
Cluster Server Agents for
PostgreSQL Database and
Replication Installation and
Configuration Guide

AIX, Linux, Solaris SPARC

8.0

Veritas InfoScale™ Availability Agents
Last updated: 2023-01-12

Legal Notice
Copyright © 2023 Veritas Technologies LLC. All rights reserved.

Veritas and the Veritas Logo are trademarks or registered trademarks of Veritas Technologies
LLC or its affiliates in the U.S. and other countries. Other names may be trademarks of their
respective owners.

This product may contain third-party software for which Veritas is required to provide attribution
to the third-party (“Third-Party Programs”). Some of the Third-Party Programs are available
under open source or free software licenses. The License Agreement accompanying the
Software does not alter any rights or obligations you may have under those open source or
free software licenses. Refer to the third-party legal notices document accompanying this
Veritas product or available at:
https://www.veritas.com/about/legal/license-agreements

The product described in this document is distributed under licenses restricting its use, copying,
distribution, and decompilation/reverse engineering. No part of this document may be
reproduced in any form by anymeans without prior written authorization of Veritas Technologies
LLC and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. VERITAS TECHNOLOGIES LLC
SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS
SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be commercial computer software
as defined in FAR 12.212 and subject to restricted rights as defined in FAR Section 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, et seq.
"Commercial Computer Software and Commercial Computer Software Documentation," as
applicable, and any successor regulations, whether delivered by Veritas as on premises or
hosted services. Any use, modification, reproduction release, performance, display or disclosure
of the Licensed Software and Documentation by the U.S. Government shall be solely in
accordance with the terms of this Agreement.

https://www.veritas.com/about/legal/license-agreements

Veritas Technologies LLC
2625 Augustine Drive
Santa Clara, CA 95054
http://www.veritas.com

Technical Support
Technical Support maintains support centers globally. All support services will be delivered
in accordance with your support agreement and the then-current enterprise technical support
policies. For information about our support offerings and how to contact Technical Support,
visit our website:
https://www.veritas.com/support

You can manage your Veritas account information at the following URL:
https://my.veritas.com

If you have questions regarding an existing support agreement, please email the support
agreement administration team for your region as follows:

CustomerCare@veritas.comWorldwide (except Japan)

CustomerCare_Japan@veritas.comJapan

Documentation
Make sure that you have the current version of the documentation. Each document displays
the date of the last update on page 2. The latest documentation is available on the Veritas
website:
https://sort.veritas.com/documents

Documentation feedback
Your feedback is important to us. Suggest improvements or report errors or omissions to the
documentation. Include the document title, document version, chapter title, and section title
of the text on which you are reporting. Send feedback to:
infoscaledocs@veritas.com

You can also see documentation information or ask a question on the Veritas community site:
http://www.veritas.com/community/

Veritas Services and Operations Readiness Tools (SORT)
Veritas Services andOperations Readiness Tools (SORT) is a website that provides information
and tools to automate and simplify certain time-consuming administrative tasks. Depending
on the product, SORT helps you prepare for installations and upgrades, identify risks in your
datacenters, and improve operational efficiency. To see what services and tools SORT provides
for your product, see the data sheet:
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

http://www.veritas.com
https://www.veritas.com/support
https://my.veritas.com
mailto:CustomerCare@veritas.com
mailto:CustomerCare_Japan@veritas.com
https://sort.veritas.com/documents
mailto:infoscaledocs@veritas.com?Subject=InfoScale
http://www.veritas.com/community/
https://sort.veritas.com/data/support/SORT_Data_Sheet.pdf

Chapter 1 Introducing the agents for PostgreSQL Database
and Replication .. 7

About the InfoScale Availability agents for PostgreSQL Database and
Replication ... 7

Supported software .. 9
Supported configurations for PostgreSQL Streaming Replication 9
Features of the agent .. 11
How the agent supports intelligent resource monitoring 12
PostgreSQL Database agent functions ... 12

Online .. 12
Offline .. 13
Monitor ... 14
Clean ... 15
Action entry points .. 15

PostgreSQL Replication agent functions ... 17

Chapter 2 Installing, upgrading, and removing the agents
for PostgreSQL Database and Replication
... 19

Before you install the Cluster Server agent for PostgreSQL 19
About the ACC library .. 20
Installing the ACC library .. 20

Installing the ACC library IPS package on Oracle Solaris 11
systems .. 21

Installing the ACC library package on Solaris brand non-global
zones .. 22

Installing the agent in a VCS environment ... 23
Installing the agent IPS package on Oracle Solaris 11 systems

... 24
Installing agent packages on Solaris brand non-global zones

... 25
Installing the agent in a Solaris 10 brand zone 26

Uninstalling the agent in a VCS environment 26
Removing the ACC library .. 27

Contents

Upgrading the PostgreSQL and the PgSQLRep agents 28

Chapter 3 Configuring the agents for PostgreSQLDatabase
and Replication .. 33

About configuring the Cluster Server agent for PostgreSQL 33
Importing the agent types files in a VCS environment 34
PostgreSQL agent attributes ... 35
Executing a customized monitoring program 46
Setting up detail monitoring for the VCS agent for PostgreSQL 47

Chapter 4 Enabling the PostgreSQL and the PgSQLRep
agents to support IMF .. 50

About Intelligent Monitoring Framework .. 50
Benefits of IMF .. 51

Agent functions for the IMF functionality .. 51
imf_init ... 51
imf_getnotification .. 51
imf_register ... 51

Attributes that enable IMF .. 52
IMF ... 52
IMFRegList ... 53

Before you enable the agent to support IMF 53
Enabling the agent to support IMF ... 54

If VCS is in a running state ... 54
Restarting the agent .. 56
If VCS is not in a running state .. 56

Disabling intelligent resource monitoring ... 57
Sample IMF configurations ... 57

Chapter 5 Configuring the service groups for PostgreSQL
using the CLI ... 59

About configuring service groups for PostgreSQL 59
Before configuring the service groups for PostgreSQL 60
PostgreSQL entities in a clustered environment 60
Virtualizing PostgreSQL .. 61
Creating service groups for PostgreSQL under Solaris non-global

zones .. 62
Configuring service groups for PostgreSQL Replication 62
Configuring PostgreSQL nofailover trigger ... 65
Configuring PgSQLRep preonline script .. 66
Configuring PgSQLRep postonline script ... 69

5Contents

Configuring Multitarget PostgreSQL replication 71

Chapter 6 Troubleshooting the agent for PostgreSQL 72

Using the correct software and operating system versions 72
Meeting prerequisites .. 72
Verifying virtualization .. 73
Starting the PostgreSQL server outside a cluster 73
Reviewing error log files ... 74

Using trace level logging .. 74
Troubleshooting the configuration for IMF .. 76

Known issues .. 77

Appendix A Sample Configurations .. 78

About sample configurations for the agents for PostgreSQL 78
Sample agent type definition for PostgreSQL 78
Sample configuration files .. 80
Sample service group configurations for PostgreSQL 96

6Contents

Introducing the agents for
PostgreSQLDatabase and
Replication

This chapter includes the following topics:

■ About the InfoScale Availability agents for PostgreSQLDatabase and Replication

■ Supported software

■ Supported configurations for PostgreSQL Streaming Replication

■ Features of the agent

■ How the agent supports intelligent resource monitoring

■ PostgreSQL Database agent functions

■ PostgreSQL Replication agent functions

About the InfoScale Availability agents for
PostgreSQL Database and Replication

InfoScale Availability (VCS) agents monitor specific resources within an enterprise
application. They determine the status of resources and start or stop them according
to external events.

The InfoScale Availability agents for PostgreSQL manage and provide high
availability for PostgreSQL servers and EDB Postgres Advanced Servers in a
clustered environment.

1Chapter

The agent for PostgreSQL Database can bring a specific PostgreSQL server
instance online and monitor its state. The agent can also detect failures and can
turn off the instance in case of a failure.

The agent for PostgreSQL Replication provides high availability for the Synchronous
Streaming Replication feature of PostgreSQL. PostgreSQL itself uses this feature
to replicate data to standby PostgreSQL server instances and thereby provide fault
tolerance and disaster recovery to achieve high availability.

Note: The agent for PostgreSQL Replication (PgSQLRep) is available for the Linux
platform only.

The PgSQLRep agent supports the following use cases only:

■ A two-node failover cluster

■ Two n-node global clusters with the Master instance in one cluster and the Slave
instance in the other cluster

■ Two n-node global clusters with Veritas Cluster File System (CFS) as the
underlying storage management component

See “Supported configurations for PostgreSQL Streaming Replication” on page 9.

The agents for PostgreSQL Database and Replication support the following
operations for Synchronous Streaming Replication:

■ Monitoring the replication link on the master node

■ Either manual or automatic takeover on the standby node by using the
PromoteSlaveAction entry point on the standby PostgreSQL resource

■ Either manual or automatic re-registration of the old master node in case of
service group switchover using the RewindAction entry point

■ Failover and switch of a PostgreSQL Master server in a cluster

■ Failover and switch of a PostgreSQL Standby server in a cluster

■ Promotion of the standby node to primary in case of DBMS failure on the master
node

■ Promotion of the standby node to primary in case of master node failure
If the master node fails, the PostgreSQL Replication agent promotes the standby
node.
If the master node is not shut down gracefully before it tries to re-register as a
slave, the rewind operation fails.
When the RestartdbToRewind attribute is set to 1, the database instance is
started and stopped gracefully before the rewind operation.

8Introducing the agents for PostgreSQL Database and Replication
About the InfoScale Availability agents for PostgreSQL Database and Replication

To set up Streaming Replication and to efficiently perform takeover and failover,
provide appropriate values for the following settings in these configuration files:

■ archive_mode

■ archive_command

■ synchronous_standby_names

■ listen_addresses

■ wal_level

■ max_wal_senders

■ max_replication_slots

■ wal_log_hints

■ synchronous_commit

postgresql.conf

■ primary_conninfo

■ restore_command

■ cluster_name

For PostgreSQL 12 and later:
postgresql.auto.conf, or any
other configuration file that the agent
should copy to the data directory on
the standby node.

■ standby_mode

■ primary_conninfo

■ restore_command

■ recovery_target_timeline

■ primary_slot_name

For versions earlier than
PostgreSQL 12: recovery.conf

Supported software
For information on the software versions that the Cluster Server agent for
PostgreSQL supports, see the Veritas Services and Operations Readiness Tools
(SORT) site: https://sort.veritas.com/agents.

Supported configurations for PostgreSQL
Streaming Replication

InfoScale supports the following types of high availability configurations using the
VCS agent for PostgreSQL Streaming Replication.

Figure 1-1 depicts a two-server Primary-Standby configuration. Both the nodes, N1
and N2, are a part of the same cluster, Pg_cluster. N1 is the Primary server and
N2 is the Standby server. Replication is active from N1 to N2.

9Introducing the agents for PostgreSQL Database and Replication
Supported software

https://sort.veritas.com/agents

Figure 1-1 Two-node failover cluster

Figure 1-2 depicts a Primary-Standby configuration, where the cluster can have
two or more nodes. There are two clusters, PG_clus1 and Pg_Clus2. Nodes N1
and N2 are a part of PG_clus1, and nodes N3 and N4 are a part of PG_clus2.
PG_clus1 is the Primary cluster and PG_clus2 is the Standby cluster. Replication
is active from a single node of PG_clus1 to a single node of PG_clus2. The storage
is imported on only one node in a cluster at any given time.

Figure 1-2 Two n-node global clusters with Master instance in one cluster
and Slave instance in the other

Figure 1-3 depicts a Primary-Standby configuration, where a cluster can have two
or more nodes. There are two clusters, PG_clus1 and Pg_Clus2. Nodes N1 and
N2 are a part of PG_clus1, and nodes N3 and N4 are a part of PG_clus2. PG_clus1
is the Primary cluster and PG_clus2 is the Standby cluster. Replication is active
from a single node of PG_clus1 to a single node of PG_clus2. The storage is

10Introducing the agents for PostgreSQL Database and Replication
Supported configurations for PostgreSQL Streaming Replication

imported on all the nodes of a cluster at any given time. The Veritas Cluster File
System (CFS) component is used to support this type of configuration.

Figure 1-3 Two n-node global clusters with Veritas Cluster File System (CFS)
as the underlying storage management component

For details on the service group dependencies for each of these supported
configurations: See “Configuring service groups for PostgreSQL Replication”
on page 62.

Features of the agent
The following are the features of the Cluster Server agent for PostgreSQL:

■ Support for validation of attributes that are based on the agent functions
The agent can validate attributes in each agent function before the actual data
processing starts.

■ Support for First Failure Data Capture (FFDC)
In case of a fault, the agent generates a huge volume of the debug logs that
enable troubleshooting of the fault.

■ Support for Fast First Level Monitor (FFLM)
The agent maintains PID files based on search patterns to expedite the
monitoring process.

■ Support for external user-supplied monitor utilities
The agent enables user-specified monitor utilities to be plugged in, in addition
to the built-in monitoring logic. This enables administrators to completely
customize the monitoring of the application.

■ Support for intelligent resource monitoring and poll-based monitoring

11Introducing the agents for PostgreSQL Database and Replication
Features of the agent

The agent supports the Cluster Server Intelligent Monitoring Framework (IMF)
feature. IMF allows the agent to register the resources to be monitored with the
IMF notification module so as to receive immediate notification of resource state
changes without having to periodically poll the resources.
See “About Intelligent Monitoring Framework” on page 50.

■ Delayed agent function
The agent manages the first monitor after online for slow initializing applications.

How the agent supports intelligent resource
monitoring

With Intelligent Monitoring Framework (IMF), VCS supports intelligent resource
monitoring in addition to the poll-based monitoring. Poll-based monitoring polls the
resources periodically whereas intelligent monitoring performs asynchronous
monitoring.

When an IMF-enabled agent starts up, the agent initializes the Asynchronous
Monitoring Framework (AMF) kernel driver. After the resource is in a steady state,
the agent registers with the AMF kernel driver, the details of the resource that are
required to monitor the resource.

For example, the PostgreSQL agent registers the PIDs of the PostgreSQL processes
and the PgSQLRep agent registers the postgres walsender process with the AMF
kernel driver.

The imf_getnotification function of the agent waits for any resource state changes.
When the AMF kernel driver module notifies the imf_getnotification function about
a resource state change, the agent framework runs the monitor agent function to
ascertain the state of that resource. The agent notifies the state change to VCS,
which then takes appropriate action.

For more information, see the Cluster Server Administrator’s Guide.

PostgreSQL Database agent functions
The operations or functions that the Cluster Server agent for PostgreSQL can
perform are as follows:

Online
The online function performs the following tasks:

■ Verifies that the required attributes are set correctly.

12Introducing the agents for PostgreSQL Database and Replication
How the agent supports intelligent resource monitoring

■ Verifies that the PostgreSQL server instance is not already online. If the instance
is online, the online operation exits immediately.

■ Kills any remaining PostgreSQL processes by using the user name associated
with the specific resource.

■ Configures this instance to connect as standby before startup if a master server
is already running.

■ Starts and stops the database instance gracefully if the Rewind operation fails
and the RestartdbToRewind attribute is set to 1, and then attempts the Rewind
operation again.

■ The Rewind command runs with -c when these attributes, archive_mode,
archive_command, restore_command are configured to avoid failure of Rewind
operation.

