
Veritas™ File System 6.2
Programmer's Reference
Guide - Linux

November 2014

Veritas™ File System Programmer's Reference Guide
The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Product version: 6.2

Document version: 6.2 Rev 1

Legal Notice
Copyright © 2014 Symantec Corporation. All rights reserved.

Symantec, the Symantec Logo, the Checkmark Logo, Veritas, Veritas Storage Foundation,
CommandCentral, NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Symantec
Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations, whether delivered by Symantec as on premises
or hosted services. Any use, modification, reproduction release, performance, display or
disclosure of the Licensed Software and Documentation by the U.S. Government shall be
solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support
Symantec Technical Support maintains support centers globally. Technical Support’s
primary role is to respond to specific queries about product features and functionality.
The Technical Support group also creates content for our online Knowledge Base.
The Technical Support group works collaboratively with the other functional areas
within Symantec to answer your questions in a timely fashion. For example, the
Technical Support group works with Product Engineering and Symantec Security
Response to provide alerting services and virus definition updates.

Symantec’s support offerings include the following:

■ A range of support options that give you the flexibility to select the right amount
of service for any size organization

■ Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers software upgrades

■ Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

■ Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our website at
the following URL:

www.symantec.com/business/support/index.jsp

All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be at
the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

■ Hardware information

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/contact_techsupp_static.jsp

■ Available memory, disk space, and NIC information

■ Operating system

■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Symantec

■ Recent software configuration changes and network changes

Licensing and registration
If your Symantec product requires registration or a license key, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and support contracts

■ Information about the Symantec Buying Programs

■ Advice about Symantec's technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs or manuals

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

Support agreement resources
If you want to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

customercare_apj@symantec.comAsia-Pacific and Japan

semea@symantec.comEurope, Middle-East, and Africa

supportsolutions@symantec.comNorth America and Latin America

Documentation
Your feedback on product documentation is important to us. Send suggestions for
improvements and reports on errors or omissions. Include the title and document
version (located on the second page), and chapter and section titles of the text on
which you are reporting. Send feedback to:

doc_feedback@symantec.com

For information regarding the latest HOWTO articles, documentation updates, or
to ask a question regarding product documentation, visit the Storage and Clustering
Documentation forum on Symantec Connect.

https://www-secure.symantec.com/connect/storage-management/
forums/storage-and-clustering-documentation

About Symantec Connect
Symantec Connect is the peer-to-peer technical community site for Symantec’s
enterprise customers. Participants can connect and share information with other
product users, including creating forum posts, articles, videos, downloads, blogs
and suggesting ideas, as well as interact with Symantec product teams and
Technical Support. Content is rated by the community, and members receive reward
points for their contributions.

http://www.symantec.com/connect/storage-management

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
mailto:doc_feedback@symantec.com
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
https://www-secure.symantec.com/connect/storage-management/forums/storage-and-clustering-documentation
http://www.symantec.com/connect/storage-management

Technical Support ... 4

Chapter 1 Veritas File System software developer’s kit 10

About the software developer’s kit ... 10
File System software developer’s kit features 10

API library interfaces ... 11
File Change Log ... 11
Multi-volume support ... 12
Veritas File System I/O .. 12

Software developer’s kit RPMs .. 12
Required libraries and header files ... 13
Compiling environment .. 13

Recompiling with a different compiler .. 13

Chapter 2 File Change Log ... 15

About the File Change Log file .. 15
Recorded changes ... 15
Using the File Change Log file .. 16
File Change Log logging activation ... 17
File Change Log file layout ... 18

Record types ... 20
Special records .. 22
Typical record sequences .. 22

File Change Log tunables .. 23
How tunables handle File Change Log growth size 24

Application programming interface for File Change Log 25
Ease of use ... 25
Backward compatibility .. 26
API functions ... 26
File Change Log record ... 34
Copying File Change Log records .. 41
Veritas File System and File Change Log upgrade and

downgrade .. 45
Reverse path name lookup ... 46

Inodes ... 46

Contents

vxfs_inotopath_gen .. 47

Chapter 3 Multi-volume support ... 48

About multi-volume support .. 48
Uses for multi-volume support ... 49
Volume application programming interfaces 49

Administering volume sets .. 50
Querying the volume set for a file system 50
Modifying a volume within a file system 50
Encapsulationg and de-encapsulating a volume 51

Allocation policy application programming interfaces 51
Directing file allocations ... 52
Creating and assigning policies ... 53
Querying the defined policies .. 54
Enforcing a policy ... 54

Data structures .. 55
Using policies and application programming interfaces 56

Defining and assigning allocation policies 56
Using volume application programming interfaces 57

Chapter 4 Named data streams .. 59

About named data streams ... 59
Uses for named data streams ... 60
Named data streams application programming interface 60
Listing named data streams .. 62
Namespace for named data streams .. 63
Behavior changes in other system calls ... 63
Querying named data streams .. 64
Application programming interface ... 65
Command reference ... 65

Chapter 5 Veritas File System I/O ... 66

About Veritas File System I/O ... 66
Freeze and thaw .. 66
Caching advisories ... 69

Direct I/O .. 69
Concurrent I/O ... 70
Unbuffered I/O ... 71
Other advisories ... 71

Extents ... 72
Extent attributes ... 73

8Contents

Reservation: preallocating space to a file 74
Fixed extent size .. 74
Application programming interface for extent attributes 75
Allocation flags .. 76
Allocation flags with fixed extent size .. 78
How to use extent attribute APIs .. 78
Setting fixed extent size ... 79

Chapter 6 Thin Reclamation .. 81

About Thin Storage ... 81
About Thin Reclamation ... 81
Thin Reclamation application programming interface 81

vxfs_ts_reclaim return values .. 84

Index .. 85

9Contents

Veritas File System
software developer’s kit

This chapter includes the following topics:

■ About the software developer’s kit

■ File System software developer’s kit features

■ Software developer’s kit RPMs

■ Required libraries and header files

■ Compiling environment

About the software developer’s kit
Veritas File System (VxFS) Software Developer’s Kit (SDK) provides developers
with the information necessary to use the application programming interfaces (APIs)
to modify and tune various features and components of the Veritas File System.
These APIs are provided with the VxFS Software Developer’s Kit.

Most of the APIs covered in this document are available in the VxFS 4.0 release
and subsequent releases.

File System software developer’s kit features
This section provides an overview of the VxFS features that are accessible with
the SDK.

1Chapter

API library interfaces
The API library interfaces highlighted in this SDK are the vxfsutil library and VxFS
IOCTL directives. The library contains a collection of API calls that applications can
use to take advantage of the features of the VxFS file system. Manual pages are
available for all of the API interfaces.

Table 1-1 describes the API calls and features available in the VxFS API library.

Table 1-1 Library APIs and features

FeatureAPIs

Inode-to-path lookupinotopath

Named Data Streamnattr

File Change LogFCL

Multi-volume supportMVS

IOCTL directivesCaching Advisories

IOCTL directivesExtents

IOCTL directivesFreeze/Thaw

The VxFS API library, vxfsutil, can be installed independent of the Veritas File
System product. This library is implemented using a stubs library and dynamic
library combination. Applications are compiled with the stubs library libvxfsutil.a,
making the application portable to any VxFS target environment. The application
can then be run on a VxFS target, and the stubs library finds the dynamic library
that is provided with the VxFS target.

The stubs library uses a default path for the location of the vxfsutil.so dynamic
library. In most cases, the default path should be used. However, the default path
can be overridden by setting the environment variable, LIBVXFSUTIL_DLL_PATH,
to the path of the vxfsutil.so library. This structure allows an application to be
deployed with minimal issues related to compatibility with other releases of VxFS.

File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file
system. Applications such as backup products, Web crawlers, search and indexing
engines, and replication software that typically scan an entire file system searching
for modifications since a previous scan can use the File Change Log.

See “About the File Change Log file” on page 15.

11Veritas File System software developer’s kit
File System software developer’s kit features

Multi-volume support
The multi-volume support (MVS) feature allows a VxFS file system to use multiple
Veritas™ Volume Manager (VxVM) volumes as underlying storage. Administrators
and applications can control where files go to maximize effective performance,
while minimizing cost. This feature can be used only with Veritas Volume Manager.
In addition, some of the functionality requires additional license keys.

See “About multi-volume support” on page 48.

Veritas File System I/O
VxFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems, can take
advantage of VxFS enhancements.

Software developer’s kit RPMs
The VRTSfssdk RPM comprises the SDK. The VRTSfssdk RPM contains libraries,
header files, and sample programs in source and binary formats that demonstrate
usage of the VxFS API interfaces to develop and compile applications. The
VRTSfssdk RPM also contains this guide and the API manual pages.

The directory structure in the VRTSfssdk RPM is as follows:

Contains several subdirectories with sample programs and GNU-based
Makefile files on each topic of interest.

src

Contains symlinks to all the sample programs in the sources directory
for easy access to binaries.

bin

Contains the header files for API library and ioctl interfaces.include

Contains the pre-compiled vxfsutil API interface stubs library.lib

Contains the source code for the vxfsutil API interface stubs library.libsrc

The VRTSfssdk RPM can be obtained separately from the VxFS RPM. To run the
applications or sample programs, a licensed VxFS target is required. In addition,
the VxFS license of the required features should be installed on the target system.

12Veritas File System software developer’s kit
Software developer’s kit RPMs

Required libraries and header files
The VRTSfssdk RPM is installed in the /opt directory. The associated libraries and
header files are installed in the following locations:

■ /opt/VRTSfssdk/6.2.0.00/lib/libvxfsutil.a

■ /opt/VRTSfssdk/6.2.0.00/include/vxfsutil.h

■ /opt/VRTSfssdk/6.2.0.00/include/fcl.h

■ /opt/VRTSfssdk/6.2.0.00/include/sys/fs/vx_ioctl.h

There are also symlinks to these files from the standard Veritas paths:
/opt/VRTS/lib and /opt/VRTS/include. The standard paths are the default paths
in the latest releases of VxFS and the VxFS SDK.

Compiling environment
The SDK RPM installs sample programs with compiled binaries.

The requirements for running the sample programs are as follows:

■ A target system with the appropriate version of VRTSvxfs installed

■ Root permission, which some programs require

■ A mounted VxFS 6.0 or later file system. Some may require a file system that
is mounted on a Veritas Volume Set.

Note: Some programs may require special volume configurations (volume sets).

In addition, some programs require a file system to be mounted on a volume set.

Recompiling with a different compiler
The required tools for recompiling the src or libsrc directory are as follows:

■ gmake command

■ gcc compiler

13Veritas File System software developer’s kit
Required libraries and header files

To recompile the src and libsrc directories

1 Edit the make.env file and modify it with the path to your compiler.

2 Change to the src or libsrc directory and run the gmake command:

3 After writing the application, compile it as follows:

gcc -I /opt/VRTSfssdk/6.2.0.00/include \

-L /opt/VRTSfssdk/6.2.0.00/lib -ldl -o MyApp \

MyApp.c libvxfsutil.a

To compile the src or libsrc directory, edit the make.env file as follows:

1 Select the compiler path on your local system. Set the CC variable to be the
path on your system:

CC=/opt/bin/cc

#CC=/usr/local/bin/gcc

Use whichever path is appropriate for your compiler.

2 Change to the src or libsrc directory and type:

gmake

or

make

14Veritas File System software developer’s kit
Compiling environment

File Change Log

This chapter includes the following topics:

■ About the File Change Log file

■ Record types

■ File Change Log tunables

■ Application programming interface for File Change Log

■ Reverse path name lookup

About the File Change Log file
The VxFS File Change Log (FCL) tracks changes to files and directories in a file
system.

Applications that typically use the FCL are usually required to perform the following:

■ Scan an entire file system or a subset

■ Discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines, and
replication programs.

Note: The FCL tracks when the data has changed and records the change type,
but does not track the actual data changes. It is the responsibility of the application
to examine the files to determine the changed data.

Recorded changes
The File Change Log records the following file system changes:

2Chapter

■ Creates

■ Links

■ Unlinks

■ Renaming

■ Data appended

■ Data overwritten

■ Data truncated

■ Extended attribute modifications

■ Holes punched

■ Miscellaneous file property updates

Note: The FCL is supported only on disk layout Version 6 and later.

The FCL stores changes in a sparse file, referred to as the FCL file, in the file system
namespace. The FCL file is always located in
/mount_point/lost+found/changelog. The FCL file behaves like a regular file,
however, some user-level operations are prohibited, such as writes. The standard
system calls open(2), lseek(2), read(2) and close(2) can access the data in the
FCL file. All other system calls such as mmap(2), unlink(2), and ioctl(2) are not
allowed on the FCL file.

Warning: For compatibility with future VxFS releases, the FCL file might be pulled
out of the namespace, and these standard system calls may no longer work.
Therefore, Symantec recommends that all new applications be developed using
the programmatic interface.

See “Application programming interface for File Change Log” on page 25.

Using the File Change Log file
VxFS tracks changes to the file system by appending the FCL file with information
pertaining to those changes.

This enables you to do the following:

■ Use the FCL to determine the sequence of operations that have been performed
on the file system in general or on a specific file after a particular point in time.

16File Change Log
About the File Change Log file

For example, an incremental backup application can scan the FCL file to
determine which files have been added or modified since the file system was
last backed up.

■ Configure the FCL to track additional information, such as file opens, I/O
statistics, and access information, such as user ID.

You can then use this information to gather the following data:

■ Space usage statistics to determine how the space usage for different types
of data.

■ Usage profile for the different files on a file system across different users to
help determine which data has been recently accessed and by whom.

Space usage
You can use the FCL file to track space usage when a file system gets close to
being full. The FCL file can be searched for recently created files (file creates) or
write records to determine newly added files or existing files that have grown
recently.

Depending on the application needs, the search can be done on the entire FCL file,
or on a portion of the FCL file corresponding to a specific time frame. Additionally,
you can look for files created with particular names. For example, if users are
downloading *.mp3 files that are taking up too much space, the FCL file can be
read to find files created with the name *.mp3.

Full system scan reductions
VxFS creates and logs an FCL record for every update operation performed on an
FCL-enabled file system. These operations include creates, deletes, rename, mode
changes, and writes. Therefore, incremental backup applications or applications
that maintain an index of a file system based on the filename, file attributes, or
content can avoid a full system scan by reading the FCL file to detect the files that
have changed since the previous backup or previous index update.

File history traces
You can trace a file’s history by scanning the FCL file and coalescing FCL record
sequences for a file. You can also use the related FCL records from a file’s creation,
attribute changes, write records, and deletion to track the file’s history.

File Change Log logging activation
By default, FCL logging is deactivated and can be activated on a per-file system
basis using the fcladm command.

17File Change Log
About the File Change Log file

See the fcladm(1M) manual page.

When FCL loggin is activated, new FCL records are appended to the FCL file as
file system changes occur. When FCL logging is turned off, further recording stops,
but the FCL file remains as /lost+found/changelog. You can only remove an FCL
file by using the fcladm command.

The FCL file has an associated version that represents the layout or is the internal
representation of the FCL file, along with the list of events recorded in the FCL file.

