
Cluster Server Agent for
Docker Installation and
Configuration Guide

Linux

8.0

March 2023

Cluster Server Agent for Docker Installation and
Configuration Guide

The software described in this book is furnished under a license agreement and may be used
only in accordance with the terms of the agreement.

Agent Version: 8.0

Document version: 8.0 Rev 1

Legal Notice
Copyright © 2023 Veritas Technologies LLC. All rights reserved.

Veritas and the Veritas Logo are trademarks or registered trademarks of Veritas Technologies
LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their
respective owners.

This product may contain third party software for which Veritas is required to provide attribution
to the third party (“Third Party Programs”). Some of the Third Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Please see the Third Party Legal Notice Appendix to this Documentation
or TPIP ReadMe File accompanying this product for more information on the Third Party
Programs.

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by any means without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

Veritas Technologies LLC
500 E Middlefield Road
Mountain View, CA 94043

http://www.veritas.com

http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. Technical Support’s primary
role is to respond to specific queries about product features and functionality. The
Technical Support group also creates content for our online Knowledge Base. The
Technical Support group works collaboratively with the other functional areas within
the company to answer your questions in a timely fashion.

Our support offerings include the following:

■ A range of support options that give you the flexibility to select the right amount
of service for any size organization

■ Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers software upgrades

■ Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

■ Premium service offerings that include Account Management Services

For information about our support offerings, you can visit our website at the following
URL:

www.veritas.com/support

All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.veritas.com/support

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be at
the computer on which the problem occurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

■ Hardware information

■ Available memory, disk space, and NIC information

www.veritas.com/support
www.veritas.com/support

■ Operating system

■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Technical Support

■ Recent software configuration changes and network changes

Licensing and registration
If your product requires registration or a license key, access our technical support
Web page at the following URL:

www.veritas.com/support

Customer service
Customer service information is available at the following URL:

www.veritas.com/support

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and support contracts

■ Advice about technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs, DVDs, or manuals

www.veritas.com/support
www.veritas.com/support

Support agreement resources
If you want to contact us regarding an existing support agreement, please contact
the support agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com

Technical Support .. 4

Chapter 1 Introducing the agents for Docker 10

About the Cluster Server agents for Docker Daemon and Docker
Container .. 10
Supported software ... 11

How the agents makes Docker highly available 11
Features of the agents ... 11
Docker Daemon agent functions .. 12

Online .. 12
Offline .. 12
Monitor ... 12
Clean ... 12
imf_init ... 13
imf_getnotification .. 13
imf_register ... 13

Docker Container agent functions .. 13
Online .. 13
Offline .. 14
Monitor ... 14
Clean ... 14
imf_init ... 15
imf_getnotification .. 15
imf_register ... 15

Typical Docker configuration in a VCS cluster 15
Setting up Docker in a VCS cluster .. 16

Chapter 2 Introducing Docker and Docker Daemon process
... 17

About Docker .. 17
Docker Daemon process ... 18

Recommendations for configuring Docker ... 18

Contents

Chapter 3 Installing and removing the agents for Docker
... 19

Before you install the Cluster Server agents for Docker 19
About the ACC library .. 20
Installing the ACC library .. 20
Installing the agents ... 21
Removing the agents .. 21
Removing the ACC library .. 22

Chapter 4 Configuring the agents for Docker 23

About configuring the Cluster Server agents for Docker 23
Importing the agent types files in a VCS environment 24
Docker Daemon agent attributes ... 25

About the keys of the IMF attribute ... 28
Enabling the Docker Daemon agent to support IMF 30

Disabling intelligent resource monitoring 30
Docker Container agent attributes .. 30

About the keys of the IMF attribute ... 34
Enabling the Docker Container agent to support IMF 36

Disabling intelligent resource monitoring 36
Limitations of VCS Docker agents .. 36

Chapter 5 Configuring service groups for Docker 37

About configuring service groups for Docker 37
Before configuring the service groups for Docker 37
Configuring service groups for Docker Daemon 38
Configuring service groups for Docker Container 39

Chapter 6 Troubleshooting the agents for Docker 42

Preliminary troubleshooting checks .. 42
Starting the Docker Daemon instance outside a cluster 43
Starting the Docker Container instance outside a cluster 43
Reviewing log files .. 44

Using trace level logging .. 44
Troubleshooting the agent .. 46

Appendix A Sample Configurations .. 47

About sample configurations for the agents for Docker 47
Sample agent type definition for Docker Daemon 47
Sample agent type definition for Docker Container 48

8Contents

Sample Docker resource configuration .. 49
Sample configuration for Docker .. 49
Sample configuration for Podman .. 53

Sample service group dependency .. 54

Index .. 56

9Contents

Introducing the agents for
Docker

This chapter includes the following topics:

■ About the Cluster Server agents for Docker Daemon and Docker Container

■ How the agents makes Docker highly available

■ Features of the agents

■ Docker Daemon agent functions

■ Docker Container agent functions

■ Typical Docker configuration in a VCS cluster

■ Setting up Docker in a VCS cluster

About the Cluster Server agents for Docker
Daemon and Docker Container

The Cluster Server (VCS) agents monitor specific resources within an enterprise
application. They determine the status of resources and start or stop them according
to external events.

The Cluster Server agents for Docker Daemon and Docker Container provides high
availability for Docker Daemon and Docker Containers or Podman Daemon and
Podman container in cluster. The Docker daemon provides the base infrastructure
for creating and hosting Docker containers. The Docker Container agent monitors
the Docker Container instances while they are online and offline. If the system fails,
the agent detects failure and takes the container instances offline. Cluster Server

1Chapter

initiates failover to another system in the cluster and the agent brings the container
instances online.

Supported software
For information on the software versions that the Cluster Server agents for Docker
support, see the Veritas Services and Operations Readiness Tools (SORT) site:
http://sort.veritas.com/agents.

How the agents makes Docker highly available
The Cluster Server agent for Docker Daemon continuously monitors the Docker
Daemon process to check the status of the Docker Service. The agent for Docker
Daemon is Intelligent Monitoring Framework (IMF) aware and uses Asynchronous
Monitoring Framework (AMF) kernel driver for IMF notification.

The Cluster Server agent for Docker Container monitors the configured container
using the docker inspect command. The agent for Docker Container is IMF aware
and uses AMF kernel driver for IMF notification.

Features of the agents
The Cluster Server agents for Docker Daemon and Docker Container has the
following features:

■ Support for First Failure Data Capture (FFDC)
In case of a fault, the Docker Daemon and Docker Container agents generate
debug logs that enable troubleshooting of the fault.

■ Support for intelligent resource monitoring and poll-based monitoring
The Docker Daemon and Docker Container agents support the VCS Intelligent
Monitoring Framework feature. IMF allows the agent to register the resources
to be monitored with the IMF notification module to receive immediate notification
of resource state changes without having to periodically poll the resources.

■ Support for Docker container failover
The Docker Container agent supports Docker container failover.
Data volumes attached to the containers can also be failed over, if they are
configured on the shared storage that is accessible to all the nodes.

11Introducing the agents for Docker
How the agents makes Docker highly available

http://sort.veritas.com/agents

Docker Daemon agent functions
The agent consists of resource type declarations and agent executables. The agent
executables are organized into online, offline, monitor, and clean functions.

Online
The online function performs the following tasks:

■ Verifies that the Docker daemon is not already stopped. If the daemon is already
stopped, it exits immediately.

■ Verifies that the required attributes are set correctly.

■ Attempts to start the specified Docker daemon using the start command specified
as part of the DaemonStartCommand attribute. The default start command is
/usr/sbin/service docker start.

