
Veritas™ Resiliency
Platform 2.0: Application
Enablement SDK

Veritas Resiliency Platform: Application Enablement
SDK

Last updated: 2016-07-28

Document version: 2.0 Rev 0

Legal Notice
Copyright © 2016 Veritas Technologies LLC. All rights reserved.

Veritas, the Veritas Logo, Veritas InfoScale, and NetBackup are trademarks or registered
trademarks of Veritas Technologies LLC or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

This product may contain third party software for which Veritas is required to provide attribution
to the third party (“Third Party Programs”). Some of the Third Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the third party legal notices document accompanying this
Veritas product or available at:

https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by anymeans without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC

https://www.veritas.com/about/legal/license-agreements

500 E Middlefield Road
Mountain View, CA 94043

http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:

https://www.veritas.com/support

You can manage your Veritas account information at the following URL:

https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

Documentation
Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The document version appears on page 2 of each
guide. The latest documentation is available on the Veritas website:

https://sort.veritas.com/documents

Documentation feedback
Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:

doc.feedback@veritas.com

You can also see documentation information or ask a question on the Veritas community site:

http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)
Veritas Services andOperations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:

https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:doc.feedback@veritas.com
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Chapter 1 Introduction ... 5

Introduction to Application Enablement SDK .. 5

Chapter 2 Managing Perl APIs .. 6

About Perl APIs ... 6
Using Perl APIs ... 7

Define an application .. 8
Logging .. 12
Application objects .. 13
Application inputs ... 15
Application properties .. 17
Finish ... 20

Managing clustered applications .. 21

Chapter 3 Testing the APIs ... 23

Unit testing of your application module script 23
Testing a script using CLI ... 24
Sample script .. 25
Sample script output ... 31

Chapter 4 Deployment ... 39
About the manifest file ... 39

Index .. 42

Contents

Introduction
This chapter includes the following topics:

■ Introduction to Application Enablement SDK

Introduction to Application Enablement SDK
The Application Enablement Software Development Kit (SDK) lets you write
application scripts to discover and manage the applications in your data center.

The application bundle is in a .tar.gz format that contains a script and related
modules that can discover all the instances of a particular type of application in
your data center for the supported platforms. The scripts contained in the file are
able to start or stop a single instance of that application. The application bundle
also contains a bundle.ini file that provides some basic information about the
bundle to the Resiliency Platform.

The application bundle can be uploaded on the Resiliency Manager and then
deployed on all the managed hosts in your data center. When the applications are
discovered and reported on the Resiliency Manager console, you can then organize
them into resiliency groups that can be protected and managed as a single entity.

For more information on how to upload the application bundle on the Resiliency
Manager, install and enable on hosts, refer to Veritas Resiliency Platform 1.1:
Solutions for Applications guide.

1Chapter

Managing Perl APIs
This chapter includes the following topics:

■ About Perl APIs

■ Using Perl APIs

■ Managing clustered applications

About Perl APIs
The Perl APIs is a simplified set of APIs which you can use to write an application
module script that helps you discover and operate your applications.

The Perl APIs must include the following two modules:

■ Application module
This module provides the functionality to add, discover, or operate on an
application using the Resiliency Platform web console.

■ Constants module
This module provides the functionality to fetch the constants that are required
to set the log levels, or to fetch the keys for the question data, or to set the
properties such as application type, version, permission for data files etc.

Note: Perl interpreter version 5.8.8 is pre-bundled with the Veritas Resiliency
Platform.

The table below lists the key steps of working with APIs.

2Chapter

Table 2-1 Using Perl APIs

Refer toDescription

See “Using Perl APIs” on page 7.Create a Perl script "app.pl". This script must
include the following modules:

■ Application.pm
■ Constants.pm

The APIs are classified in the following
categories.

See “Define an application” on page 8.

See “Logging” on page 12.

See “Application inputs” on page 15.

See “Application objects” on page 13.

See “Application properties” on page 17.

Use the APIs to discovery and manage your
applications.

See “Finish” on page 20.Use this API to commit or finish your script.

See “Sample script” on page 25.

See “Sample script output” on page 31.

See sample script and JSON output.

See “Unit testing of your application module
script” on page 23.

See “Testing a script using CLI” on page 24.

Test your scripts

Using Perl APIs
The APIs are classified in the following broad categories:

■ Define an application
This category consists of the new API which is the starting point of any application
module script. It also contains the APIs that let you define the discovery level
of the application, define the operations that can be performed on the application
and so on.

■ Logging
Use the APIs in this category to log a message or reset the log levels.

■ Application inputs
Use the APIs in this category to add questions and their responses. These
questions are displayed on the Resiliency Platform console.

■ Application objects

7Managing Perl APIs
Using Perl APIs

Use the APIs in this category to add application instances and its
sub-components. Application objects are application instances like server, main
process, The application sub-components are middle tire servers, databases
and its files like data files, configuration files, etc.

■ Application properties
Use the APIs in this category to define and retrieve application properties.

■ Finish
The only API in this category is commit, which indicates the end of application
module script.
The API generates a well-formed JSON output containing all the required
information about the application.

Define an application
This category consists of the new API which is the starting point of any application
module script. It also contains the APIs that let you define the discovery level of the
application, define the operations that can be performed on the application and so
on.

new
Description: This API conveys the application type, for example MSSQL, Oracle,
SAP, to the Resiliency Platform. This interface is the starting point of any application
module script and is mandatory. This initiates the application along with the logger.
The logging level is set to Info by default.

To change the log level, use the reset_log API.

See “Logging” on page 12.

Note: This interface returns an un-defined object if user specified application type
has anything other than the characters A-Z,a-z,0-9,dash(-), or underscore(_).

