
N18542F

Veritas™ File System
Programmer’s Reference Guide

Solaris

5.0

Veritas File System
Programmer’s Reference Guide

Copyright © 2006 Symantec Corporation. All rights reserved.

Veritas File System 5.0
PN: N18542F

Symantec, the Symantec logo, Veritas, and Veritas Storage Foundation are trademarks or
registered trademarks of Symantec Corporation or its affiliates in the U.S. and other
countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Symantec Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014
www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Symantec product. Such third-party software is licensed separately by
its copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.

Solaris is a trademark of Sun Microsystems, Inc.

Technical support
For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Contents
Chapter 1 Veritas File System software developer’s kit
About the software developer’s kit ...10
File system software developer’s kit features ...10

API library interfaces ..10
File Change Log ..11
Multi-volume support ...11
VxFS I/O ..11

Software developer’s kit packages ..12
Required libraries and header files ...12
Compiling environment ..13

Recompiling with a different compiler ...13

Chapter 2 File Change Log
About the File Change Log file ...16

Recorded changes ..16
Using the FCL file ...17
FCL logging activation ...18
FCL file layout ...19

Record types ...21
Special records ...22
Typical record sequences ...22

FCL tunables ...23
How tunables handle FCL growth size ..25

Programmatic interface ..26
Ease of use ...26
Backward compatibility ..26
API functions ..27
FCL record ...36
Copying FCL records ..42
VxFS and FCL upgrade and downgrade ..46

Reverse path name lookup ...47
Inodes ...47
vxfs_inotopath_gen ...48

6

Chapter 3 Multi-volume support
About multi-volume support ... 50
Uses for multi-volume support ... 51

Volume application programmatic interfaces .. 51
Administering volume sets .. 52
Querying the volume set for a file system ... 52
Modifying a volume within a file system ... 52
Encapsulating and de-encapsulating a volume 53

Allocation policy application programmatic interfaces 54
Directing file allocations .. 55
Creating and assigning policies ... 56
Querying the defined policies .. 57
Enforcing a policy on a file ... 57
Deleting a policy on a file ... 58
Pattern-based policies ... 58

Data structures .. 58
Using policies and application programmatic interfaces 59

Defining and assigning allocation policies .. 59
Using volume application programmatic interfaces 61

Chapter 4 Named data streams
About named data streams .. 64
Uses for named data streams .. 65
Named data streams programmatic interface .. 65
Listing named data streams ... 67
Namespace for named data streams ... 68
Behavior changes in other system calls ... 68
Querying named data streams ... 68
Application programmatic interface .. 69
Command reference .. 70

7

Chapter 5 VxFS I/O Application Interface
Freeze and thaw ...72
Caching advisories ...74

Direct I/O ...75
Concurrent I/O ...76
Unbuffered I/O ...77
Other advisories ...77

Extents ...78
Extent attributes ..78
Reservation: preallocating space to a file ..79
Fixed extent size ...80
Application programming interface for extent attributes81
Allocation flags ...82
Allocation flags with fixed extent size ...84
How to use extent attribute APIs ...84

8

Chapter
 1
Veritas File System
software developer’s kit

This chapter includes the following topics:

■ About the software developer’s kit

■ File system software developer’s kit features

■ Software developer’s kit packages

■ Required libraries and header files

■ Compiling environment

10 Veritas File System software developer’s kit
About the software developer’s kit
About the software developer’s kit
Veritas File System (VxFS) Software Developer’s Kit (SDK) provides developers
with the information necessary to use the application programming interfaces
(APIs) to modify and tune various features and components of the Veritas File
System. These APIs are provided with the VxFS Software Developer’s Kit.

Most of the APIs covered in this document are available in VxFS 4.1 and
subsequent releases.

The APIs in Chapter 5, “VxFS I/O Application Interface” on page 71 are
available in VxFS 4.0, subsequent releases, and several releases prior.

File system software developer’s kit features
This section provides an overview of the VxFS features that are accessible with
the SDK.

API library interfaces
The API library interfaces highlighted in this SDK are the vxfsutil library and
VxFS IOCTL directives. The library contains a collection of API calls that can be
used by applications to take advantage of the features of the VxFS file system.
Manual pages are available for all of the API interfaces. The library contains
APIs for the following features:

The VxFS API library, vxfsutil, can be installed independent of the Veritas
File System product. This library is implemented using a stubs library and
dynamic library combination. Applications are compiled with the stubs library
libvxfsutil.a, making the application portable to any VxFS target

APIs Feature

inotopath Inode-to-path lookup

nattr Named Data Stream

FCL File Change Log

MVS Multi-volume support

Caching Advisories IOCTL directives

Extents IOCTL directives

Freeze/Thaw IOCTL directives

11Veritas File System software developer’s kit
File system software developer’s kit features
environment. The application can then be run on a VxFS target, and the stubs
library will find the dynamic library provided with the VxFS target.

The stubs library uses a default path for the location of the vxfsutil.so
dynamic library. In most cases, the default path should be used. However, the
default path can be overridden by setting the environment variable,
LIBVXFSUTIL_DLL_PATH, to the path of the vxfsutil.so library. This
structure allows an application to be deployed with minimal issues related to
compatibility with other releases of VxFS.

File Change Log
The VxFS File Change Log (FCL) tracks changes to files and directories in a file
system. The File Change Log can be used by applications such as backup
products, web crawlers, search and indexing engines, and replication software
that typically scan an entire file system searching for modifications since a
previous scan.

See “File Change Log” on page 15.

Multi-volume support
The multi-volume support (MVS) feature allows a VxFS file system to use
multiple Veritas Volume Manager (VxVM) volumes as underlying storage.
Administrators and applications can control where files go to maximize
effective performance, while minimizing cost. This feature can be used only in
conjunction with Veritas Volume Manager. In addition, some of the
functionality requires additional license keys.

See “Multi-volume support” on page 49.

VxFS I/O
VxFS conforms to the System V Interface Definition (SVID) requirements and
supports user access through the Network File System (NFS). Applications that
require performance features not available with other file systems, can take
advantage of VxFS enhancements.

12 Veritas File System software developer’s kit
Software developer’s kit packages
Software developer’s kit packages
Two packages comprise the SDK: VRTSfssdk and VRTSfsmnd. The VRTSfssdk
package contains libraries, header files, and sample programs in source and
binary formats that demonstrate usage of the VxFS API interfaces to develop
and compile applications. The VRTSfsmnd package contains this manual and
the API man pages.

The directory structure in the VRTSfssdk package is as follows:

The VRTSfssdk and VRTSfsmnd packages can be obtained separately from the
VxFS package. To run the applications or sample programs, a licensed VxFS
target is required. In addition, the VxFS license of the required features should
be installed on the target system.

Required libraries and header files
The VRTSfssdk package is installed in the /opt directory. The associated
libraries and header files are installed in the following locations:

■ /opt/VRTSfssdk/5.0/lib/libvxfsutil.a

■ /opt/VRTSfssdk/4.1/lib/sparcv9/libvxfsutil.a

■ /opt/VRTSfssdk/5.0/include/vxfsutil.h

■ /opt/VRTSfssdk/5.0/include/sys/fs/fcl.h

■ /opt/VRTSfssdk/5.0/include/sys/fs/vx_ioctl.h

There are also symlinks to these files from the standard Veritas paths:
/opt/VRTS/lib and /opt/VRTS/include. The standard paths are the
default paths in the latest releases of VxFS and the VxFS SDK.

src Contains several subdirectories with sample programs and
GNU-based Makefile files on each topic of interest.

bin Contains symlinks to all the sample programs in the sources
directory for easy access to binaries.

include Contains the header files for API library and ioctl interfaces.

lib Contains the pre-compiled vxfsutil API interface stubs
library.

libsrc Contains the source code for the vxfsutil API interface stubs
library.

13Veritas File System software developer’s kit
Compiling environment
Compiling environment
Sample programs are installed by the SDK package with compiled binaries. The
requirements for running the sample programs are as follows:

■ A target system with the appropriate version of VRTSvxfs installed

■ Root permission, required for some programs

■ A mounted vxfs 4.x/5.0 file system. Some may require a file system mounted
on a Veritas Volume Set.

Note: Some programs may require special volume configurations (volume sets).
In addition, some programs require a file system to be mounted on a volume set.

Recompiling with a different compiler
The required tools for recompiling the src or libsrc directory are as follows:

■ gmake or make command

■ gcc compiler or cc command

To recompile the src and libsrc directories

1 Edit the make.env file and modify it with the path to your compiler.

2 Change to the src or libsrc directory and run the gmake or make
command:

gmake

3 After writing the application, compile it as follows:
gcc -I /opt/VRTS/include -L /opt/VRTS/lib -ldl -o MyApp \
MyApp.c libvxfsutil.a

To compile the src or libsrc directory, edit the
/opt/VRTSfssdk/5.0/make.env file as follows:

1 Select the compiler path on your local system. choose and edit CC to the
path on your system.

CC=/opt/SUNWspro/bin/cc (Whatever path is appropriate)
#CC=/usr/local/bin/gcc

2 Change to the src or libsrc and type:
gmake (or make)

14 Veritas File System software developer’s kit
Compiling environment

Chapter
 2
File Change Log

This chapter includes the following topics:

■ About the File Change Log file

■ Record types

■ FCL tunables

■ Programmatic interface

■ Reverse path name lookup

16 File Change Log
About the File Change Log file
About the File Change Log file
The VxFS File Change Log (FCL) tracks changes to files and directories in a file
system. Applications that typically use the FCL are usually required to:

■ Scan an entire file system or a subset

■ Discover changes since the last scan

These applications may include: backup utilities, webcrawlers, search engines,
and replication programs.

Note: The FCL tracks the time that data has changed and records the change
type, but does not track the actual data changes. It is the responsibility of the
application to examine the files to determine the changed data.

Recorded changes
The File Change Log records file system changes including:

■ Creates

■ Links

■ Unlinks

■ Renaming

■ Data appended

■ Data overwritten

■ Data truncated

■ Extended attribute modifications

■ Holes punched

■ Miscellaneous file property updates

Note: The FCL is supported only on disk layout Version 6 and 7.

The FCL stores changes in a sparse file, referred to as the FCL file, in the file
system namespace. The FCL file is always located in
/mount_point/lost+found/changelog. The FCL file behaves like a regular
file, however, some user-level operations are prohibited, such as writes.

17File Change Log
About the File Change Log file
Note: The standard system calls open(2), lseek(2), read(2) and close(2) can
access the data in the FCL file. All other system calls such as mmap(2), unlink(2),
ioctl(2) etc., are not allowed on the FCL file.

Warning: For compatibility with future VxFS releases, the FCL file might be
pulled out of the namespace. Standard system calls may no longer work.
Therefore, it is recommended that all new applications be developed using the
programmatic interface.

See “Programmatic interface” on page 26.

Using the FCL file
VxFS tracks changes to the file system by appending the FCL file with
information pertaining to those changes. This enables you to do the following:

■ Use the FCL to determine the sequence of operations that have been
performed on the file system in general or on a specific file after a
particular point in time. For instance, an incremental backup application
can scan the FCL file to determine which files have been added or modified
since the file system was last backed up.

■ Configure the FCL to track additional information such as file opens, I/O
statistics, access information (for example, user ID) along with other
changes

You can then use this information to gather the following:

■ Space usage statistics to determine how the space usage for different
types of data

■ Usage profile for the different files on a file system across different
users to help determine which data has been recently accessed and by
whom

Note: These are new features for the VxFS 5.0 release.

Space usage

You can use the FCL to track space usage when a file system gets close to being
full. The FCL file can be searched for recently created files (file creates) or write
records to determine newly added files or existing files that have grown recently.
Depending on the application needs, the search can be done on the entire FCL
file, or on a portion of the FCL file corresponding to a specific time frame.

18 File Change Log
About the File Change Log file
Additionally, you can look for files created with particular names. For example, if
users are downloading *.mp3 files that are taking up too much space, the FCL file
can be read to find files created with the name *.mp3.

Full system scan reductions
VxFS creates and logs an FCL record for every update operation performed on
an FCL-enabled file system. These operations include: creates, deletes, rename,
mode changes, and writes. Therefore, incremental backup applications or
applications which maintain an index of a file system based on the file name, file
attributes, or content, can avoid a full system scan by reading the FCL file to
detect the files that have changed since the previous backup or previous index
update.

File history traces
You can trace a file’s history by scanning the FCL file and coalescing FCL record
sequences for a file. You can also use the related FCL records from a file’s
creation, attribute changes, write records and the file’s deletion to track the
file’s history.

FCL logging activation
By default, FCL logging is deactivated and can be activated on a per file system
basis using the fcladm command.

See the fcladm(1M) manual page.

When the FCL is activated, new FCL records are appended to the FCL file as the
file system changes occur. When the FCL is turned off, further recording stops,
but the FCL file remains at the lost+found/changelog. You can only remove
an FCL file by using the fcladm rm command.

The FCL has an associated version that represents the layout or the internal
representation of the FCL, along with the list of events recorded in the FCL.
Whenever a new version of VxFS is released, the following occurs:

■ There may either be additional events recorded in the FCL

■ The internal representation of the FCL may change

This results in the FCL version getting updated. For instance, in VxFS 4.1, the
default was Version 3. In Vxfs 5.0, the default is Version 4. FCL Version 4 records
additional sets of events that are not available in Version 3 (such as file opens).
To provide backward compatibility for applications developed on VxFS 4.1,
VxFS 5.0 provides an option to specify an FCL version (either 3 or 4) during
activation. Depending on the specified version, the logging of the new record
types is either allowed or disallowed.

19File Change Log
About the File Change Log file
The logging of most of the newly added records in VxFS 5.0 (for example, file
opens, I/O statistics etc.) is optional and is turned off by default. Recording of
these events can be enabled or disabled using the set|clear options of the
fcladm command.

The FCL meta-information comprising the file system state, version, and the set
of events being tracked is persistent across reboots and file system unmounts or
mounts. The version and event information is also persistent across
re-activations of the FCL.

FCL file layout
In VxFS 4.1, the internal layout of the FCL file was exposed to the user and the
applications were expected to access the FCL using standard file system
interfaces such as open(2), read(2), and lseek(2). However, this methodology
may lead to future compatibility issues. For example, if the underlying FCL
layout and the FCL version ever changes, the application must be changed and
recompiled to accommodate these changes.

VxFS 5.0 introduces a new programming interface, which provides improved
compatibility, even when the on-disk FCL layout changes. With this API, the FCL
layout is not a concern for applications. Hence, only a rudimentary description
of the FCL layout is provided here.

Figure 2-1 depicts the FCL file format. The FCL file is usually a sparse file
containing the FCL superblock and the FCL records. The first information block
in the FCL file is the FCL superblock. This block may be followed by an optional
hole as well as the FCL records which contain information about the changes in
the file system.