Offline
The offline function performs the following tasks:

■ Verifies that the Docker daemon is not already stopped. If the daemon is already
stopped, it exits immediately.

■ Verifies that the required attributes are set correctly.

■ Attempts to start the specified Docker daemon using the stop command specified
as part of the DaemonStopCommand attribute. The default start command is
/usr/sbin/service docker stop.

Monitor
The monitor function monitors the state of the Docker daemon on all nodes in the
cluster. The function performs the following tasks:

■ The first-level check searches for the Docker daemon process. The Docker
daemon process pattern can be specified as part of the DaemonProcPattern
attribute. Perl regular expression can be specified to match the Docker daemon
process pattern.

■ The second-level check for the Docker daemon runs the service docker

status command. If the Docker daemon is in the ‘Runnning’ state, the agent
reports the resource as online.

Clean
The clean function performs the following tasks:

12Introducing the agents for Docker
Docker Daemon agent functions

■ If a graceful shutdown was not attempted earlier by the agent, the agent attempts
to stop the Docker daemon using the graceful shutdown command.

■ If the Docker daemon process is still running, even after a graceful shutdown
attempt, the agent kills the Docker daemon process.

imf_init
This function initializes the Docker Daemon agent to interface with the AMF kernel
driver, which is the IMF notification module for the agent for Docker Daemon. This
function runs when the agent starts up.

imf_getnotification
This function gets notifications about resource state changes. This function runs
after the agent initializes with the AMF kernel module. This function continuously
waits for notification and takes action on the resource upon notification.

imf_register
This function registers or unregisters resource entities with the AMF kernel module.
This function runs for each resource after the resource goes into a steady online
or offline state.

Docker Container agent functions
The agent consists of resource type declarations and agent executables. The agent
executables are organized into online, offline, monitor, and clean functions.

Online
The online function performs the following tasks:

■ Verifies that the container with the name specified in the ContainerName attribute
is not already running. If the container with the name specified in the
ContainerName attribute is running, it exits immediately and resource is reported
online.

■ If a container with the given name does not exists, the online entry point creates
a container using the ImageName, DockerRunOptions, and
ContainerInitCommand attributes.

■ If a container with the given name exists, the online operation attempts to start
the Docker Container using the docker start command.

13Introducing the agents for Docker
Docker Container agent functions

Offline
The offline function performs the following tasks:

■ Verifies that the container is not already stopped. If the container is not running,
the agent exits immediately and reports the resource as offline.

■ Attempts to stop the specified Docker Container using the docker stop

--time=<OfflineTimeout> command. If the application does not handle the
SIGTERM signal, the stop command will wait till the OfflineTimeout seconds
before killing the container process forcefully using the SIGKILL signal.

Note: OfflineTimeout is a type-level attribute for the Docker Container agent.

Monitor
The monitor function monitors the state of the Docker container on all nodes in the
cluster. The function performs the following tasks:

■ If a container with a given name does not exist, the monitor entry points report
the container as offline.

■ If a container with a given name exists, the monitor entry point runs the docker

inspect command to get the state of container.

■ Checks for the state of the container. If the state of the container is paused or
restarting, it reports the state as unknown.

■ Reports the state of the container as online, if the container is in the running
state.

Clean
The clean function performs the following tasks:

■ Attempts to gracefully shut down the Docker container using the docker stop

command.

■ If an attempt to stop the container gracefully fails, it kills the container PID that
is retrieved using the docker inspect command on the container.
.

14Introducing the agents for Docker
Docker Container agent functions

imf_init
This function initializes the Docker Container agent to interface with the AMF kernel
driver, which is the IMF notification module for the agent for Docker Container. This
function runs when the agent starts up.

imf_getnotification
This function gets notifications about resource state changes. This function runs
after the agent initializes with the AMF kernel module. This function continuously
waits for notification and takes action on the resource upon notification.

imf_register
This function registers or unregisters resource entities with the AMF kernel module.
This function runs for each resource after the resource goes into a steady online
or offline state.

Typical Docker configuration in a VCS cluster
A typical Docker configuration in a VCS cluster has the following characteristics:

■ VCS is installed and configured.

■ The Docker binaries are installed locally on all nodes.

■ The Docker daemon data directory is on the shared storage.

■ The Cluster Server agents for Docker are installed on all nodes.

Figure 1-1 depicts a typical Docker configuration.

15Introducing the agents for Docker
Typical Docker configuration in a VCS cluster

Figure 1-1 Docker Configuration

Setting up Docker in a VCS cluster
Follow the steps below to set up Docker in a cluster:

■ Set up a VCS cluster.

■ Install the Cluster Server agent for Docker Daemon and Docker Container.
See “Installing the agents ” on page 21.

■ Configure the Docker Daemon and Docker Container agents for high availability.

■ Configure the service groups for Docker Daemon and Docker Container.
See “About configuring service groups for Docker” on page 37.

16Introducing the agents for Docker
Setting up Docker in a VCS cluster

Introducing Docker and
Docker Daemon process

This chapter includes the following topics:

■ About Docker

■ Recommendations for configuring Docker

About Docker
Docker is an open platform that allows programmers and system administrators to
develop, ship, and run distributed applications. It allows programmers to build
applications with Docker containers using any language and tools. Docker provides
instant application portability. The applications can be assembled quickly, shipped
faster, and scaled on thousands of hosts. The Docker applications can also be
moved between data centers and clouds and updated with zero downtime.

Docker consists of the following components:

■ Docker daemon - A portable and lightweight application runtime and packaging
tool. The Docker daemon manages containers and a client, which controls the
daemon.

■ Docker containers - A container that comprises the applications and its
dependencies. Each container is created from a Docker image. It runs as an
isolated process in the user space on the host operating system and shares the
kernels with other containers.

■ Docker images - A read-only template that is used to create Docker containers.
Docker provides a simple way to create, update, and download images from
the Docker registries.

2Chapter

Docker Daemon process
The Docker Daemon agent uses the Docker daemon process. The Docker daemon
process creates, starts, stops, modifies, and deletes Docker containers in the cluster.

Recommendations for configuring Docker
This section lists the recommendations and guidelines for configuring Docker
Container resources in a VCS environment.

■ Specify all attribute values to ensure high availability of the containers.

■ Specify long running processes before creating containers using the docker

run command.

■ Ensure that the Docker images are pulled locally on all of the cluster nodes. If
the container does not exist, the agent creates container during the online
operation. If image is not available, it would be pulled from the Docker registry,
which may consume more time. The OnlineTimeOut attribute value should be
set appropriately.

■ If the application running in the Docker container needs to update data
persistently, ensure that the data resides on the shared storage. The container
data volume should be shared across the cluster nodes.

18Introducing Docker and Docker Daemon process
Recommendations for configuring Docker

Installing and removing the
agents for Docker

This chapter includes the following topics:

■ Before you install the Cluster Server agents for Docker

■ About the ACC library

■ Installing the ACC library

■ Installing the agents

■ Removing the agents

■ Removing the ACC library

Before you install the Cluster Server agents for
Docker

You must install the Cluster Server agents for Docker on all the systems that will
host Docker service groups.

Ensure that you meet the following prerequisites to install the agents for Docker.

■ Install and configure Cluster Server.
For more information about installing and configuring Cluster Server, refer to
the Cluster Server installation and configuration guides.

■ Install Docker binaries on each node in the cluster from
https://docs.docker.com/installation/rhel/.