Is mandatory: Yes

Input parameter: String : Application type.

Return value: Application object, else undefined.

Syntax:

new VRTS::AppSDK::AppEnablementSDK::Application("<Application Type>");

Example:

my $appObj = new VRTS::AppSDK::AppEnablementSDK::Application("TestApp");

8Managing Perl APIs
Using Perl APIs

set_discovery_types
Description: Use this interface to declare the types of discoveries that your
application script supports. For the Resiliency Platform to discover the applications,
you need to define the discovery types such as deep and probe. Use comma as a
delimiter to define more than one discovery level.

Deep and probe discovery types are mandatory.

■ DEEP: discovers the entire application and its components including files.

■ PROBE: only checks the status of the application instances. For example whether
the application is online or offline.

Is mandatory: Yes

Input parameter: String : Discovery level type, valuemust be "DEEP" and "PROBE".

Return value: 0 if successful, else any positive number.

Example:

my $appObj = new VRTS::AppSDK::AppEnablementSDK::Application("TestApp");

$appObj->set_discovery_types("DEEP", "PROBE");

set_operations_types
Description: Use this interface to provide a list of operations that a particular
application module script supports. For example, start an application and stop an
application. Use comma as a delimiter to define more than one operation type. This
interface is mandatory for the Resiliency Platform to execute the discovery script
and perform operations on the applications.

Start and stop operations are mandatory.

Is mandatory: Yes

Input parameter: String: Operations types, value must be "START" and "STOP".

Return value: 0 if successful, else any positive number.

Example:

my $appObj = new VRTS::AppSDK::AppEnablementSDK::Application("TestApp");

$appObj->set_operation_types("START", "STOP");

register_discovery_callback
Description: Use this interface to register the discovery operation callback function
against the discovery operation type defined using the set_discovery_types API.
The registered callback function is invoked only when the application module script
is invoked with said discovery operation. This is a mandatory interface that conveys

9Managing Perl APIs
Using Perl APIs

the Resiliency Platform the sub-routine which is capable of executing the operation
and returning an appropriate return code and return message.

Ensure that the discovery script continues to discover the application in offline mode.
Else, when the application is offline it is not discovered, and hence the instance is
removed from the Resiliency Platform console. The resiliency group created using
the instance becomes invalid.

The callback function is a sub-routine which is defined in the application module
script and is capable of executing a said discovery operation successfully. The
callback function returns 0 if the said operation is executed successfully else returns
any positive number to indicate failure. Along with the return code you can also
return a string containing either the success or the failure message. Providing a
return code is mandatory otherwise the operation is considered as failed. Providing
a return message is optional.

Is mandatory: Yes

Input parameter: String: Discovery operation - the discovery operation name which
is previously set using the set_discovery_types API.

Input parameter: Callback function reference - the reference of the sub-routine
which is defined in the application module script.

Return value: 0 if successful, else any positive number.

Example:

my $appObj = new VRTS::AppSDK::AppEnablementSDK::Application("TestApp");

if(defined $appObj)

{

$appObj->set_discovery_types("DEEP, PROBE");

$ret=$appObj->register_discovery_callback("PROBE",\&probe);

$ret=$appObj->register_discovery_callback("DEEP",\&deep);

}

sub probe

{

Write the code here to discover all application instances

my $inst_name = "app_inst";

$appObj->log(LOGLEVEL_DEBUG,"Application instance name: [$inst_name]");

Write the code here to discover state of each application instance

Report the state of the discovered application instance

10Managing Perl APIs
Using Perl APIs

on the Resiliency Platform.

my $inst = $appObj->add_application_inst($inst_name);

if (defined $inst)

{

The state must be reported either 'online' or 'offline'

$inst->set_property(APP_INST_STATE, "Online");

}

return 0 for successful and 1 for failure

return 0,"probe is successful";

}

Note: The second parameter in the above example, "\&probe" and "\&deep", is the
reference of the callback function i.e the sub-routine reference defined in the
application module script.

register_operation_callback
Description: Use this interface to register the callback function against the operation
type defined using the set_operation_types API. The registered callback function
is invoked only when the application module script is invoked with said operation.
This is a mandatory interface that conveys the Resiliency Platform the sub-routine
which is capable of executing the operation and returning an appropriate return
code and return message.

The callback function is a sub-routine which is defined in the application module
script and is capable of executing a said operation successfully. The callback
function returns 0 if the said operation is executed successfully else returns any
positive number to indicate failure. Along with the return code you can also enter
a string containing either the success or the failure message. Providing a return
code is mandatory otherwise the operation is considered as failed. Providing a
return message is optional.

The callback function when registered with AppEnablementSDK using any of the
above APIs receives an hashref as a parameter. The hashref parameter contains
INSTANCE_NAME as a key and application instance name as a value.

Is mandatory: Yes

Input parameter: String : Operation – The operation name which is previously
defined using set_operation_types API.

Callback function reference - the reference of the sub-routine which is defined in
the application module script.

Return value: 0 if successful, else any positive number.

11Managing Perl APIs
Using Perl APIs

Example:

my $appObj=new VRTS::AppSDK::AppEnablementSDK::Application("TestApp");

if(defined $appObj)

{

$appObj->set_operation_types("START,STOP");

$ret = $appObj->register_operation_callback("START",\&start);

$ret = $appObj->register_operation_callback("STOP",\&stop);

}

sub start

{

my ($arg) = @_;

my $FuncName = (caller 0)[3];

$appObj->log(LOGLEVEL_DEBUG,"Inside $FuncName");

my $inst_name = $arg->{INSTANCE_NAME};

$appObj->log(LOGLEVEL_DEBUG,"Application instance name: [$inst_name]");

Write the code here to start an application instance

and return appropriate status code and message.