Whenever a new version of VxFS is released, the following occurs:

■ There may either be additional events recorded in the FCL file

■ The internal representation of the FCL file may change

This results in the FCL file version getting updated. For example, in VxFS 4.1, the
default was Version 3. However, because VxFS 5.0 and later releases record
additional sets of events that are not available in Version 3 (such as file opens),
the default version in VxFS 5.0 and later releases is 4. To provide backward
compatibility for applications developed on VxFS 4.1, VxFS 5.0 and later releases
provide an option to specify an FCL version during activation. Depending on the
specified version, the logging of the new record types is either allowed or disallowed.

The logging of most of the newly added records in VxFS 5.0 and later releases,
such as file opens and I/O statistics, is optional and is turned off by default.
Recording of these events can be enabled or disabled using the [set] and [clear]
options of the fcladm command.

The FCL meta-information comprising of the file system state, version, and the set
of events being tracked is persistent across reboots and file system unmounts or
mounts. The version and event information is also persistent across re-activations
of FCL logging.

File Change Log file layout
In VxFS 4.1, the internal layout of the FCL file was exposed to the user and the
applications were expected to access the FCL file using standard file system
interfaces, such as open(2), read(2), and lseek(2). However, this methodology
may lead to future compatibility issues, because if the underlying FCL layout and
the FCL version changes, the application must be changed and recompiled to
accommodate these changes.

VxFS 5.0 introduced a new programming interface that provides improved
compatibility, even when the on-disk FCL layout changes. With this API, the FCL
layout is not a concern for applications. Consequently, this section provides only a
rudimentary description of the FCL layout.

18File Change Log
About the File Change Log file

The FCL file is usually a sparse file containing the FCL superblock and the FCL
records. The first information block in the FCL file is the FCL superblock. This block
may be followed by an optional hole as well as the FCL records which contain
information about the changes in the file system.

Figure 2-1 depicts the FCL file format.

Figure 2-1 FCL file format

Superblock

Record

Record

Record

Offset 0x0

First Offset File System Block Boundary

File System Block Boundary

Record
Last Offset

File Change Log superblock
Changes to files and directories in the file system are stored as FCL records. The
superblock, which is currently stored in the first block of the FCL file, describes the
state of the FCL file.

The superblock indicates the following:

■ Whether FCL logging is enabled

■ What time it was activated

■ The current offsets of the first and last FCL records

■ The FCL file version

■ The event mask for the set of events currently being tracked

■ The time that the event mask was last changed

The FCL file containing just the superblock is created when FCL is first activated
using the fcladm on command. The superblock gets removed only when the FCL
file is removed using the fcladm rm command.

When the FCL is activated using fcladm on, the state in the superblock and its
activation time are changed. Whenever any file system activity results in a record
being appended to the FCL file, the last offset gets updated.

19File Change Log
About the File Change Log file

As the FCL file grows in size, depending on the file system tunables fcl_maxalloc
and fcl_keeptime, the oldest records at the start of the FCL file are thrown away
to free up some space, as the first offset gets updated. When the set of events
tracked in the FCL file is changed using the [set] or [clear] options of the fcladm

command, the event mask and the event mask change time are updated. An event
mask change also results in an event mask change record containing the old event
mask and the new event mask change being logged in the FCL file.

File Change Log record
The FCL records contain information about these typical changes:

■ The inode number of the file that has changed
See “Inodes” on page 46.

■ The time of change

■ The type of change

■ Optional information depending on the record type

Depending on the record type, the FCL record may also include the following
information:

■ A parent inode number

■ A filename for file deletes, links, and similar operations

■ A command name for a file open record

■ The actual statistics for an I/O statistics record

See Figure 2-1 on page 19.

Record types
Table 2-1 lists actions that generate FCL record types.

Table 2-1 FCL record types

Record typeAction to create an FCL record

VX_FCL_LINKAdd a link to an existing file or
directory

VX_FCL_DATA_EXTNDWRITEAppending write to a file

VX_FCL_CREATECreate a file or directory

20File Change Log
Record types

Table 2-1 FCL record types (continued)

Record typeAction to create an FCL record

VX_FCL_CREATECreate a named data stream
directory

VX_FCL_SYMLINKCreate a symbolic link

VX_FCL_DATA_OVERWRITEPerform an mmap on a file in a
shared and writable mode

VX_FCL_UNDELETEPromote a file from a Storage
Checkpoint

VX_FCL_HOLE_PUNCHEDPunch a hole into a file

VX_FCL_UNLINKRemove a file or directory

VX_FCL_UNLINKRemove a named data stream
directory

VX_FCL_RENAMERename a file or directory

VX_FCL_UNLINKVX_FCL_RENAMERename a file to an existing file

VX_FCL_EATTR_CHGSet file attributes (allocation policies,
ACLs, and extended attributes)

VX_FCL_INORES_CHGSet file extent reservation

VX_FCL_INOEX_CHGSet file extent size

VX_FCL_IGRP_CHGSet file group ownership

VX_FCL_IMODE_CHGSet file mode

VX_FCL_DATA_TRUNCATESet file size

VX_FCL_IOWN_CHGSet file user ownership

VX_FCL_MTIME_CHGSet mtime of a file

VX_FCL_DATA_TRUNCATETruncate a file

VX_FCL_DATA_OVERWRITEWrite to an existing block in a file

VX_FCL_FILEOPENOpen a file

VX_FCL_FILESTATSWrite I/O statistics of a file to FCL

21File Change Log
Record types

Table 2-1 FCL record types (continued)

Record typeAction to create an FCL record

VX_FCL_EVNTMSK_CHGChange the set of events tracked in
the FCL

Note: Table 2-1 lists all the events recorded by default when the fcladm on

command activates FCL logging, except fileopen and filestat.

Access information for each of these events is also not recorded by default. Use
the [set] option of the fcladm command to record opens, I/O statistics and access
information.

See the fcladm(1M) manual page.

These record types belong to fcl_chgtype.t. fcl_chgtype.t, which is an
enumeration that is defined in the fcl.h header file.

See Table 2-2 on page 39.

Special records
The following record types are no longer visible through the API:

■ VX_FCL_HEADER

■ VX_FCL_NOCHANGE

■ VX_FCL_ACCESSINFO

Typical record sequences
The life cycle of a file in a file system is recorded in the FCL file from creation to
deletion.

When creating a file, the following is a typical sequence of FCL records written to
the log:

VX_FCL_CREATE

VX_FCL_FILEOPEN (if tracking file opens is enabled)

VX_FCL_DATA_EXTNDWRITE

VX_FCL_IMODE_CHG

When writing a file, one of the following FCL records is written to the log for every
write operation. The record depends on whether the write is past the current end
of the file or within the file.

22File Change Log
Record types

VX_FCL_DATA_EXTNDWRITE

VX_FCL_DATA_OVERWRITE

The following shows a typical sequence of FCL records written to the log, when file
a is renamed to b and both files are in the file system:

VX FCL_UNLINK (for file b, if it already exists)

VX_FCL_RENAME (for a rename from a to b)

File Change Log tunables
You can set four FCL tunable parameters using the vxtunefs command.

See the vxtunefs(1M) manual page.

The following are the four available FCL tunable parameters:

Specifies the duration in seconds that FCL records stay in the FCL file
before they can be purged. The first records to be purged are the oldest
ones, which are located at the beginning of the file. Additionally, records
at the beginning of the file can be purged if the allocation to the FCL
file exceeds fcl_maxalloc bytes. The default value is “0”. Note that
fcl_keeptime takes precedence over fcl_maxalloc. No hole is
punched if the FCL file exceeds fcl_maxalloc bytes and the life of
the oldest record has not reached fcl_keeptime seconds.

Tuning recommendation: The fcl_keeptime tunable parameter needs
to be tuned only when the administrator wants to ensure that records
are kept in the FCL for fcl_keeptime length of time. The
fcl_keeptime parameter should be set to any value greater than the
time between FCL scans. For example, if the FCL is scanned every 24
hours, fcl_keeptime could be set to 25 hours. This prevents FCL
records from being purged before they are read and processed.

fcl_keeptime

Specifies the maximum amount of space in bytes to be allocated to the
FCL file. When the space allocated exceeds fcl_maxalloc, a hole
is punched at the beginning of the file. As a result, records are purged
and the first valid offset is updated in the FCL superblock. The minimum
value of fcl_maxalloc is 4MB. The default value is fs_size/33.

fcl_maxalloc

23File Change Log
File Change Log tunables

Specifies the time in seconds that must elapse before the FCL records
multiple overwrite, extending write, or truncation records for the same
inode. This helps to reduce the number of repetitive records in the FCL.
The fcl_winterval time-out is per inode. If an inode happens to go
out of cache and returns, its write interval is reset. As a result, there
could be more than one write record for that file in the same write
interval. The default value is 3600 seconds.

Tuning recommendation: The fcl_winterval tunable parameter
should be set to a value that is less than the time between FCL scans.
For example, if the FCL is scanned every 24 hours, fcl_winterval
should be set to less than 24 hours. This ensures that there is at least
one record in the FCL for each file being overwritten, extended, or
truncated between scans.

fcl_winterval

Specifies the time interval in seconds within which subsequent opens
of a file do not produce an additional FCL record. This helps to reduce
the number of repetitive file-open records logged in the FCL, especially
in the case of frequent accesses through NFS. If the tracking of access
information is also enabled, a subsequent file open event within
fcl_ointerval might produce a record, if the latter open is by a
different user. Similar to fcl_ointerval, if an inode goes out of cache
and returns, or if there is an FCL sync, there might be more than one
file open record within the same open interval. The default value is 600
seconds.

Tuning recommendations: If the application using file-open records only
needs to know if a file has been accessed by any user from the last
time it scanned the FCL, fcl_ointerval can be set to a time period
in the range of the time between the scans. If the application is
interested in tracking every access, the tunable can be set to zero.

In the case where the file system is extensively accessed over NFS,
depending on the platform and the NFS implementation, there might
be a large number of file open records logged. In such cases, it is
recommended to set the tunable to a higher value to avoid flooding the
FCL with repetitive records.

fcl_ointerval

How tunables handle File Change Log growth size
Figure 2-2 illustrates an example of record purging as an FCL file grows in size.

The FCL file on the left contains 8K blocks and no holes. When activity occurs on
the file system, it is recorded in the FCL and the growth results in the FCL file on
the right.

When the FCL file size reaches the maximum allowable size that is specified by
the fcl_maxalloc tunable, older records are purged and space is freed. The FCL

24File Change Log
File Change Log tunables

feature only purges records that are older than a time specified by fcl_keeptime.
The freed space is always in units of an internal hole size.

Figure 2-2 displays the file system freeing up space in the FCL file in 8K units.

When the FCL file surpasses the maximum allocation for the first time and the
number of older records is 20K, the program purges 16K. This leaves a 16K hole
following the FCL superblock. The first valid offset in the FCL superblock is then
updated to 24K.

Figure 2-2 FCL record purging example

Superblock

Record

Record

Record

Offset 0x0

first offset = 8K

Superblock
Offset 0x0

first offset = 24KB

FCL Before: No holes FCL After:

Record

Record

A 16 K hole exists at offset 8K

16K Hole
Record

Record

Record

Application programming interface for File Change
Log

In addition to the existing programmatic interface exposed through libvxfsutil:

vxfs_fcl_sync,VxFS 5.0 and later releases provide a new set of programmatic
interfaces which replace the mechanism to access an FCL file via the set of standard
system calls: open(2), lseek(2), read(2) and close(2). This API provides the
following improvements:

Ease of use
The API reduces the need to write additional code to parse FCL entries.

Most of the on-disk FCL records are of a fixed size and contain only the default
information such as the inode number or time-stamp. However, some records can

25File Change Log
Application programming interface for File Change Log

be of variable sizes, such as a file remove or rename record. These records contain
additional information, such as the name of a file that is removed or renamed.

To ensure that the first few bytes at the start of any file system block is always a
valid FCL record (if the filename crosses a block boundary), the file system block
may be split across multiple on-disk records. Previously, you were required to write
additional code to assemble these records to get the filename. The API in the VxFS
5.0 and later releases provides a mechanism to directly read a single assembled
logical record. This makes it easier for applications using the API. The API also lets
the application specify a filter to indicate a subset of the events of interest and return
only required records.

Backward compatibility
The API lets applications read the FCL independent of the FCL layout changes.
For example, consider a scenario where an application directly accesses and
interprets the on-disk FCL records. If the next VxFS release adds new records or
changes the way the records are stored in the FCL file, the application needs to be
rewritten or at least re-compiled to accommodate for the changes (under previous
VxFS versions).

With an intermediate API, the on-disk layout of FCL is hidden from the application,
so even if the disk layout of FCL changes, the API internally translates the data
returns the expected output record to the user. The user application can then
continue without a recompilation or a rewrite.This insulates programs from FCL
layout changes and provides greater compatibility for existing applications.

API functions
The API uses the following type of functions:

■ Functions for accessing FCL records

■ Functions for seeking offsets and time stamps

Functions for accessing File Change Log records
The following are general functions for accessing FCL records:

Opens the FCL file and returns a handle which can be used for
further operations. All subsequent accesses of the FCL file through
the API must use this handle.

vxfs_fcl_open

Closes the FCL file and cleans up resources associated with the
handle

vxfs_fcl_close

26File Change Log
Application programming interface for File Change Log

Returns the FCL version number along with the state (on/off) of the
FCL file

vxfs_fcl_getinfo

Reads FCL records of interest to the user into a buffer passed in
by the user

vxfs_fcl_read

Copies an FCL record. If the source record contains pointers, it
relocates them to point to the new location.

vxfs_fcl_copyrec

Functions for seeking offsets and time stamps in the File
Change Log
Users have the option to seek to a particular point in the File Change Log based
on the offset from where they left off, or to the first record after a specified time.

The following functions can seek offsets and time stamps in the FCL:

Returns an opaque structure (referred to hereinafter as a cookie)
which embeds the current FCL activation time and the current offset.
This cookie can be saved and later passed into vxfs_fcl_seek
to continue reading from where the application left off last time.

vxfs_fcl_getcookie

Extracts data from the cookie passed and seeks to the specified
offset. A cookie is embedded with the FCL activation time and file
offset.

vxfs_fcl_seek

Seeks to the first record in the FCL after the specified timevxfs_fcl_seektime

vxfs_fcl_open
The following is the syntax for the vxfs_fcl_open() function:

int vxfs_fcl_open(char *pathname, int flags, void **handle);

This function opens the FCL file and returns a handle which should be used for all
further accesses to the FCL through the API (for example, vxfs_fcl_read,
vxfs_fcl_seek, etc.).

vxfs_fcl_open has two parameters: *pathname and **handle. The *pathname

can be a pointer to an FCL filename or a mount point. If *pathname is a mount point,
vxfs_fcl_open automatically determines if the FCL is activated on the mount point
and opens the FCL file associated with the mount point (currently
mount_point/lost+found/changelog).

vxfs_fcl_open then determines if it is a valid FCL file, and if the FCL file version
is compatible with the library. The vxfs_fcl_open() function then assimilates

27File Change Log
Application programming interface for File Change Log

meta-information about the FCL file into an opaque internal data structure and
populates **handle with a pointer.

Just like the lseek(2) and read(2) system calls, the FCL file **handle has an
internal offset to indicate the position in the file from where the next read starts.
When the FCL file is successfully opened, this offset is set to the first valid offset
in the FCL file.