3Chapter

https://docs.docker.com/installation/rhel/

About the ACC library
The operations of a VCS agent depend on a set of Perl modules known as the ACC
library. The library must be installed on each system in the cluster that runs the
agent. The ACC library contains common, reusable functions that perform tasks,
such as process identification, logging, and system calls.

Instructions to install or remove the ACC library on a single system in the cluster
are given in the following sections. The instructions assume that the ACCLib tar
file has already been extracted.

Note: The LogDbg attribute should be used to enable debug logs for the
ACCLib-based agents when the ACCLib version is 6.2.0.0 or later and VCS version
is 6.2 or later.

Installing the ACC library
Install the ACC library on each node in the cluster that runs the agent.

To install the ACC library

1 Log in as a superuser.

2 Download the ACC library from the Veritas Services and Operations Readiness
Tools (SORT) site (http://sort.veritas.com/agents).

You can download either the complete Agent Pack tar file or the individual
ACCLib tar file.

3 If you downloaded the complete Agent Pack tar file, navigate to the Linux
directory.

cd1/linux/generic/vcs/application/acc_library/
version_library/rpms

Linux

4 If you downloaded the individual ACCLib tar file, navigate to the rpms directory.

5 Install the package. Enter Yes if asked to confirm overwriting of files in the
existing package.

rpm -ivh \
VRTSacclib-VersionNumber-GENERIC.noarch.rpm

Linux

20Installing and removing the agents for Docker
About the ACC library

http://sort.veritas.com/agents

Installing the agents
Install the agents for Docker on each node in the cluster.

To install the agent in a VCS environment

1 Download the agent from the Veritas Services and Operations Readiness Tools
(SORT) site: http://sort.veritas.com/agents.

You can download either the complete Agent Pack tar file or an individual agent
tar file.

2 Uncompress the file to a temporary location, say /tmp.

3 If you downloaded the complete Agent Pack tar file, navigate to the Linux
directory.

cd1/linux/generic/vcs/application/docker_agent/
vcs_version/version_agent/rpms

Linux

4 Log in as a superuser.

5 Install the package.

rpm -ihv \
VRTSvcsdocker-6.2.0.0-GENERIC.noarch.rpm

Linux

The agents for the Docker Daemon and the Docker Container are installed.

6 After installing the agent package, you must import the agent type configuration
file. See “Importing the agent types files in a VCS environment” on page 24.

Removing the agents
You must uninstall the agents for Docker from a cluster while the cluster is active.

To uninstall the agents in a VCS environment

1 Log in as a superuser.

2 Set the cluster configuration mode to read-write by running the following
command from any node in the cluster:

haconf -makerw

21Installing and removing the agents for Docker
Installing the agents

http://sort.veritas.com/agents

3 Remove all Docker resources from the cluster. Run the following commands
to verify that all resources have been removed:

hares -list Type=DockerDaemon

hares -list Type=DockerContainer

4 Remove the agent type from the cluster configuration by running the following
commands from any node in the cluster:

hatype -delete DockerDaemon

hatype -delete DockerContainer

Removing the agent’s type file from the cluster removes the include statement
for the agent from the main.cf file, but the agent's type file is not removed
from the cluster configuration directory. You can remove the agent’s type file
later from the cluster configuration directory.

5 Save these changes. Then set the cluster configuration mode to read-only by
running the following command from any node in the cluster:

haconf -dump -makero

6 Use the native software management program to remove the agents for Docker
from each node in the cluster.

Run the following command to uninstall the agents:

rpm -e VRTSvcsdockerLinux

Removing the ACC library
Perform the following steps to remove the ACC library.

To remove the ACC library

1 Ensure that all agents that use ACC library are removed.

2 Run the following command to remove the ACC library package:

rpm -e VRTSacclibLinux

22Installing and removing the agents for Docker
Removing the ACC library

Configuring the agents for
Docker

This chapter includes the following topics:

■ About configuring the Cluster Server agents for Docker

■ Importing the agent types files in a VCS environment

■ Docker Daemon agent attributes

■ Enabling the Docker Daemon agent to support IMF

■ Docker Container agent attributes

■ Enabling the Docker Container agent to support IMF

■ Limitations of VCS Docker agents

About configuring the Cluster Server agents for
Docker

After installing the Cluster Server agents for Docker, you must import the agent
type configuration file. After importing this file, review the attributes table that
describes the resource type and its attributes, and then create and configure Docker
resources.

To view the sample agent type definition and service groups configuration:

See “About sample configurations for the agents for Docker” on page 47.

4Chapter

Importing the agent types files in a VCS
environment

To use the agents for Docker, you must import the agent types file into the cluster.

You can import the agent types file using the Cluster Manager (Java Console) or
using the command line interface (CLI).

To import the agent types file using Cluster Manager (Java Console)

1 Start the Cluster Manager and connect to the cluster on which the agent is
installed.

2 Click File > Import Types.

3 In the Import Types dialog box, select the following file:

/etc/VRTSagents/ha/conf/DockerDaemon/DockerTypes.cf

4 Click Import.

5 Save the VCS configuration.

The Docker agent types file is now imported to the VCS engine.

You can now create Docker resources. For additional information about using
the Cluster Manager (Java Console), refer to the Cluster Server Administrator's
Guide.

To import the agent types file using the CLI:

1 Log on to any one of the systems in the cluster as the superuser.

2 Run the following command:

/etc/VRTSagents/ha/conf/DockerDaemon/DockerTypes.cmd

The Docker agent type is now imported to the VCS engine.

You can now create Docker resources.

24Configuring the agents for Docker
Importing the agent types files in a VCS environment

Docker Daemon agent attributes
Table 4-1 Required attributes for configuring the Docker Daemon agent

DescriptionRequired attributes

The command and the arguments that start the Docker daemon.
Ensure that the Docker daemon starts outside the VCS control
using the specified command.

Type and dimension: string-scalar

Default: /usr/sbin/service docker start

Example 1: /usr/sbin/service docker start

Example 2: /usr/bin/systemctl start docker

Example 3: /usr/bin/docker -d --selinux-enabled
-g /cfs_mount &

Example 4: /usr/sbin/service podman start

Example5: /usr/bin/systemctl start podman

DaemonStartCommand

The process pattern that uniquely identifies the Docker daemon
process. To identify the Docker daemon process, the agent uses
this value as a filter in the output of the /bin/ps ww -eo
uid,pid,ppid,args command.

You can specify the complete process pattern as displayed in
the ps -ef command. Alternatively, you can specify the regular
expression to uniquely identify the Docker daemon process.

Ensure that the agent is able to uniquely identify the Docker
daemon process using this pattern. Additionally, you can specify
the hostname or port details in the DaemonProcPattern attribute
to uniquely identify the Docker daemon process.

Type and dimension: string-scalar

Default: \\bdocker .*-d

Example: \\bdocker -d --selinux-enabled -g
/cfs_mount

DaemonProcPattern

25Configuring the agents for Docker
Docker Daemon agent attributes

Table 4-2 Optional attributes for configuring the Docker Daemon agent

DescriptionOptional attribute

The logging detail performed by the agent for the
resource. Valid values are:

■ ERROR: Only logs error messages.
■ WARN: Logs above plus warning messages.
■ INFO: Logs above plus informational messages.
■ TRACE: Logs above plus trace messages. TRACE is

very verbose and should only be used during initial
configuration or for troubleshooting and diagnostic
operations.

Type and dimension: string-scalar

Default: INFO

Example: TRACE

Note: The use of the ResLogLevel attribute is deprecated
from VCS version 6.2 onwards. You must use the LogDbg
attribute instead of the ResLogLevel attribute to enable
debug logs for the ACCLib-based agents, when the
ACCLib version is 6.2.0.0 or later. The agent captures
the first failure data of the unexpected events and
automatically logs debug messages in their respective
agent log files.

