
in the following table:

Value of Significance
resinfo op

1 Add non-default keys to the three default keys State, Msg, and TS and
initialize the name-value data pairs in the Resourcelnfo attribute.

This invocation indicates to the entry point that the current value of the
Resourcelnfo attribute contains only the basic three keys State, Msg,
and TS.

2 Update only the non-default key-value data pairs in the Resourcelnfo
attribute, not the default keys State, Msg, and TS.

This invocation indicates that Resourcelnfo attribute contains non-default
keys in addition to the default keys and only the non-default keys are
to be updated. Attempt to add keys with this invocation will result in
errors.

info_output

The parameter info_output is a character string that stores the output of the info
entry point. The output value could be any summarized data for the resource. The
Msg key in the ResourceInfo attribute is updated with info_output. If the info
entry point exits with success (0), the output stored in info_output is dumped into
the Msg key of the ResourceInfo attribute.

The info entry point is responsible for allocating memory for info_output. The
agent framework handles the deletion of any memory allocated to this argument.

Creating entry points in C++ | 58
Syntax for C++ entry points

Since memory is allocated in the entry point and deleted in the agent framework,
the entry point needs to pass the address of the allocated memory to the agent
framework.

opt_update_args

The opt_update_args parameter is an array of character strings that represents
the various name-value pairs in the ResourceInfo attribute. This argument is
allocated memory in the info entry point, but the memory allocated for it will be
freed in the agent framework. The ResourceInfo attribute is updated with these
name-value pairs. The names in this array must already be present in the
ResourcelInfo attribute.

For example:

ResourceInfo = { State = Valid, Msg = "Info entry point output",
TS = "Wed May 28 10:34:11 2003",
FileOwner = root, FileGroup = root, FileSize = 100 }

A valid opt_update_args array for this ResourceInfo attribute would be:
opt update args = { "FileSize", "102" }

This array of name-value pairs updates the dynamic data stored in the ResourceInfo
attribute.

Aninvalid opt_update args array would be one that specifies a key not already
present in the ResourceInfo attribute or one that specifies any of the keys: state,
Msg, or TS. These three keys can only be updated by the agent framework and not
by the entry point.

opt_add_args

opt_add_args is an array of character strings that represent the various name-value
pairs to be added to the resourceInfo attribute. The names in this array represent
keys that are not already present in the resourceInfo association list and have to
be added to the attribute. This argument is allocated memory in the info entry
point, but this memory is freed in the agent framework. The ResourceInfo attribute
is populated with these name-value pairs.

For example:

ResourceInfo = { State = Valid, Msg = "Info entry point output",
TS = "Wed May 28 10:34:11 2003" }

A valid opt_add_args array for this would be:

Creating entry points in C++ | 59

Syntax for C++ entry points

opt_add args = { "FileOwner", "root", "FileGroup",

"root", "FileSize", "100" }

This array of name-value pairs adds to and initializes the static and dynamic data
stored in the ResourceInfo attribute.

Aninvalid opt_add_args array would be one that specifies a key that is already
present in the ResourceInfo attribute, or one that specifies any of the keys state,
Msg, or TS; these are keys that can be updated only by the agent framework, not
by the entry point.

Example: info entry point implementation in C++

Set the vcsagvalidateAndSetEntryPoint () parameter to the name of the entry
point's function (res_info).

Allocate the info output buffer in the entry point as shown in the example below.
The buffer can be any size (the example uses 80), but the agent framework truncates
it to 2048 bytes. For the optional name-value pairs, name and value each have a
limit of 4096 bytes (the example uses 15).

Example V51 entry point:

extern "C" unsigned int res_info(const char *res name,
VCSAgResInfoOp resinfo op, void **attr val, char **info output,
char ***opt update args, char ***opt add args)
{

struct stat stat buf;

int I;

char **args = NULL;

char *out = new char [80];
*info output = out;

VCSAgSnprintf (out, 80, "Output of info entry point - updates
the \"Msg\" key in ResourceInfo attribute");

// Use the stat system call on the file to get its

// information The attr_val array will look like "PathName"
// "1" "<pathname value>" ... Assuming that PathName is the
// first attribute in the attr val array, the value

// of this attribute will be in index 2 of this attr val

// array

if (attr _val[2]) {

Creating entry points in C++
Syntax for C++ entry points

if ((strlen((CHAR *) (attr val[2])) != 0) &&
(stat ((CHAR *) (attr val[2]), &stat buf) == 0)) |
if (resinfo _op == VCSAgResInfoAdd) ({

// Add and initialize all the static and

// dynamic keys in the ResourcelInfo attribute

args = new char * [7];
for (I = 0; I < 6; I++) {
args[i] = new char [15];
}
// All the static information - file owner

// and group

VCSAgSnprintf (args[0], 15, "%s", "Owner");
VCSAgSnprintf (args[1l], 15, "&d",
stat_buf.st uid);

VCSAgSnprintf (args[2], 15, "%s", "Group");
VCSAgSnprintf (args[3], 15, "&%d",

stat_buf.st gid);

}

// Initialize the dynamic information for the file
VCSAgSnprintf (args[4], 15, "%$s", "FileSize");
VCSAgSnprintf (args[5], 15, "&%d",
stat _buf.st size);
args[6] = NULL;

*opt_add_args = args;

else {

// Simply update the dynamic keys in the
// ResourceInfo attribute. In this case, the

// dynamic info on the file

args = new char * [3];
for (I = 0; I < 2; I++) {
args[i] = new char [15];

}

VCSAgSnprintf (args[0], 15, "%s", "FileSize");
VCSAgSnprintf (args[1l], 15, "&d",

stat _buf.st size);

args[2] = NULL;

*opt_update args = args;

60

Creating entry points in C++ | 61
Syntax for C++ entry points

}

else {
// Set the output to indicate the error
VCSAgSnprintf (out, 80, "Stat on the file %s failed",
attr vall2]);

return 1;

}
else {
// Set the output to indicate the error
VCSAgSnprintf (out, 80, "Error in arglist values passed to
the info entry point");

return 1;

// Successful completion of the info entry point

return 0;

} // End of entry point definition

Syntax for C++ online

unsigned int

res online(const char *res name, void **attr val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_online is defined as the Online entry
point.

For example:

#include "VCSAgApi.h"

unsigned int
res online(const char *res name, void **attr val) {

// Implement the code to online a resource here.

// If monitor can check the state of the resource
// immediately, return 0. Otherwise, return the
// appropriate number of seconds to wait before

// calling monitor.

Creating entry points in C++ | 62
Syntax for C++ entry points

return 0;

void VCSAgStartup ()

{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51);

VCSAgValidateAndSetEntryPoint (VCSAgEPOnline, res online);

Syntax for C++ offline

unsigned int

res offline(const char *res name, void **attr val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_offline is defined as the Offline entry
point.

For example:

#include "VCSAgApi.h"

unsigned int
res offline(const char *res name, void **attr val) {

// Implement the code to offline a resource here.

// If monitor can check the state of the resource
// immediately, return 0. Otherwise, return the
// appropriate number of seconds to wait before
// calling monitor.

return 0;

void VCSAgStartup ()
{
VCSAG LOG INIT ("VCSAgStartup"):

Creating entry points in C++
Syntax for C++ entry points

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51);

VCSAgValidateAndSetEntryPoint (VCSAgQEPOffline, res offline);}

Syntax for C++ clean

unsigned int

res clean(const char *res name, VCSAgWhyClean reason, void

**attr val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_clean is defined as the Clean entry point.

For example:

#include "VCSAgApi.h"

unsigned int
res clean(const char *res name, VCSAgWhyClean reason,
void **attr val) {

// Code to forcibly offline a resource.

// If the procedure is successful, return 0; else
// return 1.

return 0;

void VCSAgStartup ()

{

VCSAG LOG INIT ("VCSAgStartup"):

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPClean, res clean);}

63

Creating entry points in C++
Syntax for C++ entry points

Syntax for C++ action

unsigned int

action(const char *res_name, const char *action_ token,

void **attr val, char **args, char *action_ output);

The parameters passed to the C++ action entry point are described as follows using
the example that the user fires

$> hares -action resl myaction...

from the command-line or the equivalent from the GUI.

res_name: This is an input parameter. The name of the resource in whose
context the action entry point is being invoked. In the above example, res_name
would be set to "res1".

action_token: This is an input parameter. This gives the name of the action that
the user wants to run. In the above example, action_token would be set to
"myaction".

If the user ran

$> hares -action resl youraction ...

then the same function above will get invoked but action_token will be set to
"youraction". This parameter enables different actions to be implemented for
the same agent which will all get handled in the same function above.

attr_val: This is an input parameter. This contains the ArgListValues of the
resource for which the action is invoked.

args: This is an input parameter. This contains the list of strings that are passed
to the "-actionargs" switch when invoking the "hares -action" command.

$> hares -action resl myaction -actionargs foo bar fubar -sys

would give "foo", "bar" and "fubar" in the args parameter.

action_output: This is an output parameter. Any output that the agent developer
wants the user to see as a result of invoking the "hares -action" command needs
to be filled into the buffer whose pointer is given by this parameter. The maximum
number of characters that will be displayed to the user is 2048 (2K).

Use the VCSAgValidateAndSetEntryPoint() API to register the name of the function
that implements the action entry-point for the agent.

For example:

64

Creating entry points in C++
Syntax for C++ entry points

extern "C"
unsigned int res _action (const char *res name, const char
*token,void **attr val, char **args, char
*action output)
{
const int output buffer size = 2048;
//
// checks on the attr val entry point arg list

// perform an action based on the action token passed in

if (!strcmp(token, "tokenl")) {
//
// Perform action corresponding to tokenl
//
} else if (!strcmp(token, "token2") {
//
// Perform action corresponding to token2

!/

} else {
//
// a token for which no action is implemented yet
//
VCSAgSnprintf (action output, output buffer size, "No implementation
provided for token(%s)", token);
}
//
// Any other checks to be done
//
//
// return value should indicate whether the ep succeeded or
// not:
// return 0 on success
// any other value on failure
//
if (success) {
return 0;
}
else {

return 1;

65

Creating entry points in C++ | 66
Syntax for C++ entry points

}

}

void VCSAgStartup ()

{

VCSAG_LOG_INIT ("VCSAgStartup");
VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51);
VCSAgValidateAndSetEntryPoint (VCSAgEPAction, res action);

}

Syntax for C++ attr_changed

void

res attr changed(const char *res name, const char
*changed res name,
const char *changed attr_name,

void **new val);

The parameter new_val contains the attribute's new value. The encoding of new_val
is similar to the encoding described under About the ArgList and ArgListValues
attributes.

See “About the ArgList and ArgListValues attributes” on page 47.
You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_attr_changed is defined as the
attr_changed entry point.

Note: This entry point is called only if you register for change notification using the
primitive VCSAgRegister or the agent parameter RegList.

See “RegList” on page 198.

For example:

#include "VCSAgApi.h"

void
res _attr changed(const char *res name,
const char *changed_ res_name,
const char *changed_ attr_name,

Creating entry points in C++ | 67
Syntax for C++ entry points

void **new val) {
// When the value of attribute Foo changes, take some action.
if ((strcmp(res_name, changed res name) == 0) &&
(strcmp (changed _attr name, "Foo") == 0)) {
// Extract the new value of Foo. Here, it is assumed
// to be a string.
const char *foo val = (char *)new val[0];

// Implement the action.

}
// Resource Oral managed by this agent needs to
// take some action when the Size attribute of

// the resource Diskl is changed.

if ((strcmp(res name, "Oral") == 0) &&
(strcmp (changed attr name, "Size") == 0) &&
(strcmp (changed res name, "Diskl") == 0)) {

// Extract the new value of Size. Here, it is
// assumed to be an integer.
int sizeval = atoi((char *)new vall[O0]);

// Implement the action.

void VCSAgStartup ()

{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPAttrChanged,

res_attr changed);}

Syntax for C++ open

void res open(const char *res name, void **attr val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

Creating entry points in C++ | 68
Syntax for C++ entry points

In the following example, the function res_open is defined as the Open entry point.

For example:

#include "VCSAgApi.h"

void res open(const char *res name, void **attr val) {
// Perform resource initialization, if any.

// Register for attribute change notification, if needed.

void VCSAgStartup ()
{
VCSAG_LOG_INIT("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPOpen, res_open);

Syntax for C++ close

void res close(const char *res name, void **attr val);

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function res_close is defined as the Close entry point.

For example:

#include "VCSAgApi.h"

void res_close(const char *res name,void **attr val) ({
// Resource-specific de-initialization, if needed.

// Unregister for attribute change notification, if any.

void VCSAgStartup ()
{
VCSAG_LOG_INIT ("VCSAgStartup");

Creating entry points in C++ | 69
Syntax for C++ entry points

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51);

VCSAgValidateAndSetEntryPoint (VCSAgEPClose, res close);

Syntax for C++ shutdown

void shutdown () ;

You may select any name for the function.

Set the VCSAgValidateAndSetEntryPoint() parameter to the name of the entry
point's function.

In the following example, the function shutdown is defined as the Shutdown entry
point.

For example:

#include "VCSAgApi.h"

void shutdown () {

// Agent-specific de-initialization, if any.

void VCSAgStartup ()
{
VCSAG LOG INIT ("VCSAgStartup"):

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPShutdown, shutdown) ;

Syntax for C++ migrate
unsigned int res migrate (const char *res name, void **attr val)
You can assign any name to the function.

Set the VCSAgValidateAndSetEntryPoint() parameter as the name of function of
the entry point.

Refer to See “Return values for entry points ” on page 39.

Creating entry points in C++ | 70
Agent framework primitives

In the following example, the function res_migrate is defined as the migrate entry
point.

For example:

#include "VCSAgApi.h"
unsigned int
res migrate(const char *res name, void **attr val) ({

// Implement the code to migrate a resource here.

}
void VCSAgStartup ()

{

VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;

VCSAgInitEntryPointStruct (V60) ;
VCSAgValidateAndSetEntryPoint (VCSAgEPMigrate, res migrate);

}

Agent framework primitives

Primitives are C++ methods implemented by the agent framework. The following
sections define the primitives.

See also:

See “Agent Framework primitives for container support” on page 86.

VCSAgGetMonitorLevel

int VCSAgGetMonitorLevel (int *level one, int *level two);

The agent developer can use this primitive to query if the LevelOne (Basic)
monitoring or the LevelTwo (Detail) monitoring or both need to be scheduled.

s Output parameters:

s level_one - This parameter will be updated to 1 or 0. The value of O indicates
that the basic monitoring should not be scheduled. And the value of 1
indicates that the basic monitoring should be scheduled.

See “IMF” on page 189.
» level_two - This parameter will be updated to 0, 1, or 2 . The value of 0

indicates that the detail monitoring should not be scheduled, and the value
of 1 indicates that the detail monitoring should be scheduled. And the value

Creating entry points in C++ | 71
Agent framework primitives

of 2 indicates that the detail monitoring should be scheduled if basic
monitoring (level_ one) reports the state as online in current running monitor.

= Return values: It can be set to VCSAgSuccess or VCSAgFailure based on
whether the api passes or fails.
The following example outlines the process of setting the output parameters:
For example, if you set LevelTwoMonitorFrequency to 5 and the resource state
is ONLINE, then every fifth monitor cycle, level_two will have the value as 1. If

the resource state is OFFLINE, then every monitor cycle level_two will have the
value as 2.

See “LevelTwoMonitorFreq” on page 191.

If you set MonitorFreq to 5 and the resource is registered with IMF, then every
fifth monitor cycle level_one parameter will have the value of 1.
See “IMF” on page 189.

= Usage:

int ret = VCSAgFailure;
ret = VCSAgGetMonitorLevel (&level one, &level two);

Note: This API can only be used in monitor entry point. It does not reflect correct
monitor levels when you call this API in other entry points.

See “WVCSAG_GET_MONITOR_LEVEL” on page 98.

VCSAgGetFwVersion

int VCSAgGetFwVersion() ;

This primitive will return the latest agent framework version.

See “WCSAG_GET_AGFW_VERSION” on page 100.

VCSAgGetRegVersion

int VCSAgGetRegVersion () ;

This primitive will return the currently registered agent framework version.

See “VCSAG_GET_REG_VERSION’ on page 100.

Creating entry points in C++ | 72
Agent framework primitives

VCSAgRegisterEPStruct

void VCSAgRegisterEPStruct (VCSAgAgentVersion version, void *

ep_struct);

This primitive requests that the agent framework use the entry pointimplementations
designated in ep_struct. It must be called only from the VCSAgStartup function.