Return value

Upon successful completion, a “0” is returned to the caller and the handle is
non-NULL. Otherwise, the API returns a non-zero value is and the handle is set to
NULL. The global value errno is also set to indicate the error.

vxfs_fcl_close
vxfs_fcl_close closes the FCL file referenced by handle. All data structures
allocated with this handle are cleaned. You should not use this handle after a call
to vxfs_fcl_close.

Parameters

void vxfs_fcl_close(void *handle)

*handle is a valid handle returned by the previous call to vxfs_fcl_open.

vxfs_fcl_getinfo

int vxfs_fcl_getinfo(void *handle, struct fcl_info*fclinfo);

The vxfs_fcl_getinfo() function returns information about the FCL file in the FCL
information structure pointed to by fcl_info. It obtains this information from the
FCL superblock.

struct fcl_info {

uint32_tfcl_version;

uint32_tfcl_state;

};

An intelligent application that is aware of the record types associated with each can
decide from fcl_version, whether the FCL file contains the needed information.
For instance, a Version 3 FCL file never contains access information along with an
FCL record. If fcl_state is FCLS_OFF, the application can then infer that there are
no records added to the FCL file due to file system activity.

28File Change Log
Application programming interface for File Change Log

Return values

A “0” indicates success; otherwise, the errno is set to error and a non-zero value
is returned.

vxfs_fcl_read
This function lets the application read the actual file or directory change information
recorded in the FCL as logical records. Each record returns a struct fcl_record

type. vxfs_fcl_read lets the application specify a filter comprising a set of desired
events.

Parameters

The following is the syntax for the vxfs_fcl_read() function:

int vxfs_fcl_read(void *hndl, char *buf, size_t *bufsz,

uint64_t eventmask, uint32_t *nentries);

Input
This function has the following input:

■ *hndl is a pointer returned by a previous call to vxfs_fcl_open

■ *buf is a pointer to a buffer of size at least *bufsz

■ *bufsz specifies the buffer size

■ eventmask is a bit-mask that specifies a set of events which is of interest to the
application. It should be a “logical or” of a set of event masks specified in the
fcl.h header. For example, if the eventmask is (VX_FCL_CREATE_MASK |

VX_FCL_UNLINK_MASK), vxfs_fcl_read returns only file create and delete
records.
If an application needs to read all of the record types, the application can specify
a default eventmask mask as FCL_ALL_V4_EVENTS. This returns all valid Version
4 FCL records in the FCL file.
See Table 2-1 on page 20.

Note: If VX_FCL_EVENTMASKCHG_MASK is set in eventmask and the records returned
by vxfs_fcl_read contain a VX_FCL_EVENTMASK_CHG record, it is always the
last record in the buffer. This lets the application to readjust the eventmask if
required. In addition, if the application discovers from the eventmask change
record that a particular event is no longer recorded, it can decide to stop further
reading.

29File Change Log
Application programming interface for File Change Log

■ *nentries specifies the number of entries that should be read into the buffer
in this call to vxfs_fcl_read. If *nentries is “0,” vxfs_fcl_read reads as many
entries as well fit in the buffer.

Output

*buf contains *nentries FCL records of the struct fcl_record type if there is
no error.

If the requested number of entries cannot fit in a buffer of the passed size, an
FCL_ENOSPC error is returned. In this case, *bufsz is updated to contain the buffer
size required for the requested number of records. The application may use this to
reallocate a larger sized buffer and invoke vxfs_fcl_read again. *bufsz is not
changed if there is no error.

*nentries is updated to contain the number of entries read in the buffer when
vxfs_fcl_read is called and there is no error. *nentries and the returned value
are both zero when the application has reached the end of file and there are no
more records to be read.

Return values

A "0" indicates success; a non-zero indicates an error.

Note: FCL_ENOSPC is returned if there is not enough space in the buffer to store the
current record. The minimum size the buffer must be is returned in *bufsz.

After a successful call to vxfs_fcl_read, the current file position is advanced, so
that the next call to vxfs_fcl_read reads the next set of records.

vxfs_fcl_getcookie
The vxfs_fcl_getcookie and vxfs_fcl_seek() functions are effective methods
for remembering a position in the FCL file that the application has processed earlier.
This then can be used as a restarting point. This is a highly useful tool for
applications.

See “vxfs_fcl_seek” on page 31.

The vxfs_fcl_getcookie() function returns an opaque fcl_cookie structure which
embeds information comprising the current activation time of the FCL file and an
offset indicating the current position in the FCL file. This cookie can be passed into
vxfs_fcl_seek to seek to the position in the FCL file defined by the cookie.

A typical incremental backup or index-update program can read to the end of the
FCL file and perform actions based on the FCL records. The application can get

30File Change Log
Application programming interface for File Change Log

information about the current position in the FCL file using vxfs_fcl_getcookie

and then store the cookie in a persistent structure such as a file. The next time the
application needs to perform an incremental operation, it reads the cookie and
passes it to vxfs_fcl_seek to seek to the point where it left off. This enables the
application to read only the new FCL records.

Parameters

The following is the syntax for the vxfs_fcl_getcookie() function:

int vxfs_fcl_getcookie(void *handle, struct fcl_cookie *cookie)

The function parameters are as follows:

■ *handle is the FCL file handle returned by a call to vxf_fcl_open

■ *cookie is a pointer to an opaque data block defined as follows:

struct fcl_cookie {

char fc_bytes[24];

};

The data stored in the cookie is internal to the VxFS library. The application should
not assume any internal representation for the cookie or tamper with the data in
the cookie.

vxfs_fcl_seek
You can use vxfs_fcl_seek to seek to the start or end of an FCL file depending
on the flag passed to it.

See “vxfs_fcl_getcookie” on page 30.

Parameters

The following is the syntax for the vxfs_fcl_seek() function:

int vxfs_fcl_seek(void *handle, struct fcl_cookie *cookie, int where)

The function parameters are as follows:

■ The *handle parameter should be the same handle that was returned by the
most recent call to vxfs_fcl_open(). This is not necessarily the same handle
used in vxfs_fcl_getcookie(). The application may open the FCL file, get the
cookie, and close the FCL file in one session, and then open the FCL file and
submit the saved cookie in a later session. For each open session on the FCL
file, the valid handle is the one returned by vxfs_fcl_open() for that session.

31File Change Log
Application programming interface for File Change Log

■ The *cookie parameter should point to a valid cookie that has been returned
from a call to vxfs_fcl_getcookie() on the same FCL file or one of its
checkpoints or one of the dumped or restored copies of the same FCL file. It is
the responsibility of the user application to decide which FCL file is valid for a
particular cookie and to use them in a sensible combination.

Note:The *cookie parameter may be NULL ifwhere has a value of FCL_SEEK_SET
or FCL_SEEK_END.

■ The where parameter should have a value of FCL_SEEK_SET, FCL_SEEK_END, or
FCL_SEEK_COOOKIE.

■ If where is FCL_SEEK_SET or FCL_SEEK_END, the *cookie parameter is ignored
and vxfs_fcl_seek() seeks to either the start or end of the FCL file
respectively, that is, where the first FCL record starts or where the last record
ends.

■ If where has a value of FCL_SEEK_COOKIE, vxfs_fcl_seek() extracts the
activation time and offset stored in the *cookie parameter.

If the FCL has been deactivated (switched off) from the time the application last
called the vxfs_fcl_getcookie() function, or if the record at the offset contained
in the *cookie was purged by a hole-punch, vxfs_fcl_seek() returns an
FCL_EMISSEDRECORD error. If not, vxfs_fcl_seek then sets the current file
position to the offset contained in the cookie. Further calls to vxfs_fcl_read()
return records from this offset.

Return values

A "0" indicates success; a non-zero indicates an error.

Note:vxfs_fcl_seek() returns FCL_EMISSEDRECORD if the FCL has been reactivated,
that is, the activation time in FCL is different than that passed in the cookie, or the
first valid offset in the FCL file is greater than the offset present in the cookie.

vxfs_fcl_seektime
The vxfs_fcl_seektime() function seeks to the first record in the FCL file that has
a timestamp greater than or equal to the specified time.

Parameters

The following is the syntax for the vxfs_fcl_seektime() function:

int vxfs_fcl_seektime(void *handle, struct fcl_timeval time)

32File Change Log
Application programming interface for File Change Log

The function parameters are as follows:

■ *handle is a valid handle returned by a previous call to vxfs_fcl_open

■ time is an fcl_time_t structure type defined as follows:

struct fcl_time {

uint32_t tv sec;

unit32_t tv_nsec;

} fcl_time t;

Note: The time specified in fcl_time_t is in seconds or nanoseconds, while
the time that is returned by a standard system call such as gettimeofday may
be in seconds or microseconds. Therefore, a conversion may be needed.

vxfs_fcl_seektime assumes that the entries in the FCL are in a non-decreasing
order of the time-stamps and does a faster-than-linear (binary) search to determine
the FCL record with a time-stamp greater than the specified time. This means that
vxfs_fcl_seektime can seek to a different record when compared to a seek done
through a linear search. As a result, the vxfs_fcl_seektime interface is not 100%
reliable.

The time-stamps in the FCL might be out-of-order under the following circumstances:

■ If the system time is modified

■ If the FCL file is on a cluster-mounted file system and the times on the different
nodes are out-of-sync

Warning: On a cluster file system, you must use a mechanism to keep the system
clocks in sync (for example, Network Time Protocol—NTP), to help ensure that the
vxfs_fcl_seektime interface is kept reasonably accurate.

Return values

vxfs_fcl_seektime returns "0" on success. If there are no records in the FCL file
newer than the time indicated in the time parameter, vxfs_fcl_seektime returns
EINVAL.

vxfs_fcl_sync
The vxfs_fcl_sync() function sets a synchronization point within the FCL file. This
function is kept for backward compatibility.

33File Change Log
Application programming interface for File Change Log

Before the availability of the VxFS 5.0 API to access the FCL file, applications would
typically call vxfs_fcl_sync to get the FCL to a stable state and set an offset in
the FCL file to use as a reference point to stop reading. The application would then
store the offset and use it to determine files changes since the last FCL read time.
A vxfs_fcl_sync() call ensured that if a file had been written to or opened, there
would be at least one corresponding write or open record in the FCL after the
synchronization offset. This would happen even if the time specified by
fcl_winterval or fcl_ointerval had not elapsed since the last record was written.

With FCL access API in the VxFS 5.0 and later releases, synchronization is done
automatically when the FCL file is opened through vxfs_fcl_open(). The
vxfs_fcl_open() function sets a synchronization point and determines a reference
end offset internally.

Parameters

The following is the syntax for the vxfs_fcl_sync() function:

int vxfs_fcl_sync(char *fname, uint64_t *offp);

The function parameters are as follows:

■ *fname is a pointer to the FCL filename

■ *offp is the address of a 64-bit offset

vxfs_fcl_sync brings the FCL file to a stable state and updates *offp with an
offset that can be used by the application as a reference point.

File Change Log record
An application reads the FCL file through the vxfs_fcl_read() function.

vxfs_fcl_read performs the following tasks:

■ Reads the data from the FCL file

■ Assembles the data into fcl_record structures

■ Fills the buffer passed in by the application with these records

Each fcl_record structure represents a logical event recorded in the FCL. It is
defined as the following:

struct fcl_record {

uint32_t fr_reclen; /* Record length */

uint16_t fr_op; /* Operation type. */

uint16_t fr_unused1; /* unused field */

uint32_t fr_acsinfovalid : 1; /* fr_acsinfo field valid */

34File Change Log
Application programming interface for File Change Log

uint32_t fr_newnmvalid : 1; /* fr_newfilename field is valid */

uint32_t fr_pinogenvalid : 1; /* fr_fr_pinogen field is valid */

uint32_t fr_unused2 : 29; /* Future use */

uint64_t fr_inonum; /* Inode Number. */

uint32_t fr_inogen; /* Inode Generation Count. */

fcl_time_t fr_time; /* Time. */

union fcl_vardata {

char *fv_cmdname;

struct fcl_nminfo fv_nm;

struct fcl_iostats *fv_stats;

struct fcl_evmaskinfo fv_evmask;

} fr_var;

uint64_t fr_tdino; /* Target dir ino */

char *fr_newfilename; /* For rename */

struct fcl_acsinfo *fr_acsinfo; /* Access Info */

};

struct fcl_nminfo {

uint64_tfn_pinonum;/* Parent Inode Number. */

uint32_tfn_pinogen;/* Parent Inode Gen cnt. */

char*fn_filename;

};

struct fcl_evmaskinfo {

uint64_toldmask;/* Old event mask. */

uint64_tnewmask;/* New event mask. */

};

Defines
These defines are provided for easier access:

#define fr_cmdname fr_var.fv_cmdname

#define fr_stats fr_var.fv_stats

#define fr_oldmask fr_var.fv_evmask.oldmask

#define fr_newmask fr_var.fv_evmask.newmask

#define fr_pinonum fr_var.fv_nm.fn_pinonum

#define fr_pinogen fr_var.fv_nm.fn_pinogen

#define fr_filename fr_var.fv_nm.fn_filename

fcl_iostats structure
VxFS 5.0 and later releases let you gather statistics such as the number of reads
and writes occurring on a file. You can enable this through the fiostat command.
The gathered stats are maintained in a per-file in-core structure and the File Change
Log acts as a persistent backing store for the statistics.

35File Change Log
Application programming interface for File Change Log

The stats are written to the FCL under the following circumstances:

■ When the in-core structures need to be freed

■ When the stats are reset

■ At periodic intervals

These statistics can be read from the FCL as VX_FCL_FILESTAT records. Each
record contains information as defined by the following fcl_iostat structure:

struct fcl_iostats {

uint64_t nbytesread; /* Number of bytes read from the file*/

uint64_t nbyteswrite;/* Number of bytes written to the file*/

uint32_t nreads; /* Number of reads from the file */

uint32_t nwrites; /* Number of writes to the file */

uint32_t readtime; /* Total time in seconds for the reads */

uint32_t writetime; /* Total time in seconds for the writes */

struct {

uint32_t tv_sec;

uint32_t tv_nsec;

} lastreset;/* Last reset time for the stats */

uint32_tnodeid; /* Node from which the record was written */

uint32_treset; /* Stats have been written due to a reset */

};

Each iostat record in the FCL contains I/O statistics accumulated over the time
interval from the lastreset time to when the FCL record is written.

Over a period of time, the cumulative statistics and aggregate can be computed by
the following:

■ Traversing the FCL

■ Looking for records of type VX_FCL_FILESTATS

For example, computing the aggregate for the total number of reads over a period
of time requires traversing a set of FCL files to obtain I/O statistics records. This
informations contains a sequence of records of the type VX_FCL_FILESTATS with
the same lastreset time followed by another sequence of records with a later
lastreset time for a specific file.

The aggregation considers values only from the latest record from records with the
same lastreset time and then sums up the number of reads for each such record.

fcl_acsinfo structure
When tracking access-info is enabled, VxFS logs the access information such as:

36File Change Log
Application programming interface for File Change Log

■ The real and effective user and group ID of the accessing application

■ The node from where the file was accessed

■ The process id of the user application along with each record

When the application reads the FCL, the information is returned in the fr_acsinfo

field.