ResLogLevel

For ACCLib-based agents, you must use the LogDbg
resource type attribute to enable the debug logs when
the ACCLib version is 6.2.0.0 or later and the VCS version
is 6.2 or later.

Set the LogDbg attribute to DBG_5 to enable debug logs
for the ACCLib-based agent. By default, setting the
LogDbg attribute to DBG_5 enables debug logs for all
Docker resources in the cluster. If debug logs must be
enabled for a specific Docker resource, override the
LogDbg attribute.

For more information on how to enable debug logs, See
“To enable debug logs for all resources of type Docker”
on page 46.

Type and dimension: keylist

Default: No default value

For more information on how to use the LogDbg attribute,
refer to the Cluster Server Administrator’s Guide.

LogDbg

26Configuring the agents for Docker
Docker Daemon agent attributes

Table 4-2 Optional attributes for configuring the Docker Daemon agent
(continued)

DescriptionOptional attribute

The absolute path name of an external, user-supplied
monitor executable.

When this attribute is specified, the monitor entry point
executes the MonitorProgram file to perform an additional
instance state check. There are no restrictions on the
actions that the external monitor program performs to
determine the state of the Docker Daemon instance.
However, the external monitor program must return one
of the following integer values:

■ 0: instance is online
■ 110: instance is online
■ 100: instance is offline
■ 1: instance is offline
■ Any other value: instance is unknown.

Veritas recommends storing the external monitor utility
on the shared disk directory to ensure that the file is
always available on the online system.

Arguments are supported.

Type and dimension: string-scalar

Default: No default value

Example 1: $ServerRoot/bin/myMonitor.pl

Example 2: $ServerRoot/bin/myMonitor.sh arg1
arg2

MonitorProgram

Determines if the agent must perform the intelligent
resource monitoring. You can also override the value of
this attribute at the resource level.

IMF

Specifies the ordered list of attributes whose values are
registered with the IMF notification module. The attribute
values can be overridden at the resource level.

IMFRegList

27Configuring the agents for Docker
Docker Daemon agent attributes

Table 4-2 Optional attributes for configuring the Docker Daemon agent
(continued)

DescriptionOptional attribute

The complete file path name required to set the
environment before executing the Docker daemon
commands. The shell environments supported are ksh,
sh, and csh.

Type and dimension: string-scalar

Default: No default value

Example: /test/bin/envvars

EnvFile

The operating system username under which the agent
executes programs to manage the Docker daemon. By
default, the Docker daemon is started as a user root.

Type and dimension: string-scalar

Default: root

Example: root

User

The command and arguments that stop the Docker
daemon. Ensure that the Docker daemon stops outside
the VCS control using the specified command.

Type and dimension: string-scalar

Default: /usr/sbin/service docker stop

Example 1: /usr/sbin/service docker stop

Example 2: /usr/bin/systemctl stop docker

Example 3: /usr/sbin/service podman stop

Example 4: /usr/bin/systemctl stop podman

DaemonStopCommand

About the keys of the IMF attribute
The IMF type-level attribute uses the following keys:

28Configuring the agents for Docker
Docker Daemon agent attributes

Table 4-3 IMF attribute keys

DescriptionKey

Define this attribute to enable or disable intelligent resource monitoring.
Valid values are as follows:

■ 0: Does not perform intelligent resource monitoring
■ 2: Performs intelligent resource monitoring for online resources and

performs poll-based monitoring for offline resources

Note: The agent for Docker supports intelligent resource monitoring for
online resources only. Hence, Mode should be set to either 0 or 2.

Default: 2

Mode

The frequency at which the agent invokes the monitor agent function.
The value of this key is an integer.

You can set this key to a non-zero value for cases where the agent
requires to perform both poll-based and intelligent resource monitoring.

If the value is 0, the agent does not perform poll-based process check
monitoring.

After the resource registers with the AMF kernel driver, the agent calls
the monitor agent function as follows:

■ After every (MonitorFreq x MonitorInterval) number of seconds for
online resources

■ After every (MonitorFreq x OfflineMonitorInterval) number of seconds
for offline resources

Default: 5

MonitorFreq

If you enable intelligent resource monitoring, the agent invokes the
imf_register agent function to register the resource with the AMF kernel
driver.

The value of the RegisterRetryLimit key determines the number of times
the agent must retry registration for a resource. If the agent cannot register
the resource within the limit that is specified, then intelligent monitoring
is disabled until the resource state changes or the value of the Mode key
changes.

Default: 3

RegisterRetryLimit

29Configuring the agents for Docker
Docker Daemon agent attributes

Enabling the Docker Daemon agent to support
IMF

By default, the Docker Daemon agent is enabled to support IMF. If the IMF support
for Docker Daemon agent is disabled by a user, you can enable the IMF support
by setting the IMF Mode attribute to 2.

Disabling intelligent resource monitoring
To disable intelligent resource monitoring for Docker Daemon

1 Make the VCS configuration writable.

haconf -makerw

2 To disable intelligent resource monitoring for all the resources of a certain type,
run the following command:

hatype -modify DockerDaemon IMF -update Mode 0

3 To disable intelligent resource monitoring for a specific resource, run the
following command:

hares -override resource_name IMF

hares -modify resource_name IMF -update Mode 0

4 Save the VCS configuration.

haconf -dump -makero

Docker Container agent attributes
Table 4-4 Required attributes for configuring the Docker Container agent

DescriptionRequired attributes

The unique name of the Docker container.

To get a container name, run the docker ps -a command.

Type and dimension: string-scalar

Default: No default value

Example 1: evil_ptolemy

Example 2: mysql_container_1

ContainerName

30Configuring the agents for Docker
Enabling the Docker Daemon agent to support IMF

Table 4-4 Required attributes for configuring the Docker Container agent
(continued)

DescriptionRequired attributes

The Docker image name. This attribute is required if the Docker
container is to be created during an online operation.

ImageID can also be specified as part of the ImageName attribute.

Type and dimension: string-scalar

Default: No default value

Example 1: Ubuntu

Example 2: 8dffsd933n3

Example 3: Docker.io/Ubuntu:latest

ImageName

Table 4-5 Optional attributes for configuring the Docker Container agent

DescriptionOptional attribute

The logging detail performed by the agent for the
resource. Valid values are:

■ ERROR: Only logs error messages.
■ WARN: Logs above plus warning messages.
■ INFO: Logs above plus informational messages.
■ TRACE: Logs above plus trace messages. TRACE is

very verbose and should only be used during initial
configuration or for troubleshooting and diagnostic
operations.

Type and dimension: string-scalar

Default: INFO

Example: TRACE

Note: The use of the ResLogLevel attribute is deprecated
from VCS version 6.2 onwards. You must use the LogDbg
attribute instead of the ResLogLevel attribute to enable
debug logs for the ACCLib-based agents, when the
ACCLib version is 6.2.0.0 or later. The agent captures
the first failure data of the unexpected events and
automatically logs debug messages in their respective
agent log files.

ResLogLevel

31Configuring the agents for Docker
Docker Container agent attributes

Table 4-5 Optional attributes for configuring the Docker Container agent
(continued)

DescriptionOptional attribute

For ACCLib-based agents, you must use the LogDbg
resource type attribute to enable the debug logs when
the ACCLib version is 6.2.0.0 or later and the VCS version
is 6.2 or later.