VCSAgSetCookie2

void *VCSAgSetCookie2 (const char *name, void *cookie)

This primitive requests the agent framework to store a cookie given by the void
*cookie parameter. If there is a value already associated with the cookie, the primitive
sets the new value and atomically returns the old value. If there is no value
associated with the cookie then it sets a new value in the cookie and returns NULL.

This value, which is transparent to the agent framework, can be obtained by calling
the primitive vcsagGetCookie () . A cookie is not stored permanently. Itis lost when
the agent process exits. This primitive can be called from any entry point. For
example:

#include "VCSAgApi.h"

// Assume that the online, offline, and monitor

// operations on resource require a certain key. Also

// assume that obtaining this key is time consuming, but
// that it can be reused until this process is

// terminated.

//

// In this example, the open entry point obtains the key
// and stores it as a cookie. Subsequent online,

// offline, and monitor entry points get the cookie and
// use the key.

//

// Note that the cookie name can be any unique string.
// This example uses the resource name as the cookie

// name.

//

void *get key () {

}
void res_open(const char *res name, void **attr val) ({

if (VCSAgGetCookie(res_name) == NULL) {

Creating entry points in C++ | 73
Agent framework primitives

void *key = get key();
VCSAgSetCookie2 (res_name, key);

}

VCSAgResState res _monitor (const char *res name, void
**attr val, int *conf level ptr) {
VCSAgResState state = VCSAgResUnknown;

*conf level ptr = 0;
void *key = VCSAgGetCookie (res name) ;
if (key == NULL) {
// Take care of the rare cases when
// the open entry point failed to
// obtain the key and set the the cookie.
key = get key();
VCSAgSetCookie2 (res_name, key);
}
// Use the key for testing if the resource is

// online, and set the state accordingly.

return state;

VCSAgReqgister

void
VCSAgRegister (const char *notify res name,
const char *res_name,

const char *attr name);

This primitive requests that the agent framework notify the resource
notify res name When the value of the attribute attr name of the resource
res_name is modified. The notification is made by calling the attr changed entry
point for noti fy res name.

Note that notify res name can be the same as res_name.

This primitive can be called from any entry point, but it is useful only when the
attr changed entry point is implemented. For example:

#include "VCSAgApi.h"
void res open(const char *res name, void **attr val) ({

// Register to get notified when the

Creating entry points in C++ | 74
Agent framework primitives

// "CriticalAttr" of this resource is modified.

VCSAgRegister (res_name, res name, "CriticalAttr");

// Register to get notified when the "CriticalAttr"

// of current resource is modified. It is assumed

// that the name of the current resource is given

// as the first ArgList attribute.

VCSAgRegister ((const char *) attr val[0], (const
char *) attr val[0], "CriticalAttr");

// Register to get notified when the

// "CriticalAttr" of "CentralRes" is modified.

VCSAgRegister (res_name, "CentralRes",
"CriticalAttr");

// Register to get notified when the

// "CriticalAttr" of another resource is modified.

// It is assumed that the name of the other resource

// is given as the first ArgList attribute.

VCSAgRegister (res_name, (const char *)attr val[O0],
"CriticalAttr");

VCSAgUnregister

void
VCSAgUnregister (const char *notify res name, const char
*res_name,

const char *attr name);

This primitive requests that the agent framework stop notifying the resource
notify res name When the value of the attribute attr name of the resource
res_name is modified. This primitive can be called from any entry point. For example:

#include "VCSAgApi.h"
void res close(const char *res name, void **attr val) {

// Unregister for the "CriticalAttr" of this resource.

VCSAgUnregister (res name, res name, "CriticalAttr");

// Unregister for the "CriticalAttr" of another
// resource. It is assumed that the name of the

Creating entry points in C++ | 75
Agent framework primitives

// other resource is given as the first ArgList
// attribute.
VCSAgUnregister (res_name, (const char ¥*)

attr val[0], "CriticalAttr");

VCSAgGetCookie

void *VCSAgGetCookie (const char *name);

This primitive requests that the agent framework get the cookie set by an earlier
call to vcsagsetCookie2 (). It returns NnULL if cookie was not previously set. This
primitive can be called from any entry point. For example:

#include "VCSAgApi.h"

// Assume that the online, offline, and monitor

// operations on resource require a certain key. Also

// assume that obtaining this key is time consuming, but
// that it can be reused until this process is terminated.
//

// In this example, the open entry point obtains the key
// and stores it as a cookie. Subsequent online,

// offline, and monitor entry points get the cookie and
// use the key.

//

// Note that the cookie name can be any unique string.

// This example uses the resource name as the cookie name.

//
void *get key () {

}
void res_open(const char *res name, void **attr val) ({
if (VCSAgGetCookie(res_name) == NULL) {
void *key = get_key();
VCSAgSetCookie2 (res_name, key);

}
VCSAgResState res_monitor(const char *res name, void
**attr val, int *conf level ptr) {
VCSAgResState state = VCSAgResUnknown;

Creating entry points in C++ | 76
Agent framework primitives

*conf level ptr = 0;
void *key = VCSAgGetCookie (res name) ;
if (key == NULL) {
// Take care of the rare cases when the open
// entry point failed to obtain the key and
// set the the cookie.
key = get key();
VCSAgSetCookie2 (res_name, key);
}
// Use the key for testing if the resource is

// online, and set the state accordingly.

return state;

VCSAgStricpy

void VCSAgStrlcpy (CHAR *dst, const CHAR *src, int size)

This primitive copies the contents from the input buffer "src" to the output buffer
"dst" up to a maximum of "size" number of characters. Here, "size" refers to the
size of the output buffer "dst." This helps prevent any buffer overflow errors. The
output contained in the buffer "dst" may be truncated if the buffer is not big enough.

VCSAgStricat

void VCSAgStrlcat (CHAR *dst, const CHAR *src, int size)

This primitive concatenates the contents of the input buffer "src" to the contents of
the output buffer "dst" up to a maximum such that the total number of characters
in the buffer "dst" do not exceed the value of "size." Here, "size" refers to the size
of the output buffer "dst."

This helps prevent any buffer overflow errors. The output contained in the buffer
"dst" may be truncated if the buffer is not big enough.

VCSAgSnhprintf

int VCSAgSnprintf (CHAR *dst, int size, const char *format, L)

This primitive accepts a variable number of arguments and works like the C library
function "sprintf." The difference is that this primitive takes in, as an argument, the
size of the output buffer "dst." The primitive stores only a maximum of "size" number
of characters in the output buffer "dst." This helps prevent buffer overflow errors.

Creating entry points in C++ | 77
Agent framework primitives

The output contained in the buffer "dst" may be truncated if the buffer is not big
enough.

VCSAgCloseFile

void VCSAgCloseFile (void *vp)

Thread cleanup handler to close a file. The input (that is, vp) must be a file descriptor.

VCSAgDelString

void VCSAgDelString(void *vp)

Thread cleanup handler to delete a (char *). The input (vp) must be a pointer to
memory allocated using "new char[xx]".

VCSAgExec

int VCSAgExec (const char *path, char *const argv[], char *buf, long

buf size, unsigned long *exit codep)

Fork a new process, exec a program, wait for it to complete, and return the status.
Also, capture the messages from stdout and stderr to buf. Caller must ensure that
buf is of size >= buf_size.

VCSAgExec is a forced cancellation point. Even if the C++ entry point that calls
VCSAgEXxec disables cancellation before invoking this API, the thread can get
canceled inside VCSAgExec. Therefore, the entry point must make sure that it
pushes appropriate cancellation cleanup handlers before calling VCSAgExec. The
forced cancellation ensures that a service thread running a timed-out entry point
does not keep running or waiting for the child process created by this API to exit,
but instead honors a cancellation request when it receives one.

Explanation of arguments to the function:

path Name of the program to be executed.

argv Arguments to the program. argv[0] must be same as path. The last
entry of argv must be NULL. (Same as execv syntax)

buf Buffer to hold the messages from stdout or stderr. Caller must supply
it. This function will not allocate. When this function returns, buf will be
NULL-terminated.

bufsize Size of buf. If the total size of the messages to stdout/stderr is more
than bufsize, only the first (buf_size - 1) characters will be returned.

Creating entry points in C++
Agent framework primitives

exit_codep Pointer to a location where the exit code of the executed program will
be stored. This value should interpreted as described by

wait() on Unix

Return value: VCSAgSuccess if the execution was successful.

Example:

//

//

//

char **args = new char* [3];
char buf[100];

unsigned int status;

args[0] = "/usr/bin/ls";
args[l] = "/tmp";
args[2] = NULL;

int result = VCSAgExec (args[0], args, buf, 100, é&status);

if (result == VCSAgSuccess) {

// Unix:

if (WIFEXITED(status)) {

printf ("Child process returned %d\n", WEXITSTATUS (status));
}

else {

printf ("Child process terminated abnormally (%$x)\n", status);

}

}

else {

printf ("Error executing %$s\n", args[0]);
}

//

//

//

78

Creating entry points in C++ | 79
Agent framework primitives

VCSAgExecWithTimeout

int VCSAgExecWithTimeout (const char *path, char *const argvl[],
unsigned int timeout, char *buf, long buf size, unsigned long

*exit codep)

Fork a new process, exec a program, wait for it to complete, return the status. If
the process does not complete within the timeout value, kill it. Also, capture the
messages from stdout or stderr to buf. The caller must ensure that buf is of size >=
buf_size. VCSAgExecWithTimeout is a forced cancellation point. Even if the C++
entry point that calls VCSAgExecWithTimeout disables cancellation before invoking
this API, the thread can get canceled inside VCSAgExecWithTimeout. So the entry
point needs to make sure that it pushes the appropriate cancellation cleanup
handlers before calling VCSAgExecWithTimeout. The forced cancellation ensures
that a service thread running a timed out entry point does not keep running or waiting
for the child process created by this API to exit but instead honors a cancellation
request when it receives one.

Explanation of arguments to the function:

path Name of the program to be executed.

argv Arguments to the program. argv[0] must be same as path. The last
entry of argv must be NULL. (Same as execv syntax).

timeout Number of seconds within which the process should complete its
execution. If zero is specified, this API defaults to VCSAgExec(),
meaning the timeout is to be ignored. If the timeout value specified
exceeds the time left for the entry point itself to timeout, the maximum
possible timeout value is automatically used by this API. For example,
if the timeout value specified in the APl is 40 seconds, but the entry
point itself times out after the next 20 seconds, the agent internally sets
the timeout value for this API to 20-3=17 seconds. The 3 seconds are
a grace period between the timeout for the process created using this
API and the entry point process timeout.

buf Buffer to hold the messages from stdout/stderr. The caller must supply
it. This function does not allocate. When this function returns, buf is
NULL-terminated.

bufsize Size of buf. If the total size of the messages to stdout/stderr is more
than bufsize, only the first (buf_size - 1) characters is returned.

exit_codep Pointer to a location where the exit code of the executed program is
stored. This value should interpreted as described by wait() on Unix

Return value: VCSAgSuccess if the execution is successful.

Creating entry points in C++ | 80
Agent framework primitives

VCSAgGenSnmpTrap

void VCSAgGenSnmpTrap (int trap num, const char *msg, VCSAgBool
is_global)

This APl is used to send a notification via SNMP and/or SMTP. The
clusterOutOfBandTrap is used to send notification messages from the agent entry
points.

Explanation of arguments to the function:

trap_num The trap identifier. This number is appended to the agents trap oid to
generate a unique trap oid for this event.

msg The notification message to be sent.

is_global A Boolean value indicating whether or not the event for which the
notification is being generated is local to the system where the agent
is running.

VCSAgSendTrap

void VCSAgSendTrap (const CHAR *msg)

This APl is used to send a notification through the notifier process. The input (that
is, msg) is the notification message to be sent.

VCSAgLockFile

int VCSAgLockFile (const char *fname, VCSAgLockType ltype,
VCSAgBlockingType btype, VCSAgErrnoType *errp)

Get aread or write (that is, shared or exclusive) lock on the given file. Both blocking
and non-blocking modes are supported. Returns 0 if the lock could be obtained, or
returns VCSAgErrWouldBlock if non-blocking is requested and the lock is busy.
Otherwise returns -1. Each thread is considered a distinct owner of locks.

Warning: Do not do any operations on the file (ex, open, or close) within this process,
except through the VCSAgReadLockFile(), VCSAgWriteLockFile(), and
VCSAgUnlockFile() interfaces.

VCSAgInitEntryPointStruct

void VCSAgInitEntryPointStruct (VCSAgAgentVersion agent version)

Creating entry points in C++
Agent framework primitives

This primitive enables agents to initialize the entry point struct depending on the
agent framework version passed to this API. It must be called only from the
VCSAgStartup function.

Examples:

VCSAgInitEntryPointStruct (V50) ;
VCSAgInitEntryPointStruct (V51) ;

V40 and V50 = open
= monitor
= online
= Offline
= cClean
= action
= info
= attr_changed
n close
= shutdown

V51 n imf_init
» imf_register
= imf_getnotification

V60 = migrate

For information on available registration version numbers, check the
VCSAgApiDefs.h header file availabe in the following location:

/opt/VRTSvcs/include/VCSAgApiDefs.h

VCSAgSetStackSize

void VCSAgSetStackSize (int I)

The agent framework sets the default stack size for threads in agents to 1MB. Use
VCSAgStackSize to set the calling thread's stack size to the specified value.

VCSAgUnlockFile

int VCSAgUnlockFile (const char *fname, VCSAgErrnoType *errp)

Release read or write (i.e shared or exclusive) lock on the given file. Returns 0, if
the lock could be released, or else returns -1.

Creating entry points in C++ | 82
Agent framework primitives

Mt-safe; deferred cancel safe.

Warning: Do not do any operations on the file (ex, open, or close) within this process,
except through the VCSAgReadLockFile(), VCSAgWriteLockFile(), and
VCSAgUnlockFile() interfaces.

VCSAgValidateAndSetEntryPoint

void VCSAgValidateAndSetEntryPoint (VCSAgEntryPoint ep, f ptr)

This primitive enables an agent developer to register any C++ entry point with the
agent framework. And also performs the signature check for the entry point function
at compile time.

VCSAgEnNtryPoint is an enumerated data type defined in VCSAgApiDefs.h.

Usage:

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor, my monitor func);

VCSAgSetLogCategory

void VCSAgSetLogCategory(int cat id)

Sets the log category of the agent to the value specified in cat_id.

VCSAgGetProductName

const CHAR *VCSAgGetProductName ()

This API fetches the name of the product for logging purposes

VCSAgMonitorReturn

VCSAgResState VCSAgMonitorReturn (VCSAgResState state, s32

conf level, const CHAR *conf msq)

VCSAgResState state: The state of the resource as found by the monitor entry
point.

int conf_level: The confidence level with which the resource was found to be online.
This can be a number from 10 to 100.

const char * conf_msg: If the resource is being reported as ONLINE from the monitor
entry point with a confidence level lower than 100, this parameter accepts a string

Creating entry points in C++ | 83
Agent framework primitives

containing the reason for the lower confidence level for the resource. If the
confidence level reported is 100 or if the resource state is reported as Offline or
IntentionalOffline, the confidence message will get automatically cleared even if
agent developer provides a confidence message string to this API.

Note: You can also call this AP| using the macro vcsaG_MONITOR RETURN with the
same arguments as passed to vcsagMonitorReturn API.

VCSAgSetResEPTimeout

void VCSAgSetResEPTimeout (s32 tmo)

This API allows an agent entry point to extend its timeout value dynamically from
within the entry point's execution context. This might be required if a command
executed from the entry point takes longer than expected to complete and the entry
point does not want to timeout. Symantec recommends using this AP| with caution
because the intent of timeouts is to make sure that entry points finish on time.

Usage:
VCSAgSetResEPTimeout (tmo) ;

See “WVCSAG_SET_RES_EP_TIMEOUT” on page 100.

VCSAgDecryptKey

VCSAgDecryptKey (char *key, char *outbuf, int buflen);

This API lets you decrypt an encrypted string passed in the ArgListValues by the
user. Typically users encrypt string attribute values for passwords using the
encryption commands provided by VCS. An entry point can use this API to decrypt
the encrypted string and get the original string.

VCSAgGetConfDir

void VCSAgGetConfDir (char *buf, int bufsize)

Returns the name of the VCS configuration directory.

If the VCS_CONF environment variable is set, the command returns the value of
the variable, otherwise it returns the default value. .

Caller must supply the buffer

Creating entry points in C++ | 84
Agent framework primitives

VCSAgGetHomeDir

void VCSAgGetHomeDir (char *buf, int bufsize)

Returns the name of VCS home directory. If the VCS_HOME environment is
configured, the command returns the value of the variable, otherwise it returns the
default value.