Return 0 for successful and 1 for failure

return 0, "Start is successful";

}

Note: The second parameter in the above example, "\&start" and "\&stop", is the
reference of the callback function i.e the sub-routine reference defined in the
application module script.

Logging
Use the APIs in this category to log a message or reset the log levels.

reset_log
Description: This interface is used to reset the logger to another user defined log
level.

When you run the new interface, the log level is set to Info. Use the reset_log
interface to change the log level to any one of the following:

■ error

12Managing Perl APIs
Using Perl APIs

■ debug

■ warning

■ critical

■ trace

Is mandatory: No

Input parameter: String: log level

Return value: 0 if successful and the log level is reset to the new value, else any
positive number.

Example:

$appObj->reset_log("debug");

log
Description: This interface is used to log messages into a log file.

If either of the log level or log message is empty, then the log message is not logged
into the log file.

If you specify an invalid log level, that is anything other than error, debug, info,
warning, critical, trace, then all such logs are logged with the log level as error.

The location of the log file is as below:

■ Windows: c:\ProgramData\Symantec\VRTSsfmh\APP\log\APP_TYPE.log

■ Linux: /var/opt/VRTSsfmh/APP/log/APP_TYPE.log

Is mandatory: No

Input parameter: String: Log level such as error, debug, warning, critical, or trace,
and the log message

Return value: NA

Example:

$appObj->log("error","test message....");

Application objects
Use the APIs in this category to add application instances, its sub-components such
as the middle tier servers, databases, and the support files such as the configuration
file, database file.

13Managing Perl APIs
Using Perl APIs

add_application_instance
An application instance comprises of the application server or the application main
process. Reporting the application instances is mandatory so as to view the
applications in the Unmanaged tab on the Resiliency Platform web console and
to perform operations on them.

Use this interface to create an application instance object which is used to add
application instance specific properties like application instance name, version,
home directory. To do this use the set_property API. Defining the application state
property, that is State, is mandatory to perform any further operations on the
application using the Resiliency Platform console.

Is mandatory: Yes

Input parameter: String: The name of the application instance.

Return value: 0 and the application instance object, else any positive number.

Example:

my $appInstObj = $appObj->add_application_inst ("test_inst");

add_application_unit
An application unit comprises of the application sub-components such as the middle
tier servers, databases, etc which support the application instance function.
Reporting these components is optional. They are not displayed on the Resiliency
Platform console and hence you cannot perform any operations on them using the
console. But if you want to perform the start application or stop application operation
at the component level, you need to define these components.

Use this interface to create an application unit object which is used to add application
unit specific data like application database name.

Is mandatory: No

Input parameter: String: The name of the application unit.

Return value: 0 and the application unit object, else any positive number.

Example:

my $appUnit1Obj = $appInstObj->add_application_unit("master_db");

my $appUnit2Obj = $appInstObj->add_application_unit("temp_db");

add_application_file
An application file comprises of application support files such as the configuration
file, database file etc. Reporting the application files is mandatory to be able to
perform disaster recovery operations using the Resiliency Platform console.

14Managing Perl APIs
Using Perl APIs

Use this interface to create an application file object which is used to add application
file specific data like application file name, size, path.

Defining the application property, Type, is mandatory if you want to configure the
application for disaster recovery using the Resiliency Platform console

Is mandatory: Yes

Input parameter: String: The name of the application file or file path.

Return value: 0 and the application file object, else any positive number.

Example:

my $appFileObj = $appInstObj->add_application_file("master.txt");

my $appFileObj = $appInstObj->add_application_file("temp.txt");

Application inputs
Use the APIs in this category to add questions and their responses. These questions
are displayed on the Resiliency Platform console.

add_question
Description: Use this interface to add questions to complete the discovery of an
application instance.

These questions are displayed on the Resiliency Platform console if the application
instance is partially discovered and user inputs are required to complete the
discovery.

The following table lists the questions that you can add.

Table 2-2 Questions and error messages

Expected valueDescriptionQuestion data field

Any positive number. This is
a mandatory field.

Message ID for the question
text. A whole number
denoting the question
number.

QID

Any text. This is a mandatory
field.

The question text.QText

Any text. This is an optional
field.

Description of the question.QDescription

Yes or no. This is a
mandatory field.

Define this if an answer is
mandatory to the question.

Mandatory

15Managing Perl APIs
Using Perl APIs

Table 2-2 Questions and error messages (continued)

Expected valueDescriptionQuestion data field

Yes or no. This is an optional
field.

Define this if an error occurs
for a question.

IsError

Yes or no. This is an optional
field. Is set to “no” by default.

Define this if the answer
needs encryption.

Encrypted

Any positive number. This is
an optional field.

Error code of the error
message. If the response
received is incorrect user
needs to set this field.

ErrorCode

Any text. This is an optional
field.

Between an error code and
an error message any one
must be mentioned in case of
error. An error message is
preferred.

Error message. If the
response received is incorrect
user needs to set this field.

ErrorMsg

Is mandatory: No

Input parameter: Application instance object, question data

Return value: NA

Example:

my $qid1 = {

'QID' => 1,

'QDescription' => 'Specify the administrator user name to

start the above instance.',

'Mandatory' => 'yes',

'QText' => 'Administrator user name for this instance',

'Encrypted' => 'no'

};

$appInstObj->add_question($qid1);

get_qresponse
Description: This interface returns the response to the questions which you have
defined using the add_question API. You can call this API when you need responses
to the questions. The responses assist in completing the application discovery.