Set the LogDbg attribute to DBG_5 to enable debug logs
for the ACCLib-based agent. By default, setting the
LogDbg attribute to DBG_5 enables debug logs for all
Docker resources in the cluster. If debug logs must be
enabled for a specific Docker resource, override the
LogDbg attribute.

For more information on how to enable debug logs, See
“To enable debug logs for all resources of type Docker”
on page 46.

Type and dimension: keylist

Default: No default value

For more information on how to use the LogDbg attribute,
refer to the Cluster Server Administrator’s Guide.

LogDbg

The command executed inside the container. Specify full
path for the command and specify any arguments to be
passed to the container init command. Value of this
attribute is used, if the container is created during an
online operation.

Type and dimension: string-scalar

Default: No default value

Example 1: /shared_storage/my_application.pl

Example 2: /abc/xyz arg1 arg2

ContainerInitCommand

The full path to the Docker binary.

Type and dimension: string-scalar

Default: /usr/bin/docker

Example 1: /path/to/docker

Example 2: /usr/bin/podman

DockerBinaryPath

32Configuring the agents for Docker
Docker Container agent attributes

Table 4-5 Optional attributes for configuring the Docker Container agent
(continued)

DescriptionOptional attribute

The options passed during the docker run command.
The -d option can be used to run the container in the
detached mode, which is the default value of the
DockerRunOptions attribute. Agent passes the
--name=$ContainerName option, if the container is to
be created during an online operation of the agent.
Additional options can be passed as part of this attribute.

Type and dimension: integer-scalar

Default: -d

Example: -d -it -v /my_shared_storage/C1:/C1

DockerRunOptions

The complete file path name to source in order to set the
environment before executing the docker command.

The Docker client will honor the DOCKER_HOST
environment variable to set the -H flag for the client.

You can specify the following line in the environment file:

export DOCKER_HOST="tcp://0.0.0.0:2375"

Type and dimension: string-scalar

Default: No default value

Example: /test/bin/envvars

EnvFile

Determines if the agent must perform the intelligent
resource monitoring. You can also override the value of
this attribute at the resource level.

IMF

Specifies the ordered list of attributes whose values are
registered with the IMF notification module. The attribute
values can be overridden at the resource level.

IMFRegList

33Configuring the agents for Docker
Docker Container agent attributes

Table 4-5 Optional attributes for configuring the Docker Container agent
(continued)

DescriptionOptional attribute

The absolute path name of an external, user-supplied
monitor executable.

If specified, the monitor entry point will execute this file
to perform an additional server state check. There are no
restrictions for what actions the external monitor program
performs to determine the state of a Docker Container
instance server. The only constraint is that the external
monitor program must return one of the following integer
values:

■ 0: server is online
■ 110: server is online
■ 100: server is offline
■ 1: server is offline
■ Any other value: state is unknown.

Veritas recommends storing the external monitor utility
on the shared disk directory to ensure the file is always
available on the online system.

Type and dimension: string-scalar

Default: No default value

Example 1: $ServerRoot/bin/myMonitor.pl

Example 2: $ServerRoot/bin/myMonitor.sh arg1
arg2

MonitorProgram

The account name under which the agent executes
programs to manage the Docker container. If unspecified,
the Docker daemon is started as user root.

Type and dimension: string-scalar

Default: root

Example: root

User

About the keys of the IMF attribute
The IMF type-level attribute uses the following keys:

34Configuring the agents for Docker
Docker Container agent attributes

Table 4-6 IMF attribute keys

DescriptionKey

Define this attribute to enable or disable intelligent resource monitoring.
Valid values are as follows:

■ 0: Does not perform intelligent resource monitoring
■ 2: Performs intelligent resource monitoring for online resources and

performs poll-based monitoring for offline resources

Note: The agent for Docker supports intelligent resource monitoring for
online resources only. Hence, Mode should be set to either 0 or 2.

Default: 2

Mode

This key value specifies the frequency at which the agent invokes the
monitor agent function. The value of this key is an integer.

You can set this key to a non-zero value for cases where the agent
requires to perform both poll-based and intelligent resource monitoring.

If the value is 0, the agent does not perform poll-based process check
monitoring.

After the resource registers with the AMF kernel driver, the agent calls
the monitor agent function as follows:

■ After every (MonitorFreq x MonitorInterval) number of seconds for
online resources

■ After every (MonitorFreq x OfflineMonitorInterval) number of seconds
for offline resources

Default: 5

MonitorFreq

If you enable intelligent resource monitoring, the agent invokes the
imf_register agent function to register the resource with the AMF kernel
driver.

The value of the RegisterRetryLimit key determines the number of times
the agent must retry registration for a resource. If the agent cannot register
the resource within the limit that is specified, then intelligent monitoring
is disabled until the resource state changes or the value of the Mode key
changes.

Default: 3

RegisterRetryLimit

35Configuring the agents for Docker
Docker Container agent attributes

Enabling the Docker Container agent to support
IMF

By default, the Docker Container agent is enabled to support IMF. If the IMF support
for Docker Container agent is disabled by a user, you can enable the IMF support
by setting the IMF Mode attribute to 2.

Disabling intelligent resource monitoring
To disable intelligent resource monitoring for Docker Container

1 Make the VCS configuration writable.

haconf -makerw

2 To disable intelligent resource monitoring for all the resources of a certain type,
run the following command:

hatype -modify DockerContainer IMF -update Mode 0

3 To disable intelligent resource monitoring for a specific resource, run the
following command:

hares -override resource_name IMF

hares -modify resource_name IMF -update Mode 0

4 Save the VCS configuration.

haconf -dump -makero

Limitations of VCS Docker agents
The following are the limitations of the Docker agents.

■ The container rename operation may result in an unexpected behavior when
the container is configured under the VCS control.

■ The -d option is required in the detached mode.
The DockerRunOptions attribute takes -d as its default value. This option is
required because it allows to run a container in the detached mode.

36Configuring the agents for Docker
Enabling the Docker Container agent to support IMF

Configuring service groups
for Docker

This chapter includes the following topics:

■ About configuring service groups for Docker

■ Before configuring the service groups for Docker

■ Configuring service groups for Docker Daemon

■ Configuring service groups for Docker Container

About configuring service groups for Docker
Configuring the Docker service group involves creating the Docker service group,
its resources, and defining attribute values for the configured resources. You must
have administrator privileges to create and configure a service group.

Before configuring the service groups for Docker
Before you configure the Docker service group, you must:

■ Verify that Cluster Server is installed and configured on all nodes in the cluster
where you will configure the service group.
For more information about installing and configuring Cluster Server, refer to
the Cluster Server installation and configuration guides.

■ Verify that the Cluster Server agents for Docker is installed on all nodes in the
cluster.
See “Installing the agents ” on page 21.

5Chapter

■ Verify that the type definition for the Cluster Server agents for Docker is imported
into the VCS engine.
See “Importing the agent types files in a VCS environment” on page 24.

It is recommended to download the images, else the docker run command pulls
images from the registry, which is time consuming. The container start operation
may fail. You can set the value of the OnlineTimeOut attribute appropriately to avoid
failures.

Configuring service groups for Docker Daemon
While setting up a cluster, you must always ensure that the cluster has some spare
capacity to handle the Docker failover scenarios. For example, in case of any
container failure, the cluster must be able to run another container instance in
conjunction with other running applications.

The cluster should be able to provide application failover by encapsulating the
resources required for an application into a service group. A service group is a
virtualized application that can switch between the cluster nodes. It contains a set
of dependent resources, such as disk groups, disk volumes, file systems, IP
addresses, NIC cards, and dependent application processes. It also includes logic
about the dependencies between the application components.