Caller must supply the buffer

VCSAgGetLogDir

VCSAgGetLogDir (char *buf, int bufsize)

Returns the name of VCS log directory. If the VCS_LOG environment variable is
set, the command returns the value of the variable, otherwise it returns the default
value if not set.

Caller must supply the buffer

VCSAgGetSystemName

void VCSAgGetSystemName (char *buf, int bufsize)

Returns the name of the system on which the agent is currently running.

Caller must supply the buffer

VCSAG_CONSOLE_LOG_MSG

VCSAG_CONSOLE_LOG _MSG (sev, msgid, flags, fmt, variable args...)

Use the vcsaG_CONSOLE LoG MsG macro to send messages to the HAD log. If the
messages are of CRITICAL or ERROR severity, then the messages are also logged
to the console.

Usage:

VCSAG_CONSOLE_LOG MSG(VCS_ERROR, 14002, VCS_DEFAULT_ FLAGS,
"Resource could not be brought down because,
the attempt to remove the file(%s) failed with error(%d)", (CHAR *) (*attr_ val

See “C++ agent logging APIs” on page 121.

Creating entry points in C++ | 85
Agent framework primitives

VCSAG _LOG_MSG

VCSAG_LOG_MSG (sev, msgid, flags, fmt, variable args...)

You can use the macro vcsac_LoG MsG within C++ agent entry points to log all
messages ranging in severity from CRITICAL to INFORMATION to the agent log
file.

Usage:

VCSAG_LOG_MSG (VCS_ERROR, 14002, VCS DEFAULT FLAGS,
"Resource could not be brought down because the attempt to remove the file (%s

failed with error(%d)", (CHAR *) (*attr val), errno);

See “C++ agent logging APIs” on page 121.

VCSAG_LOGDBG_MSG

Use the macros vcsaG_LoGDBG_MSG within agent entry points to log debug messages
of a specific severity level to the agent log. The vcsac_LoGDBG_MsG macro controls
logging at the level of the resource type level.

VCSAG_LOGDBG_MSG (dbgsev, flags, fmt, variable args);

The VCSAG_LOGDBG_MSG macro controls logging at the level of the resource
type level.

Usage:

VCSAG_LOGDBG_MSG (VCS DBG5, VCS DEFAULT FLAGS,

"Received AMF monitor stop. Unregistering the group"):;

See “C++ agent logging APIs” on page 121.

VCSAG_RES LOG_MSG

The macro vCSaG_RES LOG MSG can be used to print debug log message at resource
level for a specific resource by enabling debugging at resource level by overriding
LogDbg attribute. It only accepts debug severities i.e. DBG_1 to DBG_21.

VCSAG_RES LOG MSG (dbgsev, flags, fmt, variable args);

The vcsac RES _LOG_MSG macro controls logging at the level of the resource type
level.

Usage:

Creating entry points in C++
Agent Framework primitives for container support

VCSAG_RES LOG_MSG(VCS DBG4, VCS DEFAULT FLAGS,
"PathName is (%s)", (CHAR *) (*attr val));

See “C++ agent logging APIs” on page 121.

Agent Framework primitives for container support

The following APlIs are for use in agents that run in AIX WPARs, XRM containers
and Solaris zones. Note that zones are supported by Solaris version 10 and above.

Note: Container support is available only with agent version V50 or later.

VCSAgIsContainerUp

int VCSAgIsContainerUp() ;

This API returns either True or False. If the container configured under Service
Group is up and running, this API returns True, else it returns False.

VCSAgGetContainerTypeEnum

VCSAgContainerType VCSAgGetContainerTypeEnum (const char *ctype);

This primitive takes a Container type name and returns a corresponding
VCSAgContainerType enum value.

VCSAgExecInContainer2

int VCSAgExecInContainer2 (const CHAR *path, CHAR *const argv[], char
*buf, long buf size, unsigned long *exit codep);

This APl is the same as VCSAgExec; however, this API should be used by an agent
only to execute a particular command or script in a specific container on the system.
If the container is not enabled or invalid container is specified or if OS does not
support container, then the API executes the command or script in the global
container. If there are no containers configured on the system, or if the agent has
no need to execute a script in a specific container, use the VCSAgExec API.

Memory for buf and exit_codep must be allocated by the calling function.
See “WCSAgExec” on page 77.
See “WCSAG_EXEC_IN_CONTAINER ” on page 111.

86

Creating entry points in C++ | 87
Agent Framework primitives for container support

VCSAglsContainerCapable

VCSAgBool VCSAgIsContainerCapable();

This API returns either True or False.

= For Solaris zones
If the agent is running on a Solaris 10 (or higher version) system, the APl returns
True; otherwise it returns False.
Agents can use this API to decide whether or not to perform zone-specific
operations like comparing the zone_id field in the psinfo structure with the ID of
the zone name specified in the resource configuration to confirm whether the
found process is indeed the process the agent is looking for.

s For XRM
If the agent is running on a system that has xrm available, the API returns True;
otherwise it returns False.

s For WPARs
If the agent is running on a system that has WPARs available, the API returns
True; otherwise it returns False.

VCSAgExecInContainerWithTimeout

int VCSAgExecInContainerWithTimeout ((const CHAR *path, CHAR *const
argv[] u32 timeout, CHAR *buf, long buf size, unsigned long

*exit codep);

This APl is similar to the VCSAgExecWithTimeout API. This APl can be used by
an agent only to execute a particular command or script in a specific container on
the system. If the container is not enabled or invalid container is specified or if OS
does not support container, then the API executes the command or script in the
global container. If there are no containers configured on the system, or if the agent
has no need to exec a script in a specific container, the VCSAgExecWithTimeout
API should be used.

Memory for buf and exit_codep should be allocated by the calling function.

VCSAgGetUID

int VCSAgGetUID (const CHAR *user, int *uid, int *euid, int

*home exists);

This API checks if the given user is valid inside the container as specified in the
resource object. The API returns the uid and euid of the user either inside the
container if container info is set for the resource or on the global container if container

Creating entry points in C++ | 88
Agent Framework primitives for container support

info is not set for the resource. The home_exists parameter indicates if the specified
user's home directory exists within the container.

Memory for uid, euid and home_exists must be allocated by the calling function

The API returns 0 on success and 1 on failure

VCSAgIsPidInContainer

int VCSAgIsPidInContainer (VCSPID pid);

This API checks if the given pid is running inside the container as specified in the
resource object. If the container is not enabled then the API checks that the pid is
running in the global container.

Return values
= 1if the proc pid is running inside the container
= 0 if the proc pid is not running inside the container

= -1if the API cannot verify the container info for the process. This is possible if
ContainerType is an invalid value.

VCSAgIsProcIinContainer

int VCSAgIsProcInContainer (void *psinfop) ;

This API checks if the process corresponding to the given psinfo structure is running
inside the container as specified in the resource object. If the container is not enabled
then the API checks that the process is running in the global container.

Return values
= 1 if the proc pid is running inside the container
= 0 if the proc pid is not running inside the container

= -1if the API cannot verify the container info for the process. This is possible if
ContainerType is an invalid value.

See “WCSAG_IS_PROC_IN_CONTAINER” on page 110.

VCSAgGetContainerlD2

int VCSAgGetContainerID2 ()

This API retrieves the ID of the container.

Creating entry points in C++ | 89
Agent Framework primitives for container support

Based on the thread that is implementing the entry point, the agent identifies the
resource for which this APl is invoked and returns the container ID for that resource.
The container ID is the ID of the container specified in the ContainerInfo attribute
as the value of the Name key.

Return Values

» -1, if the resource or container name is NULL or the container is DOWN or the
container is not applicable to the OS version the agent is running on.

= Non-negative container-id, if the container name is valid and the container is
UP.

VCSAgGetContainerName2

char *VCSAgGetContainerName2 () ;

For Solaris Zones, this API retrieves the name of the container, if set for the specified
resource.

For XRM, the API retrieves the name of the Execution Context.
For WPARSs, the API retrieves the name of the WPAR.

The API returns a pointer to the container name. It is the responsibility of the caller
to free the memory associated with the returned pointer.

The name of the container is the value set in the group-level attribute Containerinfo
for the group the resource belongs to.

VCSAgGetContainerBasePath

int VCSAgGetContainerBasePath (char *buf, int bufsize, int *exit info)
This API returns the base path of the container mentioned under the Containerinfo
attribute at group level. This APl must be called from the global zone or WPAR.

For Solaris zones:

» [fthe agent is running on a Solaris machine, the API returns the base path of
the zone where zone is installed.

For WPARs

= If the agent is running on an AIX machine, the API returns the base path of the
WPAR where WPAR is installed.

Input parameters:

Creating entry points in C++ | 90
Agent Framework primitives for container support

buf Buffer to store the base path of the container. Caller must make the
provision to reserve and release the memory for the buffer.

bufsize Size of the buffer passed.

Output parameters:

buf Buffer to store the base path of the container at the end of its execution.
exit info Provides extended information to the caller in certain cases as described

under Return values.

Return values:

0 If Containerlnfo attribute is set properly, which means:

s Name is set to <valid_container_name>
s Type is set to <valid_container_type>
s Enabledis setto 1

Container’s base path is returned in the buf parameter.
1 If buf is passed as null.

2 If the buffer size is smaller than the size of the container’s base path.

The exit_info parameter is updated to reflect the correct value of the buffer
size needed to be passed.

3 If the Enable key of the ContainerInfo attribute is set to 0 or 2. Container’s
base path is returned in buf parameter only if Name key is set to
<valid_container_name>.

4 If the Containerinfo attribute is not set for the resource. For example, Name
key of Containerinfo is *” or Type key of ContainerInfo is invalid.

5 If command to obtain the base path of the container fails. The exit_info
parameter is updated accordingly with the exit status of the command.

6 If OS is not container capable.
See “VCSAG_GET_CONTAINER_BASE_PATH” on page 108.
VCSAgGetContainerEnabled

This API returns the Enabled key of Containerinfo attribute.

Return values:

Creating entry points in C++ | 91
Agent Framework primitives for container support

0 If Containerlnfo is not defined at group level then it returns the default value
of the enabled key.

0,1,0r2 If ContainerlInfo is defined at group level then it returns the current value
of the enabled key.

Refer to the SFHA virtualization guide for more information on the values of the
enabled key.

Creating entry points in
scripts

This chapter includes the following topics:

= About creating entry points in scripts

= Syntax for script entry points

= Agent framework primitives

= Agent Framework primitives with container support

= Example script entry points

About creating entry points in scripts

On UNIX, script agents use one of the different agent binaries that are shipped with
the VCS product. The agent binaries are located at:

$VCS_HOME /pin/
See “Script based agent binaries” on page 136.

You can implement entry points using C++ or scripts. If you are implementing even
one entry point in c++ then you must implement the vcsagstartup function. If you
do not implement any entry points in C++, then you do not need to implement the
vCsAgstartup function since the defaultimplementation of vcsagstartup is present
in the script agent binary provided by VCS as mentioned above.

See “About the VCSAgStartup routine” on page 42.

You can use Perl or shell scripts to develop entry points.

Creating entry points in scripts | 93
About creating entry points in scripts

Rules for using script entry points

Script entry points can be executables or scripts, such as shell or Perl (the product
includes a Perl distribution).

Adhere to the following rules when implementing a script entry point:

On UNIX platforms

= Inthe vcsagstartup function, if you do not set a C++ function for an entry point
using the VCSAgValidateAndSetEntryPoint() API, then the agent framework
assumes the entry point is script-based.
See “About the VCSAgStartup routine” on page 42.

= Verify the name of the script file is the same as the entry point name.

= Place the file in the $VCS_HOME /bin/resource_type directory or in the
directory mentioned in the AgentDirectory attribute. If for example, the online
entry point for Oracle were implemented using Perl, the online script must be:

$VCS _HOME/bin/Oracle/online

= [f you write scripts in shell, verify the PATH environment variable includes the
directory where sh is installed.

Parameters and values for script entry points

The input parameters of script entry points are passed as command-line arguments.
The first command-line argument for all the entry points is the name of the resource
(except shutdown, which has no arguments).

Some entry points have an output parameter that is returned through the program
exit value. See the entry point description for more information.

See “Syntax for script entry points” on page 94.

ArgList attributes
Specifies the attributes that must be passed to the agent entry points.

See “About the ArgList and ArgListValues attributes” on page 47.

Examples
If Type "Foo" is defined in types.cf as:

Creating entry points in scripts | 94
Syntax for script entry points

Type Foo (
str Name
int IntAttr
str StringAttr
str VectorAttr[]
str AssocAttr{}
static str ArgList[] = { IntAttr, StringAttr,
VectorAttr, AssocAttr }
)

And if a resource "Bar" is defined in the VCS configuration file main.cf as:

Foo Bar (
IntAttr = 100
StringAttr = "Oracle"
VectorAttr = { "voll", "vol2", "vol3" }
AssocAttr = { "diskl"™ = "1024", "disk2" = "512" }

)
The online script for a V51 agent, when invoked for Bar, resembles:

online Bar IntAttr 1 100 StringAttr 1 Oracle VectorAttr 3 voll
vol2 vol3 AssocAttr 4 diskl 1024 disk2 512

See “About the ArgList and ArgListValues attributes” on page 47.

Syntax for script entry points

The following paragraphs describe the syntax for script entry points.

Syntax for the monitor script

monitor resource name ArgList attribute values

A script entry point combines the status and the confidence level in the exit value.
For example:

» 99 indicates unknown.

= 100 indicates offline.

= 101 indicates online and a confidence level of 10.

= 102-109 indicates online and confidence levels 20—90.

= 110 indicates online and confidence level 100.

Creating entry points in scripts | 95
Syntax for script entry points

= 200 indicates intentional offline.

If the exit value is not one of the above values, the status is considered unknown.

Syntax for the online script

online resource name ArgList attribute values

The exit value is interpreted as the expected time (in seconds) for the online
procedure to be effective. It also means the time (in seconds) that must pass before
executing the monitor entry point to validate proper operation. The exit value is
typically O.

Syntax for the offline script

offline resource name ArgList attribute values

The exit value is interpreted as the expected time (in seconds) for the offline
procedure to be effective. The exit value is typically 0.

It also means the time (in seconds) that must pass before executing the monitor
entry point to validate proper operation.

Syntax for the clean script

clean resource name clean reason arglList attribute values

The variable clean_reason equals one of the following values:

0 - The off1ine entry point did not complete within the expected time.

(See “OfflineTimeout” on page 195.)

1 - The off1ine entry point was ineffective.

2 - The online entry point did not complete within the expected time.

(See “OnlineTimeout” on page 197.)

3 - The online entry point was ineffective.

4 - The resource was taken offline unexpectedly.

5 - The monitor entry point consistently failed to complete within the expected time.
(See “FaultOnMonitorTimeouts” on page 188.)

The exit value is 0 (if successful) or 1 (if unsuccessful).

Creating entry points in scripts | 96
Syntax for script entry points

Syntax for the action script

action resource name

ArgList attribute values AND action arguments

The exit value is 0 (if successful) or 1 (if unsuccessful).

The agent framework limits the action entry point output to 2048 bytes.

Syntax for the attr_changed script

attr changed resource name changed resource name

changed attribute name new attribute value

The exit value is ignored.

Note: This entry point is called only if you register for change notification using the
primitive vcsagregister() (See “WCSAgRegister” on page 73.), or the agent
parameter regList (See “RegList” on page 198.).

Syntax for the info script

info resource name resinfo op ArgList attribute values

The attribute resinfo_op can have the values 1 or 2.

Values of Significance
resinfo_op
1 Add and initialize static and dynamic name-value data pairs in the

ResourceInfo attribute.

2 Update just the dynamic data in the ResourceInfo attribute.

This entry point can add and update static and dynamic name-value pairs to the
ResourcelInfo attribute. The info entry point has no specific output, but rather, it
updates the ResourceInfo attribute.

Syntax for the open script
open resource name ArgList attribute values

The exit value is ignored.

Syntax for the close script

close resource name

The exit value is ignored.

Syntax for the shutdown script

shutdown

The exit value is ignored.

Syntax for the imf_init script

imf_init

Creating entry points in scripts
Syntax for script entry points

ArgList attribute values

where type name is the type of agent. For example, Mount, Process, Application

and so on.

The exit value is 0 (zero) if successful and 1 (one) if unsuccessful.

Syntax for the imf_register script

imf register

res_name

mswitch

rstate

res_name mswitch rstate ArgList attribute values

Name of the resource that is required to be registered.

Possible value of this parameter is either
VCSAgIMFMonitorStop or VCSAgIMFMonitorStart.

If its value is VCSAgIMFMonitorStart, then it registers a
resource with underlying module. If its value is
VCSAgIMFMonitorStop, then it unregisters a resource from
underlying module. This is passed by the agent framework.

