Cluster File System

CFS enables you to simultaneously mount the same file system on multiple nodes and is an extension of the industry-standard Veritas File System. Unlike other file systems which send data through another node to the storage, CFS is a true SAN file system. All data traffic takes place over the storage area network (SAN), and only the metadata traverses the cluster interconnect.

In addition to using the SAN fabric for reading and writing data, CFS offers storage checkpoints and rollback for backup and recovery.

Access to cluster storage in typical SF Oracle RAC configurations use CFS. Raw access to CVM volumes is also possible but not part of a common configuration.

CFS architecture

SF Oracle RAC uses CFS to manage a file system in a large database environment. Since CFS is an extension of VxFS, it operates in a similar fashion and caches metadata and data in memory (typically called buffer cache or vnode cache). CFS uses a distributed locking mechanism called Global Lock Manager (GLM) to ensure all nodes have a consistent view of the file system. GLM provides metadata and cache coherency across multiple nodes by coordinating access to file system metadata, such as inodes and free lists. The role of GLM is set on a per-file system basis to enable load balancing.

CFS involves a primary/secondary architecture. One of the nodes in the cluster is the primary node for a file system. Though any node can initiate an operation to create, delete, or resize data, the GLM master node carries out the actual operation. After creating a file, the GLM master node grants locks for data coherency across nodes. For example, if a node tries to modify a block in a file, it must obtain an exclusive lock to ensure other nodes that may have the same file cached have this cached copy invalidated.

SF Oracle RAC configurations minimize the use of GLM locking. Oracle RAC accesses the file system through the ODM interface and handles its own locking; only Oracle (and not GLM) buffers data and coordinates write operations to files. A single point of locking and buffering ensures maximum performance. GLM locking is only involved when metadata for a file changes, such as during create and resize operations.

CFS communication

CFS uses port f for GLM lock and metadata communication. SF Oracle RAC configurations minimize the use of GLM locking except when metadata for a file changes.