
Veritas Storage

Foundation™ for Sybase

Administrator’s Guide

Solaris

5.0

N18528F

Veritas Storage Foundation™ for SybaseAdministrator’s
Guide

The software described in this book is furnished under a license agreement and may be used

only in accordance with the terms of the agreement.

Documentation version 5.0

PN: N18528F

Legal Notice

Copyright © 2006 Symantec Corporation.

All rights reserved.

Federal acquisitions: Commercial Software - Government Users Subject to Standard License

Terms and Conditions.

Symantec, the Symantec Logo, Veritas, and Veritas Storage Foundation are trademarks or

registered trademarks of Symantec Corporation or its affiliates in the U.S. and other

countries. Other names may be trademarks of their respective owners.

Third-party software may be recommended, distributed, embedded, or bundled with this

Symantec product. Such third-party software is licensed separately by its copyright holder.

All third-party copyrights associated with this product are listed in the accompanying

release notes.

Solaris is a trademark of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

Windows is a registered trademark of Microsoft Corporation.

Veritas Storage Foundation™ is a licensed product. See the Veritas Storage Foundation™

Installation Guide for license installation instructions.

The product described in this document is distributed under licenses restricting its use,

copying, distribution, and decompilation/reverse engineering. No part of this document

may be reproduced in any form by any means without prior written authorization of

Symantec Corporation and its licensors, if any.

THE DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,

REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO

BE LEGALLY INVALID. SYMANTEC CORPORATION SHALL NOT BE LIABLE FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING PERFORMANCE,

OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS

DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be "commercial computer software"

and "commercial computer software documentation" as defined in FAR Sections 12.212 and

DFARS Section 227.7202.

Symantec Corporation 20330 Stevens Creek Blvd. Cupertino, CA 95014 USA

http://www.symantec.com

Technical Support

For technical assistance, visit http://support.veritas.com and select phone or email support.

Use the Knowledge Base search feature to access resources such as TechNotes, product

alerts, software downloads, hardware compatibility lists, and our customer email notification

service.

http://support.veritas.com

Chapter 1 Introducing Veritas Storage Foundation for Sybase

About Veritas Storage Foundation for Sybase 11

Components of Veritas Storage Foundation for Sybase 12

How Veritas Volume Manager works 13

About volumes 14

About disk groups 15

About volume layouts ... 15

About online relayout ... 18

About volume resynchronization 18

About dirty region logging 19

About volume sets ... 19

About volume snapshots ... 20

About Veritas FastResync 20

About disk group split and join 21

About hot-relocation 21

About DMP-supported disk arrays ... 22

About dynamic LUN expansion 22

About Storage Expert ... 22

About cluster functionality (optional) .. 23

About Veritas Volume Replicator (optional) .. 23

How Veritas File System works 23

About Veritas Quick I/O 23

About Veritas Cached Quick I/O 24

About Veritas Concurrent I/O 25

About extent-based allocation 25

About fast file system and database recovery 25

About online system administration 26

About cross-platform data sharing 27

Support for multi-volume file systems 27

About Quality of Storage Service (optional) .. 27

Support for large file systems and large files (optional) 27

About restoring file systems using Storage Checkpoints 28

About quotas ... 28

About cluster functionality (optional) .. 29

About Veritas Storage Foundation/High Availability for Sybase

(optional) .. 29

Contents

Chapter 2 Setting up dataservers

Tasks for setting up new databases ... 31

About setting up a disk group 32

Disk group configuration guidelines ... 33

Creating a disk group 33

Adding disks to a disk group 34

About selecting a volume layout ... 35

How to choose appropriate stripe unit sizes ... 36

How to choose between mirroring and RAID-5 36

Volume configuration guidelines ... 37

Creating a volume 37

Creating a volume set ... 38

Adding a volume to a volume set ... 39

File system creation guidelines ... 40

Creating a VxFS file system 41

Large file system and large file support ... 42

Multi-volume support ... 43

Mounting a file system 43

Unmounting a file system 44

About fragmentation 45

How to control fragmentation 46

Types of fragmentation 46

How to monitor fragmentation 46

Defragmenting a file system 47

Resizing a file system 49

Resizing a file system and the underlying volume 50

About Quick I/O 57

How Quick I/O works 57

How Quick I/O improves database performance 58

About Quick I/O requirements ... 59

How to set up Quick I/O 60

Chapter 3 Using Veritas Quick I/O

About Quick I/O 57

How Quick I/O works 57

How Quick I/O improves database performance 58

About Quick I/O requirements ... 59

How to set up Quick I/O 60

Preallocating space for Quick I/O files using the setext command 61

Creating database files as Quick I/O files using qiomkfile 62

Accessing regular VxFS files as Quick I/O files ... 65

Converting Sybase files to Quick I/O files ... 67

Contents6

Displaying Quick I/O status and file attributes ... 74

Extending a Quick I/O file ... 75

Recreating Quick I/O files after restoring a database ... 76

Disabling Quick I/O 78

Chapter 4 Using Veritas Cached Quick I/O

About Cached Quick I/O 79

How Cached Quick I/O works 79

How Cached Quick I/O improves database performance 80

How to set up Cached Quick I/O 81

Enabling Cached Quick I/O on a file system 81

Enabling and disabling the qio_cache_enable flag ... 82

Making Cached Quick I/O settings persistent across reboots and

mounts ... 83

Using vxtunefs to obtain tuning information 84

Determining candidates for Cached Quick I/O 85

Collecting I/O statistics ... 85

About I/O statistics ... 86

Effects of read-aheads on I/O statistics ... 87

Other tools for analysis ... 88

Enabling and disabling Cached Quick I/O for individual files 88

Setting cache advisories for individual files ... 88

Making individual file settings for Cached Quick I/O

persistent ... 89

Determining individual file settings for Cached Quick I/O using

qioadmin 90

Chapter 5 Using Veritas Concurrent I/O

About Concurrent I/O 93

How Concurrent I/O works 93

Enabling and disabling Concurrent I/O 94

Enabling Concurrent I/O 94

Disabling Concurrent I/O 95

Chapter 6 Converting existing database configurations to VxFS

Converting native file systems to VxFS with Quick I/O 97

Upgrading from earlier VxFS version layouts ... 98

Converting from raw devices ... 99

7Contents

Chapter 7 Using volume snapshots for dataserver backup and
off-host processing

About snapshot volumes 102

Backup and off-host processing applications 103

FastResync of snapshot volumes 103

Disk group split and join 104

Preparing hosts for database backup or off-host processing 107

Single-host configuration 107

Two-host configuration 108

Upgrading existing volumes to use VxVM 4.0 features 109

Sybase Adaptive Server Enterprise 12.5 quiesce feature 111

How to set up volume snapshots with Sybase ASE 12.5 server 112

Implementing online backup or off-host processing 113

.... 119

Creating a warm standby server ... 122

Resynchronizing the snapshot to your ASE dataserver ... 134

Recovering the database from a backup image 139

Refreshing a snapshot database image 143

Dissociating a snapshot volume 145

Removing a snapshot volume 145

Chapter 8 Tuning for performance

Additional documentation 147

About tuning VxVM 147

About obtaining volume I/O statistics ... 148

About tuning VxFS 149

How monitoring free space works 149

How tuning VxFS I/O parameters works 150

About tunable VxFS I/O parameters ... 151

About obtaining file I/O statistics using the Quick I/O

interface ... 156

About I/O statistics data ... 156

About tuning Sybase dataservers ... 158

Sybase tempdb database 158

Sybase sybsecurity database ... 159

Placement of the transaction logs ... 159

Database device layout ... 160

Nonclustered indexes placement ... 160

About tuning Solaris for Sybase 160

maxuprc 161

shmmax 161

shmmni 161

Contents8

shmseg 161

semmap 161

semmni 161

semmns 162

semmnu 162

Appendix A Veritas Storage Foundation for Sybase command line
interface

Overview of commands 163

About the command line interface ... 164

Converting VxFS files to Quick I/O using qio_convertdbfiles 164

Identifying VxFS files to convert to Quick I/O using

qio_getdbfiles ... 166

Recreating Quick I/O files using qio_recreate ... 167

Managing log files using edgetmsg2 169

Glossary

Index

9Contents

Contents10

Introducing Veritas Storage

Foundation for Sybase

This chapter includes the following topics:

■ About Veritas Storage Foundation for Sybase

■ How Veritas Volume Manager works

■ How Veritas File System works

■ About Veritas Storage Foundation/High Availability for Sybase (optional)

About Veritas Storage Foundation for Sybase
There are two versions of this product:

■ Veritas Storage Foundation for Sybase Standard Edition

■ Veritas Storage Foundation for Sybase Enterprise Edition

The Enterprise Edition contains everything in the Standard Edition plus

FastResync, disk group split and join, Quality of Storage Service, and support

for large file systems (up to 8 exabytes).

Note:Veritas Storage Foundation/High Availability (HA) for Sybase is available

only with the Enterprise Edition.

Unless otherwise noted, features pertain to both the Standard and Enterprise

Edition products.

1Chapter

Components of Veritas Storage Foundation for Sybase

Veritas Storage Foundation for Sybase combines the strengths of the core

technology products with database-specific enhancements to offer performance,

availability, and manageability for Sybase database servers.

Veritas Storage Foundation for Sybase includes the following products:

■ Veritas Volume Manager (VxVM)

A disk management subsystem that supports disk striping, disk mirroring,

and simplified disk management for improved data availability and

performance.

■ Veritas File System (VxFS)

A high-performance, fast-recovery file system that is optimized for

business-critical database applications and data-intensive workloads. VxFS

offers online administration, letting you perform most frequently scheduled

maintenance tasks (including online backup, resizing, and file system changes)

without interrupting data or system availability. VxFS also provides support

for large file systems (of more than 8 exabytes in a 64-bit environment) and

large files (in the exabyte range in a 64-bit environment).

Veritas File System offers the following performance-enhancing features that

are of particular interest in a database environment:

■ Veritas Quick I/O is a VxFS feature that improves the throughput for Sybase

databases built on VxFS file systems. Quick I/O delivers raw device

performance to databases run on VxFS, providing the administrative

advantages of using file systems without the performance penalties.

■ Veritas Cached Quick I/O further enhances database performance by

leveraging large system memory to selectively buffer the frequently

accessed data.

■ Veritas Concurrent I/O improves the performance of regular files on a VxFS

file system without the need for extending namespaces and presenting the

files as devices. This simplifies administrative tasks and allows relational

databases (such as Sybase), which do not have a sequential read/write

requirement, to access files concurrently.

■ Veritas Enterprise Administrator

Veritas Enterprise Administrator (VEA) is the infrastructure that allows you

to access Veritas Storage Foundation for Sybase, Veritas Volume Manager,

and Veritas File System information and features through the GUI.

An optional High Availability (HA) version of Veritas Storage Foundation for

Sybase Enterprise Edition, which includes Veritas Cluster Server, is available for

customers who have high system-availability requirements.

Introducing Veritas Storage Foundation for Sybase
About Veritas Storage Foundation for Sybase

12

How Veritas Volume Manager works
Databases require their storage media to be robust and resilient to failure. It is

vital to protect against hardware and disk failures and to maximize performance

using all the available hardware resources. Using a volume manager provides this

necessary resilience and eases the task of management. A volume manager can

help you manage hundreds of disk devices and makes spanning, striping, and

mirroring easy.

Veritas Volume Manager (VxVM) builds virtual devices called volumes on top of

physical disks. Volumes are accessed by a file system, a database, or other

applications in the same way physical disk partitions would be accessed. Using

volumes, VxVM provides the following administrative benefits for databases:

Table 1-1 Veritas Volume Manager features

BenefitFeature

Eliminates media size limitations.Spanning of multiple disks

Increases throughput and bandwidth.Striping

Increases data availability.Mirroring or RAID-5

Allows volume layout changes without application or

database downtime. Online relayout can be used to

change performance or reliability characteristics of

unerlying storage.

Online relayout

Ensures that all mirrors contain exactly the same data

and that the data and parity in RAID-5 volumes agree.

Volume resynchronization

Speeds the recovery of mirrored volumes after a system

crash.

Dirty Region Logging (DRL)

Allows backup of volumes based on disk mirroring.

VxVM provides full-sized and space-optimized instant

snapshots, which are online and off-host point-in-time

copy solutions.

Volume snapshots

Separately licensed, optional feature that performs

quick and efficient resynchronization of stale mirrors.

FastResync is included with the Enterprise Edition and

is also included as part of the Veritas FlashSnap option

with the Standard Edition.

FastResync

13Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

Table 1-1 Veritas Volume Manager features (continued)

BenefitFeature

Separately licensed, optional feature that supports

general disk group reorganization and allows you to

move volume snapshots to another host for off-host

backup.

Disk group split and join is included with the Enterprise

Edition and is also included as part of the Veritas

FlashSnap option with the Standard Edition.

Disk group split and join

Automatically restores data redundancy in mirrored

and RAID-5 volumes when a disk fails.

Hot-relocation

Allows for transparent failover, load sharing, and hot

plugging of physical disks.

Dynamic multipathing (DMP)

Allows several volumes to be represented by a single

logical mount device.

Volume sets

Allows you to resize a disk after it has been initialized

while preserving the existing data on the disk.

Dynamic LUN Expansion

Helps diagnose configuration problems with VxVM.Storage Expert

Separately licensed, optional feature that allows you

to use VxVM in a cluster environment.

Cluster Volume Manager (CVM)

Separately licensed, optional feature that provides data

replication for disaster recovery solutions.

Veritas Volume Replicator (VVR)

Simplifies administration and provides flexible use of

available hardware.

Free space pool management

Allows configuration changes without system or

database down time.

Online administration

For a more detailed description of VxVM and its features, refer to the Veritas

VolumeManager Administrator’s Guide.

About volumes

A volume is a virtual disk device that appears to applications, databases, and file

systems like a physical disk partition without the physical limitations of a disk

partition. A volume consists of one or more plexes, each holding a copy of the

selected data in the volume. Due to its virtual nature, a volume is not restricted

Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

14

to a particular disk or a specific area of a disk. For example, a volume can span

multiple disks and can be used to create a large file system.

Volumes consist of other virtual objects that can be manipulated to change the

volume's configuration. Volumes and their virtual components are referred to as

Volume Manager objects. You can manipulate Veritas Volume Manager objects

in a variety of ways to optimize performance, provide redundancy of data, and

perform backups or other administrative tasks on one or more physical disks

without interrupting applications. As a result, data availability and disk subsystem

throughput are improved.

You can change the configuration of a volume without causing disruption to

databases or file systems that are using the volume. For example, you can mirror

a volume on separate disks or move the volume to use different disk storage.

About disk groups

A disk group is a collection of disks that share a common configuration (for

example, configuration objects that belong to a single database). We recommend

creating one disk group for each database.

You can move a disk group and its components as a unit from one host to another

host. For example, you can move volumes and file systems that belong to the same

database and are created within one disk group as a unit. You must configure a

given volume from disks belonging to one disk group.

In releases before Veritas Storage Foundation 4.0 for Sybase, the default disk

group was rootdg. For VxVM to function, the rootdg disk group had to exist and

it had to contain at least one disk. This requirement no longer exists, and VxVM

can work without any disk groups configured (although you must set up at least

one disk group before you can create any volumes of other VxVM objects).

About volume layouts

A Redundant Array of Independent Disks (RAID) is a disk array in which a group

of disks appears to the system as a single virtual disk or a single volume. VxVM

supports several RAID implementations, as well as spanning.

The following volume layouts are available to satisfy different database

configuration requirements:

■ Spanning and concatenation

■ Striping (RAID-0)

■ Mirroring (RAID-1)

■ Mirrored-Stripe Volumes (RAID-0+1)

15Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

■ Striped-Mirror Volumes (RAID-1+0)

■ RAID-5

Caution: Spanning or striping a volume across multiple disks increases the

chance that a disk failure will result in failure of that volume. Use mirroring

or RAID-5 to substantially reduce the chance of a single volume failure caused

by a single disk failure.

How spanning and concatenation work

Concatenation maps data in a linear manner onto one or more subdisks in a plex.

To access all of the data in a concatenated plex sequentially, data is first accessed

in the first subdisk from beginning to end. Data is then accessed in the remaining

subdisks sequentially from beginning to end, until the end of the last subdisk.

You can use concatenation with multiple subdisks when there is insufficient

contiguous space for the plex on any one disk. This form of concatenation can be

used for load balancing between disks, and for head movement optimization on

a particular disk.

Concatenation using subdisks that reside on more than one VxVM disk is called

spanning.

Warning: Spanning a plex across multiple disks increases the chance that a disk

failure results in failure of the assigned volume. Use mirroring (RAID-1) or striping

with parity (RAID-5) to reduce the risk that a single disk failure results in a volume

failure.

Spanning is useful when you need to read or write data sequentially (for example,

reading from or writing to database redo logs) and there is not sufficient contiguous

space.

How striping (RAID-0) works

Striping is a technique of mapping data so that the data is interleaved among

multiple physical disks. Data is allocated in equal-sized units (called stripe units)

that are interleaved between the disks. Each stripe unit is a set of contiguous

blocks on a disk. A stripe consists of the set of stripe units at the same position

across all columns. A column is a set of one or more subdisks within a striped

plex.

Striping is useful if you need large amounts of data written to or read from physical

disks, and performance is important. Striping is also helpful in balancing the I/O

Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

16

load from multi-user applications across multiple disks. By using parallel data

transfer to and from multiple disks, striping significantly improves data-access

performance.

When striping across multiple disks, failure of any one disk will make the entire

volume unusable.

How mirroring (RAID-1) works

Mirroring is a technique of using multiple copies of the data, or mirrors, to

duplicate the information contained in a volume. In the event of a physical disk

failure, the mirror on the failed disk becomes unavailable, but the system continues

to operate using the unaffected mirrors. For this reason, mirroring increases

system reliability and availability. A volume requires at least two mirrors to

provide redundancy of data. A volume can consist of up to 32 mirrors. Each of

these mirrors must contain disk space from different disks for the redundancy

to be effective.

How striping plus mirroring (mirrored-stripe or RAID-0+1)
works

VxVM supports the combination of mirroring above striping. The combined layout

is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual benefits

of striping to spread data across multiple disks, while mirroring provides

redundancy of data. For mirroring above striping to be effective, the striped plex

and its mirrors must be allocated from separate disks.

The layout type of the data plexes in a mirror can be concatenated or striped. Even

if only one is striped, the volume is still termed a mirrored-stripe volume. If they

are all concatenated, the volume is termed a mirrored-concatenated volume.

How mirroring plus striping (striped-mirror, RAID-1+0 or
RAID-10) works

VxVM supports the combination of striping above mirroring. This combined layout

is called a striped-mirror layout and mirrors each column of the stripe. If there

are multiple subdisks per column, each subdisk can be mirrored individually

instead of each column. A striped-mirror volume is an example of a layered volume.

Compared to a mirrored-stripe volume, a striped-mirror volume offers the dual

benefits of striping to spread data across multiple disks, while mirroring provides

redundancy of data. A striped-mirror volume enhances redundancy, which makes

it more tolerant of disk failure, and reduces recovery time after disk failure.

For databases that support online transaction processing (OLTP) workloads, we

recommend either mirrored-stripe or striped-mirror volumes to improve database

17Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

performance and reliability. For highest availability, we recommend striped-mirror

volumes (RAID 1+0).

How striping with parity (RAID-5) works

RAID-5 provides data redundancy through the use of parity (a calculated value

that the system uses to reconstruct data after a failure). While data is written to

a RAID-5 volume, parity is also calculated by performing an exclusive OR (XOR)

procedure on data. The resulting parity is then written to another part of the

volume. If a portion of a RAID-5 volume fails, the data that was on that portion

of the failed volume can be recreated from the remaining data and the parity.

RAID-5 offers data redundancy similar to mirroring, while requiring less disk

space. RAID-5 read performance is similar to that of striping but with relatively

slow write performance. RAID-5 is useful if the database workload is read-intensive

(as in many data warehousing applications). You can snapshot a RAID-5 volume

and move a RAID-5 subdisk without losing redundancy.

About online relayout

As databases grow and usage patterns change, online relayout lets you change

volumes to a different layout, with uninterrupted data access. Relayout is

accomplished online and in place. Use online relayout to change the redundancy

or performance characteristics of the storage, such as data organization (RAID

levels), the number of columns for RAID-5 and striped volumes, and stripe unit

size.

About volume resynchronization

When storing data redundantly, using mirrored or RAID-5 volumes, Veritas

Volume Manager ensures that all copies of the data match exactly. However, if

the system crashes, small amounts of the redundant data on a volume can become

inconsistent or unsynchronized. For mirrored volumes, unsynchronized data can

cause two reads from the same region of the volume to return different results if

different mirrors are used to satisfy the read request. In the case of RAID-5

volumes, unsynchronized data can lead to parity corruption and incorrect data

reconstruction.

In the event of a system crash, Veritas Volume Manager ensures that all mirrors

contain exactly the same data and that the data and parity in RAID-5 volumes

agree. This process is called volume resynchronization. Not all volumes require

resynchronization after a system failure. VxVM notices when a volume is first

written and marks it as dirty. Only volumes that are marked dirty when the system

reboots require resynchronization.

Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

18

The process of resynchronization can impact system and database performance.

However, it does not affect the availability of the database after system reboot.

You can immediately access the database after database recovery although the

performance may suffer due to resynchronization. For very large volumes or for

a very large number of volumes, the resynchronization process can take a long

time. You can significantly reduce resynchronization time by using Dirty Region

Logging (DRL) for mirrored volumes or by making sure that RAID-5 volumes have

valid RAID-5 logs. However, using logs can slightly reduce the database write

performance.

For most database configurations, we recommend using dirty region logs or the

RAID-5 logs when mirrored or RAID-5 volumes are used. It is also advisable to

evaluate the database performance requirements to determine the optimal volume

configurations for the databases.

About dirty region logging

Dirty region logging (DRL), if enabled, speeds the recovery of mirrored volumes

after a system crash. DRL keeps track of the regions that have changed due to I/O

writes to a mirrored volume. DRL uses this information to recover only those

portions of the volume that need to be recovered.

Note: If a version 20 data change object (DCO) volume is associated with a volume,

a portion of the DCO volume can be used to store the DRL log. There is no need

to create a separate DRL log for a volume that has a version 20 DCO volume.

For more information on DCOs and DCO volumes, see theVeritasVolumeManager

Administrator's Guide.

About volume sets

Volume sets are an enhancement to VxVM that allow several volumes to be

represented by a single logical mount device. All I/O from and to the underlying

volumes is directed via the I/O interfaces of the volume set. The volume set feature

supports the multi-device enhancement to Veritas File System (VxFS). This feature

allows file systems to make best use of the different performance and availability

characteristics of the underlying volumes. For example, file system metadata

could be stored on volumes with higher redundancy, and user data on volumes

with better performance.

19Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

About volume snapshots

A volume snapshot is a point-in-time image of a volume. Veritas Volume Manager

provides three volume snapshot features based on disk mirroring:

■ Full-sized instant snapshots

■ Space-optimized instant snapshots

■ Emulation of third-mirror snapshots

About Veritas FastResync

Veritas FastResync (previously called Fast Mirror Resynchronization or FMR) is

included with the Enterprise Edition. It is also included as part of the Veritas

FlashSnap option with the Standard Edition.

Veritas FastResync performs quick and efficient resynchronization of stale mirrors

(mirrors that are not synchronized). This increases the efficiency of the VxVM

snapshot mechanism, and improves the performance of operations such as backup

and decision support. Typically, these operations require that the volume is

quiescent, and that they are not impeded by updates to the volume by other

activities on the system. To achieve these goals, the snapshot mechanism in VxVM

creates an exact copy of a primary volume at an instant in time. After a snapshot

is taken, it can be accessed independently of the volume from which it was taken.

How non-persistent FastResync works

Non-persistent FastResync allocates its change maps in memory. If non-persistent

FastResync is enabled, a separate FastResync map is kept for the original volume

and for each snapshot volume. Unlike a dirty region log (DRL), these maps do not

reside on disk nor in persistent store. The advantage is that updates to the

FastResync map have little impact on I/O performance, as no disk updates need

to be performed. However, if a system is rebooted, the information in the map is

lost, so a full resynchronization is required when performing a snapback operation.

This limitation can be overcome for volumes in cluster-shareable disk groups,

provided that at least one of the nodes in the cluster remains running to preserve

the FastResync map in its memory.

How persistent FastResync works

Non-persistent FastResync has been augmented by the introduction of persistent

FastResync. Unlike non-persistent FastResync, Persistent FastResync keeps the

FastResync maps on disk so that they can survive system reboots and system

crashes. When the disk groups are rejoined, this allows the snapshot plexes to be

quickly resynchronized. This ability is not supported by non-persistent FastResync.

Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

20

If persistent FastResync is enabled on a volume or on a snapshot volume, a DCO

and a DCO log volume are associated with the volume.

The DCO object is used not only to manage FastResync maps, but also to manage

DRL recovery maps and special maps called copy maps that allow instant snapshot

operations to be resume following a system crash.

Persistent FastResync can also track the association between volumes and their

snapshot volumes after they are moved into different disk groups. When the disk

groups are rejoined, this allows the snapshot plexes to be quickly resynchronized.

This ability is not supported by non-persistent FastResync.

About disk group split and join

Disk group split and join is included with the Enterprise Edition. It is also included

as part of the Veritas FlashSnap option with the Standard Edition.

VxVM provides a disk group content reorganization feature that supports general

disk group reorganization and allows you to move volume snapshots to another

host for off-host backup. Additional options to the vxdg command enable you to

take advantage of the ability to remove all VxVM objects from an imported disk

group and move them to a newly created target disk group (split), and to remove

all VxVM objects from an imported disk group and move them to an imported

target disk group (join). The move operation enables you to move a self-contained

set of VxVM objects between the imported disk groups.

About hot-relocation

In addition to providing volume layouts that help improve database performance

and availability, VxVM offers features that you can use to further improve system

availability in the event of a disk failure. Hot-relocation is a feature that allows a

system to react automatically to I/O failures on mirrored or RAID-5 volumes and

restore redundancy and access to those volumes.

VxVM detects I/O failures on volumes and relocates the affected portions to disks

designated as spare disks or free space within the disk group. VxVM then

reconstructs the volumes that existed before the failure and makes them redundant

and accessible again.

The hot-relocation feature is enabled by default and is recommended for most

database configurations. After hot-relocation occurs, we recommend verifying

the volume configuration for any possible performance impact. It is also a good

idea to designate additional disks as spares to augment the spare pool.

21Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

While a disk is designated as a spare, you cannot use the space on that disk for

the creation of VxVM objects within its disk group. VxVM also lets you free a spare

disk for general use by removing it from the pool of hot-relocation disks.

About DMP-supported disk arrays

VxVM provides administrative utilities and driver support for disk arrays that

can take advantage of its Dynamic Multipathing (DMP) feature. Some disk arrays

provide multiple ports to access their disk devices. These ports, coupled with the

host bus adaptor (HBA) controller and any data bus or I/O processor local to the

array, make up multiple hardware paths to access the disk devices. Such disk

arrays are called multipathed disk arrays. This type of disk array can be connected

to host systems in many different configurations, (such as multiple ports connected

to different controllers on a single host, chaining of the ports through a single

controller on a host, or ports connected to different hosts simultaneously). DMP

is available for multiported disk arrays from various vendors and provides

improved reliability and performance by using path failover and load balancing.

See the Veritas VolumeManager Administrator's Guide.

See the Veritas VolumeManager Hardware Notes.

About dynamic LUN expansion

Dynamic LUN expansion allows you to resize a disk after it has been initialized

while preserving the existing data on the disk.

See the Veritas VolumeManager Administrator's Guide.

About Storage Expert

Storage Expert consists of a set of simple commands that collect VxVM

configuration data and compare it with “best practice.” Storage Expert then

produces a summary report that shows which objects do not meet these criteria

and makes recommendations for VxVM configuration improvements.

These user-configurable tools help you as an administrator to verify and validate

systems and non-optimal configurations in both small and large VxVM

installations.

Storage Expert components include a set of rule scripts and a rules engine. The

rules engine runs the scripts and produces ASCII output, which is organized and

archived by Storage Expert's report generator. This output contains information

about areas of VxVM configuration that do not meet the set criteria. By default,

output is sent to the screen, but you can redirect it to a file using standard UNIX

redirection.

Introducing Veritas Storage Foundation for Sybase
How Veritas Volume Manager works

22

See the Veritas VolumeManager Administrator's Guide.

About cluster functionality (optional)

VxVM includes an optional, separately licensable clustering feature, known as

Cluster Volume Manager, that enables VxVM to be used in a cluster environment.

With the clustering option, VxVM supports up to 16 nodes per cluster.

See the Veritas VolumeManager Administrator's Guide.

About Veritas Volume Replicator (optional)

Veritas Volume Replicator (VVR) is an optional, separately licensable feature of

VxVM. VVR is a data replication tool designed to maintain a consistent copy of

application data at a remote site. It is built to contribute to an effective disaster

recovery plan. If the data center is destroyed, the application data is immediately

available at the remote site, and the application can be restarted at the remote

site.

VVR works as a fully integrated component of VxVM. VVR benefits from the

robustness, ease of use, and high performance of VxVM and, at the same time,

adds replication capability to VxVM. VVR can use existing VxVM configurations

with some restrictions. Any application, even with existing data, can be configured

to use VVR transparently.

See the Veritas Volume Replicator documentation.

How Veritas File System works
Veritas File System (referred to as VxFS) is an extent-based, intent logging file

system intended for use in UNIX environments that deal with large volumes of

data and that require high file system performance, availability, and manageability.

VxFS also provides enhancements that make file systems more viable in database

environments.

The following sections provide a brief overview of VxFS concepts and features

that are relevant to database administration.

See the Veritas File System Administrator's Guide.

About Veritas Quick I/O

Databases can run on either file systems or raw devices. Database administrators

often create their databases on file systems because it makes common

administrative tasks (such as moving, copying, and backing up) easier. However,

23Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

running databases on most file systems significantly reduces database

performance.

When performance is an issue, database administrators create their databases

on raw devices. VxFS with Quick I/O presents regular, preallocated files as raw

character devices to the application. Using Quick I/O, you can enjoy the

management advantages of databases created on file systems and achieve the

same performance as databases created on raw devices.

Prior to Sybase ASE 12.0, Sybase did not recommend placing database devices on

UNIX file systems (UFS for VFS) because of data integrity concerns. Writes to UFS

or VFS files are buffered by the file system; therefore, Sybase dataservers would

not know when an update was reflected on the physical media. Data integrity of

Sybase databases using UFS or VFS files is questionable under certain system

failure scenarios.

VxFS allows a regular, pre-allocated file to be accessed as a raw device using the

Quick I/O interface. Using Quick I/O files not only eliminates any data integrity

concerns related to running Sybase on file systems, but also improves overall

performance for Sybase servers.

Beginning with Sybase ASE 12.0, placing database devices on UFS or VFS files is

fully supported. Sybase uses the UNIX O_DSYNC flag when opening a UFS or VFS

file for a database device. Writes to a UFS or VFS file opened with the O_DSYNCflag

occur directly on the physical storage media. Sybase ASE 12.x can recover data

on the UFS or VFS files in the event of a system failure. Although Sybase supports

UFS or VFS files as its database devices in 12.x, using Quick I/O eliminates the

potential performance problems caused by file-level locking and extra memory

copying when writing to a file.

See “About Quick I/O” on page 57.

About Veritas Cached Quick I/O

Cached Quick I/O allows databases to make more efficient use of large system

memory while still maintaining the performance benefits of Quick I/O. Cached

Quick I/O provides an efficient, selective buffering mechanism to back

asynchronous I/O. Using Cached Quick I/O, you can enjoy all the benefits of Quick

I/O and achieve even better performance.

Cached Quick I/O is first enabled for the file system and then enabled on a per file

basis.

See “About Cached Quick I/O” on page 79.

Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

24

About Veritas Concurrent I/O

Veritas Concurrent I/O improves the performance of regular files on a VxFS file

system without the need for extending namespaces and presenting the files as

devices. This simplifies administrative tasks and allows databases, which do not

have a sequential read/write requirement, to access files concurrently.