The fr_acsinfo points to an FCL_acsinfo structure, defined as follows:

struct fcl_acsinfo {

uint32_tfa_ruid;

uint32_tfa_rgid;

uint32_tfa_euid;

uint32_tfa_egid;

uint32_tfa_pid;

uint32_tfa_nodeid;

};

Note: The accessinfo is not returned as a separate record type but as additional
information along with the other records. In addition, the accessinfo information is
not always present with every record (for example, when tracking accessinfo is
not enabled). However, even when accessinfo is enabled in some file system
internal operations (for example, truncating a file when it is removed), the access
information may not be present. To help determine if access information is available,
the FCL record contains a flag called fcl_acsinfovalid which is non-zero only if
the accessinfo is present with a particular record.

Several of the fields in the fcl_acsinfo structure are pointers and need memory
to store the actual contents. This is handled by storing the actual data immediately
after the FCL record, and updating the pointer to point to the data. The record length
fr_reclen field is updated to account for the whole data. Thus, each FCL record
returned by vxfs_fcl_read is a variable size record, whose length is indicated by
fr_reclen_field.

Figure 2-3 illustrates how the data is laid out in a sample link record.

37File Change Log
Application programming interface for File Change Log

Figure 2-3 Sample link record

The following code sample traverses the set of records returned by a call to
vxfs_fcl_read and prints the user ID:

Struct fcl_record*fr;

Char *tbuf;

...

error = vxfs_fcl_read(fh, buf, &bufsz,

FCL_ALL_V4_EVENTS,

&nentries);

tbuf = buf;

while (--nentries) {

fr = (struct fcl_record *)tbuf;

if (fr->fr_acsinfovalid) {

printf(“Uid %ld\n”, fr->fr_acsinfo->uid;

}

tbuf += fr->fr_reclen;

}

Note: FCL_ALL_V4_EVENTS are event masks.

38File Change Log
Application programming interface for File Change Log

See “vxfs_fcl_read” on page 29.

Record structure fields
Table 2-2 briefly describes each field of the fcl_record structure and indicates the
record types for which it is valid.

Table 2-2 FCL record structure fields

ValidityDescriptionField

Valid for all records.Length of the FCL record. This
includes length of the FCL record
structure and length of the data
stored immediately following the
structure. This length should be
used while traversing fcl records
returned in the buffer by
vxfs_fcl_read.

fr_reclen

Valid for all FCL records except
when the record is
FCL_EVNTMSK_CHG. For event
mask change the file is implicitly
the FCL file.

The inode number of the file being
changed. To generate the full path
name of the changed object, the
inode number and generation
count (fr_inogen) can be used
with vxfs_inotopath_gen.

fr_inonum

Valid for all records.The operation for this FCL record.
For example, creation, unlink,
write, file attributes change, or
other change. fr_op takes on one
of the values for the record types
listed in Table 2-1.

Use this parameter to determine
which fields of the FCL record are
valid.

fr_op

Valid for all records.The approximate time when the
change was recorded in the FCL
file. Use the ctime() call to
interpret this field.

fr_time

39File Change Log
Application programming interface for File Change Log

Table 2-2 FCL record structure fields (continued)

ValidityDescriptionField

Valid for all FCL records except for
event mask changes and unlinks.
For event mask changes, the inode
number and generation count are
implicit. For unlink, the generation
count is not needed to get the
filename via reverse name lookup,
since it is already present with the
record.

The generation count of the
changed file. The generation count
in combination with the inode
number (of the file) is passed to
vxfs_inotopath_gen to provide
the exact full path name of the
object. Without the generation
count, the returned path name can
be a re-used inode.

fr_inogen

Valid when the FCL record is
VX_FCL_UNLINK,
VX_FCL_RENAME or
VX_FCL_LINK. The unlink and
rename; filename and the parent
inode number; and generation
count, contain information about
the old file that was removed. For
the link, they represent the new
filename.

For FCL records like file remove or
rename, where the directory entry
is removed, the filename cannot
be determined by reverse name
lookup. Similarly in the case of link
record, the filename cannot be
determined unambiguously.
Therefore in these cases, the
filename, inode number, and
generation count of the parent
directory (containing the file being
changed) is recorded. The parent
directory inode (fr_pinonum) and
generation count (fr_pinogen)
can be used with the reverse name
lookup API to identify the full path
name of the parent directory.
Adding the trailing filename yields
the object’s full name.

fr_pinonum

fr_pinogen

fr_filename

Valid only when the FCL record is
VX_FCL_FILEOPEN.

A short name of the command
which opened the file represented
by fr_inonum and fr_inogen.

fr_cmdname

Valid only when the FCL record is
VX_FCL_FILESTATS.

A pointer to an FCL_iostat
record. The fcl_iostat record
contains I/O statistics such as the
number of reads / writes that
happened on the file, average time
for a read / write, etc. These
point-in-time records can be used
to compute the aggregate or
average I/O statistics for a file over
a period of time.

fr_stats

40File Change Log
Application programming interface for File Change Log

Table 2-2 FCL record structure fields (continued)

ValidityDescriptionField

Valid only when the FCL record is
VX_FCL_EVNTMASK_CHG.

These fields contain the old and
new event masks, respectively.
Each event mask is a “logical or”
of a set of masks defined in fcl.h.

fr_oldmask

fr_newmask

Validity is determined by the
fcl_acsinfovalid
bit-field. It can potentially exist
with all kinds of records. This is an
optional field.

A pointer to an FCL_acsinfo
structure. This structure contains
information such as the user and
group ID of the application that
performed the particular operation,
the process id and the ID of the
accessing node.

fr_acsinfo

Copying File Change Log records
Each FCL record returned by vxfs_fcl_read is of variable size and consists of the
fcl_record structure, followed by the additional data associated with the record.
The pointers in the fcl_record structure point to the data stored after the fcl_record
structure and the record length specifies the size of the variable sized record.
However, making an in-core copy of the FCL record involves more than replicating
fr_reclen bytes of data from the source to the copy.

A simple memory copy just copies over the pointers from the source record to the
target record. This leaves the pointers in the target record pointing to data from the
source. Eventually, this can cause problems when the memory for the source record
is re-used or freed. The pointers in the replica must be modified to point to data in
the target record. Therefore, to make an in-core copy of the FCL record, the
application must use the vxfs_fcl_copyrec() function to copy and perform the
pointer relocation. The user application must allocate the memory needed for the
copy.

Index maintenance application
This sample application is for a system that maintains an index of all files in the file
system to enable a fast search similar to the locate program in Linux. The system
needs to update the index periodically, or as required with respect to the file changes
since the last index update. The following lists the basic steps to perform and shows
a sample call to the FCL API.

41File Change Log
Application programming interface for File Change Log

To prepare the application

1 Enable the FCL.

$ fcladm on mount_point

2 Tune fcl_keeptime and fcl_maxalloc to the required values.

$ vxtunefs -o fcl_keeptime=value mount_point

$ vxtunefs -o fcl_maxalloc=value mount_point

To test the application

1 Open the FCL file.

$ vxfs_fcl_open(mount_point, 0, &fh);

2 Seek to the end.

$ vxfs_fcl_seek(fh, NULL, FCL_SEEK_END);

3 Get the cookie and store it in a file.

$ vxfs_fcl_getcookie(fh, &cookie)

write(fd, cookie, sizeof(struct fcl_cookie));

4 Create the index.

To update the application

1 Open the FCL file.

$ vxfs_fcl_open(mount_point, 0, &fh);

2 Read the cookie and seek to the cookie.

$ read(fd, &cookie, sizeof(struct fcl_cookie))

$ vxfs_fcl_seek(fh, cookie, FCL_SEEK_COOKIE)

3 Read the FCL file and update the index accordingly.

$ vxfs_fcl_read(fh, buf, BUFSZ, FCL_ALL_v4_EVENTS, &nentries)

4 Get the cookie and store it back in the file.

$ vxfs_fcl_getcookie(fh, &cookie)

$ write(fd, cookie, sizeof(struct fcl_cookie));

42File Change Log
Application programming interface for File Change Log

Computing a usage profile
This sample application computes the usage profile of a particular file, that is, the
users who have accessed a particular file in the last hour.

Initial setup

This sample application needs additional information such as tracking file opens
and access information, which are available only with FCL Version 4. Be sure to
enable the correct FCL version.

The following steps perform the required initial setup.

To set up the application

1 Switch on the FCL with Version 4.

$ fcladm -o version=4 on mount_point

If this step fails, use fcladm print to check for an existing FCL Version 3 file.
If present, remove it with fcladm rm and then try switching on FCL with Version
4.

In VxFS 5.0 and later releases, the default FCL version is 4. If there is no
existing FCL file, the fcladm on mount_point command automatically creates
a Version 4 FCL.

2 Enable tracking of access information, file-opens, and I/O statistics as needed.

$ fcladm set fileopen,accessinfo mount_point

3 Set tunables fcl_keeptime, fcl_maxalloc, and fcl_ointerval as required.
For example:

$ vxtunefs fcl_ointerval=value mount_point

Sample steps

The following provides sample steps for possible application use.

Sample application setup

1 Open the FCL file.

vxfs_fcl_open(mount_point, 0, &fh);

2 Set up the time to perform the seek.

3 Get current time using gettimeofday.

4 Fabricate the fcl_time_t for the time an hour before.

43File Change Log
Application programming interface for File Change Log

5 Seek to the record in the FCL file at that time.

gettimeofday(&tm, NULL);

tm.sec -= 3600

vxfs_fcl_seektime(fh, tm);

6 Read the file with the appropriate event masks until the end of file is reached.
The application is interested in only the file open records and the access
information.

7 Check if the file inode number and generation count are same as the ones
being sought for each FCL record.

8 Print information about the user who has accessed the file, if applicable.

vxfs_fcl_read(fh, buf, BUFSZ, VX_FCL_FILEOPEN_MASK |

\VX_FCL_ACCESSINFO_MASK, &nentries);

Off host processing

In some scenarios, a user application may choose to save the bandwidth of the
actual production server and outsource the job of processing the FCL to a different
system. For off-host processing, the FCL file needs to be shipped to the off-host
system. Since the FCL file is not a regular file, a command such as cp or ftp does
not work.

To be ”shippable,” the FCL file must first be dumped into a regular file using the
fcladm dump command. The file can then be sent to the off-host system using
normal file transfer programs. See the following example.

$ fcladm -s savefile dump mount_point$ rcp savefile offhost-path

On the off-host system, the FCL file must be then restored using the restore option
through the fcladm command. Unlike the original FCL file, the restored file is a
regular file.

$ fcladm -s savefile restore restorefile

The restored FCL file can be passed as an argument to vxfs_fcl_open for further
use with the FCL API.

Warning: The reverse name lookup API does not work on the off-host system. The
off-host processing mechanism should only be used when the application can work
with the inode number and generation count, or when it has an independent method
to determine the filenames from the inode number.

44File Change Log
Application programming interface for File Change Log

Veritas File System and File Change Log upgrade and downgrade
VxFS 4.1 supported only FCL Version 3. VxFS 5.0 and later releases support both
FCL Version 3 and 4, with Version 4 as the default. When a system is upgraded
from VxFS 4.1 to VxFS 5.0 or a later release, and the file system has FCL switched
on, the existing Version 3 FCL files remains as is. VxFS 5.0 and later releases
continue tracking file system changes in the Version 3 FCL exactly as it was done
by VxFS 4.1.

A VxFS 4.1 application that directly accesses the FCL file using the read(2) system
call can still continue to work in VxFS 5.0 and later releases, provided that the FCL
file is Version 3. However, you must develop any new applications using the API.
The API has support for both FCL Versions 3 and 4.

If a new application uses the record types that were added in the VxFS 5.0 release,
such as file opens or access information, the FCL needs to be at Version 4.

If you are running applications that still read FCL Version 3 directly, you cannot
upgrade to FCL Version 4 until those applications are rewritten to use the new API.
The API can interpret both Version 3 and Version 4, so applications can be upgraded
to use the API while Version 3 is still in effect.

Converting File Change Log version 3 files to version 4
To convert VCL Version 3 files to Version 4

1 Switch off the FCL.

$ fcladm off mount_point

2 Remove the existing FCL file.

$ fcladm rm mount_point

3 Re-activate with the required version.

$ fcladm [-oversion=4] on mount_point

Downgrading Veritas File System versions
In the future, the VxFS version on a particular system may need to be downgraded
from a newer VxFS release to VxFS 5.0. This may happen when a file system is
migrated from one operating system using the newer VxFS release to another using
the VxFS 5.0 release. If the FCL file created by this future VxFS version is Version
3 or 4, it can then be used as is by the VxFS 5.0 installation. Changes will continue
to be tracked in the same FCL.

45File Change Log
Application programming interface for File Change Log

However, if the FCL version is higher than 4, then the FCL can not be activated
and the calls to the API functions fail. In this case, the existing FCL file needs to be
removed using fcladm rm and re-activated with FCL Version 3 or 4.

Reverse path name lookup
The reverse path name lookup feature obtains the full path name of a file or directory
from the inode number of that file or directory. The inode number is provided as an
argument to the vxfs_inotopath_gen library function. See the
vxfs_inotopath_gen(3) online manual page for more information.

The reverse path name lookup feature can be useful for a variety of applications
including the following:

■ Clients of the VxFS file change log feature

■ Backup and restore utilities

■ Replication products

Typically, these applications store information by inode numbers because a path
name for a file or directory can be very long and the applications require an easy
method to obtain a path name.

Inodes
An inode is a unique identification number for each file in a file system. An inode
contains the data and metadata associated with that file, but does not include the
filenames to which the inode corresponds. It is therefore relatively difficult to
determine the name of a file from an inode number. The ncheck command provides
a mechanism for obtaining a filename from an inode identifier by scanning each
directory in the file system, but this process can take a long time. The VxFS reverse
path name lookup feature obtains path names relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path
name lookup feature cannot track symbolic links to files.

A file inode number, generation count, and, in the case of a VX_FCL_LINK,

VX_FCL_UNLINK, or VX_FCL_RENAME record, trailing filename, when combined with
the use of reverse path name lookup, can generate full path names for each FCL
record.

46File Change Log
Reverse path name lookup

vxfs_inotopath_gen
The vxfs_inotopath_gen() function takes a mount point name, inode number, and
inode generation count and returns a buffer that contains one or more (in the case
of multiple links to an inode) full path names representing the inode. The inode
generation count parameter ensures that the returned path name is not a false
value of a re-used inode. Because of this, use the vxfs_inotopath_gen() function
whenever possible.

The vxfs_inotopath() function is included only for backward compatibility. The
vxfs_inotopath() function does not take the inode generation count.

The following is the syntax for vxfs_inotopath and vxfs_inotopath_gen:

int vxfs_inotopath(char *mount_point, uint64_t inode_number,

int all, char ***bufp, int *inentries)

int vxfs_inotopath_gen(char *mnt_pt, uint64_t inode_number,

unint32_t inode_generation, int all,

char ***bufp, int *nentries)

For the vxfs_inotopath() call, the all argument must be “0” to obtain a single path
name or “1” to obtain all path names. The mount_point argument specifies the file
system mount point. Upon successful return, bufp points to a two-dimensional
character pointer containing the path names and nentries contains the number of
entries. Each entry of the returned two-dimensional array is MAXPATHLEN in size and
must be freed, along with the array itself, by the calling application.

The vxfs_inotopath_gen() call is identical to the vxfs_inotopath() call, except
that it uses an additional parameter, inode_generation. The vxfs_inotopath_gen()
function returns one or more path names associated with the given inode number,
if the inode_generation passed matches the current generation of the inode
number. If the generations differ, it returns an error. Specify inode_generation=0

when the generation count is unknown. This is equivalent to using the
vxfs_inotopath() call.