Possible value for this parameter is either
VCSAgIMFResOffline or VCSAgIMFResOnline.

Ifits value is VCSAgIMFResOffline, then it registers a resource
with underlying module for OFFLINE monitoring. If its value
is VCSAgIMFResOnline, then it registers underlying module
for ONLINE monitoring.

The exit value is 0 (zero) if successful or non-zero if unsuccessful.

97

Creating entry points in scripts | 98
Agent framework primitives

Note: The imf_register entry point also returns the resource ID to agent framework
by writing the resource ID to the exposed PIPE FD.

Syntax for the imf_getnotification script

imf getnotification type name

type name Type of the agent. For example, Mount, Process, Application
and so on.

The exit value is 0 (zero) if successful; 1 if failure; 3 if interrupted (failure case); 4
if critical failure.

Note: The imf_getnotification entry point also returns the resource event notification
to the agent framework by writing the event information to the exposed PIPE FD.

Syntax for migrate script

migrate resource name attribute values

The exit value is interpreted as the expected time (in seconds) for the migrate
procedure to be effective. The exit values is an integer in the range of 0 to 100. The
agent framework waits for the number of seconds as indicated by the value (return
value * 10) to call the monitor entry point for the resource to validate proper
operation. The exit value is typically 0. For more information refer to return code of
migrate entry point.

See “Return values for entry points ” on page 39.

Agent framework primitives

Primitives are Perl/Shell based methods implemented by the agent framework. The
following sections define the primitives.

VCSAG_GET_MONITOR_LEVEL

The agent developer can use this primitive to query if the LevelOne (Basic)
monitoring or the LevelTwo (Detail) monitoring or both need to be scheduled.

Output parameters:

Creating entry points in scripts | 99
Agent framework primitives

= level_one: This parameter will be updated to 1 or 0 if basic monitoring needs to
be scheduled or not. A value of 0 means that basic monitoring should not be
scheduled while a value of 1 means that basic monitoring should be scheduled.
See “IMF” on page 189.

= level_two: This parameter will be updated to 0, 1, or 2 based on the present
state of the resource, and if detail monitoring needs to be scheduled. A value
of 0 means that detail monitoring should not be scheduled, a value of 1 means
that detail monitoring should be scheduled, and a value of 2 means that detail
monitoring should be scheduled if basic monitoring (level_ one) reports state
as online
Following example describes setting of output parameters,
If you set LevelTwoMonitorFrequency to 5 and the resource state is ONLINE,
then every fifth monitor cycle, level_two will have the value as 1. If the resource
state is OFFLINE, then every monitor cycle level_two will have the value as 2.
See “LevelTwoMonitorFreq” on page 191.
If you set MonitorFreqto 5 and the resource is registered with IMF, then every
fifth monitor cycle level_one parameter will have the value of 1.
See “IMF” on page 189.

This APl is typically used as Perl/Shell based script.

Perl based:

This API return the value of level_one and level _two and status as return value.
Usage: ($ret, $level one, $level two) = VCSAG GET MONITOR LEVEL();

= $ret : Checks whether the API passed or failed.

= Slevel_one : Holds the value of level one monitor flag if APl is passed.

= Slevel_two : Holds the value of level two monitor flag if APl is passed.

Shell based:

This API return the value of level_one and level__two as environment variable
VCSAG_MONITOR_LEVEL ONE and VCSAG_MONITOR LEVEL_TWO, and status as return
value.

Usage:vCSAG GET MONITOR LEVEL

Fetches the value of the Levelone and LevelTwo monitoring flag as below if API
passes,

m level one=${VCSAG MONITOR LEVEL ONE}

m level two=${VCSAG MONITOR LEVEL TWO}

Creating entry points in scripts
Agent framework primitives

VCSAG_GET_AGFW_VERSION

This API can be used to get the latest agent version.

Perl based: Returns the version information as return value.
Usage:
my S$agfw ver = VCSAG GET AGFW VERSION();

Shell based: Returns the version information in environment variable

VCSAG_AGFW VERSION VALUE, and provides success or failure as return value.

Usage:
VCSAG_GET AGFW VERSION agfw ver=${VCSAG AGFW VERSION VALUE}

VCSAG_GET_REG_VERSION

This API can be used to get the registered agent version.

Perl based: Returns the version information as return value.
Usage:
my Sagfw_reg ver = VCSAG_GET_REG_VERSION () ;

Shell based: Returns th version information in environment variable

VCSAG_REG_VERSION_ VALUE , and provides success or failure as return value.

Usage:
VCSAG_GET_REG_VERSION agfw_reg ver=${VCSAG_REG_VERSION_ VALUE}

VCSAG_SET_RES_EP_TIMEOUT

This API allows an agent entry point to extend its timeout value dynamically from
within the entry point's execution context. This might be required if a command

executed from the entry point takes longer than expected to complete and the entry
point does not want to timeout. Symantec recommends using this AP| with caution

because the intent of timeouts is to make sure that entry points finish on time.

Perl based usage:

VCSAG_SET RES EP TIMEOUT (Stime) ;

Shell based usage:

VCSAG SET RES_EP TIMEOUTS{time}

100

Creating entry points in scripts | 101
Agent framework primitives

VCSAG_GET ATTR_VALUE

This API can be used to get the values of attribute. The attribute can be scalar type,
key list type, and association type.

Input parameters:

attribute name: The first argument holds the name of the attribute whose value
and index needs to be founded.

index of attribute: It is optional argument.
= Should be specified as -1 for getting values of scalar attribute

= Do not specify this argument, if you need to fetch only the number of keys
in key list, vector, association attribute and the index of the attribute.

= Should be the index of attribute if you need to fetch any particular key from
the key list, vector and association attribute.

index of value required.
= Should be specified as 1 for fetching the values of scalar attribute.

= Do not specify this argument, if you need to fetch only the number of keys
in key list, vector, association attribute and the index of the attribute.

= Should be the index of key if you need to fetch the value key from the key
list, vector and association attribute.

arglist : A list of attributes along with values. ResourceName and CleanReason
should not be passed in this list.

Output parameters for Perl-based API:

ret_val: This API returns value 0 on success and non-zero value on failure. The
error gets printed at debug level DBG_1.

Using vcsac_GET ATTR VALUE API to fetch value of scalar attribute

Shell:
VCSAG_GET_ATTR VALUE "MountPoint" -1 1 @ARGV

The environment variable vcsac ATTR VALUE stores the value.

Perl:

my (Sret, SMountPoint) =
VCSAG_GET_ATTR_VALUE ("MountPoint", -1, 1, @ARGV);

Using vcsag GET ATTR VALUE API to fetch the value of key list, vector and
association type attribute

Creating entry points in scripts | 102
Agent framework primitives

= The user needs to get the number of keys in key list attribute and index of
attribute in argument list, and then calls the API in loop. The user can get the
key or values in the key list, vector and association attributes.

To get number of keys in the key list attribute and the index
of attribute in argument list

Shell:
VCSAG_GET_ATTR VALUE "PidFiles" "s$@"

The number of values will be stored in environment variable vcsac_ATTR VALUE ,
and the environment variable vcsac ATTR INDEX holds the index of attribute in
the argument list.

Perl:

For example:

my (S$retval, $NumOfArgs, $indexofattr) =
VCSAG GET ATTR VALUE ("ACTION ARGS", QARGV) ;

To get a particular key in the key list and vector attribute
Shell:

VCSAG GET ATTR VALUE "PidFiles" ${VCSAG ATTR INDEX} $index "$@"
The variable vcsac ATTR VALUE holds the value of the key at the index ($index).
Perl:

my ($retval, $value of key) =
VCSAG GET ATTR VALUE ("ACTION ARGS", S$indexofattr, $index of key, @ARGV);

By getting the value of the number of keys as mentioned above and by calling this

APl in the loop, the user can get all the keys of key list and vector attribute.

To get the number of keys in the association attribute, and
index of attribute in the argument list

Shell:
VCSAG_GET ATTR VALUE "RHEVMInfo" "$Rargv "
Perl:

my ($ret val, $ NumOfArgs, $indexofattr) =
VCSAG GET ATTR VALUE ("RHEVMInfo", Qargv) ;

Creating entry points in scripts | 103
Agent framework primitives

To get a particular key or value in the association attribute:
Shell:

VCSAG_GET ATTR VALUE " RHEVMInfo " S${VCSAG ATTR INDEX} S$index "$@"

The variable vcsag_aTTR VvALUE holds the value of key at the index ($index).

Perl:

(Sretval, S$value) =
VCSAG_GET_ATTR_VALUE ("RHEVMInfo", S$indexofattr, $index of key or val, Qargv);

By getting the value of the number of keys as mentioned above and by calling this
APl in the loop, the user can get all the keys of association attribute.

VCSAG_SET_RESINFO

This API sets or modifies the resourceInfo with specified key and value.
Input parameters:

= info_type: Set to ‘1’ when you call this API for the first time so that the
corresponding key value pair can be added to the attribute Resourcelnfo, and
it is set to ‘2’ second time to update the values of key.

= key_name: Specifies the key that needs to be added or update.

= key_ val: Specifies the value of the key that needs to be added or updated.
Output parameters:

» Returnsvcsac_success when it successful adds or updates the key-value pair.

Shell:

VCSAG_SET RESINFO “${info type}” “S${key name}” “${key val}”

Perl:

VCSAG_SET RESINFO (${info_type}, ${key name}, S${key val});

VCSAG_MONITOR_EXIT

This API exits the entry point with online/offline/unknown status along with setting
the ConfidenceLevel and ConfidenceMsg attributes, if desired.

Input parameters:

s Exit status of resource

Creating entry points in scripts
Agent framework primitives

m VCSAG _RES_UNKNOWN: Monitor should return this value when resource state

is unknown.

m VCSAG_RES_OFFLINE: Monitor should return this value when resource state

is OFFLINE.

m VCSAG RES_ ONLINE: Monitor should return this value when resource state is

ONLINE.

m VCSAG_RES_INTENTIONALOFFLINE: Monitor should return this value when
resource state is detected as intentionally offline.

New confidence level when exit status is online, else ignored (optional).
Confidence level is between 10 to 100%.

New confidence message when exit status is online but confidence level is
below 100%, else ignored (optional)

Perl usage:

VCSAG_MONITOR_EXIT ($exit code);
VCSAG_MONITOR EXIT (Sexit code, $confidence level);

VCSAG_MONITOR EXIT (Sexit code, $Sconfidence level,

Sconfidence message) ;

Example:

VCSAG_MONITOR EXIT ($VCSAG RES_UNKNOWN) ;
VCSAG MONITOR EXIT ($VCSAG RES OFFLINE) ;
VCSAG_MONITOR EXIT ($VCSAG RES ONLINE, 90);

VCSAG MONITOR EXIT ($VCSAG RES ONLINE, 20, "block device is 80%
full");

Shell usage:

VCSAG MONITOR EXIT S$exit code

VCSAG_MONITOR EXIT $exit code $confidence level

VCSAG _MONITOR EXIT $exit code Sconfidence level Sconfidence message

Example:

VCSAG_MONITOR_EXIT $VCSAG_RES_UNKNOWN
VCSAG_MONITOR EXIT $VCSAG RES OFFLINE

VCSAG_MONITOR EXIT $SVCSAG RES ONLINE 90

VCSAG MONITOR EXIT $VCSAG RES ONLINE 20 "block device is 80% full"

104

Creating entry points in scripts
Agent framework primitives

VCSAG_SYSTEM

VCSAG_SU

Entry points must use this function if they need to fork a command using system
call.

Shell:
= Input parameter: A string of command with arguments.
= Usage:

VCSAG_SYSTEM "$command"; echo $?

User can do echo $2 to get the exit value of the command.
Perl:
= Input parameter: A string of command with arguments.
= Output parameter : Return value of system ($command).

= Usage:

$retval = VCSAG SYSTEM($command) ;

Entry points must use this function if they need to run a command in a different
user's context.

Input parameters:

= User name

= A string of su options (if the string is space separated then needs quoted string)
= A string of command with arguments

Output parameters:

= Return value of system($command)

Shell usage:

VCSAG_SU "${user}" "-" "${program}"

Perl usage:

VCSAG_SU(Suser,"-", S$program);

105

Creating entry points in scripts | 106
Agent framework primitives

VCSAG_RETURN_IMF_RESID

This APl is used by imf_register entry point to return the resource ID registered with
underlying IMF notification module to the agent.

Shell usage: VCSAG RETURN_IMF RESID

Perl usage: vCSAG_RETURN IMF RESID ()

VCSAG_RETURN_IMF_EVENT

imf_getnotification entry point uses this API to return the resource ID whose
notification arrived from underlying IMF notification module to the agent.

Shell usage: VCSAG RETURN IMF EVENT

Perl usage: vCSAG_RETURN IMF EVENT ()

VCSAG_BLD_PSCOMM

This API builds the ps command based on platform and Container type.

Note: This APl is applicable only for Perl-based usage.

Output:

Built PS command. The output can be used to list the processes. The user must
call vesaGg_1s_PROC_IN_CONTAINER to check if the process lies in the container in
which the resource is managed.

Usage:

$cmd = VCSAG_BLD PSCOMM() ;
open (PIDS, "S$cmd |");

VCSAG_PHANTOM_STATE

This API determines "phantom" state of a resource, and it requires State and IState
of the resource as input arguments

Input parameters: State and IState

Output: "phantom" state of the resource.

Note: This APl is applicable only for Perl-based usage.

Perl usage:

Creating entry points in scripts | 107
Agent framework primitives

Sret state=VCSAG_PHANTOM STATE (Sstate, S$istate);

VCSAG_SET_ENVS

The VCSAG_SET_ENVS function is used in each script-based entry point file. Its
purpose is to set and export environment variables

See “Script entry point logging functions” on page 129.

VCSAG_LOG_MSG

This API can be used to log messages in the engine log from agent's script entry
point.

See “Script entry point logging functions” on page 129.

VCSAG_LOGDBG_MSG

This API can be used to log debug messages in the engine log from agent's script
entry point.

See “Script entry point logging functions” on page 129.

VCSAG_SQUEEZE_SPACES

This APl removes leading and trailing spaces, and also squeezes the spaces in
the value that is passed as arguments.

Input parameters: Any strings with extra spaces.

Output parameters: Space squeezed strings.

Note: This APl is applicable only for Perl-based usage.

Usage:
($al,$bl...) = VCSAG_SQUEEZE SPACES ($a, $b...);
Example:

$strl = VCSAG SQUEEZE SPACES ($strl);
($strl, $str2) = VCSAG_SQUEEZE SPACES ($strl, S$str2);
@str = VCSAG_SQUEEZE SPACES (@str);

Creating entry points in scripts

Agent Framework primitives with container support

Agent Framework primitives with container support

The following APIs are for use in agents that run in AIX WPARs, Solaris zones and

Project. Note that zones are supported by Solaris version 10 and above.

Note: Container support is available only with agent version V50 or later.

VCSAG_GET_CONTAINER_BASE_PATH

This API returns the base path of the container as mentioned under the Containerinfo

attribute at group level. This APl must be called from the global zone or WPAR.

s For Solaris zones:

If the agent is running on a Solaris machine, the API returns the base path of

the zone where zone is installed.

s For WPARs

If the agent is running on an AlIX machine, the API returns the base path of the

WPAR where WPAR is installed.

Perl based: Returns the API exits status, command status and container base path

as return value.

Return values:

Usage:

If VCSAG_GET CONTAINER INFO is called
before and Containerinfo is set properly,
which means

= Name is set to <valid_container_name>
= Type is set to <valid_container_type>
= Enabledis setto 1

Container's base path will be returned as
return value.

If VCSAG _GET CONTAINER INFO APIis not
called before or if Containerlnfo attribute is
not set for the resource. For example, Name
key of ContainerInfo is " or Type key of
ContainerlInfo is invalid etc.

If command to fetch base path of container
fails. the command status is returned as
return value.

108

Creating entry points in scripts | 109
Agent Framework primitives with container support

my (S$ret, Scmdstatus, $container base path) =
VCSAG_GET_ CONTAINER BASE PATH () ;

Shell based:

This API returns the base path of container in environment variable
VCSAG_CONTAINER BASE_ PATH and the status of the command which is used by api
to fetch base path name in the environment variable vcsac cvp_staTus. The API
returns the exit status in the environment variable vCSAG_BASE PATH RET VAL.

Return values:

0 If VCSAG GET CONTAINER INFO is called
before and Containerinfo is set properly,
which means

= Name is set to <valid_container_name>
n Type is set to <valid_container_type>
» Enabledis setto 1

Container's base path will be stored in
environment variable
VCSAG _CONTAINER BASE PATH parameter.