Veritas Concurrent I/O allows for concurrency between a single writer and multiple

readers or between multiple writers. It minimizes serialization for extending

writes and sends I/O requests directly to file systems.

See “About Concurrent I/O” on page 93.

About extent-based allocation

The UFS file system supplied with Solaris uses block-based allocation schemes

that provide good random access to files and acceptable latency on small files.

For larger files, such as database files, this block-based architecture limits

throughput. This limitation makes the UFS file system a less than optimal choice

for database environments.

When storage is allocated to a file on a VxFS file system, it is grouped in extents,

as opposed to being allocated a block at a time as with the UFS file system.

By allocating disk space to files in extents, disk I/O to and from a file can be done

in units of multiple blocks. This type of I/O can occur if storage is allocated in

units of consecutive blocks. For sequential I/O, multiple block operations are

considerably faster than block-at-a-time operations. Almost all disk drives accept

I/O operations of multiple blocks.

The VxFS file system allocates disk space to files in groups of one or more extents.

VxFS also allows applications to control some aspects of the extent allocation for

a given file. Extent attributes are the extent allocation policies associated with a

file.

See “Preallocating space for Quick I/O files using the setext command” on page 61.

About fast file system and database recovery

Veritas File System begins recovery procedures within seconds after a system

failure by using a tracking feature called intent logging. This feature records

pending changes to the file system structure in a circular intent log. The intent

log recovery feature is not readily apparent to users or a system administrator

except during a system failure. During system failure recovery, the VxFS fsck

utility performs an intent log replay, which scans the intent log and nullifies or

completes file system operations that were active when the system failed. The

file system can then be mounted without completing a full structural check of the

25Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

entire file system. Replaying the intent log may not completely recover the

damaged file system structure if there was a disk hardware failure; hardware

problems may require a complete system check using the fsck utility provided

with Veritas File System.

About online system administration

The VxFS file system provides online system administration utilities to help

resolve certain problems that impact database performance. You can defragment

and resize a VxFS file system while it remains online and accessible to users.

How the defragmentation utility works

Free resources are originally aligned in the most efficient order possible and are

allocated to files in a way that is considered by the system to provide optimal

performance. When a file system is active for extended periods of time, new files

are created, old files are removed, and existing files grow and shrink. Over time,

the original ordering of free resources is lost and the file system tends to spread

across the disk, leaving unused gaps or fragments between areas that are in use.

This process, known as fragmentation, leads to degraded performance because

the file system has fewer choices when selecting an extent (a group of contiguous

data blocks) to assign to a file. You should analyze the degree of fragmentation

before creating new database files.

VxFS provides the online administration utility fsadm to resolve fragmentation

problems. The utility can be run on demand and should be scheduled regularly

as a cron job.

How the resizing utility works

Changes in database size can result in file systems that are too large or too small

for the current database. Without special utilities, expanding or shrinking a file

system becomes a a matter of stopping applications, offloading the contents of

the file system, rebuilding the file system to a new size, and then restoring the

data. Data is unavailable to users while these administrative tasks are performed.

The VxFS file system utility fsadm provides a mechanism to resize file systems

without unmounting them or interrupting users' productivity. Because the VxFS

file system can only be mounted on one device, expanding a file system means

that the underlying device must also be expandable while the file system is

mounted. Working with VxVM, VxFS provides online expansion capability.

Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

26

About cross-platform data sharing

Veritas Cross-Platform Data Sharing allows data to be serially shared among

heterogeneous systems where each system has direct access to the physical devices

that hold the data. This feature can be used only in conjunction with Veritas

Volume Manager. Shared or parallel access is possible for read-only data.

See the Veritas Storage Foundation Cross-Platform Data Sharing Administrator's

Guide.

Support for multi-volume file systems

The multi-volume file system (MVS) feature allows several volumes to be

represented by a single logical object. All I/O to and from an underlying logical

volume is directed by way of volume sets. A volume set is a container for multiple

different volumes. This feature can be used only in conjunction with Veritas

Volume Manager.

About Quality of Storage Service (optional)

The Quality of Storage Service (QoSS) feature is included with the Enterprise

Edition.

The QoSS option is built on the multi-volume support technology introduced in

this release. Using QoSS, you can map more than one device to a single file system.

You can then configure policies that automatically relocate files from one device

to another, or relocate files by running file relocation commands. Having multiple

devices lets you determine where files are located, which can improve performance

for applications that access specific types of files and reduce storage-related costs.

Database Dynamic Storage Tiering is built on top of QoSS and automates the

migration process for Sybase database objects.

Support for large file systems and large files (optional)

Support for large file systems is included with the Enterprise Edition.

In conjunction with VxVM, VxFS can support file systems up to 8 exabytes in size.

You have the option of creating a file system using:

■ Version 4 disk layout, which supports file systems up to one terabyte. The

Version 4 disk layout encompasses all file system structural information in

files, rather than at fixed locations on disk, allowing for greater scalability.

■ Version 5, which supports file systems up to 32 terabytes. Files can be a

maximum of two terabytes. File systems larger than one terabyte must be

created on a Veritas Volume Manager volume.

27Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

■ Version 6, which supports file systems up to 8 exabytes. The Version 6 disk

layout enables features such as multi-device support, Cross-Platform Data

Sharing, named data streams, file change log. File systems created on VxFS

4.1 will by default use the Version 6 disk layout. An online conversion utility,

vxupgrade, is provided to upgrade existing disk layouts to Version 6 on mounted

file systems.

For large database configurations, this eliminates the need to use multiple file

systems because of the size limitations of the underlying physical devices.

Changes implemented with the VxFS Version 4 disk layout have greatly expanded

file system scalability, including support for large files.

You can create or mount file systems with or without large files by specifying

either the largefiles or nolargefiles option in mkfs or mount commands.

See “Creating a VxFS file system ” on page 41.

About restoring file systems using Storage Checkpoints

Storage Checkpoints can be used by backup and restore applications to restore

either individual files or an entire file system. Restoring from Storage Checkpoints

can recover data from incorrectly modified files, but typically cannot be used to

recover from hardware damage or other file system integrity problems. File

restoration can be done using the fsckpt_restore(1M) command.

See the Veritas File System Administrator's Guide.

About quotas

VxFS supports quotas, which allocate per-user and per-group quotas and limit

the use of two principal resources: files and data blocks. You can assign quotas

for each of these resources.

Each quota consists of two limits for each resource:

■ The hard limit represents an absolute limit on data blocks or files. A user can

never exceed the hard limit under any circumstances.

■ The soft limit is lower than the hard limit and can be exceeded for a limited

amount of time. This allows users to temporarily exceed limits as long as they

fall under those limits before the allotted time expires.

You can use quotas to limit the amount of file system space used by Storage

Checkpoints.

See the Veritas File System Administrator's Guide.

Introducing Veritas Storage Foundation for Sybase
How Veritas File System works

28

About cluster functionality (optional)

File system clustering is an optional, separately licensed feature of VxFS, where

one system is configured as a primary server for the file system, and the other

members of a cluster are configured as secondaries. All servers access shared

disks for file data operations. If the primary server fails, one of the secondary

servers takes over the file system operations.

See the Veritas File System Administrator's Guide.

About Veritas Storage Foundation/High Availability
for Sybase (optional)

Veritas Storage Foundation/High Availability (HA) (VCS) lets database

administrators implement Sybase dataservers in a high availability configuration

that can significantly reduce the down time of Sybase databases caused by a system

hardware or software failure.

In addition to the Veritas products included in the base Veritas Storage Foundation

for Sybase, Veritas Storage Foundation/HA for Sybase incorporates the following

products:

■ Veritas Cluster Server ™ (VCS) for Sybase

■ Veritas Cluster Server™ (VCS) Enterprise Agent for Sybase

VCS can be configured to perform faster failover using the Adaptive Server

Enterprise (ASE) Companion Server. The agent for this configuration is available

from Sybase.

Note: Veritas Storage Foundation/HA (VCS) for Sybase is available only for the

Enterprise Edition.

29Introducing Veritas Storage Foundation for Sybase
About Veritas Storage Foundation/High Availability for Sybase (optional)

Introducing Veritas Storage Foundation for Sybase
About Veritas Storage Foundation/High Availability for Sybase (optional)

30

Setting up dataservers

This chapter includes the following topics:

■ Tasks for setting up new databases

■ About setting up a disk group

■ Creating a disk group

■ Adding disks to a disk group

■ About selecting a volume layout

■ Creating a volume

■ Creating a volume set

■ Adding a volume to a volume set

■ File system creation guidelines

■ Creating a VxFS file system

■ Mounting a file system

■ Unmounting a file system

■ About fragmentation

■ Resizing a file system

■ About Quick I/O

Tasks for setting up new databases
If you are using Veritas Storage Foundation for Sybase to set up a new database,

complete these tasks in the order listed below:

2Chapter

See the Veritas File System Administrator's

Guide.

Determine the number and sizes of file

systems you need for the database you want

to create.

Create volumes to meet your file system

needs. You can use disk mirroring as a

safeguard against disk failures and striping

for better performance.

See “File system creation guidelines”

on page 40.

See “Creating a VxFS file system ” on page 41.

Create the VxFS file systems you need on the

volumes.

Install and configure your database.

You must create Quick I/O files before

creating the tablespaces.

See the Veritas VolumeManager

Administrator's Guide.

If you want to use Database FlashSnap for

off-host processing after converting your

database files to use Quick I/O or ODM and

your volume layout is inconsistent with

Database FlashSnap requirements, you will

need to “relayout” your volume manager

configuration after your database files have

been converted.

See “Converting Sybase files to Quick I/O

files” on page 67.

If you are using Quick I/O, convert all

database files to Quick I/O files.

See the Veritas Storage Foundation for

Sybase Installation Guide.

If you are not currently running on VxVM

and VxFS, make sure Veritas Storage

Foundation for Sybase is installed and

convert your existing database

configuration.

About setting up a disk group
Before creating file systems for a database, set up a disk group for each Sybase

dataserver.

A disk group lets you group disks, volumes, file systems, and files that are relevant

to a single database into a logical collection for easy administration. Because you

can move a disk group and its components as a unit from one machine to another,

you can move an entire database when all the configuration objects of the database

are in one disk group. This capability is useful in a failover situation.

Setting up dataservers
About setting up a disk group

32

Disk group configuration guidelines

Follow these guidelines when setting up disk groups:

■ Only disks that are online and do not already belong to a disk group can be

used to create a new disk group.

■ Create one disk group for each Sybase ASE server.

■ The disk group name must be unique. Name each disk group using the Sybase

dataserver name this disk group belongs to and a dg suffix. The dataserver

name is the name of the Sybase server as defined in the Sybase interface file.

The dg suffix helps identify the object as a disk group. Also, each disk name

must be unique within the disk group.

■ Never create database devices for a dataserver using file systems or volumes

that are not in the same disk group.

In earlier releases of Veritas Volume Manager, a system installed with VxVM was

configured with a default disk group, rootdg, that had to contain at least one disk.

VxVM can now function without any disk group having been configured. Only

when the first disk is placed under VxVM control must a disk group be configured.

Note: Most VxVM commands require superuser or equivalent privileges.

See “About tuning VxVM ” on page 147.

Creating a disk group
You can use the vxdg command to create a new disk group. A disk group must

contain at least one disk at the time it is created. You also have the option to create

a shared disk group for use in a cluster environment.

Disks must be placed in disk groups before they can be used by VxVM. You can

create disk groups to organize your disks into logical sets of disks.

Before creating a disk group, make sure the following conditions have been met:

■ Only disks that are online and do not belong to a disk group can

be used to create a disk group.

■ The disk group name must be unique in the host or cluster.

■ Creating a disk group requires at least one disk.

Prerequisites

33Setting up dataservers
Creating a disk group

■ Veritas Storage Foundation for Sybase only supports single disk

groups.

■ New disks must be placed under VxVM control and then added to

a dynamic disk group before they can be used for volumes.

■ When you place a disk under VxVM control, the disk is either

encapsulated or initialized. Encapsulation preserves any existing

data on the disk in volumes. Initialization destroys any existing

data on the disk.

■ If you place the root disk under VxVM control, you must

encapsulate the disk. If you want to create an alternate boot disk,

you can mirror the encapsulated root disk.

■ For information on the vxdg command, see the vxdg(1M) manual

page.

Usage notes

To create a new disk group

◆ Use the vxdg command as follows:

/opt/VRTS/bin/vxdg init disk_group [disk_name=disk_device]

The following is an example of creating a disk group using the vxdg command:

To create a disk group named PRODdg on a raw disk partition c1t1d0s2, where the

disk name PRODdg01 references the disk within the disk group:

/opt/VRTS/bin/vxdg init PRODdg PRODdg01=c1t1d0s2

Adding disks to a disk group
When a disk group is first created, it can contain only a single disk. You may need

to add more disks to the disk group. Before adding disks, make sure the following

conditions have been met:

Setting up dataservers
Adding disks to a disk group

34

■ When you place a disk under VxVM control, the disk is

either encapsulated or initialized. Encapsulation

preserves any existing data on the disk in volumes.

Initialization destroys any existing data on the disk.

■ If you place the boot disk under VxVM control, you must

encapsulate it. If you want to create an alternate boot

disk, you can mirror the encapsulated boot disk.

■ Boot disk encapsulation requires a system reboot.

■ Disks cannot be added to deported disk groups.

■ Disks must be under VxVM control and in a disk group

before they can be used to create volumes.

■ Disks must be online before they can be added to a disk

group.

■ Disks that already belong to a disk group cannot be added

to another disk group.

Usage notes

To add disks to a disk group

◆ Use the vxdg command as follows:

/opt/VRTS/bin/vxdg -g disk_group adddisk \

[disk_name=disk_device]

The following is an example of adding disks to a disk group using the vxdg

command:

To add disks named PRODdg02, PRODdg03, and PRODdg04 to the disk group PRODdg:

/opt/VRTS/bin/vxdg -g PRODdg adddisk PRODdg02=c1t2d0s2

/opt/VRTS/bin/vxdg -g PRODdg adddisk PRODdg03=c1t3d0s2

/opt/VRTS/bin/vxdg -g PRODdg adddisk PRODdg04=c1t4d0s2

About selecting a volume layout
Veritas Volume Manager offers a variety of layouts that allow you to configure

your database to meet performance and availability requirements. The proper

selection of volume layouts provides optimal performance for the database

workload.

An important factor in database performance is the segment placement on the

disks.

Disk I/O is one of the most important determining factors of your database's

performance. Having a balanced I/O load usually means optimal performance.

35Setting up dataservers
About selecting a volume layout

Designing a disk layout for the database objects to achieve balanced I/O is a crucial

step in configuring a database.

Sybase maps each physical file or raw device to its database devices. Devices are

grouped into segments; tables are created on segments. When deciding which

devices to put in a segment, it is often difficult to anticipate future usage patterns.

VxVM provides flexibility in configuring storage for the initial database set up

and for continual database performance improvement as needs change. VxVM

can split volumes across multiple drives to provide a finer level of granularity in

data placement. By using striped volumes, I/O can be balanced across multiple

disk drives. For most databases, ensuring that different database devices are

distributed across the available disks may be sufficient.

Striping also helps sequential table scan performance. When a table is created on

a segment containing database devices striped across multiple disks, a high

transfer bandwidth can be achieved.

See “About tuning VxVM ” on page 147.

How to choose appropriate stripe unit sizes

When creating a striped volume, you need to decide the number of columns to

form a striped volume and the stripe unit size. You also need to decide how to

stripe the volume. You may stripe a volume across multiple disk drives on the

same controller or across multiple disks on multiple controllers. By striping across

multiple controllers, disk I/O can be balanced across multiple I/O channels. The

decision is based on the disk and controller bandwidth and the database workload.

In general, for most OLTP databases, use the default stripe unit size of 64 K or

smaller for striped volumes and 16 K for RAID-5 volumes.

How to choose between mirroring and RAID-5

VxVM provides two volume configuration strategies for data redundancy:

mirroring and RAID-5. Both strategies allow continuous access to data in the event

of disk failure. For most database configurations, we recommend using mirrored,

striped volumes. If hardware cost is a significant concern, but having higher data

availability is still important, use RAID-5 volumes.

RAID-5 configurations have certain performance implications you must consider.

Writes to RAID-5 volumes require parity-bit recalculation, which adds significant

I/O and CPU overhead. This overhead can cause considerable performance

penalties in online transaction processing (OLTP) workloads. If the database has

a high read ratio, however, RAID-5 performance is similar to that of a striped

volume.

Setting up dataservers
About selecting a volume layout

36

Volume configuration guidelines

Follow these guidelines when selecting volume layouts:

■ Put the database log files on a file system created on a striped and mirrored

(RAID-0+1) volume separate from the index or data segments. Stripe multiple

devices to create larger volumes if needed. Use mirroring to improve reliability.

Do not use VxVM RAID-5 for transaction logs.

■ When normal system availability is acceptable, put the segments on file systems

created on striped volumes for most OLTP workloads.

■ It is generally good practice to place frequently used databases such as

tempdband sybsystemprocson striped devices.

■ Put log segment and default segment for each database on different volumes.

■ When normal system availability is acceptable, create a segment that contains

database devices using Quick I/O files in file systems created on striped volumes

for most OLTP workloads.

■ Create striped volumes across at least four disks. Try to stripe across disk

controllers. For sequential scans, do not stripe across too many disks or

controllers. The single thread that processes sequential scans may not be able

to keep up with the disk speed.

■ For most workloads, use the default 64 K stripe-unit size for striped volumes

and 16 K for RAID-5 volumes.

■ When system availability is critical, use mirroring for most write-intensive

OLTP workloads. Turn on Dirty Region Logging (DRL) to allow fast volume

resynchronization in the event of a system crash.

■ When system availability is critical, use RAID-5 for read-intensive OLTP

workloads to improve database performance and availability. Use RAID-5 logs

to allow fast volume resynchronization in the event of a system crash.

■ For most decision support system (DSS) workloads, where sequential scans

are common, experiment with different striping strategies and stripe-unit

sizes. Put the most frequently accessed tables or tables that are accessed

together on separate striped volumes to improve the bandwidth of data transfer.

See “About tuning VxVM ” on page 147.

Creating a volume
Veritas Volume Manager uses logical volumes to organize and manage disk space.

A volume is made up of portions of one or more physical disks, so it does not have

the limitations of a physical disk.

37Setting up dataservers
Creating a volume

For databases where the data storage needs to be resilient and the data layout

needs to be optimized for maximum performance, we recommend using VxVM.

The striping and mirroring capabilities offered by a volume manager will help

you achieve your manageability, availability, and performance goals.

After you decide on a volume layout, you can use the vxassist command to create

the volume.

Before creating a volume, make sure the following conditions are met:

■ Creating a volume requires a disk group name, volume name,

volume size, and volume layout. You will also need to know subdisk

names if you are creating a striped volume.

■ Striped or mirrored volumes require at least two disks.

■ Striped pro and concatenated pro volumes are mirrored by default,

so a striped pro volume requires more disks than an unmirrored

striped volume and a concatenated pro volume requires more disks

than an unmirrored concatenated volume.

■ You cannot use a striped pro or concatenated pro volume for a

root or swap volume.

■ A RAID-5 volume requires at least three disks. If RAID-5 logging

is enabled, a RAID-5 volume requires at least four disks.

RAID-5 mirroring is not supported.

Usage notes

To create a volume

◆ Use the vxassist command as follows:

/opt/VRTS/bin/vxassist -g disk_group make volume_name \

size disk_name

The following is an example of creating a volume using the vxassist

command:

To create a 1 GB mirrored volume called db01 on the PRODdg disk group:

/opt/VRTS/bin/vxassist -g PRODdg make db01 1g PRODdg01

Creating a volume set
Volume Sets enable the use of the Multi-Volume Support feature with Veritas File

System (VxFS). It is also possible to use the Veritas Enterprise Administrator

(VEA) to create and administer volumes sets. For more information, see the VEA

online help.

Before creating a volume set, make sure the following conditions are met:

Setting up dataservers
Creating a volume set

38

■ Before creating a volume set, you must have at least one volume

created.

See “Creating a volume ” on page 37.

■ A maximum of 256 volumes may be configured in a volume set.

■ Only Veritas File System is supported on a volume set.

■ The first volume in a volume set must be larger than 20MB.

■ Raw I/O from and to a volume set is not supported.

■ Volume sets can be used instead of volumes with the following

vxsnap operations on instant snapshots: addmir, dis, make,

prepare, reattach, refresh, restore, rmmir, split,

syncpause, syncresume, syncstart, syncstop, syncwait,

and unprepare. The third-mirror break-off usage model for

full-sized instant snapshots is supported for volume sets provided

that sufficient plexes exist for each volume in the volume set.

See the Veritas VolumeManager Administrator's Guide.

■ Most VxVM commands require superuser or equivalent privileges.

■ For details regarding usage of the vxvset command, see the

vxvset(1M) manual page.

Usage notes

To create a volume set for use by Veritas file system (VxFS)

◆ Use the following command:

/opt/VRTS/bin/vxvset [-g diskgroup] -t vxfs make volset volume

where:

■ volset is the name of the volume set

■ volume is the name of the first volume in the volume set

■ -t defines the content handler subdirectory for the application that is to

be used with the volume. This subdirectory contains utilities that an

application uses to operate on the volume set. The operation of these

utilities is determined by the requirements of the application and not by

VxVM.

For example, to create a volume set named db01vset that contains the volume

db01, in the disk group PRODdg, you would use the following command:

/opt/VRTS/bin/vxvset -g PRODdg -t vxfs make db01vset db01

Adding a volume to a volume set
After creating a volume set, you can add additional volumes.

39Setting up dataservers
Adding a volume to a volume set

To add a volume to a volume set

◆ Use the vxvset command as follows:

/opt/VRTS/bin/vxvset [-g diskgroup] [-f] addvol volset \

volume

Warning: The -f (force) option must be specified if the volume being added,

or any volume in the volume set, is either a snapshot or the parent of a

snapshot. Using this option can potentially cause inconsistencies in a snapshot

hierarchy if any of the volumes involved in the operation is already in a

snapshot chain.

See the Veritas VolumeManager Administrator's Guide.

For example, to add the volume db02, to the volume set db01vset, use the following

command:

/opt/VRTS/bin/vxvset -g PRODdg addvol db01vset db02

File system creation guidelines
Follow these guidelines when creating VxFS file systems:

■ Specify the maximum block size and log size when creating file systems for

databases.

■ Except for specifying the maximum log size and support for large files as

required, use the VxFS defaults when creating file systems for databases.

■ Never disable the intent logging feature of the file system.

■ For log segments in user databases, use database devices created on file systems

with simple (and mirrored, if necessary) volumes. Put the other database

devices on file systems created on striped, striped and mirrored, or mirrored

and striped volumes.

■ When using the command line, use the mount points to name the underlying

volumes. For example, if a file system named /db01 is to be created on a

mirrored volume, name the volume db01 and the mirrors db01-01 and db01-02

to relate to the configuration objects. If you are using the vxassist command

or the GUI, this is transparent.

■ If Quick I/O is supported, select vxfs as the file system type to take advantage

of the Quick I/O feature, online administration, fast recovery of the VxFS file

system, and superior reliability features.

Setting up dataservers
File system creation guidelines

40

Creating a VxFS file system
Always specify vxfs as the file system type to take advantage of Quick I/O, Storage

Rollback, online administration, fast recovery of the VxFS file system, and superior

reliability features.

You can create a file system on a volume, as long as the volume is large enough

to accommodate the file system. We recommend creating a VxFS file system and

using Quick I/O files as your database devices. Although Sybase ASE 12.0 or later

supports regular UNIX files, using Quick I/O provides better performance.

Note: In earlier Sybase ASE releases, Sybase does not guarantee data integrity if

you use UNIX files as database devices. Use Quick I/O files to guarantee data

integrity.

Before creating a file system, see the following notes:

■ See the mkfs(1M) and mkfs_vxfs(1M) manual pages for more

information about the options and variables available for use with

the mkfs command.

■ See the mount(1M) and mount_vxfs(1M) manual pages for more

information about mount settings.

Usage notes

To create a VxFS file system on an existing volume

◆ Use the mkfs command as follows:

/usr/sbin/mkfs -F vxfs [generic_options] \

[-o specific_options] special [size]

where:

■ vxfs is the file system type

■ generic_options are the options common to most file systems

■ specific_options are options specific to the VxFS file system

■ special is the full path name of the raw character device or VxVM volume

on which to create the file system (for example, /dev/vx/rdsk/PRODdg/

db01)

■ size is the size of the new file system (optional)

If you do not specify size, the file system will be as large as the underlying

volume or device partition.

41Setting up dataservers
Creating a VxFS file system

For example, to create a VxFS file system that has an 8 KB block size and

supports files larger than 2 GB on the newly created db01 volume:

/usr/sbin/mkfs -F vxfs -o largefiles,bsize=8192,\

logsize=2000 /dev/vx/rdsk/PRODdg/db01

The -o largefiles specific option allows you to create files larger than 2

GB.

Note: Because size is not specified in this example, the size of the file system

will be calculated automatically to be the same size as the volume on which

the file system is created.

The mkfs command displays output similar to the following:

version 6 layout

20480 sectors, 10240 blocks of size 1024, log size 1024 blocks

You can now mount the newly created file system.

See “Mounting a file system ” on page 43.

Large file system and large file support

In conjunction with VxVM, VxFS can support file systems up to 8 exabytes in size.

For large database configurations, this eliminates the need to use multiple file

systems because of the size limitations of the underlying physical devices.

Changes implemented with the VxFS Version 6 disk layout have greatly expanded

file system scalability, including support for large files. You can create or mount

file systems with or without large files by specifying either the largefiles or

nolargefiles option in mkfs or mount commands. If you specify the nolargefiles

option, a file system cannot contain files 2 GB or larger.

Before creating a VxFS file system, make sure the following conditions are met:

■ See the mount_vxfs (1M) and mkfs_vxfs (1M) manual pages for

detailed information on mounting and creating file systems.

■ See the fsadm_vxfs (1M) manual pages for detailed information

about large files.

Usage notes

Setting up dataservers
Creating a VxFS file system

42

To enable large files on a file system that was created without the largefiles option

◆ Use the fsadm command as follows:

/opt/VRTS/bin/fsadm -F vxfs -o largefiles \

/mount_point

Note: Make sure the applications and tools you use can handle large files

before enabling the large file capability. Applications and system

administration utilities can experience problems if they are not large file

aware.

Multi-volume support

The multi-volume support feature enabled by VxFS Version 6 disk layout allows

several volumes to be represented by a single logical object, known as a volume

set. The vxvset command can be used to create and administer volume sets in

Veritas Volume Manager.

VxFS's multi-volume support feature can be used with volume sets. There are two

VxFS commands associated with multi-volume support:

■ fsapadm - VxFS allocation policy administration utility

■ fsvoladm - VxFS device administration utility

See the Veritas File System Administrator's Guide.

Mounting a file system
After creating a VxFS file system, mount the file system using the mount command.

By default, the command tries to enable Quick I/O. If Quick I/O is not installed or

licensed, no error messages are displayed unless you explicitly specify the mount

option. If necessary, you can turn the Quick I/O option off at mount time or you

can remount the file system with the option.

Before mounting a file system, make sure the following conditions are met:

■ A file system must exist in order to be mounted.

■ DBAs should log in as the Sybase DBA user.

Prerequisites

43Setting up dataservers
Mounting a file system

■ The mount point must be an absolute path name (that is, it must

begin with /).

■ See themount_vxfs (1M) manual page for more information about

mount settings.

■ See the mount (1M) manual page for more information about

generic mount options.

Usage notes

To mount a file system

◆ Use the mount command as follows:

/usr/sbin/mount -F vxfs [generic_options] [-r] \

[-o specific_options] special /mount_point

where:

■ generic_options are the options common to most file systems

■ -r mounts the file system as read only

■ specific_options are options specific to the VxFS file system

■ special is a block special device

■ /mount_point is the directory where the file system will be mounted

For example, to mount a file system named /db01 that supports large files

on volume /dev/vx/dsk/PRODdg/db01:

mkdir /db01

/usr/sbin/mount -F vxfs -o largefiles /dev/vx/dsk/PRODdg/db01 \

/db01

If you would like /db01 to be mounted automatically after rebooting, add an

entry for it in /etc/fstab as follows:

/dev/vx/dsk/PRODdg/db01 /db01 vxfs largefiles,qio 0 2

If you do not need to use Quick I/O files, set noqio instead of qio as one of

the options.

Unmounting a file system
If you no longer need to access the data in a file system, you can unmount the file

system using the umount command.

Before unmounting a file system, make sure the following conditions have been

met:

Setting up dataservers
Unmounting a file system

44

■ A file system must exist and be mounted in order to be unmounted.Prerequisites

■ You cannot unmount a file system that is in use.

See the umount (1M) manual page for more information on

mounting file systems.

Usage notes

To unmount a file system

1 Use the fuser command to make sure that the file system is not being used:

fuser -c /mount_point

where the -c option provides information on file system mount points and

any files within mounted file systems.

If the file system is being used and you need to unmount it, use the fuser

-ck command. See the fuser(1M) man page for more information.

2 Unmount the file system using one of the umount command options:

■ umount special

■ umount /mount_point

■ umount -f /mount_point

where:

■ special is a block special device

■ /mount_point is the location where the file system is mounted

■ -f forcibly unmounts the mount point

The following is an example of unmounting a file system:

To verify that the file system /db01 is not in use and then unmount the file

system:

fuser -c /db01

/db01:

umount /db01

About fragmentation
When free resources are initially allocated to files in a Veritas file system, they

are aligned in the most efficient order possible to provide optimal performance.

On an active file system, the original order is lost over time as files are created,

removed, or resized. As space is allocated and deallocated from files, the available

45Setting up dataservers
About fragmentation

free space becomes broken into fragments. This means that space must be assigned

to files in smaller and smaller extents. This process is known as fragmentation.

Fragmentation leads to degraded performance and availability. The degree of

fragmentation depends on file system usage and activity.

How to control fragmentation

It is very rare to have a badly fragmented VxFS file system in an ASE environment.

However, fragmentation can occur when many database devices are created and

deleted.

VxFS provides online reporting and optimization utilities to enable you to monitor

and defragment a mounted file system. These utilities are accessible through the

file system administration command, fsadm. Using the fsadm command, you can

track and eliminate fragmentation without interrupting user access to the file

system.

Types of fragmentation

VxFS addresses two types of fragmentation:

■ Directory Fragmentation

As files are created and removed, gaps are left in directory inodes. This is

known as directory fragmentation. Directory fragmentation causes directory

lookups to become slower.

■ Extent Fragmentation

As files are created and removed, the free extent map for an allocation unit

changes from having one large free area to having many smaller free areas.

Extent fragmentation occurs when files cannot be allocated in contiguous

chunks and more extents must be referenced to access a file. In a case of

extreme fragmentation, a file system may have free space that cannot be

allocated.

How to monitor fragmentation

You can monitor fragmentation in VxFS by running reports that describe

fragmentation levels. Use the fsadm command to run reports on directory

fragmentation and extent fragmentation. The df command, which reports on file

system free space, also provides information useful in monitoring fragmentation.

Use the following commands to report fragmentation information:

■ fsadm -D, which reports on directory fragmentation.

■ fsadm -E, which reports on extent fragmentation.

Setting up dataservers
About fragmentation

46

■ /opt/VRTS/bin/fsadm [-F vxfs] -o s, which prints the number of free

extents of each size.

Defragmenting a file system

You can use the online administration utility fsadm to defragment or reorganize

file system directories and extents.

The fsadm utility defragments a file system mounted for read/write access by:

■ Removing unused space from directories.

■ Making all small files contiguous.

■ Consolidating free blocks for file system.

The following options are for use with the fsadm utility:

Reorganizes directories. Directory entries are reordered to place

subdirectory entries first, then all other entries in decreasing order

of time of last access. The directory is also compacted to remove free

space.

Note: If you specify -d and -e, directory reorganization is always

completed first.

-d

Use in conjunction with the -d option to consider files not accessed

within the specified number of days as “aged” files. Aged files are

moved to the end of the directory. The default is 14 days.