The vxfs_inotopath_gen() and vxfs_inotopath() calls are supported only on
Version 6 and later disk layouts.

47File Change Log
Reverse path name lookup

Multi-volume support

This chapter includes the following topics:

■ About multi-volume support

■ Uses for multi-volume support

■ Volume application programming interfaces

■ Allocation policy application programming interfaces

■ Data structures

■ Using policies and application programming interfaces

About multi-volume support
The multi-volume support (MVS) feature lets a VxFS file system use multiple VxVM
volumes as underlying storage instead of the traditional single volume per file
system. These different volumes can have different characteristics, such as
performance, redundancy, or cost, or they could be used to isolate different parts
of the file system from each other for performance or administrative purposes.

Administrators and applications can control which files and metadata go into which
volumes by using allocation policies. Each file system operation that allocates space
examines the applicable allocation policies to see which volumes are specified for
that operation. Allocation policies normally only affect new allocations, but there
are also interfaces to move existing data to match a new allocation policy.

The following levels of policies can apply to each allocation:

■ Per-file policies

■ Per-Storage Checkpoint policies

■ Per-file-system policies

3Chapter

The most specific allocation policy in effect for a given allocation operation is used.

The MVS APIs fall into the following basic categories:

■ Manipulation of volumes within a file system

■ Manipulation of allocation policy definitions

■ Application of allocation policies

Each of the APIs is also available via options to the fsvoladm(1M) and fsapadm(1M)
commands.

See the fsvoladm(1M) and fsapadm(1M) manual pages.

Uses for multi-volume support
Possible uses for the multi-volume support feature include the following:

■ Controlling where files are stored so that specific files or file hierarchies can be
assigned to different volumes

■ Placing the VxFS intent log on its own volume to minimize disk head movement
and thereby increase performance. This functionality can be used to migrate
from the VERITAS QuickLog™ feature.

■ Separating Storage Checkpoints so that data allocated to a Storage Checkpoint
is isolated from the rest of the file system

■ Separating file system metadata from file data

■ Encapsulating volumes so that a volume appears in the file system as a file;
this is particularly useful for databases that are running on raw volumes

■ Migrating files off a volume so that the volume can be replaced or serviced

■ Implementing a storage optimization application that periodically scans the file
system and modifies the allocation policies in response to changing patterns of
storage use

Volume application programming interfaces
The volume APIs can be used to add volumes to a file system, remove volumes
from a file system, list which volumes are in a file system, and retrieve information
on usage and availability of space in a volume.

Multi-volume file systems can only be used with VxVM volume sets. Volume sets
are administered via the vxvset command.

See the Symantec Storage Foundation Administrator's Guide.

49Multi-volume support
Uses for multi-volume support

Administering volume sets
The following examples show how to administer volume sets.

To convert a volume to a volume set

■ To convert myvol1 to a volume set, use the following function call:

vxvset make myvset myvol1

To add a volume to a volume set

■ To add myvol2 to the volume set myvset, use the following function call:

vxvset addvol myvset myvol2

To list volumes of a volume set

■ To list the volumes of myvset, use the following function call:

vxvset list myvset

To remove a volume from a volume set

■ To remove myvol2 from myvset, use the following function call:

vxvset rmvol myvset myvol2

Querying the volume set for a file system
The following function calls query a volume set for a file system.

To query all volumes associated with the file system

■ To query all volumes associated with the file system, use the following function
call:

vxfs_vol_enumerate(fd, &count, infop);

To query a single volume

■ To query a single volume, use the following function call:

vxfs_vol_stat(fd, vol_name, infop);

Modifying a volume within a file system
The following function calls modify a volume within a file system.

50Multi-volume support
Volume application programming interfaces

To grow or shrink a volume

■ To grow or shrink a volume, use the following function call:

vxfs_vol_resize(fd, vol_name, new_vol_size);

To remove a volume from a file system

■ To remove a volume from a file system, use the following function call:

vxfs_vol_remove(fd, vol_name);

Add a volume to a file system

■ To add a volume to a file system, use the following function call:

vxfs_vol_add(fd, new_vol_name, new_vol_size);

Encapsulationg and de-encapsulating a volume
The following function calls encapsulate a volume.

To encapsulate a raw volume

■ To encapsulate an existing raw volume and make the volume contents appear
as a file in the file system, use the following function call:

vxfs_vol_encapsulate(encapsulate_name, vol_name, vol_size);

To de-encapsulate a raw volume

■ To de-encapsulate an existing raw volume to remove the file from the file system,
use the following function call:

vxfs_vol_deencapsulate(encapsulate_name);

See the Symantec Storage Foundation Administrator's Guide.

Allocation policy application programming interfaces
To make full use of multi-volume support features, VxFS supports allocation policies
that allow files or groups of files to be assigned to specified volumes within the
volume set.

An allocation policy specifies a list of volumes and the order in which to attempt
allocations. A policy can be assigned to a file, file system, or Storage Checkpoint
created from a file system. When policies are assigned to objects in the file system,
you must specify how the policy maps to both metadata and file data. For example,

51Multi-volume support
Allocation policy application programming interfaces

if a policy is assigned to a single file, the file system must know where to place both
the file data and metadata. If no policies are specified, the file system places data
randomly.

The allocation policies are defined per file system and are persistent. There is no
fixed limit on the number of allocation policy definitions in a file system. Once a
policy is assigned, new file allocations are governed by the policy. For files allocated
before a policy was defined or assigned or when a policy on a file has been changed,
the policy can be enforced, causing the file to be re-allocated to the appropriate
volumes. Allocation policies can be inherited by a newly created file from its parent
directory. This is accomplished by specifying the FSAP_INHERIT flag when assigning
the policy to the parent directory.

Currently, there is no interface for determining where an existing file is currently
allocated. However, these APIs can be used to assign and enforce a policy on a
file to assure that the blocks are allocated properly.

Directing file allocations
Figure 3-1 shows how you might use the allocation policies to direct file allocations.

Figure 3-1 Directing File Allocations

/mnt
meta_policy = “policy1”
data_policy = “policy2”

dir1 (inherit flag)
meta_policy = “policy3”
data_policy = “policy3”

dir2

file1 file2

file3 file4
meta_policy = “policy3”
data_policy = “policy3”

The /mnt file system has 3 volumes in its volume set: vol-01, vol-02, and vol-03.
These volumes correspond to policy1, policy2, and policy3, respectively.

The file system has a policy assignment that allocates metadata as directed
bypolicy1 and data as directed by policy2. These policies cause files to be
allocated on vol-01 and vol-02, except for dir1, which has overriding assignments
for allocation on vol-03.

When the file3 and file4 files are created, they are allocated on vol-02 as
directed by the policy1 and policy2 assignments. When file1 and file2 are
created, they are allocated on vol-03, as specified by policy3.

52Multi-volume support
Allocation policy application programming interfaces

When file4 is created, the initial allocation is on vol-01 and vol-02. To move
file4 to vol-03, assign policy3 to file4 and enforce that policy on the file. This
reallocates file4 to vol-03.

To direct file allocations

1 Create the allocation policies on the /mnt file system.

2 Assign the data and metadata allocation policies to the /mnt file system as
policy1 and policy2.

3 Assign the data and metadata allocation policies to dir1 with the INHERIT flag,
with both as policy3.

4 Create file4 (100MB), which becomes allocated to vol-02.

5 Create file3 (10MB), which becomes allocated to vol-02.

6 Create file2 (100MB), which becomes allocated to vol-03.

7 Create file1 (100MB), which becomes allocated to vol-03.

8 Assign the data and metadata allocation policies to file4, with both as policy3.

9 Enforce the allocation policies on file4, which reallocates the file to vol-03.

Creating and assigning policies
The following function calls create and assign a policy using the multi-volume API.

■ To define a policy for a file system, use the following function call:

vxfs_ap_define(fd, fsap_info_ptr, 0);

■ To assign a policy to a file system, use the following function call:

vxfs_ap_assign_fs(fd, data_policy, meta_policy);

■ To assign a policy to a file or directory, use the following function call:

vxfs_ap_assign_file(fd, data_policy, meta_policy, 0);

■ To assign a policy to a Storage Checkpoint, use the following function call:

vxfs_ap_assign_ckpt(fd, checkpoint_name, data_policy, meta_policy);

■ To assign a policy to all Storage Checkpoints, use the following function call:

vxfs_ap_assign_ckptchain(fd, data_policy, meta_policy);

53Multi-volume support
Allocation policy application programming interfaces

■ To set the default allocation policies for newly created Storage Checkpoints,
use the following function call:

vxfs_ap_assign_ckptdef(fd, data_policy, meta_policy);

Querying the defined policies
The following function calls query defined policies.

■ To query all policies on a file system, use the following function call:

vxfs_ap_enumerate(fd, &count, fsap_info_ptr);

■ To query a single defined policy, use the following function call:

vxfs_ap_query(fd, fsap_info_ptr);

■ To query a file for its assigned policies, use the following function call:

vxfs_ap_query_file(fd, data_policy, meta_policy, 0);

■ To query a Storage Checkpoint for its assigned policies, use the following function
call:

vxfs_ap_query_ckpt(fd, check_point_name, data_policy, meta_policy);

■ To query a file system for its assigned policies, use the following function call:

vxfs_ap_query(fd, data_policy, meta_policy);

■ To query a file system for the default Storage Checkpoint policies, use the
following function call:

vxfs_ap_query_ckptdef(fd, data_policy, meta_policy);

Enforcing a policy
The following function calls enforce a policy.

■ To enforce a policy on a file, use the following function call:

vxfs_ap_enforce_file(fd, data_policy, meta_policy);

Enforcing the policy may cause the file to be reallocated to another volume.

54Multi-volume support
Allocation policy application programming interfaces

■ To enforce a policy on all files in a Storage Checkpoint, use the following function
call:

vxfs_ap_enforce_ckpt(fd, check_point_name, data_policy,

meta_policy, flags);

■ To enforce a policy on a primary fileset and all of the fileset's Storage Checkpoint,
use the following function call:

vxfs_ap_enforce_ckptchain(fd, data_policy, meta_policy, flags);

Data structures
You can view the fsap_info and fsdev_info data structures in the vxfsutil.h

header file and libvxfsutil.a library file.

See the vxfsutil.h header file and libvxfsutil.a library file.

The data structures are provided here for quick reference:

#define FSAP_NAMESZ 64

#define FSAP_MAXDEVS 256

#define FSDEV_NAMESZ 32

struct fsap_info { /* policy structure */

char ap_name[FSAP_NAMESZ];/* policy name */

uint32_t ap_flags; /* FSAP_CREATE | FSAP_INHERIT |

FSAP_ANYUSER */

uint32_t ap_order; /* FSAP_ORDER_ASGIVEN |

FSAP_ORDER_LEASTFULL |

FSAP_ORDER_ROUNDROBIN */

uint32_t ap_ndevs; /* number of volumes */

char ap_devs[FSAP_MAXDEVS][FSDEV_NAMESZ];

/* volume names associated with

this policy */

};

struct fsdev_info { /* volume structure */

int dev_id; /* a number from 0 to n */

uint64_t dev_size; /* size in bytes of volume */

uint64_t dev_free;

uint64_t dev_avail;

char dev_name[FSDEV_NAMESZ];/* volume name */

};

55Multi-volume support
Data structures

Using policies and application programming
interfaces

The following examples assume there is a volume set, volset, with the volumes
vol-01, vol-02, and vol-03. The file system mount point /mnt is mounted on
volset.

Defining and assigning allocation policies
The following pseudocode provides an example of using the allocation policy APIs
to define and assign allocation policies.

To define and assign an allocation policy to reallocate an existing file’s data blocks
to a specific volume

■ To reallocate an existing file’s data blocks to a specific volume (vol-03), create
code similar to the following:

/* Create a data policy for moving file’s data */

strcpy((char *) ap.ap_name, "Data_Mover_Policy");

ap.ap_flags = FSAP_CREATE;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-03");

fd = open("/mnt", O_RDONLY);

vxfs_ap_define(fd, &ap, 0);

file_fd = open ("/mnt/file_to_move", O_RDONLY);

vxfs_ap_assign_file(file_fd, "Data_Mover_Policy", NULL, 0);

vxfs_ap_enforce_file(file_fd, "Data_Mover_Policy", NULL);

To create policies that allocate new files under a directory

In this example, the files are under dir1, the metadata is allocated to vol-01, and
file data is allocated to vol-02.

■ To create policies to allocate new files under directory dir1, create code similar
to the following:

/* Define 2 policies */

/* Create the RAID5 policy */

strcpy((char *) ap.ap_name, "RAID5_Policy");

ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-02");

56Multi-volume support
Using policies and application programming interfaces

fd = open("/mnt", O_RDONLY);

dir_fd = open("/mnt/dir1", O_RDONLY);

vxfs_ap_define(fd, &ap, 0);

/* Create the mirror policy */

strcpy((char *) ap.ap_name, "Mirror_Policy");

ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;

ap.ap_order = FSAP_ORDER_ASGIVEN;

ap.ap_ndevs = 1;

strcpy(ap.ap_devs[0], "vol-01");

vxfs_ap_define(fd, &ap, 0);

/* Assign policies to the directory */

vxfs_ap_assign_file(dir_fd, "RAID5_Policy", “Mirror_Policy”,

0);

/* Create file under directory dir1 */

/* Meta and data blocks for file1 will be allocated on

vol-01 and vol-02 respectively. */

file_fd = open("/mnt/dir1/file1");

write(file_fd, buf, 1024);

Using volume application programming interfaces
The following pseudocode provides an example of using the volume APIs.

To shrink or grow a volume within a file system

1 Use the vxresize command to grow the physical volume.

2 To use the vxfs_vol_resize() call to shrink or grow the file system, create
codes similar to the following:

/* stat volume "vol-03" to get the size information */

fd = open("/mnt");

vxfs_vol_stat(fd, "vol-03", infop);

/* resize (shrink/grow) accordingly. This example shrinks

the volume by half */

vxfs_vol_resize(fd, "vol-03", infop->dev_size / 2);

57Multi-volume support
Using policies and application programming interfaces

To encapsulate a raw volume as a file

1 Add the volume to the volume set.

2 To encapsulate a raw volume vol-03 as a file named encapsulate_name in
the file system /mnt, create code similar to the following:

/* Take the raw volume vol-03 and encapsulate it. The

volume’s contents will be accessible through the given

path name. */

vxfs_vol_encapsulate("/mnt/encapsulate_name", "vol-03",

infop->dev_size);

/* Access to the volume is through writes and reads of file

"/mnt/encapsulate_name" */

encap_fd = open("/mnt/encapsulate_name");

write(encap_fd, buf, 1024);

To de-encapsulate a raw volume

■ To de-encapsulate the raw volume vol-03 named encapsulate_name in the
file system /mnt, create code similar to the following:

/* Use de-ecapsulate to remove raw volume. After

de-encapsulation, vol-03 is still part of volset, but is

not an active part of the file system. */

vxfs_vol_deencapsulate("/mnt/encapsulate_name");

58Multi-volume support
Using policies and application programming interfaces

Named data streams

This chapter includes the following topics:

■ About named data streams

■ Uses for named data streams

■ Named data streams application programming interface

■ Listing named data streams

■ Namespace for named data streams

■ Behavior changes in other system calls

■ Querying named data streams

■ Application programming interface

■ Command reference

About named data streams
Named data streams associate multiple data streams with a file. The default
unnamed data stream can be accessed through the file descriptor returned by the
open() function called on the file name. The other data streams are stored in an
alternate name space associated with the file.