■ Attempts to start the PostgreSQL server instance with the command:

$ baseDirectory/pg_ctl start -w -D dataDirectory

-o "-h hostName -p portNumber" startOptions

If MonitorReplication is enabled, the command used is:

$ baseDirectory/pg_ctl start -w -D dataDirectory

-o "-p portNumber" startOptions

The command always gets executed in the context of a PostgreSQL user, who
has the privileges to start and stop the postgres (postmaster) process.
If systemd is supported for the platform, and the UseSystemD attribute is
enabled, the systemctl start serviceName command is used.

Note: In this case, service file must be updated appropriately with the proper
start and stop commands.

■ Checks if the server has started up completely.

■ Gives the control back to VCS High Availability Daemon (HAD).

Offline
The offline function performs the following tasks:

■ Verifies that the required attributes are set correctly.

■ Verifies that the PostgreSQL server instance is not offline.

13Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Database agent functions

■ If the instance is already offline, the operation verifies if any processes belonging
to this PostgreSQL resource exist.

■ Attempts to stop the PostgreSQL server instance with the command:
$ baseDirectory/pg_ctl stop -w -D dataDirectory stopOptions

The pg_ctl command uses the option specified in the StopOpts attribute to
shut down the PostgreSQL database server. If no option is specified in the
StopOpts attribute, the agent stops the database server using the default -m
smart shutdown option.
The command always gets executed in the context of a PostgreSQL user, who
has the privileges to start and stop the postgres (postmaster) process.
If systemd is supported for the platform, and the UseSystemD attribute is
enabled, the systemctl stop serviceName command is used.

■ Gives the control back to HAD.

Monitor
The monitor function monitors the states of the PostgreSQL servers on all nodes
within the cluster. The operation performs the following tasks:

■ The monitor function conducts a first-level check to determine that the
PostgreSQL server processes are running on the system in the cluster. If the
first-level check does not find these processes running on the node, the check
exits immediately and reports the instance as OFFLINE.
The agent for PostgreSQL also supports Intelligent Monitoring Framework (IMF)
in the first-level check. IMF enables intelligent resource monitoring. The agent
for PostgreSQL is IMF-aware and uses the asynchronous monitoring framework
(AMF) kernel driver for resource state change notifications.
See “How the agent supports intelligent resource monitoring” on page 12.
You can use the MonitorFreq key of the IMF attribute to specify the frequency
at which the agent invokes the monitor function.
See “MonitorFreq” on page 52.

■ If the SecondLevelMonitor attribute is set to a value greater than 0, the monitor
operation conducts a second level check.
During Second Level Monitoring, the agent uses the monitor command to verify
that the PostgreSQL server is up.
$ baseDirectory/pg_ctl status -D dataDirectory

The command is executed in the context of a PostgreSQL user, who has the
privilege to monitor the postgres (postmaster) process.

14Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Database agent functions

Note: The attribute used to configure the second-level check and its frequency
depends on the software versions of VCS and PostgreSQL agent you have
installed: For VCS 5.1 SP1 or later with PostgreSQL agent version 5.1.1.0, use
the LevelTwoMonitorFreq attribute. For VCS 5.1 or earlier with PostgreSQL
agent 5.1.0.0 or earlier, use the SecondLevelMonitor attribute.

■ Depending on the value of the MonitorProgram attribute, the monitor operation
can perform a customized check using a user-supplied monitoring utility.
See “PostgreSQL agent attributes” on page 35.

■ If the MonitorReplication attribute is set to 1, the replication link is monitored by
using the following command on the master node:

$ baseDirectory/psql -A -t -h hostName -p portNumber

-c "select * from pg_stat_replication"

Clean
In case of a failure or after an unsuccessful attempt to bring a PostgreSQL server
instance online or take a PostgreSQL server instance offline , the clean operation
performs the following tasks:

■ Attempts to gracefully shut down the PostgreSQL server instance with the
command:
$ baseDirectory/pg_ctl stop -w -D dataDirectory

The command always gets executed in the context of a PostgreSQL user, who
has the privileges to start and stop the postgres (postmaster) process.

■ The clean operation kills the parent PostgreSQL process and its remaining child
processes, if any, pertaining to this PostgreSQL instance.

■ Gives the control back to HAD.

Note: For information about the additional functions of the agent for PostgreSQL
when IMF is enabled: See “Agent functions for the IMF functionality” on page 51.

Action entry points
The PostgreSQL provides the following action entry points for Streaming Replication.

PromoteSlaveAction
This action entry point:

15Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Database agent functions

■ Runs on the standby node.

■ Takes the Global group on the old master node offline, if it is online.

■ Stops the old master node.

■ Promotes the standby to master by using the command:
$ baseDirectory/pg_ctl -D dataDirectory promote

■ Issues a checkpoint by using the command:

$ baseDirectory/psql -A -t "-h $sHostName -p $iPortNumber

-c \"checkpoint\""

To allow sufficient time for the promote slave operation to complete, the agent sets
the timeout value of this action entry point to twice the value of the OfflineTimeout
attribute.

Example: # hares -action pg1 PromoteSlaveAction -sys vmrac019

RewindAction
This action entry point runs on the old master node after it shuts down gracefully
and executes the following command:

$ baseDirectory/pg_rewind -D dataDirectory

--source-server="sourceConnectionString"

Example: # hares -action pg1 RewindAction -sys vmrac017

The timeout value for this action is set to the OnlineTimeout value.

BackupAction
This action entry point runs on a secondary node, and it performs the backup from
the primary instance by using the command that is specified in the BackupCmd
attribute.

Example: # hares -action pg1 PromoteSlaveAction -sys vmrac019

The timeout value for this action is set to the OnlineTimeout value.

GetWALReceiveLSN
This action entry point runs on a secondary node, and it gives the last Write-Ahead
Log Sequence Number that has been received and synced to disk by streaming
replication. The agent runs this action entry point to fetch the last write-ahead log
location from all the slaves to find the correct slave to promote it as a new master.

Example: # hares -action pg1 GetWALReceiveLSN -sys vmrac019

The timeout value for this action is set to the OnlineTimeout value.

16Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Database agent functions

GetAttrValForSys
This action entry point runs on the given system to get Attribute value for given
resource, even if its across Cluster.

Example: # hares -action pg1 GetAttrValForSys -actionargs pgres1 State

-sys vmrac019

SetLastMaster
This action entry point is executed by PgSQLRep Postonline script on all the slave
nodes, even if they are across Cluster, to set Current Masters hostname in
UserStrGlobal attr of global PostgreSQL Replication Group using the following
command:

hagrp -modify PgSQLRep_Grp UserStrGlobal vmrac019

Example: # hares -action pg1 SetLastMaster -actionargs PgRep_grp

vmrac018 -sys vmrac019

PostgreSQL Replication agent functions
The following table lists the operations or functions that the VCS agent for
PostgreSQL Replication can perform.

Table 1-1 PostgreSQL Replication agent functions

DescriptionFunction

Deletes the lock file if the underlying PostgreSQL Database is in the standby mode or its
service group is in the OFFLINE state.

Open

■ Verifies that the required attributes are set correctly.
■ Returns online if the underlying database is already in the primary mode and if replication

is configured.
■ Promotes the underlying database to the primary mode, based on the values of the

SplitTakeOver and the AutoTakeOver attributes, if the database is in the standby mode.
The following command is used to promote the database to the primary mode:
baseDir/pg_ctl promote -w -D 'dataDir' -o "-p 'portNum'"

■ Creates a lock file for this resource.
■ Re-registers the old primary as standby based on the value of the RegistrationOfStandby

attribute.
Uses the RegisterStandby action entry point for re-registration.

■ Checks whether the server has started properly.
■ Gives the control back to the VCS High Availability Daemon (HAD).

Online

17Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Replication agent functions

Table 1-1 PostgreSQL Replication agent functions (continued)

DescriptionFunction

Verifies whether the lock file for the PgSQLRep resource is present, and:

■ returns Online if the lock file is present.
■ returns Offline if the lock file is not present.

If the SwitchMode attribute is set:

■ changes the replication mode from synchronous to asynchronous when replication link is
broken.

■ switches the replication mode back to synchronous when the replication link is
re-established.

Monitor

■ Deletes the lock file.
■ Gives the control back to HAD.

Offline

■ Deletes the lock file.
■ Gives the control back to HAD.

Clean

RegisterStandby action entry point
The agent provides this action entry point, which runs on the old-primary node and
performs the following tasks:

■ Takes the PostgreSQL group offline on the old master node if it is online.

■ If the RegistrationOfStandby attribute is set to 1:

■ Clears the status of the PostgreSQL group on the old master node if it is
FAULTED.

■ Brings the PostgreSQL group online in the standby mode if the
RegistrationOfStandby attribute is set to 1.

To allow sufficient time for the registration of the standby to complete, the agent
sets the timeout value of this action entry point to the sum of the values of the
ActionTimeout, OnlineTimeout, and OfflineTimeout attributes.

A sample action execution command used is as follows:

hares -action resourceName RegisterStandby -actionargs

valueOfRegistrationOfStandby -sys systemName -clus clusterName

18Introducing the agents for PostgreSQL Database and Replication
PostgreSQL Replication agent functions

Installing, upgrading, and
removing the agents for
PostgreSQLDatabase and
Replication

This chapter includes the following topics:

■ Before you install the Cluster Server agent for PostgreSQL

■ About the ACC library

■ Installing the ACC library

■ Installing the agent in a VCS environment

■ Uninstalling the agent in a VCS environment

■ Removing the ACC library

■ Upgrading the PostgreSQL and the PgSQLRep agents

Before you install the Cluster Server agent for
PostgreSQL

You must install the Cluster Server agent for PostgreSQL on all the systems that
will host PostgreSQL service groups.

Before you install the agent for PostgreSQL, ensure that the following prerequisites
are met.

2Chapter

■ Install and configure Cluster Server.
For more information on installing and configuring Cluster Server, refer to the
Cluster Server installation and configuration guides.

■ Install the latest version of ACC Library.
To install or update the ACC Library package, locate the library and related
documentation in the Agent Pack tarball.
See “About the ACC library” on page 20.

About the ACC library
The operations of a Cluster Server agent depend on a set of Perl modules known
as the ACC library. The library must be installed on each system in the cluster that
runs the agent. The ACC library contains common, reusable functions that perform
tasks, such as process identification, logging, and system calls.

Instructions to install or remove the ACC library on a single system in the cluster
are given in the following sections. The instructions assume that the ACCLib tar
file has already been extracted.

Note: The LogDbg attribute should be used to enable debug logs for the
ACCLib-based agents when the ACCLib version is 6.2.0.0 or later and VCS version
is 6.2 or later.

Installing the ACC library
Install the ACC library on each system in the cluster that runs an agent that depends
on the ACC library.

To install the ACC library

1 Log in as a superuser.

2 Download ACC Library.

You can download either the complete Agent Pack tar file or the individual
ACCLib tar file from the Veritas Services and Operations Readiness Tools
(SORT) site (https://sort.veritas.com/agents).

20Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
About the ACC library

https://sort.veritas.com/agents

3 If you downloaded the complete Agent Pack tar file, navigate to the directory
containing the package for the platform running in your environment.

cd1/aix/vcs/application/acc_library/version_library/pkgsAIX

cd1/linux/generic/vcs/application/acc_library/version_library/rpmsLinux

cd1/solaris/dist_arch/vcs/application/acc_library/version_library/pkgsSolaris

4 If you downloaded the individual ACCLib tar file, navigate to the pkgs directory
(for AIX and Solaris), or rpms directory (for Linux).

5 Install the package. Enter Yes, if asked to confirm overwriting of files in the
existing package.

installp -ac -d VRTSacclib.bff VRTSacclibAIX

rpm -i \
VRTSacclib-VersionNumber-GA_GENERIC.noarch.rpm

Linux

pkgadd -d VRTSacclib.pkg

See “Installing the ACC library IPS package onOracle Solaris 11 systems”
on page 21.

Solaris

Note: The LogDbg attribute should be used to enable debug logs for the
ACCLib-based agents when the ACCLib version is 6.2.0.0 or later and VCS
version is 6.2 or later.

Installing the ACC library IPS package on Oracle Solaris 11 systems
Install the ACC library IPS package on an Oracle Solaris 11 system.

To install the ACC library IPS package on Oracle Solaris 11 systems

1 Copy the VRTSacclib.p5p package from the pkgs directory to the system in
the /tmp/install directory.

2 Disable the publishers that are not reachable as package install may fail, if
any, of the already added repositories are unreachable.

pkg set-publisher --disable <publisher name>

3 Add a file-based repository in the system.

pkg set-publisher -g /tmp/install/VRTSacclib.p5p Veritas

21Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Installing the ACC library

4 Install the package.

pkg install --accept VRTSacclib

5 Remove the publisher from the system.

pkg unset-publisher Veritas

6 Enable the publishers that were disabled earlier.

pkg set-publisher --enable <publisher name>

Installing the ACC library package on Solaris brand non-global zones
With Oracle Solaris 11, you must install the ACC library package inside non-global
zones. The native non-global zones are called Solaris brand zones.

To install the ACC library package on Solaris brand non-global zones

1 Ensure that the SMF services,
svc:/application/pkg/system-repository:default and
svc:/application/pkg/zones-proxyd:default, are online on the global
zone.

svcs svc:/application/pkg/system-repository:default

svcs svc:/application/pkg/zones-proxyd:default

2 Log on to the non-global zone as a superuser.

3 Ensure that the SMF service
svc:/application/pkg/zones-proxy-client:default is online inside the
non-global zone:

svcs svc:/application/pkg/zones-proxy-client:default

4 Copy the VRTSacclib.p5p package from the pkgs directory to the non-global
zone (for example, at the /tmp/install directory).

5 Disable the publishers that are not reachable, as package install may fail, if
any of the already added repositories are unreachable.

pkg set-publisher --disable <publisher name>

6 Add a file-based repository in the non-global zone.

pkg set-publisher -g/tmp/install/VRTSacclib.p5p Veritas

7 Install the package.

pkg install --accept VRTSacclib

22Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Installing the ACC library

8 Remove the publisher on the non-global zone.

pkg unset-publisher Veritas

9 Clear the state of the SMF service, as setting the file-based repository causes
the SMF service svc:/application/pkg/system-repository:default to go
into the maintenance state.

svcadm clear svc:/application/pkg/system-repository:default

10 Enable the publishers that were disabled earlier.

pkg set-publisher --enable <publisher>

Note: Perform steps 2 through 10 on each non-global zone.

Installing the agent in a VCS environment
Install the agent for PostgreSQL on each node in the cluster.

To install the agent in a VCS environment

1 Download the agent from the Veritas Services and Operations Readiness Tools
(SORT) site: https://sort.veritas.com/agents.

You can download either the complete Agent Pack tar file or an individual agent
tar file.

2 Uncompress the file to a temporary location, say /tmp.

3 If you downloaded the complete Agent Pack tar file, navigate to the directory
containing the package for the platform running in your environment.

cd1/aix/vcs/application/postgresql_agent/

vcs_version/version_agent/pkgs

AIX

cd1/linux/generic/vcs/application/postgresql_agent/

vcs_version/version_agent/rpms

Linux

cd1/solaris/dist_arch/vcs/application/postgresql_agent/

vcs_version/version_agent/pkgs

Solaris

If you downloaded the individual agent tar file, navigate to the pkgs directory
(for AIX and Solaris), or rpms directory (for Linux).

23Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Installing the agent in a VCS environment

https://sort.veritas.com/agents

4 Log in as a superuser.

5 Install the package.

installp -ac -d
VRTSpgsql.rte.bff VRTSpgsql.rte

AIX

rpm -ihv \
VRTSpgsql-AgentVersion-GA_GENERIC.noarch.rpm

Linux

pkgadd -d . VRTSpgsqlSolaris

After installing the agent package, you must import the agent type configuration
file.