-a

Reorganizes extents. Files are reorganized to have the minimum

number of extents.

Note: If you specify -d and -e, directory reorganization is always

completed first.

-e

Produces reports on directory and extent fragmentation, respectively.

Note: If you use both -D and -E with the -d and -e options, the

fragmentation reports are produced both before and after

reorganization.

-D -E

Specifies verbose mode and reports reorganization activity.-v

Specifies the size of a file that is considered large. The default is 64

blocks.

-l

47Setting up dataservers
About fragmentation

Specifies a maximum length of time to run, in seconds.

Note: The -t and -p options control the amount of work performed

by fsadm, either in a specified time or by a number of passes. By

default,fsadm runs five passes. If both-t and-p are specified, fsadm

exits if either of the terminating conditions are reached.

-t

Specifies a maximum number of passes to run. The default is five.

Note: The -t and -p options control the amount of work performed

by fsadm, either in a specified time or by a number of passes. By

default,fsadm runs five passes. If both-t and-p are specified, fsadm

exits if either of the terminating conditions are reached.

-p

Prints a summary of activity at the end of each pass.-s

Specifies the pathname of the raw device to read to determine file

layout and fragmentation. This option is used when fsadm cannot

determine the raw device.

-r

Note: You must have superuser (root) privileges to reorganize a file system using

the fsadm command.

Setting up dataservers
About fragmentation

48

To defragment a file system

◆ Run the fsadm command followed by the options specifying the type and

amount of defragmentation. Complete the command by specifying the mount

point or raw device to identify the file system.

/opt/VRTS/bin/fsadm [-d] [-D] [-e] [-E] [-s] [-v] \

[-l largesize] [-a days] [-t time] [-p pass_number] \

[-r rawdev_path] mount_point

Refer to theVeritas File System Administrator's Guide for instructions and

information on scheduling defragmentation. Veritas File System

Administrator's Guide for instructions and information on scheduling

defragmentation.

For example, to defragment a file system:

/opt/VRTS/bin/fsadm -d -D /sybdata_qiovm

Directory Fragmentation Report

Dirs Total Immed Immeds Dirs to Blocks to

Searched Blocks Dirs to Add Reduce Reduce

total 5 1 4 0 0 0

Directory Fragmentation Report

Dirs Total Immed Immeds Dirs to Blocks to

Searched Blocks Dirs to Add Reduce Reduce

total 5 1 4 0 0 0

Resizing a file system
If you need to extend or shrink a VxFS file system, you can use the fsadm command.

If a VxFS file system requires more space, you can use this procedure to extend

the size of the file system. If a VxFS File System is too large and you need the

space elsewhere, you can use this procedure to shrink the file system.

Remember to increase the size of the underlying device or volume before increasing

the size of the file system.

See the Veritas VolumeManager Administrator's Guide.Veritas Volume Manager

Administrator's Guide.

Before resizing a file system, the following conditions must be met:

49Setting up dataservers
Resizing a file system

■ This task requires a mounted file system.

You must know either the desired size or the amount of space to

add to or subtract from the file system size.

Prerequisites

■ See the format(1M) manual page.

See the fsadm_vxfs(1M) manual page.

Usage notes

To resize a file system

◆ Use fsadm command as follows:

/opt/VRTS/bin/fsadm -F vxfs [-b newsize] \

[-r rawdev] /mount_point

where:

■ newsize is the size (in sectors) to which the file system will increase or

shrink

■ rawdev specifies the name of the raw device if there is no entry in

/etc/vfstab and fsadm cannot determine the raw device

■ /mount_point is the location where the file system is mounted

For example, to extend the file system /db01 to 2 GB:

/opt/VRTS/bin/fsadm -F vxfs -b 2g /db01

Note: See the Veritas File SystemAdministrator's Guide and fsadm_vxfs (1M)

manual page for information on how to perform common file system tasks

using fsadm.

Resizing a file system and the underlying volume

The fsadm command resizes the file system only. If you attempt to use fsadm to

make the file system the same size or larger than the underlying volume, the

fsadm command will fail. To resize the file system and its underlying volume, use

the vxresize command instead.

Warning: Resizing a volume with a usage type other than FSGEN or RAID5 can

result in data loss. If such an operation is required, use the -f option to forcibly

resize such a volume.

Setting up dataservers
Resizing a file system

50

Before resizing a file system and the underlying volume, the following conditions

must be met:

■ You must know the new desired size of the file system.Prerequisites

■ vxresize works with VxFS and UFS file systems only.

■ If the file system is mounted and VxFS, you can grow or shrink the

size. If a VxFS file system is unmounted, you cannot grow or shrink

the size.

■ If the file system is mounted and UFS, you can grow the size only.

If the file system is unmounted and UFS, you can grow size only.

■ When resizing large volumes, vxresize may take a long time to

complete.

■ Resizing a volume with a usage type other than FSGEN or RAID5

can result in data loss. If such an operation is required, use the -f
option to forcibly resize such a volume.

■ You cannot resize a volume that contains plexes with different

layout types.

■ See the vxresize (1M) manual page for more details.

Usage notes

To resize a file system and the underlying volume

◆ Use the vxresize command as follows:

/etc/vx/bin/vxresize -g disk_group -b -F vxfs -t \

homevolresize homevol volume_size disk_name disk_name

For example, to extend a 1-gigabyte volume, homevol, that contains a VxFS

file system, to 10 gigabytes using the spare disks disk10 and disk11, enter:

/etc/vx/bin/vxresize -b -F vxfs -t homevolresize homevol 10g \

disk10 disk11

The -boption specifies that this operation runs in the background. Its progress

can be monitored by specifying the task tag homevolresize to the vxtask

command.

About Quick I/O
Veritas Quick I/O is a VxFS feature included in Veritas Storage Foundation for

Sybase that lets applications access preallocated VxFS files as raw character

devices. Quick I/O provides the administrative benefits of running databases on

file systems without the typically associated degradation in performance.

51Setting up dataservers
About Quick I/O

How Quick I/O works

Veritas Quick I/O supports direct I/O and kernel asynchronous I/O and allows

dataservers to access regular files on a VxFS file system as raw character devices.

The benefits of using Quick I/O are:

■ Improved performance and processing throughput by having Quick I/O files

act as raw devices.

■ Ability to manage Quick I/O files as regular files, which simplifies

administrative tasks such as allocating, moving, copying, resizing, and backing

up dataservers.

How Quick I/O improves database performance

Quick I/O's ability to access regular files as raw devices improves database

performance by:

■ Supporting kernel asynchronous I/O

■ Supporting direct I/O

■ Avoiding kernel write locks on database files

■ Avoiding double buffering

Supporting kernel asynchronous I/O

Asynchronous I/O is a form of I/O that performs non-blocking system level reads

and writes, allowing the system to handle multiple I/O requests simultaneously.

Operating systems such as Solaris provide kernel support for asynchronous I/O

on raw devices, but not on regular files. As a result, even if the database server is

capable of using asynchronous I/O, it cannot issue asynchronous I/O requests

when the database runs on file systems. Lack of asynchronous I/O significantly

degrades performance. Quick I/O lets the database server take advantage of

kernel-supported asynchronous I/O on file system files accessed using the Quick

I/O interface.

Supporting direct I/O

I/O on files using read() and write() system calls typically results in data being

copied twice: once between user and kernel space, and later between kernel space

and disk. In contrast, I/O on raw devices is direct. That is, data is copied directly

between user space and disk, saving one level of copying. As with I/O on raw

devices, Quick I/O avoids extra copying.

Setting up dataservers
About Quick I/O

52

Avoiding kernel write locks

When database I/O is performed using the write() system call, each system call

acquires and releases a write lock inside the kernel. This lock prevents multiple

simultaneous write operations on the same file. Because database systems usually

implement their own locking to manage concurrent access to files, per file writer

locks unnecessarily serialize I/O operations. Quick I/O bypasses file system per

file locking and lets the database server control data access.

Avoiding double buffering

Most database servers maintain their own buffer cache and do not need the file

system buffer cache. Database data cached in the file system buffer is therefore

redundant and results in wasted memory and extra system CPU utilization to

manage the buffer. By supporting direct I/O, Quick I/O eliminates double buffering.

Data is copied directly between the relational database management system

(RDBMS) cache and disk, which lowers CPU utilization and frees up memory that

can then be used by the database server buffer cache to further improve transaction

processing throughput.

About Quick I/O requirements

To use Quick I/O, you must:

■ Preallocate files on a VxFS file system

■ Use a special file naming convention to access the files

Preallocating files

Preallocating database files for Quick I/O allocates contiguous space for the files.

The file system space reservation algorithms attempt to allocate space for an

entire file as a single contiguous extent. When this is not possible due to lack of

contiguous space on the file system, the file is created as a series of direct extents.

Accessing a file using direct extents is inherently faster than accessing the same

data using indirect extents. Internal tests have shown performance degradation

in OLTP throughput when using indirect extent access. In addition, this type of

preallocation causes no fragmentation of the file system.

You must preallocate Quick I/O files because they cannot be extended through

writes using their Quick I/O interfaces. They are initially limited to the maximum

size you specify at the time of creation.

See “Extending a Quick I/O file” on page 75.

53Setting up dataservers
About Quick I/O

About Quick I/O naming conventions

VxFS uses a special naming convention to recognize and access Quick I/O files as

raw character devices. VxFS recognizes the file when you add the following

extension to a file name:

::cdev:vxfs:

Whenever an application opens an existing VxFS file with the extension

::cdev:vxfs: (cdev being an acronym for character device), the file is treated as

if it were a raw device. For example, if the file temp01 is a regular VxFS file, then

an application can access temp01 as a raw character device by opening it with the

name:

.temp01::cdev:vxfs:

Note: We recommend reserving the ::cdev:vxfs: extension only for Quick I/O

files. If you are not using Quick I/O, you could technically create a regular file

with this extension; however, doing so can cause problems if you later enable

Quick I/O.

How to set up Quick I/O

Quick I/O is included in the VxFS package shipped with Veritas Storage Foundation

for Sybase. By default, Quick I/O is enabled when you mount a VxFS file system.

If Quick I/O is not available in the kernel, or the Veritas Storage Foundation for

Sybase license is not installed, a file system mounts without Quick I/O by default,

the Quick I/O file name is treated as a regular file, and no error message is

displayed. If, however, you specify the -o qio option, the mount command prints

the following error message and terminates without mounting the file system.

VxFDD: You don't have a license to run this program

vxfs mount: Quick I/O not available

Depending on whether you are creating a new database or are converting an

existing database to use Quick I/O, you have the following options:

If you are creating a new database:

■ You can use the qiomkfile command to preallocate space for database files

and make them accessible to the Quick I/O interface.

See “Creating database files as Quick I/O files using qiomkfile” on page 62.

■ You can use the setext command to preallocate space for database files and

create the Quick I/O files.

Setting up dataservers
About Quick I/O

54

See “Preallocating space for Quick I/O files using the setext command”

on page 61.

If you are converting an existing database:

■ You can create symbolic links for existing VxFS files, and use these symbolic

links to access the files as Quick I/O files.

See “Accessing regular VxFS files as Quick I/O files” on page 65.

■ You can convert your existing Sybase database files to use the Quick I/O

interface using the qio_getdbfiles and qio_convertdbfiles commands.

See “Converting Sybase files to Quick I/O files” on page 67.

55Setting up dataservers
About Quick I/O

Setting up dataservers
About Quick I/O

56

Using Veritas Quick I/O

This chapter includes the following topics:

■ About Quick I/O

■ Preallocating space for Quick I/O files using the setext command

■ Creating database files as Quick I/O files using qiomkfile

■ Accessing regular VxFS files as Quick I/O files

■ Converting Sybase files to Quick I/O files

■ Displaying Quick I/O status and file attributes

■ Extending a Quick I/O file

■ Recreating Quick I/O files after restoring a database

■ Disabling Quick I/O

About Quick I/O
Veritas Quick I/O is a VxFS feature included in Veritas Storage Foundation for

Sybase that lets applications access preallocated VxFS files as raw character

devices. Quick I/O provides the administrative benefits of running databases on

file systems without the typically associated degradation in performance.

How Quick I/O works

Veritas Quick I/O supports direct I/O and kernel asynchronous I/O and allows

dataservers to access regular files on a VxFS file system as raw character devices.

The benefits of using Quick I/O are:

3Chapter

■ Improved performance and processing throughput by having Quick I/O files

act as raw devices.

■ Ability to manage Quick I/O files as regular files, which simplifies

administrative tasks such as allocating, moving, copying, resizing, and backing

up dataservers.

How Quick I/O improves database performance

Quick I/O's ability to access regular files as raw devices improves database

performance by:

■ Supporting kernel asynchronous I/O

■ Supporting direct I/O

■ Avoiding kernel write locks on database files

■ Avoiding double buffering

Supporting kernel asynchronous I/O

Asynchronous I/O is a form of I/O that performs non-blocking system level reads

and writes, allowing the system to handle multiple I/O requests simultaneously.

Operating systems such as Solaris provide kernel support for asynchronous I/O

on raw devices, but not on regular files. As a result, even if the database server is

capable of using asynchronous I/O, it cannot issue asynchronous I/O requests

when the database runs on file systems. Lack of asynchronous I/O significantly

degrades performance. Quick I/O lets the database server take advantage of

kernel-supported asynchronous I/O on file system files accessed using the Quick

I/O interface.

Supporting direct I/O

I/O on files using read() and write() system calls typically results in data being

copied twice: once between user and kernel space, and later between kernel space

and disk. In contrast, I/O on raw devices is direct. That is, data is copied directly

between user space and disk, saving one level of copying. As with I/O on raw

devices, Quick I/O avoids extra copying.

Avoiding kernel write locks

When database I/O is performed using the write() system call, each system call

acquires and releases a write lock inside the kernel. This lock prevents multiple

simultaneous write operations on the same file. Because database systems usually

implement their own locking to manage concurrent access to files, per file writer

Using Veritas Quick I/O
About Quick I/O

58

locks unnecessarily serialize I/O operations. Quick I/O bypasses file system per

file locking and lets the database server control data access.

Avoiding double buffering

Most database servers maintain their own buffer cache and do not need the file

system buffer cache. Database data cached in the file system buffer is therefore

redundant and results in wasted memory and extra system CPU utilization to

manage the buffer. By supporting direct I/O, Quick I/O eliminates double buffering.

Data is copied directly between the relational database management system

(RDBMS) cache and disk, which lowers CPU utilization and frees up memory that

can then be used by the database server buffer cache to further improve transaction

processing throughput.

About Quick I/O requirements

To use Quick I/O, you must:

■ Preallocate files on a VxFS file system

■ Use a special file naming convention to access the files

Preallocating files

Preallocating database files for Quick I/O allocates contiguous space for the files.

The file system space reservation algorithms attempt to allocate space for an

entire file as a single contiguous extent. When this is not possible due to lack of

contiguous space on the file system, the file is created as a series of direct extents.

Accessing a file using direct extents is inherently faster than accessing the same

data using indirect extents. Internal tests have shown performance degradation

in OLTP throughput when using indirect extent access. In addition, this type of

preallocation causes no fragmentation of the file system.

You must preallocate Quick I/O files because they cannot be extended through

writes using their Quick I/O interfaces. They are initially limited to the maximum

size you specify at the time of creation.

See “Extending a Quick I/O file” on page 75.

About Quick I/O naming conventions

VxFS uses a special naming convention to recognize and access Quick I/O files as

raw character devices. VxFS recognizes the file when you add the following

extension to a file name:

::cdev:vxfs:

59Using Veritas Quick I/O
About Quick I/O

Whenever an application opens an existing VxFS file with the extension

::cdev:vxfs: (cdev being an acronym for character device), the file is treated as

if it were a raw device. For example, if the file temp01 is a regular VxFS file, then

an application can access temp01 as a raw character device by opening it with the

name:

.temp01::cdev:vxfs:

Note: We recommend reserving the ::cdev:vxfs: extension only for Quick I/O

files. If you are not using Quick I/O, you could technically create a regular file

with this extension; however, doing so can cause problems if you later enable

Quick I/O.

How to set up Quick I/O

Quick I/O is included in the VxFS package shipped with Veritas Storage Foundation

for Sybase. By default, Quick I/O is enabled when you mount a VxFS file system.

If Quick I/O is not available in the kernel, or the Veritas Storage Foundation for

Sybase license is not installed, a file system mounts without Quick I/O by default,

the Quick I/O file name is treated as a regular file, and no error message is

displayed. If, however, you specify the -o qio option, the mount command prints

the following error message and terminates without mounting the file system.

VxFDD: You don't have a license to run this program

vxfs mount: Quick I/O not available

Depending on whether you are creating a new database or are converting an

existing database to use Quick I/O, you have the following options:

If you are creating a new database:

■ You can use the qiomkfile command to preallocate space for database files

and make them accessible to the Quick I/O interface.

See “Creating database files as Quick I/O files using qiomkfile” on page 62.

■ You can use the setext command to preallocate space for database files and

create the Quick I/O files.

See “Preallocating space for Quick I/O files using the setext command”

on page 61.

If you are converting an existing database:

■ You can create symbolic links for existing VxFS files, and use these symbolic

links to access the files as Quick I/O files.

See “Accessing regular VxFS files as Quick I/O files” on page 65.

Using Veritas Quick I/O
About Quick I/O

60

■ You can convert your existing Sybase database files to use the Quick I/O

interface using the qio_getdbfiles and qio_convertdbfiles commands.

See “Converting Sybase files to Quick I/O files” on page 67.

Preallocating space forQuick I/O files using the setext
command

As an alternative to using the qiomkfile command, you can also use the VxFS

setext command to preallocate space for database files.

Before preallocating space with setext, make sure the following conditions have

been met:

■ The setext command requires superuser (root) privileges.Prerequisites

■ You can use the chown command to change the owner and group

permissions on the file after you create it.

See the setext (1M) manual page for more information.

Usage notes

To create a Quick I/O database file using setext

1 Access the VxFS mount point and create a file:

cd /mount_point

touch .filename

2 Use the setext command to preallocate space for the file:

/opt/VRTS/bin/setext -r size -f noreserve -f chgsize \

.filename

61Using Veritas Quick I/O
Preallocating space for Quick I/O files using the setext command

3 Create a symbolic link to allow databases or applications access to the file

using its Quick I/O interface:

ln -s .filename::cdev:vxfs: filename

4 Change the owner and group permissions on the file:

chown sybase:sybase .filename

chmod 660 .filename

An example to show how to access the mount point /db01, create a datafile,

preallocate the space, and change the permissions:

cd /db01

touch .dbfile

/opt/VRTS/bin/setext -r 100M -f noreserve -f chgsize .dbfile

ln -s .dbfile::cdev:vxfs: dbfile

chown sybase:sybase .dbfile

chmod 660 .dbfile

Creating database files as Quick I/O files using
qiomkfile

The best way to preallocate space for tablespace containers and to make them

accessible using the Quick I/O interface is to use the qiomkfile. You can use the

qiomkfile to create the Quick I/O files for either temprory or permanent

tablespaces.

■ You can create Quick I/O files only on VxFS file systems.

■ If you are creating device files on an existing file system, runfsadm
(or similar utility) to report and eliminate fragmentation.

■ You must have read/write permissions on the directory in which

you intend to create Sybase Quick I/O files.

Prerequisites

■ The qiomkfile command creates two files: a regular file with

preallocated, contiguous space, and a file that is a symbolic link

pointing to the Quick I/O name extension.

■ See the qiomkfile(1M) manual page for more information.

Usage notes

Using Veritas Quick I/O
Creating database files as Quick I/O files using qiomkfile

62

Creates a symbolic link with an absolute path name for a specified

file. Use the -a option when absolute path names are required.

However, the default is to create a symbolic link with a relative path

name.

-a

Extends a file by a specified amount to allow Sybase tablespace

resizing.

See “Extending a Quick I/O file” on page 75.

-e

Increases the file to a specified size to allow Sybase tablespace resizing.

See “Extending a Quick I/O file” on page 75.

-r

Specifies the space to preallocate for a file in bytes, kilobytes,

megabytes, gigabytes, or sectors (512 bytes) by adding a k, K, m, M, g,

G,s, orS suffix. The default is bytes—you do not need to attach a suffix

to specify the value in bytes. The size of the file that is preallocated

is the total size of the file (including the header) rounded to the nearest

multiple of the file system block size.

-s

Warning: Exercise caution when using absolute path names. Extra steps may be

required during database backup and restore procedures to preserve symbolic

links. If you restore files to directories different from the original paths, you must

change the symbolic links that use absolute path names to point to the new path

names before the database is restarted.

63Using Veritas Quick I/O
Creating database files as Quick I/O files using qiomkfile

To create a database file as a Quick I/O file using qiomkfile

1 Create a database file using the qiomkfile command:

$ /opt/VRTS/bin/qiomkfile -s file_size /mount_point/filename

2 Add a device to the Sybase dataserver device pool for the Quick I/O file using

the disk init command:

$ isql -Usa -Psa_password -Sdataserver_name

> disk init

> name=”device_name”,

> physname=”/mount_point/filename”,

> vdevno=”device_number”,

> size=51200

> go

> alter database production on new_device=file_size

> go

The size is in 2K units. The Enterprise Reference manual contains more

information on the disk init command.

See the Sybase Adaptive Server Enterprise Reference Manual.

3 Use the file to create a new segment or add to an existing segment.

To add a new segment:

$ isql -Usa -Psa_password -Sdataserver_name

> sp_addsegment new_segment, db_name, device_name

> go

To extend a segment:

$ isql -Usa -Psa_password -Sdataserver_name

> sp_extendsegment segment_name, db_name, device_name

> go

See the Sybase Adaptive Server Enterprise Reference Manual.

An example to show how to create a 100MB database file named dbfile on the

VxFS file system /db01 using a relative path name:

$ /opt/VRTS/bin/qiomkfile -s 100m /db01/dbfile

$ ls -al

-rw-r--r-- 1 sybase sybase 104857600 Oct 2 13:42 .dbfile

lrwxrwxrwx 1 sybase sybase 19 Oct 2 13:42 dbfile -> \

.dbfile::cdev:vxfs:

Using Veritas Quick I/O
Creating database files as Quick I/O files using qiomkfile

64

In the example, qiomkfile creates a regular file named /db01/.dbfile, which

has the real space allocated. Then, qiomkfile creates a symbolic link named

/db01/dbfile. The symbolic link is a relative link to the Quick I/O interface for

/db01/.dbfile, that is, to the .dbfile::cdev:vxfs: file. The symbolic link allows

.dbfile to be accessed by any database or application using its Quick I/O

interface.

The device size is a multiple of 2K pages. In the example, 51200 times 2K pages

is 104857600 bytes. The qiomkfile command must use this size.

An example to show how to add a 100MB Quick I/O file named dbfile to the list

of devices used by database production, using the disk init command:

$ isql -Usa -Psa_password -Sdataserver_name

> disk init

> name="new_device",

> physname="/db01/dbfile",

> vdevno="device_number",

> size=51200

> go

> alter database production on new_device=100

> go

An example to show how to create a new segment, named segment2, for device

dbfile on database production:

$ isql -Usa_password -Sdataserver_name

> sp_addsegment segment2, production, dbfile

> go

An example to show how to extend a segment, named segment1, for device dbfile

on database production:

$ isql -Usa_password -Sdataserver_name

> sp_extendsegment segment1, production, dbfile

> go

Accessing regular VxFS files as Quick I/O files
You can access regular VxFS files as Quick I/O files using the ::cdev:vxfs: name

extension.

While symbolic links are recommended because they provide easy file system

management and location transparency of database files, the drawback of using

65Using Veritas Quick I/O
Accessing regular VxFS files as Quick I/O files

symbolic links is that you must manage two sets of files (for instance, during

database backup and restore).

Note: Sybase requires special prerequisites.

See “Converting Sybase files to Quick I/O files” on page 67.

■ When possible, use relative path names instead of absolute path

names when creating symbolic links to access regular files as Quick

I/O files. Using relative path names prevents copies of the symbolic

link from referring to the original file when the directory is copied.

This is important if you are backing up or moving database files

with a command that preserves the symbolic link.

However, some applications require absolute path names. If a file

is then relocated to another directory, you must change the

symbolic link to use the new absolute path. Alternatively, you can

put all the symbolic links in a directory separate from the data

directories. For example, you can create a directory named

/database and put all the symbolic links there, with the symbolic

links pointing to absolute path names.

Usage notes

To access an existing regular file as a Quick I/O file on a VxFS file system

1 Access the VxFS file system mount point containing the regular files:

$ cd /mount_point

2 Create the symbolic link:

$ mv filename .filename

$ ln -s .filename::cdev:vxfs: filename

This example shows how to access the VxFS file dbfile as a Quick I/O file:

$ cd /db01

$ mv dbfile .dbfile

$ ln -s .dbfile::cdev:vxfs: dbfile

This example shows how to confirm the symbolic link was created:

$ ls -lo .dbfile dbfile

-rw-r--r-- 1 sybase 104890368 Oct 2 13:42 .dbfile

lrwxrwxrwx 1 sybase 19 Oct 2 13:42 dbfile ->

.dbfile::cdev:vxfs:

Using Veritas Quick I/O
Accessing regular VxFS files as Quick I/O files

66

Converting Sybase files to Quick I/O files
Special commands are provided to assist you in identifying and converting an

existing database to use Quick I/O. Use the qio_getdbfiles and

qio_convertdbfiles commands to first extract and then convert Sybase

dataserver files to Quick I/O files.

■ Log in as the Database Administrator (typically, the user ID

sybase) to run theqio_getdbfilesandqio_convertdbfiles
commands.

■ Files you want to convert must be regular VxFS files created by

Sybase ASE 12.0 or later and have the Sybase dsync flag on.

Regular VxFS files created without the dsync flag on could be

sparse. Sparse files should not be converted to Quick I/O files.

■ Sybase ASE Server must be installed and running.

■ The conversion commands were developed to support localization,

so you need to set the NLSPATH to obtain the proper message

catalog.

■ For Sybase ASE 12.0, the $SYBASEenvironment variable must be

set to the Sybase home directory

For Sybase ASE 12.0, the $DSQUERY environment variable must

be set to the server on which you intend to run the

qio_getdbfiles command

For Sybase ASE 12.0, the$PATH environment variable must include

$SYBASE/ASE-12_0/bin and $SYBASE/OCS-12_0/bin

For Sybase ASE 12.0, the$LD_LIBRARY_PATHenvironment variable

must include $SYBASE/OCS-12_0/lib

For Sybase ASE 12.5, you must set the following Sybase

environment variables:

$SYBASE must be set to the Sybase home directory

$DSQUERY must be set to the server on which you intend to run

the qio_getdbfiles command

$PATH must include $SYBASE/ASE-12_5/bin and

$SYBASE/OCS-12_5/bin

$LD_LIBRARY_PATH must include $SYBASE/OCS-12_5/lib

Only English is supported in the current release.

Prerequisites

For the qio_getdbfiles command:

Lets you specify a specific database name from which to extract a list

of dataserver files. If you do not specify the -d option, the list of files

comes from all databases of the Sybase server. You cannot use this

option in conjunction with the -m option.

-d

67Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

Lets you specify a master device path. A master device does not have

a corresponding physical path name in Sybase's database catalog, but

rather has a d_master string. When you start an ASE server, you

must pass in the full path name of master device. The

qio_getdbfiles command first attempts to get the master device

path for the Sybase in the RUN_<server_name> file in the

$SYBASE/ASE-12_0/install directory for Sybase ASE 12.0 or

$SYBASE/ASE-12_5/install directory for Sybase ASE 12.5

automatically. However, if you do not have a standard

RUN_<server_name> file, you can use –m flag to pass in the master

device path. You cannot use this option in conjunction with the -d
option.

-m

Lets you specify the type of database as syb. Specify this option only

in environments where the type of database is ambiguous (for example,

when multiple types of database environment variables, such as

$ORACLE_SID, $SYBASE, and $DSQUERY, are present on a server).

-T

For the qio_convertdbfiles command:

Changes regular files to Quick I/O files using absolute path names.

Use this option when symbolic links need to point to absolute path

names.

-a

Reports on the current fragmentation levels for database files listed

in the mkqio.dat file. Fragmentation is reported as not fragmented,

slightly fragmented, fragmented, highly fragmented. You must be

superuser (root) to use this option.

-f

Displays a help message.-h

Lets you specify the type of database as syb. Specify this option only

in environments where the type of database is ambiguous (for example,

when multiple types of database environment variables, such as

$ORACLE_SID, $SYBASE, and $DSQUERY, are present on a server).

-T

Changes Quick I/O files back to regular files. Use this option to undo

changes made by a previous run of theqio_convertdbfiles script.

-u

■ The qio_getdbfiles and qio_convertdbfiles commands access the Sybase

ASE Server to obtain information. You need to do one of the following to

connect to the Sybase ASE Server:

■ Supply the Sybase sa password when prompted. (This is the default behavior.)

■ Create a file called sa_password_<dataserver_name> (where

<dataserver_name> is server defined in the $DSQUERY environment variable)

Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

68

in the /opt/VRTSsybed/.private directory that contains the sa password.

The .private directory must be owned by the Sybase database administrator

user (typically sybase) and carry a file permission mode of 700. The

sa_password_<dataserver_name> file must also be owned by the Sybase

database administrator user, and carry a file permission mode of 600. Once

the sa_password_<dataserver_name> file is correctly set up, users will not be

prompted for the sa password, and the convert commands will run in

non-interactive mode.

For the qio_getdbfiles command:

■ You can use the qio_getdbfiles command to generate lists of files from one

or more databases.

For the qio_convertdbfiles command:

■ To use the qio_convertdbfiles command with the -f option (the option that

lets you report fragmentation), you must be superuser (root).

■ Converting existing database files to Quick I/O files may not be the optimal

thing to do if these files are fragmented. Use the -f option to determine the

fragmentation levels and either:

■ Exclude files that are highly fragmented and do not have sufficient

contiguous extents for Quick I/O use.

■ Create new files with the qiomkfile command, rather than converting the

files using the qio_convertdbfiles command. The new files will be

contiguous. You can then move data from the old files to the new files using

the dd(1M) command or a database import facility and the new files defined

to the database.

To set the Sybase environment variables and NLSPATH

◆ Set the required Sybase environment and message catalog variables, as

follows:

$ SYBASE=/home_directory; export SYBASE

$ DSQUERY=servername; export DSQUERY

$ PATH=$SYBASE/ASE-12_5/bin:$SYBASE/OCS-12_5/bin:$PATH; \

export PATH

$ LD_LIBRARY_PATH=$SYBASE/OCS-12_5/lib; export LD_LIBRARY_PATH

$ NLSPATH=/usr/lib/locale/%L/%N:$NLSPATH; export NLSPATH

69Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

To determine if the Sybase server is up and running

1 Access the install directory:

$ cd $SYBASE/ASE-12_5/install

2 Use the showserver and grep commands to determine if the Sybase server

is running:

$./showserver | grep servername

If the output of these commands displays the server name, the server is

running. If the no output is displayed, the server is not running.

To extract a list of Sybase files to convert

1 Supply the sa password when prompted, or create a file called

sa_password_<dataserver_name> in the/opt/VRTSsybed/.privatedirectory

that contains the sa password.

2 With the Sybase dataserver up and running, run the qio_getdbfiles

command without the -d option (to extract a list of dataserver files on all

databases) from a directory for which you have write permission:

$ cd /extract_directory

$ /opt/VRTSsybed/bin/qio_getdbfiles

or

With the database instance up and running, run theqio_getdbfiles command

with the -d option (to extract a list of dataserver files on a specific database)

from a directory for which you have write permission:

$ cd /extract_directory

$ /opt/VRTSsybed/bin/qio_getdbfiles -d database_name

The qio_getdbfiles command extracts the list of dataserver files and stores

the file names in a file called mkqio.dat.

Note: Alternatively, you can manually create the mkqio.dat file containing

the Sybase dataserver file names that you want to convert to use Quick I/O.

You can also manually edit the mkqio.dat list file generated by , and remove

files that you do not want to convert to Quick I/O files.

Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

70

To convert the Sybase files to Quick I/O files

1 Shut down the Sybase dataserver.

Caution: Running the qio_convertdbfiles command while the database is

up and running can cause severe problems with your database, including loss

of data, and corruption.