These service groups should thus be configured such that the cluster can start,
stop, monitor, and switch the service groups between the nodes, depending upon
the server faults or resource faults. An administrator should also be proactively able
to move a service group between cluster nodes to perform preventative maintenance
or apply patches.

38Configuring service groups for Docker
Configuring service groups for Docker Daemon

Perform the following steps to add a service group for Docker Daemon

1 Create a service group for Docker Daemon.

hagrp -add <daemon_servicegroup_name>

For more details on creating a service group refer to, Cluster Server
Administrator's Guide.

2 Modify the SystemList attribute for the group, to add systems.

For example,

hagrp -modify <daemon_servicegroup_name> SystemList systemA 0

systemB 1

3 Create resource for Docker Daemon in the service group.

For example,

hares -add <resource_name> DockerDaemon

<daemon_servicegroup_name>

For more details on creating and modifying resource attributes for DiskGroup,
Volume, and Mount refer to, Cluster Server Bundled Agents Reference Guide.

Based on the Docker Daemon instance in your cluster, modify the resource
attributes.

Configuring service groups for Docker Container
Perform the following steps to add a service group for Docker Container

1 Create a service group for Docker Container.

hagrp -add <container_servicegroup_name>

For more details on creating a service group refer to, Cluster Server
Administrator's Guide.

2 Modify the SystemList attribute for the group, to add systems.

For example,

hagrp -modify <container_servicegroup_name> SystemList systemA

0 systemB 1

39Configuring service groups for Docker
Configuring service groups for Docker Container

3 Create resources for the linked Docker Containers in the service group.

For example,

hares -add <docker_container1> DockerContainer

<container_servicegroup_name>

hares -add <docker_container2> DockerContainer

<container_servicegroup_name>

For more details on creating and modifying resource attributes for NIC, IP,
DiskGroup, Volume, and Mount refer to, Cluster Server Bundled Agents
Reference Guide.

Based on the Docker Container instance in your cluster, modify the resource
attributes.

Perform steps 4 through 6 to mount data volume inside the container.

4 Add the file system to respective agent service group using the Mount,
DiskGroup, and Volume resources.

Create Mount, DiskGroup, and Volume resources.

For example,

hares -DCM652-CS_mnt Mount <container_servicegroup_name>

hares -add DCM652-CS_dg DiskGroup <container_servicegroup_name>

Based on the Docker Container instance in your cluster, modify the resource
attributes of the Mount, DiskGroup, and Volume resources.

5 Create links between the Mount, DiskGroup, and Volume resources.

For example,

hares -link DCM652-CS_mnt DCM652-CS_vol

hares -link -DCM652-CS_vol DCM652-CS_dg

6 Verify the final resource dependencies for <container_servicegroup_name>
server group.

For example,

hares -dep

Group Parent Child

<container_servicegroup_name> DCM652-CS_cs DCM652-CS _mnt

<container_servicegroup_name> DCM652-CS_mnt DCM652-CS_vol

<container_servicegroup_name> DCM652-CS_vol DCM652-CS_dg

40Configuring service groups for Docker
Configuring service groups for Docker Container

7 Create dependency between the Docker Daemon service group and the Docker
Container service group.

hagrp -link <daemon_servicegroup_name>

<container_servicegroup_name> -type online local hard

8 Create dependency between the Docker Container service group and the
storage service group.

hagrp -link <container_servicegroup_name>

<storage_servicegroup_name> -type online local firm

41Configuring service groups for Docker
Configuring service groups for Docker Container

Troubleshooting the
agents for Docker

This chapter includes the following topics:

■ Preliminary troubleshooting checks

■ Starting the Docker Daemon instance outside a cluster

■ Starting the Docker Container instance outside a cluster

■ Reviewing log files

■ Troubleshooting the agent

Preliminary troubleshooting checks
If you face problems with the Cluster Server agents for Docker, perform the following
checks before further investigation:

■ Use the correct software and operating system versions.
Ensure that no issues arise due to incorrect software and operating system
versions. For information on the software versions that the agents for Docker
supports, see the Veritas Services and Operations Readiness Tools (SORT)
site: http://sort.veritas.com/agents.

■ Meet prerequisites.
Before installing the agents for Docker, ensure that all the prerequisites are met.
For example, you must install the ACC library on VCS before installing the agent
for Docker.

■ Configure the Docker resources correctly.

6Chapter

http://sort.veritas.com/agents

Before using the Docker resources, ensure that you configure the resources
properly. For a list of attributes used to configure all Docker resources, refer to
the agent attributes.

Starting the Docker Daemon instance outside a
cluster

If you face problems while working with a resource, you must disable the resource
within the cluster framework. A disabled resource is not under the control of the
cluster framework, and so you can test the Docker Daemon instance independent
of the cluster framework. Refer to the cluster documentation for information about
disabling a resource.

You can then restart the Docker Daemon instance outside the cluster framework.

Note: While restarting the Docker Daemon instance outside the cluster framework,
use the same parameters as that configured for the VCS resource.

To restart the Docker Daemon instance outside the cluster framework

1 Log in as a superuser.

2 Ensure that the Docker Daemon is up and running. Refer to the Docker
documentation for more information.

3 Run the following command to restart the Docker Daemon instance.

service docker restart

4 Ensure that the Docker Daemon instance is running successfully by running
the grep command for Docker Daemon.

For example,

$ ps -ef | grep docker

Starting the Docker Container instance outside a
cluster

If you face problems while working with a resource, you must disable the resource
within the cluster framework. A disabled resource is not under the control of the
cluster framework, and so you can test the Docker Container instance independent
of the cluster framework.

43Troubleshooting the agents for Docker
Starting the Docker Daemon instance outside a cluster

You can then restart the Docker Container instance outside the cluster framework.

Note:While restarting the Docker Container instance outside the cluster framework,
use the same parameters as that configured for the VCS resource.

To restart the Docker Container instance outside the cluster framework

1 Log in as a superuser.

2 Ensure that the Docker Container is up and running. Refer to the Docker
documentation for more information.

3 Run the following command to restart the Docker Container instance.

docker restart <container_name>

4 Ensure that the Docker Container instance is running successfully by running
the ps command for Docker Container.

For example,

$ docker ps

Reviewing log files
If you face problems while using Docker or the agent for Docker, use the log files
described in this section to investigate the problems.

■ Cluster log files
The engine log file is located at /var/VRTSvcs/log/engine_A.log. For a long
running cluster, the log files are rotated as engine_B.log, engine_C.log, and
so on. The most recent engine logs are present in the engine_A.log file.

■ Docker agent log files
The Docker Daemon agent log file is located at
/var/VRTSvcs/log/DockerDaemon_A.log and the Docker Container agent log
file is located at /var/VRTSvcs/log/DockerContainer_A.log.

Using trace level logging
The ResLogLevel attribute controls the level of logging that is written in a cluster
log file for each Docker resource. You can set this attribute to TRACE, which enables
very detailed and verbose logging.

44Troubleshooting the agents for Docker
Reviewing log files

If you set the ResLogLevel attribute to TRACE, a very high volume of messages
are produced. Veritas recommends that you localize the ResLogLevel attribute for
a particular resource.

Warning: You may consider temporarily increasing the timeout values for Docker
for debugging purposes. After the debugging process is complete, you can revert
back to the original timeout values.

The LogDbg attribute should be used to enable the debug logs for the ACCLib-based
agents when the ACCLIB version is 6.2.0.0 or later and the VCS version is 6.2 or
later.

