
Veritas Storage Foundation™

Cluster File System
Administrator’s Guide

Solaris

5.0

N18550F

Veritas Storage Foundation Cluster File System
Administrator’s Guide

Copyright © 2006 Symantec Corporation. All rights reserved.

SFCFS 5.0

Symantec, the Symantec logo, Storage Foundation Cluster File System are trademarks or
registered trademarks of Symantec Corporation or its affiliates in the U.S. and other
countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Veritas Software Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014
www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Veritas product. Such third-party software is licensed separately by its
copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.

Solaris is a trademark of Sun Microsystems, Inc.

Licensing and registration
Veritas Storage Foundation Cluster File System is a licensed product. See the
Veritas Storage Foundation Cluster File System Installation Guide for license
installation instructions.

Technical support
For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Contents
Chapter 1 Technical overview
Storage Foundation Cluster File System architecture 8

VxFS functionality on Cluster File Systems .. 9

Storage Foundation Cluster File System benefits and applications12

Chapter 2 Storage Foundation Cluster File System architecture
The role of component products ...15

About Storage Foundation Cluster File System ..17

About Veritas Volume Manager cluster functionality25

Chapter 3 Storage Foundation Cluster File System administration
Veritas Cluster Server overview ..33

Veritas Volume Manger cluster functionality overview34

Storage Foundation Cluster File System overview ...34

Storage Foundation Cluster File System administration36

Snapshots on Storage Foundation Cluster File System39

Chapter 4 Fencing administration
I/O fencing ..43

Troubleshooting fenced configurations ...55

Chapter 5	 Veritas Volume Manager cluster functionality
administration
Overview of Cluster Volume Management ..60

Chapter 6 Agents for Storage Foundation Cluster File System
List of Storage Foundation Cluster File System Agents70

VCS Cluster Components ..70

Modifying the Agents and Their Resources ..71

Storage Foundation Cluster File System Administrative Interface72

CFSMount Agent ..79

CFSfsckd Agent ..83

CVMCluster Agent ...84

6
CVMVolDg Agent ... 86

Glossary 87

Index 95

Chapter
1
Technical overview

This chapter includes the following topics:

■ Storage Foundation Cluster File System architecture

■ VxFS functionality on Cluster File Systems

■ Storage Foundation Cluster File System benefits and applications

,

8	 Technical overview
Storage Foundation Cluster File System architecture
Storage Foundation Cluster File System
architecture

The Veritas Storage Foundation Cluster File System (SFCFS) allows clustered
servers to mount and use a file system simultaneously as if all applications
using the file system were running on the same server. The Veritas Volume
Manager cluster functionality (CVM) makes logical volumes and raw device
applications accessible throughout a cluster.

Storage Foundation Cluster File System design
Beginning with SFCFS 5.0, SFCFS uses a symmetric architecture in which all
nodes in the cluster can simultaneously function as metadata servers. SFCFS
still has some remnants of the old master/slave or primary/secondary concept.
The first server to mount each cluster file system becomes its primary; all other
nodes in the cluster become secondaries. Applications access the user data in
files directly from the server on which they are running. Each SFCFS node has
its own intent log. File system operations, such as allocating or deleting files,
can originate from any node in the cluster.

Storage Foundation Cluster File System failover
If the server on which the SFCFS primary is running fails, the remaining cluster
nodes elect a new primary. The new primary reads the intent log of the old
primary and completes any metadata updates that were in process at the time of
the failure.

If a server on which an SFCFS secondary is running fails, the primary reads the
intent log of the failed secondary and completes any metadata updates that were
in process at the time of the failure.

Technical overview 9
VxFS functionality on Cluster File Systems
Group lock manager
SFCFS uses the Veritas Group Lock Manager (GLM) to reproduce UNIX
single-host file system semantics in clusters. This is most important in write
behavior. UNIX file systems make writes appear to be atomic. This means that
when an application writes a stream of data to a file, any subsequent application
that reads from the same area of the file retrieves the new data, even if it has
been cached by the file system and not yet written to disk. Applications can
never retrieve stale data, or partial results from a previous write.

To reproduce single-host write semantics, system caches must be kept coherent
and each must instantly reflect any updates to cached data, regardless of the
cluster node from which they originate. GLM locks a file so that no other node in
the cluster can update it simultaneously, or read it before the update is
complete.

VxFS functionality on Cluster File Systems
The Veritas Storage Foundation Cluster File System is based on the Veritas File
System (VxFS). Most of the major features of VxFS local file systems are
available on cluster file systems, including the following:

■ Extent-based space management that maps files up to a terabyte in size

■	 Fast recovery from system crashes using the intent log to track recent file
system metadata updates

■	 Online administration that allows file systems to be extended and
defragmented while they are in use

The following is a list of features and commands that operate on SFCFS. Every
VxFS online manual page has a section on Storage Foundation Cluster File
System Issues with information on whether the command functions on a
cluster-mounted file system and indicates any difference in behavior from local
mounted file systems.

See the Veritas Storage Foundation Cluster File System Release Notes.

10	 Technical overview
VxFS functionality on Cluster File Systems
Supported features

Features Comments

Quick I/O	 The Quick I/O for Databases feature, using clusterized Oracle Disk
Manager (ODM), is supported on SFCFS. Quick I/O is licensable
only through Veritas Database Editions products.

Storage Storage Checkpoints are supported on cluster file systems, but are

Checkpoints licensed only with other Veritas products.

Snapshots Snapshots are supported on cluster file systems.

Quotas Quotas are supported on cluster file systems.

NFS mounts You can mount cluster file systems to NFS.

Nested Mounts	 You can use a directory on a cluster mounted file system as a mount
point for a local file system or another cluster file system.

Freeze and thaw	 Synchronizing operations, which require freezing and thawing file
systems, are done on a cluster-wide basis.

Memory mapping	 Shared memory mapping established by the mmap() function is
supported on SFCFS.

See the mmap(2) manual page.

Disk layout SFCFS supports only disk layout Version 6 and 7. Cluster mounted

versions 	 file systems can be upgraded, a local mounted file system can be
upgraded, unmounted, and mounted again as part of a cluster. Use
the fstyp –v special_device command to ascertain the disk layout
version of a VxFS file system. Use the vxupgrade command to
update the disk layout version.

Locking	 Advisory file and record locking are supported on SFCFS. For the
F_GETLK command, if there is a process holding a conflicting lock,
the l_pid field returns the process ID of the process holding the
conflicting lock. The nodeid-to-node name translation can be done
by examining the /etc/llthosts file or with the fsclustadm
command. Mandatory locking, and deadlock detection supported
by traditional fcntl locks, are not supported on SFCFS.

See the fcntl(2) manual page.

Technical overview 11
VxFS functionality on Cluster File Systems
Unsupported features
Functionality described as not supported may not be expressly prevented from
operating on cluster file systems, but the actual behavior is indeterminate. It is
not advisable to use unsupported functionality on SFCFS, or to alternate
mounting file systems with these options as local and cluster mounts.

Features and Commands Not Supported on SFCFS

qlog Quick log is not supported.

Swap files	 Swap files are not supported on cluster mounted file
system.

The mknod You cannot use the mknod command to create devices on
command a cluster mounted file system.

Cache advisories	 Cache advisories are set with the mount command on
individual file systems, but are not propagated to other
nodes of a cluster.

Cached Quick I/O	 This Quick I/O for Databases feature that caches data in
the file system cache is not supported.

Commands that File access times may appear different across nodes
depend on file because the atime file attribute is not closely
access times synchronized in a cluster file system. So utilities that

depend on checking access times may not function
reliably.

12	 Technical overview
Storage Foundation Cluster File System benefits and applications
Storage Foundation Cluster File System benefits
and applications

Advantages to using Storage Foundation Cluster File System
SFCFS simplifies or eliminates system administration tasks that result from
hardware limitations:

■	 The SFCFS single file system image administrative model simplifies
administration by making all file system management operations and
resizing and reorganization (defragmentation) can be performed from any
node.

■	 Because all servers in a cluster have access to SFCFS cluster-shareable file
systems, keeping data consistent across multiple servers is automatic. All
cluster nodes have access to the same data, and all data is accessible by all
servers using single server file system semantics.

■	 Because all files can be accessed by all servers, applications can be allocated
to servers to balance load or meet other operational requirements. Similarly,
failover becomes more flexible because it is not constrained by data
accessibility.

■	 Because each SFCFS file system can be on any node in the cluster, the file
system recovery portion of failover time in an n-node cluster can be reduced
by a factor of n by distributing the file systems uniformly across cluster
nodes.

■	 Enterprise RAID subsystems can be used more effectively because all of
their capacity can be mounted by all servers, and allocated by using
administrative operations instead of hardware reconfigurations.

■	 Larger volumes with wider striping improve application I/O load balancing.
Not only is the I/O load of each server spread across storage resources, but
with SFCFS shared file systems, the loads of all servers are balanced against
each other.

■	 Extending clusters by adding servers is easier because each new server’s
storage configuration does not need to be set up—new servers simply adopt
the cluster-wide volume and file system configuration.

■	 The clusterized Oracle Disk Manager (ODM) feature that makes file-based
databases perform as well as raw partition-based databases is available to
applications running in a cluster.

Technical overview 13
Storage Foundation Cluster File System benefits and applications
When to use Storage Foundation Cluster File System
You should use SFCFS for any application that requires the sharing of files, such
as for home directories and boot server files, Web pages, and for cluster-ready
applications. SFCFS is also applicable when you want highly available standby
data, in predominantly read-only environments where you just need to access
data, or when you do not want to rely on NFS for file sharing.

Almost all applications can benefit from SFCFS. Applications that are not
“cluster-aware” can operate on and access data from anywhere in a cluster. If
multiple cluster applications running on different servers are accessing data in
a cluster file system, overall system I/O performance improves due to the load
balancing effect of having one cluster file system on a separate underlying
volume. This is automatic; no tuning or other administrative action is required.

Many applications consist of multiple concurrent threads of execution that
could run on different servers if they had a way to coordinate their data
accesses. SFCFS provides this coordination. Such applications can be made
cluster-aware allowing their instances to co-operate to balance client and data
access load, and thereby scale beyond the capacity of any single server. In such
applications, SFCFS provides shared data access, enabling application-level load
balancing across cluster nodes.

■	 For single-host applications that must be continuously available, SFCFS can
reduce application failover time because it provides an already-running file
system environment in which an application can restart after a server
failure.

■	 For parallel applications, such as distributed database management systems
and Web servers, SFCFS provides shared data to all application instances
concurrently. SFCFS also allows these applications to grow by the addition
of servers, and improves their availability by enabling them to redistribute
load in the event of server failure simply by reassigning network addresses.

■	 For workflow applications, such as video production, in which very large
files are passed from station to station, the SFCFS eliminates time
consuming and error prone data copying by making files available at all
stations.

■	 For backup, the SFCFS can reduce the impact on operations by running on a
separate server, accessing data in cluster-shareable file systems.

14	 Technical overview
Storage Foundation Cluster File System benefits and applications
The following are examples of applications and how they might work with
SFCFS:

■	 Using Storage Foundation Cluster File System on file servers

Two or more servers connected in a cluster configuration (that is, connected
to the same clients and the same storage) serve separate file systems. If one
of the servers fails, the other recognizes the failure, recovers, assumes the
primaryship, and begins responding to clients using the failed server’s IP
addresses.

■	 Using Storage Foundation Cluster File System on web servers

Web servers are particularly suitable to shared clustering because their
application is typically read-only. Moreover, with a client load balancing
front end, a Web server cluster’s capacity can be expanded by adding a
server and another copy of the site. A SFCFS-based cluster greatly
simplifies scaling and administration for this type of application.

Chapter
2
Storage Foundation
Cluster File System
architecture

The role of component products
SFCFS includes Veritas Cluster Server (VCS) and Veritas Volume Manager
(VxVM). The Veritas Cluster Server (VCS) provides the communication,
configuration, and membership services required to create a cluster. VCS is the
first component installed and configured to set up a cluster file system.

Veritas Cluster Server
The Group Membership and Atomic Broadcast (GAB) and Low Latency
Transport (LLT) are VCS-specific protocols implemented directly on an Ethernet
data link. They run on redundant data links that connect the nodes in a cluster.
VCS requires redundant cluster communication links to avoid single points of
failure.

GAB provides membership and messaging for the cluster and its applications.
GAB membership also provides orderly startup and shutdown of a cluster. The
file /etc/gabtab is used to configure GAB. Configuration is done with the
gabconfig command. For example, the –n option of the command specifies the
number of nodes in the cluster. GAB is configured automatically when you run
the VCS installation script, but you may have to reconfigure GAB when adding
nodes to a cluster.

See the gabconfig(1m) manual page.

16	 Storage Foundation Cluster File System architecture
The role of component products
LLT provides kernel-to-kernel communications and monitors network
communications. The LLT files /etc/llthosts and /etc/llttab are
configured to set system IDs within a cluster, set cluster IDs for multiple
clusters, and tune network parameters such as heartbeat frequency. LLT is
implemented so that events such as state changes are reflected quickly, which in
turn enables fast responses.

As with GAB, LLT is configured automatically when you run the VCS installation
script. The file /etc/llttab contains information you provide during
installation. You may also have to reconfigure LLT when adding nodes to a
cluster.

See the llttab(4) manual page.

See the Veritas Cluster Server User’s Guide.

Each component in SFCFS registers with a membership port. The port
membership identifies nodes that have formed a cluster for the individual
components. Examples of port memberships include:

port a heartbeat membership

port b I/O fencing membership

port f Cluster File system membership

port h Veritas Cluster Server communication between GAB and High
Availability Daemon (HAD)

port u Temporarily used by CVM

port v Cluster Volume Manager membership

port w Cluster Volume Manager daemons on different nodes communicate
with one another using this port, but receive cluster membership
information through GAB (port v).

Veritas Volume Manager cluster functionality
The Veritas Volume Manager cluster functionality (CVM) makes logical volumes
accessible throughout a cluster. CVM enables multiple hosts to concurrently
access the logical volumes under its control. A VxVM cluster comprises nodes
sharing a set of devices. The nodes are connected across a network. If one node
fails, other nodes can access the devices. The VxVM cluster feature presents the
same logical view of the device configurations, including changes, on all nodes.
You configure CVM shared storage after VCS sets up a cluster configuration.