2 Supply the sa password when prompted, or create a file called

sa_password_<dataserver_name> in the/opt/VRTSsybed/.privatedirectory

that contains the sa password.

3 Run the qio_convertdbfiles command from the directory containing the

mkqio.dat file:

$ cd /extract_directory

$ /opt/VRTSsybed/bin/qio_convertdbfiles

The list of files in the mkqio.dat file is displayed, for example:

/sybdev/L001/SYS/master.dat

104857600

/sybdev/L001/USER/qiofile1

209715200

/sybdev/L001/USER/qiofile2

209715200

/sybdev/L001/USER/qiofile3

209715200

/sybdev/L001/USER/qiofile4

209715200

/sybdev/L001/SYS/sysporcs.dat

83886080

The qio_convertdbfiles command (with no options specified) renames the

file <filename> to .<filename> and creates a symbolic link to .<filename>

with the Quick I/O extension. By default, the symbolic link uses a relative

path name.

The qio_convertdbfiles command and prints an error message if any of

the dataserver files are not on a VxFS file system. If this happens, you must

remove any non-VxFS files from the mkqio.dat file before running the

qio_convertdbfiles command again.

4 Start up the database.

You can now access these dataserver files using the Quick I/O interface.

71Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

Examples

■ To prepare for and convert Sybase ASE 12.5 dataserver files to Quick I/O

files:

$ SYBASE=/sybase; export SYBASE

$ DSQUERY=L001; export DSQUERY

$ PATH=$SYBASE/ASE-12_5/bin:$SYBASE/OCS-12_5/bin:$PATH; \

export PATH

$ LD_LIBRARY_PATH=$SYBASE/OCS-12_5/lib; export LD_LIBRARY_PATH

$ NLSPATH=/usr/lib/locale/%L/%N:$NLSPATH; export NLSPATH

$ cd /sybase/ASE-12_5/install

$./showserver | grep L001

$ /opt/VRTSsybed/bin/qio_getdbfiles

Check whether Sybase server L001 is up running...

Attempt to Connect to Server L001...

Enter Sybase SA password for Server L001

Password: pel93

You are once again prompted for the sa password.

Retrieving Database Device Information from L001 Enter Sybase SA password for Server L001 Password: pel93

■ To view the contents of the mkqio.dat list file:

$ cat mkqio.dat

/sybdev/L001/SYS/master.dat

104857600

/sybdev/L001/USER/qiofile1

209715200

/sybdev/L001/USER/qiofile2

209715200

/sybdev/L001/USER/qiofile3

209715200

/sybdev/L001/USER/qiofile4

209715200

/sybdev/L001/SYS/sysporcs.dat

83886080

■ To convert the database files listed in the mkqio.dat file to Quick I/O files,

shut down the database and enter:

Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

72

$ /opt/VRTSsybed/bin/qio_convertdbfiles

Check whether Sybase server L001 is up running...

Attempt to Connect to Server L001...

Enter Sybase SA password for Server L001:

Password: pel93

CT-LIBRARY error:

ct_connect(): network packet layer: internal net library error:

Net-Lib protocol driver call to connect two endpoints failed

Note: This error message is displayed because the dataserver is shutdown.

This is the correct and expected behavior.

master.dat --> .master.dat::cdev:vxfs:

qiofile1 --> .qiofile1::cdev:vxfs:

qiofile2 --> .qiofile2::cdev:vxfs:

qiofile3 --> .qiofile3::cdev:vxfs:

qiofile4 --> .qiofile4::cdev:vxfs:

sysporcs.dat --> .sysporcs.dat::cdev:vxfs:

■ To undo the previous run of qio_convertdbfiles, changing Quick I/O

files back to regular VxFS files:

$ /opt/VRTSsybed/bin/qio_convertdbfiles -u

.master.dat::cdev:vxfs: --> master.dat

.qiofile1::cdev:vxfs: --> qiofile1

.qiofile2::cdev:vxfs: --> qiofile2

.qiofile3::cdev:vxfs: --> qiofile3

.qiofile4::cdev:vxfs: --> qiofile4

.sysporcs.dat::cdev:vxfs: --> sysporcs.dat

73Using Veritas Quick I/O
Converting Sybase files to Quick I/O files

Note: If the server is up and running, you will receive an error message stating

that you need to shut down before you can run the qio_convertdbfiles

command.

Displaying Quick I/O status and file attributes
You can obtain and display information about Quick I/O status and file attributes

using various options of the ls command:

Lists all files on a file system, including Quick I/O files and their links.-al

Shows if Quick I/O was successfully installed and enabled.-1L

Shows how a Quick I/O file name is resolved to that of a raw device.-a1L

To list all files on the current file system, including Quick I/O files and their links

◆ Use the ls -al command with the file names:

$ ls -al filename .filename

The following example shows how to use the -a option to display the absolute

path name created using qiomkfile:

$ ls -al d* .d*

-rw-r--r-- 1 sybase sybase 104890368 Oct 2 13:42 .dbfile

lrwxrwxrwx 1 sybase sybase 19 Oct 2 13:42 dbfile ->

.dbfile::cdev:vxfs:

To determine if a segment has been converted to Quick I/O

◆ Use the ls command as follows:

$ ls -lL filename

The following example shows how to determine if Quick I/O is installed and

enabled:

$ ls -lL dbfile

crw-r--r-- 1 sybase dba 45, 1 Oct 2 13:42 dbfile

Using Veritas Quick I/O
Displaying Quick I/O status and file attributes

74

To show a Quick I/O file resolved to a raw device

◆ Use the ls command with the file names as follows:

$ ls -alL filename .filename

The following example shows how the Quick I/O file name dbfile is resolved

to that of a raw device:

$ ls -alL d* .d*

crw-r--r-- 1 sybase sybase 45, 1 Oct 2 13:42 dbfile

-rw-r--r-- 1 sybase sybase 104890368 Oct 2 13:42 .dbfile

Extending a Quick I/O file
Although Quick I/O files must be preallocated, they are not limited to the

preallocated sizes. You can grow or “extend” a Quick I/O file by a specific amount

or to a specific size, using options to the qiomkfile command. Extending Quick

I/O files is a fast, online operation and offers a significant advantage over using

raw devices.

Before extending a Quick I/O file, make sure the following conditions have been

met:

■ You must have sufficient space on the file system to extend the

Quick I/O file.

Prerequisites

■ You can also grow VxFS file systems online (provided the

underlying disk or volume can be extended) using the fsadm
command. You can expand the underlying volume and the

filesystem with the vxresize command.

■ You must have superuser (root) privileges to resize VxFS file

systems using the fsadm command.

■ Although you have the ability to extend a Quick I/O file, you cannot

resize a database device in Sybase once it is initialized. However,

with the ability to grow the volumes and file systems online, you

can easily allocate new database devices to be used for new

segments and to extend existing segments.

■ See the fsadm_vxfs (1M) and qiomkfile (1M) manual pages for

more information.

Usage notes

The following options are available with the qiomkfile command:

75Using Veritas Quick I/O
Extending a Quick I/O file

Extends the file by a specified amount to allow Sybase resizing.-e

Increases the file to a specified size to allow Sybase resizing.-r

To extend a Quick I/O file

1 If required, ensure the underlying storage device is large enough to contain

a larger VxFS file system (see the vxassist(1M) manual page for more

information), and resize the VxFS file system using fsadm command:

/opt/VRTS/bin/fsadm -b <newsize> /mount_point

where:

■ -b is the option for changing size

■ <newsize>is the new size of the file system in bytes, kilobytes, megabytes,

blocks, or sectors

■ <mount_point>is the file system's mount point

2 Extend the Quick I/O file using the qiomkfile command:

$ /opt/VRTS/bin/qiomkfile -e extend_amount /mount_point/filename

or

$ /opt/VRTS/bin/qiomkfile -r newsize /mount_point/filename

An example to show how to grow VxFS file system /db01 to 500MB and extend

the dbfile Quick I/O file by 20MB:

/opt/VRTS/bin/fsadm -b 500M /db01

$ /opt/VRTS/bin/qiomkfile -e 20M /db01/dbfile

An example to show how to grow VxFS file system /db01 to 500MB and resize

the dbfile Quick I/O file to 300MB:

/opt/VRTS/bin/fsadm -b 500M /db01

$ /opt/VRTS/bin/qiomkfile -r 300M /db01/dbfile

Recreating Quick I/O files after restoring a database
If you need to restore your database and were using Quick I/O files, you can use

the qio_recreate command to automatically recreate the Quick I/O files after

you have performed a full database recovery. The qio_recreate command uses

Using Veritas Quick I/O
Recreating Quick I/O files after restoring a database

76

the mkqio.dat file, which contains a list of the Quick I/O files used by the database

and the file sizes.

For information on recovering your database, refer to the documentation that

came with your database software.

Before recreating Quick I/O with the qio_recreate command, make sure the

following conditions have been met:

■ Recover your database before attempting to recreate the Quick I/O

files.

■ Log in as the Database Administrator (typically, the user ID sybase)

to run the qio_recreate command.

■ In the directory from which you run theqio_recreate command,

you must have an existing mkqio.dat file.

■ The SYBASE and DSQUERY environment variables must be set.

See “Converting Sybase files to Quick I/O files” on page 67.

Prerequisites

■ The qio_recreate command supports only conventional Quick

I/O files.

■ Refer to the qio_recreate(1M) manual page for more

information.

Usage notes

To recreate Quick I/O files after recovering a database

◆ Use the qio_recreate command as follows:

/opt/VRTSsybed/bin/qio_recreate

You will not see any output if the command is successful.

When you run the qio_recreate command, the following actions occur:

Then...If...

the Quick I/O file is recreated.a Quick I/O file is missing

the symbolic link is recreated.a symbolic link from a regular VxFS file to a

Quick I/O file is missing

both the link and the Quick I/O file are

recreated.

a symbolic link and its associated Quick I/O

file are missing

the Quick I/O file is not recreated and a

warning message is displayed.

a Quick I/O file is missing and the regular

VxFS file that it is symbolically linked to is

not the original VxFS file

77Using Veritas Quick I/O
Recreating Quick I/O files after restoring a database

Then...If...

the Quick I/O file is not recreated and a

warning message is displayed.

a Quick I/O file is smaller than the size listed

in the mkqio.dat file

Disabling Quick I/O
Before disabling Quick I/O, make sure the following condition has been met:

The file system you are planning to remount must be located in the

/etc/filesystems file.

Prerequisite

To disable Quick I/O

1 If the database is running, shut it down.

2 To change Quick I/O files back to regular VxFS files, run the following

command from the directory containing the mkqio.dat list:

$ /opt/VRTSsybed/bin/qio_convertdbfiles -u

The list of Quick I/O files in the mkqio.dat file is displayed. For example:

.file1::cdev:vxfs: --> file1

.file2::cdev:vxfs: --> file2

.file3::cdev:vxfs: --> file3

.file4::cdev:vxfs: --> file4

.file5::cdev:vxfs: --> file5

The qio_convertdbfiles command with the undo option (-u) renames the

files from .filename to filename and removes the symbolic link to .filename

that was created along with the Quick I/O files.

3 To remount the file system with Quick I/O disabled, use the mount -o noqio

command as follows:

/opt/VRTS/bin/mount -F vxfs -o remount,noqio /mount_point

Using Veritas Quick I/O
Disabling Quick I/O

78

Using Veritas CachedQuick

I/O

This chapter includes the following topics:

■ About Cached Quick I/O

■ Enabling Cached Quick I/O on a file system

■ Determining candidates for Cached Quick I/O

■ Enabling and disabling Cached Quick I/O for individual files

About Cached Quick I/O
Veritas Cached Quick I/O maintains and extends the database performance benefits

of Veritas Quick I/O by making more efficient use of large, unused system memory

through a selective buffering mechanism. Cached Quick I/O also supports features

that support buffering behavior, such as file system read-ahead.

How Cached Quick I/O works

Cached Quick I/O is a specialized external caching mechanism specifically suitable

to 32-bit ports of the Sybase server. Cached Quick I/O can be used on 64-bit ports

of the Sybase server, but the benefits are not as great. Cached Quick I/O can be

selectively applied to datafiles that are suffering an undesirable amount of physical

disk I/O due to insufficient dataserver buffer caches. Cached Quick I/O works by

taking advantage of the available physical memory that is left over after the

operating system reserves the amount it needs and the Sybase dataserver buffer

cache has been sized to the maximum capacity allowed within a 32-bit virtual

address space. This extra memory serves as a cache to store file data, effectively

serving as a second-level cache backing the dataserver buffer caches.

4Chapter

For example, consider a system configured with 12GB of physical memory, an

operating system using 1GB, and a total Sybase size of 3.5GB. Unless you have

other applications running on your system, the remaining 7.5GB of memory is

unused. If you enable Cached Quick I/O, these remaining 7.5GB become available

for caching database files.

Note: You cannot allocate specific amounts of the available memory to Cached

Quick I/O. When enabled, Cached Quick I/O takes advantage of available memory.

Cached Quick I/O is not beneficial for all device files in a database. Turning on

caching for all database device files can degrade performance due to extra memory

management overhead (double buffer copying). You must use file I/O statistics to

determine which individual database device files benefit from caching, and then

enable or disable Cached Quick I/O for individual device files.

If you understand the applications that generate load on your database and how

this load changes at different times during the day, you can use Cached Quick I/O

to maximize performance. By enabling or disabling Cached Quick I/O on a per-file

basis at different times during the day, you are using Cached Quick I/O to

dynamically tune the performance of a database.

For example, files that store historical data are not generally used during normal

business hours in a transaction processing environment. Reports that make use

of this historical data are generally run during off-peak hours when interactive

database use is at a minimum. During normal business hours, you can disable

Cached Quick I/O for database files that store historical data in order to maximize

memory available to other user applications. Then, during off-peak hours, you

can enable Cached Quick I/O on the same files when they are used for report

generation. This will provide extra memory resources to the database server

without changing any database configuration parameters. Enabling file system

read-ahead in this manner and buffering read data can provide great performance

benefits, especially in large sequential scans.

You can automate the enabling and disabling of Cached Quick I/O on a per-file

basis using scripts, allowing the same job that produces reports to tune the file

system behavior and make the best use of system resources. You can specify

different sets of files for different jobs to maximize file system and database

performance.

How Cached Quick I/O improves database performance

Enabling Cached Quick I/O on suitable Quick I/O files improves database

performance by using the file system buffer cache to store data. This data storage

Using Veritas Cached Quick I/O
About Cached Quick I/O

80

speeds up system reads by accessing the system buffer cache and avoiding disk

I/O when searching for information.

Having data at the cache level improves database performance in the following

ways:

■ For read operations, Cached Quick I/O caches database blocks in the system

buffer cache, which can reduce the number of physical I/O operations and

therefore improve read performance.

■ For write operations, Cached Quick I/O uses a direct-write, copy-behind

technique to preserve its buffer copy of the data. After the direct I/O is

scheduled and while it is waiting for the completion of the I/O, the file system

updates its buffer to reflect the changed data being written out. For online

transaction processing, Cached Quick I/O achieves better than raw device

performance in database throughput on large platforms with very large

physical memories.

■ For sequential table scans, Cached Quick I/O can significantly reduce the query

response time because of the read-ahead algorithm used by Veritas File System.

If a user needs to read the same range in the file while the data is still in cache,

the system is likely to return an immediate cache hit rather than scan for data

on the disk.

How to set up Cached Quick I/O

To set up and use Cached Quick I/O, you should do the following in the order in

which they are listed:

■ Enable Cached Quick I/O on the underlying file systems used for your database.

■ Exercise the system in your production environment to generate file I/O

statistics.

■ Collect the file I/O statistics while the files are in use.

■ Analyze the file I/O statistics to determine which files benefit from Cached

Quick I/O.

■ Disable Cached Quick I/O on files that do not benefit from caching.

Enabling Cached Quick I/O on a file system
Cached Quick I/O depends on Veritas Quick I/O running as an underlying system

enhancement in order to function correctly. Follow the procedures listed here to

ensure that you have the correct setup to use Cached Quick I/O successfully.

81Using Veritas Cached Quick I/O
Enabling Cached Quick I/O on a file system

■ You must have permission to change file system behavior using

the vxtunefs command to enable or disable Cached Quick I/O.

By default, you need superuser (root) permissions to run the

vxtunefs command, but other system users do not. Superuser

(root) must specifically grant database administrators permission

to use this command as follows:

chown root:sybase opt/VRTS/bin/vxtunefs

chmod 4550 /opt/VRTS/bin/vxtunefs

where users belonging to thesybasegroup are granted permission

to run the vxtunefs command. We recommend this selective,

more secure approach for granting access to powerful commands.

■ You must enable Quick I/O on the file system. Quick I/O is enabled

automatically at file system mount time.

If you have correctly enabled Quick I/O on your system, you can

proceed to enable Cached Quick I/O as follows:

■ Set the file system Cached Quick I/O flag, which enables Cached

Quick I/O for all files in the file system.

■ Setting the file system Cached Quick I/O flag enables caching for

all files in the file system. You must disable Cached Quick I/O on

individual Quick I/O files that do not benefit from caching to avoid

consuming memory unnecessarily. This final task occurs at the

end of the enabling process.

Prerequisites

Enabling and disabling the qio_cache_enable flag

As superuser (root), set the qio_cache_enable flag using the vxtunefs command

after you mount the file system.

To enable the qio_cache_enable flag for a file system

◆ Use the vxtunefs command as follows:

/opt/VRTS/bin/vxtunefs -s -o qio_cache_enable=1 /mount_point

For example:

/opt/VRTS/bin/vxtunefs -s -o qio_cache_enable=1 /db02

where /db02 is a VxFS file system containing the Quick I/O files and setting

the qio_cache_enable flag to “1” enables Cached Quick I/O. This command

enables caching for all the Quick I/O files on this file system.

Using Veritas Cached Quick I/O
Enabling Cached Quick I/O on a file system

82

To disable the flag on the same file system

◆ Use the vxtunefs command as follows:

/opt/VRTS/bin/vxtunefs -s -o qio_cache_enable=0 /mount_point

For example:

/opt/VRTS/bin/vxtunefs -s -o qio_cache_enable=0 /db02

where /db02 is a VxFS file system containing the Quick I/O files and setting

the qio_cache_enable flag to “0” disables Cached Quick I/O. This command

disables caching for all the Quick I/O files on this file system.

MakingCachedQuick I/O settings persistent across reboots andmounts

You can make the Cached Quick I/O system setting persistent across reboots and

mounts by adding a file system entry in the /etc/vx/tunefstab file.

Note: The tunefstab file is a user-created file. For information on how to create

the file and add tuning parameters, see the tunefstab (4) manual page.

To enable a file system after rebooting

◆ Put the file system in the /etc/vx/tunefstab file and set the flag entry:

/dev/vx/dsk/dgname/volname qio_cache_enable=1

where:

■ /dev/vx/dsk/dgname/volname is the name of a block device

■ dgname is the name of the disk group

■ volname is the name of the volume

For example:

/dev/vx/dsk/PRODdg/db01 qio_cache_enable=1

/dev/vx/dsk/PRODdg/db02 qio_cache_enable=1

where/dev/vx/dsk/PRODdg/db01 is the block device on which the file system

resides.

The tunefstab (4) manual pages contain information on how to add tuning

parameters.

See the tunefstab (4) manual page.

83Using Veritas Cached Quick I/O
Enabling Cached Quick I/O on a file system

Note: vxtunefs can specify a mount point or a block device; tunefstab must

always specify a block device only.

Using vxtunefs to obtain tuning information

Check the setting of the qio_cache_enable flag for each file system using the

vxtunefs command.

To obtain information on only the qio_cache_enable flag setting

◆ Use the grep command with vxtunefs:

/opt/VRTS/bin/vxtunefs /mount_point | grep qio_cache_enable

For example:

/opt/VRTS/bin/vxtunefs /db01 | grep qio_cache_enable

where /db01 is the name of the file system. This command displays only the

qio_cache_enable setting as follows:

qio_cache_enable = 0

You can also use the vxtunefs command to obtain a more complete list of

I/O characteristics and tuning statistics.

See the vxtunefs (1) manual page.

To obtain information on all vxtunefs system parameters

◆ Use the vxtunefs command without grep:

/opt/VRTS/bin/vxtunefs /mount_point

For example:

/opt/VRTS/bin/vxtunefs /db01

The vxtunefs command displays output similar to the following:

Filesystem i/o parameters for /db01

read_pref_io = 65536

read_nstream = 1

read_unit_io = 65536

write_pref_io = 65536

write_nstream = 1

write_unit_io = 65536

Using Veritas Cached Quick I/O
Enabling Cached Quick I/O on a file system

84

pref_strength = 10

buf_breakup_size = 1048576

discovered_direct_iosz = 262144

max_direct_iosz = 1048576

default_indir_size = 8192

qio_cache_enable = 1

write_throttle = 0

max_diskq = 1048576

initial_extent_size = 8

max_seqio_extent_size = 2048

max_buf_data_size = 8192

hsm_write_prealloc = 0

read_ahead = 1

inode_aging_size = 0

inode_aging_count = 0

fcl_maxalloc = 130150400

fcl_keeptime = 0

fcl_winterval = 3600

The vxtunefs(1) manual pages contain a complete description of vxtunefs

parameters and the tuning instructions.

See the vxtunefs(1) manual page.

Determining candidates for Cached Quick I/O
Determining which files can benefit from Cached Quick I/O is an iterative process

that varies with each application. For this reason, you may need to complete the

following steps more than once to determine the best possible candidates for

Cached Quick I/O.

Before determining candidate files for Quick I/O, make sure the following

conditions have been met:

■ You must enable Cached Quick I/O for the file systems.

See “Enabling Cached Quick I/O on a file system” on page 81.

Prerequisites

■ See the qiostat (1M) manual page for more information.Usage notes

Collecting I/O statistics

Once you have enabled Cached Quick I/O on a file system, you need to collect

statistics to determine and designate the files that can best take advantage of its

benefits.

85Using Veritas Cached Quick I/O
Determining candidates for Cached Quick I/O

To collect statistics needed to determine files that benefit from Cached Quick I/O

1 Reset the qiostat counters by entering:

$ /opt/VRTS/bin/qiostat -r /mount_point/filenames

2 Run the database under full normal load and through a complete cycle (24 to

48 hours in most cases) to determine your system I/O patterns and database

traffic in different usage categories (for example, OLTP, reports, and backups)

at different times of the day.

3 While the database is running, run qiostat -l to report the caching statistics

as follows:

$ /opt/VRTS/bin/qiostat -l /mount_point/filenames

or, use the -i option to see statistic reports at specified intervals:

$ /opt/VRTS/bin/qiostat -i n /mount_point/filenames

where n is time in seconds

For example:

To collect I/O statistics from all database device files on file system /db01:

$ /opt/VRTS/bin/qiostat -l /db01/*.dbf

About I/O statistics

The output of the qiostat command is the primary source of information to use

in deciding whether to enable or disable Cached Quick I/O on specific files.

Statistics are printed in two lines per object.

The second line of information is defined as follows:

■ CREAD is the number of reads from the VxFS cache (or total number of reads

to Quick I/O files with cache advisory on)

■ PREAD is the number of reads going to the disk for Quick I/O files with the cache

advisory on

■ HIT RATIO is displayed as a percentage and is the number of CREADS minus

the number of PREADS times 100 divided by the total number of CREADS. The

formula looks like this:

(CREADs - PREADs) * 100/ CREADs

The qiostat -l command output looks similar to the following:

Using Veritas Cached Quick I/O
Determining candidates for Cached Quick I/O

86

/db01/sysprocs.dbf 17128 9634 68509 38536 24.8 0.4

17124 15728 8.2

/db01/master.dbf 6 1 21 4 10.0 0.0

6 6 0.0

/db01/user.dbf 62552 38498 250213 153992 21.9 0.4

62567 49060 21.6

Analyze the output to find out where the cache-hit ratio is above a given threshold.

A cache-hit ratio above 20 percent on a file for a given application may be sufficient

to justify caching on that file. For systems with larger loads, the acceptable ratio

may be 30 percent or above. Cache-hit-ratio thresholds vary according to the

database type and load.

Using the sample output above as an example, the file /db01/master.dbf does

not benefit from the caching because the cache-hit ratio is zero. In addition, the

file receives very little I/O during the sampling duration.

However, the file /db01/user.dbf has a cache-hit ratio of 21.6 percent. If you

have determined that, for your system and load, this figure is above the acceptable

threshold, it means the database can benefit from caching. Also, study the numbers

reported for the read and write operations. When you compare the number of

reads and writes for the /db01/user.dbf file, you see that the number of reads is

roughly twice the number of writes. You can achieve the greatest performance

gains with Cached Quick I/O when using it for files that have higher read than

write activity.

Based on these two factors, /db01/user.dbf is a prime candidate for Cached Quick

I/O.

See “Enabling and disabling Cached Quick I/O for individual files” on page 88.

Effects of read-aheads on I/O statistics

The number of CREADs in the qiostat output is the total number of reads

performed, including Cached Quick I/O, and the number of PREADs is the number

of physical reads. The difference between CREADs and PREADs (CREADS - PREADS) is

the number of reads satisfied from the data in the file system cache. Thus, you

expect that the number of PREADs would always be equal to or lower than the

number of CREADs.

However, the PREADs counter also increases when the file system performs

read-aheads. These read-aheads occur when the file system detects sequential

reads. In isolated cases where cache hits are extremely low, the output from

qiostat could show that the number of CREADs is lower than the number of PREADs.

87Using Veritas Cached Quick I/O
Determining candidates for Cached Quick I/O

The cache-hit ratio calculated against these CREAD/PREAD values is misleading

when used to determine whether Cached Quick I/O should be enabled or disabled.

Under these circumstances, you can make a more accurate decision based on a

collective set of statistics by gathering multiple sets of data points. Consequently,

you might want to enable Cached Quick I/O for all the device files used by a given

database, even if just one of the files exhibited a high cache-hit ratio.

Other tools for analysis

While the output of the qiostat command is the primary source of information

to use in deciding whether to enable Cached Quick I/O on specific files, we also

recommend using other tools in conjunction with qiostat. For example,

benchmarking software that measures database throughput is also helpful. If a

benchmark test in which Cached Quick I/O was enabled for a certain set of data

files resulted in improved performance, you can also use those results as the basis

for enabling Cached Quick I/O.

Enabling anddisablingCachedQuick I/O for individual
files

After using qiostat or other analysis tools to determine the appropriate files for

Cached Quick I/O, you need to disable Cached Quick I/O for those individual files

that do not benefit from caching using the qioadmin command.

■ Enable Cached Quick I/O for the file system before enabling or

disabling Cached Quick I/O at the individual file level.

Prerequisites

■ You can enable or disable Cached Quick I/O for individual files

while the database is online.

■ You should monitor files regularly using qiostat to ensure that

a file's cache-hit ratio has not changed enough to reconsider

enabling or disabling Cached Quick I/O for the file.

■ Enabling or disabling Cached Quick I/O for an individual file is also

referred to as setting the cache advisory on or off.

■ See the qioadmin (1) manual page.

Usage notes

Setting cache advisories for individual files

You can enable and disable Cached Quick I/O for individual files by changing the

cache advisory settings for those files.

Using Veritas Cached Quick I/O
Enabling and disabling Cached Quick I/O for individual files

88

To disable Cached Quick I/O for an individual file

◆ Use the qioadmin command to set the cache advisory to OFF as follows:

$ /opt/VRTS/bin/qioadmin -S filename=OFF /mount_point

For example, to disable Cached Quick I/O for the file /db01/master.dbf, set

the cache advisory to OFF:

$ /opt/VRTS/bin/qioadmin -S master.dbf=OFF /db01

To enable Cached Quick I/O for an individual file

◆ Use the qioadmin command to set the cache advisory to ON as follows:

$ /opt/VRTS/bin/qioadmin -S filename=ON /mount_point

For example, running qiostatshows the cache hit ratio for the file

/db01/master.dbfreaches a level that would benefit from caching. To enable

Cached Quick I/O for the file /db01/master.dbf, set the cache advisory to

ON:

$ /opt/VRTS/bin/qioadmin -S master/dbf=ON /db01

Making individual file settings for Cached Quick I/O persistent

You can make the enable or disable individual file settings for Cached Quick I/O

persistent across reboots and mounts by adding cache advisory entries in the

/etc/vx/qioadmin file.

Cache advisories set using theqioadmin command are stored as extended attributes

of the file in the inode. These settings persist across file system remounts and

system reboots, but these attributes are not backed up by the usual backup

methods, so they cannot be restored. Therefore, always be sure to reset cache

advisories after each file restore. This is not necessary if you maintain the cache

advisories for Quick I/O files in the /etc/vx/qioadmin file.

89Using Veritas Cached Quick I/O
Enabling and disabling Cached Quick I/O for individual files

To enable or disable individual file settings for Cached Quick I/O automatically

after a reboot or mount

◆ Add cache advisory entries in the /etc/vx/qioadmin file as follows:

device=/dev/vx/dsk/<diskgroup>/<volume>

filename,OFF

filename,OFF

filename,OFF

filename,ON

For example, to make the Cached Quick I/O settings for individual files in the

/db01 file system persistent, edit the /etc/vx/qioadmin file similar to the

following:

#

List of files to cache in /db01 file system

#

device=/dev/vx/dsk/PRODdg/db01

user.dbf,ON

sysprocs.dbf,OFF

master.dbf,OFF

Determining individual file settings for Cached Quick I/O using
qioadmin

You can determine whether Cached Quick I/O is enabled or disabled for individual

files by displaying the file's cache advisory setting using the qioadmin command.

Note: To verify caching, always check the setting of the flag qio_cache_enable

using vxtunefs, along with the individual cache advisories for each file.

Using Veritas Cached Quick I/O
Enabling and disabling Cached Quick I/O for individual files

90

To display the current cache advisory settings for a file

◆ Use the qioadmin command with the -P option as follows:

$ /opt/VRTS/bin/qioadmin -P filename /mount_point

For example, to display the current cache advisory setting for the file

sysprocs.dbfin the /db01file system:

$ /opt/VRTS/bin/qioadmin -P sysprocs.dbf /db01

sysprocs.dbf,OFF

91Using Veritas Cached Quick I/O
Enabling and disabling Cached Quick I/O for individual files

Using Veritas Cached Quick I/O
Enabling and disabling Cached Quick I/O for individual files

92

Using Veritas Concurrent

I/O

This chapter includes the following topics:

■ About Concurrent I/O

■ Enabling and disabling Concurrent I/O

About Concurrent I/O
Veritas Concurrent I/O improves the performance of regular files on a VxFS file

system without the need for extending namespaces and presenting the files as

devices. This simplifies administrative tasks and allows databases, which do not

have a sequential read/write requirement, to access files concurrently. This chapter

describes how to use the Concurrent I/O feature.

Quick I/O is still an alternative solution for DMS tablespaces.

See “About Quick I/O” on page 57.

In some cases (for example, if the system has extra memory), Cached Quick I/O

may further enhance performance.

See “About Cached Quick I/O” on page 79.

How Concurrent I/O works

Traditionally, UNIX semantics require that read and write operations on a file

occur in a serialized order. Because of this, a file system must enforce strict

ordering of overlapping read and write operations. However, databases do not

usually require this level of control and implement concurrency control internally,

without using a file system for order enforcement.

5Chapter

The Veritas Concurrent I/O feature removes these semantics from the read and

write operations for databases and other applications that do not require

serialization.

The benefits of using Concurrent I/O are:

■ Concurrency between a single writer and multiple readers

■ Concurrency among multiple writers

■ Minimalization of serialization for extending writes

■ All I/Os are direct and do not use file system caching

■ I/O requests are sent directly to file systems

■ Inode locking is avoided

■

Enabling and disabling Concurrent I/O
Concurrent I/O is not turned on by default and must be enabled manually. You

will also have to manually disable Concurrent I/O if you choose not to use it in

the future.

Enabling Concurrent I/O

Because you do not need to extend name spaces and present the files as devices,

you can enable Concurrent I/O on regular files.

Before enabling Concurrent I/O, make sure the following conditions have been

met:

■ To use the Concurrent I/O feature, the file system must be a VxFS

file system.