Figure 2-1 FCL file format

Superblock

Record

Record

Record

Offset 0x0

First Offset File System Block Boundary

File System Block Boundary

Record
Last Offset

20 File Change Log
About the File Change Log file
FCL superblock
Changes to files and directories in the file system are stored as FCL records. The
superblock, which is currently stored in the first block of the FCL file, describes
the state of the FCL file. The superblock indicates the following information:

■ Whether FCL logging is enabled

■ What time it was activated

■ The current offsets of the first and last FCL records

■ The FCL file version

■ The event mask for the set of events currently being tracked

■ The time that the event mask was last changed

An FCL file containing just the superblock is created when FCL is first activated
using the fcladm on command. The superblock gets deleted only when the FCL
file is removed using the fcladm rm command.

When the FCL is activated using fcladm on, the state in the superblock and its
activation time are changed. Whenever any file system activity results in a
record being appended to the FCL file, the last offset gets updated.

Event mask
As the FCL file grows in size, depending on the file system tunables
(fcl_maxalloc and fcl_keeptime), the oldest records at the start of the FCL
file are thrown away to free up some space, as the first offset gets updated.
When the set of events tracked in the FCL is changed using fcladm set|clear,
it results in the event mask and the event mask change time getting updated as
well. An event mask change also results in a event mask change record
containing the old event mask and the new one being logged in the FCL file.

FCL record
The FCL records contain information about these typical changes:

■ The inode number of the file that has changed

See “Inodes” on page 47.

■ The time of change

■ The type of change

■ Optional information depending on the record type

Depending on the record type, the FCL may also include the following:

■ A parent inode number

■ A file name for file deletes or links, etc.

21File Change Log
Record types
■ A command name for a file open record

■ The actual statistics for an I/O statistics record, etc.

See Figure 2-1 on page 19.

Record types
Table 2-1 lists actions that generate FCL record types.

Table 2-1 FCL record types

Action to create an FCL record Record type

Add a link to an existing file or directory VX_FCL_LINK

Appending write to a file VX_FCL_DATA_EXTNDWRITE

Create a file or directory VX_FCL_CREATE

Create a named data stream directory VX_FCL_CREATE

Create a symbolic link VX_FCL_SYMLINK

Perform an mmap on a file in a shared and
writable mode

VX_FCL_DATA_OVERWRITE

Promote a file from a Storage Checkpoint VX_FCL_UNDELETE

Punch a hole into a file VX_FCL_HOLE_PUNCHED

Remove a file or directory VX_FCL_UNLINK

Remove a named data stream directory VX_FCL_UNLINK

Rename a file or directory VX_FCL_RENAME

Rename a file to an existing file VX_FCL_UNLINK

VX_FCL_RENAME

Set file attributes (allocation policies, ACLs, and
extended attributes)

VX_FCL_EATTR_CHG

Set file extent reservation VX_FCL_INORES_CHG

Set file extent size VX_FCL_INOEX_CHG

Set file group ownership VX_FCL_IGRP_CHG

Set file mode VX_FCL_IMODE_CHG

Set file size VX_FCL_DATA_TRUNCATE

Set file user ownership VX_FCL_IOWN_CHG

22 File Change Log
Record types
Note: When the fcladm on command activates the FCL, all the events listed in
Table 2-1 are recorded by default, except for fileopen and filestat. Access
information for each of these events is also not recorded by default. Use the set
option of the fcladm command to record opens, I/O statistics, and access
information.
See the fcladm(1M) manual page.

The record types in Table 2-1 belong to fcl_chgtype.t, which is an
enumeration that is defined in the fcl.h header file in Table 2-2 on page 40.

Special records
The following record types are no longer visible through the API:

■ VX_FCL_HEADER

■ VX_FCL_NOCHANGE

■ VX_FCL_ACCESSINFO

Typical record sequences
The life cycle of a file in a file system is recorded in the FCL file from creation to
deletion. The following is a typical sequence of FCL records written to the log for
creating an FCL file:
VX_FCL_CREATE
VX_FCL_FILEOPEN (if tracking file opens is enabled)
VX_FCL_DATA_EXTNDWRITE
VX_FCL_IMODE_CHG

Set mtime of a file VX_FCL_MTIME_CHG

Truncate a file VX_FCL_DATA_TRUNCATE

Write to an existing block in a file VX_FCL_DATA_OVERWRITE

Open a file VX_FCL_FILEOPEN

Write I/O statistics of a file to FCL VX_FCL_FILESTATS

Change the set of events tracked in the FCL VX_FCL_EVNTMSK_CHG

Table 2-1 FCL record types

Action to create an FCL record Record type

23File Change Log
FCL tunables
When writing a file, one of the following FCL records is written to the log for
every write operation. The record depends on whether the write is past the
current end of the file or within the file.
VX_FCL_DATA_EXTNDWRITE
VX_FCL_DATA_OVERWRITE

The following shows a typical sequence of FCL records written to the log, when
file “a” is renamed to “b” and both files are in the file system:
VX FCL_UNLINK (for file “b” if it already exists)
VX_FCL_RENAME (for rename from “a” to “b”)

FCL tunables
You can set four FCL tunable parameters using the vxtunefs command.

See the vxtunefs(1M) manual page.

fcl_keeptime Specifies the duration in seconds that FCL records stay in the
FCL file before they can be purged. The first records to be purged
are the oldest ones, which are located at the beginning of the file.
Additionally, records at the beginning of the file can be purged if
the allocation to the FCL file exceeds fcl_maxalloc bytes. The
default value is “0”. If the fcl_maxalloc parameter is set,
records are purged from the FCL if the amount of space allocated
to the FCL exceeds fcl_maxalloc, even if the elapsed time the
records have been in the log is less than the value of
fcl_keeptime.

Tuning recommendation: The fcl_keeptime tunable
parameter needs to be tuned only when the administrator wants
to ensure that records are kept in the FCL for fcl_keeptime
length of time. The fcl_keeptime parameter should be set to
any value greater than the time between FCL scans. For example,
if the FCL is scanned every 24 hours, fcl_keeptime could be
set to 25 hours. This prevents FCL records from being purged
before they are read and processed.

fcl_maxalloc Specifies the maximum amount of space in bytes to be allocated
to the FCL file. When the space allocated exceeds
fcl_maxalloc, a hole is punched at the beginning of the file.
As a result, the oldest records are purged and the first valid
offset is updated in the FCL superblock.

Tuning recommendation: The minimum value of
fcl_maxalloc is 4MB. The maximum allocation can be a
percentage of the file system size that the administrator wishes
to provision for the FCL. The default value is 3% of the file
system size.

24 File Change Log
FCL tunables
fcl_winterval Specifies the time in seconds that must elapse before the FCL
records multiple overwrite, extending write, or truncation
records for the same inode. This helps to reduce the number of
repetitive records in the FCL. The fcl_winterval time-out is
per inode. If an inode happens to go out of cache and returns, its
write interval is reset. As a result, there could be more than one
write record for that file in the same write interval. The default
value is 3600 seconds.

Tuning recommendation: The fcl_winterval tunable
parameter should be set to a value that is less than the time
between FCL scans. For example, if the FCL is scanned every 24
hours, fcl_winterval should be set to less than 24 hours. This
ensures that there is at least one record in the FCL for each file
being overwritten, extended, or truncated between scans.

fcl_ointerval Specifies the time interval in seconds within which subsequent
opens of a file do not produce an additional FCL record. This
helps to reduce number of repetitive file-open records logged in
the FCL, especially in the case of frequent accesses through NFS.
If the tracking of access information is also enabled, a
subsequent file open event within fcl_ointerval might
produce a record, if the latter open is by a different user.
Similarly, if an inode goes out of cache and returns, or if there is
an FCL sync, there might be more than one file open record
within the same open interval. The default value is 600 seconds.

Tuning recommendations: If the application using file-open
records only needs to know if a file has been accessed by any
user from the last time it scanned the FCL, fcl_ointerval can
be set to a time period in the range of the time between the
scans. If the application is interested in tracking every access,
the tunable can be set to zero.

In the case where the file system is extensively accessed over
NFS, depending on the platform and the NFS implementation,
there might be a large number of file open records logged. In
such cases, it is recommended to set the tunable to a higher
value to avoid flooding the FCL with repetitive records.

25File Change Log
FCL tunables
How tunables handle FCL growth size
Figure 2-2 illustrates an example of record purging as an FCL file grows in size.
The FCL file on the left contains 8K blocks and no holes. When activity occurs on
the file system, it is recorded in the FCL and the growth results in the FCL file on
the right.

When the FCL size reaches the maximum allowable size that is specified by the
fcl_maxalloc tunable, older records are purged and space is freed. The FCL
program only purges records that are older than a time specified by
fcl_keeptime.

The freed space is always in units of an internal hole size. In Figure 2-2, the file
system frees up space in the FCL in 8K units. When the FCL file surpasses the
maximum allocation for the first time and the number of older records is 20K,
the program purges 16K. This leaves a 16K hole following the FCL superblock.
The first valid offset in the FCL superblock is then updated to 24K.

Figure 2-2 FCL record purging example

Superblock

Record

Record

Record

Offset 0x0

first offset = 8K

Superblock
Offset 0x0

first offset = 24KB

FCL Before: No holes FCL After: A 16K hole

Record

Record

exists at offset 8K

16K Hole
Record

Record

Record

26 File Change Log
Programmatic interface
Programmatic interface
In addition to the existing programmatic interface exposed through
libvxfsutil: vxfs_fcl_sync,VxFS 5.0 provides a new set of programmatic
interfaces which replace the mechanism to access an FCL file via the set of
standard system calls: open(2), lseek(2), read(2) and close(2). This API
provides the following improvements.

Ease of use
The API reduces the need to write additional code to parse FCL entries. Most of
the on-disk FCL records are of a fixed size and contain only the default
information such as the inode number or time stamp. However, some records
can be of variable sizes (for example, a file remove or rename record). These
records contain additional information such as the name of the file removed or
renamed.

To ensure that the first few bytes at the start of any file system block is always a
valid FCL record (if the file name crosses a block boundary), the file system block
may be split across multiple on-disk records. Previously, you were required to
write additional code to assemble these records to get the file name. The VxFS
5.0 API provides a mechanism to directly read a single assembled logical record.
This makes it easier for applications using the API. The API also lets the
application specify a filter to indicate a subset of the events of interest and
return only required records.

Backward compatibility
The API lets applications read the FCL independent of the FCL layout changes.
For example, consider a scenario where an application directly accesses and
interprets the on-disk FCL records. If the next VxFS release adds new records or
changes the way the records are stored in the FCL file, the application needs to
be rewritten or at least recompiled to accommodate for the changes (under
previous VxFS versions).

With an intermediate API, the on-disk layout of FCL is hidden from the
application, so even if the disk layout of FCL changes, the API internally
translates the data returns the expected output record to the user. The user
application can then continue without a recompilation or a rewrite.This
insulates programs from FCL layout changes and provides greater compatibility
for existing applications.

27File Change Log
Programmatic interface
API functions
The API uses the following type of functions:

■ Functions for accessing FCL records

■ Functions for seeking offsets and time stamps

Functions for accessing FCL records
These are general functions for accessing FCL records:

Functions for seeking offsets and time stamps in the FCL
Users have the option to seek to a particular point in the File Change Log based
on the offset from where they left off, or to the first record after a specified time.
The following functions can seek offsets and time stamps in the FCL:

vxfs_fcl_open Opens the FCL file and returns a handle which can be used for
further operations. All subsequent accesses of the FCL file
through the API must use this handle.

vxfs_fcl_close Closes the FCL file and cleans up resources associated with the
handle

vxfs_fcl_getinfo Returns the FCL version number along with the state (on/off) of
the FCL file

vxfs_fcl_read Reads FCL records of interest to the user into a buffer passed in
by the user

vxfs_fcl_copyrec Copies an FCL record. If the source record contains pointers, it
relocates them to point to the new location.

vxfs_fcl_getcookie Returns an opaque structure (referred hereinafter as a cookie)
which embeds the current FCL activation time and the
current offset. This cookie can be saved and later passed into
vxfs_fcl_seek to continue reading from where the
application left off last time.

vxfs_fcl_seek Extracts data from the cookie passed and seeks to the
specified offset. A cookie is embedded with the FCL activation
time and file offset

vxfs_fcl_seektime Seeks to the first record in the FCL after the specified time

28 File Change Log
Programmatic interface
vxfs_fcl_open
int vxfs_fcl_open(char *pathname, int flags, void **handle);

This function opens the FCL file and returns a handle which should be used for
all further accesses to the FCL through the API (for example, vxfs_fcl_read,
vxfs_fcl_seek, etc.).

vxfs_fcl_open has two parameters: *pathname and **handle. The
*pathname can either be a pointer to an FCL file name or a mount point. If
*pathname is a mount point, vxfs_fcl_open automatically determines if the
FCL is activated on the mount point and opens the FCL file associated with the
mount point (currently mount_point/lost+found/changelog).

vxfs_fcl_open then determines if it is a valid FCL file, and if the FCL file
version is compatible with the library. The vxfs_fcl_open function then
assimilates meta-information about the FCL file into an opaque internal data
structure and populates **handle with a pointer.

 Just like the lseek(2) and read(2) system calls, the FCL file **handle has an
internal offset to indicate the position in the file from where the next read
starts. When the FCL file is successfully opened, this offset is set to the first
valid offset in the FCL file.

Return Value
Upon successful completion, a “0” is returned to the caller and the handle is
non-NULL. Otherwise, the API returns a non-zero value is and the handle is set
to NULL. The global value errno is also set to indicate the error.

vxfs_fcl_close
vxfs_fcl_close closes the FCL file referenced by the handle. All data
structures allocated with this handle are cleaned. You should not use this handle
after a call to vxfs_fcl_close.

Parameters
void vxfs_fcl_close(void *handle)

*handle is a valid handle returned by the previous call to vxfs_fcl_open.

vxfs_fcl_getinfo
int vxfs_fcl_getinfo(void *handle, struct fcl_info*fclinfo);

The vxfs_fcl_getinfo function returns information about the FCL file in the
FCL information structure pointed to by fcl_info. It obtains this information
from the FCL superblock.
struct fcl_info {

uint32_tfcl_version;

29File Change Log
Programmatic interface
uint32_tfcl_state;
};

An intelligent application that is aware of the record types associated with each
FCL version can use fcl_version to determine whether the FCL file contains
the needed information. For example, with a Version 3 FCL, an intelligent
application can infer that there is no access information in the FCL record. In
addition, if the fcl_state is FCLS_OFF, the application can also infer that
there are no records added to the FCL file due to file system activity.

Return Values
A “0” indicates success; otherwise, the errno is set to error and a non-zero value
is returned.

vxfs_fcl_read
This function lets the application read the actual file or directory change
information recorded in the FCL as logical records. Each record returns a
struct fcl_record type. vxfs_fcl_read lets the application specify a
filter comprising a set of desired events.