Is mandatory: No

16Managing Perl APIs
Using Perl APIs

Input parameter: String: Question ID

Return value: Response to the question ID if successful, else undefined.

Example:

$appInstObj->get_qresponse($qid);

Where $qid is the question ID.

set_qresponse
Description: Use this interface to define an error code and error message in
response to any error that occurs for a particular question ID.

Is mandatory: No

Input parameter: String: Error code, error message, question ID

Return value: 0 with question data set with an error code and error message, else
any positive number.

Example:

$appInstObj->set_qresponse($error_code, $error_string, $qid);

Application properties
Use the APIs in this category to define and retrieve application properties.

set_property
Description: Use this interface to set the predefined properties for an application
type object. Application type objects are application instance, application unit, and
application file.

If you want to set custom or user defined properties, use the set_custom_property
API.

The below table lists the properties for application instance, unit, and file.

Table 2-3

CommentsExpected valueDescriptionProperty name

Any valid string value.Version numberVERSION

Any valid string value.Owner nameOWNER

This property is
mandatory for
application instance.

Online or offline.StateSTATE

17Managing Perl APIs
Using Perl APIs

Table 2-3 (continued)

CommentsExpected valueDescriptionProperty name

If your application
supports parallel
instances then set
this property to yes
otherwise no.

This is applicable for
application instance
and unit.

Yes or no.Whether the
application supports
parallel instances.

IS_PARALLEL

This is applicable for
application instance
and unit.

Any valid string value.Home directoryHOMEDIR

This is applicable for
application instance
and unit.

Any valid string value.Total sizeTOTAL_SIZE

This is applicable for
application instance
and unit.

Any valid string value.Used sizeUSED_SIZE

This is applicable for
application unit and
file.

For application file,
set this property to
Data if you want to
the Resiliency
Platform to consider
this file for disaster
recovery (DR)
configuration.

Any valid string value.TypeTYPE

This is applicable only
for application file.

Any valid string value.SizeSIZE

This is applicable only
for application file.

Permission of an
application file.

PERMISSION

18Managing Perl APIs
Using Perl APIs

Table 2-3 (continued)

CommentsExpected valueDescriptionProperty name

This is applicable only
for application file.

Set this property to
full path of an
application file if you
want the Resiliency
Platform to consider
this file for DR
configuration.

FILE_PATH

Is mandatory: No

Input parameter: String: Attribute name and attribute value

Return value: 0 if successful, else any positive number.

Example:

Application instance:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

$inst->set_property("FRIENDLY_NAME", "MyAppInstance");

}

Application unit:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

my $unit = $inst->add_application_unit("app_unit");

$unit->set_property("OWNER", "MyOwner");

}

Application file:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

my $file = $inst->add_application_file("master.data");

$file->set_property("SIZE", "100");

}

19Managing Perl APIs
Using Perl APIs

set_custom_property
Description: Use this interface to define custom property of your choice.

You can use this interface to set custom defined properties for an application
instance, application unit, and application file.

Is mandatory: No

Input parameter: String: Attribute name, attribute value, is_secure (true or false),
and attribute type. Attribute is_secure and type are optional. If is_secure is set to
true, then property value is encrypted.

Return value: 0 if property is added successfully, else any positive number.

Example:

Application instance:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

$inst->set_custom_property("HOMEDIR", "MyDir");

}

Application unit:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

my $unit = $inst->add_application_unit("app_unit");

$unit->set_custom_property("USER", "MyUser");

}

Application file:

my $inst = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

my $file = $inst->add_application_file("master.data");

$file->set_custom_property("CHECKSUM", "123456789");

}

Finish
The only API in this category is commit, which indicates the end of application
module script.

20Managing Perl APIs
Using Perl APIs

commit
Description: Use this interface to indicate the end of application module script. A
JSON output is generated which is used by the Application Enablement SDK. The
output consists of a number of tags and data which was provided while running the
script. Call this interface with print to print a JSON output on a STDOUT.

Is mandatory: Yes

Input parameter: None

Return value: A JSON output

Example:

print ($appObj->commit());

Managing clustered applications
The Resiliency Platform lets you manage the applications that are clustered using
any high availability technology. You can manage the applications as well as view
the clustering technology details on the Resiliency Platform web console. To do
this you must set the following custom properties using the set_custom_property
API on the application instance object.

Table 2-4 Custom property names

Expected valueDescriptionCustom property name

Any valid string value. e.g.
MSCS.

Type of your clustering
technology. This value is
displayed on the web
console. e.g. MSCS.

ClusterType

Any valid string value.Name of the container or the
service group name in the
cluster.

ServiceGroupName

Valid string value. true if
application is clustered, else
false.

Indicates whether your
application is clustered or not.

IsClustered

Ensure that you set all the three properties. Else, Resiliency Platform treats the
application as non-clustered and separate entries for the same application are
displayed on the console.

21Managing Perl APIs
Managing clustered applications

To view the clustering technology name on the console

1 Navigate

Assets > Unmanaged tab.

2 Select Application in Asset Type. The name is displayed in the Availability
column.

Sample script to set to custom properties
my $inst = $appObj->add_application_inst("sample_inst");

if (defined $inst)

{

$inst->set_custom_property("ClusterType", "MSCS");

$inst->set_custom_property("ServiceGroupName", "sample_inst_group");

$inst->set_custom_property("IsClustered", "true");

}

22Managing Perl APIs
Managing clustered applications

Testing the APIs
This chapter includes the following topics:

■ Unit testing of your application module script

■ Testing a script using CLI

■ Sample script

■ Sample script output

Unit testing of your application module script
The application module script is invoked as follows:

<Script_name>.pl -aes_args <args_file_path>

args_file contains the following:

For probe and deep discovery -

"{\"ARGS\":{\"AES_ARGS\":{\"OP_TYPE\":\"DISCOVERY\",\"OP\":\"PROBE\"}}}"

For Start and Stop operation -

"{\"ARGS\":{\"AES_ARGS\":{\"OP_TYPE\":\"OPERATION\",\"OP\":\"START\",

\"APP_INST_ID\":\"sdkdb\"}}}"

■ OP_TYPE : This is the operation type. Value is either 'DISCOVERY' or
'OPERATION'.