Note: Named data streams are also known as named attributes.

Figure 4-1 illustrates the alternate namespace associated with a file.

4Chapter

Figure 4-1 Alternate Namespace

/file1 Alternate namespace
for named data
streams

data_stream_1 data_stream_2

The file1 file has two named data streams: data_stream_1 and data_stream_2.

Every file can have its own alternate namespace to store named data streams. The
alternate namespace can be accessed through the named data stream APIs
supported by VxFS.

Access to the named data stream can be done through a file descriptor using the
named data stream library functions. Applications can open the named data stream
to obtain a file descriptor and perform read(), write(), and mmap() operations using
the file descriptor. These system calls work as though they are operating on a
regular file. The named data streams of a file are stored in a hidden named data
stream directory inode associated with the file. The hidden directory inode for the
file can be accessed only through the named data stream application programming
interface.

There are no VxFS-supplied administrative commands to use this feature. A VxFS
API is provided for creating, reading, and writing the named data streams of a file.

Uses for named data streams
Named data streams allow applications to attach information to a file that appears
to be hidden. An administrative program could use this to attach file usage
information, backup information, and so on. An application could use this feature
to hide or collect file attachments. For example, a multi-media document could have
all text, audio clips, and video clips organized in one file rather than in several files.
A document being reviewed by multiple people could have each person’s comments
attached to the file as a named data stream.

Named data streams application programming
interface

The following standard system calls can manipulate named data streams:

Opens a named data streamopen()

60Named data streams
Uses for named data streams

Reads a named data streamread()

Writes a named data streamwrite()

Reads directory entries and puts in a file system independent
format

getdents()

Maps pages of memorymmap()

Reads a directoryreaddir()

VxFS named data stream functionality is available through the following application
programming interface functions:

Works similarly to the open() system call, except that the path
is interpreted as a named data stream to a file descriptor. If the
vxfs_nattr_open() operation completes successfully, the
return value is the file descriptor associated with the named
data stream. The file descriptor can be used by other
input/output functions to refer to that named data stream. If the
path of the named data stream is set to “.”, the file descriptor
returned points to the named data stream directory vnode.

The following is the syntax for the vxfs_nattr_open() API:

int vxfs_nattr_open(int fd, char *path,
int oflag, int cmode);

vxfs_nattr_open()

Creates a new directory entry for the existing named data
stream and increments its link count by one. There is a pointer
to an existing named data stream in the named data stream
namespace and a pointer to the new directory entry created in
the named data stream namespace. The calling function must
have write permission to link the named data stream.

The following is the syntax for the vxfs_nattr_link() API:

int vxfs_nattr_link(int sfd, char *spath,
char *tpath);

vxfs_nattr_link()

Removes the named data stream at a specified path. The
calling function must have write permission to remove the
directory entry for the named data stream.

The following is the syntax for the vxfs_nattr_unlink()
API:

int vxfs_nattr_unlink(int fd, char *path);

vxfs_nattr_unlink()

61Named data streams
Named data streams application programming interface

Changes a specified namespace entry at path1 to a second
specified namespace at path2. The specified paths are
resolved relative to a pointer to the named data stream directory
vnodes.

The following is the syntax for the vxfs_nattr_rename()
API:

int vxfs_nattr_rename(int sfd, char *old,
char *tnew);

vxfs_nattr_rename()

Sets the access and modification times of the named data
stream.

The following is the syntax for the vxfs_nattr_utimes()
API:

int vxfs_nattr_utimes(int sfd,
const char *path,
const struct timeval times[2]);

vxfs_nattr_utimes()

See the vxfs_nattr_open(3), vxfs_nattr_link(3), vxfs_nattr_unlink(3),
vxfs_nattr_rename(3), and vxfs_nattr_utimes(3) manual pages.

Listing named data streams
The named data streams for a file can be listed by calling getdents() on the named
data stream directory inode, as shown in the following example.

62Named data streams
Listing named data streams

To list named data streams

1 To list the named data streams, create code similar to the following:

fd = open("foo", O_RDWR); /* open file foo */

afd = vxfs_nattr_open(fd, "stream1",

O_RDWR|O_CREAT, 0777);/* create named data stream

stream1 for file foo */

write(afd, buf, 1024); /* writes to named stream file */

read(afd, buf, 1024); /* reads from named stream file */

dfd = vxfs_nattr_open(fd, ".", O_RDONLY);

/* opens named stream directory

for file foo */

getdents(dfd, buf, 1024);/* reads directory entries for

named stream directory */

2 Use the reverse name lookup call to resolve a stream file to a pathname. The
resulting pathname’s format is similar to the following:

/mount_point/file_with_data_stream/./data_stream_file_name

Namespace for named data streams
Names starting with “$vxfs:” are reserved for future use. Creating a data stream
in which the name starts with “$vxfs:” fails with an EINVAL error.

Behavior changes in other system calls
Although the named data stream directory is hidden from the namespace, it is
possible to open the name data stream directory inode with a fchdir() or fchroot()
call. Some of the attributes, such as “..”, are not defined for a named data streams
directory. Any operation that accesses these fields can fail. Attempts to create
directories, symbolic links, or device files on a named data stream directory fail.
VOP_SETATTR() called on a named data stream directory or named data stream
inode also fails.

The following is an alternative method for reading the hidden directory using the
fchdir() call:

fd = open(filename, O_RDONLY)

dfd = vxfs_nattr_open(fd, ".", O_RDONLY, mode)

fchdir(dfd);

63Named data streams
Namespace for named data streams

dirp = opendir(".");

readdir_r(dirp, (struct dirent *)&entry, &result);

Note:The usage section of the getcwd(3C) man page states that applications should
exercise care when using the chdir() call in conjunction with getcwd(). The current
working directory is global to all threads within a process. If more than one thread
calls chdir() to change the working directory, a subsequent call to getcwd() could
produce unexpected results.

Querying named data streams
In the following example, a file named_stream_file was created with 20 named
data streams using the API calls.

The named data streams are not displayed by the ls command. When named data
streams are created, they are organized in a hidden directory. For example:

ls -al named_stream_file

-r-xr-lr-x1 root other 1024 Aug 12 09:49named_stream_file

To query named data streams

■ Use the getdents() or readdir_r() system call to query the named_stream_file

file for its directory contents, which contains the 20 named stream files:

Attribute Directory contents for

/vxfstest1/named_stream_file

0x1ff root other 1K Thu Aug 12 09:49:17 2004 .

0x565 root other 1K Thu Aug 12 09:49:17 2004 ..

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream0

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream1

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream2

.

.

.

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream17

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream18

0x177 root other 1K Thu Aug 12 09:49:17 2004 stream19

64Named data streams
Querying named data streams

Application programming interface
The named data streams API uses a combination of standard system calls and
VxFS API calls to utilize its functionality.

The following is an example of pseudo code to query named data streams:

/* Create and open a file */

if ((fd = open("named_stream_file", O_RDWR | O_CREAT | O_TRUNC,

mode)) < 0) {

sprintf(error_buf, "%s, Error Opening File %s ", argv[0],

filename);

perror(error_buf);

exit(-1);

}

/* Write to the regular file as usual */

write(fd, buf, 1024);

/* Create several named data streams for file

named_stream_file */

for (i = 0; i < 20; i++) {

sprintf(attrname, "%s%d", "stream", i);

nfd = vxfs_nattr_open(fd, attrname, O_WRONLY | O_CREAT,

mode);

if (nfd < 0) {

sprintf(error_buf,

"%s, Error Opening Attribute file %s/./%s ",

argv[0], filename, attrname);

perror(error_buf);

exit(-1);

}

/* Write some data to the stream file */

memset(buf, 0x41 + i, 1024);

write(nfd, buf, 1024);

close(nfd);

}

Command reference
When you use the cp, tar, ls or similar commands to copy or list a file with
named data streams, the file is copied or listed, but the attached named data streams
are not copied or listed.

65Named data streams
Application programming interface

Veritas File System I/O

This chapter includes the following topics:

■ About Veritas File System I/O

■ Freeze and thaw

■ Caching advisories

■ Extents

About Veritas File System I/O
Veritas File System (VxFS) I/O controls the access of data on a VxFS file system.
VxFS APIs are provided for freezing and thawing file systems, administering caching
advisories, and administering extent attributes.

Note: Unlike the other VxFS APIs described in this document, the APIs described
in this chapter are available in previous releases of VxFS on all platforms. The
exception is the API that provides concurrent I/O access through the VxFS caching
advisories, which is available on VxFS 4.1 and later releases.

Freeze and thaw
Freezing a file system temporarily blocks all I/O operations to a file system and
then performs a sync on the file system. Current operations are completed and the
file system is synchronized to disk. Freezing a file system is a necessary step for
obtaining a stable and consistent image of the file system at the volume level.

Consistent volume-level file system images can be obtained and used with a file
system snapshot tool. The freeze operation flushes all buffers and pages in the file

5Chapter

system cache that contain dirty metadata and user data. The operation then
suspends any new activity on the file system until the file system is thawed.

VxFS provides ioctl interfaces to application programs to freeze and thaw VxFS file
systems. The interfaces are VX_FREEZE, VX_FREEZE_ALL, and VX_THAW.

The VX_FREEZE ioctl operates on a single file system. The program performing this
ioctl can freeze the specified file system and block any attempts to access the file
system until it is thawed. The file system thaws after the timeout value that is
specified with the VX_FREEZE ioctl has expired, or the VX_THAW ioctl is operated on
the file system.

The VX_THAW ioctl operates on a frozen file system. It can be used to thaw the
specified file system before the freeze timeout period has elapsed.

The VX_FREEZE_ALL ioctl interface freezes one or more file systems. The
VX_FREEZE_ALL ioctl operates in an atomic fashion when there are multiple file
systems specified with a freeze operation. VxFS blocks access to the specified file
systems simultaneously and disallows a user-initiated write operation that may
modify more than one file system with a single write operation. Because
VX_FREEZE_ALL can be used with a single file system, VX_FREEZE_ALL is the
preferred interface over the VX_FREEZE ioctl.

Executing the VX_FREEZE or VX_FREEZE_ALL ioctls results in a clean file system
image that can be mounted after the image is split off from the file system device.
In response to a freeze request, all modified file system metadata is flushed to disk
with no pending file system transactions in the log that must be replayed before
mounting the split off image.

Both the VX_FREEZE and VX_FREEZE_ALL interfaces can be used to freeze locally
mounted file systems, or locally or remotely mounted cluster file systems.

The following table shows freeze/thaw compatibility with VxFS releases:

Table 5-1 Freeze/thaw compatibility with VxFS releases

VxFS 5.0 and
later

VxFS 4.1VxFS 4.0VxFS 3.5

Local File
System

Cluster File
System

Local File
System

Cluster File
System

Local File
System

Cluster File
System

Local File
System

VX_FREEZE

67Veritas File System I/O
Freeze and thaw

Table 5-1 Freeze/thaw compatibility with VxFS releases (continued)

VxFS 5.0 and
later

VxFS 4.1VxFS 4.0VxFS 3.5

Local File
System

Cluster File
System

Local File
System

Cluster File
System

Local File
System

Local File
System

VX_FREEZE_ALL

When freezing a file system, care should be taken with choosing a reasonable
time-out value for the freeze to reduce impact to external resources targeting the
file system. User or system processes and resources are blocked while the file
system is frozen. If the specified timeout value is too large, resources are blocked
for an extended period of time.

During a file system freeze, any attempt to get a file descriptor from the root directory
of the file system for use with the VX_THAW ioctl causes the calling process to be
blocked as the result of the frozen state of the file system. The file descriptor must
be acquired before issuing the VX_FREEZE_ALL or VX_FREEZE ioctl.

Use the VX_THAW ioctl to thaw file systems that were frozen with the VX_FREEZE_ALL

ioctl before the timeout period has expired.

The programming interface is as follows:

include <sys/fs/vx_ioctl.h>

int timeout;

int vxfs_fd;

/*

* A common mistake is to pass the address of "timeout".

* Do not pass the address of timeout, as that would be

* interpreted as a very long timeout period

*/

if (ioctl(vxfs_fd, VX_FREEZE, timeout))

{perror("ERROR: File system freeze failed");

}

For multiple file systems:

int vxfs_fd[NUM_FILE_SYSTEMS];

struct vx_freezeall freeze_info;

freeze_info.num = NUM_FILE_SYSTEMS

freeze_info.timeout = timeout;

freeze_info.fds = &vxfs_fd[0];

if (ioctl(vxfs_fd[0], VX_FREEZE_ALL, &freeze_info))

68Veritas File System I/O
Freeze and thaw

{perror("ERROR: File system freeze failed");

}

for (i = 0; i < NUM_FILE_SYSTEMS; i++)

if (ioctl(vxfs_fd[i], VX_THAW, NULL))

{perror("ERROR: File system thaw failed");

}

Caching advisories
VxFS allows an application to set caching advisories for use when accessing files.
A caching advisory is the application’s preferred choice for accessing a file. The
choice may be based on optimal performance that is achieved through the specified
advisory or to ensure integrity of user data. For example, a database application
may choose to access the files containing database data using direct I/O, or the
application may choose to benefit from the file system level caching by selecting a
buffered I/O advisory. The application chooses which caching advisory to use.

To set a caching advisory on a file, open the file first. When a caching advisory is
requested, the advisory is recorded in memory. Recording the advisory in memory
implies that caching advisories do not persist across reboots or remounts. Some
advisories are maintained on a per-file basis, not a per-file-descriptor basis. As
such, the effect of setting such an advisory through a file descriptor impacts other
processes’ access to the same file. Conflicting advisories also cannot be in effect
for accesses to the same file. If two applications set different advisories, both
applications use the last advisory that was set on the file. VxFS does not coordinate
or prioritize advisories.

Some advisories are not cleared from memory after the last close of the file.
Recorded advisories remain in memory for as long as the file system metadata
used to manage access to the file remains in memory. Removing file system
metadata for the file from memory is not predictable.

All advisories are set using the file descriptor, returned by the open() and ioctl()
calls using the VX_SETCACHE ioctl command.

See the vxfsio(7) manual page.

The caching advisories are described in the following sections.

Direct I/O
Direct I/O is an unbuffered form of I/O for accessing files. If the VX_DIRECT advisory
is set, the user requests direct data transfer between the disk and the user-supplied
buffer for reads and writes. This bypasses the kernel buffering of data, and reduces
the CPU overhead that is associated with I/O by eliminating the data copy between

69Veritas File System I/O
Caching advisories

the kernel buffer and the user’s buffer. Direct I/O also avoids taking up space in the
buffer cache that might be better used for something else, such as an application
cache. The direct I/O feature can provide significant performance gains for some
applications.

For an I/O operation to be performed as direct I/O, it must meet certain alignment
criteria. The disk driver, the disk controller, and the system memory management
hardware and software usually determine the alignment constraints. The file offset
must be aligned on the block device block size. All user buffers must be aligned on
a long or sector boundary. If the file offset is not aligned to sector boundaries, VxFS
performs a regular read or write instead of a direct read or write.