To localize ResLogLevel attribute for a resource

1 Identify the resource for which you want to enable detailed logging.

2 Localize the ResLogLevel attribute for the identified resource:

hares -local Resource_Name ResLogLevel

3 Set the ResLogLevel attribute to TRACE for the identified resource:

hares -modify Resource_Name ResLogLevel TRACE -sys SysA

4 Note the time before you begin to operate the identified resource.

5 Test the identified resource. The function reproduces the problem that you are
attempting to diagnose.

6 Note the time when the problem is reproduced.

7 Set the ResLogLevel attribute back to INFO for the identified resource:

hares -modify Resource_Name ResLogLevel INFO -sys SysA

8 Save the configuration changes.

haconf -dump

9 Review the contents of the log file. Use the time noted in Step 4 and Step 6 to
diagnose the problem.

You can also contact Veritas support for more help.

45Troubleshooting the agents for Docker
Reviewing log files

To enable debug logs for all resources of type Docker

◆ Enable the debug log.

For Docker Daemon, run the following command:

hatype -modify DockerDaemon LogDbg DBG_5

For Docker Container, run the following command:

hatype -modify DockerContainer LogDbg DBG_5

To override the LogDbg attribute at resource level

◆ Override the LogDbg attribute at the resource level and enable the debug logs
for the specific resource.

hares -override hh LogDbg

hares -modify hh LogDbg DBG_5

Troubleshooting the agent
If you face problems with the Docker agent, consider the following:

■ Container creation might fail on an SE Linux-enabled host, if you bind mount
vxfs volume inside the container.
The container creation fails when SE Linux is enabled in the enforcing mode
and you try to bind mount vxfs volume inside the container.
Workaround: Run the following command:

setenforce 0

If you now try to bind mount vxfs volume inside the container, the container
creation succeeds.

46Troubleshooting the agents for Docker
Troubleshooting the agent

Sample Configurations
This appendix includes the following topics:

■ About sample configurations for the agents for Docker

■ Sample agent type definition for Docker Daemon

■ Sample agent type definition for Docker Container

■ Sample Docker resource configuration

■ Sample service group dependency

About sample configurations for the agents for
Docker

The sample configuration graphically depicts the resource types, resources, and
resource dependencies within the service group. Review these dependencies
carefully before configuring the agents for Docker. For more information about these
resource types, refer to the Cluster Server Bundled Agents Reference Guide.

Sample agent type definition for Docker Daemon
After importing the agent type file into the cluster, if you save the configuration on
your system disk using the haconf -dump command, you can find the
DockerTypes.cf file in the /etc/VRTSvcs/conf/config cluster configuration
directory.

An excerpt from this file is as follows:

type DockerDaemon (

static int IMF{} = { Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }

static str IMFRegList[] = { DaemonProcPattern, User }

AAppendix

static str AgentDirectory = "/opt/VRTSagents/ha/bin/DockerDaemon"

static str AgentFile = "/opt/VRTSvcs/bin/Script60Agent"

static keylist LogDbg = { DBG_1, DBG_2, DBG_3, DBG_4, DBG_5, DBG_6 }

static int RestartLimit = 1

static str ArgList[] = { ResLogLevel, State, IState, User, EnvFile,

DaemonStartCommand, DaemonStopCommand,

DaemonProcPattern, MonitorProgram }

static boolean AEPTimeout = 1

str DaemonStartCommand = "/usr/sbin/service docker start"

str DaemonStopCommand = "/usr/sbin/service docker stop"

str DaemonProcPattern = "\\bdocker .*-d"

str EnvFile

str MonitorProgram

str ResLogLevel = INFO

str User = root

)

Sample agent type definition for Docker Container
After importing the agent type file into the cluster, if you save the configuration on
your system disk using the haconf -dump command, you can find the
DockerTypes.cf file in the /etc/VRTSvcs/conf/config cluster configuration
directory.

An excerpt from this file is as follows:

type DockerContainer (

static int IMF{} = { Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }

static str IMFRegList[] = { ContainerName, User }

static boolean IntentionalOffline = 0

static str AgentDirectory = "/opt/VRTSagents/ha/bin/DockerContainer"

static str AgentFile = "/opt/VRTSvcs/bin/Script60Agent"

static int LevelTwoMonitorFreq = 1

static keylist LogDbg = { DBG_5 }

static str ArgList[] = { ResLogLevel, State, IState, User,

EnvFile, ContainerName, ContainerInitCommand,

DockerBinaryPath, DockerRunOptions,

ImageName, MonitorProgram }

static boolean AEPTimeout = 1

str ResLogLevel = INFO

str User = root

str EnvFile

48Sample Configurations
Sample agent type definition for Docker Container

str ContainerName

str ContainerInitCommand

str DockerBinaryPath = "/usr/bin/docker"

str DockerRunOptions = "-d"

str ImageName

str MonitorProgram

)

Sample Docker resource configuration
This section contains sample configurations for Docker Daemon and Docker
Container.

Sample configuration for Docker
A sample excerpt from the main.cf file for the Docker resource configuration is
shown below:

include "types.cf"

include "CFSTypes.cf"

include "CVMTypes.cf"

include "DockerTypes.cf"

cluster vcs_docker (

UserNames = { a = dqqK }

Administrators = { a }

)

system SystemA (

)

system SystemB (

)

group CVM_Mount (

SystemList = { SystemA = 0, SystemB = 1 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { SystemA, SystemB }

)

CFSMount cvm_mount (

MountPoint = "/cfs_mount"

49Sample Configurations
Sample Docker resource configuration

BlockDevice = "/dev/vx/dsk/docker_dg/docker_volume"

)

CVMVolDg cvmdg (

CVMDiskGroup = docker_dg

CVMVolume = { docker_volume }

CVMActivation = sw

)

requires group cvm online local firm

cvm_mount requires cvmdg

// resource dependency tree

//

// group CVM_Mount

// {

// CFSMount cvm_mount

// {

// CVMVolDg cvmdg

// }

// }

group applicationContainer (

SystemList = { SystemA = 0, SystemB = 1 }

)

DockerContainer app_res (

Critical = 0

ResLogLevel = TRACE

ContainerName = app_container

ContainerInitCommand = "/dv_c1/myapp.pl"

DockerRunOptions = "-d -v /cfs_mount/dv_c1/:/dv_c1 "

ImageName = ubuntu

)

requires group docker_daemon_sg online local firm

requires group CVM_Mount online local firm

// resource dependency tree

//

// group applicationContainer

// {

50Sample Configurations
Sample Docker resource configuration

// DockerContainer app_res

// }

group cvm (

SystemList = { SystemA = 0, SystemB = 1 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { SystemA, SystemB }

)

CFSfsckd vxfsckd (

)

CVMCluster cvm_clus (

CVMClustName = vcs_docker

CVMNodeId = { SystemA = 0, SystemB = 1 }

CVMTransport = gab

CVMTimeout = 200

)

CVMVxconfigd cvm_vxconfigd (

Critical = 0

CVMVxconfigdArgs = { syslog }

)

ProcessOnOnly vxattachd (

Critical = 0

PathName = "/bin/sh"

Arguments = "- /usr/lib/vxvm/bin/vxattachd root"

RestartLimit = 3

)

cvm_clus requires cvm_vxconfigd

vxfsckd requires cvm_clus

// resource dependency tree

//

// group cvm

// {

// ProcessOnOnly vxattachd

// CFSfsckd vxfsckd

// {

51Sample Configurations
Sample Docker resource configuration

// CVMCluster cvm_clus

// {

// CVMVxconfigd cvm_vxconfigd

// }

// }

// }

group databaseContainer (

SystemList = { SystemA = 0, SystemB = 1 }

)