Storage Foundation Cluster File System architecture 17
About Storage Foundation Cluster File System
About Storage Foundation Cluster File System
If the server on which the SFCFS primary is running fails, the remaining cluster
nodes elect a new primary. The new primary reads the file system intent log and
completes any metadata updates that were in process at the time of the failure.
Application I/O from other nodes may block during this process and cause a
delay. When the file system is again consistent, application processing resumes.

Because nodes using a cluster file system in secondary mode do not update file
system metadata directly, failure of a secondary node does not require metadata
repair. SFCFS recovery from secondary node failure is therefore faster than
from primary node failure.

See “Distributing load on a cluster” on page 21.

Storage Foundation Cluster File System and the group lock manager
SFCFS uses the Veritas Group Lock Manager (GLM) to reproduce UNIX
single-host file system semantics in clusters. UNIX file systems make writes
appear atomic. This means when an application writes a stream of data to a file,
a subsequent application reading from the same area of the file retrieves the
new data, even if it has been cached by the file system and not yet written to
disk. Applications cannot retrieve stale data or partial results from a previous
write.

To reproduce single-host write semantics, system caches must be kept coherent,
and each must instantly reflect updates to cached data, regardless of the node
from which they originate.

18	 Storage Foundation Cluster File System architecture
About Storage Foundation Cluster File System
Asymmetric mounts
A VxFS file system mounted with the mount –o cluster option is a cluster, or
shared, mount, as opposed to a non-shared or local mount. A file system
mounted in shared mode must be on a VxVM shared volume in a cluster
environment. A local mount cannot be remounted in shared mode and a shared
mount cannot be remounted in local mode. File systems in a cluster can be
mounted with different read/write options. These are called asymmetric
mounts.

Asymmetric mounts allow shared file systems to be mounted with different
read/write capabilities. One node in the cluster can mount read/write, while
other nodes mount read-only.

You can specify the cluster read-write (crw) option when you first mount the file
system, or the options can be altered when doing a remount (mount –o remount).
The first column in the following table shows the mode in which the primary is
mounted. The check marks indicate the mode secondary mounts can use.

See the mount_vxfs(1M) manual page.

Secondary

ro rw ro, crw

Primary

Mounting the primary with only the –o cluster,ro option prevents the
secondaries from mounting in a different mode; that is, read-write. Note that
rw implies read-write capability throughout the cluster.

ro ✔

rw ✔ ✔

ro, crw ✔ ✔

Storage Foundation Cluster File System architecture 19
About Storage Foundation Cluster File System
Parallel I/O
Some distributed applications read and write to the same file concurrently from
one or more nodes in the cluster; for example, any distributed application where
one thread appends to a file and there are one or more threads reading from
various regions in the file. Several high-performance compute (HPC)
applications can also benefit from this feature, where concurrent I/O is
performed on the same file. Applications do not require any changes to use
parallel I/O feature.

Traditionally, the entire file is locked to perform I/O to a small region. To
support parallel I/O, SFCFS locks ranges in a file that correspond to an I/O
request. The granularity of the locked range is a page. Two I/O requests conflict
if at least one is a write request, and the I/O range of the request overlaps the I/O
range of the other.

The parallel I/O feature enables I/O to a file by multiple threads concurrently, as
long as the requests do not conflict. Threads issuing concurrent I/O requests
could be executing on the same node, or on a different node in the cluster.

An I/O request that requires allocation is not executed concurrently with other
I/O requests. Note that when a writer is extending the file and readers are
lagging behind, block allocation is not necessarily done for each extending write.

If the file size can be predetermined, the file can be preallocated to avoid block
allocations during I/O. This improves the concurrency of applications
performing parallel I/O to the file. Parallel I/O also avoids unnecessary page
cache flushes and invalidations using range locking, without compromising the
cache coherency across the cluster.

For applications that update the same file from multiple nodes, the -nomtime
mount option provides further concurrency. Modification and change times of
the file are not synchronized across the cluster, which eliminates the overhead
of increased I/O and locking. The timestamp seen for these files from a node
may not have the time updates that happened in the last 60 seconds.

Storage Foundation Cluster File System namespace
The mount point name must remain the same for all nodes mounting the same
cluster file system. This is required for the VCS mount agents (online, offline,
and monitoring) to work correctly.

20	 Storage Foundation Cluster File System architecture
About Storage Foundation Cluster File System
Storage Foundation Cluster File System backup strategies
The same backup strategies used for standard VxFS can be used with SFCFS
because the APIs and commands for accessing the namespace are the same. File
System checkpoints provide an on-disk, point-in-time copy of the file system.
Because performance characteristics of a checkpointed file system are better in
certain I/O patterns, they are recommended over file system snapshots
(described below) for obtaining a frozen image of the cluster file system.

File System snapshots are another method of a file system on-disk frozen image.
The frozen image is non-persistent, in contrast to the checkpoint feature. A
snapshot can be accessed as a read-only mounted file system to perform
efficient online backups of the file system. Snapshots implement
“copy-on-write” semantics that incrementally copy data blocks when they are
overwritten on the snapped file system. Snapshots for cluster file systems
extend the same copy-on-write mechanism for the I/O originating from any
cluster node.

Mounting a snapshot filesystem for backups increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the
primary server. Overhead from remote snapshots is small when compared to
overall snapshot overhead. Therefore, running a backup application by
mounting a snapshot from a relatively less loaded node is beneficial to overall
cluster performance.

There are several characteristics of a cluster snapshot, including:

■	 A snapshot for a cluster mounted file system can be mounted on any node in
a cluster. The file system can be a primary, secondary, or secondary-only. A
stable image of the file system is provided for writes from any node.

■	 Multiple snapshots of a cluster file system can be mounted on the same or
different cluster node.

■	 A snapshot is accessible only on the node mounting a snapshot. The
snapshot device cannot be mounted on two nodes simultaneously.

■	 The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable
from other nodes as long as the snapshot is active on that device.

■	 On the node mounting a snapshot, the snapped file system cannot be
unmounted while the snapshot is mounted.

■	 A SFCFS snapshot ceases to exist if it is unmounted or the node mounting
the snapshot fails. However, a snapshot is not affected if a node leaves or
joins the cluster.

Storage Foundation Cluster File System architecture 21
About Storage Foundation Cluster File System
■	 A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

In addition to file-level frozen images, there are volume-level alternatives
available for shared volumes using mirror split and rejoin. Features such as Fast
Mirror Resync and Space Optimized snapshot are also available.

See the Veritas Volume Manager System Administrator’s Guide.

Synchronizing time on Cluster File Systems
SFCFS requires that the system clocks on all nodes are synchronized using some
external component such as the Network Time Protocol (NTP) daemon. If the
nodes are not in sync, timestamps for creation (ctime) and modification
(mtime) may not be consistent with the sequence in which operations actually
happened.

Distributing load on a cluster
For example, if you have eight file systems and four nodes, designating two file
systems per node as the primary is beneficial. The first node that mounts a file
system becomes the primary for that file system.

You can also use the fsclustadm to designate a SFCFS primary. The fsclustadm
setprimary mount point can be used to change the primary. This change to the
primary is not persistent across unmounts or reboots. The change is in effect as
long as one or more nodes in the cluster have the file system mounted. The
primary selection policy can also be defined by a VCS attribute associated with
the SFCFS mount resource.

File system tuneables
Tuneable parameters are updated at the time of mount using the tunefstab
file or vxtunefs command. The file system tunefs parameters are set to be
identical on all nodes by propagating the parameters to each cluster node. When
the file system is mounted on the node, the tunefs parameters of the primary
node are used. The tunefstab file on the node is used if this is the first node to
mount the file system. Symantec recommends that this file be identical on each
node.

22	 Storage Foundation Cluster File System architecture
About Storage Foundation Cluster File System
Split-brain and jeopardy handling
A split-brain occurs when the cluster membership view differs among the
cluster nodes, increasing the chance of data corruption. Membership change
also occurs when all private-link cluster interconnects fail simultaneously, or
when a node is unable to respond to heartbeat messages.With I/O fencing, the
potential for data corruption is eliminated. I/O fencing requires disks that
support SCSI-3 PGR.

Jeopardy state
In the absence of I/O fencing, SFCFS installation requires two heartbeat links.
When a node is down to a single heartbeat connection, SFCFS can no longer
discriminate between loss of a system and loss of the final network connection.
This state is defined as jeopardy.

SFCFS employs jeopardy to prevent data corruption following a split-brain. Note
that in certain scenarios, the possibility of data corruption remains. For
example:

■ All links go down simultaneously.

■ A node hangs and is unable to respond to heartbeat messages.

To eliminate the chance of data corruption in these scenarios, I/O fencing is
required. With I/O fencing, the jeopardy state does not require special handling
by the SFCFS stack.

Jeopardy handling
For installations that do not support SCSI-3 PGR, potential split-brain
conditions are safeguarded by jeopardy handling. If any cluster node fails
following a jeopardy state notification, the cluster file system mounted on the
failed nodes is disabled. If a node fails after the jeopardy state notification, all
cluster nodes also leave the shared disk group membership.

Recovering from jeopardy
The disabled file system can be restored by a force unmount and the resource
can be brought online without rebooting, which also brings the shared disk
group resource online. Note that if the jeopardy condition is not fixed, the nodes
are susceptible to leaving the cluster again on subsequent node failure.

See the Veritas Cluster Server User’s Guide.

Storage Foundation Cluster File System architecture 23
About Storage Foundation Cluster File System
Fencing
With the use of I/O enabled fencing, all remaining cases with the potential to
corrupt data (for which jeopardy handling cannot protect) are addressed.

See “Fencing administration” on page 43.

Single network link and reliability
Certain environments may prefer using a single private link or a pubic network
for connecting nodes in a cluster, despite the loss of redundancy for dealing with
network failures. The benefits of this approach include simpler hardware
topology and lower costs; however, there is obviously a tradeoff with high
availability.

For the above environments, SFCFS provides the option of a single private link,
or using the public network as the private link if I/O fencing is present. Note that
these nodes start in jeopardy state, as described in “I/O fencing” on page 43. I/O
fencing is used to handle split-brain scenarios. The option for single network is
given during installation.

Low priority link
LLT can be configured to use a low-priority network link as a backup to normal
heartbeat channels. Low-priority links are typically configured on the
customer’s public or administrative network. This typically results in a
completely different network infrastructure than the cluster private
interconnect, and reduces the chance of a single point of failure bringing down
all links. The low-priority link is not used for cluster membership traffic until it
is the only remaining link. In normal operation, the low-priority link carries
only heartbeat traffic for cluster membership and link state maintenance. The
frequency of heartbeats drops 50 percent to reduce network overhead. When the
low-priority link is the only remaining network link, LLT also switches over all
cluster status traffic. Following repair of any configured private link, LLT
returns cluster status traffic to the high-priority link.

24	 Storage Foundation Cluster File System architecture
About Storage Foundation Cluster File System
LLT links can be added or removed while clients are connected. Shutting down
GAB or the high-availability daemon, HAD, is not required.

To add a link

lltconfig -d device -t tag

To remove a link

lltconfig -u tag

Changes take effect immediately and are lost on the next reboot. For changes to
span reboots you must also update /etc/llttab.

Note: LLT clients do not recognize the difference unless only one link is
available and GAB declares jeopardy.

I/O error handling policy
I/O errors can occur for several reasons, including failures of Fibre Channel link,
host-bus adapters, and disks. SFCFS disables the file system on the node
encountering I/O errors. The file system remains available from other nodes.

After the hardware error is fixed (for example, the Fibre Channel link is
reestablished), the file system can be force unmounted and the mount resource
can be brought online from the disabled node to reinstate the file system.

Storage Foundation Cluster File System architecture 25
About Veritas Volume Manager cluster functionality
About Veritas Volume Manager cluster functionality
CVM allows up to 32 nodes in a cluster to simultaneously access and manage a
set of disks under VxVM control (VM disks). The same logical view of the disk
configuration and any changes are available on each node. When the cluster
functionality is enabled, all cluster nodes can share VxVM objects. Features
provided by the base volume manager, such as mirroring, fast mirror resync and
dirty region logging are also supported in the cluster environment.

Note: RAID-5 volumes are not supported on a shared disk group.

To implement cluster functionality, VxVM works together with the cluster
monitor daemon provided by the host operating system or by VCS. The cluster
monitor informs VxVM of changes in cluster membership. Each node starts up
independently and has its own cluster monitor, plus its own copies of the
operating system and CVM. When a node joins a cluster it gains access to shared
disks. When a node leaves a cluster, it no longer has access to shared disks. A
node joins a cluster when the cluster monitor is started on that node.

The figure “Example of a Four-Node Cluster” on page 26 illustrates a simple
cluster arrangement consisting of four nodes with similar or identical hardware
characteristics (CPUs, RAM and host adapters), and configured with identical
software (including the operating system). The nodes are fully connected by a
private network and they are also separately connected to shared external
storage (either disk arrays or JBODs: just a bunch of disks) via Fibre Channel.
Each node has two independent paths to these disks, which are configured in
one or more cluster-shareable disk groups.

The private network allows the nodes to share information about system
resources and about each other’s state. Using the private network, any node can
recognize which nodes are currently active, which are joining or leaving the
cluster, and which have failed. The private network requires at least two
communication channels to provide redundancy against one of the channels
failing. If only one channel were used, its failure would be indistinguishable
from node failure—a condition known as network partitioning.

26	 Storage Foundation Cluster File System architecture
About Veritas Volume Manager cluster functionality
Figure 2-1

Redundant
Fibre Channel
Connectivity

Cluster-Shareable
Disks

Redundant Private Network

Node 0
(master)

Node 1
(slave)

Node 2
(slave)

Node 3
(slave)

Cluster-Shareable
Disk Groups

Figure 2-2 Example of a Four-Node Cluster

To the cluster monitor, all nodes are the same. VxVM objects configured within
shared disk groups can potentially be accessed by all nodes that join the cluster.
However, the cluster functionality of VxVM requires one node to act as the
master node; all other nodes in the cluster are slave nodes. Any node is capable of
being the master node, which is responsible for coordinating certain VxVM
activities.

Note: You must run commands that configure or reconfigure VxVM objects on
the master node. Tasks that must be initiated from the master node include
setting up shared disk groups and creating and reconfiguring volumes.