If a request fails to meet the alignment constraints for direct I/O, the request is
performed as data synchronous I/O. If the file is accessed by using memory mapped
I/O, any direct I/O accesses are done as data synchronous I/O.

Because direct I/O maintains the same data integrity as synchronous I/O, it can be
used in many applications that currently use synchronous I/O. If a direct I/O request
does not allocate storage or extend the file, the inode metadata is not immediately
written.

The CPU cost of direct I/O is about the same as a raw disk transfer. For sequential
I/O to very large files, using direct I/O with large transfer sizes can provide the same
speed as buffered I/O with much less CPU overhead.

If the file is extended or storage is allocated, direct I/O must write the inode change
before returning to the application. This write eliminates some of the performance
advantages of direct I/O.

The direct I/O advisory is maintained on a per-file-descriptor basis.

Concurrent I/O
Concurrent I/O (VX_CONCURRENT) is a form of I/O for file access. This form of I/O
allows multiple processes to read or write to the same file without blocking other
read() or write() operations. POSIX semantics requires read() and write()
operations to be serialized on a file with other read() and write() operations. With
POSIX semantics, a read will either read the data before or after the write occurs.
With the VX_CONCURRENT advisory set on a file, the reads and writes are not serialized
similar to character devices. Applications that require high performance for accessing
data and do not perform overlapping writes to the same file generally use this
advisory. An example is database applications. Such applications perform their
own locking at the application level to avoid overlapping writes to the same region
of the file.

It is the responsibility of the application or threads to coordinate write activities to
the same file when using the VX_CONCURRENT advisory to avoid overlapping writes.

70Veritas File System I/O
Caching advisories

The consequence of two overlapping writes to the same file is unpredictable. The
best practice for applications is to avoid simultaneous write operations to the same
region of the same file.

If the VX_CONCURRENT advisory is set on a file, VxFS performs direct I/O for reads
and writes to the file. As such, concurrent I/O has the same alignment requirements
as direct I/O.

See “Direct I/O” on page 69.

When concurrent I/O is enabled, the read and write behaves as follows:

■ The write() system call acquires a shared read-write lock instead of an exclusive
lock.

■ The write() system call performs direct I/O to the disk instead of copying and
then writing the user data to the pages in the system page cache.

■ The read() system call acquires a shared read-write lock and performs direct
I/O from disk instead of reading the data into pages in the system page cache
and copying from the pages to the user buffer.

■ The read() and write() system calls are not atomic. The application must ensure
that two threads do not write to the same region of a file at the same time.

Concurrent I/O (CIO) can be set through the file descriptor and ioctl() operation
using the VX_SETCACHE ioctl command with the VX_CONCURRENT advisory flag. Only
the read() and write() operations occurring through this file descriptor use
concurrent I/O. read() and write() operations occurring through other file descriptors
still follows the POSIX semantics. The VX_CONCURRENT advisory can be set by the
VX_SETCACHE ioctl descriptor on a file.

CIO is a licensable feature of VxFS.

Unbuffered I/O
The I/O behavior of the VX_UNBUFFERED advisory is the same as the VX_DIRECT

advisory set with the same alignment constraints as direct I/O. However, for
unbuffered I/O, if the file is extended, or storage is allocated to the file, metadata
updates on the disk for extending the file are not performed synchronously before
the write returns to the user. The VX_UNBUFFERED advisory is maintained on a
per-file-descriptor basis.

Other advisories
The VX_SEQ advisory is a per-file advisory that indicates that the file is accessed
sequentially. A process setting this advisory on a file through its file descriptor
impacts the access pattern of other processes currently accessing the same file.

71Veritas File System I/O
Caching advisories

When a file with the VX_SEQ advisory is read, the maximum read-ahead is performed.
When a file with VX_SEQ advisory is written, sequential write access is assumed
and the modified pages with write operations are not immediately flushed. Instead,
modified pages remain in the system page cache and those pages are flushed at
some distance point behind the current write point (flush behind).

The VX_RANDOM advisory is a per-file advisory that indicates that the file is accessed
randomly. A process setting this advisory on a file through its file descriptor impacts
the access pattern of other processes currently accessing the same file. This
advisory disables read-ahead with read operations on the file, and disables
flush-behind on the file. The result of disabling flush behind is that the modified
pages in the system page cache from the recent write operations are not flushed
to the disk until the system pager is scheduled and run to flush dirty pages. The
rate at which the system pager is scheduled is based on availability of free memory
and contention.

Note: The VX_SEQ and VX_RANDOM are mutually exclusive advisories.

Extents
In general disk space is allocated in 512-byte or 1024-byte (DEV_BSIZE) sectors to
form logical blocks. VxFS supports logical block sizes of 1024, 2048, 4096, and
8192 bytes. The default block size is 1K for file systems up to 2 TB in size, and 8K
for other file system sizes. Users can choose any block when creating file systems
using the mkfs command. VxFS allocates disk space to files in groups of one or
more adjacent blocks called extents. An extent is a set of one or more consecutive
logical blocks. Extents allow disk I/O to take place in units of multiple blocks if
storage is allocated in consecutive blocks. For sequential I/O, multiple block
operations are considerably faster than block-at-a-time operations.

VxFS uses an aggressive allocation policy for allocating extents to files. It also
allows an application to pre-allocate space or request contiguous space. This results
in improved I/O performance and less file system overhead for performing
allocations. For an extending write operation, the policy attempts to extend the
previously allocated extent by the size of the write operation or larger. Larger
allocation is attempted when consecutive extending write operations are detected.
If the last extent cannot be extended to satisfy the entire write operation, a new
disjoint extent is allocated. This policy leaves excess allocation that is trimmed at
the last close of the file or if the file is not written to for some amount of time. The
file system can still be fragmented with too many non-contiguous extents, especially
file systems of smaller size.

72Veritas File System I/O
Extents

Extent attributes
VxFS allocates disk space to files in groups of one or more extents. In general, the
internal allocation policies of VxFS attempt to achieve two goals: allocate extents
for optimum I/O performance and reduce fragmentation. VxFS allocation policies
attempt to balance these two goals through large allocations and minimal file system
fragmentation by allocating from space available in the file system that best fits the
data. These extent-based allocation policies provide an advantage over block-based
allocation policies. Extent based policies rarely use indirect blocks with allocations
and eliminate many instances of disk access that stem from indirect references.

VxFS allows control over some aspects of the extent allocation policies for a given
file by two administrative tools, setext and getext, and an API. The
application-imposed policies that are associated with a file are referred to as extent
attributes. VxFS provides APIs that allow an application to set or view extent
attributes associated with a file and preallocate space for a file.

See the setext(1) and getext(1) manual pages

Attribute specifics
There are two extent attributes associated with a file: reservation and fixed extent
size. You can preallocate space to the file by manipulating a file’s reservation. You
can also override the default allocation policy of the file system by setting a fixed
extent size. Other policies determine the way these attributes are expressed during
the allocation process.

You can specify the following:

■ The space reserved for a file must be contiguous

■ No allocations are made for a file beyond the current reservation

■ An unused reservation is released when the file is closed

■ Space is allocated, but no reservation is assigned

■ The file size is changed to immediately incorporate the allocated space

Some of the extent attributes are persistent and become part of the on-disk
information about the file, while other attributes are temporary and are lost after the
file is closed or the system is rebooted. The persistent attributes are similar to the
file’s permissions and are written in the inode for the file. When a file is copied,
moved, or archived, only the persistent attributes of the source file are preserved
in the new file.

73Veritas File System I/O
Extents

Reservation: preallocating space to a file
Space reservation is used to make sure applications do not fail because the file
system is out of space. An application can preallocate space for all the files it needs
before the application starts any work. By allocating space in advance, the file is
optimally allocated for performance, and file accesses are not slowed down by the
need to allocate storage. This allocation of resources can be important in applications
that require a guaranteed response time. With very large files, use of space
reservation can avoid the need to use indirect extents. It can also improve
performance and reduce fragmentation by guaranteeing that the file consists of
large contiguous extents.

VxFS provides an API to preallocate space to a file at the time of the request rather
than when data is written into the file. Preallocation, or reservation, prevents any
unexpected out-of-space condition on the file system by ensuring that a file’s required
space is associated with the file before data is written to the file. Storage can be
reserved for a file at any time, and reserved space to a file is not allocated to other
files in the file system. The API provides the application the option to change the
size of the file to include the reserved space.

Reservation does not perform zeroing of the allocated blocks to the file. Therefore,
this facility is limited to applications running with appropriate privileges, unless the
size of the file is not changed with the reservation request. The data that appears
in the newly allocated blocks for the file may have been previously contained in
another file.

Reservation is a persistent attribute for the file that is saved on disk. When this
attribute is set on a file, the attribute is not released when the file is truncated. The
reservation must be cleared through the same API, or the file must be removed to
free the reserved space. At the time of specifying the reservation, if the file size is
less than the reservation amount, space is allocated to the file from the current file
size up to the reservation amount. When the file is truncated, space below the
reserved amount is not freed.

Fixed extent size
VxFS uses the I/O size of write requests and the default allocation policy for
allocating space to a file. For some applications, the default allocation policy may
not be optimal. Setting a fixed extent size on a file overrides the default allocation
policies for that file. Applications can set a fixed extent size to match the application
I/O size so that all new extents allocated to the file are of the fixed size. By using
a fixed extent size, an application can reduce allocation attempts and guarantee
optimal extent sizes for a file. With the fixed extent size attribute, an extending write
operation will trigger VxFS to extend the previously allocated extent by the fixed
extent size amount to maintain contiguity of the extent. If the last extent cannot be

74Veritas File System I/O
Extents

extended by the fixed extent size amount, a new disjoint extent is allocated. The
size of a fixed extent should factor in the size of file I/O appropriate to the application.
Do not use small fixed extent size to eliminate the advantage with extent-base
allocation policies.

Another use of a fixed extent size occurs with sparse files. VxFS usually performs
I/O in multiples of the system-defined page size. When allocating to a sparse file,
VxFS allocates space in multiples of the page size according to the amount of page
I/O in need of allocation. If the application always does sub-page I/O, the use of
fixed extent size in multiples of the page size reduces allocations.

Applications should not use a large fixed extent size. Allocating a large fixed extent
may fail due to the unavailability of an extent of that size, whereas smaller extents
are more readily available for allocation.

Custom applications may also use fixed extent sizes for specific reasons, such as
the need to align extents to cylinder or striping boundaries on disk.

The fixed extent size attribute is specified in units of file system block size. The
attribute specifies the number of contiguous file system blocks to allocate for a new
extent, or the number of contiguous blocks to allocate and append to the end of an
existing extent. A file with this attribute has fixed size extents or larger extents that
are a multiple of the fixed size extent.

Application programming interface for extent attributes
The current API for extent attributes is ioctl(). Applications can open a file and
use the returned file descriptor with calls to ioctl() to retrieve, set, or change extent
attributes. To set or change existing extent attributes, use the VX_SETEXT ioctl. To
retrieve existing extent attributes, if any, use the VX_GETEXT ioctl. Applications can
set or change extent attributes on a file by providing the attribute information in the
structure of type vx_ext and passing the VX_SETEXT iotcl and the address of the
structure using the third argument of the ioctl() call. Applications can also retrieve
existing extent attributes, if any, by passing the VX_GETEXT ioctl and the address of
the same structure, of type vx_ext, as the third argument with the ioctl() call.

struct vx_ext {

off_t ext_size; /* extent size in fs blocks */

off_t reserve; /* space reservation in fs blocks */

int a_flags; /* allocation flags */

}

The ext_size argument is set to specify a fixed extent size. The value of fixed extent
size is specified in units of the file system block size. Be sure the file system block
size is known before setting the fixed extent size. If a fixed extent size is not required,
use zero to allow the default allocation policy to be used for allocating extents. The

75Veritas File System I/O
Extents

fixed extent allocation policy takes effect immediately after successful execution of
the VX_SETEXT ioctl. An exception is with the files that already contain indirect blocks,
in which case the fixed extent policy has no effect unless file truncation frees all
current indirect blocks.

The reserve argument can be set to specify the amount of space preallocated to a
file. The amount is specified in units of the file system block size. Be sure the file
system block size is known before setting the preallocation amount. If a file has
already been preallocated, its current reservation amount can be changed with the
VX_SETEXT ioctl. If the specified reserve amount is greater than the current
reservation, the allocation for the file is increased to match the newly specified
reserve amount. If the reserve amount is less than the current reservation, the
reservation amount is decreased and the allocation is reduced to the newly set
reservation amount or the current file size. File preallocation requires root privilege,
unless the size of the file is not changed, and the preallocation size cannot be
increased beyond the ulimit of the requesting process.

See the VX_CHGSIZE flag.

See the ulimit(2) manual page.

Allocation flags
Allocation flags can be specified with VX_SETEXT ioctl for additional control over
allocation policies.

Allocation flags are specified in the a_flag argument of vx_ext structure to
determine the following:

■ Whether allocations are aligned

■ Whether allocations are contiguous

■ Whether the file can be written beyond its reservation

■ Whether an unused reservation is released when the file is closed

■ Whether the reservation is a persistent attribute of the file

■ When the space reserved for a file will actually become part of the file

Allocation flags with reservation
The VX_TRIM, VX_NOEXTEND, VX_CHGSIZE, VX_NORESERVE, VX_CONTIGUOUS, and
VX_GROWFILE flags can be used to modify reservation requests. VX_NOEXTEND is
the only flag that is persistent; the other flags may have persistent effects, but the
VX_GETEXT ioctl does not return the flags. The non-persistent flags remain active

76Veritas File System I/O
Extents

for a file in the file system cache until the file is no longer accessed and is removed
from the cache.

Reservation trimming
The VX_TRIM flag specifies that the reservation amount must be be trimmed to
match the file size when the last close occurs on the file. At the last close, the
VX_TRIM flag is cleared and any unused reservation space beyond the size of the
file is freed. This flag can be useful if an application needs enough space for a file,
but it is not known how large the file will become. Enough space can be reserved
to hold the largest expected file, and when the file has been written and closed,
any extra space is released.

Non-persistent reservation
If you do not want reservation to be a persistent attribute, you can specify the
VX_NORESERVE flag to request allocation of space without making reservation a
persistent attribute of the file. Applications that are interested in temporary
reservation but want to free any space past the end of the file when the file is closed
case use this flag. For example, if an application is copying a file that is 1 MB long,
it can request a 1 MB reservation with the VX_NORESERVE flag set. The space is
allocated, but the reservation in the file is left at 0. If the program aborts for any
reason or the system crashes, the unused space past the end of the file is released.
When the program finishes, there is no clean up because the reservation was never
recorded on disk.

No write beyond reservation
The VX_NOEXTEND flag specifies that any attempt to write beyond the current
reservation must fail. Writing beyond the current reservation requires the allocation
of new space for the file. To allocate new space to the file, the space reservation
must be increased. This can be used similar to the function of the ulimit command
to prevent a file from using too much space.