DockerContainer db_res (

Critical = 0

ResLogLevel = TRACE

ContainerName = database_container

DockerRunOptions = "-d -it "

ImageName = ubuntu

)

requires group docker_daemon_sg online local firm

// resource dependency tree

//

// group databaseContainer

// {

// DockerContainer db_res

// }

group docker_daemon_sg (

SystemList = { SystemA = 0, SystemB = 1 }

Parallel = 1

)

DockerDaemon daemon_res (

RestartLimit = 1

)

// resource dependency tree

//

// group docker_daemon_sg

// {

// DockerDaemon daemon_res

// }

52Sample Configurations
Sample Docker resource configuration

group webServerContainer (

SystemList = { SystemA = 0, SystemB = 1 }

)

DockerContainer web_res (

Critical = 0

ResLogLevel = TRACE

ContainerName = web_container

DockerRunOptions = "-d -it "

ImageName = ubuntu

)

requires group docker_daemon_sg online local firm

// resource dependency tree

//

// group webServerContainer

// {

// DockerContainer web_res

// }

Sample configuration for Podman
A sample excerpt from the main.cf file for the Podman resource configuration is
shown below:

group Podman_daemon (

SystemList = { inaqalnx070 = 0, inaqalnx073 = 1 }

Parallel = 1

)

DockerDaemon podman_daemon_res (

DaemonStartCommand = "/usr/bin/systemctl start

podman.service"

DaemonStopCommand = "/usr/bin/systemctl stop

podman.service"

DaemonProcPattern = "/usr/bin/podman --log-level=info

system service"

)

group Container_sg (

SystemList = { inaqalnx070 = 0, inaqalnx073 = 1 }

)

DockerContainer ubuntu_res (

53Sample Configurations
Sample Docker resource configuration

ContainerName = my_ubuntu

DockerBinaryPath = "/usr/bin/podman"

DockerRunOptions = "-d -it"

ImageName = "docker.io/library/ubuntu"

)

Sample service group dependency
This section depicts various ways to configure the Docker resources.

Figure A-1 depicts the Docker resource configuration when the container is created
with a data volume, which is mounted on the CFS/CVM storage.

Figure A-1 Container dependency on CFS/CVM

Cfs_mount
Mount Resource
(CFSMount)

Cfs_volumeVolume Resource
(CVMVolume)

Cfs_dgDiskGroup Resource
(CVMDiskGroup)

vxfsckd

cvm_clus

cvm_vxconfigd

CFSfsckd
Resource

CVMCluster
Resource

CVMvxconfigd
Resource

Daemon

Container

Figure A-2 depicts the Docker resource configuration when the container is created
with a data volume, which is mounted on the VXVM storage.

54Sample Configurations
Sample service group dependency

Figure A-2 Container dependency on VXVM

mnt_resMount
Resource

vol_resVolume
Resource

disk_resDiskGroup
Resource

Daemon

Container

55Sample Configurations
Sample service group dependency

A
about

configuring service groups 37
Docker 17

about ACC library 20
ACC library

installing 20
removing 22

agent
configuration 15
features 11
importing agent types files 24
installing, VCS environment 21
overview 10
processes 18
uninstalling, VCS environment 21

agent attributes
ConatinerName 30
ContainerInitCommand 32
DaemonProcPattern 25
DaemonStartCommand 25
DaemonStopCommand 28
DockerBinaryPath 32
DockerRunOptions 33
EnvFile 28, 33
ImageName 31
IMF 27, 33
IMFRegList 27, 33
LogDbg 26, 32
MonitorProgram 27, 34
ResLogLevel 26, 31
User 28, 34

agent configuration file
importing 24

agent functions
Docker Container 13

clean 14
imf_getnotification 15
imf_init 15
imf_register 15
monitor 14

agent functions (continued)
Docker Container (continued)

offline 14
online 13

Docker Daemon 12
clean 12
imf_getnotification 13
imf_init 13
imf_register 13
monitor 12
offline 12
online 12

agent installation
general requirements 19
steps to install 21

B
before

configuring the service groups 37

D
Daemon Container

configuring service groups 39
disabling IMF

for Docker Container 36
for Docker Daemon 30

Docker
overview 17

Docker Container
agent functions 13
starting instance outside cluster 43

Docker Container agent
attributes 30

Docker Container agent functions
clean 14
imf_getnotification 15
imf_init 15
imf_register 15
monitor 14
offline 14
online 13

Index

Docker Daemon
agent functions 12
configuring service groups 38
starting instance outside cluster 43

Docker Daemon agent
attributes 25

Docker Daemon agent functions
clean 12
imf_getnotification 13
imf_init 13
imf_register 13
monitor 12
offline 12
online 12

E
enabling IMF

for Docker Container 36
for Docker Daemon 30

L
logs

reviewing error log files 44
using trace level logging 44

R
recommendations

for configuring Docker 18
removing agent, VCS environment 21

S
sample

agent type definition 47–48
configuration 49
service group dependency 54

sample configuration
Docker 49
Podman 53

setting
Docker in a cluster 16

starting the Docker Container instance outside a
cluster 43

starting the Docker Daemon instance outside a
cluster 43

T
troubleshooting

reviewing error log files 44
using trace level logging 44

U
uninstalling agent, VCS environment 21

V
VCS Docker agents

limitations 36

57Index

	Cluster Server Agent for Docker Installation and Configuration Guide
	Technical Support
	Contents
	1. Introducing the agents for Docker
	About the Cluster Server agents for Docker Daemon and Docker Container
	Supported software

	How the agents makes Docker highly available
	Features of the agents
	Docker Daemon agent functions
	Online
	Offline
	Monitor
	Clean
	imf_init
	imf_getnotification
	imf_register

	Docker Container agent functions
	Online
	Offline
	Monitor
	Clean
	imf_init
	imf_getnotification
	imf_register

	Typical Docker configuration in a VCS cluster
	Setting up Docker in a VCS cluster

	2. Introducing Docker and Docker Daemon process
	About Docker
	Docker Daemon process

	Recommendations for configuring Docker

	3. Installing and removing the agents for Docker
	Before you install the Cluster Server agents for Docker
	About the ACC library
	Installing the ACC library
	Installing the agents
	Removing the agents
	Removing the ACC library

	4. Configuring the agents for Docker
	About configuring the Cluster Server agents for Docker
	Importing the agent types files in a VCS environment
	Docker Daemon agent attributes
	About the keys of the IMF attribute

	Enabling the Docker Daemon agent to support IMF
	Disabling intelligent resource monitoring

	Docker Container agent attributes
	About the keys of the IMF attribute

	Enabling the Docker Container agent to support IMF
	Disabling intelligent resource monitoring

	Limitations of VCS Docker agents

	5. Configuring service groups for Docker
	About configuring service groups for Docker
	Before configuring the service groups for Docker
	Configuring service groups for Docker Daemon
	Configuring service groups for Docker Container

	6. Troubleshooting the agents for Docker
	Preliminary troubleshooting checks
	Starting the Docker Daemon instance outside a cluster
	Starting the Docker Container instance outside a cluster
	Reviewing log files
	Using trace level logging

	Troubleshooting the agent

	A. Sample Configurations
	About sample configurations for the agents for Docker
	Sample agent type definition for Docker Daemon
	Sample agent type definition for Docker Container
	Sample Docker resource configuration
	Sample configuration for Docker
	Sample configuration for Podman

	Sample service group dependency

	Index