VxVM designates the first node to join a cluster the master node. If the master
node leaves the cluster, one of the slave nodes is chosen to be the new master. In
the preceding example, node 0 is the master node and nodes 1, 2 and 3 are slave
nodes.

Storage Foundation Cluster File System architecture 27
About Veritas Volume Manager cluster functionality
Private and shared disk groups
There are two types of disk groups:

■	 Private, which belong to only one node. A private disk group is only
imported by one system. Disks in a private disk group may be physically
accessible from one or more systems, but import is restricted to one system
only. The root disk group is always a private disk group.

■	 Shared, which is shared by all nodes. A shared (or cluster-shareable) disk
group is imported by all cluster nodes. Disks in a shared disk group must be
physically accessible from all systems that may join the cluster.

In a cluster, most disk groups are shared. Disks in a shared disk group are
accessible from all nodes in a cluster, allowing applications on multiple cluster
nodes to simultaneously access the same disk. A volume in a shared disk group
can be simultaneously accessed by more than one node in the cluster, subject to
licensing and disk group activation mode restrictions.

You can use the vxdg command to designate a disk group as cluster-shareable.
When a disk group is imported as cluster-shareable for one node, each disk
header is marked with the cluster ID. As each node subsequently joins the
cluster, it recognizes the disk group as being cluster-shareable and imports it.
You can also import or deport a shared disk group at any time; the operation
takes places in a distributed fashion on all nodes.

Each physical disk is marked with a unique disk ID. When cluster functionality
for VxVM starts on the master, it imports all shared disk groups (except for any
that have the noautoimport attribute set). When a slave tries to join a cluster,
the master sends it a list of the disk IDs that it has imported, and the slave
checks to see if it can access them all. If the slave cannot access one of the listed
disks, it abandons its attempt to join the cluster. If it can access all of the listed
disks, it imports the same shared disk groups as the master and joins the cluster.
When a node leaves the cluster, it deports all its imported shared disk groups,
but they remain imported on the surviving nodes.

Reconfiguring a shared disk group is performed with the co-operation of all
nodes. Configuration changes to the disk group happen simultaneously on all
nodes and the changes are identical. Such changes are atomic in nature, which
means that they either occur simultaneously on all nodes or not at all.

Whether all members of the cluster have simultaneous read and write access to
a cluster-shareable disk group depends on its activation mode setting as
discussed in “Activation modes of shared disk groups.” The data contained in a
cluster-shareable disk group is available as long as at least one node is active in
the cluster. The failure of a cluster node does not affect access by the remaining
active nodes. Regardless of which node accesses a cluster-shareable disk group,
the configuration of the disk group looks the same.

28	 Storage Foundation Cluster File System architecture
About Veritas Volume Manager cluster functionality
Note: Applications running on each node can access the data on the VM disks
simultaneously. VxVM does not protect against simultaneous writes to shared
volumes by more than one node. It is assumed that applications control
consistency (by using Veritas Storage Foundation Cluster File System or a
distributed lock manager, for example).

Activation modes of shared disk groups
A shared disk group must be activated on a node in order for the volumes in the
disk group to become accessible for application I/O from that node. The ability
of applications to read from or to write to volumes is dictated by the activation
mode of a shared disk group. Valid activation modes for a shared disk group are
exclusivewrite, readonly, sharedread, sharedwrite, and off (inactive).
These activation modes are described in detail in the “Activation modes for
shared disk groups”table.

Note: Disk group activation was a new feature in VxVM 3.0. To maintain
compatibility with previous releases, the default activation mode for shared disk
groups is shared-write.

Special uses of clusters, such as high availability (HA) applications and off-host
backup, can use disk group activation to explicitly control volume access from
different nodes in the cluster.

Table 2-1 Activation modes for shared disk groups

Activation mode Description

exclusivewrite (ew) The node has exclusive write access to the disk group. No
other node can activate the disk group for write access.

readonly (ro) The node has read access to the disk group and denies write
access for all other nodes in the cluster. The node has no
write access to the disk group. Attempts to activate a disk
group for either of the write modes on other nodes fail.

sharedread (sr) The node has read access to the disk group. The node has no
write access to the disk group, however other nodes can
obtain write access.

sharedwrite (sw) The node has write access to the disk group.

off The node has neither read nor write access to the disk
group. Query operations on the disk group are permitted.

Storage Foundation Cluster File System architecture 29
About Veritas Volume Manager cluster functionality
The following table summarizes the allowed and conflicting activation modes
for shared disk groups:

Table 2-2 Allowed and conflicting activation modes

Disk group
activated in cluster
as...

Attempt to activate disk group on another node as...

exclusive-
write

readonly sharedread sharedwrite

exclusivewrite Fails Fails Succeeds Fails

readonly Fails Succeeds Succeeds Fails

sharedread Succeeds Succeeds Succeeds Succeeds

sharedwrite Fails Fails Succeeds Succeeds

To place activation modes under user control, create a defaults file
/etc/default/vxdg containing the following lines:

enable_activation=true
default_activation_mode=activation-mode

The activation-mode is one of exclusivewrite, readonly, sharedread,
sharedwrite, or off.

When a shared disk group is created or imported, it is activated in the specified
mode. When a node joins the cluster, all shared disk groups accessible from the
node are activated in the specified mode.

Note: The activation mode of a disk group controls volume I/O from different
nodes in the cluster. It is not possible to activate a disk group on a given node if
it is activated in a conflicting mode on another node in the cluster. When
enabling activation using the defaults file, it is recommended that this file be
made identical on all nodes in the cluster. Otherwise, the results of activation
are unpredictable.

If the defaults file is edited while the vxconfigd daemon is already running,
the vxconfigd process must be restarted for the changes in the defaults file to
take effect.

If the default activation mode is anything other than off, an activation
following a cluster join, or a disk group creation or import can fail if another
node in the cluster has activated the disk group in a conflicting mode.

To display the activation mode for a shared disk group, use the vxdg list
diskgroup command.

30	 Storage Foundation Cluster File System architecture
About Veritas Volume Manager cluster functionality
You can also use the vxdg command to change the activation mode on a shared
disk group.

See the Veritas Volume Manager Administrator’s Guide.

Connectivity policy of shared disk groups
The nodes in a cluster must always agree on the status of a disk. In particular, if
one node cannot write to a given disk, all nodes must stop accessing that disk
before the results of the write operation are returned to the caller. Therefore, if
a node cannot contact a disk, it should contact another node to check on the
disk’s status. If the disk fails, no node can access it and the nodes can agree to
detach the disk. If the disk does not fail, but rather the access paths from some
of the nodes fail, the nodes cannot agree on the status of the disk. Either of the
following policies for resolving this type of discrepancy may be applied:

■	 Under the global connectivity policy, the detach occurs cluster-wide
(globally) if any node in the cluster reports a disk failure. This is the default
policy.

■	 Under the local connectivity policy, in the event of disks failing, the failures
are confined to the particular nodes that saw the failure. However, this
policy is not highly available because it fails the node even if one of the
mirrors is available. Note that an attempt is made to communicate with all
nodes in the cluster to ascertain the disks’ usability. If all nodes report a
problem with the disks, a cluster-wide detach occurs.

Limitations of shared disk groups
The cluster functionality of VxVM does not support RAID-5 volumes, or task
monitoring for cluster-shareable disk groups. These features can, however, be
used in private disk groups that are attached to specific nodes of a cluster.
Online relayout is supported provided that it does not involve RAID-5 volumes.

The root disk group cannot be made cluster-shareable. It must be private.

Only raw device access may be performed via the cluster functionality of VxVM.
It does not support shared access to file systems in shared volumes unless the
appropriate software, such as Veritas Storage Foundation Cluster File System, is
installed and configured.

If a shared disk group contains unsupported objects, deport it and then
re-import the disk group as private on one of the cluster nodes. Reorganize the
volumes into layouts that are supported for shared disk groups, and then deport
and re-import the disk group as shared.

Chapter
3
Storage Foundation
Cluster File System
administration

The Veritas Storage Foundation Cluster File System is a shared file system that
enables multiple hosts to mount and perform file operations concurrently on
the same file. To operate in a cluster configuration, SFCFS requires the
integrated set of Veritas products included in the Veritas Storage Foundation
Cluster File System.

To configure a cluster, SFCFS requires the Veritas Cluster Server (VCS). VCS
supplies two major components integral to SFCFS. The LLT package provides
node-to-node communications and monitors network communications. The
GAB package provides cluster state, configuration, and membership service, and
monitors the heartbeat links between systems to ensure that they are active.
There are several other packages supplied by VCS that provide application
failover support when installing SFCFS HA.

See the Veritas Storage Foundation Cluster File System Installation Guide.

SFCFS also requires the cluster functionality (CVM) of the Veritas Volume
Manager (VxVM) to create the shared volumes necessary for mounting cluster
file systems.

32 Storage Foundation Cluster File System administration
Note: To install and administer cluster file systems, you should have a working
knowledge of VxVM. To install and administer application failover
functionality, you should have a working knowledge of VCS. For more
information on these products, refer to the Veritas Volume Manager and Veritas
Cluster Server documentation. The user guides for Volume Manager are
available in the /opt/VRTSvmdoc directory after you install the Storage
Foundation packages. The user guides for VCS are available in the
/opt/VRTSvcsdc directory after you install the Storage Foundation Cluster
File System HA packages.

Topics in this chapter include:

■ VCS Overview

■ CVM Overview

■ SFCFS Overview

■ SFCFS Administration

■ Snapshots on SFCFS

Storage Foundation Cluster File System administration 33
Veritas Cluster Server overview
Veritas Cluster Server overview
The Veritas Cluster Server provides the communication, configuration, and
membership services required to create a cluster. VCS is the first component
installed and configured to set up a cluster file system.

GAB and LLT are VCS-specific protocols implemented directly on an Ethernet
data link or on a Fibre Channel fabric. Both GAB and LLT run over redundant
data links that connect all the servers in a cluster. VCS requires redundant
cluster communication links to minimize the possibility of cluster failure due to
the failure of a single communication link.

Veritas Cluster Server messaging—GAB
GAB provides membership and messaging service, both for the cluster as a
whole and for groups of applications running it. The GAB membership service
provides orderly startup and shutdown of a cluster.

The file /etc/gabtab is used to configure GAB. Configuration is done with the
gabconfig command. For example, the –n option of the command specifies the
number of nodes in the cluster. GAB is configured automatically when you run
the VCS installation script, but you may have to reconfigure GAB when you add
a node to a cluster.

See the gabconfig(1m) manual page.

Veritas Cluster Server communication—LLT
LLT provides kernel-to-kernel communications and monitors network
communications. The LLT files /etc/llthosts and /etc/llttab can be
configured to set system IDs within a cluster, set cluster IDs for multiple
clusters, and tune network parameters such as heartbeat frequency. LLT is
implemented so that events such as state changes are reflected quickly, which in
turn enables fast responses.

As with GAB, LLT is configured automatically when you run the VCS installation
script. The file /etc/llttab contains information derived from what you input
during installation. You may also have to reconfigure LLT when you add a node
to a cluster.

See the llttab(4) manual page.

34	 Storage Foundation Cluster File System administration
Veritas Volume Manger cluster functionality overview
Veritas Volume Manger cluster functionality
overview

The cluster functionality (CVM) of the Veritas Volume Manager allows multiple
hosts to concurrently access and manage a given set of logical devices under
VxVM control. A VxVM cluster is a set of hosts sharing a set of devices; each
host is a node in the cluster. The nodes are connected across a network. If one
node fails, other nodes can still access the devices. The VxVM cluster feature
presents the same logical view of the device configurations, including changes,
on all nodes.

You configure CVM shared storage after VCS sets up a cluster configuration.

See “CVM Administration” on page 97.

See the Veritas Volume Manager Administrator’s Guide.

Storage Foundation Cluster File System overview
A file system cluster consists of one primary, and up to 31 secondaries. The
primary-secondary terminology applies to one file system, not to a specific node
(or hardware platform). So it is possible to have the same cluster node be
primary for one shared file system, while at the same time it is secondary for
another shared file system. Such distribution of file system primaryship to
balance the load on a cluster is a recommended administrative policy.

See “Distributing the load on a Cluster” on page 38.

For CVM, a single cluster node is the master for all shared disk groups and
shared volumes in the cluster.

Cluster and shared mounts
A VxFS file system that is mounted with the mount –o cluster option is called
a cluster or shared mount, as opposed to a non-shared or local mount. A file
system mounted in shared mode must be on a VxVM shared volume in a cluster
environment. A local mount cannot be remounted in shared mode and a shared
mount cannot be remounted in local mode. File systems in a cluster can be
mounted with different read-write options. These are called asymmetric mounts.

Storage Foundation Cluster File System administration 35
Storage Foundation Cluster File System overview
Storage Foundation Cluster File System primary and Storage
Foundation Cluster File System secondary

Both primary and secondary nodes handle their metadata intent logging for the
cluster file system. The first node of a cluster file system to mount is called the
primary node. Other nodes are called secondary nodes. If a primary node fails,
an internal election process determines which of the secondaries becomes the
primary file system.

Use the following command to determine primaryship:
fsclustadm –v showprimary mount_point

Use the following command to give primaryship to a node:
fsclustadm –v setprimary mount_point

Asymmetric mounts
Asymmetric mounts allow shared file systems to be mounted with different
read/write capabilities. So one node in the cluster can mount read-write, while
other nodes mount read-only.

You can specify the cluster read-write (crw) option when you first mount the file
system, or the options can be altered when doing a remount (mount –o remount).
The first column in the following table shows the mode in which the primary is
mounted. The check marks indicate the mode secondary mounts can use.

Secondary

Primary ro rw ro, crw

ro ✔

rw ✔ ✔

ro, crw ✔ ✔

Only mounting the primary with –o cluster,ro prevents the secondaries from
mounting in a different mode, that is, read-write mode. Note that rw implies
read-write capability throughout the cluster.

See the mount_vxfs(1M) manual page.

36	 Storage Foundation Cluster File System administration
Storage Foundation Cluster File System administration
Storage Foundation Cluster File System and Veritas Volume Manager
cluster functionality agents

Agents are VCS processes that manage predefined resource types. SFCFS and
CVM require agents to interact with VCS. Agents bring resources online, take
resources offline, monitor resources, and report any state changes to VCS. VCS
bundled agents are part of VCS and are installed when VCS is installed. The
SFCFS and CVM agents are add-on resources to VCS specifically for the Veritas
File System and Veritas Volume Manager.