■ OP: This is the operation that is to be performed. Value can be 'PROBE', 'DEEP',
'START' and 'STOP'.

■ AAP_INST_ID : This is the application instance name on which the operation
is to be performed. This is optional for 'PROBE' and 'DEEP' discovery but
mandatory for 'START' and 'STOP' operation.

3Chapter

Testing a script using CLI
Use the following steps to test the application module script on the managed host
using the CLI.

Testing a script using CLI

1 Copy the application module script to any location on the managed host.

2 Open command prompt on Windows or shell in case of Linux.

3 Create an argument file and copy the following content in it .

For probe and deep discovery:

{"ARGS":{"AES_ARGS":{"OP_TYPE":"DISCOVERY","OP":"PROBE"}}}"

For start and stop operation:

{"ARGS":{"AES_ARGS":{"OP_TYPE":"OPERATION","OP":"START","APP_INST_ID"

:"sdkdb"}}}

4 Change the value of the JSON tags “OP_TYPE" and "OP” as per the
implementation of the application module script.

OP_TYPE supported values are “OPERATION” or “DISCOVERY".

OP value could be the operation that you have registered and implemented,
such as probe, start, etc.

5 Invoke the script with argument —aes_args and the argument file that you
have created.

For example: sample_app.pl —aes_args <args_file_path>

6 Check the log and the command output on STDOUT.

Command output varies as per the operation you have mentioned in “OP” in
the args file.

The location of the log file is as below:

■ Windows: c:\ProgramData\Symantec\VRTSsfmh\APP\log\APP_TYPE.log

■ Linux: /var/opt/VRTSsfmh/APP/log/APP_TYPE.log

24Testing the APIs
Testing a script using CLI

Sample script
Find below a template script that you can use for developing your application module
script. A sample script is also provided with hard coded data that can be modified
to develop your script.

Sample script
use strict;

use warnings;

use VRTS::AppSDK::AppEnablementSDK::Application;

use VRTS::AppSDK::AppEnablementSDK::Constants qw(:LOG_LEVELS :

APP_INST_ATTRS :APP_UNIT_ATTRS :APP_FILE_ATTRS :

APP_CUSTOM_ATTRS :APP_INPUT_KEYS);

Define an application here

my $appObj = new VRTS::AppSDK::AppEnablementSDK::Application("SampleApp");

if(defined $appObj)

{

Set and register various operations that this application script

supports.

$appObj->set_discovery_types("DEEP, PROBE");

$appObj->set_operation_types("START, STOP");

$appObj->register_operation_callback("START",\&start);

$appObj->register_operation_callback("STOP",\&stop);

$appObj->register_discovery_callback("PROBE",\&probe);

$appObj->register_discovery_callback("DEEP",\&deep);

print ($appObj->commit());

}

#################################

#Function: start

#

#Starts an application instance

#

#Parameters:

#arg - hash containing the application instance name

#

#Returns:

0 if successful else 1

you can also return success or failure message which is optional.

#################################

25Testing the APIs
Sample script

sub start

{

my ($arg) = @_;

my $FuncName = (caller 0)[3];

$appObj->log(LOGLEVEL_DEBUG,"Inside $FuncName");

my $inst_name = $arg->{INSTANCE_NAME};

$appObj->log(LOGLEVEL_DEBUG,"Application instance name: [$inst_name]");

#Write the code here to start an application instance

#and return an appropriate status code and message.

#Return 0 for success and 1 for failure.

return 0, "Start is successful";

}

#################################

#Function: stop

#

#Stops an application instance

#

#Parameters:

#arg - hash containing the application instance name

#

#Returns:

0 if successful else 1

you can also return success or failure message which is optional.

#################################

sub stop

{

my ($arg) = @_;

my $FuncName = (caller 0)[3];

$appObj->log(LOGLEVEL_DEBUG,"Inside $FuncName");

my $inst_name = $arg->{INSTANCE_NAME};

$appObj->log(LOGLEVEL_DEBUG,"Application instance name: [$inst_name]");

#Write the code here to stop an application instance

#and return an appropriate status code and message.

#Return 0 for success and 1 for failure.

26Testing the APIs
Sample script

return 0, "Stop is successful";

}

#################################

#Function: probe

#

#Discovers and reports the application instance state

#

#Parameters:

#arg - hash containing the application instance name

#

#Returns:

0 if successful else 1

you can also return success or failure message which is optional.

#################################

sub probe

{

my ($arg) = @_;

my $FuncName = (caller 0)[3];

$appObj->log(LOGLEVEL_DEBUG,"Inside $FuncName");

#Write the code here to discover and report the application instance name.

#Report the state of the discovered application instance

on the Resiliency Platform.

my $inst_name = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

The state must be reported either 'online' or 'offline'

$inst_name->set_property(APP_INST_STATE,"Online");

}

#return 0 if successful else 1

return 0, "Probe is successful";

}

#################################

#Function: deep

#

#Discovers and reports the sub-components and data file information of

#an application instance.