4 IfVCSAG_GET CONTAINER INFO APIis not
called before or if Containerinfo attribute is
not set for the resource. For example, Name
key of ContainerInfo is "™ or Type key of
ContainerlInfo is invalid etc.

5 If command to fetch base path of container
fails. The environment variable
VCSAG _CMD_STATUS, will be updated
accordingly with exit status of the command.

Usage:

VCSAG GET CONTAINER BASE PATH
base path=${VCSAG CONTAINER BASE PATH)

Note: Before you use this API, the user should call the API
VCSAG_GET_CONTAINER INFO.VCSAG_GET CONTAINER INFO APl will set container
name and type appropriately which will be required for this API.

VCSAG_GET_CONTAINER_INFO

Shell:

Creating entry points in scripts | 110
Agent Framework primitives with container support

This API populates vCSaG CONTAINER NAME and VCSAG CONTAINER TYPE
environment variables appropriately based on the Containerinfo attribute passed
to ArgList.

Input parameter: ArgList
OQutput parameter

» Return vcsac _1nFO _NOT avaIL when Containerinfo is not passed in the entry
point.

= Return vcsac_1NrFo DONT care when Container is disabled which means
Enabled is set 2 in the ContainerInfo attribute at the group level.

» Return vcsac 1NFO AvaIL when successful. vcSAG CONTAINER NaME and
VCSAG_CONTAINER_ TYPE Will be set appropriately.

Usage:
VCSAG_GET CONTAINER INFO "s@"

Perl:

This API returns the container information, such as container name and container
type, under which the resource is managed.

Input parameter: ArgList

Output parameter: Returns the name of container and container type as return
value along with success and failure of the API.

Return value:

m $VCSAG INFO NOT AVAIL— The Container Infois not available. You cannot use
the values cname and ctype.

m $VCSAG_INFO AVAIL - The Container Info is available. You can use the values
cname and ctype.

m $VCSAG INFO DONT CARE - The Container is disabled which means Enabled is
set 2 in the ContainerInfo attribute at the group level.

Usage:

(Sret, Scname, S$ctype) = VCSAG GET CONTAINER INFO (@ARGV) ;

VCSAG_IS_PROC_IN_CONTAINER

This API checks if the process is part of the container in which resource is managed.
The APl vcsag_BLD _pscoMM should be used for building the ps command while
finding process name.

Creating entry points in scripts | 111
Example script entry points

Note: This APl is applicable only for Perl-based usage. And also applicable for
solaris zone, project, and aix wpar.

Input:

$psout - Process entry from the output of ps command as generated by API
vcsac BLD pscomM for the process that needs to be checked.

Return values:

= 1-Process is part of the Container

= 0 - Process runs outside the Container
Usage:

Sret = VCSAG_IS PROC_IN CONTAINER ($psout);

VCSAG _EXEC_IN_CONTAINER
Perl/Shell based:

Executes the command that are passed as an argument to this API inside the
appropriate container.

If RIC is set to 1, do not use this API as entry point runs inside the container and
zlogin/clogin/newtask command will fail; instead use VCSAG_SYSTEM API.

Input parameter: Command that needs to be run.
Output parameter: Return value of command executed in the appropriate container.

Shell Usage:
retval=VCSAG_EXEC_IN CONTAINER “$cmd”
Perl Usage:

Sretval = VCSAG EXEC IN CONTAINER ($Scmd);

Note: Before using this API user should call
VCSAG_GET_CONTAINER INFO.VCSAG GET CONTAINER INFO APIwill setthe container
name and type appropriately which are required. This API will execute the command
in global container when the user fails to call vcsaG_GET CONTAINER INFO API.

Example script entry points

The following example shows entry points written in a shell script.

Creating entry points in scripts
Example script entry points

Online entry point for FileOnOff

The FileOnOff example entry point is simple. When the agent's online entry point
is called by the agent, the entry point expects the name of the resource as the first
argument, followed by the values of the remaining ArgList attributes.

For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.

The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh
FileOnOff Online script
Expects ResourceName and Pathname
. "S${CLUSTER_HOME}/bin/ag_i18n_inc.sh"
RESNAME=51
VCSAG_SET_ENVS SRESNAME
#check if second attribute provided
if [-z "$4"]
then
VCSAG_LOG_MSG "W" "The value for PathName is not
specified"” 1020
else
#create the file
touch $4
fi

exit 0;

Note: The actual VCS FileOnOff entry points are written in C++, but in this example,
shell script is used.

Monitor entry point for FileOnOff

When the agent's monitor entry point is called by the agent, the entry point expects
the name of the resource as the first argument, followed by the values of the
remaining ArgList attributes.

For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

112

Creating entry points in scripts | 113
Example script entry points

= For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.

If the file exists it returns exit code 110, indicating the resource is online with 100%
confidence. If the file does not exist the monitor returns 100, indicating the resource
is offline. If the state of the file cannot be determined, the monitor returns 99.

The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh
FileOnOff Monitor script

Expects Resource Name and Pathname

. "S{CLUSTER_HOME}/bin/ag_i18n_inc.sh"
RESNAME=S1

VCSAG_SET_ENVS $RESNAME

#check if second attribute provided

#Exit with unknown and log error if not provided.

if [-z "s4"]

then
VCSAG_LOG MSG "W" "The value for PathName is not specified" 1020
exit 99

else
if [-f $4]1; then exit 110;

Exit online (110) if file exists

Exit offline (100) if file does not exist
else exit 100;

fi

fi

Monitor entry point with intentional offline
This script includes the intentional offline functionality for the MyCustomApp agent.
See “About on-off, on-only, and persistent resources ” on page 19.

Note that the method to detect intentional offline of an application depends on the
type of application. The following example assumes that the application writes a
status code into a file if the application is intentionally stopped.

#!/bin/sh
. "S{CLUSTER_HOME}/bin/ag_i18n_inc.sh"

ResName=$1; shift;

Creating entry points in scripts
Example script entry points

VCSAG_SET_ENVS $SResName

// Obtain the attribute values from ArgListValues
parse_arglist values();

RETVAL=$?

if [${RETVAL} -eq ${VCSAG_RES_UNKNOWN}]; then

// Could not get all the required attributes from
ArgListValues

exit $VCSAG_RES UNKNOWN;
fi

// Check if the application's process is present in the ps
// output

check if app is running();

RETVAL=S$?

if [${REVAL} -eq ${VCSAG _RES ONLINE}]; then
// Application process found
exit $VCSAG_RES ONLINE;

fi

// Bpplication process was not found; Check if user gracefully
// shutdown the application

grep "MyCustomAppCode 123 : User initiated shutdown command"
${APPLICATION7CREATED78TATU87FILE}

RETVAL=$?

if [${REVAL} -eq 0]; then
// Found MyCustomAppCode 123 in the application's status
// file that gets created by the application on graceful
//shutdown

exit $VCSAG7RE871NTENTIONALOFFLINE;
else
// Did not find MyCustomAppCode 123; hence application has
// crashed or gone down unintentionally

exit $VCSAG RES_ OFFLINE;
fi

// Monitor should never come here
exit $VCSAG_RES UNKNOWN;

114

Creating entry points in scripts | 115
Example script entry points

Offline entry point for FileOnOff

When the agent's of f1ine entry pointis called by the agent, the entry point expects
the name of the resource as the first argument, followed by the values of the
remaining ArgList attributes.

= For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

= For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the attribute's
value, and the value.

The below mentioned example is applicable for agent version V50 and later.

#!/bin/sh

FileOnOff Offline script

Expects ResourceName and Pathname

#

. "${CLUSTER_HOME}bin/ag_i18n_inc.sh"
RESNAME=S1

VCSAG_SET_ENVS SRESNAME

#check if second attribute provided

if [-z "$4"]

then
VCSAG_LOG_MSG "W" "The value for PathName is not specified"\
1020

else

#remove the file
/bin/rm Df $4
fi

exit 0;

Monitor entry point for agent having basic (level-1) and detailed
(level-2) monitoring
When the agent calls its entry point, the entry point expects the name of the resource

as the first argument, followed by the values of the remaining ArgList attributes.

Following implementation is for the agents that are registered as V51.
Implementation is same even if the agent is an IMF-aware agent.

Note: IMF is supported for agent version V51 and later.

Creating entry points in scripts
Example script entry points

Implementation of Monitor entry point, which does Level-1
and Level-2 monitoring.

#

eval 'exec /opt/VRTSperl/bin/perl -I ${CLUSTER HOME}/lib
_S $0 ${l+"$@"}'
if 0;

use strict;

use warnings;

my ($Resource, $state) = ("", "ONLINE");

SResource = SARGV[0]; shift;

use ag_118n_inc;
VCSAG_SET_ENVS (SResource) ;

Fetch the value of level-1 and level-2
my (ret, Slevel one, $level two)=(0,0,0);
(Sret, Slevel one, S$level two) = VCSAG GET MONITOR LEVEL();

Check if level-1 monitoring need to be performed
if ($level one ==) |
Do level-1 monitoring i.e. basic monitoring
This would return state as ONLINE or OFFLINE or
unknown

state = do_level one monitoring();

Check if level-2 monitoring need to be performed
if (($state eqg "ONLINE") && ($level two != 0)) {
Do level-2 monitoring i.e. detailed monitoring

state = do_level two monitoring();

if ($state -eqg "ONLINE") {
exit 110;

}

if ($state -eqg "OFFLINE") {

exit 100;

116

Creating entry points in scripts | 117
Example script entry points

unknown state
exit 99;

Logging agent messages

This chapter includes the following topics:

= About logging agent messages

= Logging in C++ and script-based entry points
= C++ agentlogging APls

= Script entry point logging functions

About logging agent messages

This chapter describes APIs and functions that developers can use within their
custom agents to generate log file messages conforming to a standard message
logging format.

More information is available about how to create and manage messages for
internationalization.

See “About internationalized messages” on page 221.
More information is also available about APIs that are used by VCS 3.5 and earlier.

See “Log messages in pre-VCS 4.0 agents” on page 230.

Logging in C++ and script-based entry points

Developers creating C++ agent entry points can use a set of macros for logging
application messages or debug messages. Developers of script-based entry points
can use a set of methods, or "wrappers," that call the halog utility to generate
application or debug messages.

Logging agent messages | 119
Logging in C++ and script-based entry points

Symantec recommends using the ag_i18n_inc subroutines for logging. The
subroutines set the category ID for the messages and provide a header for the log
message, which includes the resource name and the entry point name.

Agent messages: format
An agent log message consists of five fields. The format of the message is:
<Timestamp> <Mnemonic> <Severity> <UMI> <Message Text>

The following is an example message, of severity ERROR, generated by the
FileOnOff agent's online entry point. The message is generated when the agent
attempts to bring online a resource, a file named "MyFile":

Sep 26 2010 11:32:56 VCS ERROR V-16-2001-14001
FileOnOff:MyFile:online:Resource could not be brought up
because, the attempt to create the file (filename) failed

with error (Is a Directory)

The first four fields of the message above consists of the timestamp, an uppercase
mnemonic that represents the product, the severity, and the UM/ (unique message
ID). The subsequent lines contain the message text.

Timestamp

The timestamp indicates when the message was generated. It is formatted according
to the locale.

Mnemonic
The mnemonic field is used to indicate the product.

The mnemonic, must use all capital letters. All VCS bundled agents, enterprise
agents, and custom agents use the mnemonic: VCS

Severity

The severity of each message displays in the third field of the message (Critical,
Error, Warning, Notice, or Information for normal messages; 1-21 for debug
messages). All C++ logging macros and script-based logging functions provide a
means to define the severity of messages, both normal and debugging.

Logging agent messages
Logging in C++ and script-based entry points

UMl

The UMI (unique message identifier) includes an originator ID, a category ID, and
a message ID.

The originator ID is a decimal number preceded by a "V-" that defines the product
that the message comes from. This ID is assigned by Symantec.

The category ID is a number in the range of 0 to 65536 assigned by Symantec.
The category ID indicates the agent that message came from. For each custom
agent, you must contact Symantec so that a unique category ID can be registered
for the agent.

= For C++ messages, the category ID is defined in the vcsagstartup function.
See “Log category” on page 124.

= For script-based entry points, the category is set within the
VCSAG_SET_ENVS function
See “WVCSAG_SET_ENVS” on page 129.

= For debug messages, the category ID, which is 50 by default, need not be
defined within logging functions.

Message IDs can range from 0 to 65536 for a category ID. Each normal message
(that is, non-debug message) generated by an agent must be assigned a
message ID. For C++ entry points, the msgid is set as part of the
VCSAG_LOG_MSG and VCSAG_CONSOLE_LOG_MSG macros. For
script-based entry points, the msgid is set using the VCSAG_LOG_MSG function.
The msgid field is not used by debug functions or required in debug messages.
See “WCSAG_LOG_MSG” on page 132.

Message text

The message text is a formatted message string preceded by a dynamically
generated header consisting of three colon-separated fields. namely, <name of the
agent>: <resource>:<name of the entry point>:<message>. For example:

FileOnOff:MyFile:online:Resource could not be brought up

because, the attempt to create the file (MyFile) failed

with error (Is a Directory)

In the case of C++ entry points, the header information is generated.

In the case of script-based entry points, the header information is set within the
VCSAG_SET_ENVS function (See “WCSAG_SET_ENVS” on page 129.).

120

Logging agent messages | 121
C++ agent logging APIs

C++ agent logging APlIs

The agent framework provides four logging APIs (macros) for use in agent entry
points written in C++.

These APIs include two application logging macros:

VCSAG_CONSOLE_LOG MSG(sev, msgid, flags, fmt, variable args...)
VCSAG_LOG_MSG (sev, msgid, flags, fmt, variable args...)

and the macros for debugging:

VCSAG_LOGDBG_MSG (dbgsev, flags, fmt, variable args...)
VCSAG_RES_LOG_MSG (dbgsev, flags, fmt, variable args...)

Agent application logging macros for C++ entry points

You can use the macro VCSAG_LOG_MSG within C++ agent entry points to log
all messages ranging in severity from CRITICAL to INFORMATION to the agent
log file. Use the VCSAG_CONSOLE_LOG_MSG macro to send messages to the
HAD log. Where the messages are of CRITICAL or ERROR severity, the message
is also logged to the console.

The following table describes the argument fields for the application logging macros:
sev Severity of the message from the application. The values of sev are

macros VCS_CRITICAL, VCS_ERROR, VCS_WARNING,
VCS_NOTICE, and VCS INFORMATION; see Severity arguments for

C++ macros.
msgid The 16-bit integer message ID.
flags Default flags (0) prints UMI, NEWLINE. A macro,

VCS_DEFAULT_FLAGS, represents the default value for the flags.

fmt A formatted string containing formatting specifier symbols. For example:
"Resource could not be brought down because the attempt to remove
the file (%s) failed with error (%d)"

variable args Variable number (as many as 6) of type char, char *, or integer

In the following example, the macros are used to log an error message to the agent
log and to the console:

Logging agent messages | 122
C++ agent logging APIs

VCSAG_LOG MSG (VCS_ERROR, 14002, VCS DEFAULT FLAGS,
"Resource could not be brought down because the

attempt to remove the file(%s) failed with error(%d)",
(CHAR *) (*attr_val), errno);

VCSAG_CONSOLE_LOG MSG(VCS_ERROR, 14002, VCS DEFAULT FLAGS,

"Resource could not be brought down because, the

attempt to remove the file(%s) failed with error(%d)",
(CHAR *) (*attr_val), errno);

Agent debug logging macros for C++ entry points

Use the macros VCSAG_RES_LOG_MSG and VCSAG_LOGDBG_MSG within
agent entry points to log debug messages of a specific severity level to the agent

log.
Use the LogDbg attribute to specify a debug message severity level. See the
description of the LogDbg attribute (See “LogDbg” on page 191.). Set the LogDbg

attribute at the resource type level. The attribute can be overridden to be set at the
level for a specific resource.

The VCSAG_LOGDBG_MSG macro controls logging at the level of the resource
type level, whereas VCSAG_RES_LOG_MSG macro can enable logging debug
messages at the level of a specific resource.

The following table describes the argument fields for the application logging macros:

dbgsev Debug severity of the message. The values of dbgsev are macros
ranging from VCS_DBG1 to VCS_DBG21.

See Severity arguments for C++ macros.

flags Describes the logging options.

Default flags (0) prints UMI, NEWLINE. A macro,
VCS_DEFAULT_FLAGS, represents the default value for the flags

fmt A formatted string containing symbols. For example: "PathName is
(%s)"

variable args Variable number (as many as 6) of type char, char * or integer

For example:

Logging agent messages | 123
C++ agent logging APIs

VCSAG_RES LOG_MSG (VCS DBG4, VCS DEFAULT FLAGS, "PathName is
(ss) ",

(CHAR *) (*attr val));

For the example shown, the specified message is logged to the agent log if the
specific resource has been enabled (that is, the Logbbg attribute is set) for logging
of debug messages at the severity level DBG4.