See “Importing the agent types files in a VCS environment” on page 34.

Installing the agent IPS package on Oracle Solaris 11 systems
To install the agent IPS package on an Oracle Solaris 11 system

1 Copy the VRTSpgsql.p5p package from the pkgs directory to the system in the
/tmp/install directory.

2 Disable the publishers that are not reachable as package install may fail, if any
of the already added repositories are unreachable.

pkg set-publisher --disable <publisher name>

where the publisher name is obtained using the pkg publisher command.

3 Add a file-based repository in the system.

pkg set-publisher -g /tmp/install/VRTSpgsql.p5p Veritas

4 Install the package.

pkg install --accept VRTSpgsql

5 Remove the publisher from the system.

pkg unset-publisher Veritas

6 Enable the publishers that were disabled earlier.

pkg set-publisher --enable <publisher name>

24Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Installing the agent in a VCS environment

Installing agent packages on Solaris brand non-global zones
To install the agent package on Solaris brand non-global zones

1 Ensure that the SMF services,
svc:/application/pkg/system-repository:default and
svc:/application/pkg/zones-proxyd:default, are online on the global
zone.

svcs svc:/application/pkg/system-repository:default

svcs svc:/application/pkg/zones-proxyd:default

2 Log on to the non-global zone as a superuser.

3 Ensure that the SMF service
svc:/application/pkg/zones-proxy-client:default is online inside
non-global zone:

svcs svc:/application/pkg/zones-proxy-client:default

4 Copy the VRTSpgsql.p5p package from the pkgs directory to the non-global
zone (for example, at the /tmp/install directory).

5 Disable the publishers that are not reachable, as package install may fail, if
any of the already added repositories are unreachable.

pkg set-publisher --disable <publisher name>

6 Add a file-based repository in the non-global zone.

pkg set-publisher -g/tmp/install/VRTSpgsql.p5p Veritas

7 Install the package.

pkg install --accept VRTSpgsql

8 Remove the publisher on the non-global zone.

pkg unset-publisher Veritas

9 Clear the state of the SMF service, as setting the file-based repository causes
the SMF service svc:/application/pkg/system-repository:default to go
into the maintenance state.

svcadm clear svc:/application/pkg/system-repository:default

10 Enable the publishers that were disabled earlier.

pkg set-publisher --enable <publisher>

Note: Perform steps 2 through 10 on each non-global zone.

25Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Installing the agent in a VCS environment

Installing the agent in a Solaris 10 brand zone
To install the PostgreSQL agent in a Solaris 10 brand zone:

■ Ensure that the ACC library package, VRTSacclib, is installed in the non-global
zone.
To install VRTSacclib in the non-global zone, run the following command from
the global zone:
pkgadd -R /zones/zone1/root -d VRTSacclib.pkg

■ To install the agent package in the non-global zone, run the following command
from the global zone:
pkgadd -R zone-root/root -d . VRTSpgsql

For example: # pkgadd -R /zones/zone1/root -d . VRTSpgsql

Note: You can ignore the following messages that might appear:

Executing postinstall script.

ln: cannot create

/opt/VRTSagents/ha/bin/PostgreSQL/imf_getnotification: File exists

ln: cannot create /opt/VRTSagents/ha/bin/PostgreSQL/imf_register:

File exists

or ## Executing postinstall script.

ln: cannot create

/opt/VRTSagents/ha/bin/PostgreSQL/imf_getnotification: No such file

or directory

ln: cannot create /opt/VRTSagents/ha/bin/PostgreSQL/imf_register: No

such file or directory

Uninstalling the agent in a VCS environment
You must uninstall the agent for PostgreSQL from a cluster while the cluster is
active.

To uninstall the agent in a VCS environment

1 Log in as a superuser.

2 Set the cluster configuration mode to read/write by running the following
command from any node in the cluster:

haconf -makerw

26Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Uninstalling the agent in a VCS environment

3 Remove all PostgreSQL resources from the cluster. Run the following command
to verify that all resources have been removed:

hares -list Type=PostgreSQL

hares -list Type=PgSQLRep

4 Remove the agent type from the cluster configuration by running the following
command from any node in the cluster:

hatype -delete PostgreSQL

hatype -delete PgSQLRep

Removing the agent’s type file from the cluster removes the include statement
for the agent from the main.cf file, but the agent's type file is not removed
from the cluster configuration directory. You can remove the agent’s type file
later from the cluster configuration directory.

5 Save these changes. Then set the cluster configuration mode to read-only by
running the following command from any node in the cluster:

haconf -dump -makero

6 Use the platform's native software management program to remove the agent
for PostgreSQL from each node in the cluster.

Run the following command to uninstall the agent:

installp -u VRTSpgsql.rteAIX

rpm -e VRTSpgsqlLinux

pkgrm VRTSpgsql

Note: To uninstall the agent IPS package on a Solaris 11 system,
run the following command:

pkg uninstall VRTSpgsql

Solaris

Removing the ACC library
Perform the following steps to remove the ACC library.

27Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Removing the ACC library

To remove the ACC library

1 Ensure that all agents that use ACC library are removed.

2 Run the following command to remove the ACC library package:

installp -u VRTSacclibAIX

rpm -e VRTSacclibLinux

pkgrm VRTSacclib

Note: To uninstall the ACCLib IPS package on a Solaris 11 system,
run the following command:

pkg uninstall VRTSacclib

Solaris

Upgrading the PostgreSQL and the PgSQLRep
agents

Perform the following steps to upgrade the agent with minimal disruption.

To upgrade the PostgreSQL and the PgSQLRep agents

1 Verify the agent version.

rpm -qi VRTSpgsql | grep VersionLinux

pkginfo -l VRTSpgsql | grep VERSIONSolaris

The output resembles:

Version : 7.0.0.0

2 Save the VCS configuration.

haconf -dump -makero

28Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Upgrading the PostgreSQL and the PgSQLRep agents

3 Identify the appropriate resource.

hatype -resources PostgreSQL

hatype -resources PgSQLRep

The output resembles:

pgsql

pgsqlrep

Identify the appropriate service group.

hares -display pgsql | grep Group

hares -display pgsqlrep | grep Group

The output resembles:

pgsql Group global PostgreSQL_grp

pgsqlrep Group global PgSQLRep_grp

4 Identify the current agent version from the type-level attribute, Version.

hatype -display PostgreSQL | grep Version

hatype -display PgSQLRep | grep Version

5 Freeze the service group.

hagrp -freeze PostgreSQL_grp

hagrp -freeze PgSQLRep_grp

6 Identify whether the PostgreSQL or the PgSQLRep agent is running.

haagent -display PostgreSQL | grep Running

haagent -display PgSQLRep | grep Running

The output resembles:

PostgreSQL Running Yes

PgSQLRep Running Yes

7 If the agent is running, stop the agent.

haagent -stop PostgreSQL -force -sys hostname

haagent -stop PgSQLRep -force -sys hostname

29Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Upgrading the PostgreSQL and the PgSQLRep agents

8 Verify the status of the agent.

haagent -display PostgreSQL | grep Running

haagent -display PgSQLRep | grep Running

The output resembles:

PostgreSQL Running No

PgSQLRep Running No

9 Uninstall the agent by running the following command:

installp -u VRTSpgsql.rteAIX

rpm -e VRTSpgsqlLinux

pkgrm VRTSpgsql

Note: To uninstall the agent IPS package on a Solaris 11 system,
run the following command:

pkg uninstall VRTSpgsql

Solaris

10 Install the latest agent.

See “Installing the agent in a VCS environment” on page 23.

30Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Upgrading the PostgreSQL and the PgSQLRep agents

11 Update the agent type definition.

haconf -makerw

hatype -modify PostgreSQL SupportedActions PromoteSlaveAction

RewindAction BackupAction

hatype -modify PostgreSQL ArgList ResLogLevel, State, IState,

PostgreSQLUser, BaseDir, DataDir, EnvFile, HostName, Port,

StartOpts, StopOpts, DBUser, DBName, Table, UseSystemD,

ServiceName, SecondLevelMonitor, MonitorProgram,

MonitorReplication, ClientAddr, SourceConnStr, BackupCmd,

RecoveryFile, RestartdbToRewind, RegistrationOfStandby,

LinkMonitor, AutoTakeOver, SplitTakeOver, DetailedMonitoring,

SwitchMode, ReplicationModeTuples

hatype -modify PgSQLRep SupportedActions RegisterStandby

GetWALReceiveLSN SetLastMaster GetAttrValForSys

haattr -add -temp PgSQLRep WalSenderPids

hatype -modify PgSQLRep ArgList ResLogLevel State IState

PgSQLResource WalSenderPid WalSenderPids

haconf -dump -makero

12 Start the database.

haagent -start PostgreSQL -sys hostname

haagent -start PgSQLRep -sys hostname

The output resembles:

VCS NOTICE V-16-1-10001 Please look for messages in the log file

31Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Upgrading the PostgreSQL and the PgSQLRep agents

13 Verify the status of the agent.

haagent -display PostgreSQL | grep Running

haagent -display PgSQLRep | grep Running

The output resembles:

PostgreSQL Running Yes

PgSQLRep Running Yes

14 Unfreeze the service group.

hagrp -unfreeze PostgreSQL_grp

hagrp -unfreeze PgSQLRep_grp

32Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
Upgrading the PostgreSQL and the PgSQLRep agents

Configuring the agents for
PostgreSQLDatabase and
Replication

This chapter includes the following topics:

■ About configuring the Cluster Server agent for PostgreSQL

■ Importing the agent types files in a VCS environment

■ PostgreSQL agent attributes

■ Executing a customized monitoring program

■ Setting up detail monitoring for the VCS agent for PostgreSQL

About configuring the Cluster Server agent for
PostgreSQL

After installing the Cluster Server agent for PostgreSQL, you must import the agent
type configuration file. After importing this file, review the attributes table that
describes the resource type and its attributes, and then create and configure
PostgreSQL resources.

To view the sample agent type definition and service groups configuration:

See “About sample configurations for the agents for PostgreSQL” on page 78.

3Chapter

Importing the agent types files in a VCS
environment

To use the agents for PostgreSQL Database (PostgreSQL) or Replication
(PgSQLRep), you must import the agent types file into the cluster. You can import
the agent types file using the VCS Java GUI or using the CLI.

To import the PostgreSQL agent types file using the VCS Java GUI

1 Start the Cluster Manager (Java Console) and connect to the cluster on which
the agent is installed.

2 Click File > Import Types.

3 In the Import Types dialog box, select the following file:

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes.cf

AIX

Linux

VCS 5.x or later

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes50.cf

Solaris SPARCVCS 5.0

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes51.cf

Solaris SPARCVCS 5.1 or later

4 Click Import.

5 Save the VCS configuration.

The PostgreSQL agent type is now imported to the VCS engine. You can
proceed to create PostgreSQL Database resources.

Note: In case of a PostgreSQL Replication setup, repeat this procedure with the
/etc/VRTSagents/ha/conf/PgSQLRep/PgSQLRepTypes.cf file. You can then
proceed to create the PgSQLRep resources.

For additional information about using the VCS Java GUI, refer to theCluster Server
Administrator's Guide.

To import the PostgreSQL agent types file using the CLI

1 If VCS is running, execute
/etc/VRTSagents/ha/conf/PostgreSQL/PostgreSQLTypes.cmd.

2 If VCS is not running, perform the following steps sequentially:

34Configuring the agents for PostgreSQL Database and Replication
Importing the agent types files in a VCS environment

■ Copy the agent types file from the
/etc/VRTSagents/ha/conf/agentTypesFile directory to the
/etc/VRTSvcs/conf/config directory.
The value of agentTypesFile depends on the product version and the
supported operating systems.

3 /etc/VRTSvcs/conf/sample_PostgreSQL/

PostgreSQLTypes.cf

AIX

Linux

Solaris

VCS 4.x

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes.cf

AIX

Linux

VCS 5.x or later

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes50.cf

Solaris SPARCVCS 5.0

/etc/VRTSagents/ha/conf/PostgreSQL/

PostgreSQLTypes51.cf

Solaris SPARCVCS 5.1 or later

4 Include the agent types file in the main.cf file.

echo 'include "PostgreSQLTypes.cf"' > main.cf

5 Start HAD.

The PostgreSQL agent type is now imported to the VCS engine. You can
proceed to create PostgreSQL Database resources.

Note: In case of a PostgreSQL Replication setup, repeat this procedure with the
/etc/VRTSagents/ha/conf/PgSQLRep/PgSQLRepTypes.cf file. You can then
proceed to create the PgSQLRep resources.

For additional information about using the VCS CLI, refer to the Cluster Server
Administrator's Guide.

PostgreSQL agent attributes
Refer to the required and the optional attributes when you configure the agent for
PostgreSQL.

35Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-1 Required attributes for PostgreSQL agent

DescriptionAttribute

The dedicated OS user name that is created when the
PostgreSQL server is installed. This user performs all the
database server operations, such as start, stop, and monitor.
This user name must be identical on all failover nodes.

Note: For EnterpriseDB Postgres Advanced Server, the default
value of this attribute is enterprisedb. Modify the value of
this attribute as required.

Default: postgres

Example: postgres

Name: PostgreSQLUser

Type: String

Dimension: Scalar

Absolute path of the directory that contains the database that
this instance of the PostgreSQL server manages. Veritas
recommends that you configure this directory on shared storage
so that the same copy is available on the failover node.

The PostgreSQL user must be the owner of this database
directory.

Default: No default value

Example: /opt/postgres/data

Name: DataDir

Type: String

Dimension: Scalar

The installation path of the PostgreSQL database server, where
the PostgreSQL executables like pg_ctl, postgres, and so
on reside.

Default: No default value

Example: /usr/bin

Name: BaseDir

Type: String

Dimension: Scalar

Virtual host name for this PostgreSQL database instance.

Default: No default value

Example: web1.veritas.com

Name: HostName

Type: String

Dimension: Scalar

Dedicated port number for the PostgreSQL server. The database
server is started using the and port number provided.

Note: For EnterpriseDB Postgres Advanced Server, the default
value of this attribute is 5444. Modify the value of this attribute
as required.

Default: 5432

Example: 5212

Name: Port

Type: Integer

Dimension: Scalar

36Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-1 Required attributes for PostgreSQL agent (continued)

DescriptionAttribute

Indicates that the agent should monitor the replication link to
support the PostgreSQL Streaming Replication feature. When
this attribute is set, the agent expects that the setup is that of
PostgreSQL Replication and that the PgSQLRep agent is
configured.

The agent takes the following actions:

■ Verifies the replication host from the
pg_stat_replication table.

■ Promotes the standby to master and stops the old master,
in case of a switchover or a failover operation.

■ Restarts the old master as standby if the
RegistrationOfStandby attribute is enabled.

Default: 0

Example: 1

Name:
MonitorReplication

Type: Boolean

Dimension: Scalar

Indicates whether the agent should switch the replication mode
from Synchronous to Asynchronous when the replication link is
broken. If enabled, the agent also switches the replication mode
back to Synchronous when the replication link is restored.

Default: 0

Example: 1

Name: SwitchMode

Type: Boolean

Dimension: Scalar

37Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent

DescriptionAttribute

Specifies the logging detail that the agent performs for the
resource.

The valid values are as follows:

■ ERROR: Only logs error messages.
■ WARN: Logs error messages and warning messages.
■ INFO: Logs error messages, warning messages, and

informational messages.
■ TRACE: Logs error messages, warning messages,

informational messages, and trace messages. TRACE is
very verbose and should be used only during initial
configuration or for troubleshooting and diagnostic
operations.