See “Agents for SFCFS/SFCFS HA” on page 105.

Storage Foundation Cluster File System
administration

This section describes some of the major aspects of cluster file system
administration and the ways in which it differs from single-host VxFS
administration.

Storage Foundation Cluster File System commands
The SFCFS commands are:

■ cfscluster—cluster configuration command

■	 cfsmntadm—adds, deletes, modifies, and sets policy on cluster mounted file
systems

■	 cfsdgadm—adds or deletes shared disk groups to/from a cluster
configuration

■	 cfsmount/cfsumount—mounts/unmounts a cluster file system on a shared
volume

Storage Foundation Cluster File System commands
The mount and fsclustadm commands are also important for configuring
cluster file systems.

mount
The mount command with the –o cluster option lets you access shared file
systems.

See the mount_vxfs(1M) manual page.

Storage Foundation Cluster File System administration 37
Storage Foundation Cluster File System administration
fsclustadm
The fsclustadm command reports various attributes of a cluster file system.
Using fsclustadm you can show and set the primary node in a cluster, translate
node IDs to host names and vice versa, list all nodes that currently have a cluster
mount of the specified file system mount point, and determine whether a mount
is a local or cluster mount. The fsclustadm command operates from any node in
a cluster on which the file system is mounted, and can control the location of the
primary for a specified mount point.

See the fsclustadm(1M) manual page.

fsadm

The fsadm command can be invoked from the primary or secondary node.

See the fsadm(1M) manual page.

Running commands safely in a cluster environment
Any UNIX command that can write to a raw device must be used carefully in a
shared environment to prevent data from being corrupted. For shared VxVM
volumes, SFCFS provides protection by reserving the volumes in a cluster to
prevent VxFS commands, such as fsck and mkfs, from inadvertently damaging a
mounted file system from another node in a cluster. However, commands such
as dd execute without any reservation, and can damage a file system mounted
from another node. Before running this kind of command on a file system, be
sure the file system is not mounted on a cluster. You can run the mount
command to see if a file system is a shared or local mount.

Time synchronization for Cluster File Systems
SFCFS requires that the system clocks on all nodes are synchronized using some
external component such as the Network Time Protocol (NTP) daemon. If the
nodes are not in sync, timestamps for creation (ctime) and modification
(mtime) may not be consistent with the sequence in which operations actually
happened.

38	 Storage Foundation Cluster File System administration
Storage Foundation Cluster File System administration
Growing a Storage Foundation Cluster File System
There is a master node for CVM as well as a primary for SFCFS. When growing a
file system, you grow the volume from the CVM master, and then grow the file
system from any SFCFS node. The CVM master and the SFCFS node can be two
different nodes.

To determine the primary file system in a cluster, enter:
fsclustadm –v showprimary mount_point

To determine if the current node is the master CVM node, enter:
vxdctl -c mode

To actually increase the size of the file system, run the following two commands.
On the master CVM node, enter:

vxassist –g shared_disk_group growto volume_name newlength

On any SFCFS node, enter:
fsadm –F vxfs –b newsize –r device_name mount_point

The fstab file
In the /etc/vfstab file, do not specify any cluster file systems to
mount-at-boot because mounts initiated from vfstab occur before cluster
configuration begins. For cluster mounts, use the VCS configuration file to
determine which file systems to enable following a reboot.

Distributing the load on a Cluster
Distributing the workload in a cluster provides performance and failover
advantages.

For example, if you have eight file systems and four nodes, designating two file
systems per node as the primary would be beneficial. Primaryship is determined
by which node first mounts the file system. You can also use the fsclustadm to
designate a SFCFS primary. The fsclustadm setprimary command can also
define the order in which primaryship is assumed if the current primary fails.
After setup, the policy is in effect as long as one or more nodes in the cluster
have the file system mounted.

Storage Foundation Cluster File System administration 39
Snapshots on Storage Foundation Cluster File System
Using GUIs
Use the Veritas Enterprise Administrator (VEA) for various VxFS functions such
as making and mounting file systems, on both local and cluster file systems.

With SFCFS HA, you can use the VCS Cluster Manager GUI to configure and
monitor SFCFS. The VCS GUI provides log files for debugging LLT and GAB
events.

Snapshots on Storage Foundation Cluster File
System

A snapshot provides a consistent point-in-time image of a VxFS file system. A
snapshot can be accessed as a read-only mounted file system to perform
efficient online backups of the file system. Snapshots implement copy-on-write
semantics that incrementally copy data blocks when they are overwritten on the
snapped file system.

See the Veritas File System Administrator’s Guide.

Snapshots for cluster file systems extend the same copy-on-write mechanism
for the I/O originating from any node in the cluster.

Cluster snapshot characteristics
1	 A snapshot for a cluster mounted file system can be mounted on any node in

a cluster. The file system can be a primary, secondary, or secondary-only. A
stable image of the file system is provided for writes from any node.

2	 Multiple snapshots of a cluster file system can be mounted on the same or a
different node in a cluster.

3	 A snapshot is accessible only on the node mounting a snapshot. The
snapshot device cannot be mounted on two different nodes simultaneously.

4	 The device for mounting a snapshot can be a local disk or a shared volume. A
shared volume is used exclusively by a snapshot mount and is not usable
from other nodes in a cluster as long as the snapshot is active on that device.

5	 On the node mounting a snapshot, the snapped file system cannot be
unmounted while the snapshot is mounted.

6	 A SFCFS snapshot ceases to exist if it is unmounted or the node mounting
the snapshot fails. A snapshot, however, is not affected if any other node
leaves or joins the cluster.

40	 Storage Foundation Cluster File System administration
Snapshots on Storage Foundation Cluster File System
7	 A snapshot of a read-only mounted file system cannot be taken. It is possible
to mount snapshot of a cluster file system only if the snapped cluster file
system is mounted with the crw option.

Performance considerations
Mounting a snapshot file system for backup increases the load on the system
because of the resources used to perform copy-on-writes and to read data blocks
from the snapshot. In this situation, cluster snapshots can be used to do off-host
backups. Off-host backups reduce the load of a backup application from the
primary server. Overhead from remote snapshots is small when compared to
overall snapshot overhead. Therefore, running a backup application by
mounting a snapshot from a relatively less loaded node is beneficial to overall
cluster performance.

Creating a snapshot on a Storage Foundation Cluster File System
The following example shows how to create and mount a snapshot on a
two-node cluster using SFCFS administrative interface commands.

To create a snapshot on a cluster file system

1 Create a VxFS file system on a shared VxVM volume:
mkfs –F vxfs /dev/vx/rdsk/cfsdg/vol1

version 7 layout

104857600 sectors, 52428800 blocks of size 1024, log size 16384

blocks

unlimited inodes, largefiles not supported

52428800 data blocks, 52399152 free data blocks

1600 allocation units of 32768 blocks, 32768 data blocks

2 Mount the file system on all nodes (following previous examples, on
system01 and system02):

cfsmntadm add cfsdg vol1 /mnt1 all=cluster

cfsmount /mnt1

The cfsmntadm command adds an entry to the cluster manager
configuration, then the cfsmount command mounts the file system on all
nodes.

3 Add the snapshot on a previously created volume (snapvol in this example)
to the cluster manager configuration:

cfsmntadm add snapshot cfsdg snapvol /mnt1 /mnt1snap \

system01=ro

Note: The snapshot of a cluster file system is accessible only on the node where
it is created; the snapshot file system itself cannot be cluster mounted.

Storage Foundation Cluster File System administration 41
Snapshots on Storage Foundation Cluster File System
4 Mount the snapshot:
cfsmount /mnt1snap

5	 A snapped file system cannot be unmounted until all of its snapshots are
unmounted. Unmount the snapshot before trying to unmount the snapped
cluster file system:

cfsumount /mnt1snap

42	 Storage Foundation Cluster File System administration
Snapshots on Storage Foundation Cluster File System

Chapter
4
Fencing administration

I/O fencing€
Symantec recommends configuring the cluster with I/O fencing enabled. I/O
fencing requires shared devices to support SCSI-3 Persistent Reservations (PR).
Enabling I/O fencing prevents data corruption caused by a split brain scenario.

Symantec Storage Foundation Cluster File System is supported without I/O
fencing enabled. However, without I/O fencing enabled, split brain scenarios can
result in data corruption.

I/O fencing allows write access to members of the active cluster and blocks
access to non-members. The physical components of I/O fencing are data disks
and coordinator disks. Each has a unique purpose and uses different physical
disk devices.

See the Veritas Cluster Server Installation Guide.

See the Hardware Compatibility List (HCL) at
http://support.veritas.com/docs/283161

Data disks
Data disks are standard disk devices used for data storage. These can be physical
disks or RAID Logical Units (LUNs). These disks must support SCSI-3 PGR. Data
disks are incorporated in standard VxVM/CVM disk groups. CVM is responsible
for fencing data disks on a disk-group basis. Because VxVM enables I/O fencing,
several other features are also provided. Disks added to a group are
automatically fenced, as are new paths to a device.

http://support.veritas.com/docs/283161
http://support.veritas.com/docs/283161

44	 Fencing administration
I/O fencing
Coordinator Disks
Coordinator disks are special-purpose disks. They comprise three (or an odd
number greater than three) standard disks, or LUNs, set aside for use by I/O
fencing during cluster reconfiguration.

The coordinator disks act as a global lock device during a cluster
reconfiguration. This lock mechanism determines which node is allowed to
fence off data drives from other nodes. From a high level, a system must eject a
peer from the coordinator disks before it can fence the peer from the data
drives. This concept of “racing” for control of coordinator disks is the key to
understanding how fencing helps prevent split-brain.

Coordinator disks cannot be used for any other purpose. You cannot store data
on them, or include them in a disk group for user data. They can be any three
disks that support SCSI-3 PGR. Symantec recommends the coordinator disks use
the smallest LUNs. Because coordinator disks do not store data, cluster nodes
need only register with them, not reserve them.

Before you configure coordinator disks
I/O fencing requires coordinator disks to be configured in a disk group that each
cluster system can access. The use of coordinator disks enables the vxfen driver
to resolve potential split-brain conditions and prevent data corruption. A
coordinator disk is not used for data storage, so it can be configured as the
smallest LUN on a disk array to avoid wasting space.

Coordinator disks must meet the following requirements:

✔	 There must be at least three coordinator disks and the total number of
coordinator disks must be an odd number. This ensures a majority of disks
can be achieved.

✔ Each of the coordinator disks must use a physically separate disk or LUN.

✔ Each of the coordinator disks should be on a different disk array, if possible.

✔ Coordinator disks in a disk array should use hardware-based mirroring.

✔	 The coordinator disks must support SCSI-3 PR. Note that the use of the
vxfentsthdw utility to test for SCSI-3 PR support requires that disks be 1MB
or greater. Smaller disks can be tested manually. Contact Veritas support
(http://support.veritas.com) for the procedure.

Fencing administration 45
I/O fencing
Setting up the disk group for coordinator disks
If you have already added and initialized disks you intend to use as coordinator
disks, you can begin the following procedure at step 4.

To set up the disk group for coordinator disks

1	 Physically add the three disks you intend to use for coordinator disks. All
cluster nodes should physically share them. Veritas recommends that you
use the smallest size disks or LUNs, so that space for data is not wasted.

2	 If necessary, use the vxdisk scandisks command to scan the disk drives
and their attributes. This command updates the VxVM device list and
reconfigures DMP with the new devices. For example:

vxdisk scandisks

3 Use the command vxdisksetup command to initialize a disk as a VxVM
disk. The example command that follows specifies the CDS format:

vxdisksetup -i vxvm_device_name format=cdsdisk

For example:
vxdisksetup -i /dev/rdsk/c2t0d2s2 format=cdsdisk

Repeat this command for each disk you intend to use as a coordinator disk.

4	 From one node, create a disk group named vxfencoorddg. This group
must contain an odd number of disks or LUNs and a minimum of three
disks. Symantec recommends that you use only three coordinator disks, and
that you use the smallest size disks or LUNs to conserve disk space.

For example, assume the disks have the device names c1t1d0, c2t1d0,
and c3t1d0.

5 On any node, create the disk group by specifying the device name of one of
the disks.

vxdg -o coordinator=on init vxfencoorddg c1t1d0

6 Add the other two disks to the disk group.
vxdg -g vxfencoorddg adddisk c2t1d0

vxdg -g vxfencoorddg adddisk c3t1d0

See the Veritas Volume Manager Administrator’s Guide.

46	 Fencing administration
I/O fencing
Requirements for testing the coordinator disk group

Running the vxfentsthdw utility
Review these guidelines on testing support for SCSI-3:

■	 The utility requires that the coordinator disk group be accessible from
two systems. For example, if you have a four-system cluster, select any
two systems for the test.

■	 If you configured ssh (SSH client) for the cluster nodes,
VXFENTSTHDW can be used as long as ssh commands between nodes
can execute without password prompting and confirmation.

If you did not configure ssh, enable each node to have remote rsh
access to the other nodes during installation and disk verification. On
each node, placing a “+” character in the first line of the /.rhosts file
gives remote access to the system running the install program. You can
limit the remote access to specific nodes. Refer to the manual page for
the /.rhosts file for more information. Remove the remote rsh access
permissions after the installation and disk verification process.

■	 ssh is used by default and rsh is only used if you do use the
vxfentsthdw -n command.

■	 To ensure both nodes are connected to the same disk during the test,
use the vxfenadm -i diskpath command to verify the disk serial
number.

■	 The vxfentsthdw utility has additional options suitable for testing
many disks. You can test disks without destroying data using the -r
option. The options for testing disk groups (-g) and disks listed in a file
(-f) are described in detail:

Testing the coordinator disk group
After setting up, test the coordinator disk group.

To test the coordinator disk group

1 From one node, start the utility:
/opt/VRTSvcs/vxfen/bin/vxfentsthdw

Make sure system-to-system communication is functioning properly before
performing this step.

See the vxfentsthdw(1M) man page.

2	 After reviewing the overview and warning about overwriting data on the
disks, confirm to continue the process and enter the node names.

3	 Enter the name of the disk you are checking.

For example, /dev/rdsk/c4t8d0s2.

Fencing administration 47
I/O fencing
Creating the vxfendg file
After setting up and testing the coordinator disk group, configure it for use.