Severity arguments for C++ macros

A severity argument for a logging macro, for example, VCS_ERROR or VCS_DBG1,
is in fact a macro itself that expands to include the following information:

= actual message severity

» function name

= name of the file that includes the function

= line number where the logging macro is expanded

For example, the application severity argument VCS_ERROR within the monitor
entry point for the FileOnOff agent would expand to include the following information:

ERROR, res monitor, FileOnOff.C, 28

Application severity macros map to application severities defined by the enum
vcsagappsSev and the debug severity macros map to severities defined by the enum
VCSAgDbgSev. For example, in the vcsagapibpefs.h header file, these enumerated
types are defined as:

enum VCSAgAppSev {
AG CRITICAL,
AG ERROR,
AG WARNING,
AG NOTICE,
AG INFORMATION
bi

enum VCSAgDbgSev {
DBG1,
DBG2,
DBG3,

Logging agent messages | 124
C++ agent logging APIs

DBG21,
DBG_SEV_End
}i

With the severity macros, agent developers need not specify the name of the
function, the file name, and the line number in each log call. The name of the
function, however, must be initialized by using the macro VCSAG_LOG_INIT. See
Initializing function_name using VCSAG_LOG_INIT .

Initializing function_name using VCSAG_LOG_INIT

Log category

One requirement for logging of messages included in C++ functions is to initialize
the function_name variable within each function. The macro, VCSAG_LOG_INIT,
defines a local constant character string to store the function name:

VCSAG_LOG_INIT (func_name) const char * function name =

func_name

For example, the function named "res_offline" would contain:

void res offline (int a, char *b)

{
VCSAG_LOG_INIT ("res_offline");

Note: If the function name is not initialized with the VCSAG_LOG_INIT macro, when
the agent is compiled, errors indicate that the name of the function is not defined.

More examples of the VCSAG_LOG_INIT macro are available.

See the Examples of logging APIs used in a C++ agent.

The log category for the agent is defined using the primitive vcsagsetLogCategory
(cat_1D) within the vcsagstartup function. In the following example, the log
category is set to 10051:

VCSEXPORT void VCSDECL VCSAgStartup ()

Logging agent messages
C++ agent logging APIs

VCSAG_LOG_INIT ("VCSAgStartup");
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor,
res_monitor);

VCSAgValidateAndSetEntryPoint (VCSAgEPOnline,
res_online);

VCSAgValidateAndSetEntryPoint (VCSAgEPOffline,
res_offline);

VCSAgValidateAndSetEntryPoint (VCSAgEPClean, res clean);

VCSAgSetLogCategory (10051) ;
char *s = setlocale(LC_ALL, NULL);

VCSAG_LOGDBG_MSG (VCS_DBG1, VCS DEFAULT FLAGS, "Locale is

%s", s);

You do not need to set the log category for debug messages, which is 50 by default.

Examples of logging APIs used in a C++ agent

#include <stdio.h>
finclude <locale.h>
#include "VCSAgApi.h"

void res_attr changed(const char *res name, const char
*changed res_name,const char *changed attr name, void

**new_val)

/*
* NOT REQUIRED if the function is empty or is not logging
* any messages to the agent log file
*/
VCSAG_LOG_INIT ("res_attr changed");
}
extern "C" unsigned int
res_clean(const char *res name, VCSAgWhyClean wc, void

**attr_val)

VCSAG_LOG_INIT("res_clean");

125

Logging agent messages
C++ agent logging APIs

if ((attr_val) && (*attr val)) {

if ((remove ((CHAR *) (*attr val)) == 0) || (errno
== ENOENT)) { return 0; // Success
}
}
return 1; // Failure

void res close(const char *res name, void **attr val)
{
VCSAG_LOG_INIT("res close");
}
//
// Determine if the given file is online (file exists) or
// offline (file does not exist).
//
extern "C" VCSAgResState
res_monitor (const char *res name, void **attr val, int
*conf level)

{
VCSAG_LOG INIT("res monitor");

VCSAgResState state = VCSAgResUnknown;

*conf level = 0;

/‘k

* This msg will be printed for all resources if VCS_DBG4
* is enabled for the resource type. Else it will be

* logged only for that resource that has the dbg level

* VCS_DBG4 enabled

*/

VCSAG_RES_LOG_MSG (VCS_DBG4, VCS DEFAULT FLAGS, "PathName
is(%s)", (CHAR *) (*attr val));

if ((attr_val) && (*attr val)) |
struct stat stat buf;
if ((stat((CHAR *) (* attr val), é&stat buf) == 0)
&& (strlen((CHAR *) (* attr _val)) != 0)) {
state = VCSAgResOnline; *conf level = 100;

else {

126

Logging agent messages
C++ agent logging APIs

state = VCSAgResOffline;

*conf level = 0;

}
VCSAG_RES_LOG_MSG(VCS_DBG7, VCS_DEFAULT FLAGS, "State is
(%d)", (int)state);
return state;
}
extern "C" unsigned int
res_online(const char *res name, void **attr val) {
int fd = -1;
VCSAG_LOG INIT("res online");
if ((attr_val) && (*attr val)) |
if (strlen((CHAR *) (* attr val)) == 0) {
VCSAG_LOG_MSG (VCS_WARNING, 3001, VCS DEFAULT FLAGS,
"The value for PathName attribute is not

specified");

VCSAG_CONSOLE_LOG_MSG(VCS_WARNING, 3001,
VCS_DEFAULT_FLAGS,
"The value for PathName attribute is not

specified");

return 0;

if (fd = creat((CHAR *) (*attr val), S IRUSR|S IWUSR) < 0) {

VCSAG_LOG_MSG (VCS_ERROR, 3002, VCS DEFAULT_ FLAGS,
"Resource could not be brought up because, "
"the attempt to create the file(%s) failed "

"with error(%d)", (CHAR *) (*attr val), errno);

VCSAG_CONSOLE_LOG MSG(VCS_ERROR, 3002,
VCS_DEFAULT_FLAGS,
"Resource could not be brought up because,
"the attempt to create the file(%s) failed "

"with error(%d)", (CHAR *) (*attr val), errno);

return 0;

close (fd);
}

return 0;

127

Logging agent messages
C++ agent logging APIs

extern "C" unsigned int

res_offline(const char *res name, void **attr val)

{
VCSAG_LOG INIT("res offline");
if ((attr_val) && (*attr val) && (remove ((CHAR*)
(*attr_val)) != 0) && (errno != ENOENT)) {

VCSAG_LOG_MSG (VCS_ERROR, 14002, VCS DEFAULT FLAGS,
"Resource could not be brought down because, the
attempt to remove the file(%s) failed with

error (%d)", (CHAR *) (*attr_val), errno);

VCSAG_CONSOLE LOG _MSG (VCS_ERROR, 14002,
VCS_DEFAULT FLAGS, "Resource could not be brought
down because, the attempt to remove the file(%s)
failed with error(%d)", (CHAR *) (*attr val), errno);
}
return 0;
}
void res_open(const char *res name, void **attr val)

{
VCSAG_LOG_INIT("res open");

}

VCSEXPORT void VCSDECL VCSAgStartup ()

{
VCSAG_LOG_INIT ("VCSAgStartup");
VCSAgInitEntryPointStruct (V51);

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor,
res_monitor);

VCSAgValidateAndSetEntryPoint (VCSAgEPOnline,
res_online);

VCSAgValidateAndSetEntryPoint (VCSAgEPOffline,
res_offline);

VCSAgValidateAndSetEntryPoint (VCSAgEPClean, res clean);

VCSAgSetLogCategory (2001) ;

char *s = setlocale(LC_ALL, NULL);
VCSAG_LOGDBG_MSG (VCS_DBG1, VCS DEFAULT FLAGS, "Locale is

128

Logging agent messages | 129
Script entry point logging functions

s%y

o

s);

Script entry point logging functions

For script based entry points, use the functions described in this section for message
logging purposes.

Note: Symantec recommends that you do not use the halog command in script
entry points.

The logging functions are available in the ag_i18n_inc module.

VCSAG_SET_ENVS See “WCSAG_SET_ENVS” on page 129.
VCSAG_LOG_MSG See “WCSAG_LOG_MSG’ on page 132.
VCSAG_LOGDBG_MSG See “VCSAG_LOGDBG_MSG” on page 133.

Using functions in scripts

The script-based entry points require a line that specifies the file defining the logging
functions. Include the following line exactly once in each script. The line should
precede the use of any of the log functions.

= Shell Script include file

. "S{CLUSTER HOME}/bin/ag i18n_inc.sh"

» Perl Script include file

use ag 118n_inc;

VCSAG_SET_ENVS

The VCSAG_SET_ENVS function is used in each script-based entry point file. Its
purpose is to set and export environment variables that identify the agent's category
ID, the agent's name, the resource's name, and the entry point's name. With this

information set up in the form of environment variables, the logging functions can

Logging agent messages
Script entry point logging functions

handle messages and their arguments in the unified logging format without repetition

within the scripts.

The VCSAG_SET_ENVS function sets the following environment variables for a

resource:

VCSAG_LOG_CATEGORY

VCSAG_LOG_AGENT_NAME

VCSAG_LOG_SCRIPT_NAME

VCSAG LOG RESOURCE NAME

Sets the category ID. For custom agents, Symantec
assigns the category ID.

See “UMI” on page 120.

NOTE: For bundled agents, the category ID is
pre-assigned, based on the platform (Solaris, Linux, or
AIX) for which the agent is written.

The absolute path to the agent.
For example:
UNIX: /opt/VRTSvcs/bin/resource_type

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation. If the
agent developer wishes, this agent name can also be hard
coded and passed as an argument to the
VCSAG_SET_ENVS function.

The absolute path to the entry point script.

For example:

UNIX: /opt/VRTSvcs/bin/resource_typelonline

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation. The
script name variable is can be overridden.

The resource is specified in the call within the entry point:

VCSAG_SET_ENVS $resource_name

VCSAG_SET_ENVS examples, Shell script entry points
The VCSAG_SET_ENVS function must be called before any of the other logging

functions.

= A minimal call:

VCSAG_SET ENVS S${resource name}

= Setting the category ID:

130

Logging agent messages
Script entry point logging functions

VCSAG_SET _ENVS ${resource name} ${category ID}
VCSAG_SET_ENVS ${resource name} 1062

= Overriding the default script name:

VCSAG_SET ENVS S${resource name} ${script name}
VCSAG_SET ENVS S${resource name} "monitor"

= Setting the category ID and overriding the script name:

VCSAG_SET _ENVS ${resource name} ${script name}
S{category id}
VCSAG_SET_ENVS ${resource name} "monitor" 1062

Or,

VCSAG_SET ENVS S${resource name} S${category id}
${script name}
VCSAG_SET ENVS S${resource name} 1062 "monitor"

VCSAG_SET_ENVS examples, Perl script entry points

= A minimal call:

VCSAG_SET_ENVS (Sresource name) ;

= Setting the category ID:

VCSAG_SET ENVS (Sresource name, $category ID);
VCSAG_SET ENVS ($resource name, 1062);

= Overriding the script name:

VCSAG_SET _ENVS (Sresource name, $script name);
VCSAG_SET_ENVS ($resource_name, "monitor") ;

= Setting the category ID and overriding the script name:

131

Logging agent messages | 132
Script entry point logging functions

VCSAG_SET ENVS (Sresource name, $script name, Scategory id);
VCSAG_SET ENVS (Sresource name, "monitor", 1062);

Or,

VCSAG_SET ENVS ($resource name, S$category id, $script name);
VCSAG_SET ENVS ($Sresource name, 1062, "monitor");

VCSAG_LOG_MSG

The VCSAG_LOG_MSG function can be used to pass normal agent messages to
the halog utility for logging into the engine log. At a minimum, the function must
include the severity, the message within quotes, and a message ID. Optionally, the
function can also include parameters and specify an encoding format.

Severity Levels "C" - critical, "E" - error, "W" - warning, "N" - notice, "I" - information;
(sev) place error code in quotes

Message (msg) A text message within quotes; for example: "One file copied”

Message ID An integer between 0 and 65535
(msgid)

Encoding Format UTF-8, ASCII, or UCS-2 in the form: "-encoding format"

Parameters Parameters (up to six), each within quotes

VCSAG_LOG_MSG examples, Shell script entry points

= Calling a function without parameters or encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid>
VCSAG_LOG _MSG "C" "Two files found" 140

= Calling a function with one parameter, but without encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid> "<paraml>"
VCSAG_LOG MSG "C" "Scount files found" 140 "$count”

= Calling a function with a parameter and encoding format:

Logging agent messages | 133
Script entry point logging functions

VCSAG _LOG MSG "<sev>" "<msg>" <msgid> "-encoding <format>"
"<paraml>"
VCSAG_LOG MSG "C" "Scount files found" 140 "-encoding utf8"

"Scount"

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOG_MSG examples, Perl script entry points

» Calling a function without parameters or encoding format:

VCSAG_LOG MSG ("<sev>", "<msg>", <msgid>);
VCSAG_LOG MSG ("C", "Two files found", 140);

= Calling a function with one parameter, but without encoding format:

VCSAG_LOG _MSG ("<sev>", "<msg>", <msgid>, "<paraml>";
VCSAG_LOG MSG ("C", "Scount files found", 140, "Scount");

» Calling a a function with one parameter and encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "-encoding
<format>", "<paraml>");

VCSAG_LOG MSG ("C", "Scount files found", 140, "-encoding
utf8", "Scount");

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOGDBG_MSG

This function can be used to pass debug messages to the halog utility for logging
into the engine log. At a minimum, the severity must be indicated along with a
message. Optionally, the encoding format and parameters may be specified.

Severity (dbg) An integer indicating a severity level, 1 to 21.

See the Symantec Cluster Server Administrator's Guide for more
information.

Logging agent messages
Script entry point logging functions

Message (msg) A text message in quotes; for example: "One file copied"
Encoding Format UTF-8, ASCII, or UCS-2 in the form: "-encoding format"

Parameters Parameters (up to six), each within quotes

VCSAG_LOGDBG_MSG examples, Shell script entry points

= Calling a function without encoding or parameters:

VCSAG_LOGDBG_MSG <dbg> "<msg>"
VCSAG_LOGDBG_MSG 1 "This is string number 1"

= Calling a function with a parameter, but without encoding format:

VCSAG_LOGDBG_MSG <dbg> "<msg>" "<paraml>"
VCSAG_LOGDBG_MSG 2 "This is string number Scount" "Scount"

= Calling a function with a parameter and encoding format:

VCSAG_LOGDBG_MSG <dbg> "<msg>" "-encoding <format>" "$count"

VCSAG_LOGDBG_MSG 2 "This is string number S$count” "Scount"

VCSAG_LOGDBG_MSG examples, Perl script entry points

= Calling a function:

VCSAG LOGDBG MSG (<dbg>, "<msg>");
VCSAG _LOGDBG _MSG (1 "This is string number 1");

= Calling a function with a parameter, but without encoding format:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>", "<paraml>");
VCSAG_LOGDBG_MSG (2, "This is string number S$count",
"Scount") ;

= Calling a function with a parameter and encoding format:

VCSAG_LOGDBG _MSG <dbg> "<msg>" "-encoding <format>"

134

Logging agent messages | 135
Script entry point logging functions

"<paraml>"
VCSAG_LOGDBG_MSG (2, "This is string number $count",
"-encoding
utf8", "Scount");

Example of logging functions used in a script agent

The following example shows the use of VCSAG_SET_ENVS and
VCSAG_LOG_MSG functions in a shell script for the online entry point.

'#/bin/ksh
ResName=51

Parse other input arguments
VCS_HOME="${VCS HOME:-/opt/VRTSvcs}"

SVCS _HOME/bin/ag il18n inc.sh
Assume the category id assigned by Symantec for this custom
agent #is 10061
VCSAG_SET ENVS SResName 10061
Online entry point processing
Successful completion of the online entry point
VCSAG_LOG MSG "N" "online succeeded for resource S$ResName" 1

"SResName"

exit 0

Building a custom agent

This chapter includes the following topics:

Files for use in agent development

Creating the type definition file for a custom agent
Building a custom agent on UNIX

Installing the custom agent

Defining resources for the custom resource type

Agent framework versions details

Files for use in agent development

The VCS installation program provides the Script agents and C++ agents to aid
agent development

Script based agent binaries

These are ready to use agent binaries which has in-built VCSAgStartup function
implemented. These binaries are located in the directory svcs HOME/bin.