Note: When ACCLib version is 6.2.0.0 or later and VCS
version is 6.2 or later, use LogDbg instead of ResLogLevel
to enable debug logs for ACCLib-based agents. The agent
captures the first failure data of the unexpected events and
automatically logs debug messages in their corresponding
agent log files.

Default: INFO

Example: ERROR

Name: ResLogLevel

Type: String

Dimension: Scalar

When ACCLib version is 6.2.0.0 or later and VCS version is
6.2 or later, use the LogDbg resource-type attribute to enable
debug logs for ACCLib-based agents.

Set LogDbg to DBG_5 to enable debug logs for
ACCLib-based agents. By default, when you set LogDbg to
DBG_5, it enables debug logs for all PostgreSQL resources
in the cluster. If you need to enable debug logs for a specific
PostgreSQL resource, override the LogDbg attribute.

For details on how to use the LogDbg attribute, see the
Cluster Server Administrator’s Guide.

Default: No default value

Name: LogDbg

Type: String

Dimension: Keylist

38Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Full path of the file name to source to set the environment
before the PostgreSQL commands are executed.

Veritas recommends storing the file on a shared disk. The
ksh, sh, and csh shell environments are supported.

This attribute is required only if second-level monitoring is
enabled.

Default: No default value

Example: /postgres/data/pg.env

Name: EnvFile

Type: String

Dimension: Scalar

Absolute path name of an external, user-supplied monitor
executable.

For details on setting this attribute:

See “Executing a customized monitoring program”
on page 46.

Default: No default value

Example 1: ServerRoot/bin/myMonitor.pl

Example 2: ServerRoot/bin/myMonitor.sh arg1 arg2

Name: MonitorProgram

Type: String

Dimension: Scalar

39Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Used to enable second-level monitoring and specify how
often it is run. Second-level monitoring is a deeper, more
thorough state check of the configured PostgreSQL server
instance. The numeric value specifies how often the
second-level monitoring routines are run.

For example, if MonitorInterval is set to 60 seconds and
SecondLevelMonitor is set to 100, the second-level check is
performed only after every 100 minutes.

To provide maximum flexibility, the value set is not checked
for an upper limit. You can set the second-level check to occur
once a month, if that is appropriate for your environment.

Set the value of this attribute to a large number only after
careful consideration of these implications.

See “Setting up detail monitoring for the VCS agent for
PostgreSQL” on page 47.

Note: The SecondLevelMonitor attribute is applicable to
VCS versions earlier than VCS 5.1 SP1 with PostgreSQL
agent versions earlier than 5.1.1.0. From VCS version 5.1
SP1 with PostgreSQL agent version 5.1.1.0 onwards, the
SecondLevelMonitor attribute is deprecated. Instead, a
resource type level attribute LevelTwoMonitorFreq should be
used to specify the frequency of in-depth monitoring.

Default: 0

Example: 1

Name:SecondLevelMonitor

Type: Integer

Dimension: Scalar

SystemD is a system and a service manager for Linux
operating systems. It helps manage applications across Linux
distributions that support the SystemD feature. When
UseSystemD is set to 1 on the SystemD-enabled RHEL and
SLES platforms, the PostgreSQL resource uses the
PostgreSQL service file for the online and the offline
operations. The PostgreSQL resource comes online as a
service in system.slice. When this attribute is set to 0, typical
online and offline functions start and stop the resource in
user.slice.

Default: 0

Example: 1

Name: UseSystemD

Type: Boolean

Dimension: Scalar

40Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Used to provide support for SystemD-enabled RHEL and
SLES platforms. This attribute defines the name of the service
that is used to start and stop the PostgreSQL application. If
UseSystemD is set to 1, you must specify a value for
ServiceName.

Default: No default value

Example: postgresql-9.4

Name: ServiceName

Type: String

Dimension: Scalar

Specifies the frequency at which the agent for this resource
type must perform second-level or detailed monitoring. You
can also override the value of this attribute at the resource
level. The value indicates the number of monitor cycles after
which the agent monitors the PostgreSQL server in detail.

For example, the value 5 indicates that the agent monitors
the PostgreSQL server in detail after every five online monitor
intervals.

Note: This attribute is applicable to VCS version 5.1 SP1 or
later with PostgreSQL agent version 5.1.1.0 or later. If VCS
version is earlier than 5.1 SP1 and PostgreSQL agent version
is earlier than 5.1.1.0, you must use the SecondLevelMonitor
attribute.

Set LevelTwoMonitorFreq to the same value as
SecondLevelMonitor, if both the following conditions are true:

■ You upgraded the VCS version to VCS 5.1 SP1 or later
and the PostgreSQL agent version to 5.1.1.0 (or later).

■ You had enabled detail monitoring in the previous version.

Default: 0

Name:
LevelTwoMonitorFreq

Type: Integer

Dimension: Scalar

The startup options for the pg_ctl command.

Example: -l logfile

Name: StartOpts

Type: String

Dimension: Scalar

41Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Shutdown options for the PostgreSQL database server. You
can use this attribute to specify a shutdown mode, such as
-m fast, which does not wait for clients to disconnect.

If this attribute is not specified, the agent stops the database
server with the default -m smart shutdown mode.

If the database is configured for replication, you must specify
the -t TIMEOUT_SECS option. You need not specify the -w
option, because the relevant value is already passed.

For information about shutdown options, see postgres
--help. These options are used in the pg_ctl command,
which is used when the postgres process is stopped.

Default: No default value

Example: -m fast

Name: StopOpts

Type: String

Dimension: Scalar

A valid database user name that is used to run queries on
the database during detail monitoring. This user must have
privileges to run queries on or to update the table that is
created for detail monitoring.

Default: No default value

Example: postgres

Name: DBUser

Type: String

Dimension: Scalar

A valid database name in which the table is created for detail
monitoring.

Default: No default value

Example: postgres

Name: DBName

Type:

Dimension:

A valid database table in the $DBUser schema on which the
query is executed during detail monitoring. The table should
contain a single field TSTAMP with datatype DATE.

Default: No default value

Example: vcsslm

Name: Table

Type: String

Dimension: Scalar

Connection string that the RewindAction action entry point
uses to support the PostgreSQL Streaming Replication
feature.

Default: No default value

Example: host=10.209.69.168 port=5432 user=postgres
dbname=postgres

Name: SourceConnStr

Type: String

Dimension: Scalar

42Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Complete base backup command that is used to backup the
database instance. The agent uses this value to support the
PostgreSQL Streaming Replication feature.

Note: If third-party tools are used for PostgreSQL backup,
specify the full path of the backup command, including the
command options to be used.

Default: No default value

Example: /usr/pgsql-10/bin/pg_basebackup -R -X stream
-D /var/lib/pgsql/data -U postgres -h 10.209.69.168

Name: BackupCmd

Type: String

Dimension: Scalar

Full path of the recovery.conf file. This value is applicable
in the context of the replication support for PostgreSQL. The
agent copies this file to the data directory when it configures
a standby instance.

For PostgreSQL 12 and later, specify the full path of the
postgresql.auto.conf file or any other configuration file
that the agent should copy to the data directory on standby
node.

Default: No default value

Example 1: /var/lib/pgsql/backup/recovery.conf

Example 2: /var/lib/pgsql/backup/postgresql.auto.conf

Name: RecoveryFile

Type: String

Dimension: Scalar

Indicates whether to restart the database if the pg_rewind
command fails. The agent uses this value to support the
PostgreSQL Streaming Replication feature. If the database
is not gracefully shut down and if the value of this attribute is
set to 1, the agent starts and stops the database before it
runs the pg_rewind command again.

Note: This attribute must be set to 1 for the synchronous
mode of replication.

Default: 0

Example: 1

Name: RestartdbToRewind

Type: Boolean

Dimension: Scalar

43Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Indicates whether to re-register the old master as the standby.
The agent uses this value to support the PostgreSQL
Streaming Replication feature. In case of a failover or a
switchover operation, the PgSQLRep resource refers to this
attribute. If its value is set to 1, the agent re-registers the old
master as standby.

Default: 0

Example: 1

Name:
RegistrationOfStandby

Type: Boolean

Dimension: Scalar

Specifies whether the agent should check the state of the
replication while the resource comes online on the master
node. If set to 1, the agent checks the state of the replication
and brings the resource online only if the state is UP. This
attribute is used only on the node where the database is
already in the master mode.

Default: 0

Example: 1

Name: LinkMonitor

Type: Boolean

Dimension: Scalar

Indicates whether the agent should bring the standby
database replication resource online when the primary
database is not available. If set to 0, the agent does not bring
the resource online when the primary database is not
available.

Default: 0

Example: 1

Name: AutoTakeOver

Type: Boolean

Dimension: Scalar

Indicates whether the agent should bring the standby
database replication resource online when the replication link
is not in the healthy state. If set to 0, the agent does not bring
the resource online when the replication is not in the healthy
state.

Default: 0

Example: 1

Name: SplitTakeOver

Type: Boolean

Dimension: Scalar

Indicates whether the agent should log the monitoring details
during each monitor cycle.

Default: 0

Example: 1

Name: DetailedMonitoring

Type: Boolean

Dimension: Scalar

44Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-2 Optional attributes for PostgreSQL agent (continued)

DescriptionAttribute

Specifies the Replication modes to be used between the
current node and each of its slave nodes. Its value is in the
form of tuples that contain two elements. The first element
indicates a slave or a target node, and the second element
indicates the replication mode between the current node and
that target node. The valid replication modes are sync and
async. This attribute is used when two or more nodes can
act as the slave node.

Default: No default value

Example: Consider that NodeA is the current node and
the possible target nodes are: NodeB with synchronous
replication and NodeC with asynchronous replication.
The value of this attribute should be set to NodeB=sync,
NodeC=async.

Name:
ReplicationModeTuples

Type: Boolean

Dimension: Scalar

Table 3-3 Required attributes for PgSQLRep agent

DescriptionAttribute

Specifies the level of logging detail that the agent provides for
the resource.

The valid values are as follows:

■ ERROR: Only logs error messages.
■ WARN: Logs error messages and warning messages.
■ INFO: Logs error messages, warning messages, and

informational messages.
■ TRACE: Logs error messages, warning messages,

informational messages, and trace messages. TRACE is
very verbose and should be used only during initial
configuration or for troubleshooting and diagnostic operations.

Note:When ACCLib version is 6.2.0.0 or later and VCS version
is 6.2 or later, use LogDbg instead of ResLogLevel to enable
debug logs for ACCLib-based agents. The agent captures the
first failure data of the unexpected events and automatically logs
debug messages in their corresponding agent log files.

Default: INFO

Example: ERROR

Name: ResLogLevel

Type: String

Dimension: Scalar

45Configuring the agents for PostgreSQL Database and Replication
PostgreSQL agent attributes

Table 3-3 Required attributes for PgSQLRep agent (continued)

DescriptionAttribute

Specifies the name of the PostgreSQL Database resource. The
PostgreSQL attribute values are fetched from this resource.

Default: No default value

Example: pg_res

Name: PgSQLResource

Type: String

Dimension: Scalar

Table 3-4 Internal attribute for PgSQLRep agent

DescriptionAttribute

Used to store the process ID of the Wal Sender process. Do not
edit this value.

Name:WalSenderPid

Type: Integer

Dimension: Scalar

Used to store the process ID’s of multiple Wal Sender processes
when ReplicationModeTuple attribute is set. Do not edit this
value.

Name:WalSenderPids

Type: String

Dimension: Scalar

Note: For information about the additional attributes of the agent for PostgreSQL
when IMF is enabled:

See “Attributes that enable IMF” on page 52.

Executing a customized monitoring program
You can configure the monitor function to execute MonitorProgram. MonitorProgram
is a custommonitor utility to perform a user-defined PostgreSQL server state check.

The utility is executed in the context of the UNIX user that is defined in the
PostgreSQLUser attribute.

The monitor operation executes MonitorProgram if:

■ The MonitorProgram attribute value is set to a valid executable utility.

■ The first-level process check indicates that the PostgreSQL server instance is
online.

■ The LevelTwoMonitorFreq attribute is set to 1 and the second-level check returns
the server state as ONLINE.
Or

46Configuring the agents for PostgreSQL Database and Replication
Executing a customized monitoring program

■ The LevelTwoMonitorFreq attribute is set to greater than 1, but the second-level
check is deferred for this monitoring cycle.

The monitor operation interprets the program exit code as follows:

PostgreSQL server is online110 or 0

PostgreSQL server is offline100 or 1

PostgreSQL server state is unknownAny other value

Setting up detail monitoring for the VCS agent for
PostgreSQL

The Cluster Server agent for PostgreSQL provides the following two levels of
application monitoring:

■ Primary (basic monitoring)
In the basic monitoring mode, the agent monitors the PostgreSQL processes
to verify that they are continuously active.

■ Secondary (detail monitoring)
In the detail monitoring mode, the agent executes the psql SELECT statement
to monitor the health of the database.
You can use the agent’s detail monitoring capability to monitor the status of a
database and listener and to increase the confidence in their availability.

Note:Disable detail monitoring before undertaking any database maintenance that
involves disabling database access to external users.

Detail monitoring for a PostgreSQL resource verifies whether a database is ready
for transactions by performing a SELECT transaction against a table within the
database. This SELECT statement fetches the time-stamp from the table created
for detail monitoring.

Ensure the following before you set up and enable detail monitoring:

■ the agent is running satisfactorily at the basic level of monitoring.

■ you have created a test table (with a timestamp) in the PostgreSQL database.

The example to set up detail monitoring shows how to create and test a table for
use by detail monitoring, and how to enable detail monitoring.

47Configuring the agents for PostgreSQL Database and Replication
Setting up detail monitoring for the VCS agent for PostgreSQL

To set up detail monitoring for PostgreSQL

1 Make the VCS configuration writable.

haconf -makerw

2 Freeze the service group to avoid automated actions by VCS caused by an
incomplete reconfiguration.

hagrp -freeze serviceGroupName

3 Log on as a PostgreSQL user.

$ su - ownerName

4 Start the psql utility, and as the database administrator, run the following
command to set up a database table:

$ psql -h hostName -p portNumber -U adminUserName

-d databaseName

Enter the password when prompted.

5 As the database administrator, issue the following statements at the psql

prompt to create the test table:

CREATE USER <USER> WITH PASSWORD ‘<PASSWORD>’;

CREATE table <TABLE>(tstamp timestamp);

GRANT SELECT,UPDATE ON <TABLE> TO <USER>;

INSERT INTO <TABLE> VALUES (CURRENT_TIMESTAMP);

\q

6 If the pg_hba.conf file is configured for password-based authenticationmethods,
such as md5 or password, create a .pgpass file in the format:

hostname:port:database:username:password.

Here, use the username and password that you created while creating the test
table in step 5.

7 Make sure that the file permissions for the .pgpass file are 0600 or less.

8 Place the .pgpass file in the shared file system or on the local file systems.
The .pgpass file must be in the same location on all nodes in the cluster.

9 Create a .env file and enter the following text in it:

export PGPASSFILE=pgpassFilePath

Place the .env file in the shared disk and provide the path of this .env file in
the EnvFile agent attribute.