■ Make sure the mount point on which you plan to mount the file

system exists.

■ Make sure the DBA can access the mount point.

Prerequisites

To enable Concurrent I/O on a file system using mount with the -o cio option

◆ Mount the file system using the mountcommand as follows:

/usr/sbin/mount -F vxfs -o cio special /mount_point

where:

■ special is a block special device

Using Veritas Concurrent I/O
Enabling and disabling Concurrent I/O

94

■ /mount_point is the directory where the file system will be mounted.

Disabling Concurrent I/O

If you need to disable Concurrent I/O, unmount the VxFS file system and mount

it again without the mount option.

To disable Concurrent I/O on a file system using the mount command

1 Shutdown the Sybase instance.

2 Unmount the file sytem using the umount command.

3 Mount the file system again using the mount command without using the -o

cio option.

95Using Veritas Concurrent I/O
Enabling and disabling Concurrent I/O

Using Veritas Concurrent I/O
Enabling and disabling Concurrent I/O

96

Converting existing

database configurations to

VxFS

This chapter includes the following topics:

■ Converting native file systems to VxFS with Quick I/O

■ Upgrading from earlier VxFS version layouts

■ Converting from raw devices

Converting native file systems to VxFSwith Quick I/O
If you are currently using file systems native to your operating system, use the

procedure to upgrade each file system used by the database to a VxFS file system

with Quick I/O.

To convert a native file system to VxFS with Quick I/O

1 Shut down the database.

2 Create a backup of the UFS file system.

3 Unmount the UFS file system.

4 Remove the entry for the UFS file system from the /etc/vfstab directory.

5 Create a VxFS file system of the same size or larger than the original UFS file

system, using the mount point where the UFS file system was originally

mounted.

See “Creating a VxFS file system ” on page 41.

6Chapter

6 Preallocate Quick I/O files using qiomkfile.

See “Creating database files as Quick I/O files using qiomkfile” on page 62.

7 Restore the backup that you created earlier to the Quick I/O files in the new

VxFS file system.

8 Restart the database.

Upgrading from earlier VxFS version layouts
Before starting the upgrade process, make sure the following conditions have

been met:

■ Perform a full backup of the file system before upgrading to a new

disk layout.

Prerequisites

■ Thevxupgrade command lets you to upgrade the VxFS file system

disk layout while the file system is mounted. See the

vxupgrade(1M) manual page for more details.

■ VxFS supports four file system disk layouts: Versions 4, 5, 6, and

7. New file systems are created with the Version 6 (for large file

systems) disk layout by default when the current version of Veritas

Storage Foundation for Sybase is installed on a system. You must

minimally upgrade to Version 4 disk layout if you want to use the

Storage Rollback or Veritas NetBackup BLI Backup features.

Usage notes

To upgrade an existing VxFS file system to a new file system disk layout version

◆ Use the vxupgrade command to upgrade to Version 4, 5, 6, or 7 disk layout:

/opt/VRTS/bin/upgrade -n new_version new_version/mount_point

where:

■ new_version is the version of the file system disk layout you want to

upgrade to

■ /mount_point is the location where the file system is mounted

This is an example of upgrading to disk layout Version 7:

/opt/VRTS/bin/vxupgrade -n 7 /db01

Converting existing database configurations to VxFS
Upgrading from earlier VxFS version layouts

98

To use Quick I/O after upgrading the file system disk layout to version 4, 5, 6, or 7

1 Shut down the database.

2 Make each datafile accessible as a Quick I/O file.

See “Accessing regular VxFS files as Quick I/O files” on page 65.

3 Restart the database.

Converting from raw devices
If you already have your Sybase dataserver running on raw devices (UNIX raw

disk partitions, Solstice DiskSuite 4 (SDS4) metadevices, or VxVM volumes) and

would like to convert database devices to use vxfs files with Quick I/O. You can

do the upgrade online with Sybase disk mirroring. Due to the overhead used by

file systems, make sure the total size of the file systems are about 10 percent

larger than the total size of raw devices.

Quick I/O devices fully support aynchronous I/O operations. Therefore,

asynchronous I/O will continue to be used by the Sybase server after mirroring a

raw device to a Quick I/O file.

Warning: The procedure provided assumes that the database runs on a single file

system after the upgrade.

99Converting existing database configurations to VxFS
Converting from raw devices

To convert from raw devices to VxFS with Quick I/O

1 Convert a logical database device (proddev) that uses the raw partition to a

device of the same logical name but uses a Quick I/O file

/sybdata/proddev_file:

$ cd /sybdata

$ qiomkfile -s 1g proddev_file

...

$ isql -Usa -Psa_password -Sdataserver_name

> disk mirror

> name = "proddev",

> mirror = "/sybdata/proddev_file",

> go

...

2 After the mirror has been populated, break off the mirror and remove the

raw partition from the dataserver:

> disk unmirror

> name = "proddev",

> side = "primary", mode = remove

> go

3 Repeat this step for all your raw database devices except the master device.

4 Use the same procedure to convert your master device. You should replace

the reference to the old raw master device in your RUN_servername script in

$SYBASE/install directory.

5 Once you finish with all the raw partitions in a disk, this disk can be claimed

by the Veritas Volume Manager. With the extra space available, you can

choose to use it for expanding the volumes and file systems or for mirroring.

6

Converting existing database configurations to VxFS
Converting from raw devices

100

Using volume snapshots for

dataserver backup and

off-host processing

This chapter includes the following topics:

■ About snapshot volumes

■ Backup and off-host processing applications

■ FastResync of snapshot volumes

■ Disk group split and join

■ Preparing hosts for database backup or off-host processing

■ Sybase Adaptive Server Enterprise 12.5 quiesce feature

■ How to set up volume snapshots with Sybase ASE 12.5 server

■ Implementing online backup or off-host processing

■ Creating a warm standby server

■ Resynchronizing the snapshot to your ASE dataserver

■ Recovering the database from a backup image

■ Refreshing a snapshot database image

■ Dissociating a snapshot volume

■ Removing a snapshot volume

7Chapter

About snapshot volumes
Veritas Volume Manager (VxVM) provides a snapshot facility to create a

point-in-time image of a volume to use as a source for taking a backup or for

off-host processing. This capability is provided through the vxsnap command,

and the FastResync and disk group move, split, and join features of VxVM, which

are described in this chapter.

A snapshot volume can be used to create a database clone, which can be used on

a secondary host for off-host processing, including decision-support analysis and

reporting, application development and testing, database backup, and logical

error recovery. A snapshot volume can be reysnchronized with the primary

database volumes. In addition, in the event of a failure, the primary database can

be recovered by resynchronizing it with the snapshot volume.

VxVM's snapshot operation creates a new volume that is an exact point-in-time

copy of an existing volume. This is done by creating a mirror of the existing volume

using disk space from the pool of free disk space. The mirror is brought up-to-date

and a separate snapshot volume is then created. You can use the snapshot volume

to make a backup of the original volume at a convenient time without stopping

the original volume. A volume can be moved from one disk group to another,

provided that there is no disk that is shared between the two disk groups. You can

split the snapshot volumes to a new disk group, and import it onto another host

to perform off-host backup and decision support operations.

To ensure the mirrors are a consistent and recoverable image of the database, the

snapshot functionality must be used in conjunction with Sybase ASE 12.5's

database quiesce feature. The Sybase database must be put into the quiescent

mode to temporarily suspend I/O to the dataserver before attempting to break

off mirrors. Taking a volume snapshot occurs quickly, so the ASE server can be

released from the quiescent state immediately after the mirrors are broken off.

Snapshot volumes can also be used in conjunction with the cluster functionality

of VxVM.

After the snapshot mirror is synchronized, it continues being updated until it is

detached. You can then select a convenient time at which to create snapshot

volumes for all the volumes used by the database to represent a valid backup

image of the database. You need to either shut down the database for an offline

backup or suspend I/O writes to the database for an online backup during the

brief time required to detach the snapshot volume (typically less than a minute).

In contrast to the brief amount of time that it takes to detach a mirror and create

a snapshot volume, the amount of time involved in creating a snapshot mirror is

long and directly proportional to the size of the original volume.

Using volume snapshots for dataserver backup and off-host processing
About snapshot volumes

102

Backup and off-host processing applications
The following are typical backup and off-host processing applications made

possible using the vxassist command, FastResync, and disk group move, split, and

join features of VxVM:

■ Database Backup and Restore: Many enterprises require 24/7 online data

availability. They cannot afford the downtime involved in backing up critical

data offline. By taking a snapshot of the data and then using it to back up your

data, your business-critical applications can continue to run without extended

down time or impacted performance. After a snapshot volume is created, it

can be used as a source to backup the volume.

■ Decision-Support Analysis and Reporting: Operations such as decision-support

analysis and business reporting may not require access to real-time

information. You can direct such operations to use a clone database that you

have created from snapshot volumes, rather than allowing them to compete

for access to the primary volume or database. When required, you can quickly

resynchronize the clone database with the primary database to get up-to-date

information.

■ Application Development and Testing: Development or service groups can use

a clone database created with snapshot volumes as a test database for new

applications. A clone database provides developers, system testers, and quality

assurance groups with a realistic basis for testing the robustness, integrity,

and performance of new applications.

■ Logical Error Recovery: Logical errors caused by an administrator or an

application program can compromise the integrity of a database. You can

recover a database by restoring the database files from a snapshot volume or

by recovering logical objects (such as tables, for example) from a clone database

created from snapshot volumes. These solutions are faster than fully restoring

database files from tape or other backup media.

FastResync of snapshot volumes

Note: You may need an additional license to use this feature.

FastResync optimizes mirror resynchronization by keeping track of updates to

stored data that have been missed by a mirror. If FastResync is enabled on a

volume, VxVM uses a FastResync map to keep track of which blocks are updated

in the volume and in the snapshot. If the data in one mirror is not updated for

some reason, it becomes out-of-date, or stale, with respect to the other mirrors

103Using volume snapshots for dataserver backup and off-host processing
Backup and off-host processing applications

in the volume. The presence of the FastResync map means that only those updates

that the mirror has missed need be reapplied to resynchronize it with the volume.

A full (and therefore much slower) resynchronization of the mirror from the

volume is unnecessary. The FastResync feature increases the efficiency of the

VxVM snapshot mechanism to better support operations such as backup and

decision support.

The persistent form of FastResync ensures that FastResync maps survive both

system crashes and cluster restarts. When snapshot volumes are reattached to

their original volumes, FastResync allows the snapshot data to be quickly refreshed

and re-used. If Persistent FastResync is enabled on a volume in a private disk

group, such incremental resynchronization can happen even if the host is rebooted.

Persistent FastResync can track the association between volumes and their

snapshot volumes after they are moved into different disk groups. When the disk

groups are rejoined, this allows the snapshot plexes to be quickly resynchronized.

Non-Persistent FastResync cannot be used for this purpose.

FastResync allows you to refresh and re-use snapshots rather than discard them.

You can quickly resynchronize a snapshot volume with its original volume. This

reduces the system overhead required to perform cyclical operations, such as

backups, that rely on the snapshot functionality of VxVM. You can also

resynchronize the original volume from the snapshot volume. In this case, the

database must be shut down and all of the file systems on the original volumes

must be unmounted.

Up to 31 snapshot mirrors can be taken and tracked via FastResync.

For more information about FastResync, see the Veritas VolumeManager

Administrator's Guide.

Disk group split and join

Note: You may need an additional license to use these features.

A snapshot volume can be split off into a separate disk group and deported. It is

then ready for importing on another host that is dedicated to off-host processing.

At a later stage, the disk group can be deported, re-imported, and joined with the

original disk group or with a different disk group.

The split and join operations allow you to move VxVM objects such as disks or

top-level volumes from one disk group to another.

The split operation is illustrated in Figure 7-1.

Using volume snapshots for dataserver backup and off-host processing
Disk group split and join

104

Figure 7-1 Disk group split operation

Source Disk Group

Source Disk Group New Target Disk Group
After
split

Disks to be split into new disk group

The join operation allows you to remove all VxVM objects from an imported disk

group and move them to an imported target disk group. The source disk group is

removed when the join is complete.

The join operation is illustrated in Figure 7-2 .

105Using volume snapshots for dataserver backup and off-host processing
Disk group split and join

Figure 7-2 Disk group join operation

Source Disk Group

Source Disk Group New Target Disk Group
After
split

Disks to be split into new disk group

Caution: Before moving volumes between disk groups, you must stop all

applications that are accessing the volumes and unmount all file systems that are

configured in the volumes.

If the system crashes or a hardware subsystem fails, VxVM attempts to complete

or reverse an incomplete disk group reconfiguration when the system is restarted

or the hardware subsystem is repaired, depending on how far the reconfiguration

had progressed. If one of the disk groups is no longer available because it has been

imported by another host or because it no longer exists, you must recover the disk

group manually.

The disk group move, split and join features have the following limitations:

■ Disk groups involved in a move, split or join must be version 90 or greater.

If needed, you can upgrade your volume. Refer to the Veritas VolumeManager

Administrator's Guide.

■ The reconfiguration must involve an integral number of physical disks.

■ Objects to be moved must not contain open volumes.

■ Moved volumes are initially disabled following a disk group move, split or

join. If required, use either vxrecover -m or vxvol startall to restart the

volumes.

Using volume snapshots for dataserver backup and off-host processing
Disk group split and join

106

■ Data change objects (DCOs) and snap objects that have been dissociated by

persistent FastResync cannot be moved between disk groups.

■ Veritas Volume Replicator (VVR) objects cannot be moved between disk groups.

■ For a disk group move to succeed, the source disk group must contain at least

one disk that can store copies of the configuration database after the move.

■ For a disk group split to succeed, both the source and target disk groups must

contain at least one disk that can store copies of the configuration database

after the split.

■ For a disk group move or join to succeed, the configuration database in the

target disk group must be able to accommodate information about all the

objects in the enlarged disk group.

■ Splitting or moving a volume into a different disk group changes the volume's

record ID.

For more information, see the Veritas VolumeManager Administrator's Guide.

Preparing hosts for database backup or off-host
processing

Snapshot volumes can be used on the same host that the database resides on (the

primary host) or on a secondary host. On a secondary host, a snapshot volume

can be used to implement regular online backup of a volume in a private disk

group or set up a clone of the production database for decision support or off-host

processing. Snapshot volumes can also be used on the primary host to create a

backup image of a database.

Single-host configuration

Figure 7-3 shows the suggested arrangement for using snapshot volumes on the

primary host to avoid disk contention.

107Using volume snapshots for dataserver backup and off-host processing
Preparing hosts for database backup or off-host processing

Figure 7-3 Example of a single-host configuration

Snapshot volumes are

created on these disks

Database volumes are

created on these disks

Primary host for database

Controllers

c1 c2 c3 c4

Back up to disk, tape or

other media by primary

host

Disk
Arrays

Local disks

Two-host configuration

Figure 7-4 shows the suggested arrangement for using snapshot volumes on a

secondary host so that CPU- and I/O-intensive operations can be performed for

online backup and decision support without degrading the performance of the

primary host running the production database.

A two-host configuration also allows the snapshot volumes to avoid contending

for I/O resources on the primary host.

For off-host processing applications, both the primary and secondary hosts need

to be able to access the disks containing the snapshot volumes.

Using volume snapshots for dataserver backup and off-host processing
Preparing hosts for database backup or off-host processing

108

Figure 7-4 Example of a two-host configuration

Note: A snapshot volume represents the data that exists in a volume at a given

point in time. As such, VxVM does not have any knowledge of data that is cached

by the overlying file system, or by applications such as databases that have files

open in the file system. If the fsgen volume usage type is set on a volume that

contains a Veritas File System (VxFS), intent logging of the file system metadata

ensures the internal consistency of the file system that is backed up. For other

file system types, depending on the intent logging capabilities of the file system,

there may potentially be inconsistencies between in-memory data and the data

in the snapshot image.

For databases, a suitable mechanism must additionally be used to ensure the

integrity of segment data when the snapshot volume is taken. The facility to

temporarily suspend file system I/O is provided by most modern database software.

For ordinary files in a file system, which may be open to a wide variety of different

applications, there may be no way to ensure the complete integrity of the file data

other than by shutting down the applications and temporarily unmounting the

file system. In many cases, it may only be important to ensure the integrity of file

data that is not in active use at the time that you take the snapshot.

Upgrading existing volumes to use VxVM 4.0 features

This section describes how to upgrade a volume created before VxVM 4.0 so that

it can take advantage of new features.

Note: The plexes of the DCO volume require persistent storage space on disk to

be available. To make room for the DCO plexes, you may need to add extra disks

to the disk group, or reconfigure existing volumes to free up space in the disk

group. Another way to add disk space is to use the disk group move feature to

bring in spare disks from a different disk group.

109Using volume snapshots for dataserver backup and off-host processing
Preparing hosts for database backup or off-host processing

To upgrade an existing volume

1 Upgrade the disk group that contains the volume to the latest version before

performing the remainder of the procedure described in this section. Use the

following command to check the version of a disk group:

vxdg list diskgroup

To upgrade a disk group to the latest version, use the following command:

vxdg upgrade diskgroup

2 If the volume to be upgraded has an old-style DRL plex or subdisk, remove

it:

vxassist -g diskgroup remove log volume [nlog=n]

Use the optional attribute nlog= to specify the number, n, of logs to be

removed. By default, the vxassist command removes one log.

3 For a volume that has one or more associated snapshot volumes, reattach

and resynchronize each snapshot:

vxassist -g diskgroup snapback snapvol

If persistent FastResync was enabled on the volume before the snapshot was

taken, the data in the snapshot plexes is quickly resynchronized from the

original volume. If persistent FastResync was not enabled, a full

resynchronization is performed.

4 Turn off persistent FastResync for the volume:

vxvol -g diskgroup set fastresync=off volume

Using volume snapshots for dataserver backup and off-host processing
Preparing hosts for database backup or off-host processing

110

5 Dissociate an old-style DCO object, DCO volume, and snap objects from the

volume:

vxassist -g diskgroup remove log volume logtype=dco

6 Upgrade the volume:

vxsnap [-g diskgroup] prepare volume [ndcomirs=number] \

[regionsize=size] [drl=yes|no|sequential] \

[storage_attribute ...]

The ndcomirs attribute specifies the number of DCO plexes that are created

in the DCO volume. It is recommended that you configure as many DCO plexes

as there are data and snapshot plexes in the volume. The DCO plexes are used

to set up a DCO volume for any snapshot volume that you subsequently create

from the snapshot plexes. For example, specify ndcomirs=5 for a volume with

3 data plexes and 2 snapshot plexes.

The value of the regionsize attribute specifies the size of the tracked regions

in the volume. A write to a region is tracked by setting a bit in the change

map. The default value is 64k (64 KB). A smaller value requires more disk

space for the change maps, but the finer granularity provides faster

resynchronization.

To enable DRL logging on the volume, specify drl=yes. If sequential DRL is

required, specify drl=sequential.

You can also specify vxassist-style storage attributes to define the disks

that can or cannot be used for the plexes of the DCO volume.

Note: The vxsnap prepare command automatically enables persistent

FastResync on the volume and on any snapshots that are generated from it.

If the volume is a RAID-5 volume, it is converted to a layered volume that can

be used with snapshots and FastResync.

Sybase Adaptive Server Enterprise 12.5 quiesce
feature

The Sybase Adaptive Server Enterprise (ASE) 12.5 quiesce database command

allows you to temporarily suspend all writes to one or more databases. Background

tasks will also skip any database that is in the suspended state. An ASE database

111Using volume snapshots for dataserver backup and off-host processing
Sybase Adaptive Server Enterprise 12.5 quiesce feature

will stay in the quiesce state until a quiesce database release command is

issued.

Without shutting down the ASE server, a database administrator (DBA) can take

VxVM volume snapshots while the database is in the quiesce state to ensure that

break-off mirrors contain a consistent and recoverable database image. Quiescing

can be done at the database level and ASE databases that are not in the quiesce

state can be updated as usual.

Note: With ASE 12.0, snapshot images taken when the database is in the quiesce

state cannot be rolled forward. With ASE 12.5, they can be. Also, the for external

dump clause was added to the quiesce database command in ASE 12.5 to permit

rolling forward a snapshot database.

How to set up volume snapshots with Sybase ASE
12.5 server

Follow these guidelines when setting up the Sybase ASE 12.5 server to use volume

snapshots:

■ Veritas recommends that you use Quick I/O files instead of raw volumes.

■ Do not share file systems and volumes between two ASE servers.

■ Do not share the same disk group between two ASE servers.

■ Avoid sharing file systems and volumes between user databases if the database

administrator intends to create a warm standby for a single database only.

■ When taking volume snapshots, create them on disks separate from the original

volumes and preferably on the disks that belong to a separate array box. The

disk group split command cannot move volumes if the move results in two

disks sharing the same disk. This rule also applies when creating a DCO log

volume for storing FastResync maps.

■ Do not put database devices (Quick I/O files, for example) in a Sybase file

system. Database files should not be in the Sybase software installation area.

■ Do not turn on FastResync tracking for tempdb devices because they will be

cleared every time the ASE server starts. In addition, the default data and log

segments for tempdb on the master device should be dropped. tempdb should

have its own file systems and volumes.

Table 7-1 shows the storage layout for an example ASE server with FastResync

running on the primary host. In this storage configuration:

Using volume snapshots for dataserver backup and off-host processing
How to set up volume snapshots with Sybase ASE 12.5 server

112

■ All volumes are mirrored and belong to the disk group syb.

■ A secondary host is in the network and has I/O paths to disks in syb.

■ Primary and secondary hosts access the same set of disks via fibre channel

switches. They can also be configured to attach to a dual-hosted RAID box or

JBOD.

■ The production server is performing I/O in the example.

Table 7-1 Example of storage layout for an ASE server with FastResync

Physical File NameSybase Device NameMount PointVolume Name

/sybasedata/snaptest/master

/sybasedata/snaptest/sysprocs

Master

Sysprocsdev

/sybasedatasybvol1

Implementing online backup or off-host processing
To implement online backup of an ASE database on a secondary host, you back

up its database devices. You can set up a regular backup cycle on another host

under Sybase ASE 12.0.0.1 ESD 1 or higher by combining the Persistent FastResync

and disk group split and join features of VxVM.

This procedure can also be used to create a second Sybase ASE installation on a

secondary host for off-host processing purposes, such as decision-support,

reporting, and testing.

Before implementing off-host processing activities, make sure the following

conditions have been met:

■ You must be logged in as superuser (root).

■ The disk group must be version 90 or later. For more information

on disk group versions, see the vxdg(1M) manual page.

Prerequisites

113Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

When creating snapshot mirrors used by databases:

■ Ensure that your Sybase instance owner directory is on a volume

included in the snapshot.

■ Create a separate disk group for Sybase database-related files.

■ Do not share file systems and volumes between two ASE servers.

■ Do not share the same disk group between two ASE servers.

■ If you intend to move a snapshot volume to another host for

off-host processing, do not share any disks between the original

mirror plex and the snapshot mirror.

■ Create snapshot mirrors on a separate controller and separate disk

from the primary volume.

■ Create snapshot mirrors for datafiles and archive logs so that they

do not share any disks with the data of the original volumes. If

they are not created in this way, they cannot be split and moved

to a secondary host.

■ Allocate separate volumes for logs and do not create snapshots on

those volumes.

■ Resynchronization speed varies based on the amount of data

changed in both the primary and secondary volumes during the

break-off time.

Usage notes

Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

114

To back up database devices

1 On the primary host, see if the volume is associated with a version 20 data

change object (DCO) and DCO volume that allow instant snapshots and

Persistent FastResync to be used with the volume:

vxprint -g diskgroup -F%instant volume_name

This command returns on if the volume can be used for instant snapshot

operations; otherwise, it returns off.

Prepare the volume for DRL and instant

snapshots.

See the Veritas VolumeManager

Administrator’s Guide.

If the volume was created under VxVM

4.0, and it is not associated with a

new-style DCO object and DCO volume...

See “Upgrading existing volumes to use

VxVM 4.0 features” on page 109.

If the volume was created before release

4.0 of VxVM, and it has any attached

snapshot plexes or it is associated with

any snapshot volumes...

2 Prepare the volume for being snapshot using the vxsnap prepare command:

vxsnap -g diskgroup prepare volume_name [alloc=disk_name]

Thevxsnap prepare command creates a DCO and DCO volumes and associates

them with the volume. It also enables persistent FastResync on the volume.

3 On the primary host, verify that FastResync is enabled on the volume:

vxprint -g diskgroup -F%fastresync volume_name

This command returns on indicating that FastResync is enabled.

4 Create a snapshot mirror of a volume:

vxsnap -g diskgroup addmir volume_name alloc=disk_name \

[nmirror=N]

where N specifies the number of mirrors.

Ensure that the mirror is created on a disk with no other volumes.

By default, one snapshot plex is added unless you specify a number using the

nmirror attribute. For a backup, you should usually only require one plex.

Alternatively, create a new volume for use as the snapshot volume as described

in Veritas VolumeManager Administrator's Guide.

115Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

5 Suspend I/O updates on the primary database by using the quiesce database

command:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag1 hold testdb, sybsystemdb, sybsystemprocs

> go

> quiesce database tag2 hold master

> go

> quit

6 If you added a snapshot plex to the volume earlier, create a full-sized instant

snapshot volume by running the following command on the primary host:

vxsnap -g diskgroup make \

source=volume/newvol=snapshot_volume/plex=plex_name

By default, VxVM attempts to avoid placing snapshot mirrors on a disk that

already holds any plexes of a data volume. However, this may be impossible

if insufficient space is available in the disk group. In this case, VxVM uses

any available space on other disks in the disk group. If the snapshot plexes

are placed on disks which are used to hold the plexes of other volumes, this

may cause problems when you subsequently attempt to move a snapshot

volume into another disk group. To override the default storage allocation

policy, you can use storage attributes to specify explicitly which disks to use

for the snapshot plexes.

See the Veritas VolumeManager Administrator's Guide.

If a database spans more than one volume, you can specify all the volumes

and their snapshot volumes using one command, as shown here:

vxsnap -g diskgroup make \

source=vol1/newvol=snapvol1/nmirror=1 \

source=vol2/newvol=snapvol2/nmirror=1 \

source=vol3/newvol=snapvol3/nmirror=1

Note: This step sets up the snapshot volumes ready for the backup cycle, and

starts tracking changes to the original volumes. When you are ready to make

a backup, proceed to the next step.

Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

116

7 On the primary host, resume I/O updates on the primary database. To resume

the updates, release the databases from quiesce mode:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag2 release

> go

> quiesce database tag1 release

> go

> quit

8 On the primary host, use the following command to move the snapshot volume

to another disk group from the original disk group:

vxdg split diskgroup new_diskgroup snapshot_volume

The split (move) command will fail if the move will cause disks to be shared

by two disk groups. The split (move) command will fail if the result of the

move causes disks to be shared by two disk groups.

9 On the primary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

10 After the split, the snapshot volume is initially disabled. Use the following

commands on the secondary host to recover and restart the snapshot volume:

vxrecover -g new_diskgroup

vxvol -g new_diskgroup start snapshot_volume

11 On the secondary host, back up the snapshot volume. If you need to remount

the file system in the volume to back it up, first run fsck on the volume. The

following are the commands for checking and mounting a file system:

fsck -F vxfs /dev/vx/rdsk/new_diskgroup/snapshot_volume

mount -F vxfs /dev/vx/dsk/new_diskgroup/snapshot_volume \

/mount_point

After the file system is mounted, administrators can back up the files using

cp commands.

12 When the backup is finished, unmount the file system:

umount /mount_point

117Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

13 On the secondary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

14 On the primary host, re-import the snapshot volume's disk group:

vxdg import new_diskgroup

15 On the primary host, join the snapshot volume's disk group with the original

volume's disk group:

vxdg join new_diskgroup diskgroup

16 After the join, the snapshot volume is initially disabled. Use the following

commands on the primary host to recover and restart the snapshot volume:

vxrecover -g diskgroup -m snapshot_volume

The contents of the snapshot volume are now ready to be re-attached and

resynchronized with the original volume. VxVM offers a snapprint command

for users to check the percentage of volumes that need to be synchronized.

In the vxprint output, this is referred to as % DIRTY.

17 To check the percentage of volumes that need to be synchronized:

vxsnap -g diskgroup print snapshot_volume

snapprint<snapshot_volume>

18 To resynchronize with the original volume:

vxsnap -g diskgroup reattach snapvol source=vol

Each time you need to back up the volume, repeat this procedure from the disk

split command to move the snapshot volume to another disk group from the

original disk group.

Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

118

To back up database devices

1 On the primary host, see if the volume is associated with a version 20 data

change object (DCO) and DCO volume that allow instant snapshots and

Persistent FastResync to be used with the volume:

vxprint -g diskgroup -F%instant volume_name

This command returns on if the volume can be used for instant snapshot

operations; otherwise, it returns off.

Prepare the volume for DRL and instant

snapshots.

See the Veritas VolumeManager

Administrator’s Guide.

If the volume was created under VxVM

4.0, and it is not associated with a

new-style DCO object and DCO volume...

See “Upgrading existing volumes to use

VxVM 4.0 features” on page 109.

If the volume was created before release

4.0 of VxVM, and it has any attached

snapshot plexes or it is associated with

any snapshot volumes...

2 Prepare the volume for being snapshot using the vxsnap prepare command:

vxsnap -g diskgroup prepare volume_name [alloc=disk_name]

Thevxsnap prepare command creates a DCO and DCO volumes and associates

them with the volume. It also enables persistent FastResync on the volume.

3 On the primary host, verify that FastResync is enabled on the volume:

vxprint -g diskgroup -F%fastresync volume_name

This command returns on indicating that FastResync is enabled.

4 Create a snapshot mirror of a volume:

vxsnap -g diskgroup addmir volume_name alloc=disk_name \

[nmirror=N]

where N specifies the number of mirrors.

Ensure that the mirror is created on a disk with no other volumes.

By default, one snapshot plex is added unless you specify a number using the

nmirror attribute. For a backup, you should usually only require one plex.

Alternatively, create a new volume for use as the snapshot volume as described

in Veritas VolumeManager Administrator's Guide.

119Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

5 Suspend I/O updates on the primary database by using the quiesce database

command:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag1 hold testdb, sybsystemdb, sybsystemprocs

> go

> quiesce database tag2 hold master

> go

> quit

6 If you added a snapshot plex to the volume earlier, create a full-sized instant

snapshot volume by running the following command on the primary host:

vxsnap -g diskgroup make \

source=volume/newvol=snapshot_volume/plex=plex_name

By default, VxVM attempts to avoid placing snapshot mirrors on a disk that

already holds any plexes of a data volume. However, this may be impossible

if insufficient space is available in the disk group. In this case, VxVM uses

any available space on other disks in the disk group. If the snapshot plexes

are placed on disks which are used to hold the plexes of other volumes, this

may cause problems when you subsequently attempt to move a snapshot

volume into another disk group. To override the default storage allocation

policy, you can use storage attributes to specify explicitly which disks to use

for the snapshot plexes.

See the Veritas VolumeManager Administrator's Guide.

If a database spans more than one volume, you can specify all the volumes

and their snapshot volumes using one command, as shown here:

vxsnap -g diskgroup make \

source=vol1/newvol=snapvol1/nmirror=1 \

source=vol2/newvol=snapvol2/nmirror=1 \

source=vol3/newvol=snapvol3/nmirror=1

Note: This step sets up the snapshot volumes ready for the backup cycle, and

starts tracking changes to the original volumes. When you are ready to make

a backup, proceed to the next step.

Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

120

7 On the primary host, resume I/O updates on the primary database. To resume

the updates, release the databases from quiesce mode:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag2 release

> go

> quiesce database tag1 release

> go

> quit

8 On the primary host, use the following command to move the snapshot volume

to another disk group from the original disk group:

vxdg split diskgroup new_diskgroup snapshot_volume

The split (move) command will fail if the move will cause disks to be shared

by two disk groups. The split (move) command will fail if the result of the

move causes disks to be shared by two disk groups.