Contiguous reservation
The VX_CONTIGUOUS flag specifies that any space allocated to a file must satisfy
the requirement of a single extent allocation. If there is not one extent large enough
to satisfy the reservation request, the request fails. For example, if a file is created
and a 1 MB contiguous reservation is requested, the file size is set to zero and the
reservation to 1 MB. The file has one extent that is 1 MB long. If another reservation
request is made for a 3 MB contiguous reservation, the new request finds that the
first 1 MB is already allocated and allocate a 2 MB extent to satisfy the request. If
there are no 2 MB extents available, the request fails. Extents are, by definition,

77Veritas File System I/O
Extents

contiguous. Because VX_CONTIGUOUS is not a persistent flag, space is not allocated
contiguously for restoring a file that was previously allocated with the VX_CONTIGUOUS

flag.

Include reservation in the file size
A reservation request can affect the size of the file to include the reservation amount
by specifying VX_CHGSIZE. This flag increases the size of the file to match the
reservation amount without zeroing the reserved space. Because the effect of this
flag is uninitialized data in a file, which might have been previously contained in
other files, the use of this flag is restricted to users with the appropriate privileges.
Without this flag, the space of the reservation is not included in the file until an
extending write operation requires the space. A reservation that immediately changes
the file size can generate large temporary files. Applications can benefit from this
type of reservation by eliminating the overhead that is imposed with write operations
to allocate space and update the size of the file.

It is possible to use these flags in combination. For example, using VX_CHGSIZE

and VX_NORESERVE changes the file size, but does not set any reservation. When
the file is truncated, the space is freed. If the VX_NORESERVE flag is not used, the
reservation is set on the disk along with the file size.

Reading the grown part of the file
When the allocation flag (a.flag) is set to VX_GROWFILE, the size of the file is changed
to include the reservation. This flag reads the "grown" part of the file (between the
current size of the file and the size after the operation succeeds). VX_GROWFILE has
persistent effects, but is not visible as an allocation flag. This flag is visible through
the VX_GETEXT ioctl.

Allocation flags with fixed extent size
The VX_ALIGN flag can be used to specify an allocation flag for fixed extent size.
This flag has no effect if it is specified with a reservation request. The VX_ALIGN

flag specifies the alignment requirement for allocating future extents that are aligned
on a fixed extent size boundary relative to the start of the allocation unit. This flag
can be used to align extents to disk striping boundaries or physical disk boundaries.
The VX_ALIGN flag is persistent and the VX_GETEXT ioctl returns the flag.

How to use extent attribute APIs
First, verify that the target file system is VxFS, and then determine the file system
block size using the statfs() call. The type for VxFS is MNT_VXFS on most platforms,

78Veritas File System I/O
Extents

and the file system block size is returned in statfs.f_bsize. The block size must be
known for setting or interpreting the extent attribute information through VxFS extent
attribute APIs.

Each invocation of the VX_SETEXT ioctl affects all the elements in the vx_ext

structure.

To use VX_SETEXT

1 Call the VX_GETEXT ioctl to read the current settings, if any.

2 Modify the current values to be changed.

3 Call the VX_SETEXT ioctl to set the new values.

Warning: Follow this procedure carefully. A fixed extent size may be inadvertently
cleared when the reservation is changed. When copying files between VxFS and
non-VxFS file systems, the extent attributes cannot be preserved. The attribute
values returned for a file in a vx_ext structure have a different effect on another
VxFS file system with a different file system block size from the source file system.
Translation of attribute values for different block sizes may be necessary when
copying files with attributes between two file systems of a different block size.

Setting fixed extent size
The following is an example code snippet for setting the fixed extent size of the
MY_PREFERRED_EXTSIZE attribute on a new file, MY_FILE, assuming
MY_PREFFERED_EXTSIZE is multiple of the file system block size:

#include <sys/fs/vx_ioctl.h>

struct vx_ext myext;

fd = open(MY_FILE, O_CREAT, 0644);

myext.ext_size = MY_PREFERRED_EXTSIZE;

myext.reserve = 0;

myext.flags = 0;

error = ioctl(fd, VX_SETEXT, &myext);

The following is an example code snippet for preallocating MY_FILESIZE_IN_BYTES

bytes of space on the new file, MY_FILE, assuming that the target file system block
size is THIS_FS_BLOCKSIZE:

#include <sys/fs/vx_ioctl.h>

struct vx_ext myext;

fd = open(MY_FILE, O_CREAT, 0644);

myext.ext_size =0;

myext.reserve = (MY_FILESIZE_IN_BYTES + THIS_FS_BLOCKSIZE)

79Veritas File System I/O
Extents

/THIS_FS_BLOCKSIZE;

myext.flags = VX_CHGSIZE;

error = ioctl(fd, VX_SETEXT, &myext);

80Veritas File System I/O
Extents

Thin Reclamation

This chapter includes the following topics:

■ About Thin Storage

■ About Thin Reclamation

■ Thin Reclamation application programming interface

About Thin Storage
Thin Storage is the result of using Thin Provisioning-capable arrays. Thin Storage
is an array vendor solution for allocating storage to applications only when the
storage is truly needed, from a pool of free storage. The Thin Storage solution tries
to solve the problem of under utilization of available array capacity. Thin Storage
reclaim-capable arrays and LUNs allow the administrators to release previously-used
storage to the pool of free storage.

About Thin Reclamation
Some vendors support a reclamation capability on Thin Storage arrays, on which
the administrator can initiate the process of reclaiming free storage from the file
systems or disks in the LUN or array so that this storage is released to the free
storage pool. Such arrays and LUNs are referred to as Thin Provisioning arrays
and LUNs. The Storage Foundation Thin Reclamation feature reclaims free blocks
through command line and programmatic interfaces.

Thin Reclamation application programming interface
You can use Thin Reclamation with the following API:

6Chapter

uint vxfs_ts_reclaim(char *mountpoint, uint64_t offset,

uint64_t length, int32_t volindex, uint64_t unit_size,

uint64_t *bytes_reclaimed, uint32_t flag)

This is a non-reentrant API. This API cannot be called when an instance of the
fsadm command or a reorg of the file system is running.

The pathname of the VxFS file system that is mounted on a Veritas
Volume Manager (VxVM) volume.

mountpoint

The offset in bytes in the volume from which to start reclamation.offset

The length in bytes from offset, up to which to reclaim free storage.length

The index of the volume in a volume set. When volindex has a value
of -1, all the volumes in the file system ignore offset and length. On
a non-multi-volume file system, volindex should be zero.

volindex

The size in multiples by which the file system issues reclaim requests
to VxVM. Each Thin Provisioning array supports reclamation by a
factor of some unit size.

unit_size

Returns the number of bytes that the file system attempted to reclaim.
The value does not give an indication of the number of bytes actually
reclaimed.

bytes_reclaimed

82Thin Reclamation
Thin Reclamation application programming interface

Possible values for flag are:

■ VXFS_RCLMINTENT_SSDTRIM — Initiates the TRIM command
on an underlying SSD volume. In the case of a volume set, the
command works only for SSD volumes.

■ VXFS_RCLMINTENT_THINRCLM— Initiates Thin Reclamation on
a Thin Reclaimable volume. In the case of a volume set, the
command works only for Thin Reclaimable volumes.

■ VXFS_TS_RECLAIM_AGGRESSIVE— Perform an additional data
and metadata reorganization to maximize free space reclamation.
This operation might trigger additional space allocation from the
underlying Thin Storage, which is released at the end of the
operation. This operation can fragment existing large allocations.
Aggressive reclamation is performed only if VxVM reports the
volume as thinrclm. In case of multi−volume file systems, only
the volumes that VxVM reports as thinrclm are considered.
If the volindex argument has a value of −1, then the full file system
is covered. The offset and length arguments are ignored. If you
specify a value for the volindex argument, then the full volume is
covered if both the offset argument and length argument have a
value of 0. If you specify a value for the offset argument and length
argument, vxfs_ts_reclaim() does not perform aggressive
reclamation, but performs the default the default reclamation
instead, regardless if you specified a value for the volindex
argument.

■ VXFS_TS_RECLAIM_ANALYSE | VXFS_TS_RECLAIM_ANALYZE
— Perform an analysis of the file system to recommend whether
you should use Normal Reclaim or Aggressive Reclaim. You can
use either reclaim policy regardless of the recommendation.
Analyse reclamation is performed only if Veritas Volume Manager
(VxVM) reports the volume as thinrclm. In the case of
multi-volume file systems, the vxfs_ts_reclaim() API considers
only the volumes that VxVM reports as thinrclm.

■ VXFS_TS_RECLAIM_AUTO — Perform an analysis of the file
system determine which reclaim policy is suitable at this point and,
depending upon the analysis, execute the policy on behalf of the
user. Auto reclamation is performed only if VxVM reports the
volume as thinrclm. In the case of multi-volume file systems,
the vxfs_ts_reclaim() API considers only the volumes that
VxVM reports as thinrclm.

flag

VxFS may align the offset and length internally for correctness.

83Thin Reclamation
Thin Reclamation application programming interface

Note: Thin Reclamation is a slow process and may take several hours to complete,
depending on the file system size. Thin Reclamation is not guaranteed to reclaim
100% of the free space.

vxfs_ts_reclaim return values
The return values from the API are as follows:

Returned if the analyze option of the vxfs_ts_reclaim()
API advises Aggressive Reclaim.

-3

Returned if the analyze option of the vxfs_ts_reclaim()
API advises Normal Reclaim.

-2

Successful reclamation.0

A non-root user called the API.EPERM

The mount point does not exist.ENOENT

The mount point is not the root of the file system.EBADF

The device for the mount point cannot be accessed.EPIPE

The mount point is not the root of a VxFS file system, the
specified volume is not thinrclm−capable, or none of the
volumes in the volume set are thinrclm−capable.

ENOTSUP

Memory could not be allocated during the operation of the API.ENOMEM

The metadata on the file system could not be modified.EBUSY

The specified device does not exist.ENXIO

The specified offset or length is invalid.EINVAL

Another fsadm or reorg instance is running.EAGAIN

The reclaim operation failed due to other system-related issues.EFAULT

84Thin Reclamation
Thin Reclamation application programming interface

A
allocation flags 76
allocation flags with fixed extent size 78
allocation policies 48

multi-volume support 51
alternate namespace 59
application interface 11

C
caching advisories 69
close 16
compiling environment 13
concurrent I/O 70

D
data copy 70
data transfer 70
DEV_BSIZE 72
direct data transfer 70
direct I/O 69

E
extent attributes 73
extents 72

F
fchdir 63
fchroot 63
fcl_keeptime 23
fcl_maxalloc 23
fcl_winterval 24
File Change Log 11, 15

application programming interface 25
record types 20

special records 22
superblock 23
tunables 23

File Change Log file 15
fixed extent size 73–74
freeze/thaw 66

FSAP_INHERIT 52
fsapadm 49
fsvoladm 49

G
getcwd 64
getdents 61–62
getext 73

H
header files 13

I
I/O

direct 70
sequential 70
synchronous 70

intent log
multi-volume support 49

ioctl 11, 69, 75

L
libraries 13
logical blocks 72
lseek 16

M
mkfs 72
mmap 60–61
multi-volume support 12, 48

allocation policy APIs 51
creating and assigning policies 53
data structures 55
enforcing the policy on a file 54
examples of volume set operations 50
modifying a volume within a file system 50
querying the defined policies 54
querying the volume set for a file system 50
uses 49

Index

multi-volume support (continued)
volume APIs 49
volume encapsulation 51

N
named attributes 59
named data streams 59

application programming interface 60, 65
behavior changes in other system calls 63
example 64
listing 62
namespace 63
programmer’s reference 65

ncheck 46

O
open 16, 59–60, 69
other advisories 71

R
read 16, 60–61, 70
readdir 61
Record Types

special records 22
record types 20
reservation 73–74
reverse path name lookup 46

S
sequential I/O 70, 72
setext 73
Software Developer’s Kit 10

RPMs 12
special records 22
statfs 79
Storage Checkpoints 49
synchronous I/O 70

T
Thin Reclamation 81
Thin Storage 81

U
ulimit 76
unbuffered I/O 71
using extent attribute APIs 78–79

V
volume APIs 49
volume set 49
VOP_SETATTR 63
VRTSfssdk 12
VX_ALIGN 78
VX_CHGSIZE 76–78
VX_CONCURRENT 70
VX_CONTIGUOUS 77–78
VX_DIRECT 71
vx_ext 75, 79
VX_FREEZE 67
VX_FREEZE_ALL 67–68
VX_GETEXT 75, 79
VX_NOEXTEND 77
VX_NORESERVE 77
VX_RANDOM 72
VX_SEQ 72
VX_SETCACHE 71
VX_SETEXT 75, 79
VX_THAW 67
VX_TRIM 77
VX_UNBUFFERED 71
VxFS I/O 12

caching advisories 69
concurrent I/O 70
direct I/O 69
other advisories 71
unbuffered I/O 71

extents 72
allocation flags 76
allocation flags with fixed extent size 78
API 75
attribute specifics 73
extent attributes 73
fixed extent size 74
reservation 74
using extent attribute APIs 78–79

freeze/thaw 66
vxfs_inotopath 47
vxfs_inotopath_gen 46
vxfs_nattr_link 61
vxfs_nattr_open 61
vxfs_nattr_rename 62
vxfs_nattr_unlink 61
vxfs_nattr_utimes 62
vxfsio 69
vxtunefs 23
vxvset 49

86Index

W
write 60–61, 70

87Index

	Veritas™ File System 6.2 Programmer's Reference Guide - Linux
	Technical Support
	Contents
	1. Veritas File System software developer’s kit
	About the software developer’s kit
	File System software developer’s kit features
	API library interfaces
	File Change Log
	Multi-volume support
	Veritas File System I/O

	Software developer’s kit RPMs
	Required libraries and header files
	Compiling environment
	Recompiling with a different compiler

	2. File Change Log
	About the File Change Log file
	Recorded changes
	Using the File Change Log file
	File Change Log logging activation
	File Change Log file layout

	Record types
	Special records
	Typical record sequences

	File Change Log tunables
	How tunables handle File Change Log growth size

	Application programming interface for File Change Log
	Ease of use
	Backward compatibility
	API functions
	File Change Log record
	Copying File Change Log records
	Veritas File System and File Change Log upgrade and downgrade

	Reverse path name lookup
	Inodes
	vxfs_inotopath_gen

	3. Multi-volume support
	About multi-volume support
	Uses for multi-volume support
	Volume application programming interfaces
	Administering volume sets
	Querying the volume set for a file system
	Modifying a volume within a file system
	Encapsulationg and de-encapsulating a volume

	Allocation policy application programming interfaces
	Directing file allocations
	Creating and assigning policies
	Querying the defined policies
	Enforcing a policy

	Data structures
	Using policies and application programming interfaces
	Defining and assigning allocation policies
	Using volume application programming interfaces

	4. Named data streams
	About named data streams
	Uses for named data streams
	Named data streams application programming interface
	Listing named data streams
	Namespace for named data streams
	Behavior changes in other system calls
	Querying named data streams
	Application programming interface
	Command reference

	5. Veritas File System I/O
	About Veritas File System I/O
	Freeze and thaw
	Caching advisories
	Direct I/O
	Concurrent I/O
	Unbuffered I/O
	Other advisories

	Extents
	Extent attributes
	Reservation: preallocating space to a file
	Fixed extent size
	Application programming interface for extent attributes
	Allocation flags
	Allocation flags with fixed extent size
	How to use extent attribute APIs
	Setting fixed extent size

	6. Thin Reclamation
	About Thin Storage
	About Thin Reclamation
	Thin Reclamation application programming interface
	vxfs_ts_reclaim return values

	Index