Parameters
int vxfs_fcl_read(void *hndl, char *buf, size_t *bufsz,

uint64_t eventmask, uint32_t *nentries);

Input
This function has the following input:

■ *hndl is a pointer returned by a previous call to vxfs_fcl_open

■ *buf is a pointer to a buffer of size at least *bufsz

■ *bufsz specifies the buffer size

■ eventmask is a bit-mask that specifies a set of events which is of interest to
the application. It should be a “logical or” of a set of event masks specified
in the fcl.h header. For example, if the eventmask is
(VX_FCL_CREATE_MASK | VX_FCL_UNLINK_MASK), vxfs_fcl_read
returns only file create and delete records. If an application needs to read all
the records listed in Table 2-1 on page 21, it can specify a default
eventmask mask as FCL_ALL_V4_EVENTS. This returns all valid Version
4 FCL records in the FCL file.

30 File Change Log
Programmatic interface
Note: If VX_FCL_EVNTMASKCHG_MASK is set in eventmask and the
records returned by vxfs_fcl_read contain a VX_FCL_EVNTMASK_CHG
record, it is always the last record in the buffer. This lets the application
readjust the eventmask if required. In addition, if the application discovers
from the eventmask change record that a particular event is no longer
recorded, it can decide to stop further reading.

■ *nentries specifies the number of entries that should be read into the
buffer in this call to vxfs_fcl_read. If *nentries is “0,”
vxfs_fcl_read reads as many entries as will fit in the buffer. If
*nentries is a non-zero and the number of available records is less than
*nentries, vxfs_fcl_read reads as many entries as are available and
updates *nentries to reflect the number of entries read.

Output
*buf contains *nentries FCL records of the struct fcl_record type if
there is no error.

If the requested number of entries (*nentries) cannot fit in the buffer size, an
FCL_ENOSPC error is returned. In this case, *bufsz is updated to contain the
buffer size required for the requested number of records. The application may
use this to reallocate a larger sized buffer and invoke vxfs_fcl_read again.
*bufsz is not changed if there is no error.

Even in the case where vxfs_fcl_read returns an FCL_ENOSPC, it might try
to read incomplete FCL records into the buffer. Therefore the contents of the
buffer should not be trusted.

*nentries is updated to contain the number of entries read in the buffer when
vxfs_fcl_read is called and there is no error. *nentries and the returned
value are both zero when the application has reached the end of file and there
are no more records to be read.

Caution: When the number of available records is less than *nentries, and an
FCL_ENOSPC error is returned, the buffer may contain erroneous data..

Return Values
A "0" indicates success; a non-zero indicates an error.

Note: FCL_ENOSPC is returned if there is not enough space in the buffer to store
the current record. The minimum size the buffer must be is returned in
*bufsz.

31File Change Log
Programmatic interface
After a successful call to vxfs_fcl_read, the current file position is
advanced, so that the next call to vxfs_fcl_read reads the next set of records.

vxfs_fcl_copyrec
vxfs_fcl_copyrec copies an FCL record of length len from *src to *tgt and
relocates the pointers in the target FCL record to point to copies of the data in
*src. A special operation to copy FCL records is needed because a simple
memory copy of the FCL record from *src to *tgt leaves the pointers in *tgt
pointing to the data in source FCL record, instead of copies of the data. This may
cause problems when the memory for the source FCL record is re-used.

Parameters
int vxfs_fcl_copyrec(struct fcl_record *src , struct
fcl_record *tgt, size_t len);

■ *src must point to a valid fcl_record structure

■ The len passed should be the length of the source FCL record, represented
by the fr_reclen field of the source FCL record.

■ *tgt must point to a non-null memory address used to hold the target FCL
record.

Note: The caller of vxfs_fcl_copyrec must ensure that the space required to
hold the target FCL record is allocated (i.e., at least the len bytes).

vxfs_fcl_getcookie
The vxfs_fcl_getcookie and vxfs_fcl_seek functions are effective
methods for remembering a position in the FCL file that the application had
processed earlier. This then can be used as a restarting point. This is a highly
useful tool for applications.

See “vxfs_fcl_seek” on page 32.

The vxfs_fcl_getcookie function returns an opaque fcl_cookie structure
which embeds information comprising the current activation time of the FCL
file and an offset indicating the current position in the FCL file. This cookie can
be passed into vxfs_fcl_seek to seek to the position in the FCL file defined by
the cookie.

A typical incremental backup or index-update program can read to the end of
the FCL file and perform actions based on the FCL records. The application can
get information about the current position in the FCL file using
vxfs_fcl_getcookie and then store the cookie in a persistent structure such
as a file. The next time the application needs to perform an incremental

32 File Change Log
Programmatic interface
operation, it reads the cookie and passes it to vxfs_fcl_seek to seek to the
point where it left off. This enables the application to read only the new FCL
records.

Parameters
int vxfs_fcl_getcookie(void *handle, struct fcl_cookie
*cookie)

■ *handle is the FCL file handle returned by a call to vxf_fcl_open

■ *cookie is a pointer to an opaque data block defined as follows:
struct fcl_cookie {

char fc_bytes[24];
};

The data stored in the cookie is internal to the VxFS library. The application
should not assume any internal representation for the cookie or tamper with the
data in the cookie.

vxfs_fcl_seek
You can use vxfs_fcl_seek to seek to the start or end of an FCL file depending
on the flag passed to it.

See “vxfs_fcl_getcookie” on page 31.

Parameters
int vxfs_fcl_seek(void *handle, struct fcl_cookie *cookie,
int where)

■ The *handle should be the same handle that was returned by the most
recent call to vxfs_fcl_open. This is not necessarily the same handle
used in vxfs_fcl_getcookie. The application may open the FCL file, get
the cookie, and close the FCL file in one session, and then open the FCL file
and submit the saved cookie in a later session. For each open session on the
FCL file, the valid handle is the one returned by vxfs_fcl_open for that
session.

■ The *cookie should point to a valid cookie that has returned from a call to
vxfs_fcl_getcookie:

■ On the same FCL file

■ One of its checkpoints

■ One of the dumped or restored copies of the same FCL file.

It is the responsibility of the user application to decide which FCL file is
valid for a particular cookie and to use them in a sensible combination.

33File Change Log
Programmatic interface
Note: *cookie may be NULL if where is FCL_SEEK_START or
FCL_SEEK_END.

■ where should be one of FCL_SEEK_START, FCL_SEEK_END,
FCL_SEEK_COOOKIE.

■ If where is FCL_SEEK_START or FCL_SEEK_END, the *cookie
argument is ignored and vxfs_fcl_seek seeks to either the start or
end of the FCL file respectively, that is, where the first FCL record
starts or where the last record ends

■ If where is FCL_SEEK_COOKIE, vxfs_fcl_seek extracts the
activation time and offset stored in the *cookie

If the FCL has been de-activated (switched off) from the time the application
last did a vxfs_fcl_getcookie function, or if the record at the offset
contained in the *cookie was purged by a hole-punch, vxfs_fcl_seek
returns an FCL_EMISSEDRECORD error. If not, vxfs_fcl_seek sets the
current file position to the offset contained in the cookie. Further calls to
vxfs_fcl_read return records from this offset.

Return values
A "0" indicates success; a non-zero indicates an error.

Note: vxfs_fcl_seek returns FCL_EMISSEDRECORD if the FCL has been
reactivated, i.e., the activation time in FCL is different than that passed in the
cookie, or the first valid offset in the FCL file is greater than the offset present in
the cookie.

vxfs_fcl_seektime
The vxfs_fcl_seektime function seeks to the first record in the FCL file that
has a time stamp greater than or equal to the specified time.

Parameters
int vxfs_fcl_seektime(void *handle, struct fcl_timeval time)

■ *handle is a valid handle returned by a previous call to vxfs_fcl_open

■ time is an fcl_time_t structure type defined as follows:
struct fcl_time {

uint32_t tv sec;
unit32_t tv_nsec;

} fcl_time t;

34 File Change Log
Programmatic interface
Note: The time specified in fcl_time_t may be in seconds or nanoseconds,
while the time that is returned by a standard system call such as
gettimeofday may be in seconds or microseconds. Therefore, a
conversion may be needed.

vxfs_fcl_seektime assumes that the entries in the FCL are in a
non-decreasing order of the time stamps and does a faster-than-linear (binary)
search to determine the FCL record with a time stamp greater than the specified
time. This means that vxfs_fcl_seektime can seek to a different record
when compared to a seek done through a linear search.

As a result, the vxfs_fcl_seektime interface is not 100% reliable. Under the
following circumstances, the time stamps in the FCL might be out-of-order:

■ If the system time is modified

■ If the FCL file is on a cluster-mounted file system and the times on the
different nodes are out-of-sync

Warning: On a cluster file system, you must use a mechanism to keep the system
clocks in sync (for example, Network Time Protocol—NTP), to help ensure that
the vxfs_fcl_seektime interface is kept reasonably accurate.

Return values
vxfs_fcl_seektime returns "0" on success. If there are no records at or after
the time parameter, vxfs_fcl_seektime returns EINVAL.

vxfs_fcl_sync
The vxfs_fcl_sync function sets a synchronization point within the FCL file.
This function is kept for backward compatibility.

Before the availability of the VxFS 5.0 API to access the FCL file, applications
would typically call vxfs_fcl_sync to get the FCL to a stable state and set an
offset in the FCL file to use as a reference point to stop reading. The application
would then store the offset and use it to determine files changes since the last
FCL read time. A vxfs_fcl_sync call would then check if a file had been
written to or opened. At least one corresponding write or open record would
appear in the FCL after the synchronization offset. This would happen even if
the time specified by fcl_winterval or fcl_ointerval had not elapsed
since the last record was written.

With the VxFS 5.0 API FCL access, synchronization is now done automatically
when the FCL file is opened through vxfs_fcl_open. The vxfs_fcl_open

35File Change Log
Programmatic interface
function sets a synchronization point and determines a reference end offset
internally.

Parameters
int vxfs_fcl_sync(char *fname, uint64_t *offp);

■ *fname is a pointer to the FCL file name

■ *offp is the address of a 64-bit offset

vxfs_fcl_sync brings the FCL file to a stable state and updates *offp with an
offset that can be used by the application as a reference point.

36 File Change Log
Programmatic interface
FCL record
An application reads the FCL file through the vxfs_fcl_read function.
vxfs_fcl_read performs the following tasks:

■ Reads the data from the FCL file

■ Assembles the data into fcl_record structures

■ Fills the buffer passed in by the application with these records

Each fcl_record structure represents a logical event recorded in the FCL. It is
defined as the following:
struct fcl_record {
uint32_t fr_reclen; /* Record length */
uint16_t fr_op; /* Operation type. */
uint16_t fr_unused1; /* unused field */
uint32_t fr_acsinfovalid : 1; /* fr_acsinfo field valid */
uint32_t fr_newnmvalid : 1; /* fr_newfilename field is valid */
uint32_t fr_pinogenvalid : 1; /* fr_fr_pinogen field is valid */
uint32_t fr_unused2 : 29; /* Future use */
uint64_t fr_inonum; /* Inode Number. */
uint32_t fr_inogen; /* Inode Generation Count. */
fcl_time_t fr_time; /* Time. */
union fcl_vardata {
char *fv_cmdname;
struct fcl_nminfo fv_nm;
struct fcl_iostats *fv_stats;
struct fcl_evmaskinfo fv_evmask;

} fr_var;
uint64_t fr_tdino; /* Target dir ino */
char *fr_newfilename; /* For rename */
struct fcl_acsinfo *fr_acsinfo; /* Access Info */

};

struct fcl_nminfo {
uint64_tfn_pinonum;/* Parent Inode Number. */
uint32_tfn_pinogen;/* Parent Inode Gen cnt. */
char*fn_filename;

};

struct fcl_evmaskinfo {
uint64_toldmask;/* Old event mask. */
uint64_tnewmask;/* New event mask. */

};

37File Change Log
Programmatic interface
Defines
These defines are provided for easier access:

fcl_iostats structure
VxFS 5.0 gathers file I/O statistics such as the number of reads /writes occurring
on a file. The gathered statistics are maintained in a per-file in-core structure
and the File Change Log acts as a persistent backing store for the statistics. The
stats are written to the FCL under the following circumstances:

■ When the stats are reset

■ At periodic intervals

These statistics can be read from the FCL as VX_FCL_FILESTAT records. Each
record contains information as defined by the following fcl_iostat structure:
struct fcl_iostats {

uint64_t nbytesread; /* Number of bytes read from the file*/
uint64_t nbyteswrite;/* Number of bytes written to the file*/
uint32_t nreads; /* Number of reads from the file */
uint32_t nwrites; /* Number of writes to the file */
uint32_t readtime; /* Total time in seconds for the reads */
uint32_t writetime; /* Total time in seconds for the writes */
struct {
 uint32_t tv_sec;
 uint32_t tv_nsec;
} lastreset;/* Last reset time for the stats */
uint32_t nodeid; /* Node from which the record was written */
uint32_t reset; /* Stats have been written due to a reset */

};

Each iostat record in the FCL contains I/O statistics accumulated over the time
interval from the lastreset time to the next lastreset time. Over a period
of time, the cumulative statistics and aggregate can be computed by the
following:

■ Traversing the FCL

■ Looking for records of type VX_FCL_FILESTATS

For example, computing the aggregate for the total number of reads over a
period of time requires traversing a set of FCL files to obtain I/O statistics

#define fr_cmdname fr_var.fv_cmdname

#define fr_stats fr_var.fv_stats

#define fr_oldmask fr_var.fv_evmask.oldmask

#define fr_newmask fr_var.fv_evmask.newmask

#define fr_pinonum fr_var.fv_nm.fn_pinonum

#define fr_pinogen fr_var.fv_nm.fn_pinogen

#define fr_filename fr_var.fv_nm.fn_filename

38 File Change Log
Programmatic interface
records. This informations contains a sequence of records of the type
VX_FCL_FILESTATS with the same lastreset time followed by another
sequence of records with a later lastreset time for a specific file.

The aggregation considers values only from the latest record from records with
the same lastreset time and then sums up the number of reads for each such
record.

fcl_acsinfo structure
When tracking access-info is enabled, VxFS logs the access information such as:

■ The real and effective user and group ID of the accessing application

■ The node from where the file was accessed

■ The process id of the user application along with each record

When the application reads the FCL, the information is returned in the
fr_acsinfo field. The fr_acsinfo points to an FCL_acsinfo structure,
defined as follows:
struct fcl_acsinfo {

uint32_tfa_ruid;
uint32_tfa_rgid;
uint32_tfa_euid;
uint32_tfa_egid;
uint32_tfa_pid;
uint32_tfa_nodeid;

};

Note: The accessinfo is not returned as a separate record type but as
additional information along with the other records. In addition, the
accessinfo information is not always present with every record (if it is not
enabled). However, even when accessinfo is enabled in some file system
internal operations, (such as truncating a file), the access information may not
always be present. To help determine if access information is available, the FCL
record contains a flag called fcl_acsinfovalid which is non-zero only if the
accessinfo is present with a particular record.