To create the vxfendg file

1 Deport the disk group:
vxdg deport vxfencoorddg

2 Import the disk group with the -t option to avoid automatically importing it
when the nodes restart:

vxdg -t import vxfencoorddg

3 Deport the disk group. This operation prevents the coordinator disks from
serving other purposes:

vxdg deport vxfencoorddg

4 On all nodes, type:
echo "vxfencoorddg" > /etc/vxfendg

Do no use spaces between the quotes in the “vxfencoorddg” text.

This command creates the /etc/vxfendg file, which includes the name of
the coordinator disk group. Based on the contents of the /etc/vxfendg
file, the rc script creates the /etc/vxfentab file for use by the vxfen
driver when the system starts. The rc script also invokes the vxfenconfig
command, which configures the vxfen driver to start and use the
coordinator disks listed in /etc/vxfentab. /etc/vxfentab is a
generated file; do not modify this file.

Enabling fencing in the VCS configuration
After I/O Fencing has been configured on all cluster nodes, copy the sample
vxfenmode file over the /etc/vxfenmode file.

cp /etc/vxfen.d/vxfenmode_scsi3_dmp /etc/vxfenmode

Enabling fencing involves editing the UseFence attribute in the VCS
configuration file (main.cf), verifying the configuration file syntax, copying
the main.cf to other nodes, and rebooting all nodes to start the fencing driver
and VCS with fencing enabled.

To enable I/O fencing

1 Save the existing VCS configuration file,
/etc/VRTSvcs/conf/config/main.cf:

haconf -dump -makero

2 Stop VCS on all nodes:
hastop -all

48	 Fencing administration
I/O fencing
3 Make a backup copy of the main.cf file:
cd /etc/VRTSvcs/conf/config

cp main.cf main.orig

4 On one node, use vi or another text editor to edit the main.cf file. Modify
the list of cluster attributes by adding the UseFence attribute and
assigning its value of SCSI3:

cluster rac_cluster1 (

UserNames = { admin = "cDRpdxPmHpzS." }

Administrators = { admin }

HacliUserLevel = COMMANDROOT

CounterInterval = 5

UseFence = SCSI3

)

5 Save and close the file.

6 Verify the syntax of the /etc/VRTSvcs/conf/config/main.cf file:
hacf -verify /etc/VRTSvcs/conf/config

7 Using rcp or another utility, copy the VCS configuration file from a node
(for example, galaxy) to the remaining cluster nodes. On each remaining
node, type:

rcp galaxy:/etc/VRTSvcs/conf/config/main.cf

/etc/VRTSvcs/conf/config

8 Change /etc/vxfenmode on all nodes from disabled to scsi3:
vxfenmode=scsi3

9 Stop VCS on all nodes:
hastop -all

10	 With the configuration file in place on each system, shut down and restart
each node. For example, type:
shutdown -y -i6 -g0

To ensure that I/O fencing is properly shut down, use the shutdown
command instead of the reboot command.

Fencing administration 49
I/O fencing
Adding or removing coordinator disks
Before adding coordinator disks, verify the disks support SCSI-3 persistent
reservations.

1 Log in as root on any cluster node.

2 Import the coordinator disk group. The file /etc/vxfendg includes the
name of the disk group containing the coordinator disks. Type:

vxdg -tfC import ‘cat /etc/vxfendg‘

where:

-t specifies that the disk group is imported only until the system
reboots.

-f specifies that the import is to be done forcibly, which is necessary if
one or more disks is inaccessible.

-C specifies any import blocks are removed.

3	 To add disks to, or remove them from, the disk group, use the VxVM disk
administrator utility, vxdiskadm.

4 After disks are added or removed, deport the disk group:
vxdg deport ‘cat /etc/vxfendg‘

5 Reboot each system in the cluster to make the coordinator disks accessible.

50	 Fencing administration
I/O fencing
Verifying fenced configurations
Administrators can use the vxfenadm command to test and troubleshoot fenced
configurations. Command options include:

-d display current I/O fencing mode

-g read and display keys

-i read SCSI inquiry information from device

-m register with disks

-n make a reservation with disks

-p remove registrations made by other systems

-r read reservations

-x remove registrations

Registration key formatting
The key defined by VxVM associated with a disk group consists of seven bytes
maximum. This key becomes unique among the systems when the VxVM
prefixes it with the ID of the system. The key used for I/O fencing, therefore,
consists of eight bytes.

0 1 2 3 4 5 6 7

Node

ID

VxVM

Defined

VxVM

Defined

VxVM

Defined

VxVM

Defined

VxVM

Defined

VxVM

Defined

VxVM

Defined

The keys currently assigned to disks can be displayed by using the command
vxfenadm -g /dev/device_name command. For example, from the system with
node ID 1, display the key for the device_name by entering:

vxfenadm -g /dev/device_name

Reading SCSI Registration Keys...

Device Name: device_name

Total Number of Keys: 1

key[0]:

Key Value [Numeric Format]: 65,80,71,82,48,48,48,48

The -g option of vxfenadm displays the eight bytes of a key value in two
formats. In the numeric format, the first byte, representing the node ID,
contains the system ID plus 65. The remaining bytes contain the ASCII values of
the key’s letters. In this case, “PGR0000.” In the next line, the node ID 0 is
expressed as “A” and node ID 1 would be “B.”

Fencing administration 51
I/O fencing
Disabling I/O fencing
You may have to disable fencing in the following cases:

■	 The cluster has been upgraded to the latest SFCFS stack and the storage
does not support the SCSI-3 PGR feature.

■ During installation fencing was turned on but later disabled.

By default, the VxFEN driver operates with I/O fencing enabled. To disable this
feature without removing the coordinator disks, you must create the file
/etc/vxfenmode and include a string within the file to notify the VxFEN
driver, then stop and restart the driver, as instructed below:

echo "vxfen_mode=disabled" > /etc/vxfenmode

/etc/init.d/vxfen stop

/etc/init.d/vxfen start

Additionally, we recommend removing the /etc/vxfendg file if fencing is to be
later reenabled.

How I/O fencing works during different events
The following table describes how I/O fencing works to prevent data corruption
during different failure scenarios. For each event, corrective actions are
indicated.

Table 4-3

Event Node A: What
Happens?

Node B: What
Happens?

Action

All private
networks fail.

Node A races for majority
of coordinator disks.

If Node A wins race for
coordinator disks, Node A
ejects Node B from the
shared disks and
continues.

Node B races for majority
of coordinator disks.

If Node B loses the race
for the coordinator disks,
Node B removes itself
from the cluster.

When Node B is
ejected from
cluster, repair the
private networks
before attempting
to bring Node B
back.

All

private
networks
function
again after
event above.

Node A continues to
work.

Node B has crashed. It
cannot start the database
since it is unable to write
to the data disks.

Reboot Node B
after private
networks are
restored.

52	 Fencing administration
I/O fencing
Table 4-3

One private
network fails.

Node A prints message
about an IOFENCE on the
console but continues.

Node B prints message
on the console about
jeopardy and continues.

Repair private
network. After
network is
repaired, both
nodes
automatically use
it.

Node A hangs. Node A is extremely busy
for some reason or is in
the kernel debugger.

When Node A is no
longer hung or in the
kernel debugger, any
queued writes to the data
disks fail because Node A
is ejected. When Node A
receives message from
GAB about being ejected,
it removes itself from the
cluster.

Node B loses heartbeats
with Node A, and races
for a majority of
coordinator disks.

Node B wins race for
coordinator disks and
ejects Node A from
shared data disks.

Verify private
networks function
and reboot Node
A.

Event Node A: What
Happens?

Node B: What
Happens?

Action

Fencing administration 53
I/O fencing
Table 4-3

Nodes A and B
and private
networks lose
power.
Coordinator
and data disks
retain power.

Power returns
to nodes and
they reboot,
but private
networks still
have no
power.

Node A reboots and I/O
fencing driver (vxfen)
detects Node B is
registered with
coordinator disks. The
driver does not see Node
B listed as member of
cluster because private
networks are down. This
causes the I/O fencing
device driver to prevent
Node A from joining the
cluster. Node A console
displays:

Potentially a

preexisting

split brain.

Dropping out of

the cluster.

Refer to the

user

documentation

for steps

required to

clear

preexisting

split brain.

Node B reboots and I/O
fencing driver (vxfen)
detects Node A is
registered with
coordinator disks. The
driver does not see Node
A listed as member of
cluster because private
networks are down. This
causes the I/O fencing
device driver to prevent
Node B from joining the
cluster. Node B console
displays:

Potentially a

preexisting

split brain.

Dropping out of

the cluster.

Refer to the

user

documentation

for steps

required to

clear

preexisting

split brain.

Refer to section in
Troubleshooting
chapter for
instructions on
resolving
preexisting split
brain condition.

Event Node A: What
Happens?

Node B: What
Happens?

Action

54	 Fencing administration
I/O fencing
Table 4-3

Node A
crashes while
Node B is
down. Node B
comes up and
Node A is still
down.

Node A is crashed. Node B reboots and
detects Node A is
registered with the
coordinator disks. The
driver does not see Node
A listed as member of the
cluster. The I/O fencing
device driver prints
message on console:

Potentially a

preexisting

split brain.

Dropping out of

the cluster.

Refer to the

user

documentation

for steps

required to

clear

preexisting

split brain.

Refer to section in
Troubleshooting
chapter for
instructions on
resolving
preexisting split
brain condition.

The disk
array
containing
two of the
three
coordinator
disks is
powered off.

Node B leaves
the cluster
and the disk
array is still
powered off.

Node A continues to
operate as long as no
nodes leave the cluster.

Node A races for a
majority of coordinator
disks. Node A fails
because only one of three
coordinator disks is
available. Node A
removes itself from the
cluster.

Node B continues to
operate as long as no
nodes leave the cluster.

Node B leaves the cluster.

Power on failed
disk array and
restart I/O
fencing driver to
enable Node A to
register with all
coordinator disks.

Event Node A: What
Happens?

Node B: What
Happens?

Action

Fencing administration 55
Troubleshooting fenced configurations
Troubleshooting fenced configurations
The following information describes network partitioning in a fenced
environment.

See the Veritas Cluster Server User’s Guide.

Example of a preexisting network partition (Split-Brain)
The scenario illustrated below shows a two-node cluster in which the severed
cluster interconnect poses a potential split-brain condition.

Second-Node 0
ejects key B for disk
1 and succeeds.

Node 0 Node 1

Coordinator Disks

Third-Node 0 ejects
key B for disk 2 and
succeeds.

Fourth-Node 0 ejects
key B for disk 3 and
succeeds.

Fifth-Node 0
continues and
performs recovery.

Second (part B) Node
1 fails to eject key A
for disk 1. Rereads

Third (part B)- Node 1
fails to eject keys for
disk 2. Rereads keys.

Fourth (part B)-Node 1
fails to eject keys for
disk 3.

Finally-Node 1
panics and reboots.

First-Interconnect failure causes both nodes
to race.

Because the fencing module operates identically on each system, both nodes
assume the other is failed, and carry out fencing operations to insure the other
node is ejected. The VCS GAB module on each node determines the peer has
failed due to loss of heartbeats and passes the membership change to the
fencing module.

Each side “races” to gain control of the coordinator disks. Only a registered node
can eject the registration of another node, so only one side successfully
completes the command on each disk.

The side that successfully ejects the peer from a majority of the coordinator
disks wins. The fencing module on the winning side then passes the membership
change up to VCS and other higher-level packages registered with the fencing
module, allowing VCS to invoke recovery actions. The losing side forces a kernel
panic and reboots.

56	 Fencing administration
Troubleshooting fenced configurations
Recovering from a Preexisting Network Partition (Split-Brain)
The fencing module vxfen prevents a node from starting up after a network
partition and subsequent panic and reboot of a node.

Example Scenario I
Another scenario that could cause similar symptoms would be a two-node
cluster with one node shut down for maintenance. During the outage, the
private interconnect cables are disconnected.

Third-Node 0 has key
registered on all
coordinator disks.

Node 0 Node 1

Coordinator Disks

First-Network
interconnect severed.
Node 0 wins
coordinator race

Second-Node 1
panics and reboots

Finally-Node 1 boots
up and finds keys
registered for
non-member. Prints
error message and
exits.

In this scenario:

✔ Node 0 wins a coordinator race following to a network failure.

✔ Node 1 panics and reboots.

✔	 Node 0 has keys registered on the coordinator disks. When node 1 boots up,
it sees the Node 0 keys, but cannot see node 0 in the current GAB
membership. It senses a potential preexisting split brain and causes the
vxfen module to print an error message to the console. The vxfen module
prevents fencing from starting, which, in turn, prevents VCS from coming
online.

Suggested solution: Shut down Node 1, reconnect the cables, and restart
Node 1.

Example Scenario II
Similar to scenario I, if private interconnect cables are disconnected in a
two-node cluster, Node 1 is fenced out of the cluster, panics, and reboots. If
before the private interconnect cables are fixed and Node 1 rejoins the cluster,
Node 0 panics and reboots (or just reboots). No node can write to the data disks
until the private networks are fixed. This is because GAB membership cannot be
formed, therefore the cluster cannot be formed.

Suggested solution: Shut down both nodes, reconnect the cables, restart the
nodes.

Fencing administration 57
Troubleshooting fenced configurations
Example Scenario III
Similar to scenario II, if private interconnect cables are disconnected in a
two-node cluster, Node 1 is fenced out of the cluster, panics, and reboots. If
before the private interconnect cables are fixed and Node 1 rejoins the cluster,
Node 0 panics due to hardware failure and cannot come back up, Node 1 cannot
rejoin.

Suggested solution: Shut down Node 1, reconnect the cables, restart the node.
You must then clear the registration of Node 0 from the coordinator disks.

1 On Node 1, type:
/opt/VRTSvcs/vxfen/bin/vxfenclearpre

2 Restart the node.

58	 Fencing administration
Troubleshooting fenced configurations

Chapter
5
Veritas Volume Manager
cluster functionality
administration

A cluster consists of a number of hosts or nodes that share a set of disks. The
main benefits of cluster configurations are:

■	 Availability—If one node fails, the other nodes can still access the shared
disks. When configured with suitable software, mission-critical applications
can continue running by transferring their execution to a standby node in
the cluster. This ability to provide continuous uninterrupted service by
switching to redundant hardware is commonly termed failover.