27Testing the APIs
Sample script

#

#Parameters:

#arg - hash containing the application instance name

#

#Returns:

0 if successful else 1

you can also return success or failure message which is optional.

#################################

sub deep

{

my ($arg) = @_;

my $FuncName = (caller 0)[3];

$appObj->log(LOGLEVEL_DEBUG,"Inside $FuncName");

#Write the code here to discover and report the sub-components

and the data file information of an application instance.

my $inst_name = $appObj->add_application_inst("app_inst");

if (defined $inst)

{

Set application instance properties

Ensure that the following property is set, else the application

state is not displayed on the Resiliency Platform web console.

You cannot perform operations if the state is not displayed

on the console.

Accepted values are 'online' and 'offline'

$inst_name->set_property(APP_INST_STATE,"Online");

Following properties are optional

$inst->set_property(APP_INST_VERSION,"1.0");

$inst->set_property(APP_INST_OWNER,"Administrator");

$inst->set_property(APP_INST_ISPARALLEL,"false");

$inst->set_property(APP_INST_HOMEDIR,"inst_homedir");

$inst->set_property(APP_INST_APP_TYPE,"emp_database");

$inst->set_property(APP_INST_APP_CATEGORY,"database");

$inst->set_property(APP_INST_TOTAL_SIZE,"100");

$inst->set_property(APP_INST_USED_SIZE,"90");

Set application instance custom properties

28Testing the APIs
Sample script

Setting custom properties is optional.

$inst->set_custom_property("app_disp_name", "sample_instance");

#################################

If your application is clustered using any high availability

technology, then you need to set the following custom properties.

$inst->set_custom_property("ClusterType", "MSCS");

$inst->set_custom_property("ServiceGroupName", "sample_sg");

$inst->set_custom_property("IsClustered", "true");

#-------------------------------

Check if your application module script requires additional

information such as user name and password from the user

who is accessing the Resiliency Platform web console.

If information is required, then check if the information

is already asked and do we have its responses available here

using the following API. Use those responses to complete

your task.

Use following API with QID as input

my $response1 = $inst->get_qresponse('1');

my $response2 = $inst->get_qresponse('2');

#-------------------------------

If response is not available then ask for information

again using the following API:

Define questions to be asked in a hash

my $qid1 = {

'QID' => '1',

'QText' => 'Administrator user name',

'Mandatory' => 'yes',

'QDescription' => 'Specify the administrator user name

to discover its data files.',

'Encrypted' => 'no'};

my $qid2 = {

'QID' => '2',

29Testing the APIs
Sample script

'QText' => 'Administrator password',

'Mandatory' => 'yes',

'QDescription' => 'Specify the administrator user password

to discover its data files.',

'Encrypted' => 'yes'};

Add the hash using the following API:

$inst->add_question($qid1);

$inst->add_question($qid2);

#-------------------------------

Write the code here to discover an application unit (application

sub-components) and application files information.

Note: Discovering application unit is not mandatory

but discovering application files is mandatory.

Add application sub-component here

my $unit = $inst->add_application_unit("app_unit");

Add properties for application unit

Following properties are optional:

$unit->set_property(APP_UNIT_OWNER, "unit_owner");

$unit->set_property(APP_UNIT_VERSION, "1.0");

$unit->set_property(APP_UNIT_STATE, "online");

$unit->set_property(APP_UNIT_ISPARALLEL, "false");

$unit->set_property(APP_UNIT_HOMEDIR, "unit_homedir");

$unit->set_property(APP_UNIT_TYPE, "database");

$unit->set_property(APP_UNIT_TOTAL_SIZE, "100");

$unit->set_property(APP_UNIT_USED_SIZE, "50");

Setting custom properties is optional.

$unit->set_custom_property("unit_disp_name", "sample_unit");

#-------------------------------

Write the code here to discover information of application data files.

my $file = $inst->add_application_file("app_file");

Following property is important and mandatory if you want to

configure your application for disaster recovery.

Value of this property could be data, log, etc. but the

Resiliency Platform considers only those DR configuration files

30Testing the APIs
Sample script

which are marked as 'data'.

$file->set_property(APP_FILE_TYPE, "data");

Following property is important and mandatory if you want to

configure your application for disaster recovery.

Value of the property must be full file path

e.g. '/root/app_inst/app_file.data' or

'c:\\app_inst\\app_file.data'

$file->set_property(APP_FILE_PATH, "c:\\app_inst\\app_file.data");

Following properties are optional:

$file->set_property(APP_FILE_NAME, "app_file.data");

$file->set_property(APP_FILE_VERSION, "1.0");

$file->set_property(APP_FILE_OWNER, "administrator");

$file->set_property(APP_FILE_STATE, "online");

$file->set_property(APP_FILE_SIZE, "10");

$file->set_property(APP_FILE_PERMISSION, "all");

Setting custom properties is optional.

$file->set_custom_property("file_desc", "Database file");

}

#return 0 if successful else 1

return 0, "deep discovery is successful";

}

Sample script output
Below are outputs of some sample scripts with different use cases.