Several of the fields in the fcl_acsinfo structure are pointers and need
memory to store the actual contents. This is handled by storing the actual data
immediately after the FCL record, and updating the pointer to point to the data.
The record length fr_reclen field is updated to account for the whole data.
Thus, each FCL record returned by vxfs_fcl_read is a variable size record,
whose length is indicated by fr_reclen_field. Figure 2-3 on page 39 shows
how the data is laid out in a sample link record.

39File Change Log
Programmatic interface
Figure 2-3 Sample link record

The following code sample traverses the set of records returned by a call to
vxfs_fcl_read and prints the user ID:
Struct fcl_record*fr;
Char *tbuf;
…
 error = vxfs_fcl_read(fh, buf, &bufsz,
 FCL_ALL_V4_EVENTS,
 &nentries);

tbuf = buf;
while (--nentries) {

fr = (struct fcl_record *)tbuf;
if (fr->fr_acsinfovalid) {

printf(“Uid %ld\n”, fr->fr_acsinfo->uid;
}

tbuf += fr->fr_reclen;
}

Note: FCL_ALL_V4_EVENTS are event masks.

See “vxfs_fcl_read” on page 29.

40 File Change Log
Programmatic interface
Record structure fields
Table 2-2 briefly describes each field of the fcl_record structure and indicates
the record types for which it is valid.

Table 2-2 FCL record structure fields

Field Description Validity

fr_reclen Length of the FCL record. This
includes length of the FCL record
structure and length of the data
stored immediately following the
structure. This length should be
used while traversing FCL records
returned in the buffer by
vxfs_fcl_read.

Valid for all records.

fr_inonum The inode number of the file being
changed. To generate the full path
name of the changed object, the
inode number and generation
count (fr_inogen) can be used
with vxfs_inotopath_gen.

Valid for all FCL records except
when the record is
FCL_EVNTMSK_CHG. For event
mask change the file is implicitly
the FCL file.

fr_op The operation for this FCL record,
for example, creation, unlink,
write, file attributes change, or
other change. fr_op takes on one
of the values for the record types
listed in Table 2-1.

Use this parameter to determine
which fields of the FCL record are
valid.

Valid for all records.

fr_time The approximate time when the
change was recorded in the FCL
file. Use the ctime call to
interpret this field.

Valid for all records.

fr_inogen The generation count of the
changed file. The generation
count in combination with the
inode number (of the file) is
passed to vxfs_inotopath_gen
to provide the exact full path
name of the object. Without the
generation count, the returned
path name can be a re-used inode.

Valid for all FCL records except for
event mask changes and unlinks.
For event mask changes, the inode
number and generation count are
implicit. For unlink, the
generation count is not needed to
get the file name via reverse name
lookup, since it is already present
with the record.

41File Change Log
Programmatic interface
fr_pinonum

fr_pinogen

fr_filename

For FCL records like file remove or
rename, where the directory entry
is removed, the file name cannot
be determined by reverse name
lookup. Similarly in the case of
link record, the file name cannot
be determined unambiguously.
Therefore in these cases, the file
name, inode number, and
generation count of the parent
directory (containing the file
being changed) is recorded. The
parent directory inode
(fr_pinonum) and generation
count (fr_pinogen) can be used
with the reverse name lookup API
to identify the full path name of
the parent directory. Adding the
trailing file name yields the
object’s full name.

Valid when the FCL record is
VX_FCL_UNLINK,
VX_FCL_RENAME or
VX_FCL_LINK. The unlink and
rename; file name and the parent
inode number; and generation
count; contain information about
the old file that was removed. For
the link, they represent the new
file name.

fr_cmdname A short name of the command
which opened the file represented
by fr_inonum and fr_inogen.

Valid only when the FCL record is
VX_FCL_FILEOPEN.

fr_stats A pointer to an FCL_iostat
record. The fcl_iostat record
contains I/O statistics such as the
number of reads/ writes that
happened on the file, average time
for a read/ write, etc. These
point-in-time records can be used
to compute the aggregate or
average I/O statistics for a file
over a period of time.

Valid only when the FCL record is
VX_FCL_FILESTATS.

fr_oldmask

fr_newmask

These fields contain the old and
new event masks, respectively.
Each event mask is a “logical or”
of a set of masks defined in
fcl.h.

Valid only when the FCL record is
VX_FCL_EVNTMASK_CHG.

Table 2-2 FCL record structure fields

Field Description Validity

42 File Change Log
Programmatic interface
Copying FCL records
Each FCL record returned by vxfs_fcl_read is of variable size and consists of
the fcl_record structure, followed by the additional data associated with the
record. The pointers in the fcl_record structure point to the data stored after
the fcl_record structure and the record length specifies the size of the variable
sized record. However, making an in-core copy of the FCL record involves more
than replicating fr_reclen bytes of data from the source to the copy.

A simple memory copy just copies over the pointers from the source record to
the target record. This leaves the pointers in the target record pointing to data
from the source. Eventually, this can cause problems when the memory for the
source record is re-used or freed. The pointers in the replica must be modified to
point to data in the target record. Therefore, to make an in-core copy of the FCL
record, the application must use the vxfs_fcl_copyrec function to copy and
perform the pointer relocation. The user application must allocate the memory
needed for the copy.

Index maintenance application
This sample application is for a system that maintains an index of all files in the
file system to enable a fast search similar to the locate program in Linux. The
system needs to update the index periodically, or as required with respect to the
file changes since the last index update. The following lists the basic steps to
perform and shows a sample call to the FCL API.

Preparation

To prepare the application

1 Enable the FCL.
fcladm on mntpt

2 Tune fcl_keeptime and fcl_maxalloc to the required values.
vxtunefs –o fcl_keeptime=value

fr_acsinfo A pointer to an FCL_acsinfo
structure. This structure contains
information such as the user and
group ID of the application that
performed the particular
operation, the process id and the
ID of the accessing node.

Validity is determined by the
fcl_acsinfovalid

bit-field. It can potentially
exist with all kinds of records.
This is an optional field.

Table 2-2 FCL record structure fields

Field Description Validity

43File Change Log
Programmatic interface
vxtunefs –o fcl_maxalloc=value

First run of the index maintenance application

To test est the application

1 Open the FCL file.
vxfs_fcl_open(mntpt, 0, &fh);

2 Seek to the end.
vxfs_fcl_seek(fh, NULL, FCL_SEEK_END);

3 Get the cookie and store it in a file.
vxfs_fcl_getcookie(fh, &cookie)
write(fd, cookie, sizeof(struct fcl_cookie));

4 Create the index.

5 Close the FCL file.
vxfs_fcl_close(fh);

Periodic run to update the index

To update the application

1 Open the FCL file.
vxfs_fcl_open(mntpt, 0, &fh);

2 Read the cookie and seek to the cookie.
read(fd, &cookie, sizeof(struct fcl_cookie))
vxfs_fcl_seek(fh, cookie, FCL_SEEK_COOKIE)

3 Read the FCL file and update the index accordingly.
vxfs_fcl_read(fh, buf, BUFSZ, FCL_ALL_v4_EVENTS, &nentries)

4 Get the cookie and store it back in the file.
vxfs_fcl_getcookie(fh, &cookie)
write(fd, cookie, sizeof(struct fcl_cookie));

5 Close the FCL file.
vxfs_fcl_close(fh);

Computing a usage profile
The following sample application computes the usage profile of a particular file,
that is, the users who have accessed a particular file in the last hour.

Initial setup
This sample application needs additional information such as tracking file
opens and access information, that are available only with FCL Version 4. Be
sure to enable the correct FCL version.

44 File Change Log
Programmatic interface
The following steps perform the required initial setup.

To setup up the application

1 Switch on the FCL with Version 4.
fcladm –o version=4 on mntpt

Note: If this step fails, use fcladm print to check for an existing FCL
Version 3 file. If present, remove it with fcladm rm and then try switching
on FCL with Version 4.

In VxFS 5.0, the default FCL version is 4. If there is no existing FCL file, the
fcladm on mntpt command automatically creates a Version 4 FCL.

2 Enable tracking of access information, file-opens, and I/O statistics as
needed.
fcladm set fileopen,accessinfo mntpt

3 Set tunables fcl_keeptime, fcl_maxalloc, and fcl_ointerval as
required. For example:
vxtunefs fcl_ointerval=value

4 Close the FCL file.
vxfs_fcl_close(fh);

Sample steps
The following provides sample steps for possible application use.

1 Open the FCL file.
vxfs_fcl_open(mntpt, 0, &fh);

2 Set up the time to perform the seek.

a Get current time using gettimeofday.

b Fabricate the fcl_time_t for the time an hour before.

c Seek to the record in the FCL file at that time.
gettimeofday(&tm, NULL);
tm.sec -= 3600
vxfs_fcl_seektime(fh, tm);

3 Read the file with appropriate event masks until the end of file (The
application is interested in only the file open records and the access
information).

a Check if the file inode number and generation count are same as the
ones being sought for each FCL record.

45File Change Log
Programmatic interface
b Print information about the user who has accessed the file, if
applicable.
vxfs_fcl_read(fh, buf, BUFSZ, VX_FCL_FILEOPEN_MASK | \
VX_FCL_ACCESSINFO_MASK, &nentries);

Off host processing

In some scenarios, a user application may choose to save the bandwidth for the
production server and outsource the job of processing the FCL to a different
system. For off-host processing, the FCL file needs to be shipped to the off-host
system. Since the FCL file is not a regular file, a command such as cp or ftp does
not work.

To be” shippable,” the FCL file must first be dumped into a regular file using the
fcladm dump command. The file can then be sent to the off-host system using
normal file transfer programs. See the following example.

fcladm –s savefile dump mntpt
rcp savefile offhost-path

On the off-host system, the FCL file must be then restored using the restore
option through the fcladm command. Unlike the original FCL file, the restored
file is a regular file.

fcladm –s savefile restore restorefile

The restored FCL file can be passed as an argument to vxfs_fcl_open for
further use with the FCL API.

Warning: The reverse name lookup API does not work on the off-host system.
The off-host processing mechanism should only be used when the application
can work with the inode number and generation count, or when it has an
independent method to determine the file names from the inode number.

46 File Change Log
Programmatic interface
VxFS and FCL upgrade and downgrade
VxFS 4.1 supported only FCL Version 3. VxFS 5.0 supports both FCL Version 3
and 4, with Version 4 as the default. When a system is upgraded from VxFS 4.1
to VxFS 5.0, and the file system has FCL switched on, the existing Version 3 FCL
files remains as is. VxFS 5.0 continues tracking file system changes in the
Version 3 FCL exactly as it was done by VxFS 4.1.

A VxFS 4.1 application that directly accesses the FCL file using the read(2)
system call can still continue to work in 5.0 provided that the FCL file is Version
3. However, you must develop any new applications using the API. The API has
support for both FCL Versions 3 and 4.

If a new application uses the newly added record types in VxFS 5.0 such as file
opens or access information, etc., the FCL needs to be at Version 4.

If you are running applications that still read FCL Version 3 directly, you cannot
upgrade to FCL Version 4 until those applications are rewritten to use the new
API. The API can interpret both Version 3 and Version 4, so applications can be
upgraded to use the API while Version 3 is still in effect.

Converting FCL Version 3 files to Version 4
The following provides the path for moving from FCL Version 3 to 4:

1 Switch off the FCL.
fcladm off mntpt

2 Remove the existing FCL file.
fcladm rm mntpt

3 Re-activate with the required version.
fcladm [-oversion=4] on mntpt

Downgrading VxFS versions
During data center operations, a VxFS file system might need to be migrated
from a host running a newer version of VxFS to a host running an older version
(for example, from VxFS 5.0 to VxFS 4.1). Such a migration might occur for
offhost processing. If the FCL file created under VxFS 5.0 is FCL Version 3, it can
continue to be used (as is) under VxFS 4.1. However, if the FCL file is Version 4, it
must first be removed using fcladm rm and then reactivated as FCL Version 3
before it can be used under VxFS 4.1.

Otherwise, if you attempt to open a VxFS 5.0 Version 4 FCL file under VxFS 4.1,
the operation will fail.

47File Change Log
Reverse path name lookup
Note: It is the responsibility of the off-host application to invoke a sync on the
node containing the FCL, before saving and shipping an image of the FCL. The
sync ensures that the FCL is brought to a stable state and guarantees that all file
writes or opens after the sync, produce an FCL record.

Reverse path name lookup
The reverse path name lookup feature obtains the full path name of a file or
directory from the inode number of that file or directory. The inode number is
provided as an argument to the vxfs_inotopath_gen library function. See the
vxfs_inotopath_gen(3) online manual page for more information.

The reverse path name lookup feature can be useful for a variety of applications
such as:

■ Clients of the VxFS file change log feature

■ Backup and restore utilities

■ Replication products

Typically, these applications store information by inode numbers because a path
name for a file or directory can be very long and need an easy method to obtain a
path name.

Inodes
An inode is a unique identification number for each file in a file system. An
inode contains the data and metadata associated with that file, but does not
include the file names to which the inode corresponds. It is therefore relatively
difficult to determine the name of a file from an inode number. The ncheck
command provides a mechanism for obtaining a file name from an inode
identifier by scanning each directory in the file system, but this process can take
a long time. The VxFS reverse path name lookup feature obtains path names
relatively quickly.

Note: Because symbolic links do not constitute a path to the file, the reverse path
name lookup feature cannot track symbolic links to files.

A file inode number, generation count, and, in the case of a VX_FCL_LINK,
VX_FCL_UNLINK, or VX_FCL_RENAME record, trailing file name, when
combined with the use of reverse path name lookup, can generate full path
names for each FCL record.

48 File Change Log
Reverse path name lookup
vxfs_inotopath_gen
The vxfs_inotopath_gen function takes a mount point name, inode number,
and inode generation count and returns a buffer that contains one or more (in
the case of multiple links to an inode) full path names representing the inode.
The inode generation count parameter ensures that the returned path name is
not a false value of a re-used inode. Because of this, use the
vxfs_inotopath_gen function whenever possible.

The vxfs_inotopath function is included only for backward compatibility.
The vxfs_inotopath function does not take the inode generation count.