48Configuring the agents for PostgreSQL Database and Replication
Setting up detail monitoring for the VCS agent for PostgreSQL

10 To test the database table for use, run the following command:

$ psql -A -t -h hostName -p portNumber -U userName

-d databaseName -c "select tstamp from TableName;"

11 Enable detail monitoring for the PostgreSQL resource using the following VCS
commands:

hares -modify PostgreSQLResource DBUser User

hares -modify PostgreSQLResource DBName DBName

hares -modify PostgreSQLResource Table Table

hares -modify PostgreSQLResource SecondLevelMonitor 1

haconf -dump -makero

hagrp -unfreeze service_group

You can also use Cluster Manager (Java Console) or Veritas Infoscale
Operations Manager to set these attributes.

49Configuring the agents for PostgreSQL Database and Replication
Setting up detail monitoring for the VCS agent for PostgreSQL

Enabling the PostgreSQL
and the PgSQLRep agents
to support IMF

This chapter includes the following topics:

■ About Intelligent Monitoring Framework

■ Agent functions for the IMF functionality

■ Attributes that enable IMF

■ Before you enable the agent to support IMF

■ Enabling the agent to support IMF

■ Disabling intelligent resource monitoring

■ Sample IMF configurations

About Intelligent Monitoring Framework
With the IMF feature, VCS supports intelligent resource monitoring in addition to
the poll-based monitoring. Poll-based monitoring polls the resources periodically
whereas intelligent monitoring performs asynchronous monitoring. You can enable
or disable the intelligent resource monitoring functionality of the PostgreSQL agent.

VCS process and mount-based agents use the AMF kernel driver that provides
asynchronous event notifications to the agents that are enabled for IMF.

You can enable the PostgreSQL agent for IMF, provided the following software
versions are installed:

4Chapter

■ Cluster Server (VCS) 5.1 SP1 or later

■ Cluster Server agent for PostgreSQL version 5.1.0.0 or later

Refer to the Cluster Server Administrator’s Guide for more information about IMF
notification module functions and administering the AMF kernel driver.

Benefits of IMF
IMF offers the following benefits:

■ Performance
Enhances performance by reducing themonitoring of each resource at a default
of 60 seconds for online resources, and 300 seconds for offline resources. IMF
enables the agent to monitor a large number of resources with a minimal effect
on performance.

■ Faster detection
Asynchronous notifications would detect a change in the resource state as soon
as it happens. Immediate notification enables the agent to take action at the
time of the event.

Agent functions for the IMF functionality
If the PostgreSQL agent is enabled for IMF support, the agent supports the following
functions, in addition to the functions mentioned in the PostgreSQL agent functions
topic.

imf_init
This function initializes the PostgreSQL agent to interface with the AMF kernel
driver, which is the IMF notification module for the agent for PostgreSQL. This
function runs when the agent starts up.

imf_getnotification
This function gets notifications about resource state changes. This function runs
after the agent initializes with the AMF kernel module. This function continuously
waits for notification and takes action on the resource upon notification.

imf_register
This function registers or unregisters resource entities with the AMF kernel module.
This function runs for each resource after the resource goes into a steady
state—online or offline.

51Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Agent functions for the IMF functionality

Attributes that enable IMF
If the agent for PostgreSQL is enabled for IMF support, the agent uses type-level
attributes in addition to the agent-specific attributes.

IMF
This resource type-level attribute determines whether the PostgreSQL agent must
perform intelligent resource monitoring. You can also override the value of this
attribute at the resource level.

This attribute includes the following keys:

Mode
Define this attribute to enable or disable intelligent resource monitoring.

The valid values are as follows:

■ 0—Does not perform intelligent resource monitoring

■ 1—Performs intelligent resource monitoring for offline resources and performs
poll-based monitoring for online resources

■ 2—Performs intelligent resource monitoring for online resources and performs
poll-based monitoring for offline resources

■ 3—Performs intelligent resource monitoring for both online and for offline
resources.

Note: The agent supports intelligent resource monitoring for online resources only.
Hence, Mode should be set to either 0 or 2.

Type and dimension: integer-association

Default: 0 for VCS 5.1 SP1, 3 for VCS 6.0 and later.

MonitorFreq
This key value specifies the frequency at which the agent invokes the monitor agent
function. The value of this key is an integer.

Default: 1

You can set this key to a non-zero value for cases where the agent requires to
perform both poll-based and intelligent resource monitoring.

If the value is 0, the agent does not perform poll-based process check monitoring.

52Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Attributes that enable IMF

After the resource registers with the AMF kernel driver, the agent calls the monitor
agent function as follows:

■ After every (MonitorFreq x MonitorInterval) number of seconds for online
resources

■ After every (MonitorFreq x OfflineMonitorInterval) number of seconds for offline
resources

RegisterRetryLimit
If you enable intelligent resource monitoring, the agent invokes the imf_register
agent function to register the resource with the AMF kernel driver.

The value of the RegisterRetryLimit key determines the number of times the agent
must retry registration for a resource. If the agent cannot register the resource within
the limit that is specified, then intelligent monitoring is disabled until the resource
state changes or the value of the Mode key changes.

Default: 3.

IMFRegList
An ordered list of attributes whose values are registered with the IMF notification
module.

Enable IMF for the PgSQLRep agent only when the SwitchMode attribute of the
PostgreSQL agent is set to 1. Then, set the value of this attribute to WalSenderPid.

Type and dimension: string-vector

Default: No default value

Note: The attribute values can be overriden at the resource level.

Before you enable the agent to support IMF
Before you enable the PostgreSQL agent to support IMF, ensure that the AMF
kernel module is loaded and AMF is configured. For details, refer to the
‘Administering the AMF kernel driver' section of the Cluster Server Administrator's
Guide. For details about the commands you can configure AMF using the amfconfig
-h command.

53Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Before you enable the agent to support IMF

Enabling the agent to support IMF
In order to enable the PostgreSQL agent to support IMF, you must make the
following configuration changes to the attributes of the agent:

■ AgentFile: Set the AgentFile attribute to Script51Agent or Script60Agent as
appropriate for your agent version

■ IMF Mode: Set the IMF Mode attribute to 2

■ IMFRegList: Update the IMFRegList attribute

The following sections provide more information about the commands you can use
to make these configuration changes, depending on whether VCS is in a running
state or not.

Note: If you have upgraded VCS from an earlier version to version 5.1 SP1 or later,
and you already have version 5.1.00 or later of the agent installed, ensure that you
run the following commands to create appropriate symbolic links:

cd /opt/VRTSagents/ha/bin/<resourceType>

ln -s /opt/VRTSamf/imf/imf_getnotification imf_getnotification

ln -s /opt/VRTSagents/ha/bin/<resourceType>/monitor imf_register

If VCS is in a running state
To enable the resource for IMF when VCS is in a running state

1 Make the VCS configuration writable.

haconf -makerw

2 Run the following command to update the AgentFile attribute.

hatype -modify <resourceType> AgentFile\

/opt/VRTSvcs/bin/Script51Agent

54Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Enabling the agent to support IMF

3 For VCS version 6.0 or later, run the following commands to add the IMF
attributes:

haattr -add -static <resourceType> IMF -integer -assoc Mode 0 \

MonitorFreq 1 RegisterRetryLimit 3

haattr -add -static <resourceType> IMFRegList -string -vector

Note: Run these commands only once after you first enable IMF support for
the agent.

4 Run the following command to update the IMF attribute.

hatype -modify <resourceType> IMF Mode num MonitorFreq num

RegisterRetryLimit num

For example, to enable intelligent monitoring of online resources, with the
MonitorFreq key set to 5, and the RegisterRetryLimit key is set to 3, run the
following command:

hatype -modify <resourceType> IMF Mode 2 MonitorFreq 5 \

RegisterRetryLimit 3

Note: The valid values for the Mode key of the IMF attribute are 0 (disabled)
and 2 (online monitoring).

5 Run the following command to update the IMFRegList attribute:

hatype -modify PostgreSQL IMFRegList BaseDir DataDir

PostgreSQLUser

hatype -modify PgSQLRep IMFRegList BaseDir DataDir

PostgreSQLUser

6 Save the VCS configuration.

haconf -dump -makero

7 If the agent is running, restart the agent.

For information on the commands you can use to restart the agent, see
Restarting the agent.

55Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Enabling the agent to support IMF

Restarting the agent
To restart the agent:

1 Run the following command to stop the agent forcefully:

haagent -stop <resourceType> -force -sys <systemName>

Note: Stopping the agent forcefully eliminates the need to take the resource
offline.

2 Run the following command to start the agent:

haagent -start <resourceType> -sys <systemName>

If VCS is not in a running state
To change the agent type definition file when VCS is not in a running state

1 Update the AgentFile attribute.

static str AgentFile = "/opt/VRTSvcs/bin/Script51Agent"

2 Update the IMF attribute.

The valid values for the Mode key of the IMF attribute are 0 (disabled) and 2
(online monitoring).

static int IMF{} = { Mode=num, MonitorFreq=num,

RegisterRetryLimit=num }

For example, to update the IMF attribute such that the Mode key is set to 2,
the MonitorFreq key is set to 5, and the RegisterRetryLimit key is set to 3:

static int IMF{} = { Mode=2, MonitorFreq=5, RegisterRetryLimit=3

}

3 Update the IMFRegList attribute.

For PostgreSQL: static str IMFRegList[] = { BaseDir, DataDir,

PostgreSQLUser }

For PgSQLRep: static str IMFRegList[] = { WalSenderPid }

56Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Enabling the agent to support IMF

Disabling intelligent resource monitoring
To disable intelligent resource monitoring

1 Make the VCS configuration writable.

haconf -makerw

2 To disable intelligent resource monitoring for all the resources of a certain type,
run the following command:

hatype -modify PostgreSQL IMF -update Mode 0

3 To disable intelligent resource monitoring for a specific resource, run the
following command:

hares -override resource_name IMF

hares -modify resource_name IMF -update Mode 0

4 Save the VCS configuration.

haconf -dump -makero

Sample IMF configurations
An example of a type definition file for a PostgreSQL agent that is IMF-enabled is
as follows. In this example, the IMF-related attributes are set to the following values:

AgentFile /opt/VRTSvcs/bin/Script51Agent

IMF{} { Mode=2, MonitorFreq=5, RegisterRetryLimit=3 }

IMFRegList[] { BaseDir DataDir PostgreSQLUser }

LevelTwoMonitorFreq 25

type PostgreSQL (

static str AgentDirectory = "/opt/VRTSagents/ha/bin/PostgreSQL"

static str AgentFile = "/opt/VRTSvcs/bin/Script50Agent"

static str ArgList[] = { ResLogLevel, State, IState,

PostgreSQLUser,

BaseDir, DataDir, EnvFile, HostName, Port, StartOpts,

StopOpts,

DBUser, DBName, Table, UseSystemD, ServiceName,

SecondLevelMonitor,

MonitorProgram, MonitorReplication, ClientAddr,

SourceConnStr,

BackupCmd, RecoveryFile, RestartdbToRewind,

RegistrationOfStandby }

static boolean AEPTimeout = 1

57Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Disabling intelligent resource monitoring

str ResLogLevel = INFO

str PostgreSQLUser = postgres

str HostName

str EnvFile

int Port = 5432

str BaseDir

str DataDir

str StartOpts

str DBUser

str DBName

str Table

boolean UseSystemD = 0

str ServiceName

int SecondLevelMonitor

str MonitorProgram

boolean MonitorReplication = 0

str ClientAddr

str SourceConnStr

str BackupCmd

str RecoveryFile

boolean RestartdbToRewind = 0

boolean RegistrationOfStandby = 0

boolean SwitchMode = 0

str ReplicationModeTuples{}

)

A sample resource configuration from the /etc/VRTSvcs/conf/config/main.cf

file is as follows:

PostgreSQL pg-sg (

ResLogLevel = TRACE

HostName = localhost

EnvFile = "/server/pg.env"

BaseDir = "/usr/local/pgsql/bin"

DataDir = "/server"

StartOpts = "-l /server/logfile"

DBUser = vcs_user

DBName = vcs_slm

Table = vcs_slm

UseSystemD = 1

ServiceName = "postgresql-9.4"

)

58Enabling the PostgreSQL and the PgSQLRep agents to support IMF
Sample IMF configurations

Configuring the service
groups for PostgreSQL
using the CLI

This chapter includes the following topics:

■ About configuring service groups for PostgreSQL

■ Before configuring the service groups for PostgreSQL

■ PostgreSQL entities in a clustered environment

■ Virtualizing PostgreSQL

■ Creating service groups for PostgreSQL under Solaris non-global zones

■ Configuring service groups for PostgreSQL Replication

■ Configuring PostgreSQL nofailover trigger

■ Configuring PgSQLRep preonline script

■ Configuring PgSQLRep postonline script

■ Configuring Multitarget PostgreSQL replication

About configuring service groups for PostgreSQL
Configuring the PostgreSQL service group involves creating the PostgreSQL service
group, its resources, and defining attribute values for the configured resources. You
must have administrator privileges to create and configure a service group.

You can configure the service groups using one of the following:

5Chapter

■ The Cluster Manager (Java console)

■ Veritas Infoscale Operations Manager

■ The command line

Before configuring the service groups for
PostgreSQL

Before you configure the PostgreSQL service group, you must:

■ Verify that the Cluster Server components are installed and configured on all
nodes in the cluster where you will configure the service group.
For more information on installing the components, refer to the InfoScale
Availability Installation Guide.

■ Verify that the Cluster Server agent for PostgreSQL is installed on all nodes in
the cluster.
See “Installing the agent in a VCS environment” on page 23.

PostgreSQL entities in a clustered environment
A service group is a logical setup containing all resources that can support a
PostgreSQL instance in a clustered environment.

The required resources are as follows.

Contains a volume and a file system, which is a mount resource
containing the PostgreSQL installation files.

Use the DiskGroup resource type to create this resource. Create
the disk group from the shared disk so that you can import the group
into any system in the cluster.

Disk group

Mounts, monitors, and unmounts the file system that is dedicated
to the PostgreSQL installation files.

Use the Mount resource type to create this resource.

Mount

Monitors the network interface card through which the PostgreSQL
instance communicates with other services.

Use the NIC resource type to create this resource.

Network interface

60Configuring the service groups for PostgreSQL using the CLI
Before configuring the service groups for PostgreSQL

Configures the virtual IP address dedicated to the PostgreSQL
instance. The external services, programs, and clients use this
address to communicate with this instance.

Use the IP resource type to create this resource.

Virtual IP

Starts, stops, and monitors the PostgreSQL server instance.

Use the PostgreSQL server resource type to create this resource.

PostgreSQL server

Virtualizing PostgreSQL
To ensure that your PostgreSQL machine can function properly on any node of the
cluster, you need to virtualize all the parameters that could be dependent on a
particular node.

Review the following basic notes for virtualization:

When installing and configuring the PostgreSQL machine, ensure that
you enter the virtual host name associated with the IP address used to
configure the IP resource. This ensures that if the application needs to
be migrated, you are not tied down by the physical IP address given to
the PostgreSQL machine.

Host names

Ensure that your application gets installed on a shared disk so that it is
not constrained by anything that is local to the node. If this is not possible
every time, make sure that the local data is available on each configured
node.

Path names

61Configuring the service groups for PostgreSQL using the CLI
Virtualizing PostgreSQL

Creating service groups for PostgreSQL under
Solaris non-global zones

To configure zones on each cluster node

1 Set up the non-global zone configuration.

hazonesetup servicegroup_name zoneres_name zone_name password

systems

For example:

hazonesetup -g servicegroup_name -r zoneres_name -z zone_name

-p password -s systems

2 Verify the non-global zone configuration.

hazoneverify servicegroup_name

3 Whenever you make a change that affects the zone configuration, run the
hazonesetup command to reconfigure the zones in VCS.