Scenario 1: Probe Discovery
Args input file contains:

{"ARGS":{"AES_ARGS":{"OP_TYPE":"DISCOVERY","OP":"Probe"}}}

JSON output after script execution:

31Testing the APIs
Sample script output

{

"APPLICATION" : {

"APP_NAME" : "SampleApp",

"OPERATION_TYPES" : {

"START" : {

"Name" : "START"

},

"STOP" : {

"Name" : "STOP"

}

},

"DISCOVERY_TYPES" : {

"DEEP" : {

"Name" : "DEEP"

},

"PROBE" : {

"Name" : "PROBE"

}

},

"AES_VERSION" : "1.0.0.0"

},

"APPLICATION_INSTANCE" : {

"SampleApp" : {

"APP_ID" : "SampleApp",

"NAME" : "SampleApp",

"DISCOVERY_TYPE" : "discovered",

"INFO_REQUIRED" : "no",

"STATE" : "Online",

"APP_TYPE" : "SampleApp"

}

},

"OPERATIONS" : {

"PROBE" : {

"OPERATION_NAME" : "PROBE",

"APP_NAME" : "SampleApp",

"OPERATION_ARGS" : {

"INSTANCE_NAME" : "SampleApp"

},

"OPERATION_EXECUTED" : 1,

"RET_CODE" : 0,

"AES_VERSION" : "1.0.0.0",

"OPERATION_TYPE" : "DISCOVERY",

"ERR_CODE" : 0,

32Testing the APIs
Sample script output

"RET_MSG" : "probe is successful"

}

}

}

Scenario 2: Deep Discovery
Args input file contains:

{"ARGS":{"AES_ARGS":{"OP_TYPE":"DISCOVERY","OP”:"DEEP"}}}

JSON output after script execution:

{

"APPLICATION" : {

"APP_NAME" : "SampleApp",

"OPERATION_TYPES" : {

"START" : {

"Name" : "START"

},

"STOP" : {

"Name" : "STOP"

}

},

"DISCOVERY_TYPES" : {

"DEEP" : {

"Name" : "DEEP"

},

"PROBE" : {

"Name" : "PROBE"

}

},

"AES_VERSION" : "1.0.0.0"

},

"APPLICATION_INSTANCE" : {

"app_inst" : {

"APP_ID" : "app_inst",

"NAME" : "app_inst",

"HOMEDIR" : "inst_homedir",

"APPLICATION_INSTANCEProps" : {

"SERVICEGROUPNAME" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "sample_sg",

"PROP_NAME" : "ServiceGroupName"

},

33Testing the APIs
Sample script output

"CLUSTERTYPE" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "MSCS",

"PROP_NAME" : "ClusterType"

},

"ISCLUSTERED" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "true",

"PROP_NAME" : "IsClustered"

},

"APP_DISP_NAME" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "sample_instance",

"PROP_NAME" : "app_disp_name"

}

},

"TOTAL_SIZE" : 100,

"DISCOVERY_TYPE" : "discovered",

"APP_INPUTS" : {

"QID1" : {

"QID" : 1,

"QDescription" : "Specify the administrator user name

to discover its data files.",

"Mandatory" : "yes",

"QText" : "Administrator user name",

"Encrypted" : "no"

},

"QID2" : {

"QID" : 2,

"QDescription" : "Specify the administrator user password

to discover its data files.",

"Mandatory" : "yes",

"QText" : "Administrator password",

"Encrypted" : "yes"

}

},

"APP_CATEGORY" : "database",

"INFO_REQUIRED" : "yes",

"APP_TYPE" : "SampleApp",

"STATE" : "online",

"VERSION" : 1,

"USED_SIZE" : 90,

"OWNER" : "Administrator"

34Testing the APIs
Sample script output

}

},

"APPLICATION_FILE" : {

"app_inst;app_file" : {

"SIZE" : 10,

"APP_ID" : "app_inst",

"NAME" : "app_file",

"APPLICATION_FILEProps" : {

"FILE_DESC" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "Database file",

"PROP_NAME" : "file_desc"

}

},

"TYPE" : "data",

"PERMISSION" : "all",

"FILE_PATH" : "c:\\app_inst\\app_file.data",

"FILE_ID" : "app_inst;app_file",

"STATE" : "online",

"VERSION" : 1,

"OWNER" : "administrator"

}

},

"APPLICATION_UNIT" : {

"app_inst;app_unit" : {

"APP_ID" : "app_inst",

"APPLICATION_UNITProps" : {

"UNIT_DISP_NAME" : {

"PROP_TYPE" : "",

"PROP_VALUE" : "sample_unit",

"PROP_NAME" : "unit_disp_name"

}

},

"NAME" : "app_unit",

"HOMEDIR" : "unit_homedir",

"TYPE" : "database",

"APP_UNIT_ID" : "app_inst;app_unit",

"TOTAL_SIZE" : 100,

"STATE" : "online",

"VERSION" : 1,

"USED_SIZE" : 50,

"OWNER" : "unit_owner"

}

35Testing the APIs
Sample script output

},

"OPERATIONS" : {

"DEEP" : {

"OPERATION_NAME" : "DEEP",

"APP_NAME" : "SampleApp",

"OPERATION_EXECUTED" : 1,

"RET_CODE" : 0,

"AES_VERSION" : "1.0.0.0",

"OPERATION_TYPE" : "DISCOVERY",

"ERR_CODE" : 0,

"RET_MSG" : "deep discovery is successful"

}

}

}

Scenario 3: Start operation
Args input file contains:

{"ARGS":{"AES_ARGS":{"OP_TYPE”:"OPERATION","OP”:"START","APP_INST_ID"

:"SampleApp"}}}

JSON output after script execution:

{

"APPLICATION" : {

"APP_NAME" : "SampleApp",

"OPERATION_TYPES" : {

"START" : {

"Name" : "START"

},

"STOP" : {

"Name" : "STOP"

}

},

"DISCOVERY_TYPES" : {

"DEEP" : {

"Name" : "DEEP"

},

"PROBE" : {

"Name" : "PROBE"

}

},

"AES_VERSION" : "1.0.0.0"

},

36Testing the APIs
Sample script output

"OPERATIONS" : {

"START" : {

"OPERATION_NAME" : "START",

"APP_NAME" : "SampleApp",

"OPERATION_ARGS" : {

"INSTANCE_NAME" : "SampleApp"