Failover is transparent to users and high-level applications for database
and file-sharing. You must configure cluster management software, such as
VCS, to monitor systems and services, and to restart applications on
another node in the event of either hardware or software failure. VCS also
allows you to perform general administration tasks such as making nodes
join or leave a cluster.

■	 Off-host processing—Clusters can reduce contention for system resources by
performing activities such as backup, decision support and report
generation on the more lightly loaded nodes of the cluster. This allows
businesses to derive enhanced value from their investment in cluster
systems.

60	 Veritas Volume Manager cluster functionality administration
Overview of Cluster Volume Management
The CVM allows up to 32 nodes in a cluster to simultaneously access and
manage a set of disks under VxVM control (VM disks). The same logical view of
disk configuration and any changes to this is available on all the nodes. When
the cluster functionality is enabled, all the nodes in the cluster can share VxVM
objects. This chapter discusses the cluster functionality that is provided with
VxVM.

For complete information on VxVM and CVM. Online versions of the VxVM
documentation set are installed under the /opt/VRTS/docs directory.

See the Veritas Volume Manager Administrator’s Guide

For complete information on VCS. Online versions of the VCS documentation set
are installed under the /opt/VRTS/docs directory.

See the Veritas Cluster Server User’s Guide.

Overview of Cluster Volume Management
Tightly coupled cluster systems have become increasingly popular in
enterprise-scale mission-critical data processing. The primary advantage of
clusters is protection against hardware failure. If the primary node fails or
otherwise becomes unavailable, applications can continue to run by transferring
their execution to standby nodes in the cluster. This ability to provide
continuous availability of service by switching to redundant hardware is
commonly termed failover.

Another major advantage of clustered systems is their ability to reduce
contention for system resources caused by activities such as backup, decision
support and report generation. Enhanced value can be derived from cluster
systems by performing such operations on lightly loaded nodes in the cluster
instead of on the heavily loaded nodes that answer requests for service. This
ability to perform some operations on the lightly loaded nodes is commonly
termed load balancing.

To implement cluster functionality, VxVM works together with the cluster
monitor daemon that is provided by the host operating system or by VCS. The
cluster monitor informs VxVM of changes in cluster membership. Each node
starts up independently and has its own cluster monitor plus its own copies of
the operating system and VxVM with support for cluster functionality. When a
node joins a cluster, it gains access to shared disks. When a node leaves a cluster,
it no longer has access to shared disks. A node joins a cluster when the cluster
monitor is started on that node.

Veritas Volume Manager cluster functionality administration 61
Overview of Cluster Volume Management
Caution: The cluster functionality of VxVM is supported only when used in
conjuction with a cluster monitor that has been configured correctly to work
with VxVM.

The figure “Example of a 4-node cluster” on page 61 illustrates a simple cluster
arrangement consisting of four nodes with similar or identical hardware
characteristics (CPUs, RAM and host adapters), and configured with identical
software (including the operating system). The nodes are fully connected by a
private network and they are also separately connected to shared external
storage (either disk arrays or JBODs: just a bunch of disks) via Fibre Channel.
Each node has two independent paths to these disks, which are configured in
one or more cluster-shareable disk groups.

The private network allows the nodes to share information about system
resources and about each other’s state. Using the private network, any node can
recognize which other nodes are currently active, which are joining or leaving
the cluster, and which have failed. The private network requires at least two
communication channels to provide redundancy against one of the channels
failing. If only one channel were used, its failure would be indistinguishable
from node failure—a condition known as network partitioning.

Figure 5-3 Example of a 4-node cluster

Redundant Private Network

Node 0
(master)

Node 1
(slave)

Node 2
(slave)

Node 3
(slave)

Redundant
Fibre Channel
Connectivity

Cluster-Shareable
Disks

Cluster-Shareable
Disk Groups

To the cluster monitor, all nodes are the same. VxVM objects configured within
shared disk groups can potentially be accessed by all nodes that join the cluster.

62	 Veritas Volume Manager cluster functionality administration
Overview of Cluster Volume Management
However, the cluster functionality of VxVM requires that one node act as the
master node; all other nodes in the cluster are slave nodes. Any node is capable of
being the master node, and it is responsible for coordinating certain VxVM
activities.

Note: You must run commands that configure or reconfigure VxVM objects on
the master node. Tasks that must be initiated from the master node include
setting up shared disk groups, creating and reconfiguring volumes, and
performing snapshot operations.

VxVM designates the first node to join a cluster performs the function of the
master node. If the master node leaves the cluster, one of the slave nodes is
chosen to be the new master. In “Example of a 4-node cluster,” node 0 is the
master node and nodes 1, 2 and 3 are slave nodes.

Private and shared disk Groups
Two types of disk groups are defined:

■	 Private disk groups—belong to only one node. A private disk group is only
imported by one system. Disks in a private disk group may be physically
accessible from one or more systems, but access is restricted to one system
only. The boot disk group (usually aliased by the reserved disk group name
bootdg) is always a private disk group.

■	 Shared disk groups—shared by all nodes. A shared (or cluster-shareable) disk
group is imported by all cluster nodes. Disks in a shared disk group must be
physically accessible from all systems that may join the cluster.

In a cluster, most disk groups are shared. Disks in a shared disk group are
accessible from all nodes in a cluster, allowing applications on multiple cluster
nodes to simultaneously access the same disk. A volume in a shared disk group
can be simultaneously accessed by more than one node in the cluster, subject to
licensing and disk group activation mode restrictions.

You can use the vxdg command to designate a disk group as cluster-shareable.

See the Veritas Volume Manager Administrator’s Guide.

When a disk group is imported as cluster-shareable for one node, each disk
header is marked with the cluster ID. As each node subsequently joins the
cluster, it recognizes the disk group as being cluster-shareable and imports it.
You can also import or deport a shared disk group at any time; the operation
takes places in a distributed fashion on all nodes.

Veritas Volume Manager cluster functionality administration 63
Overview of Cluster Volume Management
Each physical disk is marked with a unique disk ID. When cluster functionality
for VxVM starts on the master, it imports all shared disk groups (except for any
that have the noautoimport attribute set). When a slave tries to join a cluster,
the master sends it a list of the disk IDs that it has imported, and the slave
checks to see if it can access them all. If the slave cannot access one of the listed
disks, it abandons its attempt to join the cluster. If it can access all of the listed
disks, it imports the same shared disk groups as the master and joins the cluster.
When a node leaves the cluster, it deports all its imported shared disk groups,
but they remain imported on the surviving nodes.

Reconfiguring a shared disk group is performed with the co-operation of all
nodes. Configuration changes to the disk group happen simultaneously on all
nodes and the changes are identical. Such changes are atomic in nature, which
means that they either occur simultaneously on all nodes or not at all.

Whether all members of the cluster have simultaneous read and write access to
a cluster-shareable disk group depends on its activation mode setting as
discussed in “Activation modes of shared disk groups.” The data contained in a
cluster-shareable disk group is available as long as at least one node is active in
the cluster. The failure of a cluster node does not affect access by the remaining
active nodes. Regardless of which node accesses a cluster-shareable disk group,
the configuration of the disk group looks the same.

Note: Applications running on each node can access the data on the VM disks
simultaneously. VxVM does not protect against simultaneous writes to shared
volumes by more than one node. It is assumed that applications control
consistency (by using a distributed lock manager, for example).

Activation modes of shared disk groups
A shared disk group must be activated on a node for the volumes in the disk
group to become accessible for I/O from that node. The ability of applications to
read from or to write to volumes is determined by the activation mode of a
shared disk group. Valid activation modes for a shared disk group are
exclusive-write, read-only, shared-read, shared-write, and off
(inactive). Activation modes are described in the table “Activation modes for
shared disk groups” on page 64.

Note: The default activation mode for shared disk groups is shared-write.

Applications such as high availability and off-host backup can use disk group
activation to explicitly control volume access from different nodes in the
cluster.

64	 Veritas Volume Manager cluster functionality administration
Overview of Cluster Volume Management
The activation mode of a disk group controls volume I/O from different nodes in
the cluster. It is not possible to activate a disk group on a given node if it is
activated in a conflicting mode on another node in the cluster.

Table 5-4 Activation modes for shared disk groups

Activation mode Description

exclusive-write (ew) The node has exclusive write access to the disk group. No
other node can activate the disk group for write access.

read-only (ro) The node has read access to the disk group and denies write
access for all other nodes in the cluster. The node has no
write access to the disk group. Attempts to activate a disk
group for either of the write modes on other nodes fail.

shared-read (sr) The node has read access to the disk group. The node has no
write access to the disk group, however other nodes can
obtain write access.

shared-write (sw) The node has write access to the disk group.

off The node has neither read nor write access to the disk
group. Query operations on the disk group are permitted.

The following table summarizes allowed and conflicting activation modes or
shared disk groups:

Table 5-5 Allowed and conflicting activation modes

Disk group
activated in cluster
as...

Attempt to activate disk group on another node as...

exclusive-
write

read-only shared-read shared-write

exclusive-write Fails Fails Succeeds Fails

read-only Fails Succeeds Succeeds Fails

shared-read Succeeds Succeeds Succeeds Succeeds

shared-write Fails Fails Succeeds Succeeds

Shared disk groups can be automatically activated in any mode during disk
group creation or during manual or auto-import. To control auto-activation of
shared disk groups, the defaults file /etc/default/vxdg must be created.

Veritas Volume Manager cluster functionality administration 65
Overview of Cluster Volume Management
The defaults file /etc/default/vxdg must contain the following lines:
enable_activation=true

default_activation_mode=activation-mode

The activation-mode is one of exclusive-write, read-only,
shared-read, shared-write, or off.

Caution: When enabling activation using the defaults file, it is advisable that the
defaults file be identical on all nodes in the cluster. Otherwise, the results of
activation are unpredictable.

When a shared disk group is created or imported, it is activated in the specified
mode. When a node joins the cluster, all shared disk groups accessible from the
node are activated in the specified mode.

If the defaults file is edited while the vxconfigd daemon is already running,
the vxconfigd process must be restarted for the changes in the defaults file to
take effect.

Caution: If the default activation mode is anything other than off, an activation
following a cluster join, or a disk group creation or import can fail if another
node in the cluster has activated the disk group in a conflicting mode.

To display the activation mode for a shared disk group, use the vxdg list
diskgroup command.

You can also use the vxdg command to change the activation mode on a shared
disk group.

Connectivity policy of shared disk groups
The nodes in a cluster must always agree on the status of a disk. In particular, if
one node cannot write to a given disk, all nodes must stop accessing that disk
before the results of the write operation are returned to the caller. Therefore, if
a node cannot contact a disk, it should contact another node to check on the
disk’s status. If the disk fails, no node can access it and the nodes can agree to
detach the disk. If the disk does not fail, but rather the access paths from some
of the nodes fail, the nodes cannot agree on the status of the disk. Either of the
following policies for resolving this type of discrepancy may be applied:

■	 Under the global connectivity policy, the detach occurs cluster-wide
(globally) if any node in the cluster reports a disk failure. This is the default
policy.

66	 Veritas Volume Manager cluster functionality administration
Overview of Cluster Volume Management
■	 Under the local connectivity policy, in the event of disks failing, the failures
are confined to the particular nodes that saw the failure. Note that an
attempt is made to communicate with all nodes in the cluster to ascertain
the disks’ usability. If all nodes report a problem with the disks, a
cluster-wide detach occurs.

The vxdg command can be used to set the disk dettach and dg fail policy. The
dgfailpolicy sets the disk group failure policy in the case that the master node
loses connectivity to the configuration and log copies within a shared disk
group. This attribute requires that the disk group version is 120 or greater. The
following policies are supported:

■	 dgdisable—The master node disables the diskgroup for all user or kernel
initiated transactions. First write and final close fail. This is the default
policy.

■	 leave—The master node panics instead of disabling the disk group if a log
update fails for a user or kernel initiated transaction (including first write or
final close). If the failure to access the log copies is global, all nodes panic in
turn as they become the master node.

Disk group failure policy
The local detach policy by itself is insufficient to determine the desired behavior
if the master node loses access to all disks that contain copies of the
configuration database and logs. In this case, the disk group is disabled. As a
result, the other nodes in the cluster also lose access to the volume. In release
4.1, the disk group failure policy was introduced to determine the behavior of
the master node in such cases. This policy has two possible settings as shown in
the following table:

Table 5-6 Behavior of master node for different failure policies

Type of I/O failure Leave
(dgfailpolicy=leave)

Disable
(dgfailpolicy=dgdisable)

Master node loses The master node panics with The master node disables the
access to all copies of the message “klog update disk group.
the logs.	 failed” for a failed

kernel-initiated transaction, or
“cvm config update failed” for
a failed user-initiated
transaction.

Veritas Volume Manager cluster functionality administration 67
Overview of Cluster Volume Management
The behavior of the master node under the disk group failure policy is
independent of the setting of the disk detach policy. If the disk group failure
policy is set to leave, all nodes panic in the unlikely case that none of them can
access the log copies.

Limitations of shared disk groups

Note: The boot disk group (usually aliased as bootdg) cannot be made
clustershareable. It must be private.

Only raw device access may be performed via the cluster functionality of VxVM.
It does not support shared access to file systems in shared volumes unless the
appropriate software, such as Veritas Storage Foundation Cluster File System, is
installed and configured.

The cluster functionality of VxVM does not support RAID-5 volumes, or task
monitoring for cluster-shareable disk groups. These features can, however, be
used in private disk groups that are attached to specific nodes of a cluster.

If you have RAID-5 volumes in a private disk group that you wish to make
shareable, you must first relayout the volumes as a supported volume type such
as stripe-mirror or mirror-stripe. Online relayout is supported provided
that it does not involve RAID-5 volumes.

If a shared disk group contains unsupported objects, deport it and then
re-import the disk group as private on one of the cluster nodes. Reorganize the
volumes into layouts that are supported for shared disk groups, and then deport
and re-import the disk group as shared.

68	 Veritas Volume Manager cluster functionality administration
Overview of Cluster Volume Management

Chapter
5
Agents for Storage
Foundation Cluster File
System

Agents are processes that manage predefined resource types. When an agent is
started, it obtains configuration information from the Veritas Cluster Server
(VCS). It then periodically monitors the resources and updates VCS with the
resource status. Typically agents:

■ Bring resources online

■ Take resources offline

■ Monitor resources and report any state changes to VCS

VCS bundled agents are part of VCS and are installed when VCS is installed. The
cluster functionality agents are add-on resources to VCS for the Veritas File
System and Veritas Volume Manager (VxVM). Cluster functionality agents and
resource types are part of the VRTScavf package and are configured when you
run the cfscluster config command.