The following is the syntax for vxfs_inotopath and vxfs_inotopath_gen:
int vxfs_inotopath(char *mount_point, uint64_t inode_number,

int all, char ***bufp, int *inentries)

int vxfs_inotopath_gen(char *mnt_pt, uint64_t inode_number,
unint32_t inode_generation, int all,
char ***bufp, int *nentries)

For the vxfs_inotopath call, the all argument must be “0” to obtain a single
path name or “1” to obtain all path names. The mount_point argument specifies
the file system mount point. Upon successful return, bufp points to a
two-dimensional character pointer containing the path names and nentries
contains the number of entries. Each entry of the returned two-dimensional
array is MAXPATHLEN in size and must be freed, along with the array itself, by
the calling application.

The vxfs_inotopath_gen call is identical to the vxfs_inotopath call,
except that it uses an additional parameter, inode_generation. The
vxfs_inotopath_gen function returns one or more path names associated
with the given inode number, if the inode_generation passed matches the
current generation of the inode number. If the generations differ, it returns an
error. Specify inode_generation=0 when the generation count is unknown. This
is equivalent to using the vxfs_inotopath call.

The vxfs_inotopath_gen and vxfs_inotopath calls are supported only on
Version 6 and 7 disk layouts.

Chapter
 3
Multi-volume support

This chapter includes the following topics:

■ About multi-volume support

■ Uses for multi-volume support

■ Volume application programmatic interfaces

■ Allocation policy application programmatic interfaces

■ Data structures

■ Using policies and application programmatic interfaces

50 Multi-volume support
About multi-volume support
About multi-volume support
The multi-volume support (MVS) feature lets a VxFS file system use multiple
VxVM volumes as underlying storage instead of the traditional single volume
per file system. These different volumes can have different characteristics, such
as performance, redundancy, or cost, or they could be used to isolate different
parts of the file system from each other for performance or administrative
purposes.

Administrators and applications can control which files and metadata go into
which volumes by using allocation policies. Each file system operation that
allocates space examines the applicable allocation policies to see which volumes
are specified for that operation. Allocation policies normally only affect new
allocations, but there are also interfaces to move existing data to match a new
allocation policy.

The following levels of policies can apply to each allocation:

■ Per-file policies

■ Per-Storage-Checkpoint policies

■ Per-file-system policies

The most specific allocation policy in effect for a given allocation operation is
used.

The MVS APIs fall into the following basic categories:

■ Manipulation of volumes within a file system

■ Manipulation of allocation policy definitions

■ Application of allocation policies

Each of the APIs is also available via options to the fsvoladm(1M) and
fsapadm(1M) commands.

See the fsvoladm(1M) and fsapadm(1M) manual pages.

51Multi-volume support
Uses for multi-volume support
Uses for multi-volume support
Possible uses for the multi-volume support feature include the following:

■ Controlling where files are stored so that specific files or file hierarchies
can be assigned to different volumes

■ Separating Storage Checkpoints so that data allocated to a Storage
Checkpoint is isolated from the rest of the file system

■ Separating file system metadata from file data

■ Encapsulating volumes so that a volume appears in the file system as a file;
this is particularly useful for databases that are running on raw volumes

■ Migrating files off a volume so that the volume can be replaced or serviced

■ Implementing a storage optimization application that periodically scans
the file system and modifies the allocation policies in response to changing
patterns of storage use

■ Volume availability—MVS guarantees the availability of some volumes even
when others are unavailable. This allows you to mount a multi-volume file
system even if one or more component data-only volumes are missing.

Note: Volume availability is supported only on a file system with disk layout
Version 7 or later. Version 7 disk layout enables support for variable-length
and large size history log records, more than 2048 volumes, large directory
hash, and Dynamic Storage Tiering.

Volume application programmatic interfaces
The volume APIs can be used to add volumes to a file system, remove volumes
from a file system, list which volumes are in a file system, and retrieve
information on usage and availability of space in a volume.

Multi-volume file systems can only be used with VxVM volume sets. Volume sets
are administered via the vxvset command.

See the Veritas Volume Manager Administrator’s Guide.

52 Multi-volume support
Uses for multi-volume support
Administering volume sets
The following examples show how to administer volume sets.

To convert a volume to a volume set

◆ To convert myvol1 to a volume set, use the following function call:
vxvset make myvset myvol1

To add a volume to a volume set

◆ To add myvol2 to the volume set myvset, use the following function call:
vxvset addvol myvset myvol2

To list volumes of a volume set

◆ To list the volumes of myvset, use the following function call:
vxvset list myvset

To remove a volume from a volume set

◆ To remove myvol2 from myvset, use the following function call:
vxvset rmvol myvset myvol2

Querying the volume set for a file system
The following function calls query a volume set for a file system.

To query all volumes associated with the file system

◆ To query all volumes associated with the file system, use the following
function call:

vxfs_vol_enumerate(fd, &count, infop);

To query a single volume

◆ To query a single volume, use the following function call:
vxfs_vol_stat(fd, vol_name, infop);

Modifying a volume within a file system
The following function calls modify a volume within a file system.

To grow or shrink a volume

◆ To grow or shrink a volume, use the following function call:
vxfs_vol_resize(fd, vol_name, new_vol_size);

53Multi-volume support
Uses for multi-volume support
To remove a volume from a file system

◆ To remove a volume from a file system, use the following function call:
vxfs_vol_remove(fd, vol_name);

Add a volume to a file system

◆ To add a volume to a file system, use the following function call:
vxfs_vol_add(fd, new_vol_name, new_vol_size);

Encapsulating and de-encapsulating a volume
The following function calls encapsulate a volume.

To encapsulate a raw volume

◆ To encapsulate an existing raw volume and make the volume contents
appear as a file in the file system, use the following function call:

vxfs_vol_encapsulate(encapsulate_name, vol_name, vol_size);

To de-encapsulate a raw volume

◆ To de-encapsulate an existing raw volume to remove the file from the file
system, use the following function call:

vxfs_vol_deencapsulate(encapsulate_name);

54 Multi-volume support
Allocation policy application programmatic interfaces
Allocation policy application programmatic
interfaces

To make full use of multi-volume support features, VxFS supports allocation
policies that allow files or groups of files to be assigned to specified volumes
within the volume set.

An allocation policy specifies a list of volumes and the order in which to attempt
allocations. A policy can be assigned to a file, file system, or Storage Checkpoint
created from a file system. When policies are assigned to objects in the file
system, you must specify how the policy maps to both metadata and file data.
For example, if a policy is assigned to a single file, the file system must know
where to place both the file data and metadata. If no policies are specified, the
file system places data randomly.

The allocation policies are defined per file system and are persistent. There is no
fixed limit on the number of allocation policy definitions in a file system. Once a
policy is assigned, new file allocations are governed by the policy. For files
allocated before a policy was defined or assigned or when a policy on a file has
been changed, the policy can be enforced, causing the file to be re-allocated to
the appropriate volumes. Allocation policies can be inherited by a newly created
file from its parent directory. This is accomplished by specifying the
FSAP_INHERIT flag when assigning the policy to the parent directory.

Currently, there is no interface for determining where an existing file is
currently allocated. However, these APIs can be used to assign and enforce a
policy on a file to assure that the blocks are allocated properly.

55Multi-volume support
Allocation policy application programmatic interfaces
Directing file allocations
Figure 3-1 shows how you might use the allocation policies to direct file
allocations.

Figure 3-1 Directing File Allocations

The /mnt file system has three volumes in its volume set: vol-01, vol-02, and
vol-03. These volumes correspond to policy1, policy2, and policy3,
respectively.

To direct file allocations

1 Create the allocation policies on the /mnt file system.

2 Assign the data and metadata allocation policies to the /mnt file system as
policy1 and policy2.

3 Assign the data and metadata allocation policies to dir1 with the INHERIT
flag, with both as policy3.

4 Create file4 (100MB), which becomes allocated to vol-02.

5 Create file3 (10MB), which becomes allocated to vol-02.

6 Create file2 (100MB), which becomes allocated to vol-03.

7 Create file1 (100MB), which becomes allocated to vol-03.

8 Assign the data and metadata allocation policies to file4, with both as
policy3.

9 Enforce the allocation policies on file4, which reallocates the file to
vol-03.

The file system has a policy assignment that allocates data as directed by
policy1 and metadata as directed by policy2. These policies cause files to be

/mnt (step 2)

 meta_policy = “policy1”

 data_policy = “policy2”

dir1 (step 3) (inherit flag)

 meta_policy = “policy3”

 data_policy = “policy3”

dir2

file1

(step 7)

file2

(step 6

file3

(step 5)

file4 (step 4) (step 8) (step 9)

 meta_policy = “policy3”

 data_policy = “policy3”

56 Multi-volume support
Allocation policy application programmatic interfaces
allocated on vol-01 and vol-02, except for dir1, which has overriding
assignments for allocation on vol-03.

When the file3 and file4 files are created, they are allocated on vol-02 as
directed by the policy1 and policy2 assignments. When file1 and file2
are created, they are allocated on vol-03, as specified by policy3.

When file4 is created, the initial allocation is on vol-01 and vol-02. To
move file4 to vol-03, assign policy3 to file4 and enforce that policy on
the file. This reallocates file4 to vol-03.

Creating and assigning policies
The following example creates and assigns a policy using the multi-volume API.

To create and assign a policy

1 To define a policy for a file system, use the following function call:
vxfs_ap_define(fd, fsap_info_ptr, 0);

2 To assign a policy to a file system, use the following function call:
vxfs_ap_assign_fs(fd, data_policy, meta_policy);

3 To assign a policy to a file or directory, use the following function call:
vxfs_ap_assign_file(fd, data_policy, meta_policy, 0);

4 To assign a policy to a Storage Checkpoint, use the following function call:
vxfs_ap_assign_ckpt(fd, checkpoint_name, data_policy,

meta_policy);

5 To assign a pattern-based allocation policy to a directory, use the following
function call:

vxfs_ap_assign_file_pat(int fd, struct fsap_pattern_table \
#pat_assign, uint32_t flags);

See “Pattern-based policies” on page 58.

6 To assign a pattern-based allocation policy to a file system, use the
following function call:

vxfs_ap_assign_fs_pat(int fd, struct fsap_pattern_table \
#pat_assign, uint32_t flags);

57Multi-volume support
Allocation policy application programmatic interfaces
Querying the defined policies
The following function calls query defined policies.

To query all policies on a file system

◆ To query all policies on a file system, use the following function call:
vxfs_ap_enumerate(fd, &count, fsap_info_ptr);

To query a single defined policy

◆ To query a single defined policy, use the following function call:
vxfs_ap_query(fs, fsap_info_ptr);

To query a file for its assigned policies

◆ To query a file for its assigned policies, use the following function call:
vxfs_ap_query_file(fs, data_policy, meta_policy, 0);

To query a Storage Checkpoint for its assigned policies

◆ To query a Storage Checkpoint for its assigned policies, use the following
function call:

vxfs_ap_query_ckpt(fd, check_point_name, data_policy,
meta_policy)

To query a directory for its pattern table

◆ To query a directory for its pattern table, use the following function call:
vxfs_ap_query_file_pat(int fd, struct fsap_pattern_table \
**pat_query, uint32_t flags);

To query for a file system-wide pattern table

◆ To query for a file system-wide pattern table, use the following function
call:

vxfs_ap_query_fs_pat(int fd, struct fsap_pattern_table \
**pat_query, uint32_t flags);

Enforcing a policy on a file
The following function call enforces a policy.

To enforce a policy on a file

◆ To enforce a policy on a file, use the following function call:
vxfs_ap_enforce_file(fd, data_policy, meta_policy);

Enforcing the policy may cause the file to be reallocated to another volume.

58 Multi-volume support
Data structures
Deleting a policy on a file
The following function call deletes a policy.

■ To delete a policy on a file, use the following function call:
vxfs_ap_remove(int fd, char *name);

Pattern-based policies
The assignfspat keyword of the fsapadm(1M) command assigns a pattern table
to the file system specified by the mount_point.

If the file system has an existing pattern-based table, the table is replaced. After
successfully assigning the table, the file system’s pattern table takes effect when
a file is created in a directory that does not have a pattern table or an inheritable
allocation policy. The file’s name and creating process’ UID and GID are
matched to the patterns defined in the table in the given order. The first
successful match is used to set the allocation policies of the file.

When no pattern is specified, the fsapadm command deletes any existing file
system pattern tables.

Data structures
You can view the fsap_info and fsdev_info data structures in the
vxfsutil.h header file and libvxfsutil.a library file.

See the vxfsutil.h header file and libvxfsutil.a library file.

The data structures are provided here for quick reference:
#define FSAP_NAMESZ 64
#define FSAP_MAXDEVS 256
#define FSDEV_NAMESZ 32

struct fsap_info { /* policy structure */
char ap_name[FSAP_NAMESZ];/* policy name */
uint32_t ap_flags; /* FSAP_CREATE | FSAP_INHERIT |

FSAP_ANYUSER */
uint32_t ap_order; /* FSAP_ORDER_ASGIVEN |

FSAP_ORDER_LEASTFULL |
FSAP_ORDER_ROUNDROBIN */

uint32_t ap_ndevs; /* number of volumes */
char ap_devs[FSAP_MAXDEVS][FSDEV_NAMESZ];

/* volume names associated with
this policy */

};

struct fsdev_info { /* volume structure */
int dev_id; /* a number from 0 to n */
uint64_t dev_size; /* size in bytes of volume */

59Multi-volume support
Using policies and application programmatic interfaces
uint64_t dev_free;
uint64_t dev_avail;
char dev_name[FSDEV_NAMESZ];/* volume name */

};

Using policies and application programmatic
interfaces

The following examples assume that there is a volume set, volset, with the
volumes vol-01, vol-02, and vol-03. The file system mount point /mnt is
mounted on volset.

Defining and assigning allocation policies
The following pseudocode provides an example of using the allocation policy
APIs to define and assign allocation policies.

To define and assign an allocation policy to reallocate an existing file’s data
blocks to a specific volume

◆ To reallocate an existing file’s data blocks to a specific volume (vol-03),
create code similar to the following:

/* Create a data policy for moving file’s data */

strcpy((char *) ap.ap_name, "Data_Mover_Policy");
ap.ap_flags = FSAP_CREATE;
ap.ap_order = FSAP_ORDER_ASGIVEN;
ap.ap_ndevs = 1;
strcpy(ap.ap_devs[0], "vol-03");

fd = open("/mnt", O_RDONLY);
vxfs_ap_define(fd, &ap, 0);

file_fd = open ("/mnt/file_to_move", O_RDONLY);
vxfs_ap_assign_file(file_fd, "Data_Mover_Policy", NULL, 0);

vxfs_ap_enforce_file(file_fd, "Data_Mover_Policy", NULL);

Note: The vxfs_ap_enforce_file2 API reallocates blocks in a file to match
allocation policies. The FSAP_ENF_STRICT flag strictly enforces allocation
orders.

See the vxfs_ap_enforce_file2(3) manual page.

60 Multi-volume support
Using policies and application programmatic interfaces
To create policies that allocate new files under a directory

In this example, the files are under dir1, the metadata is allocated to vol-01,
and file data is allocated to vol-02.