4 Make sure that the zone configuration files are consistent on all nodes at all
times. The file is located at /etc/zones/zone_name.xml.

5 Make sure that the application is identical on all nodes. If you update the
application configuration on one node, apply the same updates to all nodes.

6 Configure the service groups for PostgreSQL.

Configuring service groups for PostgreSQL
Replication

Note the following considerations before you configure a service group for a
PostgreSQL Replication setup:

■ The service group for the PgSQLRep resource can only be the parent service
group for the PostgreSQL resource.

■ The OnlineTimeOut attribute value of the PostgreSQL agent type should be
large enough to accommodate the replication time taken for either of the
following:

■ Starting the PostgreSQL instance

■ Performing the takeover operation

62Configuring the service groups for PostgreSQL using the CLI
Creating service groups for PostgreSQL under Solaris non-global zones

If the replication delays the starting of the PostgreSQL instance and the time
exceeds the OnlineTimeOut value, you must start the PostgreSQL instance
outside VCS.
If the replication delays the takeover operation and the time exceeds the
OnlineTimeOut value, you must perform the takeover operation manually.

Supported service group configurations
Figure 5-1 Service group dependency for a failover cluster

Figure 5-2 Service group dependencies in case of two n-node global clusters
with Master instance in one cluster and Slave instance in the
other

63Configuring the service groups for PostgreSQL using the CLI
Configuring service groups for PostgreSQL Replication

Figure 5-3 Service group dependencies in case of two n-node global clusters
with Veritas Cluster File System (CFS) as the underlying storage
management component

Perform the following procedure at each site in a global cluster.

Note: For details on configuring global clusters with the underlying storage
components, refer to the relevant documents:

- Cluster Server Configuration and Upgrade Guide

- Storage Foundation and High Availability Configuration and Upgrade Guide

- Storage Foundation Cluster File System High Availability Configuration and
Upgrade Guide

To add a failover service group for PostgreSQL on one a site in a global cluster

1 Create a service group for PostgreSQL.

For example: # hagrp -add PG_SG

For details on creating a service group, refer to the Cluster Server
Administrator’s Guide.

2 Add systems to the service group by modifying the SystemList attribute.

For example:

hagrp -modify PG_SG SystemList sys1 0 sys2 1

3 Create resources for the PostgreSQL instance in the service group.

For example: # hares -add pg PostgreSQL PG_SG

64Configuring the service groups for PostgreSQL using the CLI
Configuring service groups for PostgreSQL Replication

4 Modify the resource attributes as appropriate for your environment.

See “PostgreSQL agent attributes” on page 35.

5 Create a failover service group for the PgSQLRep resource.

For example: # hagrp -add TakeOver_SG

6 Add systems to the PgSQLRep service group by modifying the SystemList
attribute.

For example: # hagrp -modify TakeOver_SG SystemList sys1 0 sys2 1

Configure the PgSQLRep service group.

7 Create a PgSQLRep resource in the service group.

For example: # hares -add pgrep PgSQLRep TakeOver_SG

Note: Youmust set the RestartLimit attribute for the configured pgrep resource.
You can override the attribute values as follows:

/opt/VRTSvcs/bin/hares -override pgrep RestartLimit

/opt/VRTSvcs/bin/hares -modify pgrep RestartLimit 2

8 Specify the appropriate dependencies between the PG_SG and the
TakeOver_SG groups.

For example: # hagrp -link TakeOver_SG PG_SG online local hard

Verify the group dependencies.

hagrp -dep

Parent Child Relationship

TakeOver_SG PG_SG online local hard

Configuring PostgreSQL nofailover trigger
You must configure this trigger in case of a setup where two n-node GCO clusters
are configured with CFS. In such a setup, when the master PostgreSQL service
group fails on all the nodes of a cluster, the nofailover trigger gets executed, which
triggers the takeover operation.

Note: The nofailover trigger must be configured for the PostgreSQL service group.

65Configuring the service groups for PostgreSQL using the CLI
Configuring PostgreSQL nofailover trigger

To configure the nofailover trigger

1 Copy the nofailover script from
/etc/VRTSagents/ha/conf/PostgreSQL/nofailover to
/opt/VRTSvcs/bin/triggers/nofailover.

2 Run the following command on any node in the cluster:

hagrp -modify serviceGroupName TriggersEnabled -add NOFAILOVER

For example:

hagrp -modify pgsg TriggersEnabled -add NOFAILOVER

To disable the nofailover trigger

� Run the following command on any node in the cluster:

hagrp -modify serviceGroupName TriggersEnabled -delete

NOFAILOVER

For example:

hagrp -modify pgsg TriggersEnabled -delete NOFAILOVER

Configuring PgSQLRep preonline script
In a clustered environment, the Postgres administrator installs and configures the
Postgres Streaming Replication. The PgSQLRep preonline script facilitates to select
best possible Node to become master from slaves for Failover.

The PgSQLRep preonline script is used only when ReplicationModeTuples attribute
is set for PostgreSQL resource.

The existing VCS preonline script calls the PgSQLRep preonline script.

Note: The preonline script must be configured for a PgSQLRep service group.

The PgSQLRep preonline script performs the following tasks:

■ The preonline script calls action entry point GetWALReceiveLSN to get WAL
LSN from all slaves.

■ A slave with highest WAL LSN is selected as new master.

■ If more than one slaves have same WAL LSN, then a slave which is in sync
with old master will be selected as new master and online of the PgSQLRep
service group will be triggered for the node to promote it to master.

■ If more than one Sync slaves have same WAL LSN, then a slave which is in
same cluster as that of the old master will be selected as new master.

66Configuring the service groups for PostgreSQL using the CLI
Configuring PgSQLRep preonline script

The script also ensures that the online operation does not execute the VCS preonline
script again.

To accomplish the above behavior, you must configure the VCS preonline script.

To configure the VCS preonline script

1 Create a symlink for the preonline script to the monitor script.

cd /opt/VRTSagents/ha/bin/PgSQLRep

ln -s/opt/VRTSagents/ha/bin/PgSQLRep/monitor preonline

Note: You need to create this link only if the package installer has failed to
create it.

2 Navigate to the $VCS_HOME/bin/triggers directory.

67Configuring the service groups for PostgreSQL using the CLI
Configuring PgSQLRep preonline script

3 If the VCS preonline trigger script is already present, add the following lines to
the main preonline trigger script to integrate the call to the PgSQLRep preonline
trigger:

PgSQLRep specific preonline code: START

If preonline trigger needs to be run for more than one agent,

then copy this snippet into the main preonline trigger.

#-------------------

Define variables..

#-------------------

my $sCmd = '/opt/VRTSagents/ha/bin/PgSQLRep/preonline';

my $sResLogLevel = 'TRACE'; # Define logging level..

my @lsCmdArgs = (@ARGV, $sResLogLevel); # Insert logging level..

my $sArgs = join (' ', @lsCmdArgs);

my $iPgSQLRepExitCode = undef;

#--

Pass control to preonline, if it exists..

#--

if (-x $sCmd) {

VCSAG_LOG_MSG ("I", "Preonline Cmd [$sCmd] Args [$sArgs]", \

15031);

system ($sCmd, @lsCmdArgs);

$iPgSQLRepExitCode = $? >> 8; # Capture exit code..

VCSAG_LOG_MSG ("I", "Preonline Cmd [$sCmd] Exited with

[$iPgSQLRepExitCode]", 15031);

exit 0 unless ($iPgSQLRepExitCode);

}

exit;

4 If the VCS preonline trigger script is not present, do the following:

■ Pick the sample preonline script from the /etc/VRTSagenonf/PgSQLRep

directory and copy it in the $VCS_HOME/bin/triggers directory.

68Configuring the service groups for PostgreSQL using the CLI
Configuring PgSQLRep preonline script

■ Ensure that the file is executable and accessible to the root user.

5 For the PgSQLRep service group, set the preonline flag to True.

#hagrp -modify service_group PreOnline 1

hagrp -modify service_group TriggersEnabled -add PREONLINE

The preonline script is now configured to select best possible Node for failover.
To configure the logging level used in the preonline script, you can set the
ResLogLevel attribute in the preonline wrapper. You can then view the logs in
the VCS engine log, /var/VRTSvcs/log/engine_A.log or PgSQLRep Triggers
Logs, /var/VRTSvcs/log/PgSQLRep_trigger_A.log

Configuring PgSQLRep postonline script
To Store HostName of master Node, PgSQLRep Postonline script calls Action Entry
Point SetLastMaster, this facilitates Failover to Optimal node based on
ReplicationModeTuples value of last master.

Note: The postonline script must be configured for PgSQLRep service group in
case of Multi target replication.

The PgSQLRep postonline script performs the following tasks:

■ For Multi Target replication, script initially determines resource type PgSQLRep.

■ The script fetches ReplicationModeTuples attribute value of respective
PostgreSQL resource.

■ To set Current Master’s hostname in UserStrGlobal attribute for global Group,
the script calls SetLastMaster Action entry point on all nodes given in
ReplicationModeTuples.

To configure the VCS preonline script

1 Create a symlink for the postonline script to the monitor script.

cd /opt/VRTSagents/ha/bin/PgSQLRep

ln -s /opt/VRTSagents/ha/bin/PgSQLRep/monitor postonline

Note: You need to create this link only if the package installer has failed to
create it.

2 Navigate to the $VCS_HOME/bin/triggers directory.

69Configuring the service groups for PostgreSQL using the CLI
Configuring PgSQLRep postonline script

3 If the VCS postonline trigger script is already present, add the following lines
to the main postonline trigger script to integrate the call to the PgSQLRep
postonline trigger:

Add the PgSQLRep Trigger Call here.

#-------------------

Define variables..

#-------------------

my $sCmd = '/opt/VRTSagents/ha/bin/PgSQLRep/postonline';

my $sResLogLevel = 'TRACE'; # Define logging level..

my @lsCmdArgs = (@ARGV, $sResLogLevel); # Insert logging level..

my $sArgs = join (' ', @lsCmdArgs);

my $iPgSQLRepExitCode = undef;

#--

Pass control to postonline, if it exists..

#--

if (-x $sCmd) {

VCSAG_LOG_MSG ("I", "Postonline Cmd [$sCmd] Args [$sArgs]",

15033);

system ($sCmd, @lsCmdArgs);

$iPgSQLRepExitCode = $? >> 8; # Capture exit code..

VCSAG_LOG_MSG ("I", "Postonline Cmd [$sCmd] Exited with

[$iPgSQLRepExitCode]", 15034);

exit 0 unless ($iPgSQLRepExitCode);

}

#

PgSQLRep specific postonline code: STOP

#

exit;

4 If the VCS postonline trigger script is not present, do the following:

■ Pick the sample postonline script from the
/etc/VRTSagents/ha/conf/PgSQLRep directory and copy it to the
$VCS_HOME/bin/triggers directory.

70Configuring the service groups for PostgreSQL using the CLI
Configuring PgSQLRep postonline script

■ Ensure that the file is executable and accessible to the root user.

5 For the service group, add POSTONLINE for the TriggersEnabled attribute.

hagrp -modify serviceGroupName TriggersEnabled -add POSTONLINE

The postonline script is now configured to facilitate recording Hostname of
Current Master.

To configure the logging level used in the postonline script, you can set the
ResLogLevel attribute in the postonline wrapper. You can then view the logs
in the VCS engine log.

To disable the postonline trigger

� Run the following command on any node in the cluster:

hagrp -modify serviceGroupName TriggersEnabled -delete

POSTONLINE

■

Configuring Multitarget PostgreSQL replication
Multiple slaves with single master can be configured to make data highly available.
Following steps are needed to configure a master with multiple slaves.

To configure a master with multiple slaves

1 Install, configure, and set-up streaming replication.

2 Set cluster_name as host name configured with VCS in postgres.auto.conf
and reload it. Also, copy the postgres.auto.conf into RecoveryFile.

Make sure replication is correctly configured and active.

■ Configure the PostgreSQL and PgSQLRep service group as described in
See “Sample configuration files” on page 80.

■ Configure preonline trigger for PgSQLRep service group as described in
See “Configuring PgSQLRep preonline script” on page 66.

71Configuring the service groups for PostgreSQL using the CLI
Configuring Multitarget PostgreSQL replication

Troubleshooting the agent
for PostgreSQL

This chapter includes the following topics:

■ Using the correct software and operating system versions

■ Meeting prerequisites

■ Verifying virtualization

■ Starting the PostgreSQL server outside a cluster

■ Reviewing error log files

■ Troubleshooting the configuration for IMF

Using the correct software and operating system
versions

Ensure that you use correct software and operating system versions.

For information on the software versions that the agent for PostgreSQL supports,
see the Veritas Services and Operations Readiness Tools (SORT) site:
https://sort.veritas.com/agents.

Meeting prerequisites
Before installing the agent for PostgreSQL, ensure that the following prerequisites
are met.

For example, you must install the ACC library on VCS before installing the agent
for PostgreSQL.

6Chapter

https://sort.veritas.com/agents

See “Before you install the Cluster Server agent for PostgreSQL” on page 19.

Verifying virtualization
Verify that your application does not use anything that ties it down to a particular
node of the cluster.

See “Virtualizing PostgreSQL ” on page 61.

Starting the PostgreSQL server outside a cluster
If you face problems while working with a resource, you must disable the resource
within the cluster framework. A disabled resource is not under the control of the
cluster framework, and so you can test the PostgreSQL database server independent
of the cluster framework. Refer to the cluster documentation for information about
disabling a resource.

Note: Use the same parameters that the resource attributes defined within the
cluster framework while restarting the resource outside the framework, like the
owner of the application, the environment file etc.

■ Starting the PostgreSQL server
To start the PostgreSQL server outside cluster, execute:

$ baseDirectory/pg_ctl start -w -D dataDirectory

-o "-p portNumber -h hostName" startOptions

■ Stopping the PostgreSQL server
To stop the PostgreSQL server outside cluster, execute:

$ BaseDir/pg_ctl stop -w -D DataDir

■ Monitoring the PostgreSQL server
First verify that the PostgreSQL processes are running as PostgreSQLUser.
The default value is postgres.

■ The agent uses the following monitor command to verify that the PostgreSQL
server is up.

$ baseDirectory/pg_ctl status -D dataDirectory

Try executing this command manually to verify if the PostgreSQL server is up.

73Troubleshooting the agent for PostgreSQL
Verifying virtualization

Reviewing error log files
If you face problems while using PostgreSQL or the agent for PostgreSQL, use the
log files described in this section to investigate the problems.

The common reasons for issues are as follows:

Verify that ports have been properly configured and declared.
Typically, ports from 1 through 1024 are reserved for the
superuser.

Ensure that parameters to the agent are correctly defined.

Incorrect port, environment
or parameter settings

Check the application log files for any error messages related
to expired licenses.

Ensure that the license keys/files have been placed at the
appropriate location, as needed by the application.

Expired licenses

Verify your installation.

Make sure that nothing is broken, and all dependencies for
the executables are met.

Broken symlinks, missing
files, and libraries

Ensure that the file-system has sufficient space for creation
of temporary files that the application might need.

Verify that the kernel has been tuned for sufficient IPC
resources, file descriptors and meets the hardware
requirement. Consult your product documentation for these
details.

Insufficient disk space or
system parameters

Consult your application expert if needed.

Using trace level logging
The ResLogLevel attribute controls the level of logging that is written in a cluster
log file for each PostgreSQL resource. You can set this attribute to TRACE, which
enables very detailed and verbose logging.