9 On the primary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

10 After the split, the snapshot volume is initially disabled. Use the following

commands on the secondary host to recover and restart the snapshot volume:

vxrecover -g new_diskgroup

vxvol -g new_diskgroup start snapshot_volume

11 On the secondary host, back up the snapshot volume. If you need to remount

the file system in the volume to back it up, first run fsck on the volume. The

following are the commands for checking and mounting a file system:

fsck -F vxfs /dev/vx/rdsk/new_diskgroup/snapshot_volume

mount -F vxfs /dev/vx/dsk/new_diskgroup/snapshot_volume \

/mount_point

After the file system is mounted, administrators can back up the files using

cp commands.

12 When the backup is finished, unmount the file system:

umount /mount_point

121Using volume snapshots for dataserver backup and off-host processing
Implementing online backup or off-host processing

13 On the secondary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

14 On the primary host, re-import the snapshot volume's disk group:

vxdg import new_diskgroup

15 On the primary host, join the snapshot volume's disk group with the original

volume's disk group:

vxdg join new_diskgroup diskgroup

16 After the join, the snapshot volume is initially disabled. Use the following

commands on the primary host to recover and restart the snapshot volume:

vxrecover -g diskgroup -m snapshot_volume

The contents of the snapshot volume are now ready to be re-attached and

resynchronized with the original volume. VxVM offers a snapprint command

for users to check the percentage of volumes that need to be synchronized.

In the vxprint output, this is referred to as % DIRTY.

17 To check the percentage of volumes that need to be synchronized:

vxsnap -g diskgroup print snapshot_volume

snapprint<snapshot_volume>

18 To resynchronize with the original volume:

vxsnap -g diskgroup reattach snapvol source=vol

Creating a warm standby server
With volume snapshots, you can use ASE 12.5 quiesce database and dump/load

transaction commands to create a standby database and roll it forward with a

transaction dump from the production database.

In some Sybase environments, two installations are maintained: one for production

and one for DSS or failover. The DBA creates the initial standby database server

by first quiescing the databases on the primary server. Protected by the database

quiesce framework, the DBA creates snapshots for all the volumes used by the

database server and then releases the databases. Next, the DBA can deport the

volume snapshots to another host and start the standby database on that host.

After the initial setup, the DBA periodically performs dump transaction

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

122

commands on the production database and loads them onto the standby database.

Between the load transactions, the standby database is available as read-only and

users can run queries against the standby database that do not update it. If the

production database fails, a DBA can switch the standby database to read-write

mode to take over the production workload.

The following is a summary of the steps to create a warm standby server in the

ASE 12.5 environment:

■ Use VxVM volume snapshots to move the entire ASE server to the secondary

host. After users perform the first load transaction step, the failover database

will be online standing by.

■ Perform periodic dump transaction commands for databases to a dedicated

disk dump device. This disk dump device can reside on a separate disk group,

for example, dump_diskgroup, which will be able to deport/import between

the primary host and the secondary host. After the dump is finished, deport

the disk group dump_diskgroup on the primary host.

■ Import the disk group dump_diskgroup onto the secondary host and perform

load transaction commands on the failover database.

■ Repeat the dump/load transaction commands (steps 2 and 3 above) in fixed

intervals. For example, repeat the process every hour.

■ Repeat the entire process in fixed intervals. For example, repeat the process

every day.

Before creating a warm standby server, make sure the following conditions have

been met:

■ You must be logged in as superuser (root).

■ The disk group must be version 90 or later. For more information

on disk group versions, see the vxdg(1M) manual page.

Prerequisites

123Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

■ Ensure that your Sybase instance owner directory is on a volume

included in the snapshot.

■ Create a separate disk group for Sybase database-related files.

■ Do not share file systems and volumes between two ASE servers.

■ Do not share the same disk group between two ASE servers.

■ If you intend to move a snapshot volume to another host for

off-host processing, do not share any disks between the original

mirror plex and the snapshot mirror.

■ Create snapshot mirrors on a separate controller and separate disk

from the primary volume.

■ Create snapshot mirrors for datafiles and archive logs so that they

do not share any disks with the data of the original volumes. If

they are not created in this way, they cannot be split and moved

to a secondary host.

■ Allocate separate volumes for logs and do not create snapshots on

those volumes.

■ Resynchronization speed varies based on the amount of data

changed in both the primary and secondary volumes during the

break-off time.

Usage notes

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

124

To create a warm standby server

1 On the primary host, use the following command to see if the volume is

associated with a version 20 data change object (DCO) and DCO volume that

allow instant snapshots and Persistent FastResync to be used with the volume:

vxprint -g diskgroup -F%instant volume_name

This command returns on if the volume can be used for instant snapshot

operations; otherwise, it returns off.

Prepare the volume for DRL and instant

snapshots.

See the Veritas VolumeManager

Administrator’s Guide.

If the volume was created under VxVM

4.0, and it is not associated with a

new-style DCO object and DCO volume...

See “Upgrading existing volumes to use

VxVM 4.0 features” on page 109.

If the volume was created before release

4.0 of VxVM, and it has any attached

snapshot plexes or it is associated with

any snapshot volumes...

Note: If the volume was created under PRODUCTNAME 4.0, and it is not

associated with a new-style DCO object and DCO volume, follow the procedure

for preparing a volume for DRL and instant snapshots in the Veritas Volume

Manager Administrator's Guide.

If the volume was created before release 4.0 of PRODUCTNAME, and it has

any attached snapshot plexes or it is associated with any snapshot volumes,

follow the procedure given in .

2 Prepare the volume for taking a snapshot using the vxsnap prepare

command:

vxsnap -g diskgroup prepare volume_name [alloc=disk_name]

Thevxsnap prepare command creates a DCO and DCO volumes and associates

them with the volume. It also enables persistent FastResync on a volume.

3 On the primary host, verify that FastResync is enabled on the volume:

vxprint -g diskgroup -F%fastresync volume_name

This command returns on indicating that FastResync is enabled.

125Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

4 Create a snapshot mirror of the volume.

Note: Ensure that the mirror is created on a disk with no other volumes.

vxsnap -g diskgroup addmir volume_name alloc=disk_name

5 Prepare the secondary host to receive the snapshot volume that contains the

copy of the database tables. This may involve setting up private volumes to

contain any redo logs, and configuring any files that are used to initialize the

database.

6 List the plexes and determine the name of the snapshot plex. The snapshot

plex appears directly after the snapshot volume:

vxprint -g diskgroup

7 On the primary host, suspend I/O updates by using the quiesce database

command:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag1 hold userdb, sybsystemdb, \

sybsystemprocs for external dump

> go

> quiesce database tag2 hold master for external dump

> go

> quit

Note: The for external dump clause is new in ASE 12.5 and it tells the ASE

that a physical copy of the database device(s) will be made during the quiesce

state, and that the copy will serve as the foundation for a new dump sequence.

A dump made with this clause can be used for starting a secondary server

and the secondary server can be rolled forward with transaction logs.

The for external dump clause has no effect on system databases.

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

126

8 Create a full-sized instant snapshot volume on the primary host by specifying

the snapshot plex identified in 6:

vxsnap -g diskgroup make \

source=volume_name/newvol=snapshot_volume/plex=plex_name

By default, PRODUCTNAME attempts to avoid placing snapshot mirrors on

a disk that already holds any plexes of a data volume. However, this may be

impossible if insufficient space is available in the disk group. In this case,

PRODUCTNAME uses any available space on other disks in the disk group.

If the snapshot plexes are placed on disks that are used to hold the plexes of

other volumes, this may cause problems when you subsequently attempt to

move a snapshot volume into another disk group. To override the default

storage allocation policy, you can use storage attributes to specify explicitly

which disks to use for the snapshot plexes.

See the Veritas VolumeManager Administrator's Guide.

If a database spans more than one volume, you can specify all the volumes

and their snapshot volumes using one command, as shown here:

vxsnap -g diskgroup make \

source=volume1/newvol=snapshot_volume1/nmirror=2 \

source=volume2/newvol=snapshot_volume2/nmirror=2 \

source=volume3/newvol=snapshot_volume3/nmirror=2

Note: This step sets up the snapshot volumes, and starts tracking changes to

the original volumes. When you are ready to create a clone database, proceed

to the next step.

9 On the primary host, resume I/O updates on the primary database. To resume

the updates, release the databases from quiesce mode:

vxdg split diskgroup new_diskgroup snapshot_volume

10 On the primary host, move the snapshot volume to another disk group from

the original disk group:

vxdg split diskgroup new_diskgroup snapshot_volume

The split (move) command will fail if the result of the move causes disks to

be shared by two disk groups.

127Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

11 On the primary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

12 On the secondary host, import the snapshot volume's disk group:

vxdg import new_diskgroup

13 After the split, the snapshot volume is initially disabled. Use the following

commands on the secondary host to recover and restart the snapshot volume:

vxrecover -g new_diskgroup -m snapshot_volume

vxvol -g new_diskgroup start snapshot_volume

14 On the secondary host, check and mount all of the file systems used by the

ASE servers. The following are the commands for checking and mounting a

file system:

fsck -F vxfs /dev/vx/dsk/new_diskgroup/snapshot_volume

mount -F vxfs /dev/vx/dsk/new_diskgroup/snapshot_volume \

/mount_point1

15 Change the ownership of the mount point specified in step 14 to this instance:

chown -R sybase:sybase mount_point

Ensure that redo logs are part of the snapshot volume so that Sybase can

perform a crash recovery if needed.

16 Create a server on the secondary host:

$ server_name

17 Modify the interfaces file on the secondary host to change the host name

from the primary to the secondary host. The interfaces file is located under

the /$SYBASE directory.

18 Start the ASE server on the secondary host with the ASE 12.5 -q flag:

$ /sybase/ASE-12_5/bin/dataserver -Sserver_name \

-d/master_device_path -e/error_log_file_path \

-M/sybase_software_path -q

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

128

19 After transactions have occurred on the primary host, deport the snapshot

volume's disk group on the secondary host:

$ isql -Usa -Ppassword -Sserver

> dump tran userdb to dump_device with standby_access

> go

> quit

20 On the primary host, import the snapshot volume's disk group:

vxdg split diskgroup dump_diskgroup snapshot_dump_volume

21 Join new_diskgroup back to the original disk group:

vxdg join new_diskgroup diskgroup

22 Recover the snapshot volume:

vxrecover -g new_diskgroup

23 Dump the transactions to the dump device (dump_diskgroup):

$ isql -Usa -Ppassword -Sserver

> dump tran userdb to dump_diskgroup with standby_access

> go

> quit

24 Deport the disk group dump_diskgroup on the primary host:

vxdg deport dump_diskgroup

25 Import the disk group dump_diskgroup on the secondary host:

vxdg import dump_diskgroup

26 On the secondary host, recover and restart the snapshot volume:

vxrecover -g dump_diskgroup -m snapshot_volume

vxvol -g dump_diskgroup start snapshot_volume

129Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

27 Load the transaction dumps to the failover database and put the database on

the secondary host online:

$ isql -Usa -Ppassword -Sserver

> load tran userdb from dump_device

> go

> online database userdb for standby_access

> go

28 After the load is finished, deport dump_diskgroup and import it back to the

primary host disk group. It is recommended that 19 to 27 be repeated regularly

(for example, every hour).

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

130

29 To refresh all ASE servers, join new_diskgroup back to the original disk group

and restart all volume snapshots:

vxdg join new_diskgroup diskgroup

vxrecover -g diskgroup

131Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

30 Resynchronize the snapshot volume with the original volume:

vxsnap -g diskgroup reattach snapshot_volume source=volume

The entire cycle can be repeated every day, if desired.

In this example, a warm standby dataserver is created in an ASE 12.5

environment on a secondary host.

Log in as root and create the disk group, syb, for database use.

vxdg init syb disk1=c2t130d0s2

vxdg -g syb adddisk disk2=c2t131d0s2

Log in as the instance owner and create a volume and VxFS file system.

vxassist -g syb make sybvol1 5g disk1

mkfs -F vxfs -o largefiles /dev/vx/rdsk/syb/sybvol1

mkdir /sybasedata

mount -F vxfs -o largefiles /dev/vx/dsk/syb/sybvol1 /sybasedata

chown -R sybase:sybase /sybasedata

Create an instance, inst1.

/sybase/ASE-12.5/bin/dataserver -d/sybasedata/snaptest/master \

-e/sybasedata/snaptest/errorlog -M/sybase/ASE-12.5/ -s/mysrv -q

Create an ASE dataserver on the VxFS file system.

srvbuild -r srvbuild.mysrv.rs

Modify the interfaces file on the secondary host to change the host name

from the primary to the secondary host. The interfaces file is located under

the /$SYBASE directory.

Log in to the dataserver and create a database.

$ isql -Usa -P -Smysrv

> disk init

> name=db1

> physname=/sybasedata/testdb/testfile

> vdevno=3

> size=5m

> dsync=true

> go

> disk init

> name=db1log

> physname=/sybasedata/testdb/testlog

Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

132

> vdemo=4

> size=3m

> dsync=true

> go

> create database dbtest1 on db1=3m log db1log=1m

> go

> create table dept (chat# char(2), name char(2), talk decimal(5), primary key (chat#));

> go

> insert into dept values (ab, cd, 12345);

> go

Log in as root and prepare the volume, sybvol1, for taking a snapshot.

vxsnap -g syb prepare sybvol1 alloc=syb01

Verify that DCO and FastResync are enabled on the volume.

vxprint -g syb -F%instant sybvol1

on

on

Create a snapshot mirror.

vxsnap -g syb addmir sybvol1 alloc=syb02

Create a full-sized instant snapshot, snap_vol1, on the primary host.

vxsnap -g syb make \

source=sybvol1/newvol=snap_vol1/plex=sybvol1-02

Move the snapshot volume, snap_vol1, into a separate disk group, new_syb,

from the original disk group, syb.

vxdg split syb new_syb snap_vol1

Deport the snapshot volume's disk group on the primary host.

vxdg deport new_syb

Import the snapshot volume's disk group on the secondary host.

vxdg import new_syb

After the split, the snapshot volume is initially disabled. Recover and restart

the snapshot volume.

133Using volume snapshots for dataserver backup and off-host processing
Creating a warm standby server

vxrecover -g new_syb -m snap_vol1

vxvol -g new_syb start snap_vol1

On the secondary host, check and mount the snapshot volume.

mkdir /sybasedata

fsck -F vxfs /dev/vx/rdsk/new_syb/snap_vol1

mount -F vxfs /dev/vx/dsk/new_syb/snap_vol1 /sybasedata

chown -R sybase:sybase /sybasedata

Log in as the instance owner.

su - sybase

Start the ASE server on the secondary host with the ASE 12.5 -q flag:

$ /sybase/ASE-12.5/bin/dataserver -d/sybasedata/snaptest/maste \

-e/sybasedata/snapshot/errorlog -M/sybasedata/ASE-12.5/ -s mysrv \

-q

> isql -Usa -P -Smysrv

> use dbtest1

> go

The warm standby dataserver is now ready to use.

Resynchronizing the snapshot to your ASEdataserver
When you want to refresh a clone database, you can resynchronize it with the

original database. This is also known as refreshing the snapshot volume or merging

the split snapshot image back to the current database image. After

resynchronizing, the snapshot is ready to be used for backup or decision-support

purposes.

There are two choices when resynchronizing the data in a volume:

■ Resynchronizing the snapshot from the original volume. This option is

explained in this section.

■ Resynchronizing the original volume from the snapshot. This choice is known

as reverse resynchronization. Reverse resynchronization may be necessary

to restore a corrupted database or file system, or to implement upgrades to

production software, and is usually much quicker than using alternative

approaches such as full restoration from backup media.

See “Recovering the database from a backup image” on page 139.

Using volume snapshots for dataserver backup and off-host processing
Resynchronizing the snapshot to your ASE dataserver

134

When you want to resynchronize the snapshot volume's data with the primary

database, you can refresh the snapshot plexes from the original volume as

described below.

To resynchronize the snapshot image

1 On the secondary host, shut down the clone database.

> isql -Usa -P -Sserver

> shutdown

> go

2 Log in as root and unmount the file system.

umount mount_point

3 On the secondary host, deport the snapshot volume's disk group:

vxdg deport new_diskgroup

4 On the primary host, re-import the snapshot volume's disk group:

vxdg import new_diskgroup

5 On the primary host, rejoin the snapshot volume's disk group with the original

volume's disk group:

vxdg join new_diskgroup diskgroup

6 After the join, the snapshot volume is initially disabled. Use the following

commands on the primary host to recover and restart the snapshot volume:

vxvol -g diskgroup startall

The contents of the snapshot volume are now ready to be refreshed.

135Using volume snapshots for dataserver backup and off-host processing
Resynchronizing the snapshot to your ASE dataserver

7 Reattach the snapshot volume's disk group to the original volume's disk

group:

vxsnap -g diskgroup reattach <snapshot_volume> \

source=volume

Using volume snapshots for dataserver backup and off-host processing
Resynchronizing the snapshot to your ASE dataserver

136

8 Follow step 10 through step 18 to split the snapshot volume from the disk

group when synchronization is again complete.

The snapshot image is now ready to be re-used for backup or decision-support

applications.

Example

On the secondary host:

Log in as the instance owner and shut down the clone database:

> isql -Usa -P -Smysrv

> shutdown

> go

Log in as root and unmount the file system:

umount /sybasedata

As root, deport the snapshot volume's disk group:

vxdg deport new_syb

On the primary host:

Log in as root and import the snapshot volume's disk group:

vxdg import new_syb

As root, rejoin the snapshot volume's disk group to the original volume's disk

group:

vxdg join new_syb syb

As root, recover and restart the snapshot volume:

vxrecover -g syb

vxvol -g syb start snap_vol1

As root, reattach the snapshot:

vxsnap -g syb reattach snap_vol1 source=sybvol1

Split the snapshot volume into a separate disk group from the original disk

group:

vxdg split syb new_syb snap_vol1

137Using volume snapshots for dataserver backup and off-host processing
Resynchronizing the snapshot to your ASE dataserver

Note: The split (move) command will fail if the result of the move causes

disks to be shared by two disk groups.

Deport the snapshot volume's disk group:

vxdg deport new_syb

On the secondary host:

Log in as root and import the snapshot volume's disk group:

vxdg import new_syb

After the split, the snapshot volume is initially disabled. As root, use the

following commands on to recover and restart the snapshot volume:

vxrecover -g syb -m snap_vol1

As root, check and mount all of the file systems used by the ASE servers. The

following are the commands for checking and mounting a file system:

fsck -F vxfs /dev/vx/dsk/syb/snap_vol1

mount -F vxfs /dev/vx/dsk/syb/snap_vol1 /sybasedata

Ensure that the dataserver is up and running on the secondary host.

As root, change the ownership of the mount point sybasedata, if needed:

chown -R sybase:sybase sybasedata

Note: Ensure that redo logs are part of the snapshot volume so that Sybase

can perform a crash recovery if needed.

Modify the interfaces file on the secondary host to change the host name

from the primary to the secondary host. The interfaces file is located under

the /$SYBASE directory.

Start the ASE server on the secondary host with the ASE 12.5 -q flag:

$ /sybase/ASE-12.5/bin/dataserver -d/sybasedata/snaptest/master \

-e/sybasedata/snapshot/errorlog -M/sybasedata/ASE-12.5/ -s mysrv \

-q

> isql -Usa -P -Smysrv

> use dbtest1

> go

Using volume snapshots for dataserver backup and off-host processing
Resynchronizing the snapshot to your ASE dataserver

138

Recovering the database from a backup image
A backup image on the primary host can be used to restore the primary database

if it becomes corrupted. This section describes the procedure for using snapshot

volumes to create a backup image of a database on the primary host. It also explains

how to recover the primary database from the backup image.

■ You must be logged in as superuser (root).

■ The disk group must be version 90 or later. For more information

on disk group versions, see the vxdg(1M) manual page.

Prerequisites

■ Ensure that your Sybase instance owner directory is on a volume

included in the snapshot.

■ Create a separate disk group for Sybase database-related files.

■ Do not share file systems and volumes between two ASE servers.

■ Do not share the same disk group between two ASE servers.

■ If you intend to move a snapshot volume to another host for

off-host processing, do not share any disks between the original

mirror plex and the snapshot mirror.

■ Create snapshot mirrors on a separate controller and separate disk

from the primary volume.

■ Create snapshot mirrors for datafiles and archive logs so that they

do not share any disks with the data of the original volumes. If

they are not created in this way, they cannot be split and moved

to a secondary host.

■ Allocate separate volumes for logs and do not create snapshots on

those volumes.

■ Resynchronization speed varies based on the amount of data

changed in both the primary and secondary volumes during the

break-off time.

Usage notes

To create a backup image on the primary host

1 Follow steps 1 to 4 and then steps 6 to 8 in:

See “Resynchronizing the snapshot to your ASE dataserver” on page 134.

to create a snapshot volume on the primary host.

A failure occurs, requiring you to restore the primary database from the

backup image.

2 Shut down the primary database if it is still active.

> isql -Usa -P -Sserver

> shutdown

> go

139Using volume snapshots for dataserver backup and off-host processing
Recovering the database from a backup image

3 Unmount the file system for the primary database

umount -f /mount_point

4 Restore the volume from the snapshot volume. You must be logged in as root

to execute this command.

vxsnap -g diskgroup restore volume_name \

source=snapshot_volume destroy=yes

5 Check and mount the file system for the primary database.

fsck -F vxfs /dev/vx/dsk/diskgroup/volume

mount -F vxfs /dev/vx/dsk/diskgroup/volume /mount_point

6 Ensure that the ASE dataserver has the correct permissions:

chown -R sybase:sybase /mount_point

Using volume snapshots for dataserver backup and off-host processing
Recovering the database from a backup image

140

7 As the instance owner, start the primary database.

> isql -Usa -P -Sserver

141Using volume snapshots for dataserver backup and off-host processing
Recovering the database from a backup image

8 Bring the backup image of the database online by applying the transaction

logs and roll it forward.

The Sybase clients are now ready to reconnect.

Note: The archive logs are needed to roll the database forward. In case the

archive logs are corrupted on the primary database, they need to be restored

from backup.

In this example the primary database is restored from a backup image on the

primary host.

After the corruption occurs, log in as the instance owner and terminate all

active connections to the primary database:

> isql -Usa -P -Smysrv

> shutdown

> go

Log in as root and unmount the primary database's file systems:

umount -f /sybasedata

As root, join the snapshot volume's disk group with the primary disk group:

vxdg join new_syb syb

After the join, the snapshot volume is initially disabled. Recover and restart

the snapshot volume:

vxrecover -g syb -m snap_vol1

As root, restore the volume from the snapshot volume:

vxsnap -g syb restore sybvol1 source=snap_vol1 destroy=yes

As root, check and mount the file system for the primary database:

fsck -F vxfs /dev/vx/rdsk/syb/sybvol1

mount -F vxfs /dev/vx/dsk/syb/sybvol1 /sybasedata

Ensure that the ASE dataserver has the correct permissions:

chown -R sybase:sybase /sybasedata

Log in as the instance owner and start the primary database:

su - sybase

$ /sybase/ASE-12.5/install/startserver -f RUN_mysrv

Using volume snapshots for dataserver backup and off-host processing
Recovering the database from a backup image

142

The database has now been restored to where it was when the snapshot was

taken or refreshed last.

Refreshing a snapshot database image
Refresh a snapshot database image so that it can later be used to restore the

primary database.

Before refreshing a snapshot database image, make sure the following conditions

have been met:

■ You must be logged in as superuser (root).

■ The disk group must be version 90 or later. For more information

on disk group versions, see the vxdg(1M) manual page.

Prerequisites

When creating snapshot mirrors used by databases refer to the

following:

■ Ensure that your Sybase instance owner directory is on a volume

included in the snapshot.

■ Create a separate disk group for Sybase database-related files.

■ Do not share file systems and volumes between two ASE servers.

■ Do not share the same disk group between two ASE servers.

■ If you intend to move a snapshot volume to another host for

off-host processing, do not share any disks between the original

mirror plex and the snapshot mirror.

■ Create snapshot mirrors on a separate controller and separate disk

from the primary volume.

■ Create snapshot mirrors for datafiles and archive logs so that they

do not share any disks with the data of the original volumes. If

they are not created in this way, they cannot be split and moved

to a secondary host.

■ Allocate separate volumes for logs and do not create snapshots on

those volumes.

■ Resynchronization speed varies based on the amount of data

changed in both the primary and secondary volumes during the

break-off time.

Usage notes

143Using volume snapshots for dataserver backup and off-host processing
Refreshing a snapshot database image

To refresh a snapshot image of the database on the primary host

1 As root, join the snapshot disk group with the primary disk group:

vxdg join new_diskgroup diskgroup

2 After the join, the snapshot volume is initially disabled. Recover and restart

the snapshot volume:

vxrecover -g diskgroup -m snapshot_volume

3 Suspend I/O updates on the primary database by using the quiesce database

command:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag1 hold testdb, sybsystemdb, \

sybsystemprocs

> go

> quiesce database tag2 hold master

> go

> quit

4 Refresh the snapshot image:

$ vxsnap -g diskgroup refresh snapshot_volume \

source=volume_name syncing=yes

5 Resume I/O updates on the primary database. To resume the updates, release

the databases from quiesce mode:

$ isql -Usa -Ppassword -Sserver

> quiesce database tag2 release

> go

> quiesce database tag1 release

> go

> quit

6 On the primary host, split the snapshot volume into a separate disk group

from the original disk group:

vxdg split diskgroup new_diskgroup snapshot_volume

Using volume snapshots for dataserver backup and off-host processing
Refreshing a snapshot database image

144

Dissociating a snapshot volume
You can permanently break the link between a snapshot and its original volume

so that the snapshot volume becomes an independent volume.

■ You must be logged in as superuser (root).

■ The snapshot volume must be associated with its original volume.

You can permanently break the link between a snapshot and its original volume

so that the snapshot volume becomes an independent volume.

To dissociate a snapshot from its original volume

1 Use the vxsnap dis command as follows:

vxsnap -g <diskgroup> [-f] dis <snapshot_volume>

2 Remove the DCO logs from the snapshot volume:

vxsnap -g <diskgroup> [-f] unprepare <snapshot_volume>

3 Remove the DCO logs from the primary volume, if necessary:

vxsnap -g <diskgroup> [-f] unprepare <volume_name>

This example shows how to dissociate a snapshot volume from its original volume:

vxsnap -g syb dis snap_vol

This example shows how to remove the DCO logs from the snapshot volume:

vxsnap -g syb -f unprepare snap_vol

This example shows how to remove the DCO logs from the primary volume:

vxsnap -g syb -f unprepare sybvol

Removing a snapshot volume
If a volume is no longer necessary, you can remove the volume and free up the

disk space for other uses by using the vxedit rm command.

Note: Removing a volume destroys all of the data in that volume. After a volume

is removed, the space it occupied is returned to the free space pool.

145Using volume snapshots for dataserver backup and off-host processing
Dissociating a snapshot volume

Before removing a snapshot volume, make sure the following requirements have

been met:

■ You must be logged in as superuser (root).

■ You must have an existing snapshot volume.

Prerequisites

To remove a snapshot volume using the command line

1 Dissociate the snapshot from its original volume:

vxsnap -g diskgroup [-f] dis snapshot_volume

2 Remove the snapshot volume:

vxedit -g diskgroup -rf rm snapshot_volume

where -r recursively removes all plexes and subdisks.

Warning: If the volume is on a mounted file system, you must unmount it

before removing the volume.

This example shows how to remove a snapshot volume from a disk group:

vxsnap -g syb dis snap_vol1

vxedit -g syb -rf rm snap_vol1

Using volume snapshots for dataserver backup and off-host processing
Removing a snapshot volume

146

Tuning for performance

This chapter includes the following topics:

■ Additional documentation

■ About tuning VxVM

■ About tuning VxFS

■ About tuning Sybase dataservers

■ About tuning Solaris for Sybase

Additional documentation
Use the tuning tips and information provided in this chapter in conjunction with

other more in-depth publications, such as:

■ Sybase Adaptive Server Enterprise Performance and Tuning Guide— covers

general tuning tips

■ Other generic Sybase documentation that deals with Sybase tuning issues

■ VeritasVolumeManagerAdministrator'sGuide, chapter on “VxVM Performance

Monitoring”

About tuning VxVM
Veritas Volume Manager (VxVM) is tuned for most configurations ranging from

small systems to larger servers. On smaller systems with less than a hundred

drives, tuning should not be necessary and Veritas Volume Manager should be

capable of adopting reasonable defaults for all configuration parameters. On very

large systems, however, there may be configurations that require additional tuning

of these parameters, both for capacity and performance reasons.

8Chapter

For more information on tuning VxVM, see the Veritas VolumeManager

Administrator's Guide.

About obtaining volume I/O statistics

If your database is created on a single file system that is on a single volume, there

is typically no need to monitor the volume I/O statistics. If your database is created

on multiple file systems on multiple volumes, or the volume configurations have

changed over time, it may be necessary to monitor the volume I/O statistics for

the databases.

Use the vxstat command to access information about activity on volumes, plexes,

subdisks, and disks under VxVM control, and to print summary statistics to the

standard output. These statistics represent VxVM activity from the time the

system initially booted or from the last time the counters were reset to zero. If no

VxVM object name is specified, statistics from all volumes in the configuration

database are reported. Use the -g option to specify the database disk group to

report statistics for objects in that database disk group.

VxVM records the following I/O statistics:

■ count of operations

■ number of blocks transferred (one operation can involve more than one block)

■ average operation time (which reflects the total time through the VxVM

interface and is not suitable for comparison against other statistics programs)

VxVM records the preceding three pieces of information for logical I/Os, including

reads, writes, atomic copies, verified reads, verified writes, plex reads, and plex

writes for each volume. VxVM also maintains other statistical data such as read

failures, write failures, corrected read failures, corrected write failures, and so

on. In addition to displaying volume statistics, the vxstat command is capable of

displaying more detailed statistics on the components that form the volume. For

detailed information on available options, refer to the vxstat(1M) manual page.

To reset the statistics information to zero, use the -r option. You can reset the

statistics information for all objects or for only those objects that are specified.

Resetting just prior to an operation makes it possible to measure the impact of

that particular operation.

The following is an example of output produced using the vxstat command:

OPERATIONS BLOCKS AVG TIME(ms)

TYP NAME READ WRITE READ WRITE READ WRITE

vol log2 0 6312 0 79836 .0 0.2

Tuning for performance
About tuning VxVM

148

vol db02 2892318 3399730 0283759 7852514 20.6 25.5

Additional information is available on how to use the vxstat output to identify

volumes that have excessive activity and how to reorganize, change to a different

layout, or move these volumes.

Additional volume statistics are available for RAID-5 configurations.

See the vxstat(1M) manual page.

See the “Performance Monitoring” section of the “Performance Monitoring and

Tuning” chapter in the Veritas VolumeManager Administrator's Guide.

About tuning VxFS
Veritas File System provides a set of tuning options to optimize file system

performance for different application workloads. VxFS provides a set of tunable

I/O parameters that control some of its behavior. These I/O parameters help the

file system adjust to striped or RAID-5 volumes that could yield performance far

superior to a single disk. Typically, data streaming applications that access large

files see the largest benefit from tuning the file system.

Most of these tuning options have little or no impact on database performance

when using Quick I/O. However, you can gather file system performance data

when using Quick I/O, and use this information to adjust the system configuration

to make the most efficient use of system resources.

How monitoring free space works

In general, VxFS works best if the percentage of free space in the file system is

greater than 10 percent. This is because file systems with 10 percent or more of

free space have less fragmentation and better extent allocation. Regular use of

the df command to monitor free space is desirable. Full file systems may have an

adverse effect on file system performance. Full file systems should therefore have

some files removed or should be expanded.

See the fsadm_vxfs(1M) manual page.

About monitoring fragmentation

Fragmentation reduces performance and availability. Regular use of fsadm's

fragmentation reporting and reorganization facilities is therefore advisable.

The easiest way to ensure that fragmentation does not become a problem is to

schedule regular defragmentation runs using the cron command.

149Tuning for performance
About tuning VxFS

Defragmentation scheduling should range from weekly (for frequently used file

systems) to monthly (for infrequently used file systems). Extent fragmentation

should be monitored with fsadm or the df -os commands.