◆ To create policies to allocate new files under directory dir1, create code
similar to the following:

/* Define 2 policies */

/* Create the RAID5 policy */

strcpy((char *) ap.ap_name, "RAID5_Policy");
ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;
ap.ap_order = FSAP_ORDER_ASGIVEN;
ap.ap_ndevs = 1;
strcpy(ap.ap_devs[0], "vol-02");

fd = open("/mnt", O_RDONLY);
dir_fd = open("/mnt/dir1", O_RDONLY);

vxfs_ap_define(fd, &ap, 0);

/* Create the mirror policy */

strcpy((char *) ap.ap_name, "Mirror_Policy");
ap.ap_flags = FSAP_CREATE | FSAP_INHERIT;
ap.ap_order = FSAP_ORDER_ASGIVEN;
ap.ap_ndevs = 1;
strcpy(ap.ap_devs[0], "vol-01");

vxfs_ap_define(fd, &ap, 0);

/* Assign policies to the directory */

vxfs_ap_assign_file(dir_fd, "RAID5_Policy", “Mirror_Policy”,
0);

/* Create file under directory dir1 */
/* Meta and data blocks for file1 will be allocated on

vol-01 and vol-02 respectively. */

file_fd = open("/mnt/dir1/file1");
write(file_fd, buf, 1024);

61Multi-volume support
Using policies and application programmatic interfaces
Using volume application programmatic interfaces
The following pseudocode provides an example of using the volume APIs.

To shrink or grow a volume within a file system

1 Use the vxresize command to grow the physical volume.

2 To use the vxfs_vol_resize() call to shrink or grow the file system,
create codes similar to the following:

/* stat volume "vol-03" to get the size information */

fd = open("/mnt");
vxfs_vol_stat(fd, "vol-03", infop);

/* resize (shrink/grow) accordingly. This example shrinks
the volume by half */

vxfs_vol_resize(fd, "vol-03", infop->dev_size / 2);

To encapsulate a raw volume as a file

1 Add the volume to the volume set.

2 To encapsulate a raw volume vol-03 as a file named encapsulate_name
in the file system /mnt, create code similar to the following:

/* Take the raw volume vol-03 and encapsulate it. The
volume’s contents will be accessible through the given
path name. */

vxfs_vol_encapsulate("/mnt/encapsulate_name", "vol-03",
infop->dev_size);

/* Access to the volume is through writes and reads of file
"/mnt/encapsulate_name" */

encap_fd = open("/mnt/encapsulate_name");
write(encap_fd, buf, 1024);

To de-encapsulate a raw volume

◆ To de-encapsulate the raw volume vol-03 named encapsulate_name in
the file system /mnt, create code similar to the following:

/* Use de-ecapsulate to remove raw volume. After
de-encapsulation, vol-03 is still part of volset, but is
not an active part of the file system. */

vxfs_vol_deencapsulate("/mnt/encapsulate_name");

62 Multi-volume support
Using policies and application programmatic interfaces

Chapter
 4
Named data streams

This chapter includes the following topics:

■ About named data streams

■ Uses for named data streams

■ Named data streams programmatic interface

■ Listing named data streams

■ Namespace for named data streams

■ Behavior changes in other system calls

■ Querying named data streams

■ Application programmatic interface

■ Command reference

64 Named data streams
About named data streams
About named data streams
Named data streams associate multiple data streams with a file. The default
unnamed data stream can be accessed through the file descriptor returned by
the open() function called on the file name. The other data streams are stored in
an alternate name space associated with the file.

Note: Named data streams are also known as named attributes.

Figure 4-1 illustrates the alternate namespace associated with a file.

Figure 4-1 Alternate Namespace

The file1 file has two named data streams: data_stream_1 and
data_stream_2.

Every file can have its own alternate namespace to store named data streams.
The alternate namespace can be accessed through the named data stream APIs
supported by VxFS.

Access to the named data stream can be done through a file descriptor using the
named data stream library functions. Applications can open the named data
stream to obtain a file descriptor and perform read(), write(), and mmap()
operations using the file descriptor. These system calls work as though they are
operating on a regular file. The named data streams of a file are stored in a
hidden named data stream directory inode associated with the file. The hidden
directory inode for the file can be accessed only through the named data stream
application programming interface.

There are no VxFS-supplied administrative commands to use this feature. A
VxFS API is provided for creating, reading, and writing the named data streams
of a file.

/file1 Alternate namespace for

data_stream_1 data_stream_2

named data streams

65Named data streams
Uses for named data streams
This feature is compatible with the Solaris 10 administrative commands.

Uses for named data streams
Named data streams allow applications to attach information to a file that
appears to be hidden. An administrative program could use this to attach file
usage information, backup information, and so on. An application could use this
feature to hide or collect file attachments. For example, a multi-media document
could have all text, audio clips, and video clips organized in one file rather than
in several files. A document being reviewed by multiple people could have each
person’s comments attached to the file as a named data stream.

Named data streams programmatic interface
The following standard system calls can manipulate named data streams:

VxFS named data stream functionality is available through the following
application programming interface functions:

open() Opens a named data stream

read() Reads a named data stream

write() Writes a named data stream

getdents() Reads directory entries and puts in a file system independent format

mmap() Maps pages of memory

readdir() Reads a directory

vxfs_nattr_check(),
vxfs_nattr_fcheck()

These functions check for the existence of named data
streams in a manner that depends on the value of flags. The
vxfs_nattr_check() function checks the pathname
specified by path for the existence of named data streams.
The vxfs_nattr_fcheck() function checks the file
descriptor specified by fd for the existence of named data
streams.

The following is the syntax for these APIs:

int vxfs_nattr_check(int char .path, int \
flags);
int vxfs_nattr_fcheck(int fd, int flags);

66 Named data streams
Named data streams programmatic interface
vxfs_nattr_open() Works similarly to the open() system call, except that the
path is interpreted as a named data stream to a file
descriptor. If the vxfs_nattr_open() operation completes
successfully, the return value is the file descriptor associated
with the named data stream. The file descriptor can be used
by other input/output functions to refer to that named data
stream. If the path of the named data stream is set to “.”, the
file descriptor returned points to the named data stream
directory vnode.

The following is the syntax for the vxfs_nattr_open() API:

int vxfs_nattr_open(int fd, char *path,
int oflag, int cmode);

vxfs_nattr_link() Creates a new directory entry for the existing named data
stream and increments its link count by one. There is a
pointer to an existing named data stream in the named data
stream namespace and a pointer to the new directory entry
created in the named data stream namespace. The calling
function must have write permission to link the named data
stream.

The following is the syntax for the vxfs_nattr_link() API:

int vxfs_nattr_link(int sfd, char *spath,
char *tpath);

vxfs_nattr_unlink() Removes the named data stream at a specified path. The
calling function must have write permission to remove the
directory entry for the named data stream.

The following is the syntax for the vxfs_nattr_unlink()
API:

int vxfs_nattr_unlink(int fd, char *path);

 vxfs_nattr_rename() Changes a specified namespace entry at path1 to a second
specified namespace at path2. The specified paths are
resolved relative to a pointer to the named data stream
directory vnodes.

The following is the syntax for the vxfs_nattr_rename()
API:

int vxfs_nattr_rename(int sfd, char *old,
char *tnew);

67Named data streams
Listing named data streams
See the vxfs_nattr_open(3), vxfs_nattr_link(3),
vxfs_nattr_unlink(3), vxfs_nattr_rename(3), and
vxfs_nattr_utimes(3) manual pages.

Listing named data streams
The named data streams for a file can be listed by calling getdents() on the
named data stream directory inode, as shown in the following example.

To list named data streams

1 To list the named data streams, create code similar to the following:
fd = open("foo", O_RDWR); /* open file foo */
afd = vxfs_nattr_open(fd, "stream1",

O_RDWR|O_CREAT, 0777); /* create named data stream
stream1 for file foo */

write(afd, buf, 1024); /* writes to named stream file */
read(afd, buf, 1024); /* reads from named stream file */
dfd = vxfs_nattr_open(fd, ".", O_RDONLY);

/* opens named stream directory
for file foo */

getdents(dfd, buf, 1024); /* reads directory entries for
named stream directory */

2 Use the reverse name lookup call to resolve a stream file to a pathname. The
resulting pathname’s format is similar to the following:

/mount_point/file_with_data_stream/./data_stream_file_name

 vxfs_nattr_utimes() Sets the access and modification times of the named data
stream.

The following is the syntax for the vxfs_nattr_utimes()
API:

int vxfs_nattr_utimes(int sfd,
const char *path,
const struct timeval times[2]);

68 Named data streams
Namespace for named data streams
Namespace for named data streams
Names starting with “$vxfs:” are reserved for future use. Creating a data
stream in which the name starts with “$vxfs:” fails with an EINVAL error.

Behavior changes in other system calls
Some of the attributes, such as “..”, are not defined for a named data streams
directory. Any operation that accesses these fields can fail. Attempts to create
directories, symbolic links, or device files on a named data stream directory fail.
VOP_SETATTR() called on a named data stream directory or named data stream
inode also fails.

Querying named data streams
In the following example, a file named_stream_file was created with 20
named data streams using the API calls.

The named data streams are not displayed by the ls command. When named
data streams are created, they are organized in a hidden directory. For example:

ls -al named_stream_file
-r-xr-lr-x 1 root other 1024 Aug 12 09:49named_stream_file

To query named data streams

◆ Use the getdents() or readdir_r() system call to query the
named_stream_file file for its directory contents, which contains the 20
named stream files:

Attribute Directory contents for
/vxfstest1/named_stream_file

0x1ff root other 1K Thu Aug 12 09:49:17 2004 .
0x565 root other 1K Thu Aug 12 09:49:17 2004 ..
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream0
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream1
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream2
.
.
.
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream17
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream18
0x177 root other 1K Thu Aug 12 09:49:17 2004 stream19

69Named data streams
Application programmatic interface
Application programmatic interface
The named data streams API uses a combination of standard system calls and
VxFS API calls to utilize its functionality.

The following is an example of pseudo code to query named data streams:
/* Create and open a file */
if ((fd = open("named_stream_file", O_RDWR | O_CREAT | O_TRUNC,

mode)) < 0) {
sprintf(error_buf, "%s, Error Opening File %s ", argv[0],

filename);
perror(error_buf);
exit(-1);

}

/* Write to the regular file as usual */
write(fd, buf, 1024);

/* Create several named data streams for file
named_stream_file */

for (i = 0; i < 20; i++) {
sprintf(attrname, "%s%d", "stream", i);
nfd = vxfs_nattr_open(fd, attrname, O_WRONLY | O_CREAT,

mode);
if (nfd < 0) {

sprintf(error_buf,
"%s, Error Opening Attribute file %s/./%s ",
argv[0], filename, attrname);

perror(error_buf);
exit(-1);

}
/* Write some data to the stream file */
memset(buf, 0x41 + i, 1024);
write(nfd, buf, 1024);
close(nfd);

}

70 Named data streams
Command reference
Command reference
When you use the cp, tar, ls or similar commands to copy or list a file with
named data streams, the file is copied or listed, but the attached named data
streams is not copied or listed.

Note: The Solaris 9 operating environment and later provide the -@ option that
may be specified with these commands to manipulate the named data streams.

Chapter
 5
VxFS I/O Application
Interface

Topics in this chapter include:

■ Freeze and thaw

■ Caching advisories

■ Extents

Note: Unlike the other VxFS APIs described in this document, the APIs described
in this chapter are available in previous releases of VxFS on all platforms. The
exception is the API that provides concurrent I/O access through the VxFS
caching advisories, which is available on VxFS 4.1 and later releases.

72 VxFS I/O Application Interface
Freeze and thaw
Freeze and thaw
Freezing a file system temporarily blocks all I/O operations to a file system and
then performs a sync on the file system. Current operations are completed and
the file system is synchronized to disk. Freezing a file system is a necessary step
for obtaining a stable and consistent image of the file system at the volume
level.

Consistent volume-level file system images can be obtained and used with a file
system snapshot tool. The freeze operation flushes all buffers and pages in the
file system cache that contain dirty metadata and user data. The operation then
suspends any new activity on the file system until the file system is thawed.

VxFS provides ioctl interfaces to application programs to freeze and thaw VxFS
file systems. The interfaces are VX_FREEZE, VX_FREEZE_ALL, and VX_THAW.

The VX_FREEZE ioctl operates on a single file system. The program performing
this ioctl can freeze the specified file system and block any attempts to access
the file system until it is thawed. The file system thaws once the time-out value,
specified with the VX_FREEZE ioctl, has expired, or the VX_THAW ioctl is
operated on the file system.

The VX_THAW ioctl operates on a frozen file system. It can be used to thaw the
specified file system before the freeze time-out period has elapsed.

The VX_FREEZE_ALL ioctl interface freezes one or more file systems. The
VX_FREEZE_ALL ioctl operates in an atomic fashion when there are multiple
file systems specified with a freeze operation. VxFS blocks access to the
specified file systems simultaneously and disallows a user-initiated write
operation that may modify more than one file system with a single write
operation. Because VX_FREEZE_ALL can be used with a single file system,
VX_FREEZE_ALL is the preferred interface over the VX_FREEZE ioctl.

The execution of the VX_FREEZE or VX_FREEZE_ALL ioctls results in a clean
file system image that can be mounted after the image is split off from the file
system device. In response to a freeze request, all modified file system metadata
is flushed to disk with no pending file system transactions in the log that must
be replayed before mounting the split off image.

Both the VX_FREEZE and VX_FREEZE_ALL interfaces can be used to freeze
locally mounted file systems, or locally or remotely mounted cluster file
systems.

73VxFS I/O Application Interface
Freeze and thaw
The following table shows freeze/thaw compatibility with VxFS releases:

When freezing a file system, care should be taken with choosing a reasonable
time-out value for freeze to reduce impact to external resources targeting the
file system. User or system processes and resources are blocked while the file
system is frozen. If the specified time-out value is too large, resources are
blocked for an extended period of time.

During a file system freeze, any attempt to get a file descriptor from the root
directory of the file system for use with the VX_THAW ioctl causes the calling
process to be blocked as the result the frozen state of the file system. The file
descriptor must be acquired before issuing the VX_FREEZE_ALL or VX_FREEZE
ioctl.

Use the VX_THAW ioctl to thaw file systems frozen with VX_FREEZE_ALL ioctl
before the timeout period has expired.