},

"OPERATION_EXECUTED" : 1,

"RET_CODE" : 0,

"AES_VERSION" : "1.0.0.0",

"OPERATION_TYPE" : "OPERATION",

"ERR_CODE" : 0,

"RET_MSG" : "Start is successful"

}

}

}

Scenario 4: Stop operation
Args input file contains:

{"ARGS":{"AES_ARGS":{"OP_TYPE”:"OPERATION","OP”:"STOP","APP_INST_ID"

:"SampleApp"}}}

JSON output after script execution:

{

"APPLICATION" : {

"APP_NAME" : "SampleApp",

"OPERATION_TYPES" : {

"START" : {

"Name" : "START"

},

"STOP" : {

"Name" : "STOP"

}

},

"DISCOVERY_TYPES" : {

"DEEP" : {

"Name" : "DEEP"

},

"PROBE" : {

"Name" : "PROBE"

}

},

37Testing the APIs
Sample script output

"AES_VERSION" : "1.0.0.0"

},

"OPERATIONS" : {

"STOP" : {

"OPERATION_NAME" : “STOP",

"APP_NAME" : "SampleApp",

"OPERATION_ARGS" : {

"INSTANCE_NAME" : "SampleApp"

},

"OPERATION_EXECUTED" : 1,

"RET_CODE" : 0,

"AES_VERSION" : "1.0.0.0",

"OPERATION_TYPE" : "OPERATION",

"ERR_CODE" : 0,

"RET_MSG" : “Stop is successful"

}

}

}

Check the following properties in the OPERATIONS tag in the JSON output after
executing a script.

■ OPERATION_EXECUTED denotes whether the operation is executed. 1
indicates executed, 0 for not executed.

■ RET_CODE denotes whether the operation is successfully executed. 0 indicates
success and any positive number for failure. This return code is set by the
callback function for the respective operations.

■ ERR_CODE displays the error code when the operation fails. 0 indicates no
error.

■ RET_MSG displays the return message for the respective operation. This return
message is set by the callback function for the respective operations.

38Testing the APIs
Sample script output

Deployment
This chapter includes the following topics:

■ About the manifest file

About the manifest file
The Application Enablement SDK bundle file should contain a manifest file named
bundle.ini. A single bundle file can be used to create an add-on supporting multiple
operating systems. The bundle file should have the following structure:

[Main]

name = my_app;

friendly name = My App;

category = Database;

vendor = My Company Inc;

description = My description;

version = 1.0.0.0;

copyright = Copyright (C) My Company Inc. All rights reserved.;

discovery_types = DEEP, PROBE;

operation_types = START, STOP;

[linux]

content = my_directory1;

[windows]

content = my_directory2;

The following table lists the descriptions of the fields.

4Chapter

Table 4-1 Descriptions

DescriptionField

Specify the name of the application.Name

Specify a friendly name which is displayed
on the Resiliency Manager.

Friendly name

Specify the application category such as
database.

Category

Specify the name of the vendor.Vendor

Specify a description of the application.Description

Specify one to four dot-separated integers
identifying the version. Integers must be
between 0 and 999. Examples of version are:
1.2.3.4.

Version

Specify the copyright year.Copyright

Specify Linux or Windows. Create separate
sections for each of the supported operating
systems.

Linux - RHEL 6 x86_64 and RHEL 7 x86_64.

Windows - All supported Windows x64
platforms.

osname

This directory must contain the app.pl script.
All the contents of this directory shall be a
part of the add-on. The directory path
specified in the content should be relative to
the location of the bundle.ini file.

content

The directory structure to create the bundle must be as follows:

my_bundle_data

mybundle.tar.gz

|--bundle.ini

|--my_directory1

| |--app.pl

|--my_directory2

|--app.pl

You can create the bundle using the following command:

40Deployment
About the manifest file

tar czvf mybundle.tar.gz -C my_bundle_data/

You can verify that the bundle has been created as per the expected directory
structure by executing the following command:

tar tvf mybundle.tar.gz

Output should be as below:

mybundle.tar.gz

|--bundle.ini

|--my_directory1

| |--app.pl

|--my_directory2

|--app.pl

Note: The only supported format of the bundle is .tar.gz. For Windows, use any
third party application to create the bundle in the .tar.gz format.

41Deployment
About the manifest file

A
API

add application objects 7
add application properties 7
application inputs 7
define an application 7
finish 7
logging 7

Application APIs
new 8
register_discovery_callback 8
register_operation_callback 8
set_discovery_types 8
set_operations_types 8

application enablement SDK
about 5

Application inputs APIs
add_question 15
get_qresponse 15
set_qresponse 15

application module 6
application module script

unit testing 23
Application objects APIs

add_application_file 13
add_application_instance 13
add_application_unit 13

Application properties APIs
set_custom_property 17
set_property 17

B
bundle.ini

about 39

C
clustered applications

managing 21
constants module 6

F
Finish API

commit 20

L
logging APIs

log 12
reset_log 12

M
manifest file

about 39

S
sample script 25

output 31

Index

	Veritas™ Resiliency Platform 2.0: Application Enablement SDK
	Contents
	1. Introduction
	Introduction to Application Enablement SDK

	2. Managing Perl APIs
	About Perl APIs
	Using Perl APIs
	Define an application
	Logging
	Application objects
	Application inputs
	Application properties
	Finish

	Managing clustered applications

	3. Testing the APIs
	Unit testing of your application module script
	Testing a script using CLI
	Sample script
	Sample script output

	4. Deployment
	About the manifest file

	Index