If you set ResLogLevel to TRACE, a very high volume of messages are produced.
Veritas recommends that you localize the ResLogLevel attribute for a particular
resource.

The LogDbg attribute should be used to enable the debug logs for the ACCLib-based
agents when the ACCLIB version is 6.2.0.0 or later and the VCS version is 6.2 or
later.

74Troubleshooting the agent for PostgreSQL
Reviewing error log files

To localize ResLogLevel attribute for a resource

1 Identify the resource for which you want to enable detailed logging.

2 Localize the ResLogLevel attribute for the identified resource:

hares -local Resource_Name ResLogLevel

3 Set the ResLogLevel attribute to TRACE for the identified resource:

hares -modify Resource_Name ResLogLevel TRACE -sys SysA

4 Note the time before you begin to operate the identified resource.

5 Test the identified resource. The function reproduces the problem that you are
attempting to diagnose.

6 Note the time when the problem is reproduced.

7 Set the ResLogLevel attribute back to INFO for the identified resource:

hares -modify Resource_Name ResLogLevel INFO -sys SysA

8 Save the configuration changes.

haconf -dump

9 Review the contents of the log file.

Use the time noted in the previous steps to diagnose the problem.

You can also contact Veritas support for more help.

To enable debug logs for all resources of type PostgreSQL

� Enable the debug log.

hatype -modify PostgreSQL LogDbg DBG_5

To override the LogDbg attribute at resource level

� Override the LogDbg attribute at the resource level and enable the debug logs
for the specific resource.

hares -override PostgreSQL LogDbg

hares -modify PostgreSQL LogDbg DBG_5

75Troubleshooting the agent for PostgreSQL
Reviewing error log files

Troubleshooting the configuration for IMF
If you face problems with the IMF configuration or functionality, consider the
following:

■ Ensure that the following attributes are configured with appropriate values.

■ AgentFile

■ IMF

■ IMFRegList
If IMFRegList is not configured correctly, the PostgreSQL resources that
have been registered for IMF get unregistered every time the monitor function
is run.

■ If you have configured the required attributes to enable the PostgreSQL agent
for IMF, but the agent is still not IMF-enabled, restart the agent. The imf_init
function runs only when the agent starts up, so when you restart the agent,
imf_init runs and initializes the PostgreSQL agent to interface with the AMF
kernel driver.

■ You can run the following command to check the value of the MonitorMethod
attribute and to verify that a resource is registered for IMF.
hares -value resource MonitorMethod system

The MonitorMethod attribute specifies the monitoring method that the agent
uses to monitor the resource:

■ Traditional—Poll-based resource monitoring

■ IMF—Intelligent resource monitoring

■ You can use the amfstat command to see a list of registered PIDs for a
PostgreSQL resource.
The output of the ps -ef command for the PostgreSQL process.

$ ps -ef | grep postgres postgres 4883 1 0 Aug16 ?

00:00:00 /usr/local/pgsql/bin/postgres -D /d01/pgsql/data -p 5432 -h

pg-server postgres 4893 4883 0 Aug16 ? 00:00:00 postgres:

logger process postgres 4897 4883 0 Aug16 ? 00:00:01 postgres:

writer process postgres 4898 4883 0 Aug16 ? 00:00:01 postgres:

wal writer process postgres 4899 4883 0 Aug16 ? 00:00:01 postgres:

autovacuum launcher process postgres 4900 4883 0 Aug16 ? 00:00:05

postgres:

stats collector process root 20890 3877 0 11:44 pts/1 00:00:00

grep postgres

76Troubleshooting the agent for PostgreSQL
Troubleshooting the configuration for IMF

The amfstat command shows the PIDs monitored by the PostgreSQL Server
agent.

amfstat

AMF Status Report

Registered Reapers (1):

=======================

RID PID MONITOR TRIGG REAPER

0 19219 1 0 PostgreSQL

Process ONLINE Monitors (1):

=======================

RID R_RID PID GROUP

1 0 4883 pg-server

■ Run the following command to set the ResLogLevel attribute to TRACE. When
you set ResLogLevel to TRACE, the agent logs messages in the
PostgreSQL_A.log file.
hares -modify ResourceName ResLogLevel TRACE

For more information about the ResLogLevel attribute, See “PostgreSQL agent
attributes” on page 35.

■ Run the following command to view the content of the AMF in-memory trace
buffer.
amfconfig -p dbglog

Known issues
This release of the agent for PostgreSQL has the following known issues:

Problem

An error message might appear when you run the hares -offline command to
take a resource offline.

Description

When a resource is taken offline, it is unregistered from the AMFmodule. However,
the imf_register function attempts to unregister the resource again.

This results in an error message from the engine log.

Workaround

It is safe to ignore this error message.

77Troubleshooting the agent for PostgreSQL
Troubleshooting the configuration for IMF

Sample Configurations
This appendix includes the following topics:

■ About sample configurations for the agents for PostgreSQL

■ Sample agent type definition for PostgreSQL

■ Sample configuration files

■ Sample service group configurations for PostgreSQL

About sample configurations for the agents for
PostgreSQL

The sample configuration graphically depicts the resource types, resources, and
resource dependencies within the service group. Review these dependencies
carefully before configuring the agents for PostgreSQL. For more information about
these resource types, refer to theCluster Server Bundled Agents Reference Guide.

Sample agent type definition for PostgreSQL
VCS 5.1 or later
type PostgreSQL (

static str AgentDirectory = "/opt/VRTSagents/ha/bin/PostgreSQL"

static str AgentFile = "/opt/VRTSvcs/bin/Script50Agent"

static keylist SupportedActions = { PromoteSlaveAction,

RewindAction, BackupAction }

static str ArgList[] = { ResLogLevel, State, IState,

PostgreSQLUser, BaseDir, DataDir, EnvFile, HostName, Port,

StartOpts, StopOpts, DBUser, DBName, Table, UseSystemD,

ServiceName, SecondLevelMonitor, MonitorProgram,

AAppendix

MonitorReplication, ClientAddr, SourceConnStr, BackupCmd,

RecoveryFile, RestartdbToRewind, RegistrationOfStandby }

static boolean AEPTimeout = 1

str ResLogLevel = INFO

str PostgreSQLUser = postgres

str HostName

str EnvFile

int Port = 5432

str BaseDir

str DataDir

str StartOpts

str StopOpts

str DBUser

str DBName

str Table

boolean UseSystemD = 0

str ServiceName

int SecondLevelMonitor

str MonitorProgram

boolean MonitorReplication = 0

str ClientAddr

str SourceConnStr

str BackupCmd

str RecoveryFile

boolean RestartdbToRewind = 0

boolean RegistrationOfStandby = 0

boolean SwitchMode = 0

)

type PgSQLRep (

static str AgentDirectory = "/opt/VRTSagents/ha/bin/PgSQLRep"

static str AgentFile = "/opt/VRTSvcs/bin/Script60Agent"

static keylist SupportedActions = { RegisterStandby,

GetWALReceiveLSN,

SetLastMaster, GetAttrValForSys }

static str ArgList[] = { ResLogLevel, State, IState,

PgSQLResource,

WalSenderPid, WalSenderPids }

static boolean AEPTimeout = 1

str ResLogLevel = INFO

str PgSQLResource

temp int WalSenderPid

79Sample Configurations
Sample agent type definition for PostgreSQL

temp str WalSenderPids

)

VCS 5.0 or later
type PostgreSQL (

static boolean AEPTimeout = 1

static str AgentFile = "/opt/VRTSvcs/bin/Script50Agent"

static str AgentDirectory = "/opt/VRTSagents/ha/bin/PostgreSQL"

static str ArgList[] = { ResLogLevel, State, IState,

PostgreSQLUser, HostName, Port, BaseDir, DataDir, StartOpts,

StopOpts, DBUser, DBName, Table, SecondLevelMonitor,

MonitorProgram, MonitorReplication, ClientAddr,

SourceConnStr, BackupCmd, RecoveryFile, RestartdbToRewind,

RegistrationOfStandby }

str ResLogLevel = INFO

str PostgreSQLUser = postgres

str HostName

str EnvFile

int Port = 5432

str BaseDir

str DataDir

str StartOpts

str StopOpts

str DBUser

str DBName

str Table

int SecondLevelMonitor = 0

str MonitorProgram

boolean MonitorReplication = 0

str ClientAddr

str SourceConnStr

str BackupCmd

str RecoveryFile

boolean RestartdbToRewind = 0

boolean RegistrationOfStandby = 0

boolean SwitchMode = 0

)

Sample configuration files
Snippet of a PostgreSQL resource from a sample configuration file main.cf:

80Sample Configurations
Sample configuration files

PostgreSQL pg_server_1 (

Critical = 1

ResLogLevel = TRACE

BaseDir = "/usr/bin"

DataDir = "/opt/postgres/data"

HostName = pgserver

Port = 24321

StartOpts = "-l /tmp/pglog"

DBUser=dbuser

DBName=dbname

Table=dbtable

UseSystemD = 1

MonitorReplication = 0

ServiceName = "postgresql-9.4"

SecondLevelMonitor=1

EnvFile=/var/lib/pgsql/pg.env

)

PostgreSQL edb_pg_server_1 (

Critical = 0

ResLogLevel = TRACE

PostgreSQLUser = enterprisedb

HostName = localhost

EnvFile = "/PostgresPlus/9.1AS/pgplus_env.sh"

Port = 5444

BaseDir = "/PostgresPlus/9.1AS/bin"

DataDir = "/PostgresPlus/9.1AS/data"

StartOpts = "-l /tmp/pglog"

StopOpts = "-m fast"

DBUser=dbuser

DBName=dbname

Table=dbtable

UseSystemD = 1

MonitorReplication = 0

ServiceName = "postgresql-9.4"

SecondLevelMonitor=1

EnvFile=/var/lib/pgsql/pg.env

)

Sample configuration file for a replication setup in a GCO configuration with Cluster
File System (CFS):

group PostGresDB_SG (

SystemList = { iar73003 = 0, iar73004 = 1 }

TriggersEnabled = { NOFAILOVER }

81Sample Configurations
Sample configuration files

)

IP PostGres_VIP_Res (

Device = eth0

Address = "10.209.95.204"

NetMask = "255.255.252.0"

)

NIC Postgres_VIP_NIC (

Device = eth0

)

PostgreSQL PostGres_Res (

ResLogLevel = TRACE

HostName = PostGresDB

EnvFile = "/usr/pgsql-12/MyEnv"

Port = 5445

BaseDir = "/usr/pgsql-12/bin"

DataDir = "/var/lib/pgsql/12/data"

StopOpts = "-m fast"

DBUser = vcsuser

DBName = postgres

Table = vcstable

MonitorReplication = 1

ClientAddr = "10.209.69.83"

SourceConnStr = "host=10.209.69.83 port=5445

user=postgres dbname=postgres"

BackupCmd = "/usr/pgsql-12/bin/pg_basebackup -R

-X stream -D /var/lib/pgsql/12/data -U replica

--host=10.209.69.83 --port=5445"

RecoveryFile = "/var/lib/pgsql/12/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

DetailedMonitoring = 1

SplitTakeOver = 1

AutoTakeOver = 1

SwitchMode = 1

)

requires group PostGres_Mounts online local firm

PostGres_Res requires PostGres_VIP_Res

PostGres_VIP_Res requires Postgres_VIP_NIC

82Sample Configurations
Sample configuration files

// resource dependency tree

//

// group PostGresDB_SG

// {

// PostgreSQL PostGres_Res

// {

// IP PostGres_VIP_Res

// {

// NIC Postgres_VIP_NIC

// }

// }

// }

group PostGres_Mounts (

SystemList = { iar73003 = 0, iar73004 = 1 }

Parallel = 1

)

CFSMount PosGresArchiveMNT_Res2 (

MountPoint = "/var/lib/pgsql/12/backups/archive"

BlockDevice = "/dev/vx/dsk/mqdg/PostGres10_Data_Archive_Vol"

MountOpt = "cluster,crw"

)

CFSMount PosGresDataMNT_Res2 (

MountPoint = "/var/lib/pgsql/12/data"

BlockDevice = "/dev/vx/dsk/mqdg/PostGres10_Data_vol"

MountOpt = "cluster,crw"

)

requires group cvm online local firm

// resource dependency tree

//

// group PostGres_Mounts

// {

// CFSMount PosGresArchiveMNT_Res2

// CFSMount PosGresDataMNT_Res2

// }

group PostgresTakeOver_SG (

SystemList = { iar73003 = 0, iar73004 = 1 }

Frozen = 1

83Sample Configurations
Sample configuration files

Authority = 1

)

PgSQLRep pgrep (

PgSQLResource = PostGres_Res

)

requires group PostGresDB_SG online local firm

// resource dependency tree

//

// group PostgresTakeOver_SG

// {

// PgSQLRep pgrep

// }

Note: A similar main.cf file is required for the other cluster.

Sample configuration file for a replication setup in a Local Cluster with non-shared
storage :

group pgrep_grp (

SystemList = { dl560g9-11-vm19 = 0, dl560g9-11-vm20 = 1 }

)

PgSQLRep postgres_rep (

PgSQLResource = postgres_server

)

requires group PostgreSQL_grp online local hard

group PostgreSQL_grp (

SystemList = { dl560g9-11-vm19 = 0, dl560g9-11-vm20 = 1 }

Parallel = 1

)

DiskGroup postgres_dskgrp (

DiskGroup = postgres_dg

)

Mount postgres_mnt (

MountPoint = "/pg_data_dir/data"

BlockDevice = "/dev/vx/dsk/postgres_dg/postgres_vol"

84Sample Configurations
Sample configuration files

FSType = vxfs

MountOpt = rw

FsckOpt = "-y"

)

PostgreSQL postgres_server (

HostName @dl560g9-11-vm19 = "10.210.177.165"

HostName @dl560g9-11-vm20 = "10.210.177.166"

EnvFile = "/pg_data_dir/data/data_14/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/pg_data_dir/data/data_14"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr @dl560g9-11-vm19 = "host=10.210.177.166 port=5432

user=postgres"

SourceConnStr @dl560g9-11-vm20 = "host=10.210.177.165 port=5432

user=postgres"

BackupCmd @dl560g9-11-vm19 = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data/data_14/

-U replica -h 10.210.177.166"

BackupCmd @dl560g9-11-vm20 = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data/data_14/

-U replica -h 10.210.177.165"

RecoveryFile = "/pg_data_dir/data/backups/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

AutoTakeOver = 1

SwitchMode = 1

)

Volume postgres_vol (

DiskGroup = postgres_dg

Volume = postgres_vol

)

postgres_server requires postgres_mnt

postgres_mnt requires postgres_vol

postgres_vol requires postgres_dskgrp

GCO with shared disk:

85Sample Configurations
Sample configuration files

Sample configuration file for a replication setup in a GCO Cluster Configuration
with shared storage in local cluster:

group postgres_grp (

SystemList = { r7515-054-vm10 = 0, r7515-054-vm11 = 1 }

)

DiskGroup shared_dg (

DiskGroup = postgres_dg

)

IP postgres_host (

Device = ens192

Address = "10.221.85.249"

NetMask = "255.255.240.0"

)

Mount postgres_mnt (

MountPoint = "/pg_data_dir"

BlockDevice = "/dev/vx/dsk/postgres_dg/postgres_vol"

FSType = vxfs

MountOpt = rw

FsckOpt = "-y"

)

PostgreSQL postgres_server (

HostName = "10.221.85.249"