The programming interface is as follows:
include <sys/fs/vx_ioctl.h>

int timeout;
int vxfs_fd;

/*
 * A common mistake is to pass the address of "timeout".
 * Do not pass the address of timeout, as that would be
 * interpreted as a very long timeout period
 */
 if (ioctl(vxfs_fd, VX_FREEZE, timeout))

{perror("ERROR: File system freeze failed");
}

For multiple file systems:
int vxfs_fd[NUM_FILE_SYSTEMS];
struct vx_freezeall freeze_info;

VxFS 3.5 VxFS 4.0 VxFS 4.1 5.0

VX_FREEZE Local File
System

Local File System

Cluster File
System

Local File System

Cluster File
System

Local File
System

Cluster File
System

VX_FREEZE_ALL Local File
System

Local File System Local File System

Cluster File
System

Local File
System

Cluster File
System

74 VxFS I/O Application Interface
Caching advisories
freeze_info.num = NUM_FILE_SYSTEMS
freeze_info.timeout = timeout;
freeze_info.fds = &vxfs_fd[0];

if (ioctl(vxfs_fd[0], VX_FREEZE_ALL, &freeze_info))
{perror("ERROR: File system freeze failed");

}

for (i = 0; i < NUM_FILE_SYSTEMS; i++)
if (ioctl(vxfs_fd[i], VX_THAW, NULL))

{perror("ERROR: File system thaw failed");
}

Caching advisories
VxFS allows an application to set caching advisories for use when accessing
files. A caching advisory is the application’s preferred choice for accessing a file.
The choice may be based on optimal performance achieved through the
specified advisory or to ensure integrity of user data. For example, a database
application may choose to access the files containing database data using direct
I/O, or the application may choose to benefit from the file system level caching
by selecting a buffered I/O advisory. The application chooses which caching
advisory to use.

To set a caching advisory on a file, open the file first. When a caching advisory is
requested, the advisory is recorded in memory. This implies that caching
advisories do not persist across reboots or remounts. Some advisories are
maintained on a per-file basis, not a per-file-descriptor basis, meaning that the
effect of setting such an advisory through a file descriptor impacts other
processes’ access to the same file. This also means that conflicting advisories
cannot be in effect for accesses to the same file. If two applications set different
advisories, both applications use the last advisory set on the file. VxFS does not
coordinate or prioritize advisories.

Some advisories are not cleared from memory after the last close of the file. The
recording of advisories remain in memory for as long as the file system
metadata used to manage access to the file remains in memory. The removal of
file system metadata for the file from memory is not predictable.

All advisories are set using the file descriptor, returned via the open() and
ioctl() calls using the VX_SETCACHE ioctl command.

See the vxfsio(7) manual page.

75VxFS I/O Application Interface
Caching advisories
The caching advisories includes the following:

■ Direct I/O

■ Concurrent I/O

■ Unbuffered I/O

■ Other advisories

Direct I/O
Direct I/O is an unbuffered form of I/O for accessing files. If the VX_DIRECT
advisory is set, the user is requesting direct data transfer between the disk and
the user-supplied buffer for reads and writes. This bypasses the kernel buffering
of data, and reduces the CPU overhead associated with I/O by eliminating the
data copy between the kernel buffer and the user’s buffer. This also avoids
taking up space in the buffer cache that might be better used for something else,
such as application cache. The direct I/O feature can provide significant
performance gains for some applications.

For an I/O operation to be performed as direct I/O, it must meet certain
alignment criteria. The alignment constraints are usually determined by the
disk driver, the disk controller, and the system memory management hardware
and software. The file offset must be aligned on a sector boundary (DEV_BSIZE).
All user buffers must be aligned on a long or sector boundary. If the file offset is
not aligned to sector boundaries, VxFS performs a regular read or write instead
of a direct read or write.

If a request fails to meet the alignment constraints for direct I/O, the request is
performed as data synchronous I/O. If the file is currently being accessed by
using memory mapped I/O, any direct I/O accesses are done as data
synchronous I/O.

Because direct I/O maintains the same data integrity as synchronous I/O, it can
be used in many applications that currently use synchronous I/O. If a direct I/O
request does not allocate storage or extend the file, the inode metadata is not
immediately written.

The CPU cost of direct I/O is about the same as a raw disk transfer. For
sequential I/O to very large files, using direct I/O with large transfer sizes can
provide the same speed as buffered I/O with much less CPU overhead.

If the file is being extended or storage is being allocated, direct I/O must write
the inode change before returning to the application. This eliminates some of
the performance advantages of direct I/O.

The direct I/O advisory is maintained on a per-file-descriptor basis.

76 VxFS I/O Application Interface
Caching advisories
Concurrent I/O
Concurrent I/O (VX_CONCURRENT) is a form of I/O for file access. This form of
I/O allows multiple processes to read or write to the same file without blocking
other read() or write() operations. POSIX semantics requires read() and write()
operations to be serialized on a file with other read() and write() operations.
With POSIX semantics, a read either reads the data before or after the write
occurred. With the VX_CONCURRENT advisory set on a file, the reads and writes
are not serialized similar to character devices. This advisory is generally used by
applications that require high performance for accessing data and do not
perform overlapping writes to the same file. An example is database
applications. Such applications perform their own locking at the application
level to avoid overlapping writes to the same region of the file.

It is the responsibility of the application or threads to coordinate write activities
to the same file when using the VX_CONCURRENT advisory to avoid overlapping
writes. The consequence of two overlapping writes to the same file is
unpredictable. The best practice for applications is to avoid simultaneous write
operations to the same region of the same file.

If the VX_CONCURRENT advisory is set on a file, VxFS performs direct I/O for
reads and writes to the file. As such, concurrent I/O has the same alignment
requirements as direct I/O.

See “Direct I/O” on page 75.

When concurrent I/O is enabled, the read and write behaves as follows:

■ The write() system call acquires a shared read-write lock instead of an
exclusive lock.

■ The write() system call performs direct I/O to the disk instead of copying
and then writing the user data to the pages in the system page cache.

■ The read() system call acquires a shared read-write lock and performs direct
I/O from disk instead of reading the data into pages in the system page cache
and copying from the pages to the user buffer.

Note: The read() and write() system calls are not atomic. The application must
ensure that two threads will not write to the same region of a file at the same
time.

Concurrent I/O (CIO) can be set through the file descriptor and ioctl() operation
using the VX_SETCACHE ioctl command with the VX_CONCURRENT advisory
flag. Only the read() and write() operations occurring through this file descriptor
use concurrent I/O. Read() and write() operations occurring through other file
descriptors will still follow the POSIX semantics. The VX_CONCURRENT advisory
can be set via the VX_SETCACHE ioctl descriptor on a file.

77VxFS I/O Application Interface
Caching advisories
CIO is a licensable feature of VxFS.

Quick I/O, ODM, CIO and VX_CONCURRENT advisory mutual
exclusivity
The VX_CONCURRENT advisory cannot be set on a file that is actively open via
Quick I/O or ODM. A file that has the VX_CONCURRENT advisory set may not be
concurrently opened via Quick I/O or ODM. Quick I/O and ODM access are not
allowed for any files on a file system mounted with the –o cio mount option.

Unbuffered I/O
The I/O behavior of the VX_UNBUFFERED advisory is the same as the
VX_DIRECT advisory set with the same alignment constraints as direct I/O.
However, for unbuffered I/O, if the file is being extended, or storage is being
allocated to the file, metadata updates on the disk for extending the file are not
performed synchronously before the write returns to the user. The
VX_UNBUFFERED advisory is maintained on a per-file-descriptor basis.

Other advisories
The VX_SEQ advisory is a per-file advisory that indicates that the file is being
accessed sequentially. A process setting this advisory on a file through its file
descriptor will impact the access pattern of other processes currently accessing
the same file. When a file with VX_SEQ advisory is being read, the maximum
read-ahead is performed. When a file with VX_SEQ advisory is written,
sequential write access is assumed and the modified pages with write operations
are not immediately flushed. Instead, modified pages remain in the system page
cache and those pages are flushed at some distance point behind the current
write point (flush behind).

The VX_RANDOM advisory is a per-file advisory that indicates that the file is
being accessed randomly. A process setting this advisory on a file through its
file descriptor will impact the access pattern of other processes currently
accessing the same file. This advisory disables read-ahead with read operations
on the file, and disables flush-behind on the file, as described above. The result
of disabling flush behind is that the modified pages in the system page cache
from the recent write operations are not flushed to the disk until the system
pager is scheduled and run to flush dirty pages. The rate at which the system
pager is scheduled is based on availability of free memory and contention.

Note: The VX_SEQ and VX_RANDOM are mutually exclusive advisories.

78 VxFS I/O Application Interface
Extents
Extents
In general disk space is allocated in 512-byte or 1024-byte (DEV_BSIZE) sectors
to form logical blocks. VxFS supports logical block sizes of 1024, 2048, 4096, and
8192 bytes. The default block size is 1K for file systems up to 2 TB in size, and 8K
for other file system sizes. Users can choose any block when creating file
systems using the mkfs command. VxFS allocates disk space to files in groups of
one or more adjacent blocks called extents. An extent is a set of one or more
consecutive logical blocks. Extents allow disk I/O to take place in units of
multiple blocks if storage is allocated in consecutive blocks. For sequential I/O,
multiple block operations are considerably faster than block-at-a-time
operations.

VxFS uses an aggressive allocation policy for allocating extents to files. It also
allows an application to pre-allocate space or request contiguous space. This
results in improved I/O performance and less file system overhead for
performing allocations. For an extending write operation, the policy attempts to
extend the previously allocated extent by the size of the write operation or
larger. Larger allocation is attempted when consecutive extending write
operations are detected. If the last extent cannot be extended to satisfy the
entire write operation, a new disjoint extent is allocated. This policy leaves
excess allocation that will be trimmed at the last close of the file or if the file is
not written to for some amount of time. The file system can still be fragmented
with too many non-contiguous extents, especially file systems of smaller size.

Extent attributes
VxFS allocates disk space to files in groups of one or more extents. In general,
the internal allocation policies of VxFS attempt to achieve two goals: allocate
extents for optimum I/O performance and reduce fragmentation. VxFS
allocation policies attempt to balance these two goals through large allocations
and minimal file system fragmentation by allocating from space available in the
file system that best fits the data. These extent-based allocation policies provide
an advantage over block-based allocation policies. Extent based policies rarely
use indirect blocks with allocations and eliminate many instances of disk access
that stem from indirect references.

VxFS allows control over some aspects of the extent allocation policies for a
given file via two administrative tools, setext(1) and getext(1), and an API. The
application-imposed policies associated with a file are referred to as extent
attributes. VxFS provides APIs that allow an application to set or view extent
attributes associated with a file and preallocate space for a file.

79VxFS I/O Application Interface
Extents
Attribute specifics
There are two basic extent attributes associated with a file: reservation and fixed
extent size. You can preallocate space to the file by manipulating a file’s
reservation, or overriding the default allocation policy of the file system by
setting a fixed extent size. Other policies determine the way these attributes are
expressed during the allocation process. You can specify that:

■ The space reserved for a file must be contiguous

■ No allocations are made for a file beyond the current reservation

■ An unused reservation is released when the file is closed

■ Space is allocated, but no reservation is assigned

■ The file size is changed to incorporate immediately the allocated space

Some of the extent attributes are persistent and become part of the on-disk
information about the file, while other attributes are temporary and are lost
after the file is closed or the system is rebooted. The persistent attributes are
similar to the file’s permissions and are written in the inode for the file. When a
file is copied, moved, or archived, only the persistent attributes of the source file
are preserved in the new file.

Reservation: preallocating space to a file
Space reservation is used to make sure that applications do not fail because the
file system is out of space. An application can preallocate space for all the files it
needs before starting to do any job. By allocating space in advance, the file is
optimally allocated for performance, and file accesses are not slowed down by
the need to allocate storage. This allocation of resources can be important in
applications that require a guaranteed response time. With very large files, use
of space reservation can avoid the need to use indirect extents. It can also
improve performance and reduce fragmentation by guaranteeing that the file
consists of large contiguous extents.

VxFS provides an API to preallocate space to a file at the time of the request
rather than when data is written into the file. Preallocation, or reservation,
prevents any unexpected out-of-space condition on the file system by ensuring
that a file’s required space is associated with the file before data is written to the
file. Storage can be reserved for a file at any time, and reserved space to a file is
not allocated to other files in the file system. The API provides the application
the option to change the size of the file to include the reserved space.

Reservation does not perform zeroing of the allocated blocks to the file.
Therefore, this facility is limited to applications running with appropriate
privileges, unless the size of the file is not changed with the reservation request.

80 VxFS I/O Application Interface
Extents
The data that appears in the newly allocated blocks for the file may have been
previously contained in another file.

Reservation is a persistent attribute for the file saved on disk. When this
attribute is set on a file, the attribute is not released when the file is truncated.
The reservation must be cleared through the same API, or the file must be
removed to free the reserved space. At the time of specifying the reservation, if
the file size is less than the reservation amount, space is allocated to the file
from the current file size up to the reservation amount. When the file is
truncated, space below the reserved amount is not freed.

Fixed extent size
VxFS uses the I/O size of write requests and the default allocation policy for
allocating space to a file. For some applications, the default allocation policy
may not be optimal. Setting a fixed extent size on a file overrides the default
allocation policies for that file. Applications can set a fixed extent size to match
the application I/O size so that all new extents allocated to the file are of the
fixed size. By using a fixed extent size, an application can reduce allocation
attempts and guarantee optimal extent sizes for a file. With the fixed extent size
attribute, an extending write operation will trigger VxFS to extend the
previously allocated extent by the fixed extent size amount to maintain
contiguity of the extent. If the last extent cannot be extended by the fixed extent
size amount, a new disjoint extent is allocated. The size of a fixed extent should
factor in the size of file I/O appropriate to the application. Do not use small fixed
extent size to eliminate the advantage with extent-base allocation policies.

Another use of a fixed extent size occurs with sparse files. VxFS usually
performs I/O in multiples of the system-defined page size. When allocating to a
sparse file, VxFS allocates space in multiples of the page size according to the
amount of page I/O in need of allocation. If the application always does sub-page
I/O, the use of fixed extent size in multiples of the page size reduces allocations.

Applications should not use a large fixed extent size. Allocating a large fixed
extent may fail due to the unavailability of an extent of that size, whereas
smaller extents are more readily available for allocation.

Custom applications may also use fixed extent sizes for specific reasons, such as
the need to align extents to cylinder or striping boundaries on disk.

The fixed extent size attribute is specified in units of file system block size. It
specifies the number of contiguous file system blocks to allocate for a new
extent, or the number of contiguous blocks to allocate and append to the end of
an existing extent. A file with this attribute has fixed size extents or larger
extents that are a multiple of the fixed size extent.