Following is the list of all script based agent binaries that user can use to build agent

ScriptAgent with agent framework version V40
Script50Agent with agent framework version V50
Script51Agent with agent framework version V51

Script60Agent with agent framework version V60

For details on the features added in each these agent frame work version please
refer:

Building a custom agent
Creating the type definition file for a custom agent

See “Agent framework versions details” on page 152.

VCS does not support agents that lower then agent version V40. Please refer to
Guidelines for using pre-VCS 4.0 Agents chapter for using ScriptAgent to work with
older agent’s entry point.

See “Guidelines for using pre-VCS 4.0 Agents” on page 230.

C++ based agent binaries

The VCS installation program provides the following C++ files to aid agent
development:

Table 6-1 C++ Agents
Description Pathname
Directory UNIX: $VCS_HOME/src/agent/Sample
containing a

sample C++ agent
and Makefile.

Sample Makefile | UNIX: $VCS_HOME/src/agent/Sample/Makefile
for building a C++
agent.

Entry point UNIX: $YCS_HOME/src/agent/Sample/agent.C
templates for C++
agents.

Creating the type definition file for a custom agent

The agent you create requires a resource type definition file. This file performs the
function of providing a general type definition of the resource and its unique
attributes.

Naming convention for the type definition file

For example, for the resource type XYZ on Solaris, the file would be
XYZTypes.sun.cft.

Name the resource type definition file following the convention
resource_typeTypes.cf. For example, for the resource type XYZ, the file would
be xyzTypes.cft.

137

Building a custom agent
Creating the type definition file for a custom agent

Example: FileOnOffTypes.cf

An example types configuration file for the FileOnOff resource:

// Define the resource type called FileOnOff (in
FileOnOffTypes.cf) .

type FileOnOff (

str PathName;

static str ArglList[] = { PathName };

)

Example: Type definition for a custom agent that supports intentional

type MyCustomApp (
static int IntentionalOffline = 1
static str ArgList[] = { PathName, Arguments }
str PathName

str Arguments

Requirements for creating the agentTypes.cf file

As you examine the previous example, note the following aspects:

= The name of the agent

= The ArgList attribute, its name, type, dimension, and its values, which consist

of the other attributes of the resource

= The remaining attributes (in this example case there is only the pathName
attribute), their names, types, dimensions, and descriptions.

Adding the custom type definition to the configuration

You can add the custom type definition to the configuration.
To add the custom type definition to the configuration
1 Once you create the file, place it in the directory:
UNIX: $vCs_CONF/conf/config
Add "include FileOnOffTypes.cf" in the main.cf file.
3 Restart VCS.

138

Building a custom agent | 139
Building a custom agent on UNIX

Building a custom agent on UNIX

The following sections describe different ways to build an agent, using the
"FileOnOff" resource as an example. For test purposes, instructions for installing
the agent on a single system are also provided.

The examples assume:

» VCSis installed under /opt/vRTSvcs by default. If your installation directory is
different, change VCS_HOME accordingly.

= You have created a FileOnOff type definition file.
See “Creating the type definition file for a custom agent” on page 137.

Note the following about the FileOnOff agent entry points. A FileOnOff resource
represents a regular file.

= The FileOnOff online entry point creates the file if it does not already exist.
= The FileOnOff off1ine entry point deletes the file.

= The FileOnOff monitor entry point returns online and confidence level 100 if
the file exists; otherwise, it returns offline.

Implementing entry points using scripts

If entry points are implemented using scripts, the script file must be placed in the
directory svCcs_HOME/bin/resource type. It must be named correctly.

See “About creating entry points in scripts” on page 92.

If all entry points are scripts, all scripts should be in the directory
SVCS_HOME/bin/resource type.

Copy the script based agent binary into the agent directory as
$VCS_HOME/bin/resource type/resource typeAgent.

See “Script based agent binaries” on page 136.

For example, if the online entry point for Oracle is implemented using Perl, the
online script must be: $vcs _HOME/bin/Oracle/online.

We also recommend naming the agent binary resource typeagent. Place the
agent in the directory svcs_HOME/bin/resource_type.

The agent binary for Oracle would be $vCs HOME/bin/Oracle/OracleAgent, for
example.

If the agent file is different, for example /foo/ora_agent, the types.cf file must
contain the following entry:

Building a custom agent
Building a custom agent on UNIX

Type Oracle (

static str AgentFile = "/foo/ora agent"

Example: Using script entry points on UNIX

The following example shows how to build the FileOnOff agent using scripts. For
the below example, we are using Script51Agent script based agent binary.This
example implements the online, offline, and monitor entry points only.

See “Script based agent binaries” on page 136.

Example: implementing entry points using scripts

1

Create the directory /opt/VRTSvcs/bin/FileOnOff:

mkdir /opt/VRTSvcs/bin/FileOnOff

Use the VCS agent /opt/VRTSvcs/bin/Script51Agent as the FileOnOff agent.
Copy this file to the following path:
/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

or create a link.

To copy the agent binary:

cp /opt/VRTSvcs/bin/Script51Agent
/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

To create a link to the agent binary:

In -s /opt/VRTSvcs/bin/Script51Agent
/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

Implement the online, offline, and monitor entry points using scripts. Use

any editor.

s Create the file /opt/VRTSvecs/bin/FileOnOff/online with the contents:

!/bin/sh
Create the file specified by the PathName
attribute.

140

Building a custom agent
Building a custom agent on UNIX

touch $4
exit 0

» Create thefile /opt/VRTSves/bin/FileOnOff/of f1ine with the contents:

!/bin/sh
Remove the file specified by the PathName
attribute.

rm $4

exit 0

= Create the file /opt/VRTSvcs/bin/FileOnOff/monitor with the contents:

!/bin/sh
Verify file specified by the PathName attribute
exists.
if test -f $4
then
exit 110;
else
exit 100;
fi

4 Additionally, you can implement the info and action entry points. For the
action entry point, create a subdirectory named "actions" under the agent
directory, and create scripts with the same names as the action_tokens within

the subdirectory.

Example: Using VCSAgStartup() and script entry points on UNIX

The following example shows how to build the FileOnOff agent using your own
vCSagstartup function. This example implements the vcsagsStartup, online,

offline, and monitor entry points only.

141

Building a custom agent | 142
Building a custom agent on UNIX

To implement the agent using VCSAgStartup function and script entry points

1 Create the following directory:

mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the sample agent directory to the directory you created
in the previous step:

cp -r /opt/VRTSvcs/src/agent/Sample/*
/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:

cd /opt/VRTSvcs/src/agent/FileOnOff

4 Editthe file agent.c and modify the vcsagstartup () function (the last several
lines) to match the following example:

void VCSAgStartup () {
VCSAgInitEntryPointStruct (V51) ;

// Do not configure any entry points because
// this example does not implement any of them
// using C++.

VCSAgSetLogCategory (10041) ;
}

5 Compile agent.c and build the agent by invoking make. (Makefile is provided.)

make

6 Create a directory for the agent:

mkdir /opt/VRTSvcs/bin/FileOnOff

7 Install the FileOnOff agent.

make install AGENT=FileOnOff

8 Implement the online, offline, and monitor entry points.

See Example: Using script entry points on UNIX.

Building a custom agent | 143
Building a custom agent on UNIX

Implementing entry points using C++
You can implement entry points by using C++.
To implement entry points by using C++

1 Edit agent.c to customize the implementation; agent.c is located in the
directory svCs_HOME/src/agent/Sample.

2 After completing the changes to agent.c, invoke the make command to build
the agent. The command is invoked from $vCcs HOME/src/agent/Sample,
where the Makefile is located.

Name the agent binary: resource typeagent.
4 Place the agent in the directory $vCcS HOME/bin/resource type.

For example, the agent binary for Oracle would be
SVCS_HOME/bin/Oracle/OracleAgent.

Example: Using C++ entry points on UNIX

The example in this section shows how to build the FileOnOff agent using your own
vCcsagstartup function and the C++ version of online, offline, and monitor entry
points. This example implements the vcsagstartup, online, offline, and monitor
entry points only.

Building a custom agent | 144
Building a custom agent on UNIX

To use VCSAgStartup and C++ entry points

1 Editthe file agent.c and modify the vcsagstartup () function (the last several
lines) to match the following example:

// Description: This functions registers the entry points //
void VCSAgStartup ()

{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor, res_monitor);
VCSAgValidateAndSetEntryPoint (VCSAgEPOnline, res online);
VCSAgValidateAndSetEntryPoint (VCSAgQEPOffline, res_offline);

Building a custom agent | 145
Building a custom agent on UNIX

2 Modify res online():

// This is a C++ implementation of the online entry

// point for the FileOnOff resource type. This function
// brings online a FileOnOff resource by creating the
// corresponding file. It is assumed that the complete
// pathname of the file will be passed as the first

// ArgList attribute.

unsigned int res online(const char *res name, void **attr val) {

int fd = -1;
int ret = 0;
char *pathname = NULL;

VCSAG_LOG INIT("res_online");

/*
* Get PathName attribute form attr val parameter, passed to
res_online function and store

* it under pathname variable.

*

*/

if (NULL == pathname) {

return 0;

VCSAG_LOGDBG_MSG (VCS_DBG2, VCS_DEFAULT_ FLAGS,

"Creating file %s", pathname);

if ((fd = open(pathname, S IRUSR|S IWUSR)) < 0) {
VCSAG_LOG_MSG (VCS_ERROR, 2003, VCS DEFAULT_ FLAGS,
"Attempt to create the file failed with errno=%d4d",

errno) ;
VCSAG_CONSOLE_LOG MSG(VCS_ERROR, 2003, VCS_ DEFAULT_ FLAGS,
"Attempt to create the file failed with errno=%d4d",
errno) ;
} else {

close (fd);

Building a custom agent | 146
Building a custom agent on UNIX

return 0;

}

3 Modify res_offline():

// Function: res offline
// Description: This function deletes the file //

unsigned int res offline(const char *res name, void **attr val)

{
char *pathname = NULL;

VCSAG_LOG_INIT("res offline");

/*
* Get PathName attribute form attr val parameter, passed to
res offline function and store

* under pathname variable.

*

*/

if (NULL == pathname) {

return 0; /* success: nothing to remove */

VCSAG LOGDBG MSG (VCS_DBG2, VCS DEFAULT FLAGS,

"Removing file %s", pathname);

if ((0 != remove (pathname)) && (ENOENT != errno)) {
VCSAG_LOG_MSG (VCS_ERROR, 2002, VCS DEFAULT FLAGS,
"Attempt to remove the file failed with errno=%d",
errno) ;
VCSAG_CONSOLE_LOG_MSG (VCS_ERROR, 2002, VCS DEFAULT FLAGS,
"Attempt to remove the file failed with errno=%d",

errno) ;

return 1; /* failure: attempt to remove failed */

return 0; /* success: file removed */

}

Building a custom agent | 147
Building a custom agent on UNIX

4 Modify the res monitor (), function.
See Example: Using C++ and script entry points on UNIX.

5 Compile agent.c and build the agent by invoking make. (Makefile is provided.)

make

6 Create the directory for the agent binaries:

mkdir /opt/VRTSvcs/bin/FileOnOff

7 Install the FileOnOff agent.

make install AGENT=FileOnOff

Example: Using C++ and script entry points on UNIX

The following example shows how to build the FileOnOff agent using your own
vCcsAgStartup function, the C++ version of the monitor entry point, and script
versions of online and offline entry points. This example implements the
VCSAgStartup, online, offline, and monitor entry points only.

To implement the agent using VCSAgStartup, C++, and script entry points

1 Create a directory for the agent:

mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the sample agent to the directory you created in the
previous step:

cp -r /opt/VRISvcs/src/agent/Sample/*
/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:

cd /opt/VRTSvcs/src/agent/FileOnOff

Building a custom agent | 148
Building a custom agent on UNIX

Edit the file agent .c and modify the vcsagstartup () function (the last several
lines) to match the following example:

// Description: This functions registers the entry points //
void VCSAgStartup ()

{
VCSAG_LOG_INIT ("VCSAgStartup");

VCSAgSetLogCategory (10051) ;
VCSAgInitEntryPointStruct (V51) ;

VCSAgValidateAndSetEntryPoint (VCSAgEPMonitor, res monitor);

Building a custom agent | 149
Building a custom agent on UNIX

Modify the res monitor () function:

// Function: res_monitor
// Description: Determine if the given file is online (file exists)

// or offline (file does not exist).

VCSAgResState res_monitor (const char *res name, void
**attr val, int *conf level)

{

int ret = 0;

char *pathname = NULL;

struct stat64 stat buf;

VCSAgResState state = VCSAgResUnknown;

VCSAG_LOG_INIT("res monitor");

/*
* Get PathName attribute form attr val parameter, passed to
res_offline function and store

* under pathname variable.

*

*/

if (NULL == pathname) {
return VCSAgResUnknown;

VCSAG_LOGDBG_MSG (VCS_DBG2, VCS_DEFAULT_ FLAGS,

"Checking if file %s exists or not", pathname);

if (0 == stat64 (pathname, &stat buf)) {
/*
* If the pathname is a directory, return status as unknown
*/
if (S_ISDIR(stat buf.st mode) != 0) {

VCSAG_LOG_MSG (VCS_ERROR, 2004, VCS DEFAULT_ FLAGS,
"$s is a directory", pathname);
VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 2004,
VCS_DEFAULT_FLAGS,

"$s is a directory", pathname);

*conf_ level = 0;

return VCSAgResUnknown;

Building a custom agent
Installing the custom agent

}
*conf level = 100;

return VCSAgResOnline;

*conf level = 0;
return VCSAgResOffline;
}

Compile agent . c and build the agent by invoking make. (Makefile is provided.)

make

Build the script entry points for the agent.
See Example: Using script entry points on UNIX

Create a directory for the agent:

mkdir /opt/VRTSvcs/bin/FileOnOff

Install the Fileonoff agent.

Installing the custom agent

You can install the custom agent in one of the following directories.

On UNIX:

/opt/VRTSvcs/bin/custom_type/
/opt/VRTSagents/ha/bin/custom_type/

A user-defined directory. For example /myagents/custom_type/. Note that you
must configure the AgentDirectory attribute for this option.

Make sure you create the custom_type directory at only one of these locations.

Add the agent binary and the script entry points to the custom_type directory.

Note: To package the agent, see the documentation for the operating system. When
setting up the Solaris pkginfo file for the installation of agents that are to run in
zones, set the following variable: SUNW_PKG_ALLZONES=true.

150

Building a custom agent | 151

Defining resources for the custom resource type

Defining resources for the custom resource type

When you have created a type definition for the resource and created an agent for
it, you can begin to use the agent to control specific resources by adding the
resources of the custom type and assigning values to resource attributes.

You can add resources and configure attribute values in the main.cf file.

See the Symantec Cluster Server User's Guide for more information.

Sample resource definition

In the VCS configuration file, main.cf, a specific resource of the FileOnOff resource
type may resemble

include types.cf

FileOnOff temp filel (
PathName = "/tmp/test"
)

The type FileOnOff is defined in the file types.cf. The file types.cf is included in
main.cf using the include directive.The resource defined in the main.cf file
specifies:

= The resource type: Fileonoff
= The name of the resource, temp filel
s The name of the attribute, PathName

= The value for the pathName attribute:

On UNIX:"/tmp/test"

When the resource temp_file1 is brought online on a system by VCS, the FileOnOff
agent creates a file "test" in the specified directory on that system.

How the FileOnOff agent uses configuration information

The information in the VCS configuration is passed by the engine to the FileOnOff
agent when the agent starts up on a node in the cluster. The information passed
to the agent includes: the names of the resources of the type FileOnOff configured

Building a custom agent
Agent framework versions details

on the system, the corresponding resource attributes, and the values of the attributes
for all of the resources of that type. It also sends all the attribute and their repective

value details to the agent.

Thereafter, to bring the resource online, for example,VCS can provide the agent
with the name of the entry point (on1ine) and the name of the resource
(temp_file01). The agent then calls the entry point and provides the resource
name and values for the attributes in the argList to the entry point. The entry point

performs its tasks.

Agent framework versions details

The following table describes the various agent binaries and its functions.

Agent binary

Agent version V40

Agent version V50

Description

The support for action and info entry point is
available for agents with agent version V40
or later.

See “About the info entry point” on page 34.
See “About the action entry point”

on page 33.

The AEPTimeout attribute feature is available
for agents registered with version V50 or later.
See “AEPTimeout” on page 182.

Support for positional independent
ArgListValues is available in agent framework
version V50 and later.

See “About the ArgList and ArgListValues
attributes” on page 47.

The container support on AlX and Solaris is
available in agent framework version V50 or
later for containers solaris zones, solaris
project and aix wpars.