EnvFile = "/pg_data_dir/data/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/pg_data_dir/data"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=10.221.85.250 port=5432

user=postgres"

BackupCmd = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data/

-U replica -h 10.221.85.250"

RecoveryFile = "/pg_data_dir/backups/

postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

86Sample Configurations
Sample configuration files

SwitchMode = 1

)

Volume sharedg_vol (

DiskGroup = postgres_dg

Volume = postgres_vol

)

postgres_server requires postgres_host

postgres_mnt requires sharedg_vol

sharedg_vol requires shared_dg

group postgres_rep_grp (

SystemList = { r7515-054-vm10 = 0, r7515-054-vm11 = 1 }

ClusterList = { cluster_1 = 0, cluster_2 = 1 }

)

PgSQLRep postgres_rep (

PgSQLResource = postgres_server

)

requires group postgres_grp online local hard

Sample configuration for cluster_2:

group postgres_grp (

SystemList = { saphanavm5 = 0, saphanavm6 = 1 }

)

DiskGroup shared_dg (

DiskGroup = postgres_dg

)

IP postgres_host (

Device = ens192

Address = "10.221.85.250"

NetMask = "255.255.240.0"

)

Mount postgres_mnt (

MountPoint = "/pg_data_dir"

BlockDevice = "/dev/vx/dsk/postgres_dg/postgres_vol"

FSType = vxfs

MountOpt = rw

87Sample Configurations
Sample configuration files

FsckOpt = "-y"

)

PostgreSQL postgres_server (

HostName @saphanavm5 = "10.221.81.204"

HostName @saphanavm6 = "10.221.81.203"

EnvFile = "/pg_data_dir/data/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/pg_data_dir/data"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=10.221.85.249 port=5432

user=postgres"

BackupCmd = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data

-U replica -h 10.221.85.249"

RecoveryFile = "/pg_data_dir/backups/

postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

SwitchMode = 1

)

Volume sharedg_vol (

DiskGroup = postgres_dg

Volume = postgres_vol

)

postgres_server requires postgres_host

postgres_mnt requires sharedg_vol

sharedg_vol requires shared_dg

group postgres_rep_grp (

SystemList = { saphanavm5 = 0, saphanavm6 = 1 }

ClusterList = { cluster_1 = 0, cluster_2 = 1 }

Authority = 1

)

PgSQLRep postgres_rep (

PgSQLResource = postgres_server

)

88Sample Configurations
Sample configuration files

requires group postgres_grp online local hard

GCO with CFS:

Sample configuration file for a replication setup in GCO with Cluster File System
(CFS) in a local cluster:

group postgres_rep (

SystemList = { r7515-054v011 = 0, r7515-054v012 = 1 }

ClusterList = { cluster_1 = 0, cluster_2 = 1 }

)

PgSQLRep postgres_rep (

PgSQLResource = postgres_server

)

requires group postgres_grp online local firm

group postgres_grp (

SystemList = { r7515-054v011 = 0, r7515-054v012 = 1 }

TriggersEnabled = { NOFAILOVER }

)

IP postgres_host (

Device = ens192

Address = "10.221.90.209"

NetMask = "255.255.240.0"

)

PostgreSQL postgres_server (

HostName = "10.221.90.209"

EnvFile = "/pg_data_dir/data/data_14/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/pg_data_dir/data/data_14"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=10.221.90.210 port=5432

user=postgres"

BackupCmd = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data/data_14/

-U replica -h 10.221.90.210"

RecoveryFile = "/pg_data_dir/data/backups/postgresql.auto.conf"

89Sample Configurations
Sample configuration files

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

SwitchMode = 1

)

requires group postgres_storage online local firm

postgres_server requires postgres_host

group postgres_storage (

SystemList = { r7515-054v011 = 0, r7515-054v012 = 1 }

Parallel = 1

)

CFSMount postgres_mnt (

MountPoint = "/pg_data_dir/data"

BlockDevice = "/dev/vx/dsk/postgres_dg/postgres_vol"

MountOpt = "cluster,crw"

NodeList = { r7515-054v011, r7515-054v012 }

)

CVMVolDg postgres_voldg (

CVMDiskGroup = postgres_dg

CVMVolume = { postgres_vol }

CVMActivation = sw

)

requires group cvm online local firm

postgres_mnt requires postgres_voldg

Sample configuration for cluster_2:

group postgres_grp (

SystemList = { r7515-054v013 = 0, r7515-054v014 = 1 }

TriggersEnabled = { NOFAILOVER }

)

IP postgres_host (

Device = ens192

Address = "10.221.90.210"

NetMask = "255.255.240.0"

)

PostgreSQL postgres_server (

90Sample Configurations
Sample configuration files

HostName = "10.221.90.210"

EnvFile = "/pg_data_dir/data/data_14/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/pg_data_dir/data/data_14"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=10.221.90.209 port=5432

user=postgres"

BackupCmd = "/usr/pgsql-14/bin/pg_basebackup -R

-X stream -D /pg_data_dir/data/data_14/

-U replica -h 10.221.90.209"

RecoveryFile = "/pg_data_dir/data/backups/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

SwitchMode = 1

)

requires group postgres_storage online local firm

postgres_server requires postgres_host

group postgres_rep (

SystemList = { r7515-054v013 = 0, r7515-054v014 = 1 }

ClusterList = { cluster_1 = 0, cluster_2 = 1 }

Authority = 1

)

PgSQLRep postgres_rep (

PgSQLResource = postgres_server

)

requires group postgres_grp online local firm

group postgres_storage (

SystemList = { r7515-054v013 = 0, r7515-054v014 = 1 }

Parallel = 1

)

CFSMount postgres_mnt (

MountPoint = "/pg_data_dir/data"

BlockDevice = "/dev/vx/dsk/postgres_dg/postgres_vol"

MountOpt = "cluster,crw"

91Sample Configurations
Sample configuration files

NodeList = { r7515-054v013, r7515-054v014 }

)

CVMVolDg postgres_voldg (

CVMDiskGroup = postgres_dg

CVMVolume = { postgres_vol }

CVMActivation = sw

)

requires group cvm online local firm

postgres_mnt requires postgres_voldg

Sample configuration file for a replication setup with more than one slave without
GCO

group PgSQLRep_grp (

SystemList = { inaqalnx159 = 0, inaqalnx160 = 1,

inaqalnx161 = 2)

PreOnline = 1

TriggersEnabled = { POSTONLINE, PREONLINE }

)

PgSQLRep pgrep (

PgSQLResource = pg_server_1

)

group PostgreSQL_grp (

SystemList = { inaqalnx159 = 0, inaqalnx160 = 1,

inaqalnx161

= 2 }

Parallel = 1

)

PostgreSQL pg_server (

HostName @inaqalnx159 = "10.221.225.86"

HostName @inaqalnx160 = "10.221.225.88"

HostName @inaqalnx161 = "10.221.225.87"

EnvFile = "/var/lib/pgsql/14/data/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/var/lib/pgsql/14/data"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr @inaqalnx159 = "host=%Master% port=5432

user=postgres"

SourceConnStr @inaqalnx160 = "host=%Master% port=5432

92Sample Configurations
Sample configuration files

user=postgres"

SourceConnStr @inaqalnx161 = "host=%Master% port=5432

user=postgres"

BackupCmd @inaqalnx159 = "/usr/pgsql-14/bin/pg_basebackup

-R -X stream -D /var/lib/pgsql/14/data/ -U replica -h %Master%

BackupCmd @inaqalnx160 = "/usr/pgsql-14/bin/pg_basebackup

-R -X stream -D /var/lib/pgsql/14/data/ -U replica -h %Master%"

BackupCmd @inaqalnx161 = "/usr/pgsql-14/bin/pg_basebackup

-R -X stream -D /var/lib/pgsql/14/data/ -U replica -h %Master%"

RecoveryFile = "/var/lib/pgsql/14/backups/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

AutoTakeOver = 1

SwitchMode = 1

ReplicationModeTuples @inaqalnx159 = { inaqalnx160 = sync,

inaqalnx161 = sync }

ReplicationModeTuples @inaqalnx160 = { inaqalnx161 = sync,

inaqalnx159 = sync }

ReplicationModeTuples @inaqalnx161 = { inaqalnx159 = sync,

inaqalnx160 = sync }

)

Sample configuration file for a replication setup with more than one slave with GCO

Cluster clus_1:

group PgSQLRep_grp (

SystemList = { inaqalnx159 = 0, inaqalnx160 = 1, inaqalnx161

= 2 }

ClusterList = { pg_clus_4 = 0, pg_clus_5 = 1 }

PreOnline = 1

TriggersEnabled = { POSTONLINE, PREONLINE }

)

PgSQLRep pgrep (

PgSQLResource = pg_server_1

)

requires group PostgreSQL_grp online local hard

group PostgreSQL_grp (

SystemList = { inaqalnx159 = 0, inaqalnx160 = 1, inaqalnx161

= 2 }

Parallel = 1

93Sample Configurations
Sample configuration files

)

PostgreSQL pg_server_1(

HostName @inaqalnx159 = "10.221.225.89"

HostName @inaqalnx160 = "10.221.228.13"

HostName @inaqalnx161 = "10.221.228.19"

EnvFile = "/var/lib/pgsql/14/data/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/var/lib/pgsql/14/data"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=%Master% port=5432 user=postgres"

BackupCmd = "/usr/pgsql-14/bin/pg_basebackup -R -X stream

-D /var/lib/pgsql/14/data/ -U replica -h %Master%"

RecoveryFile = "/var/lib/pgsql/14/backups/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

AutoTakeOver = 1

SwitchMode = 1

ReplicationModeTuples @inaqalnx159 = { inaqalnx160 = sync,

inaqalnx161 = async,

inaqalnx156 = sync,

inaqalnx157 = async,

inaqalnx158 = async }

ReplicationModeTuples @inaqalnx160 = { inaqalnx159 = sync,

inaqalnx161 = async,

inaqalnx156 = sync,

inaqalnx157 = async,

inaqalnx158 = async }

ReplicationModeTuples @inaqalnx161 = { inaqalnx159 = sync,

inaqalnx160 = async,

inaqalnx156 = sync,

inaqalnx157 = async,

inaqalnx158 = async }

)

Cluster clus_2:

group PgSQLRep_grp (

SystemList = { inaqalnx156 = 0, inaqalnx157 = 1, inaqalnx158

= 2 }

94Sample Configurations
Sample configuration files

ClusterList = { pg_clus_4 = 0, pg_clus_5 = 1 }

PreOnline = 1

TriggersEnabled = { POSTONLINE, PREONLINE }

)

requires group PostgreSQL_grp online local hard

group PostgreSQL_grp (

SystemList = { inaqalnx156 = 0, inaqalnx157 = 1, inaqalnx158

= 2 }

Parallel = 1

)

PostgreSQL pg_server_1 (

HostName @inaqalnx156 = "10.221.225.86"

HostName @inaqalnx157 = "10.221.225.88"

HostName @inaqalnx158 = "10.221.225.87"

EnvFile = "/var/lib/pgsql/14/data/env_file.env"

BaseDir = "/usr/pgsql-14/bin"

DataDir = "/var/lib/pgsql/14/data"

UseSystemD = 1

ServiceName = postgresql-14

MonitorReplication = 1

SourceConnStr = "host=%Master% port=5432 user=postgres"

BackupCmd @inaqalnx156 = "/usr/pgsql-14/bin/pg_basebackup

-R -X stream -D /var/lib/pgsql/14/data/ -U replica -h %Master%

RecoveryFile = "/var/lib/pgsql/14/backups/postgresql.auto.conf"

RestartdbToRewind = 1

RegistrationOfStandby = 1

LinkMonitor = 1

AutoTakeOver = 1

ReplicationModeTuples @inaqalnx156 = { inaqalnx157 = sync,

inaqalnx158 = async,

inaqalnx159 = sync,

inaqalnx160 = async,

inaqalnx161 = async }

ReplicationModeTuples @inaqalnx157 = { inaqalnx156 = sync,

inaqalnx158 = async,

inaqalnx159 = sync,

inaqalnx160 = async,

inaqalnx161 = async }

95Sample Configurations
Sample configuration files

ReplicationModeTuples @inaqalnx158 = { inaqalnx156 = sync,

inaqalnx157 = async,

inaqalnx159 = sync,

inaqalnx160 = async,

inaqalnx161 = async }

)

Sample service group configurations for
PostgreSQL

The following graphics depicts service groups with PostgreSQL instances running
in a VCS environment.

96Sample Configurations
Sample service group configurations for PostgreSQL

Figure A-1 Sample service group for a PostgreSQL instance

97Sample Configurations
Sample service group configurations for PostgreSQL

	Cluster Server Agents for PostgreSQL Database and Replication Installation and Configuration Guide
	Contents
	1. Introducing the agents for PostgreSQL Database and Replication
	About the InfoScale Availability agents for PostgreSQL Database and Replication
	Supported software
	Supported configurations for PostgreSQL Streaming Replication
	Features of the agent
	How the agent supports intelligent resource monitoring
	PostgreSQL Database agent functions
	Online
	Offline
	Monitor
	Clean
	Action entry points

	PostgreSQL Replication agent functions

	2. Installing, upgrading, and removing the agents for PostgreSQL Database and Replication
	Before you install the Cluster Server agent for PostgreSQL
	About the ACC library
	Installing the ACC library
	Installing the ACC library IPS package on Oracle Solaris 11 systems
	Installing the ACC library package on Solaris brand non-global zones

	Installing the agent in a VCS environment
	Installing the agent IPS package on Oracle Solaris 11 systems
	Installing agent packages on Solaris brand non-global zones
	Installing the agent in a Solaris 10 brand zone

	Uninstalling the agent in a VCS environment
	Removing the ACC library
	Upgrading the PostgreSQL and the PgSQLRep agents

	3. Configuring the agents for PostgreSQL Database and Replication
	About configuring the Cluster Server agent for PostgreSQL
	Importing the agent types files in a VCS environment
	PostgreSQL agent attributes
	Executing a customized monitoring program
	Setting up detail monitoring for the VCS agent for PostgreSQL

	4. Enabling the PostgreSQL and the PgSQLRep agents to support IMF
	About Intelligent Monitoring Framework
	Benefits of IMF

	Agent functions for the IMF functionality
	imf_init
	imf_getnotification
	imf_register

	Attributes that enable IMF
	IMF
	IMFRegList

	Before you enable the agent to support IMF
	Enabling the agent to support IMF
	If VCS is in a running state
	Restarting the agent
	If VCS is not in a running state

	Disabling intelligent resource monitoring
	Sample IMF configurations

	5. Configuring the service groups for PostgreSQL using the CLI
	About configuring service groups for PostgreSQL
	Before configuring the service groups for PostgreSQL
	PostgreSQL entities in a clustered environment
	Virtualizing PostgreSQL
	Creating service groups for PostgreSQL under Solaris non-global zones
	Configuring service groups for PostgreSQL Replication
	Configuring PostgreSQL nofailover trigger
	Configuring PgSQLRep preonline script
	Configuring PgSQLRep postonline script
	Configuring Multitarget PostgreSQL replication

	6. Troubleshooting the agent for PostgreSQL
	Using the correct software and operating system versions
	Meeting prerequisites
	Verifying virtualization
	Starting the PostgreSQL server outside a cluster
	Reviewing error log files
	Using trace level logging

	Troubleshooting the configuration for IMF
	Known issues

	A. Sample Configurations
	About sample configurations for the agents for PostgreSQL
	Sample agent type definition for PostgreSQL
	Sample configuration files
	Sample service group configurations for PostgreSQL