81VxFS I/O Application Interface
Extents
Application programming interface for extent attributes
The current API for extent attributes is ioctl(). Applications can open a file and
use the returned file descriptor with calls to ioctl() to retrieve, set, or change
extent attributes. To set or change existing extent attributes, use the
VX_SETEXT ioctl. To retrieve existing extent attributes, if any, use the
VX_GETEXT ioctl. Applications can set or change extent attributes on a file by
providing the attribute information in the structure of type vx_ext and passing
the VX_SETEXT iotcl and the address of the structure using the third argument
of the ioctl() call. Applications can also retrieve existing extent attributes, if
any, by passing the VX_GETEXT ioctl and the address of the same structure, of
type vx_ext, as the third argument with the ioctl() call.

struct vx_ext {
off_t ext_size; /* extent size in fs blocks */
off_t reserve; /* space reservation in fs blocks */
int a_flags; /* allocation flags */

}

The ext_size argument is set to specify a fixed extent size. The value of fixed
extent size is specified in units of the file system block size. Be sure the file
system block size is known before setting the fixed extent size. If a fixed extent
size is not required, use zero to allow the default allocation policy to be used for
allocating extents. The fixed extent allocation policy takes effect immediately
after successful execution of the VX_SETEXT ioctl. An exception is with files
that already contain indirect blocks, in which case the fixed extent policy has no
effect unless all current indirect blocks are freed via file truncation.

The reserve argument can be set to specify the amount of space preallocated to a
file. The amount is specified in units of the file system block size. Be sure the file
system block size is known before setting the preallocation amount. If a file has
already been preallocated, its current reservation amount can be changed with
the VX_SETEXT ioctl. If the specified reserve amount is greater than the current
reservation, the allocation for the file is increased to match the newly specified
reserve amount. If the reserve amount is less than the current reservation, the
reservation amount is decreased and the allocation is reduced to the newly set
reservation amount or the current file size. Note that file preallocation requires
root privilege, unless the size of the file is not changed, and the preallocation
size cannot be increased beyond the ulimit of the requesting process.

See the VX_CHGSIZE flag.

See the ulimit(2) manual page.

Allocation flags
Allocation flags can be specified with VX_SETEXT ioctl for additional control
over allocation policies. Allocation flags are specified in the a_flag argument of
vx_ext structure to determine:

82 VxFS I/O Application Interface
Extents
■ Whether allocations are aligned

■ Whether allocations are contiguous

■ Whether the file can be written beyond its reservation

■ Whether an unused reservation is released when the file is closed

■ Whether the reservation is a persistent attribute of the file

■ When the space reserved for a file will actually become part of the file

Allocation flags with reservation
The VX_TRIM, VX_NOEXTEND, VX_CHGSIZE, VX_NORESERVE,
VX_CONTIGUOUS, and VX_GROWFILE flags can be used to modify reservation
requests. Note that VX_NOEXTEND is the only flag that is persistent; the other
flags may have persistent effects, but they are not returned by the VX_GETEXT
ioctl. The non-persistent flags remain active for a file in the file system cache
until the file is no longer accessed and is removed from the cache.

Reservation trimming
The VX_TRIM flag specifies that the reservation amount must be trimmed to
match the file size when the last close occurs on the file. At the last close, the
VX_TRIM flag is cleared and any unused reservation space beyond the size of the
file is freed. This can be useful if an application needs enough space for a file,
but it is not known how large the file will become. Enough space can be reserved
to hold the largest expected file, and when the file has been written and closed,
any extra space will be released.

Non-persistent reservation
If reservation is not desired to be a persistent attribute, the VX_NORESERVE flag
can be specified to request allocation of space without making reservation a
persistent attribute of the file. This flag can be used by applications interested in
temporary reservation but wish to free any space past the end of the file when
the file is closed. For example, if an application is copying a file that is 1 MB
long, it can request a 1 MB reservation with the VX_NORESERVE flag set. The
space is allocated, but the reservation in the file is left at 0. If the program aborts
for any reason or the system crashes, the unused space past the end of the file is
released. When the program finishes, there is no clean up because the
reservation was never recorded on disk.

No write beyond reservation
The VX_NOEXTEND flag specifies that any attempt to write beyond the current
reservation must fail. Writing beyond the current reservation requires the

83VxFS I/O Application Interface
Extents
allocation of new space for the file. To allocate new space to the file, the space
reservation must be increased. The ulimit command provides a similar
function by preventing a file from using too much space.

See the limit(1) manual page.

Contiguous reservation
The VX_CONTIGUOUS flag specifies that any space allocated to a file must
satisfy the requirement of a single extent allocation. If there is not one extent
large enough to satisfy the reservation request, the request fails. For example, if
a file is created and a 1 MB contiguous reservation is requested, the file size is
set to zero and the reservation to 1 MB. The file will have one extent that is 1 MB
long. If another reservation request is made for a 3 MB contiguous reservation,
the new request will find that the first 1 MB is already allocated and allocate a 2
MB extent to satisfy the request. If there are no 2 MB extents available, the
request fails. Extents are, by definition, contiguous. Note that because
VX_CONTIGUOUS is not a persistent flag, space will not be allocated
contiguously for restoring a file that was previously allocated with the
VX_CONTIGUOUS flag.

Include reservation in the file size
A reservation request can affect the size of the file to include the reservation
amount by specifying VX_CHGSIZE. This flag increases the size of the file to
match the reservation amount without zeroing the reserved space. Because the
effect of this flag is uninitialized data in a file, which might have been previously
contained in other files, the use of this flag is restricted to users with the
appropriate privileges. Without this flag, the space of the reservation is not
included in the file until an extending write operation requires the space. A
reservation that immediately changes the file size can generate large temporary
files. Applications can benefit from this type of reservation by eliminating the
overhead imposed with write operations to allocate space and update the size of
the file.

It is possible to use these flags in combination. For example, using VX_CHGSIZE
and VX_NORESERVE changes the file size, but does not set any reservation.
When the file is truncated, the space is freed. If the VX_NORESERVE flag is not
used, the reservation is set on the disk along with the file size.

Reading the grown part of the file
When the allocation flag (a.flag) is set to VX_GROWFILE, the size of the file is
changed to include the reservation. This flag reads the grown part of the file
(between the current size of the file and the size after the operation succeeds).

84 VxFS I/O Application Interface
Extents
VX_GROWFILE has persistent affects, but is not visible as an allocation flag. This
flag is visible through the VX_GETEXT ioctl.

Allocation flags with fixed extent size
The VX_ALIGN flag can be used to specify an allocation flag for fixed extent size.
This flag has no effect if it is specified with a reservation request. The
VX_ALIGN specifies the alignment requirement for allocating future extents
aligned on a fixed extent size boundary relative to the start of the allocation
unit. This can be used to align extents to disk striping boundaries or physical
disk boundaries. The VX_ALIGN flag is persistent and is returned by the
VX_GETEXT ioctl.

How to use extent attribute APIs
First, verify that the target file system is VxFS, and then determine the file
system block size using the statfs() call. The type for VxFS is MNT_VXFS on
most platforms, and the file system block size is returned in statfs.f_bsize. The
block size must be known for setting or interpreting the extent attribute
information through VxFS extent attribute APIs.

Each invocation of the VX_SETEXT ioctl affects all the elements in the vx_ext
structure.

To use VX_SETEXT

1 Call the VX_GETEXT ioctl to read the current settings, if any.

2 Modify the current values to be changed.

3 Call the VX_SETEXT ioctl to set the new values.

Warning: Follow this procedure carefully. A fixed extent size may be
inadvertently cleared when the reservation is changed. When copying files
between VxFS and non-VxFS file systems, the extent attributes cannot be
preserved. Note that the attribute values returned for a file in a vx_ext structure
will have a different effect on another VxFS file system with a different file
system block size from the source file system. Translation of attribute values for
different block sizes may be necessary when copying files with attributes
between two file systems of a different block size.

The following is an example code snippet for setting the fixed extent size of the
MY_PREFERRED_EXTSIZE attribute on a new file, MY_FILE, assuming
MY_PREFFERED_EXTSIZE is multiple of the file system block size:

#include <sys/fs/vx_ioctl.h>

85VxFS I/O Application Interface
Extents
struct vx_ext myext;

fd = open(MY_FILE, O_CREAT, 0644);

myext.ext_size = MY_PREFERRED_EXTSIZE;
myext.reserve = 0;
myext.flags = 0;

error = ioctl(fd, VX_SETEXT, &myext);

The following is an example code snippet for preallocating
MY_FILESIZE_IN_BYTES bytes of space on the new file, MY_FILE, assuming
the target file system block size is THIS_FS_BLOCKSIZE:

#include <sys/fs/vx_ioctl.h>

struct vx_ext myext;

fd = open(MY_FILE, O_CREAT, 0644);

myext.ext_size =0;
myext.reserve = (MY_FILESIZE_IN_BYTES + THIS_FS_BLOCKSIZE) /

THIS_FS_BLOCKSIZE;
myext.flags = VX_CHGSIZE;
error = ioctl(fd, VX_SETEXT, &myext);

86 VxFS I/O Application Interface
Extents

Index
A
allocation flags 82
allocation flags with fixed extent size 84
allocation policies 50

multi-volume support 54
alternate namespace 64
application interface 10

C
caching advisories 74
close 17
compiling environment 13
concurrent I/O 76
Converting FCL Version 3 files to Version 4 46
Copying FCL records 42

D
data copy 75
data transfer 75
DEV_BSIZE 75, 78
direct data transfer 75
direct I/O 75
Downgrading VxFS versions 46

E
eventmask 29
extent attributes 78
extents 78

F
FCL

API functions 27
FCL event mask 20
FCL file history traces 18
FCL file layout 19
FCL file, Using 17
FCL logging activation 18
FCL record 20, 36
FCL record structure fields 40

FCL recorded changes 16
FCL space usage 17
FCL superblock 20
FCL tunables 23
fcl_acsinfo structure 38
fcl_iostats structure 37
fcl_keeptime 23
fcl_maxalloc 23
fcl_winterval 24
features 10
File Change Log 11, 15

programmatic interface 26
record types 21

special records 22
File Change Log file 16
fixed extent size 79, 80
freeze/thaw 72
FSAP_INHERIT 54
fsapadm 50
fsvoladm 50

G
getdents 65, 67
getext 78

H
header files 12
How tunables handle FCL growth size 25

I
I/O

direct 75
sequential 75
synchronous 75

ioctl 10, 74, 81

L
libraries 12
logical blocks 78

88
lseek 17

M
mkfs 78
mmap 64, 65
multi-volume support 11, 49

allocation policy APIs 54
creating and assigning policies 56
data structures 58
enforcing the policy on a file 57
examples of volume set operations 52
modifying a volume within a file system 52
querying the defined policies 57
querying the volume set for a file system 52
uses 51
volume APIs 51
volume encapsulation 53

N
named attributes 64
named data streams 63

behavior changes in other system calls 68
example 68
listing 67
namespace 68
programmatic interface 65, 69
programmer’s reference 70

ncheck 47

O
open 17, 64, 65, 74
other advisories 77

R
read 17, 64, 65, 76
readdir 65
Record Types

special records 22
record types 21
reservation 79
reverse path name lookup 47

S
sequential I/O 75, 78
setext 78
Software Developer’s Kit 10

packages 12
special records 22
statfs 84
Storage Checkpoints 51
synchronous I/O 75

U
ulimit 81
unbuffered I/O 77
using extent attribute APIs 84

V
volume APIs 51
volume set 51
VOP_SETATTR 68
VRTSfsmnd 12
VRTSfssdk 12
VX_ALIGN 84
VX_CHGSIZE 81, 82, 83
VX_CONCURRENT 76
VX_CONTIGUOUS 82, 83
VX_DIRECT 77
vx_ext 81, 84
VX_FREEZE 72, 73
VX_FREEZE_ALL 72, 73
VX_GETEXT 81, 84
VX_NOEXTEND 82, 83
VX_NORESERVE 82
VX_RANDOM 77
VX_SEQ 77
VX_SETCACHE 76
VX_SETEXT 81, 84
VX_THAW 72
VX_TRIM 82
VX_UNBUFFERED 77
VxFS and FCL upgrade and downgrade 46
VxFS I/O 11, 71

caching advisories 74
concurrent I/O 76
direct I/O 75
other advisories 77
unbuffered I/O 77

extents 78
allocation flags 82
allocation flags with fixed extent size 84
API 81
attribute specifics 79
extent attributes 78

89
fixed extent size 80
reservation 79
using extent attribute APIs 84

freeze/thaw 72
vxfs_fcl_close 28
vxfs_fcl_copyrec 31
vxfs_fcl_getcookie 31
vxfs_fcl_getinfo 28
vxfs_fcl_open 28
vxfs_fcl_read 29
vxfs_fcl_seek 32
vxfs_fcl_seektime 33
vxfs_fcl_sync 34
vxfs_inotopath 48
vxfs_inotopath_gen 47, 48
vxfs_nattr_link 66
vxfs_nattr_open 66
vxfs_nattr_rename 66
vxfs_nattr_unlink 66
vxfs_nattr_utimes 67
vxfsio 74
vxtunefs 23
vxvset 51

W
write 64, 65, 76

90

	Programmer’s Reference Guide
	Contents
	Veritas File System software developer’s kit
	About the software developer’s kit
	File system software developer’s kit features
	API library interfaces
	File Change Log
	Multi-volume support
	VxFS I/O

	Software developer’s kit packages
	Required libraries and header files
	Compiling environment
	Recompiling with a different compiler

	File Change Log
	About the File Change Log file
	Recorded changes
	Using the FCL file
	FCL logging activation
	FCL file layout

	Record types
	Special records
	Typical record sequences

	FCL tunables
	How tunables handle FCL growth size

	Programmatic interface
	Ease of use
	Backward compatibility
	API functions
	FCL record
	Copying FCL records
	VxFS and FCL upgrade and downgrade

	Reverse path name lookup
	Inodes
	vxfs_inotopath_gen

	Multi-volume support
	About multi-volume support
	Uses for multi-volume support
	Volume application programmatic interfaces
	Administering volume sets
	Querying the volume set for a file system
	Modifying a volume within a file system
	Encapsulating and de-encapsulating a volume

	Allocation policy application programmatic interfaces
	Directing file allocations
	Creating and assigning policies
	Querying the defined policies
	Enforcing a policy on a file
	Deleting a policy on a file
	Pattern-based policies

	Data structures
	Using policies and application programmatic interfaces
	Defining and assigning allocation policies
	Using volume application programmatic interfaces

	Named data streams
	About named data streams
	Uses for named data streams
	Named data streams programmatic interface
	Listing named data streams
	Namespace for named data streams
	Behavior changes in other system calls
	Querying named data streams
	Application programmatic interface
	Command reference

	VxFS I/O Application Interface
	Freeze and thaw
	Caching advisories
	Direct I/O
	Concurrent I/O
	Unbuffered I/O
	Other advisories

	Extents
	Extent attributes
	Reservation: preallocating space to a file
	Fixed extent size
	Application programming interface for extent attributes
	Allocation flags
	Allocation flags with fixed extent size
	How to use extent attribute APIs

	Index