See “ContainerOpts” on page 186.

152

Agent binary

Agent version V51

Agent version V60

Building a custom agent
Agent framework versions details

Description

Intentional offline and IMF features are
available for agents framework version V51
or later.

See “IntentionalOffline” on page 190.

See “About intelligent monitoring framework
(IMF) ” on page 18.

There are three new entry points for this
feature

= imf_init

= imf_register

= imf_getnotificaiton

See “About building a script based IMF-aware
custom agent” on page 154.

Migration feature is available in the agent
framework version V60. Entry points migrate
is added with this feature.

See “About the migrate entry point”
on page 39.

Note: Symantec recommends using the latest
agent version.

153

Building a script based
IMF-aware custom agent

This chapter includes the following topics:

About building a script based IMF-aware custom agent
Linking AMF plugins with script agent

Creating XML file required for AMF plugins to do resource registration for online
and offline state monitoring

Adding IMF and IMFRegList attributes in configuration
Monitor without IMF integration

Monitor without IMF but with LevelTwo monitor frequency
Monitor with IMF integration

Monitor with IMF but with LevelTwo monitor frequency

Installing the IMF-aware script-based custom agent

About building a script based IMF-aware custom agent

This chapter explains how you can build a script-based IMF-aware custom agent.
VCS supports only process and script-based IMF-aware custom agents from VCS
6.0.1 and later release. The process to build a custom agent (without IMF) is similar
to what is described in the previous chapter.

The following IMF entry points have been introduced in VCS 5.1SP1 to enable IMF
for intelligent monitoring:

imf_init

Building a script based IMF-aware custom agent | 155
Linking AMF plugins with script agent

= imf_register
= imf_getnotification

You must use the above-stated IMF entry points along with the other entry points
if you want the IMF feature enabled for your custom agent. Symantec supports only
the AMF plugins while implementing these entry points.

See “About agent entry points” on page 28.
See “Syntax for the imf_init script ” on page 97.
See “Syntax for the imf_register script ” on page 97.

See “Syntax for the imf_getnotification script ” on page 98.

Building a script based IMF-aware agent involves the following steps:
1. Linking AMF plugins with the script agent.

2. Creating XML file (amfregister.xml) required for AMF plugins to do resource
registration for online and offline state monitoring.

3. Adding IMF and IMFRegList attributes in configuration files
See “Adding IMF and IMFRegList attributes in configuration” on page 163.

4. |Installing the custom script based agent to enable IMF. See “Installing the
IMF-aware script-based custom agent” on page 168.

Linking AMF plugins with script agent

Change the current working directory to agent specific directory, and in the agent
specific directory, create symbolic links (soft links) to the AMF plugins using the
following commands:

In -s /opt/VRTSamf/imf/imf init imf init
In -s /opt/VRTSamf/imf/imf register imf register
In -s /opt/VRTSamf/imf/imf getnotification imf getnotification

Creating XML file required for AMF plugins to do
resource registration for online and offline state
monitoring

Create the amfregister.xml file that is used by imf_register entry point to do
registration of process-based resource for online and offline monitoring with AMF.
Since imf_register entry point is a generic script used by different agents to register

Building a script based IMF-aware custom agent

Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

resources for online and offline monitoring, you must specify what needs to be
registered for a resource of a particular type with the help of amfregister.xml. You
can refer the following table description to know about the tags used in
amfregister.xml.

Table 7-1 Common tags for the amfregister.xml file
Tag name Description
RegType This tag is used to specify the type of registration. This tag is common

between PRON and PROFF - specific tags.

Set it to PROFF to do resource registration with AMF for process offline
monitoring.

Set it to PRON to do resource registration with AMF for process online
monitoring.

ReaperName It contains the reaper name (type name) for the agent. Agent will be
registered with this name in the IMF notification module.

Table 7-2 PRON-specific tags
Tag name Description
ProcPattern Indicates how the process-based resource shows up in the process table. The specified
ProcPattern is searched in the process table and the corresponding pid is registered with AMF
for online monitoring.
PronOptions Specifies additional options for ProcPattern matching. If it is set to IGNORE_ARGS, the value

specified in ProcPattern is considered as the process path. While matching against the process
table entries, only the process path is matched against the ProcPattern. The pid of the matching
process is registered with AMF.

If PronOptions is set to IGNORE_PATH, the value mentioned in the ProcPattern is considered
as the process name followed by the process args. While matching against the process table
entries, only the base name of the process path and the process args are matched against
ProcPattern. The pid of the matching process is registered with AMF.

If the PronOptions is set to IGNORE_ARGS IGNORE_PATH, the value mentioned in the
ProcPattern is considered as just the process name. While matching against the process table
entries, only the base name of the process path is matched against the process name
mentioned in the ProcPattern. The arguments of the process are not considered. The pid of
the matching process is registered with AMF.

156

Building a script based IMF-aware custom agent

Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Table 7-3 PROFF-specific tags
Tag name Description
Owner It is the user who executes this process. The UID and GID of this user are used to register
the PROFF event with AMF.
Path Complete path of the binary.
arg0 Name with which the binary is executed. If it is executed with the complete path, you need
not provide this.
argOflag This is used to further refine the matching behavior of arg0. The string specified in arg0 (for
example: string A) is searched inside the arg0 of the process that is being matched against
(for example: string PA). This can have the following values:
s FREE: Look for string A in string PA using a free substring match operation.
s BOUNDLEFT: Look for string A in string PA using a left-bounded substring match operation.
= BOUNDRIGHT: Look for string A in string PA using a right-bounded substring match
operation.
s EXACT: String A must exactly match string PA.
If argOflag is not provided, the default value for argOflag is considered as EXACT.
Note: BOUNDLEFT and BOUNDRIGHT can be specified together, separated by a space.
BOUNDLEFT and BOUNDRIGHT specified together is not the same as EXACT.
args Arguments with which the binary is executed. This is used for matching while finding the
process in the process table. Here it looks for exact match.
ArgsSubString Apart from the default exact match of the arguments, you can specify a list of substrings that
must appear in the argument list of the process that is being matched against.
Using the ArgsSubString tag, you can specify one substring. You can specify up to 8 such
substrings.
Note: If ArgsSubString is provided, you must not provide args.
ArgsSubStringFlag For each substring specified, you can specify additional flags to control the matching behavior.

Each substring specified (for example: string SS) is searched inside args of the process that
is being matched against (for example: string PA).

s FREE: Look for string SS in string PA using a free substring match operation.

= BOUNDLEFT: Look for string SS in string PA using a left-bounded substring match
operation.

= BOUNDRIGHT: Look for string SS in string PA using a right-bounded substring match
operation.
Every ArgsSubString shall have a corresponding ArgsSubStringFlag. If no
ArgsSubStringFlag is provided, the default flag is FREE.

157

Building a script based IMF-aware custom agent | 158
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Table 7-3 PROFF-specific tags (continued)
Tag name Description
ArgsFlag This tag is used to control the behavior of overall substring matching.

It can have the following values:

s MATCH_ALL: Match all substrings specified.

s MATCH_ANY: Match any of the substrings specified.

= IGNORE_ARGS: Ignore the args completely. You must not provide this if ArgsSubString
or args tags are provided.
A set of zero or more ArgsSubString and ArgsSubStringFlag tags can be followed by an
optional tag ArgsFlag. If no ArgsFlag is provided, MATCH_ALL is considered as the default
value for ArgsFlag.

Example of amfregister.xml for registration of process-based resource
with AMF for online monitoring

Assuming the process in the ps output is displayed as follows, you can use the
subsequent steps to register a process-based resource for online monitoring:

"/usr/sbin/rpc.statd -d 0 -t 50"

1. If you are sure about the path and arguments, you must specify your process
in the following format in the amfregister.xml file:

<xml>
<Register>
<RegType>PRON</RegType>
<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>
</Register>
</xml>

2. If you are not sure about the arguments but are sure about the path, you must
specify your process in the following format in the amfregister.xml file:

<xml>
<Register>
<RegType>PRON</RegType>
<PronOptions>IGNORE_ARGS</PronOptions>
<ProcPattern>/usr/sbin/rpc.statd</ProcPattern>
</Register>

</xml>

Building a script based IMF-aware custom agent | 159
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Note: If there are more than one processes or instances with different
arguments, all get registered.

For example:

"/usr/sbin/rpc.statd -d 0 -t 50"
"/usr/sbin/rpc.statd -xyz"

Both the above processes get registered with AMF.

3. If you are not sure about the path but are sure about the arguments, you must
use the following format of the amfregister.xml:

<xml>
<Register>
<RegType>PRON</RegType>
<PronOptions>IGNORE_PATH</PronOptions>
<ProcPattern>rpc.statd -d 0 -t 50</ProcPattern>
</Register>
</xml>

Note: If there are more than one processes/instances with different paths, all
get registered.

For example:

"/usr/sbin/rpc.statd -d 0 -t 50"
"/home/<testuser>/rpc.statd -d 0 -t 50"

4. Ifyou are not sure about the path or the arguments, you must use the following
format of the amfregister.xmil:

<xml>
<Register>
<RegType>PRON</RegType>
<PronOptions>IGNORE ARGS IGNORE PATH</PronOptions>
<ProcPattern>rpc.statd</ProcPattern>
</Register>
</xml>

Building a script based IMF-aware custom agent | 160
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

Note: If there are more than one processes with the same base name, all get
registered irrespective of the path and arguments.

For example:

"/usr/sbin/rpc.statd -d 0"
"/home/<testuser>/rpc.statd -d 0 -t 50"

Example of amfregister.xml for registration of process-based resource
with AMF for offline monitoring

= Example 1:
= Process name: xyz
= Complete path of the process: /MyHome/symantec/veritas/xyz
= Arguments: -p abc -t qwe -m40

= Process owner : vcsuser

<xml>
<Register>
<RegType>PROFF</RegType>
<Owner>vcsuser</Owner>
<Path>/MyHome/symantec/veritas/xyz</Path>
<arg0>xyz</arg0>
<args>-p abc -t gwe -m40</args>
</Register>
</xml>

= Example 2: To register a process-based resource with AMF for offline monitoring
assuming OwnerName and HomeDir as VCS attributes the amfregister.xml has
the following format:

<xml>
<Register>
<RegType>PROFF</RegType>
<Owner>S$ {OwnerName}</Owner>
<Path>${HomeDir}/symantec/veritas/xyz</Path>
<arg0>xyz</arg0>
<args>-p abc -t gwe -m40</args>

Building a script based IMF-aware custom agent | 161

Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

</Register>

</xml>

= Example 3: To register a process-based resource with AMF for offline monitoring
using substring matching for the arguments:

Process: xyz

Complete path of the process: /MyHome/symantec/veritas/xyz
Arguments substrings:

= -t gqwe with left bounded substring matching

= -m 40 with right bounded substring matching

Argument flags: Match any of the substring

<xml>
<Register>
<RegType>PROFF</RegType
<Path>/MyHome/symantec/veritas/xyz</Path>
<arg0>xyz</arg0>
<arg0flag>EXACT</argOflag>
<ArgsSubString>-t gwe</ArgsSubString>
<ArgsSubStringFlag>BOUNDLEFT</ArgsSubStringFlag>
<ArgsSubString>-m 40</ArgsSubString>
<ArgsSubStringFlag>BOUNDRIGHT</ArgsSubStringFlag>
<ArgsFlag>MATCH ANY</ArgsFlag>
</Register>
</xml>

Example of amfregister.xml for online and offline IMF monitoring for

a given process

To register a process-based resource with AMF for online and offline monitoring

with:

» Path: /opt/VRTSamf/bin/amfstat

= argv0: amfstat

m args:-sdS

<xml>

<Register>

Building a script based IMF-aware custom agent
Creating XML file required for AMF plugins to do resource registration for online and offline state monitoring

<RegType>PRON</RegType>
<ProcPattern>/opt/VRTSamf/bin/amfstat -s 5</ProcPattern>
</Register>
<Register>
<RegType>PROFF</RegType>
<Path>/opt/VRTSamf/bin/amfstat</Path>
<arg0>amfstat</arg0>
<args>-s 5</args>
</Register>

</xml>

Examples for adding RepearName tag in amfregister.xml

The RepearName tag can be added both manually and automatically in the
amfregister.xml.

= Adding ReaperName tag automatically

The tag is created automatically when imf_init for the agent is called for the first

time if not already present.

For example, if the type name is CFSMount, the amfregister.xml will have
following lines:

<xml>

<!--ReaperName tag has been added by imf init entry point-->

<ReaperName>CFSMount</ReaperName>

<Register>

<RegType>PRON</RegType>

<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>

</Register>
</xml>

= Adding ReaperName tag manually

Agent Developer may also choose to add this tag manually. In this case, imf_init

will not update amfregister.xml.

For example, if the reaper name (type of the resource) is Process, the xml file

will look as follows:

<xml>

<ReaperName>Process</ReaperName>

162

Building a script based IMF-aware custom agent | 163
Adding IMF and IMFRegList attributes in configuration

<Register>
<RegType>PRON</RegType>
<ProcPattern>/usr/sbin/rpc.statd -d 0 -t 50</ProcPattern>

</Register>
</xml>

Adding IMF and IMFRegList attributes in configuration

You need to add IMF and IMFRegList attribute in configuration files. Adding
IMFRegList is optional.

See “IMF” on page 189.
See “IMFRegList” on page 189.

To add these attributes, you can either modify the configuration file if VCS is not
running or modify the running configuration by ha - command if VCS is running.
Refer to the following examples for this purpose.

Example of type definition for a custom agent to supports IMF when VCS is not
running:

type MyCustomIMFApp (
static int IMF{} = { Mode=3, MonitorFreg=1l, RegisterRetryLimit=3 }
static str IMFRegList[] = { PathName, Arguments }
static str ArgList[] = { PathName, Arguments, HomeDir }
str PathName
str Arguments
str HomeDir

)

Example of modify configuration for a custom agent to supports IMF when VCS is
running:
Command to add IMF attribute:

haattr -add -static IMF MyCustomIMFApp -integer -assoc Mode 3
MonitorFreq 1 RegisterRetryLimit 3

Command to add IMFRegList attribute:

haattr -add -static Zone IMFRegList -string -vector PathName,

Arguments

Building a script based IMF-aware custom agent | 164
Monitor without IMF integration

See “IMFRegList” on page 189.

You can modify these IMF attribute values at the Agent Type or Resource level to
suite your requirement. The following example describes how you can modify the
values for Mode attribute.

In case of Online only Monitoring (PRON), Mode value can be set to 2. Run the
following commands at the respective levels to modify the Mode value:

1 Atthe type level:
hatype -display <resource-type> -attribute IMF

#Type Attribute Value
CustomProcess IMF Mode 3 MonitorFreq 1 RegisterRetryLimit 3

hatype -modify <resource-type> IMF -update Mode 2

hatype -display <resource-type> -attribute IMF
#Type Attribute Value
CustomProcess IMF Mode 2 MonitorFreqg 1 RegisterRetryLimit 3

2 Atthe Resource level, first check that whether static attribute IMF is overridden
or not.

hares -display <resource-name> -attribute IMF
VCS WARNING V-16-1-10554 No resource exists with attribute IMF

In case not overridden , you can now override static attribute IMF at resource
level using following command:

hares -override <resource-name> IMF

hares -display <resource-name> -attribute IMF

#Resource Attribute System Value

presl IMF global Mode 3 MonitorFreqg 1 RegisterRetryLimit 3

hares -modify presl IMF -update Mode 2
hares -display presl -attribute IMF

#Resource Attribute System Value
presl IMF global Mode 2 MonitorFreqg 1 RegisterRetryLimit 3

Monitor without IMF integration

Monitor without IMF integration and having basic (Level-1) monitoring:

Building a script based IMF-aware custom agent | 165
Monitor without IMF but with LevelTwo monitor frequency

#!/bin/sh

CustomAgent Monitor script
SVCS_HOME/bin/ag_il18n_inc.sh

RESNAME=S1

VCSAG_SET_ENVS $RESNAME

Logic for custom agent resource monitoring.
Based on logic set STATE to "OFFLINE" or "ONLINE"
if resource is found in either OFFLINE or ONLINE state.

if [${STATE} = "OFFLINE"]
then

exit ${STATE}

fi

Monitor without IMF but with LevelTwo monitor
frequency

If the custom agent monitor does the basic as well as detail monitoring, then detail
monitoring code must be conditional. This avoids scheduling of detail monitoring if
not required. VCSAG_GET_MONITOR_LEVEL API can be used to check if detail
monitoring needs to be scheduled.

VCSAG_GET_MONITOR_LEVEL API fetches and sets the values of the
LevelTwoMonitorFreq attribute.

#!/bin/sh

CustomAgent Monitor scri