See the Veritas Cluster Server Bundled Agents Reference Guide.

PDF versions of this guide are located under the /opt/VRTS/docs directory.

Topics in this appendix include:

■ List of Storage Foundation Cluster File System Agents

■ VCS Cluster Components

■ Modifying the Agents and Their Resources

■ Storage Foundation Cluster File System Administrative Interface

70	 Agents for Storage Foundation Cluster File System
List of Storage Foundation Cluster File System Agents
List of Storage Foundation Cluster File System
Agents

The SFCFS agents include:

■ CFSMount Agent

■ CFSfsckd Agent

■ CVMCluster Agent

■ CVMVolDg Agent

VCS Cluster Components
Resources, attributes, and service groups are components integral to cluster
functionality.

See the Veritas Cluster Server User’s Guide.

Resources
Resources are hardware or software entities, such as disks, volumes, file system
mount points, network interface cards (NICs), IP addresses, applications, and
databases. Resources work together to provide a service to clients in a
client/server environment. Resource types are defined in the types.cf file by a
collection of attributes. The VCS configuration file, main.cf, contains the
values for the attributes of the resources. The main.cf file incorporates the
resources listed in the types.cf by way of an include directive.

Attributes
Attributes contain data regarding the cluster, nodes, service groups, resources,
resource types, and agents. A specified value for a given attribute configures the
resource to function in a specific way. By modifying the value of an attribute of a
resource, you change the way the VCS agent manages the resource. Each
attribute has a definition and a value. You define an attribute by specifying its
data type and dimension. Attributes also have default values that are assigned
when a value is not specified.

Service Groups
Service groups are comprised of related resources. When a service group is
brought online, all the resources within the group are brought online.

Agents for Storage Foundation Cluster File System 71
Modifying the Agents and Their Resources
Modifying the Agents and Their Resources
You can use the VCS Cluster Manager GUI, or enter VCS commands (the “ha”
commands such as hastatus and haconf) from the command line, to modify the
configuration of the resources managed by an agent. You can also edit the
main.cf file directly, but you must reboot your system for the changes to take
effect. An example main.cf file is located in the
/etc/VRTSvcs/conf/sample_cvm directory.

It is advisable to use the Veritas Cluster Server GUI to administer your cluster
file system resources.

See Veritas Cluster Server Installation Guide.

Resources and Service Groups for File System Cluster Functionality
Managing cluster mounts through VCS requires various resources types,
resources, and service groups. The VCS resource types required for Veritas
Volume Manager cluster functionality (or CVM) are:

■ CVMCluster

■ CVMVolDg

CVMCluster controls the overall operation of CVM. The agents of CVMCluster
bring up the CVM cluster. Only one CVMCluster resource is required in a VCS
environment. It is advisable to use the standard configuration procedure for
CVM to add the CVMCluster resource. The procedure creates a service group
named cvm and adds the resources to the configuration.

See “Storage Foundation Cluster File System Administrative Interface” on
page 72.

The VCS resource types required for SFCFS functionality are:

■ CFSfsckd

■ CFSMount

CFSfsckd is a mandatory resource type for SFCFS functionality. CFSfsckd agents
start the cluster file system check (fsck command) daemon, vxfsckd, which
must be running for a cluster mount to succeed. As with CVMCluster, only one
resource instance is required for CFSfsckd. You add these resources using the
SFCFS configuration process, which adds the resources to the cvm service group.

See “The cfscluster Command” on page 73.

72	 Agents for Storage Foundation Cluster File System
Storage Foundation Cluster File System Administrative Interface
Each CVMVolDg resource controls one shared disk group, and one or more
shared volumes of that disk group. CVMVolDg resources enable the disk group
and set the disk group activation mode. Each CFSMount resource controls the
cluster mount of a shared volume on a specified mount point. CFSMount
resources also keep track of mount options associated with the mount points.

These resource instances are not added automatically during the SFCFS
configuration; you must add them as required using the SFCFS cluster
administration commands.

Note: That the CFSMount and CVMVolDg resources are not added to the cvm
service group; those should be added to a different service group.

See “The cfsmntadm Command” on page 74.

Resource and Service Group Dependencies
Dependencies between resources and service groups specify the order in which
the resource and service group are brought online and taken offline, which must
be done in correct sequence. The various resources and service groups required
for SFCFS must follow these dependency (or link) rules:

■	 A CFSMount resource must depend on the corresponding CVMVolDg
resource

■	 A service group containing the CVMVolDg resource must depend on the cvm
service group

Storage Foundation Cluster File System
Administrative Interface

The SFCFS administrative interface provides an easy and convenient way to
create resources required for SFCFS with the correct attributes and the correct
links between them.

Agents for Storage Foundation Cluster File System 73
Storage Foundation Cluster File System Administrative Interface
Storage Foundation Cluster File System Resource Management
Commands

As many as five VCS agents are required to manage cluster file system
functionality. Each of these resources has several attributes and dependencies
between them. To make resources easier to manage, five SFCFS administrative
commands are provided. It is advisable to use only these commands to manage
cluster file systems. The commands are:

■ cfscluster—cluster configuration command

■	 cfsmntadm—adds, deletes, modifies, and sets policy on cluster mounted file
systems

■	 cfsdgadm—adds or deletes shared disk groups to/from a cluster
configuration

■	 cfsmount/cfsumount—mounts/unmounts a cluster file system on a shared
volume

The cfscluster Command
The cfscluster command is used primarily to configure and unconfigure CVM
and SFCFS, and can be run from any node in the cluster. VCS must be started
before you can run the cfscluster config command. The cfscluster config
command adds all the resource type definitions and adds resource instances,
one each of type CVMCluster and CFSfsckd. The cfscluster config command
also brings the resources online, and cfscluster status can be used to query
the status of VCS.

See “Resources and Service Groups for File System Cluster Functionality” on
page 71.

The cfscluster unconfig command takes resources offline (except CFSMount
resources) and removes all the resources and service groups that were used to
manage the cluster file system.

See the cfscluster(1M) manual page.

You must manually take CFSMount resources offline (using the cfsumount
command) before executing the cfscluster unconfig command.

74	 Agents for Storage Foundation Cluster File System
Storage Foundation Cluster File System Administrative Interface
The cfsmntadm Command
One CVMVolDg and one CFSMount resource is required to control each cluster
mount. You can use the cfsmntadm add to add these resources. The cfsmntadm
command takes mount points, shared volumes, and shared disk groups as
arguments. You can optionally specify a service group name. If a service group
name is specified, the cfsmntadm command creates a new service group (if the
service group is not already present) and makes it dependent on the cvm service
group. If no service group name is specified, cfsmntadm add creates a default
service group, cfs. The command next adds CVMVolDg to the specified service
group and associates it with the specified disk group (if that kind of resource is
not already present in the same service group). Subsequently, cfsmntadm add
adds a CFSMount resource and links it with the CVMVolDg resource, then sets
the appropriate values to the resource attributes. It is advisable to add all the
mount points (that have their device in the same shared disk group) to the same
service group.

See “Resources and Service Groups for File System Cluster Functionality” on
page 71.

Using cfsmntadm, you can also add file system snapshots and Storage
Checkpoints; delete, display, and modify resources; and set the primary election
policy on a cluster mounted file system.

See the cfsmntadm(1M) manual page.

The cfsdgadm Command
The cfsdgadm command is the administrative interface for shared disk groups.
Using cfsdgadm, you can add a shared disk group to a cluster configuration,
delete a shared disk group, modify the activation mode, or display the shared
disk group’s configuration information. A shared disk group must already exist
before being specified with cfsdgadm command.

See the cfsdgadm(1M) manual page.

Agents for Storage Foundation Cluster File System 75
Storage Foundation Cluster File System Administrative Interface
The cfsmount/cfsumount Command
The cfsmount command mounts a cluster file system on a shared volume on one
or more nodes. If no nodes are specified, the cluster file system is mounted on all
associated nodes in the cluster. The cluster mount instance for the shared
volume must be previously defined by the cfsmntadm add command before
running cfsmount. The cfsumount command unmounts one or more shared
volumes

See the cfsmount(1M) manual page.

Figure 5-4 SFCFS Service Groups and Resource Dependencies

CVMVolDG=cvmvold

cfs_sg1

CFSMount=cfsmount

(link)

cVM

CVMCluster-cvm_clus CFSfsckd=vxfsckd

CVMVolDG=cvmvold

cfs_sg21

CFSMount=cfsmount

(link)

CFSMount=cfsmount

(link)

76	 Agents for Storage Foundation Cluster File System
Storage Foundation Cluster File System Administrative Interface
Example main.cf File

include "types.cf"

include "CFSTypes.cf"

include "CVMTypes.cf"

cluster cfs_cluster (

UserNames = { admin = HMNfMHmJNiNNlVNhMK }

Administrators = { admin }

CredRenewFrequency = 0

HacliUserLevel = COMMANDROOT

CounterInterval = 5

)

system system01 (

)

system system02 (

)

group cvm (

SystemList = { system01 = 0, system02 = 1 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { system01, system02 }

)

CFSfsckd vxfsckd (

ActivationMode @system01 = { cfsdg = off }

ActivationMode @system02 = { cfsdg = off }

)

CVMCluster cvm_clus (

CVMClustName = omcluster

CVMNodeId = { system01 = 0, system02 = 1 }

CVMTransport = gab

CVMTimeout = 200

)

CVMVxconfigd cvm_vxconfigd (

Critical = 0

CVMVxconfigdArgs = { syslog }

)

cvm_clus requires cvm_vxconfigd

vxfsckd requires cvm_clus

// resource dependency tree

//

// group cvm

Agents for Storage Foundation Cluster File System 77
Storage Foundation Cluster File System Administrative Interface
// {

// CFSfsckd vxfsckd

// {

// CVMCluster cvm_clus

// {

// CVMVxconfigd cvm_vxconfigd

// }

// }

// }

group vrts_vea_cfs_int_cfsmount1 (

SystemList = { system01 = 0, system02 = 1 }

AutoFailOver = 0

Parallel = 1

AutoStartList = { system01, system02 }

)

CFSMount cfsmount1 (

Critical = 0

MountPoint = "/mnt0"

BlockDevice = "/dev/vx/dsk/cfsdg/vol1"

NodeList = { system01 , system02 }

RemountRes @system01 = DONE

RemountRes @system02 = DONE

)

CVMVolDg cvmvoldg1 (

Critical = 0

CVMDiskGroup = cfsdg

CVMActivation @system01 = off

CVMActivation @system02 = off

)

requires group cvm online local firm

cfsmount1 requires cvmvoldg1

// resource dependency tree

//

// group vrts_vea_cfs_int_cfsmount1

// {

// CFSMount cfsmount1

// {

// CVMVolDg cvmvoldg1

// }

// }

78	 Agents for Storage Foundation Cluster File System
Storage Foundation Cluster File System Administrative Interface
Example CVMTypes.cf File
type CVMCluster (

static int NumThreads = 1

static int OnlineRetryLimit = 2

static int OnlineTimeout = 400

static str ArgList[] = { CVMTransport, CVMClustName,

CVMNodeAddr, CVMNodeId, PortConfigd, PortKmsgd, CVMTimeout }

str CVMClustName

str CVMNodeAddr{}

str CVMNodeId{}

str CVMTransport

int PortConfigd

int PortKmsgd

int CVMTimeout

)

type CVMVolDg (

static keylist RegList = { CVMActivation }

static str ArgList[] = { CVMDiskGroup, CVMVolume, CVMActivation

}

str CVMDiskGroup

keylist CVMVolume

str CVMActivation

temp int voldg_stat

)

type CVMVxconfigd (

static int FaultOnMonitorTimeouts = 2

static int RestartLimit = 5

static str ArgList[] = { CVMVxconfigdArgs }

static str Operations = OnOnly

keylist CVMVxconfigdArgs

)

Agents for Storage Foundation Cluster File System 79
CFSMount Agent
Example CFSTypes.cf File
type CFSMount (

static keylist RegList = { MountOpt, Policy, NodeList, ForceOff,

SetPrimary }

static int FaultOnMonitorTimeouts = 1

static int OnlineWaitLimit = 1

static str ArgList[] = { MountPoint, BlockDevice, MountOpt }

str MountPoint

str MountType

str BlockDevice

str MountOpt

keylist NodeList

keylist Policy

temp str Primary

str SetPrimary

str RemountRes

str ForceOff

)

type CFSfsckd (

static int RestartLimit = 1

str ActivationMode{}

)

CFSMount Agent
Table 5-7 provides a description of the CFSMount agent.�

Table 5-7 CFSMount Agent

Description Brings online, takes offline, and monitors a cluster file
system mount point. The CFSMount agent executable is
/opt/VRTSvcs/bin/CFSMount/CFSMountAgent. The
type definition is in the file
/etc/VRTSvcs/conf/config/CFSTypes.cf.

80	 Agents for Storage Foundation Cluster File System
CFSMount Agent
Table 5-7 CFSMount Agent

Entry Points Online—Mounts a block device or file system snapshot in
cluster mode.

Offline—Unmounts the file system (doing a forced
unmount if necessary).

Monitor—Determines if the file system is mounted. Checks
mount status using the fsclustadm command.

Clean—A null operation for a cluster file system mount.

attr_change—Remounts file system with new mount
option; sets new primary for file system; sets fsclustadm
policy on file system.

Required Attributes Type and
Dimension

Definition

BlockDevice string-scalar Block device for mount
point.

MountPoint string-scalar Directory for mount point.

NodeList string-keylist List of nodes on which to
mount.

Optional Attributes Type and
Dimension

Definition

Policy string-scalar Node list for the primary file
system selection policy.

Agents for Storage Foundation Cluster File System 81
CFSMount Agent
Table 5-7 CFSMount Agent

MountOpt string-scalar Options for the mount
command. To create a valid
MountOpt attribute string:

■ Use VxFS type-specific
options only.

■ Do not use the –o flag
to specify the
VxFS-specific options.

■ Do not use the –F
vxfs file system type
option.

■ The cluster option is
not required.