There are three factors that can be used to determine the degree of fragmentation:

■ Percentage of free space in extents that are less than eight blocks in length

■ Percentage of free space in extents that are less than 64 blocks in length

■ Percentage of free space in extents that are 64 or more blocks in length

An unfragmented file system will have the following characteristics:

■ Less than 1 percent of free space in extents that are less than eight blocks in

length

■ Less than 5 percent of free space in extents that are less than 64 blocks in

length

■ More than 5 percent of the total file system size available as free extents that

are 64 or more blocks in length

A badly fragmented file system will have one or more of the following

characteristics:

■ More than 5 percent of free space in extents that are less than 8 blocks in

length

■ More than 50 percent of free space in extents that are less than 64 blocks in

length

■ Less than 5 percent of the total file system size available as free extents that

are 64 or more blocks in length

The optimal period for scheduling extent reorganization runs can be determined

by choosing a reasonable interval, scheduling fsadm runs at the initial interval,

and running the extent fragmentation report feature of fsadm before and after

the reorganization.

The “before” result is the degree of fragmentation prior to the reorganization. If

the degree of fragmentation approaches the percentages for bad fragmentation,

reduce the interval between fsadm. If the degree of fragmentation is low, increase

the interval between fsadm runs.

How tuning VxFS I/O parameters works

VxFS provides a set of tunable I/O parameters that control some of its behavior.

These I/O parameters are useful to help the file system adjust to striped or RAID-5

volumes that could yield performance far superior to a single disk. Typically, data

Tuning for performance
About tuning VxFS

150

streaming applications that access large files see the biggest benefit from tuning

the file system.

If VxFS is being used with Veritas Volume Manager, the file system queries VxVM

to determine the geometry of the underlying volume and automatically sets the

I/O parameters. VxVM is queried by mkfs when the file system is created to

automatically align the file system to the volume geometry. If the default alignment

from mkfs is not acceptable, the -o align=n option can be used to override

alignment information obtained from VxVM. The mount command also queries

VxVM when the file system is mounted and downloads the I/O parameters.

If the default parameters are not acceptable or the file system is being used without

VxVM, then the /etc/vx/tunefstab file can be used to set values for I/O

parameters. Themount command reads the/etc/vx/tunefstab file and downloads

any parameters specified for a file system. The tunefstab file overrides any values

obtained from VxVM. While the file system is mounted, any I/O parameters can

be changed using the vxtunefs command, which can have tunables specified on

the command line or can read them from the /etc/vx/tunefstab file.

The vxtunefs command can be used to print the current values of the I/O

parameters.

See the vxtunefs(1M) and tunefstab(4) manual pages.

About tunable VxFS I/O parameters

The following are tunable VxFS I/O parameters:

The preferred read request size. The file system uses this

parameter in conjunction with the read_nstream value

to determine how much data to read ahead. The default

value is 64K.

read_pref_io

The preferred write request size. The file system uses this

parameter in conjunction with the write_nstream value

to determine how to do flush behind on writes. The default

value is 64K.

write_pref_io

The number of parallel read requests of sizeread_pref_io
that you can have outstanding at one time. The file system

uses the product of read_nstream multiplied by

read_pref_io to determine its read ahead size. The default

value for read_nstream is 1.

read_nstream

151Tuning for performance
About tuning VxFS

The number of parallel write requests of size

write_pref_io that you can have outstanding at one time.

The file system uses the product of write_nstream
multiplied by write_pref_io to determine when to do

flush behind on writes. The default value for

write_nstream is 1.

write_nstream

On VxFS, files can have up to ten variably sized direct

extents stored in the inode. After these extents are used,

the file must use indirect extents that are a fixed size. The

size is set when the file first uses indirect extents. These

indirect extents are 8K by default. The file system does not

use larger indirect extents because it must fail a write and

return ENOSPC if there are no extents available that are the

indirect extent size. For file systems with many large files,

the 8K indirect extent size is too small. Large files that

require indirect extents use many smaller extents instead

of a few larger ones. By using this parameter, the default

indirect extent size can be increased so that large files in

indirects use fewer large extents.

Be careful using this tunable. If it is too large, then writes

fail when they are unable to allocate extents of the indirect

extent size to a file. In general, the fewer and the larger the

files on a file system, the larger thedefault_indir_size
parameter can be. The value of this parameter is generally

a multiple of the read_pref_io parameter.

This tunable is not applicable on Version 4 disk layouts.

default_indir_ size

Any file I/O requests larger than the

discovered_direct_iosz are handled as discovered

direct I/O. A discovered direct I/O is unbuffered similar to

direct I/O, but does not require a synchronous commit of

the inode when the file is extended or blocks are allocated.

For larger I/O requests, the CPU time for copying the data

into the page cache and the cost of using memory to buffer

the I/O data becomes more expensive than the cost of doing

the disk I/O. For these I/O requests, using discovered direct

I/O is more efficient than regular I/O. The default value of

this parameter is 256K.

discovered_direct_iosz

Tuning for performance
About tuning VxFS

152

Changes the default initial extent size. VxFS determines the

size of the first extent to be allocated to the file based on

the first write to a new file. Normally, the first extent is the

smallest power of 2 that is larger than the size of the first

write. If that power of 2 is less than 8K, the first extent

allocated is 8K. After the initial extent, the file system

increases the size of subsequent extents (see

max_seqio_extent_size) with each allocation. Since

most applications write to files using a buffer size of 8K or

less, the increasing extents start doubling from a small

initial extent. initial_extent_size can change the

default initial extent size to be larger, so the doubling policy

will start from a much larger initial size and the file system

will not allocate a set of small extents at the start of file.

Use this parameter only on file systems that will have a very

large average file size. On these file systems, it will result

in fewer extents per file and less fragmentation.

initial_extent_size is measured in file system blocks.

initial_extent_ size

The maximum size of a direct I/O request that will be issued

by the file system. If a larger I/O request comes in, then it

is broken up into max_direct_iosz chunks. This

parameter defines how much memory an I/O request can

lock at once, so it should not be set to more than 20 percent

of memory.

max_direct_iosz

Limits the maximum disk queue generated by a single file.

When the file system is flushing data for a file and the

number of pages being flushed exceeds max_diskq,

processes will block until the amount of data being flushed

decreases. Although this doesn't limit the actual disk queue,

it prevents flushing processes from making the system

unresponsive. The default value is 1MB.

max_diskq

153Tuning for performance
About tuning VxFS

Increases or decreases the maximum size of an extent. When

the file system is following its default allocation policy for

sequential writes to a file, it allocates an initial extent that

is large enough for the first write to the file. When additional

extents are allocated, they are progressively larger (the

algorithm tries to double the size of the file with each new

extent) so each extent can hold several writes' worth of data.

This is done to reduce the total number of extents in

anticipation of continued sequential writes. When the file

stops being written, any unused space is freed for other files

to use. Normally, this allocation stops increasing the size

of extents at 2048 blocks, which prevents one file from

holding too much unused space.max_seqio_extent_size
is measured in file system blocks.

max_seqio_extent_size

Enables or disables caching on Quick I/O files. The default

behavior is to disable caching. To enable caching, set

qio_cache_enable to 1. On systems with large memories,

the database cannot always use all of the memory as a cache.

By enabling file system caching as a second level cache,

performance may be improved. If the database is performing

sequential scans of tables, the scans may run faster by

enabling file system caching so the file system will perform

aggressive read-ahead on the files.

Tuning for performance
About tuning VxFS

154

Warning: The write_throttle parameter is useful in

special situations where a computer system has a

combination of a lot of memory and slow storage devices.

In this configuration, sync operations (such as fsync())

may take so long to complete that the system appears to

hang. This behavior occurs because the file system is

creating dirty pages (in-memory updates) faster than they

can be asynchronously flushed to disk without slowing

system performance.

Lowering the value ofwrite_throttle limits the number

of dirty pages per file that a file system will generate before

flushing the pages to disk. After the number of dirty pages

for a file reaches the write_throttle threshold, the file

system starts flushing pages to disk even if free memory is

still available. The default value of write_throttle
typically generates a lot of dirty pages, but maintains fast

user writes. Depending on the speed of the storage device,

if you lowerwrite_throttle, user write performance may

suffer, but the number of dirty pages is limited, so sync

operations will complete much faster.

Because lowering write_throttle can delay write

requests (for example, lowering write_throttle may

increase the file disk queue to the max_diskq value,

delaying user writes until the disk queue decreases), it is

recommended that you avoid changing the value of

write_throttleunless your system has a a large amount

of physical memory and slow storage devices.

write_throttle

If the file system is being used with VxVM, it is recommended that you set the

VxFS I/O parameters to default values based on the volume geometry.

If the file system is being used with a hardware disk array or volume manager

other than VxVM, align the parameters to match the geometry of the logical disk.

With striping or RAID-5, it is common to set read_pref_io to the stripe unit size

and read_nstream to the number of columns in the stripe. For striping arrays,

use the same values for write_pref_io and write_nstream, but for RAID-5 arrays,

set write_pref_io to the full stripe size and write_nstream to 1.

For an application to do efficient disk I/O, it should issue read requests that are

equal to the product of read_nstreammultiplied by read_pref_io. Generally, any

multiple or factor of read_nstream multiplied by read_pref_io should be a good

size for performance. For writing, the same rule of thumb applies to the

write_pref_io and write_nstream parameters. When tuning a file system, the

best thing to do is try out the tuning parameters under a real-life workload.

155Tuning for performance
About tuning VxFS

If an application is doing sequential I/O to large files, it should issue requests

larger than the discovered_direct_iosz. This causes the I/O requests to be

performed as discovered direct I/O requests, which are unbuffered like direct I/O

but do not require synchronous inode updates when extending the file. If the file

is too large to fit in the cache, then using unbuffered I/O avoids throwing useful

data out of the cache and lessons CPU overhead.

About obtaining file I/O statistics using the Quick I/O interface

The qiostatcommand provides access to activity information on Quick I/O files

on VxFS file systems. The command reports statistics on the activity levels of

files from the time the files are first opened using their Quick I/O interface. The

accumulated qiostat statistics are reset once the last open reference to the Quick

I/O file is closed.

The qiostat command displays the following I/O statistics:

■ Number of read and write operations

■ Number of data blocks (sectors) transferred

■ Average time spent on read and write operations

When Cached Quick I/O is used, qiostat also displays the caching statistics when

the -l (the long format) option is selected.

The following is an example of qiostat output:

OPERATIONS FILE BLOCKS AVG TIME(ms)

FILENAME READ WRITE READ WRITE READ WRITE

/db01/file1 0 00 0 0.0 0.0

/db01/file2 0 00 0 0.0 0.0

/db01/file3 73017 181735 718528 1114227 26.8 27.9

/db01/file4 13197 20252 105569 162009 25.8 397.0

/db01/file5 0 00 0 0.0 0.0

For detailed information on available options, see the qiostat(1M) manual page.

About I/O statistics data

Once you gather the file I/O performance data, you can use it to adjust the system

configuration to make the most efficient use of system resources.

Tuning for performance
About tuning VxFS

156

There are three primary statistics to consider:

■ file I/O activity

■ volume I/O activity

■ raw disk I/O activity

If your database is using one file system on a striped volume, you may only need

to pay attention to the file I/O activity statistics. If you have more than one file

system, you may need to monitor volume I/O activity as well.

First, use the qiostat -r command to clear all existing statistics. After clearing

the statistics, let the database run for a while during a typical database workload

period. For example, if you are monitoring a database with many users, let the

statistics accumulate for a few hours during prime working time before displaying

the accumulated I/O statistics.

To display active file I/O statistics, use the qiostat command and specify an

interval (using -i) for displaying the statistics for a period of time. This command

displays a list of statistics such as:

OPERATIONS FILE BLOCKS AVG TIME(ms)

FILENAME READ WRITE READ WRITE READ WRITE

/db01/cust1 218 36 872 144 22.8 55.6

/db01/hist1 0 10 4 0.0 10.0

/db01/nord1 10 14 40 56 21.0 75.0

/db01/ord1 19 16 76 64 17.4 56.2

/db01/ordl1 189 41 756 164 21.1 50.0

/db01/roll1 0 50 0 200 0.0 49.0

/db01/stk1 1614 238 6456 952 19.3 46.5

/db01/sys1 0 00 0 0.0 0.0

/db01/temp1 0 00 0 0.0 0.0

/db01/ware1 3 14 12 56 23.3 44.3

/logs/log1 0 00 0 0.0 0.0

/logs/log2 0 217 0 2255 0.0 6.8

157Tuning for performance
About tuning VxFS

File I/O statistics help identify files with an unusually large number of operations

or excessive read or write times. When this happens, try moving the “hot” files

or busy file systems to different disks or changing the layout to balance the I/O

load.

Mon May 11 16:21:20 2015

/db/dbfile01 813 0 813 0 0.3 0.0

/db/dbfile02 0 813 0 813 0.0 5.5

Mon May 11 16:21:25 2015

/db/dbfile01 816 0 816 0 0.3 0.0

/db/dbfile02 0 816 0 816 0.0 5.3

Mon May 11 16:21:30 2015

/db/dbfile01 0 0 0 0 0.0 0.0

/db/dbfile02 0 0 0 0 0.0 0.0

About tuning Sybase dataservers
To achieve optimal performance on your Sybase dataserver, the server may need

to be tuned to work together with VxFS. This section lists some general

suggestions.

Sybase tempdb database

Sybase tempdb is used quite frequently so it should be placed on a separate file

system mounting on a dedicated volume. The volume should be striped and its

disks should not be shared with other high activity volumes. This database should

also bind to its own cache space with the Sybase ASE-named cache feature to

reduce paging.

The tempdb database needs to be large enough to contain all the work tables and

temporary tables created by the dataserver. When the Adaptive Server is installed,

tempdb is created entirely on the master device. The database administrator need

to move tempdb on to larger, dedicated devices. (The default size is 2 MB only.)

To do so, first alter tempdb onto the new device created on the new Quick I/O file.

By default, the master device is included in tempdb's logsegment and

defaultsegment. To have control on the placement of the log segment and default

Tuning for performance
About tuning Sybase dataservers

158

segment, you need to drop those segments from the master device as shown in

the example below.

See the tempdb performance chapter in the Sybase ASE Performance and Tuning

Guide.

To change tempdb to a dedicated 200MB device

1 Create a Quick I/O file:

$ qiomkfile -s 200m /new/newtempdb_dev

2 Execute these commands on the Sybase Adaptive Server:

$ isql -Usa -P<sa_password> -S<dataserver_name>

> disk init

> name="newtempdb",

> physname="/newtempdb_dev",

> vnevno=<next_available_number>,

> size=102400

> go

> alter database tempdb on newtempdb=200

> go

> sp_dropsegment "default", tempdb, master

> go

> sp_dropsegment logsegment, tempdb, master

> go

Work tables and other temporary tables in tempdb will now be created on the

device newtempdb instead of on the tempdb master device.

Sybase sybsecurity database

If you use auditing on your dataserver, the auditing system performs frequent

input and output to the sysaudits table in the sybsecurity database. Follow the

same recommendation on the placement of this database as that for the tempdb.

Placement of the transaction logs

You should place the transaction log on a separate volume to reduce contentions.

Because the I/O pattern of a transaction log is sequential, the logsegment should

consist of devices created on Quick I/O files mounting on simple (non-striped)

volumes. Do not put log devices and others database devices on the same file

system. For log devices, you should use mirroring instead of RAID-5 for high

availability.

159Tuning for performance
About tuning Sybase dataservers

Database device layout

Create database devices for user tables from Quick I/O file systems mounted on

striped volumes. Stripe across as many disk drives as possible. For heavily updated

tables, use mirroring for high availability instead of RAID-5. Use user-defined

segments to achieve the exact placements for your database objects.

Nonclustered indexes placement

Data are usually being accessed at the same time the nonclustered indexes are

accessed. To reduce contention, you should separate the data and their

nonclustered indexes. This means placing them on separate Quick I/O file systems

mounted on separate volumes.

About tuning Solaris for Sybase
To achieve optimal performance using Veritas Storage Foundation for Sybase,

certain Solaris parameters need to be tuned. Changing these parameters requires

modifying the Solaris kernel settings (specified in the /etc/system file) and

rebooting the system.

You can add or change these tuning parameters in the /etc/system file using a

text editor. The following example shows the contents of an /etc/system file:

* start sybase *

set shmsys:shminfo_shmmax=512000000

set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=100

set shmsys:shminfo_shmseg=200

*

set semsys:seminfo_semmnu=60

* end sybase *

Note: The settings for all tunable parameters depend on such factors as the size

of your system and database, the database load, and the number of users. In some

cases, we make suggestions for setting the parameters; however, you should always

consult the Sybase Installation Guide for your system and version, and use the

settings recommended by Sybase when provided.

Tuning for performance
About tuning Solaris for Sybase

160

maxuprc

This parameter sets the maximum number of processes that can be run

concurrently by any one user. If you anticipate having a large number of users

accessing the database concurrently, you may need to increase this parameter.

To increase the maxuprc parameter

1 Check the current setting for maxuprc as follows:

echo "maxuprc/D" | adb -k

2 Modify or add the maxuprc setting in the /etc/system file as follows:

set maxuprc=some_integer

shmmax

This parameter sets the maximum size (in bytes) of a single shared memory

segment. See your database documentation for the recommended value.

shmmni

This parameter sets the number of shared memory identifiers. See your database

documentation for the recommended value.

shmseg

This parameter sets the maximum number of shared memory segments that can

be attached by a process. See your database documentation for the recommended

value.

semmap

This parameter sets the number of entries in semaphore map. The memory space

given to the creation of semaphores is taken from semmap, which is initialized

with a fixed number of map entries based on the value of semmap. The value of

semmap should never be larger than semmni. See your database documentation for

the recommended value.

semmni

This parameter sets the number of semaphore set identifiers in the system. The

semmni parameter determines the number of semaphore sets that can be created

161Tuning for performance
About tuning Solaris for Sybase

at any one time, and may need to be set higher for a large database. See your

database documentation for the recommended value.

semmns

This parameter sets the maximum number of semaphores in the system. The

semmnsparameter may need to be set higher for a large database. See your database

documentation for the recommended value.

semmnu

This parameter sets the system-wide maximum number of undo structures. Setting

this parameter value equal to semmni provides for an undo structure for every

semaphore set. Semaphore operations performed using semop(2) can be undone

if the process terminates, but an undo structure is required to guarantee it. See

your database documentation for the recommended value of semmnu.

Tuning for performance
About tuning Solaris for Sybase

162

Veritas Storage Foundation

for Sybase command line

interface

This appendix includes the following topics:

■ Overview of commands

■ About the command line interface

Overview of commands
Veritas Storage Foundation for Sybase commands supported in the command line

interface are located in the /opt/VRTSsybed/bin directory. Online manual pages

for these commands are located in the /opt/VRTS/mandirectory. Follow the

installation instructions provided in the Veritas Storage Foundation Installation

Guide to ensure you can use these commands and view the online manual pages.

Table A-1 summarizes the commands available to you from the command line.

Table A-1 Veritas Storage Foundation for Sybase commands

DescriptionCommand

Converts VxFS files to Quick I/O files.qio_convertdbfiles

Extracts information on files used by the database and stores

the names of these files in mkqio.dat.

The mkqio.dat file is used by the qio_convertdbfiles
command.

qio_getdbfiles

AAppendix

Table A-1 Veritas Storage Foundation for Sybase commands (continued)

DescriptionCommand

Automatically recreates Quick I/O files when the database is

recovered. The command expects to find a mkqio.dat file in the

directory where the qio_recreate command is run.

qio_recreate

Manages message log files. You can use this utility to display

and list message log files. You can also use this utility to write

a message to a log file or to the console, or read the log file and

print to the console.

edgetmsg2

About the command line interface
You can use the Veritas Storage Foundation for Sybase command line interface

to perform administrative operations. For more detailed information about the

commands and their syntax and available options, see the individual manual

pages.

Converting VxFS files to Quick I/O using qio_convertdbfiles

After running qio_getdbfiles, you can use the qio_convertdbfiles command

to convert database files to use Quick I/O. This command is for use with VxFS file

systems only.

The qio_convertdbfiles command converts regular files or symbolic links that

point to regular files on VxFS file systems to Quick I/O. The qio_convertdbfiles

command converts only those files listed in the mkqio.dat file to Quick I/O. The

mkqio.dat file is created by running qio_getdbfiles. It can also be created

manually.

Before converting files, the following conditions must be met:

■ To use this command for Sybase, the SYBASE and DSQUERY
environment variables must be set.

■ You must be logged in as the database administrator.

■ Remove any non-VxFS files from mkqio.dat before running

qio_convertdbfiles. The qio_convertdbfiles command

will display an error message if any of the database files in

mkqio.dat are not on a VxFS file system.

Prerequisites

Veritas Storage Foundation for Sybase command line interface
About the command line interface

164

■ Theqio_convertdbfiles command expects all files to be owned

by the database administrator.

■ Converting existing database files to Quick I/O is not recommended

if the files are fragmented. In this case, it is recommended that

you create new files with the qiomkfile command (these files

are guaranteed not to be fragmented) and then convert the data

from the old files (using a command such as dd).

■ Ensure that the database is shut down before running

qio_convertdbfiles.

■ See the qio_convertdbfiles(1M) manual page for more

information.

Usage notes

Note:The qio_getdbfiles and qio_convertdbfiles commands connect to the Sybase

ASE server via a Sybase sa account. It is important to protect the sa password so

that it is not visible to other users.

Table A-2 lists options for the qio_convertdbfiles command.

Table A-2 qio_convertdbfiles command options

DescriptionOption

Forces the behavior for a specific database type. The database options

that are supported are ora, syb, and db2. Use this option in

environments with more than one type of database.

-T

Changes regular files to Quick I/O files using absolute pathnames. Use

this option when symbolic links need to point to absolute pathnames.

By default, relative pathnames are used.

-a

Reports on current fragmentation levels for files listed inmkqio.dat.
Fragmentation is reported at four levels: not fragmented, slightly

fragmented, fragmented, and highly fragmented.

-f

Displays a help message.-h

Creates extra links for all database files and log files in the /dev

directory to support the SAP command.

-i

Changes Quick I/O files back to regular files.-u

165Veritas Storage Foundation for Sybase command line interface
About the command line interface

To convert VxFS files to Quick I/O files

1 After running the qio_getdbfiles command, shut down the database:

Warning: Running qio_convertdbfiles with any option except -f while the

database is up and running can cause severe problems for your database,

including data loss and corruption. Make sure the database is shut down

before running the qio_convertdbfiles command.

2 Run the qio_convertdbfiles command to convert the list of files in

mkqio.dat to Quick I/O files:

$ /opt/VRTSsybed/bin/qio_convertdbfiles

You must remove any non-VxFS files from mkqio.dat before running

qio_convertdbfiles. The qio_convertdbfiles command will display an

error message if any of the database files in mkqio.dat are not on a VxFS file

system.

3 Restart the database to access these database files using the Quick I/O

interface.

To undo a previous run of qio_convertdbfiles

◆ Use the qio_convertdbfiles as follows:

$ /opt/VRTSsybed/bin/qio_convertdbfiles -u

.dbfile::cdev:vxfs: --> dbfile

This reverts a previous run of qio_convertdbfiles and changes Quick I/O

files back to regular VxFS files.

If the database is up and running, an error message will be displayed stating

that you need to shut it down before you can run qio_convertdbfiles.

Identifying VxFS files to convert to Quick I/O using qio_getdbfiles

You can use the qio_getdbfiles command to identify VxFS files before converting

them to Quick I/O files. Only VxFS files may be converted to Quick I/O.

The qio_getdbfiles command queries the database and gathers a list of datafiles

to be converted to Quick I/O. The command requires direct access to the database.

Before using the qio_getdbfiles command, the following conditions must be

met:

Veritas Storage Foundation for Sybase command line interface
About the command line interface

166

■ The SYBASE and DSQUERY environment variables must be set.

■ You must be logged in as the database administrator.

Prerequisites

■ The -T option forces the behavior for a specific database type. The

database options that are supported are ora, syb, and db2. Use

this option in environments with more than one type of database.

■ The -a option specifies that all datafiles should be included. By

default, potential sparse files are excluded.

■ See theqio_getdbfiles(1M) manual page for more information.

■ See theqio_getdbfiles(1M) manual page for more information.

Usage notes

Note: The qio_getdbfiles command connects to the Sybase ASE server via a

Sybase sa account. It is important to protect the sa password so that it is not visible

to other users.

To identify the VxFS files to convert to Quick I/O

1 Use the qio_getdbfiles command as follows:

$ /opt/VRTSsybed/bin/qio_getdbfiles [-T syb] \

[-d <database_name>] [-m <master_device_pathname>]

where -T syb forces behavior for Sybase, <database_name> specifies the

database device files, and <master_device_pathname> specifies the full path

name of the master device for the Sybase ASE server.

The qio_getdbfiles command stores the filenames and file sizes in bytes

in a file called mkqio.dat.

2 View the mkqio.dat file:

$ cat mkqio.dat

The mkqio.dat file contains the database filenames that can be converted to

Quick I/O files. The format of the file is a list of paired file paths and file sizes.

For example:

/database/dbfiles.001 1024000

/database/dbfiles.002 2048000

Recreating Quick I/O files using qio_recreate

You can use the command to automatically recreate Quick I/O files when the

database is recovered.

167Veritas Storage Foundation for Sybase command line interface
About the command line interface

Before converting files to Quick I/O, the following conditions must be met:

■ The SYBASE and DSQUERY environment variables must be set.

■ You must be logged in as the database administrator to use this

command.

Prerequisites

■ The command expects to find a file named in the directory where

the command is run. The mkqio.dat file contains a list of the Quick

I/O files used by the database and their sizes. If the file is not in

the directory, you will be prompted to create it using .

See “Identifying VxFS files to convert to Quick I/O using

qio_getdbfiles” on page 166.

■ The qio_recreate command supports conventional Quick I/O

files only (that is, Quick I/O files in the following form: file -->

.file::cdev:vxfs:). In creating a Quick I/O file, the

qio_convertdbfiles command renames the regular VxFS file,

file, to .file with the Quick I/O extension (:cdev::vxfs:)

and creates a symbolic link to it. By default, the symbolic link uses

a relative path name.

■ There are no options for the qio_recreate command and no

output is returned when the command runs successfully.

■ See the qio_recreate(1M) manual page for more information.

Usage notes

The qio_recreate command follows these rules in recreating Quick I/O files when

a database is recovered:

■ If a Quick I/O file (.file::cdev:vxfs:) is missing, thenqio_recreate recreates

it.

■ If both a symbolic link (file) and its associated Quick I/O file

(.file::cdev:vxfs:) are missing, qio_recreate recreates both the symbolic

link and the Quick I/O file.

■ If a symbolic link (file) from a regular VxFS file to its associated Quick I/O

file (.file::cdev:vxfs:) is missing, then qio_recreate recreates the symbolic

link.

■ If a Quick I/O file (.file::cdev:vxfs:) is missing and the regular VxFS file

that is symbolically linked to it is not the same one that originally created it,

then qio_recreate issues a warning message and does not recreate the Quick

I/O file.

■ If a Quick I/O file (.file::cdev: vxfs:) is smaller than the size listed in

mkqio.dat, qio_recreate issues a warning message.

Veritas Storage Foundation for Sybase command line interface
About the command line interface

168

To automatically recreate Quick I/O files when the database is recovered

◆ Use the qio_recreate command as follows:

$ /opt/VRTSsybed/bin/qio_recreate

Managing log files using edgetmsg2

You can use the edgetmsg2 utility to manage message log files. You can use the

edgetmsg2 utility to write a message to a log file or to the console, read the log

file and print to the console, and display the available log files.

Before managing log files with the edgetmsg2 command, review the following

information:

■ Log in as the dataserver administrator or root to use this command.Prerequisites

■ The default log file for a database is located in the following

directory:

/etc/vx/vxdbed/logs/sfua_database.log

where database is the DSQUERY.

■ Be default, only messages with a severity equal to or greater than

ERROR will be logged.

■ See the edgetmsg2(1M) manual page for more information.

Usage notes

Table A-3 lists options for edgetmsg2.

Table A-3 edgetmsg2 options

DescriptionOption

Specifies the message catalogue set number. The default is

1.

-s set_num

Specifies the message ID and severity to be printed.-M msgid[:severity]

Specifies the message catalogue path, log file, or log

directory.

-f msg_catalog |
logfile |
log_directory

Overwrites the minimum log severity or creates a severity

filter. The severity values are either 0-8 or 100-108.

-v severity | severity

Pauses the cursor at the end of a display message. By default,

a line feed is added to each display message. Use the -p
option to indicate that no line feed is to be added.

-p

169Veritas Storage Foundation for Sybase command line interface
About the command line interface

Table A-3 edgetmsg2 options (continued)

DescriptionOption

Displays the content of a log file. You can specify

,suppress_time to exclude time information in the utility

output.

-o list
[,suppress_time]

Displays the available log files. You can specify ,no_archive

to exclude log files from the utility output.

-o report[,no_archive]

Reduces the length of the utility output by specifying the

time range to include. This option must be used together

with the -o list option. Use the following format:

yyy-mm-dd HH:MM:SS.

-t from_time[,to_time]

Specifies the DSQUERY for a Sybase dataserver.DSQUERY

Specifies the C language printf() format string.“default format
string”

Specifies arguments for the format string conversion

characters.

[args]

To print a message

◆ Use the edgetmsg2 command as follows:

$ /opt/VRTS/bin/edgetmsg2 [-s set_num] \

[-M msgid[:severity]] \

[-f msg_catalog] [-v severity] [-p] [-m value] \

["default format string" [args]]

To read a message log file

◆ Use the edgetmsg2 command as follows:

$ /opt/VRTS/bin/edgetmsg2 -o list[,suppress_time] \

DSQUERY | [-f logfile] [-v severity] \

[-t from_time[,to_time]]

To list available log files

◆ Use the edgetmsg2 command as follows:

$ /opt/VRTS/bin/edgetmsg2 -o report[,no_archive] \

[-f log_directory]

Veritas Storage Foundation for Sybase command line interface
About the command line interface

170

address-length pair Identifies the starting block address and the length of an extent (in file system or

logical blocks).

asynchronous I/O A format of I/O that performs non-blocking reads and writes. This enables the

system to handle multiple I/O requests simultaneously.

atomic operation An operation that either succeeds completely or fails and leaves everything as it

was before the operation was started. If the operation succeeds, all aspects of the

operation take effect at once and the intermediate states of change are invisible.

If any aspect of the operation fails, then the operation aborts without leaving

partial changes.

block map A file system is divided into fixed-size blocks when it is created. As data is written

to a file, unused blocks are allocated in ranges of blocks, called extents. The extents

are listed or pointed to from the inode. The term used for the data that represents

how to translate an offset in a file to a file system block is the “block map” for the

file.

boot disk A disk used for booting an operating system.

buffered I/O A mode of I/O operation (where I/O is any operation, program, or device that

transfers data to or from a computer) that first transfers data into the Operating

System buffer cache.

cache Any memory used to reduce the time required to respond to an I/O request. The

read cache holds data in anticipation that it will be requested by a client. The write

cache holds data written until it can be safely stored on non-volatile storage media.

Cached Quick I/O Cached Quick I/O allows databases to make more efficient use of large system

memory while still maintaining the performance benefits of Quick I/O. Cached

Quick I/O provides an efficient, selective buffering mechanism to complement

asynchronous I/O.

cluster A set of hosts that share a set of disks.

cluster-shareable disk

group

A disk group in which the disks are shared between more than one host.

cold backup The process of backing up a database that is not in active use.

command launcher A graphical user interface (GUI) window that displays a list of tasks that can be

performed by Veritas Volume Manager or other objects. Each task is listed with

the object type, task (action), and a description of the task. A task is launched by

Glossary

clicking on the task in the Command Launcher. concatenation A Veritas Volume

Manager layout style characterized by subdisks that are arranged sequentially

and contiguously.

concurrent I/O A form of Direct I/O that does not require file-level write locks when writing to a

file. Concurrent I/O allows the relational database management system (RDBMS)

to write to a given file concurrently.

configuration database A set of records containing detailed information on existing Veritas Volume

Manager objects (such as disk and volume attributes). A single copy of a

configuration database is called a configuration copy.

copy-on-write A technique for preserving the original of some data. As data is modified by a

write operation, the original copy of data is copied.

database A database is a collection of information that is organized in a structured fashion.

Two examples of databases are Relational Databases (such as Oracle, Sybase, or

DB2), where data is stored in tables and generally accessed by one or more keys

and Flat File Databases, where data is not generally broken up into tables and

relationships. Databases generally provide tools and/or interfaces to retrieve data.

dataserver A logical concept of a Sybase instance. A Sybase instance contains databases and

daemon processes that manage the data. A Sybase dataserver manages Sybase

system databases and user created databases. Each Sybase datasever is uniquely

named when it is created.

Decision Support

Systems

Decision Support Systems (DSS) are computer-based systems used to model,

identify, and solve problems, and make decisions.

defragmentation The act of reorganizing data to reduce fragmentation. Data in file systems become

fragmented over time.

device file A block- or character-special file located in the /dev directory representing a

device.

device name The name of a device file, which represents a device. AIX syntax is Disk_#; HP-UX

syntax is c#t#d#; Linux syntax is sda, where "a" could be any alphabetical letter;

Solaris syntax is c#t#d#s#.

direct I/O An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct

I/O, data is transferred directly between the disk and the user application.

Dirty Region Logging The procedure by which the Veritas Volume Manager monitors and logs

modifications to a plex. A bitmap of changed regions is kept in an associated

subdisk called a log subdisk.

disk access name The name used to access a physical disk, such as Disk_1 on an AIX system, c1t1d1

on an HP-UX system, sda on a Linux system, or c0t0d0s0 on a Solaris system. The

term device name can also be used to refer to the disk access name.

Glossary172

disk array A collection of disks logically and physically arranged into an object. Arrays

provide benefits including data redundancy and improved performance.

disk cache A section of RAM that provides a cache between the disk and the application. Disk

cache enables the computer to operate faster. Because retrieving data from hard

disk can be slow, a disk caching program helps solve this problem by placing

recently accessed data in the disk cache. Next time that data is needed, it may

already be available in the disk cache; otherwise a time-consuming operation to

the hard disk is necessary.

disk group A collection of disks that share a common configuration.

A disk group configuration is a set of records containing detailed information on

existing Veritas Volume Manager objects (such as disk and volume attributes) and

their relationships. Each disk group has an administrator-assigned name and an

internally defined unique ID. The root disk group (rootdg) is a special private disk

group

disk name A Veritas Volume Manager logical or administrative name chosen for the disk,

such as disk03. The term disk media name is also used to refer to the disk name.

DMP See “Dynamic Multipathing.”

DSS See “Decision Support Systems.”

Dynamic Multipathing Dynamic Multipathing (DMP) is a Veritas Volume Manager feature that allows

the use of multiple paths to the same storage device for load balancing and

redundancy.

error handling Routines in a program that respond to errors. The measurement of quality in

error handling is based on how the system informs the user of such conditions

and what alternatives it provides for dealing with them.

evacuate Moving subdisks from the source disks to target disks.

exabyte A measure of memory or storage. An exabyte is approximately

1,000,000,000,000,000,000 bytes (technically 2 to the 60th power, or

1,152,921,504,606,846,976 bytes). Also EB.

extent A logical database attribute that defines a group of contiguous file system data

blocks that are treated as a unit. An extent is defined by a starting block and a

length.

extent attributes The extent allocation policies associated with a file and/or file system. For example,

see “address-length pair.”

failover The act of moving a service from a failure state back to a running/available state.

Services are generally applications running on machines and failover is the process

of restarting these applications on a second system when the first has suffered a

failure.

173Glossary

file system A collection of files organized together into a structure. File systems are based

on a hierarchical structure consisting of directories and files.

file system block The fundamental minimum size of allocation in a file system.

fileset A collection of files within a file system.

fixed extent size An extent attribute associated with overriding the default allocation policy of the

file system.

fragmentation Storage of data in non-contiguous areas on disk. As files are updated, new data is

stored in available free space, which may not be contiguous. Fragmented files

cause extra read/write head movement, slowing disk accesses.

gigabyte A measure of memory or storage. A gigabyte is approximately 1,000,000,000 bytes

(technically, 2 to the 30th power, or 1,073,741,824 bytes). Also GB, Gbyte, and

G-byte.

high availability (HA) The ability of a system to perform its function continuously (without significant

interruption) for a significantly longer period of time than the combined

reliabilities of its individual components. High availability is most often achieved

through failure tolerance and inclusion of redundancy; from redundant disk to

systems, networks, and entire sites.

hot backup The process of backing up a database that is online and in active use.

hot pluggable To pull a component out of a system and plug in a new one while the power is still

on and the unit is still operating. Redundant systems can be designed to swap disk

drives, circuit boards, power supplies, CPUs, or virtually anything else that is

duplexed within the computer. Also known as hot swappable.

hot-relocation A Veritas Volume Manager technique of automatically restoring redundancy and

access to mirrored and RAID-5 volumes when a disk fails. This is done by relocating

the affected subdisks to disks designated as spares and/or free space in the same

disk group.

inode list An inode is an on-disk data structure in the file system that defines everything

about the file, except its name. Inodes contain information such as user and group

ownership, access mode (permissions), access time, file size, file type, and the

block map for the data contents of the file. Each inode is identified by a unique

inode number in the file system where it resides. The inode number is used to find

the inode in the inode list for the file system. The inode list is a series of inodes.

There is one inode in the list for every file in the file system.

intent logging A logging scheme that records pending changes to a file system structure. These

changes are recorded in an intent log.

interrupt key A way to end or break out of any operation and return to the system prompt by

pressing Ctrl-C.

Glossary174

kernel asynchronous I/O A form of I/O that performs non-blocking system level reads and writes. This

enables the system to handle multiple I/O requests simultaneously.

kilobyte A measure of memory or storage. A kilobyte is approximately a thousand bytes

(technically, 2 to the 10th power, or 1,024 bytes). Also KB, Kbyte, kbyte, and K-byte.

large file A file more than two gigabytes in size. An operating system that uses a 32-bit

signed integer to address file contents will not support large files; however, the

Version 4 disk layout feature of VxFS supports file sizes of up to two terabytes.

large file system A file system more than two gigabytes in size. VxFS, in conjunction with VxVM,

supports large file systems.

latency The amount of time it takes for a given piece of work to be completed. For file

systems, this typically refers to the amount of time it takes a given file system

operation to return to the user. Also commonly used to describe disk seek times.

load balancing The tuning of a computer system, network tuning, or disk subsystem in order to

more evenly distribute the data and/or processing across available resources. For

example, in clustering, load balancing might distribute the incoming transactions

evenly to all servers, or it might redirect them to the next available server.

load sharing The division of a task among several components without any attempt to equalize

each component’s share of the load. When several components are load sharing,

it is possible for some of the shared components to be operating at full capacity

and limiting performance, while others components are under utilized.

Logical Unit Number A method of expanding the number of SCSI devices that can be placed on one SCSI

bus. Logical Unit Numbers address up to seven devices at each SCSI ID on an 8-bit

bus or up to 15 devices at each ID on a 16-bit bus.

logical volume See “volume.”

LUN See “Logical Unit Number.”

master node A computer which controls another computer or a peripheral.

megabyte A measure of memory or storage. A megabyte is approximately 1,000,000 bytes

(technically, 2 to the 20th power, or 1,048,576 bytes). Also MB, Mbyte, mbyte, and

K-byte.

metadata Data that describes other data. Data dictionaries and repositories are examples

of metadata. The term may also refer to any file or database that holds information

about another database's structure, attributes, processing, or changes.

mirror A duplicate copy of a volume and the data therein (in the form of an ordered

collection of subdisks). Each mirror is one copy of the volume with which the

mirror is associated. The terms mirror and plex can be used synonymously.

175Glossary

mirroring A layout technique that mirrors the contents of a volume onto multiple plexes.

Each plex duplicates the data stored on the volume, but the plexes themselves

may have different layouts.

mount point The directory path name at which a file system attaches to the file system

hierarchy.

multithreaded Having multiple concurrent or pseudo-concurrent execution sequences. Used to

describe processes in computer systems. Multithreaded processes are one means

by which I/O request-intensive applications can use independent access to volumes

and disk arrays to increase I/O performance.

NBU See “Veritas NetBackup (NBU).”

node One of the hosts in a cluster.

object (VxVM) An entity that is defined to and recognized internally by the Veritas Volume

Manager. The VxVM objects include volumes, plexes, subdisks, disks, and disk

groups. There are two types of VxVM disk objects—one for the physical aspect of

the disk and the other for the logical aspect of the disk.

OLTP See “Online Transaction Processing.”

online administration An administrative feature that allows configuration changes without system or

database down time.

Online Transaction

Processing

A type of system designed to support transaction-oriented applications. OLTP

systems are designed to respond immediately to user requests and each request

is considered to be a single transaction. Requests can involve adding, retrieving,

updating or removing data.

paging The transfer of program segments (pages) into and out of memory. Although

paging is the primary mechanism for virtual memory, excessive paging is not

desirable.

parity A calculated value that can be used to reconstruct data after a failure. While data

is being written to a RAID-5 volume, parity is also calculated by performing an

exclusive OR (XOR) procedure on data. The resulting parity is then written to the

volume. If a portion of a RAID-5 volume fails, the data that was on that portion

of the failed volume can be recreated from the remaining data and the parity.

partition The logical areas into which a disk is divided.

persistence Information or state that will survive a system reboot or crash.

petabyte A measure of memory or storage. A petabyte is approximately 1,000 terabytes

(technically, 2 to the 50th power).

plex A duplicate copy of a volume and its data (in the form of an ordered collection of

subdisks). Each plex is one copy of a volume with which the plex is associated.

The terms mirror and plex can be used synonymously.

Glossary176

preallocation Prespecifying space for a file so that disk blocks will physically be part of a file

before they are needed. Enabling an application to preallocate space for a file

guarantees that a specified amount of space will be available for that file, even if

the file system is otherwise out of space.

Quick I/O Quick I/O presents a regular Veritas File System file to an application as a raw

character device. This allows Quick I/O files to take advantage of asynchronous

I/O and direct I/O to and from the disk device, as well as bypassing the UNIX

single-writer lock behavior for most file system files.

Quick I/O file A regular UNIX file that is accessed using the Quick I/O naming extension

(::cdev:vxfs:).

RAID A Redundant Array of Independent Disks (RAID) is a disk array set up with part

of the combined storage capacity used for storing duplicate information about

the data stored in that array. This makes it possible to regenerate the data if a

disk failure occurs.

repository A repository holds the name, type, range of values, source, and authorization for

access for each data element in a database. The database maintains a repository

for administrative and reporting use.

root disk The disk containing the root file system.

root disk group A special private disk group on the system. The root disk group is named rootdg.

However, starting with the 4.1 release of Veritas Volume Manager, the root disk

group is no longer needed.

root file system The initial file system mounted as part of the UNIX kernel startup sequence.

script A file, containing one or more commands that can be run to perform processing.

shared disk group A disk group in which the disks are shared by multiple hosts (also referred to as

a cluster-shareable disk group).

sector A minimal unit of the disk partitioning. The size of a sector can vary between

systems.

A sector is commonly 512 bytes.

segment Any partition, reserved area, partial component, or piece of a larger structure.

SGA See "System Global Area."

single threading The processing of one transaction to completion before starting the next.

slave node A node that is not designated as a master node.

slice The standard division of a logical disk device. The terms partition and slice can

be used synonymously.

snapped file system A file system whose exact image has been used to create a snapshot file system.

177Glossary

snapped volume A volume whose exact image has been used to create a snapshot volume.

snapshot A point-in-time image of a volume or file system that can be used as a backup.

snapshot file system An exact copy of a mounted file system, at a specific point in time, that is used

for online backup. A snapshot file system is not persistent and it will not survive

a crash or reboot of the system.

snapshot volume An exact copy of a volume, at a specific point in time. The snapshot is created

based on disk mirroring and is used for online backup purposes.

spanning A layout technique that permits a volume (and its file system or database) too

large to fit on a single disk to distribute its data across multiple disks or volumes.

storage class Set of volumes with the same volume tag.

stripe A set of stripe units that occupy the same positions across a series of columns in

a multi-disk layout.

stripe unit Equally sized areas that are allocated alternately on the subdisks (within columns)

of each striped plex. In an array, this is a set of logically contiguous blocks that

exist on each disk before allocations are made from the next disk in the array.

stripe unit size The size of each stripe unit. The default stripe unit size for VxVM is 32 sectors

(16K). For RAID 0 stripping, the stripe unit size is 128 sectors (64K). For VxVM

RAID 5, the stripe unit size is 32 sectors (16K). A stripe unit size has also

historically been referred to as a stripe width.

striping A layout technique that spreads data across several physical disks using stripes.

The data is allocated alternately to the stripes within the subdisks of each plex.

subdisk A consecutive set of contiguous disk blocks that form a logical disk segment.

Subdisks can be associated with plexes to form volumes.

superuser A user with unlimited access privileges who can perform any and all operations

on a computer. In UNIX, this user may also be referred to as the “root” user. On

Windows/NT, it is the “Administrator.”

tablespace A tablespace is a storage structure (containing tables, indexes, large objects, and

long data) that allows you to assign the location of database and table data directly

onto containers. Tablespaces reside in database partition groups.

terabyte A measure of memory or storage. A terabyte is approximately 1,000,000,000,000

bytes (technically, 2 to the 40th power, or 1,000 GB). Also TB.

throughput A measure of work accomplished in a given amount of time. For file systems, this

typically refers to the number of I/O operations in a given period of time.

UFS The Solaris name for a file system type derived from the 4.2 Berkeley Fast File

System.

Glossary178

unbuffered I/O I/O that bypasses the file system cache for the purpose of increasing I/O

performance (also known as direct I/O).

Veritas Enterprise

Administrator

Application that is required to access graphical user interface (GUI) functionality.

Veritas NetBackup

(NBU)

A product that lets you back up, archive, and restore files, directories, or raw

partitions that reside on your client system.

Veritas Volume

Replicator (VVR)

A feature of Veritas Volume Manager, VVR is a data replication tool designed to

contribute to an effective disaster recovery plan.

volume A logical disk device that appears to applications, databases, and file systems as

a physical disk partition. A logical disk can encompass multiple or one to many

physical volumes.

volume layout A variety of layouts that allows you to configure your database to meet

performance and availability requirements. This includes spanning, striping

(RAID-0), mirroring (RAID-1), mirrored stripe volumes (RAID-0+1), striped mirror

volumes (RAID-1+0), and RAID 5.

volumemanagerobjects Volumes and their virtual components. See “object (VxVM).”

VVR See “Veritas Volume Replicator (VVR).”

vxfs or VxFS The acronym for Veritas File System.

vxvm or VxVM The acronym for Veritas Volume Manager.

179Glossary

Glossary180

Numerics
$DSQUERY 67

$LD_LIBRARY_PATH 67

$PATH 67

$SYBASE 67

A
absolute path names

using with Quick I/O 68

absolute pathnames

use with symbolic links 66

accessing

Quick I/O files with symbolic links 66

allocating file space 63

allocation policies

block-based 25

UFS 25

analyzing I/O statistics 86

asynchronous I/O 52, 58

availability

using mirroring for 17

B
backups

implementing online 113

balancing I/O load 158

benefits of Concurrent I/O 94

benefits of Quick I/O 52, 57

C
cache advisory

checking setting for 91

cache hit ratio

calculating 87

Cached Quick I/O

caching statistics 156

customizing 88

determining files to use 86

disabling individual files 89

enabling individual files 89

Cached Quick I/O (continued)

making settings persistent 89

overview 24

prerequisite for enabling 82

calculating cache hit ratio 87

changing file sizes 63

chgrp command 61

chmod command

commands

chmod 82

chown command 61

commands

chown 82

Cluster Volume Manager 23

collecting I/O statistics 86

commands

chgrp 61

chown 61

edgetmsg2 164

fsadm 26, 49

fsadm command 76

grep 84

ls 74

mkfs 28, 41–42

mount 28, 42, 54, 60

overview 163

qio_convertdbfiles 67, 71, 163–164

qio_getdbfiles 67, 70, 163, 166

qio_recreate 164, 167, 169

qioadmin 88

qiomkfile 75–76

qiostat 86, 156–157

setext 61

umount 44

vxtunefs 90

vxupgrade 98

concatenation 16

Concurrent I/O

benefits 94

disabling 95

enabling 94

Index

converting

Quick I/O files back to regular files Quick I/O

converting back to regular files 68

regular files to Quick I/O files 71

CREADs 87

creating

a volume 37

Quick I/O files 64

symbolic links to access Quick I/O files 63

cron 149

cross-platform data sharing 27

customizing Cached Quick I/O 88

D
data change object 21

data redundancy 17

data warehousing 18

database

specifying type for Quick I/O 68

tuning 160

database performance

using Quick I/O 52, 58

dataserver buffer cache 79

DCO 21

log volume 21

decision support

implementing 139

default_indir_size tunable parameter 152

defragmentation 26

extent 150

scheduling 150

utility 26

determining

if Quick I/O installed and enabled 74

device interface 22

direct I/O 53, 59

direct-write

copy-behind 81

Dirty Region Logging 19

dirty region logging 19, 37

dirty volumes 18

disabling Cached Quick I/O for a file 89

disabling Concurrent I/O 95

disabling qio_cache_enable flag 83

discovered_direct_iosize tunable parameter 152

disk arrays 15

DMP-supported 22

disk group

naming a disk group 33

disk groups

about 15

adding disks 35

configuration guidelines 33

creating

using the command line 34

defined 15

join 106

joining 105

limitations of move 106

recovery from failed reconfiguration 106

split 106

split and join 21

disk space allocation 25

disks

adding to a disk group 35

failure and hot-relocation 21

dissociating snapshot volumes 145

DMP 22

DMP-supported disk arrays 22

double buffering 53, 59, 80

DRL 19, 37. See Dirty Region Logging

DSS workloads

guidelines 37

dsync flag 67

dynamic LUN expansion 22

Dynamic Multipathing 22

E
edgetmsg2 command 164

enabling

Quick I/O 54, 60

enabling Cached Quick I/O for a file 89

enabling Concurrent I/O 94

enabling qio_cache_enable flag 82

excessive reads or writes 158

exclusive OR 18

expansion

file system 149

extending a file 63

extending Quick I/O files 75

extent-based allocation 25

extracting file list for Quick I/O conversion 70

F
fast file system 25

fast recovery 37

Index182

FastResync

non-persistent 20

operation with off-host processing 104

persistent 20

use with snapshots 20

FastReysnc 20

file

space allocation 63

file fragmentation

reporting on 68

file system locking 53, 59

file systems

configuration guidelines 40

growing to accommodate Quick I/O files 75

increasing the size 49

mounting 43

overview 23

resizing 26, 49

running databases on 24

unmounting 44–45

fragmentation 26, 45

controlling 46

monitoring 46, 149

reorganization facilities 149

reporting 149

types 46

fragmented file system

characteristics 150

free space 21, 149

monitoring 149

fsadm

reporting extent fragmentation 150

scheduling 150

fsadm command 26, 49, 76

largefiles option 43

fsadm utility 26, 50

fsapadm command 43

fsvoladm command 43

G
grep command 84

growing

file systems 75

Quick I/O files 75

guidelines

creating file systems 40

disk groups 33

for DSS workloads 37

for OLTP workloads 37

guidelines (continued)

striped volumes 37

volumes 37

H
High Availability (HA)

overview 12

hot-relocation 21

I
I/O

asynchronous 52, 58

Cached Quick I/O 24

direct 53, 59

kernel asynchronous 52, 58

load balancing 158

performance data 157

Quick I/O 23

sequential 25

statistics

obtaining 148

improving

database performance 52, 58

initial_extent_size tunable parameter 153

K
kernel asynchronous I/O 52, 58

kernel settings

modifying 160

kernel write locks 53, 59

L
large file systems 27

support for 42

large files

enabling 43

support for 28, 42

largefiles option 43

list file for Quick I/O conversion 70

ls command 74

M
master device path 68

max_direct_iosize tunable parameter 153

max_diskq tunable parameter 153

max_seqio_extent_size tunable parameter 154

maxuprc 161

183Index

memory

persistence of FastResync in 20

mirrored volume snapshots 20

mirrored-stripe volumes 17

mirroring 13, 17

choosing 36

defined 17

mirroring and striping data 17

mkfs command 28, 41–42

mkqio.dat file 70–71, 78

mkqio.sh script options

report on file fragmentation 68

monitoring fragmentation 149

mount command 28, 42, 54, 60

mounting

file systems 28

mounting file systems 43

moving hot files or busy file systems 158

multi-volume support 27, 43

fsvoladm command 43

mutli-volume support

fsapadm command 43

N
naming convention

for Quick I/O files 54, 59

nolargefiles option 28, 42

non-persistent FastResync 20

O
OLTP. See online transaction processing

OLTP workloads

guidelines 37

online backups

implementing 113

online relayout 18

online transaction processing 18, 53, 59

options

largefiles and nolargefiles 28

overview

of Quick I/O 23

P
parallel data transfer

using striping for 17

parameters

default 151

tunable 151

parameters (continued)

tuning 150

parity 18

performance

obtaining statistics for volumes 148

RAID-5 18

performance data

using 157

performance tuning

for databases 160

list of guides 147

persistence

for Cached Quick I/O settings 89

persistent FastResync 20

PREADs 87

preallocating space for Quick I/O files 53, 59, 61

Q
qio_cache_enable flag

disabling 83

enabling 82

qio_cache_enable tunable parameter 154

qio_convertdbfiles command 67, 71, 163–164

qio_getdbfiles command 67, 70, 163, 166

qio_recreate command 164, 167, 169

qioadmin command 88

qiomkfile command 75–76

options for creating files

symbolic links 63

qiostat

output of 86

qiostat command 86, 156–157

QoSS. See quality of storage service

quality of storage service 27

Quick I/O

accessing regular VxFS files as 65

benefits 52, 57

converting files to 71

converting VxFS files to 164, 166

determining file fragmentation before

converting 68

determining status 74

enabling 54, 60

environment variable requirements 67

extending files 75

extracting file list for conversion 70

improving database performance with 52, 58

list file for conversion 70

naming convention for files 54, 59

Index184

Quick I/O (continued)

overview 23

performance improvements 81

preallocating space for files 53, 59, 61

recreating files 167, 169

requirements 53, 59

setting environment variables for 69

showing resolution to a raw device 75

specifying database name fof 67

using relative and absolute pathnames 66

quotas 28

R
RAID 15

RAID-0 16

RAID-0+1 17

RAID-1 17

RAID-1+0 17

RAID-5 18, 37

choosing 36

performance 36

RAID-5 log 37

raw devices

running databases on 24

read-ahead algorithm

for Cached Quick I/O 81

read_nstream tunable parameter 151

read_pref_io tunable parameter 151

recreating

data using RAID-5 18

redo logs

configuration guidelines 40

creating a file system 40

relative pathnames

use with symbolic links 66

relayout 18

reliability

using mirroring for 17

removing non-VxFS files from mkqio.dat file 71

removing snapshot volumes 145

report

extent fragmentation 149

requirements of Quick I/O 53, 59

resizing a file 63

resizing file systems 49

resizing utility 26

resynchronization

using DRL logs 37

using RAID-5 logs 37

resynchronizing

volumes 18

RUN_SERVER file 68

S
sa_password 68

SCSI devices 22

selecting volume layouts 35

semmap 161

semmni 161

semmns 162

semmnu 162

sequential I/O

using extent-based allocation 25

sequential read/writes

using spanning for 16

setext command 61

setting environment variables for Quick I/O 69

settings

making Cached Quick I/O persistent 83

shmmax 161

shmmni 161

shmseg 161

showing

Quick I/O file resolved to raw device 75

snapshot volumes

dissociating 145

using the command line 145

removing 145

snapshots

and FastResync 20

spanning 13, 16

defined 16

spare disks 21

specifying

master device path 68

specifying database name for Quick I/O 67

statistics

volume I/O 148

Storage Checkpoints

file system restores 28

Storage Expert 22

stripe unit sizes

choosing 36

stripe units 16

striped volumes 37

configuration guidelines 37

striping 13, 16

defined 16

185Index

striping and mirroring data 17

support for large files 28

Sybase

environment variables for Quick I/O 67

symbolic links

advantages and disadvantages 66

to access Quick I/O files 66

system buffer cache 81

T
tunable I/O parameters 151

default_indir_size 152

discovered_direct_iosize 152

initial_extent_size 153

max_direct_iosize 153

max_diskq 153

max_seqio_extent_size 154

qio_cache_enable 154

read_nstream 151

read_pref_io 151

write_nstream 152

write_pref_io 151

write_throttle 155

tunefstab file

adding tuning parameters to 83

Tuning

file I/O statistics 156

VxFS 149

VxFS I/O parameters 151

tuning

for database performance 160

vxfs 149

VxVM 147

tuning I/O parameters 150

tuning parameters

adding to tunefstab file 83

U
umount command 44

unmounting

a file system 45

unmounting file systems 44

upgrade

from raw devices 99

upgrading

from earlier VxFS layout versions 98

from UFS 97

using performance data 157

utilities. See commands

fsadm 26, 50

See also commands

online administration 26

V
verifying caching using vxfstune parameters 84

verifying vxtunefs system parameters 84

Veritas FastResync. See FastResync

Veritas File System

cluster functionality 29

cross-platfrom data sharing 27

defragmentation utility 26

fast file system 25

multi-volume support 27

online administration utilities 26

overview 23

quality of storage service 27

quotas 28

resizing utility 26

support for large file systems 27

Veritas Volume Manager 13

and RAID 15

objects 15

overview 13

Veritas Volume Replicator 23

volume layouts 15

changing 18

concatenation 16

mirrored-stripe 17

mirroring 17

RAID-5 18

selecting 35

spanning 16

striping 16

volume resynchronization 18

volume snapshots. See snapshots

volumes

about 14

configuration guidelines 37

creating 37

using the command line 38

definition 15

layouts 15

marked as dirty 18

obtaining performance statistics 148

resynchronizing 18

vxassist

used to remove DCOs from volumes 111

Index186

VxFS

resizing utility 26

tuning 149

VxFS files

converting to Quick I/O 164

VxFS files,converting to Quick I/O 166

VxFS.. See Veritas File System

vxstat

used to obtain volume performance

statistics 148

vxtunefs command 90

commands

vxtunefs 84

vxupgrade command 98

VxVM . See Veritas Volume Manager

overview 13

tuning 147

W
workloads

write-intensive 37

write_nstream tunable parameter 152

write_pref_io tunable parameter 151

write_throttle tunable parameter 155

X
XOR . See exclusive OR

187Index

	Veritas Storage Foundation™ for Sybase Administrator’s Guide
	Contents
	1. Introducing Veritas Storage Foundation for Sybase
	About Veritas Storage Foundation for Sybase
	Components of Veritas Storage Foundation for Sybase

	How Veritas Volume Manager works
	About volumes
	About disk groups
	About volume layouts
	About online relayout
	About volume resynchronization
	About dirty region logging
	About volume sets
	About volume snapshots
	About Veritas FastResync
	About disk group split and join
	About hot-relocation
	About DMP-supported disk arrays
	About dynamic LUN expansion
	About Storage Expert
	About cluster functionality (optional)
	About Veritas Volume Replicator (optional)

	How Veritas File System works
	About Veritas Quick I/O
	About Veritas Cached Quick I/O
	About Veritas Concurrent I/O
	About extent-based allocation
	About fast file system and database recovery
	About online system administration
	About cross-platform data sharing
	Support for multi-volume file systems
	About Quality of Storage Service (optional)
	Support for large file systems and large files (optional)
	About restoring file systems using Storage Checkpoints
	About quotas
	About cluster functionality (optional)

	About Veritas Storage Foundation/High Availability for Sybase (optional)

	2. Setting up dataservers
	Tasks for setting up new databases
	About setting up a disk group
	Disk group configuration guidelines

	Creating a disk group
	Adding disks to a disk group
	About selecting a volume layout
	How to choose appropriate stripe unit sizes
	How to choose between mirroring and RAID-5
	Volume configuration guidelines

	Creating a volume
	Creating a volume set
	Adding a volume to a volume set
	File system creation guidelines
	Creating a VxFS file system
	Large file system and large file support
	Multi-volume support

	Mounting a file system
	Unmounting a file system
	About fragmentation
	How to control fragmentation
	Types of fragmentation
	How to monitor fragmentation
	Defragmenting a file system

	Resizing a file system
	Resizing a file system and the underlying volume

	About Quick I/O
	How Quick I/O works
	How Quick I/O improves database performance
	About Quick I/O requirements
	How to set up Quick I/O

	3. Using Veritas Quick I/O
	About Quick I/O
	How Quick I/O works
	How Quick I/O improves database performance
	About Quick I/O requirements
	How to set up Quick I/O

	Preallocating space for Quick I/O files using the setext command
	Creating database files as Quick I/O files using qiomkfile
	Accessing regular VxFS files as Quick I/O files
	Converting Sybase files to Quick I/O files
	Displaying Quick I/O status and file attributes
	Extending a Quick I/O file
	Recreating Quick I/O files after restoring a database
	Disabling Quick I/O

	4. Using Veritas Cached Quick I/O
	About Cached Quick I/O
	How Cached Quick I/O works
	How Cached Quick I/O improves database performance
	How to set up Cached Quick I/O

	Enabling Cached Quick I/O on a file system
	Enabling and disabling the qio_cache_enable flag
	Making Cached Quick I/O settings persistent across reboots and mounts
	Using vxtunefs to obtain tuning information

	Determining candidates for Cached Quick I/O
	Collecting I/O statistics
	About I/O statistics
	Effects of read-aheads on I/O statistics
	Other tools for analysis

	Enabling and disabling Cached Quick I/O for individual files
	Setting cache advisories for individual files
	Making individual file settings for Cached Quick I/O persistent
	Determining individual file settings for Cached Quick I/O using qioadmin

	5. Using Veritas Concurrent I/O
	About Concurrent I/O
	How Concurrent I/O works

	Enabling and disabling Concurrent I/O
	Enabling Concurrent I/O
	Disabling Concurrent I/O

	6. Converting existing database configurations to VxFS
	Converting native file systems to VxFS with Quick I/O
	Upgrading from earlier VxFS version layouts
	Converting from raw devices

	7. Using volume snapshots for dataserver backup and off-host processing
	About snapshot volumes
	Backup and off-host processing applications
	FastResync of snapshot volumes
	Disk group split and join
	Preparing hosts for database backup or off-host processing
	Single-host configuration
	Two-host configuration
	Upgrading existing volumes to use VxVM 4.0 features

	Sybase Adaptive Server Enterprise 12.5 quiesce feature
	How to set up volume snapshots with Sybase ASE 12.5 server
	Implementing online backup or off-host processing
	

	Creating a warm standby server
	Resynchronizing the snapshot to your ASE dataserver
	Recovering the database from a backup image
	Refreshing a snapshot database image
	Dissociating a snapshot volume
	Removing a snapshot volume

	8. Tuning for performance
	Additional documentation
	About tuning VxVM
	About obtaining volume I/O statistics

	About tuning VxFS
	How monitoring free space works
	How tuning VxFS I/O parameters works
	About tunable VxFS I/O parameters
	About obtaining file I/O statistics using the Quick I/O interface
	About I/O statistics data

	About tuning Sybase dataservers
	Sybase tempdb database
	Sybase sybsecurity database
	Placement of the transaction logs
	Database device layout
	Nonclustered indexes placement

	About tuning Solaris for Sybase
	maxuprc
	shmmax
	shmmni
	shmseg
	semmap
	semmni
	semmns
	semmnu

	A. Veritas Storage Foundation for Sybase command line interface
	Overview of commands
	About the command line interface
	Converting VxFS files to Quick I/O using qio_convertdbfiles
	Identifying VxFS files to convert to Quick I/O using qio_getdbfiles
	Recreating Quick I/O files using qio_recreate
	Managing log files using edgetmsg2

	Glossary
	Index