■ Specify options in a
comma-separated list
as in these examples:

ro
ro,cluster

blkclear,mincache=clo
sesync

Internal Attributes

MountType, Primary, SetPrimary, RemountRes, ForceOff Not user-configured—used
only by system.

Type Definition
type CFSMount (

static int RestartLimit = 2

static str LogLevel

static str ArgList[] = {MountPoint, BlockDevice, MountOpt}

NameRule = resource.MountPoint

str MountPoint

str BlockDevice

str MountOpt

)

82	 Agents for Storage Foundation Cluster File System
CFSMount Agent
Sample Configuration
CFSMount testdg_test01_fsetpri (

Critical = 0

mountPoint = “/mnt1”

BlockDevice = “/dev/vx/dsk/testdg/test01”

)

CFSMount testdg_test02_fsetpri (

Critical = 0

MountPoint = “/mnt2”

BlockDevice = “/dev/vx/dsk/testdg/test02”

MountOpt = “blkclear,mincache=closesync”

)

Agents for Storage Foundation Cluster File System 83
CFSfsckd Agent
CFSfsckd Agent
Table 5-8 provides a description of the CFSfsckd agent.

Table 5-8 CFSfsckd Agent

Description Starts, stops, and monitors the vxfsckd process. The
CFSfsckd agent executable is
/opt/VRTSvcs/bin/CFSfsckd/CFSfsckdAgent. The
type definition is in the file
/etc/VRTSvcs/conf/config/CFSTypes.cf. The
configuration is added to the main.cf file after running the
cfscluster config command.

Entry Points Online—Starts the vxfsckd process.

Offline—Kills the vxfsckd process.

Monitor—Checks whether the vxfsckd process is running.

Clean—A null operation for a cluster file system mount.

Required
Attributes

Type and
Dimension

Definition

None

Optional
Attributes

Type and
Dimension

Definition

None

Type Definition
type CFSfsckd (

static int RestartLimit = 2

static str LogLevel

static str ArgList[] = { }

NameRule = ““

)

Sample Configuration
CFSfsckd vxfsckd (

)

84	 Agents for Storage Foundation Cluster File System
CVMCluster Agent
CVMCluster Agent
Table 5-9 provides a description of the CFSCluster agent.

Table 5-9 CVMCluster Agent

Description Controls node membership on the cluster port associated with CVM.
The CVMCluster resource requires the CVMMultiNIC resource and
must be configured to depend on CVMMultiNIC. The CVMCluster
agent executable is
/opt/VRTSvcs/bin/CVMCluster/CVMClusterAgent. The type
definition is in the file
/etc/VRTSvcs/conf/config/CVMTypes.cf. The configuration
is added to the main.cf file after running the cfscluster config
command.

Entry Points ■ Online—Joins a node to the CVM cluster port.

■ Offline—Removes a node from the CVM cluster port.

■ Monitor—Monitors the node’s CVM cluster membership state.

■ Clean—A null operation for a cluster file system mount.

Required
Attributes

Type and
Dimension

Definition

CVMClustName string-scalar Name of the cluster.

CVMNodeAddr string-associ
ation

List of host names and IP addresses.

CVMNodeId string-associ
ation

List of host names and LLT node numbers.

CVMTransport string-associ
ation

The CVM transport mode, either gab or udp. For
SFCFS, gab is the only valid transport mode.

PortConfigd integer-scalar Port number used by CVM for vxconfigd-level
communication.

PortKmsgd integer-scalar Port number used by CVM for kernel-level
communication.

CVMTimeout integer-scalar Timeout used by CVM during cluster
reconfigurations.

Agents for Storage Foundation Cluster File System 85
CVMCluster Agent

Type Definition

type CVMCluster (

static int NumThreads = 1

static int OnlineRetryLimit = 2

static int OnlineTimeout = 400

static str ArgList[] = { CVMTransport, CVMClustName,

CVMNodeAddr,

CVMNodeId,

PortKmsgd, CVMTimeout }

NameRule = ""

str CVMClustName

str CVMNodeAddr{}

str CVMNodeId{}

str CVMTransport

int PortConfigd

int PortKmsgd

int CVMTimeout

)

Sample Configuration
CVMCluster cvm_clus (

Critical = 0

CVMClustName = vcs

PortConfigd,

CVMNodeId = { system01 = 1, system02 = 2 }

CVMTransport = gab

CVMTimeout = 200

)

86	 Agents for Storage Foundation Cluster File System
CVMVolDg Agent
CVMVolDg Agent
Table 5-10 provides a description of the CVMVolDg agent.

Table 5-10 CVMVolDg Agent

Description Brings online, takes offline, and monitors a VxVM shared volume in a
disk group. The CVMVolDg agent executable is
/opt/VRTSvcs/bin/CVMVolDg/CVMVolDg. The type definition is
in the file /etc/VRTSvcs/conf/config/CVMTypes.cf.

Entry Points ■ Online—Sets the activation mode of the shared disk group and
brings volumes online.

■ Offline—Sets the activation mode of the shared disk group to
“off.”

■ Monitor—Determines whether the disk group and volumes are
online.

■ Clean—A null operation for a cluster file system mount.

■ attr_changed—Changes the activation mode of the shared disk
groups specified.

Required
Attributes

Type and
Dimension

Definition

CVMDiskGroup string-scalar Shared disk group name.

CVMVolume string-keylist Shared volume names.

CVMActivation string-scalar Activation mode for the disk group. Must be set to
shared-write (sw). This is a localized attribute.

Type Definition
type CVMVolDg (

static keylist RegList = { CVMActivation }
static str ArgList[] = { CVMDiskGroup, CVMActivation }
NameRule = ""
str CVMDiskGroup
str CVMActivation

)

Sample Configuration
CVMVolDg testdg (

CVMDiskGroup = testdg
CVMActivation @system01 = sw
CVMActivation @system02 = sw
)

Glossary
access control list (ACL)€

The information that identifies specific users or groups and their access privileges for a
particular file or directory.

agent€

A process that manages predefined Veritas Cluster Server (VCS) resource types. Agents
bring resources online, take resources offline, and monitor resources to report any state
changes to VCS. When an agent is started, it obtains configuration information from VCS
and periodically monitors the resources and updates VCS with the resource status.

allocation unit€

A group of consecutive blocks on a file system that contain resource summaries, free
resource maps, and data blocks. Allocation units also contain copies of the super-block.

API€

Application Programming Interface.

asynchronous writes€

A delayed write in which the data is written to a page in the system’s page cache, but is not
written to disk before the write returns to the caller. This improves performance, but
carries the risk of data loss if the system crashes before the data is flushed to disk.

atomic operation€

An operation that either succeeds completely or fails and leaves everything as it was before
the operation was started. If the operation succeeds, all aspects of the operation take effect
at once and the intermediate states of change are invisible. If any aspect of the operation
fails, then the operation aborts without leaving partial changes.

Block-Level Incremental Backup (BLI Backup)€

A Veritas backup capability that does not store and retrieve entire files. Instead, only the
data blocks that have changed since the previous backup are backed up.

boot disk€

A disk that is used for the purpose of booting a system.

boot disk group€

A private disk group that contains the disks from which the system may be booted.

bootdg€

A reserved disk group name that is an alias for the name of the boot disk group.

buffered I/O€

During a read or write operation, data usually goes through an intermediate kernel buffer
before being copied between the user buffer and disk. If the same data is repeatedly read or
written, this kernel buffer acts as a cache, which can improve performance.

88
See unbuffered I/O and direct I/O.

cluster mounted file system€

A shared file system that enables multiple hosts to mount and perform file operations on
the same file. A cluster mount requires a shared storage device that can be accessed by
other cluster mounts of the same file system. Writes to the shared device can be done
concurrently from any host on which the cluster file system is mounted. To be a cluster
mount, a file system must be mounted using the mount –o cluster option.

See local mounted file system.

Cluster Services€

The group atomic broadcast (GAB) module in the SFCFS stack provides cluster membership
services to the file system. LLT provides kernel-to-kernel communications and monitors
network communications.

See “The role of component products” on page 15.

contiguous file€

A file in which data blocks are physically adjacent on the underlying media.

CVM€

The cluster functionality of Veritas Volume Manager.

CVM Master€

The cluster volume manager (CVM) has a master node that records changes to the volume
configuration.

data block€

A block that contains the actual data belonging to files and directories.

data synchronous writes€

A form of synchronous I/O that writes the file data to disk before the write returns, but
only marks the inode for later update. If the file size changes, the inode will be written
before the write returns. In this mode, the file data is guaranteed to be on the disk before
the write returns, but the inode modification times may be lost if the system crashes.

defragmentation€

The process of reorganizing data on disk by making file data blocks physically adjacent to
reduce access times.

direct extent€

An extent that is referenced directly by an inode.

direct I/O€

An unbuffered form of I/O that bypasses the kernel’s buffering of data. With direct I/O, the
file system transfers data directly between the disk and the user-supplied buffer.

See buffered I/O and unbuffered I/O.

discovered direct I/O€

Discovered Direct I/O behavior is similar to direct I/O and has the same alignment
constraints, except writes that allocate storage or extend the file size do not require writing
the inode changes before returning to the application.

encapsulation€

89
A process that converts existing partitions on a specified disk to volumes. If any partitions
contain file systems, /etc/vfstab entries are modified so that the file systems are
mounted on volumes instead. Encapsulation is not applicable on some systems.

extent€

A group of contiguous file system data blocks treated as a single unit. An extent is defined
by the address of the starting block and a length.

extent attribute€

A policy that determines how a file allocates extents.

external quotas file€

A quotas file (named quotas) must exist in the root directory of a file system for

quota-related commands to work.

See quotas file and internal quotas file.

file system block€

The fundamental minimum size of allocation in a file system. This is equivalent to the
fragment size on some UNIX file systems.

fileset€

A collection of files within a file system.

fixed extent size€

An extent attribute used to override the default allocation policy of the file system and set
all allocations for a file to a specific fixed size.

fragmentation€

The on-going process on an active file system in which the file system is spread further and
further along the disk, leaving unused gaps or fragments between areas that are in use.
This leads to degraded performance because the file system has fewer options when
assigning a file to an extent.

GB€

Gigabyte (230 bytes or 1024 megabytes).

hard limit€

The hard limit is an absolute limit on system resources for individual users for file and data
block usage on a file system.

See quota.

Heartbeats€

Heartbeat messages are sent over the private link to obtain information on cluster

membership changes. If a node does not send a heartbeat for 16 seconds, it is removed

from the membership. The command lltconfig is used for information on the various

heartbeat parameters. The low latency transport (LLT) module provides communication

services across the cluster.

indirect address extent€

An extent that contains references to other extents, as opposed to file data itself. A single

indirect address extent references indirect data extents. A double indirect address extent

references single indirect address extents.

indirect data extent€

90
An extent that contains file data and is referenced via an indirect address extent.

inode€

A unique identifier for each file within a file system that contains the data and metadata
associated with that file.

inode allocation unit€

A group of consecutive blocks containing inode allocation information for a given fileset.
This information is in the form of a resource summary and a free inode map.

intent logging€

A method of recording pending changes to the file system structure. These changes are
recorded in a circular intent log file.

internal quotas file€

VxFS maintains an internal quotas file for its internal usage. The internal quotas file
maintains counts of blocks and indices used by each user.

See quotas and external quotas file.

K€

Kilobyte (210 bytes or 1024 bytes).

large file€

A file larger than two terabytes. VxFS supports files up to 256 terabytes in size.

large file system€

A file system larger than two terabytes. VxFS supports file systems up to 256 terabytes in
size.

latency€

For file systems, this typically refers to the amount of time it takes a given file system
operation to return to the user.

local mounted file system€

A file system mounted on a single host. The single host mediates all file system writes to
storage from other clients. To be a local mount, a file system cannot be mounted using the
mount –o cluster option.

See cluster mounted file system.

metadata€

Structural data describing the attributes of files on a disk.

MB€

Megabyte (220 bytes or 1024 kilobytes).

mirror€

A duplicate copy of a volume and the data therein (in the form of an ordered collection of
subdisks). Each mirror is one copy of the volume with which the mirror is associated.

multi-volume file system€

A single file system that has been created over multiple volumes, with each volume having
its own properties.

MVS€

Multi-volume support.

91
node€

One of the hosts in a cluster.

node abort€

A situation where a node leaves a cluster (on an emergency basis) without attempting to
stop ongoing operations.

node join€

The process through which a node joins a cluster and gains access to shared disks.

object location table (OLT)€

The information needed to locate important file system structural elements. The OLT is
written to a fixed location on the underlying media (or disk).

object location table replica€

A copy of the OLT in case of data corruption. The OLT replica is written to a fixed location
on the underlying media (or disk).

page file€

A fixed-size block of virtual address space that can be mapped onto any of the physical
addresses available on a system.

preallocation€

A method of allowing an application to guarantee that a specified amount of space is
available for a file, even if the file system is otherwise out of space.

primary fileset€

The files that are visible and accessible to the user.

Quick I/O file€

A regular VxFS file that is accessed using the ::cdev:vxfs: extension.

Quick I/O for Databases€

Quick I/O is a Veritas File System feature that improves database performance by
minimizing read/write locking and eliminating double buffering of data. This allows
online transactions to be processed at speeds equivalent to that of using raw disk devices,
while keeping the administrative benefits of file systems.

quotas€

Quota limits on system resources for individual users for file and data block usage on a file
system.

See hard limit and soft limit.

quotas file€

The quotas commands read and write the external quotas file to get or change usage limits.
When quotas are turned on, the quota limits are copied from the external quotas file to the
internal quotas file.

See quotas, internal quotas file, and external quotas file.

reservation€

An extent attribute used to preallocate space for a file.

root disk group €

92
A special private disk group that always exists on the system. The root disk group is named
rootdg.

SFCFS€

The Veritas Storage Foundation Cluster File System.

SFCFS Primary€

There is a primary node for each file system in the cluster responsible for updating
metadata in the file system.

shared disk group €

A disk group in which the disks are shared by multiple hosts (also referred to as a
cluster-shareable disk group).

shared volume €

A volume that belongs to a shared disk group and is open on more than one node at the
same time.

snapshot file system€

An exact copy of a mounted file system at a specific point in time. Used to do online
backups.

snapped file system€

A file system whose exact image has been used to create a snapshot file system.

soft limit€

The soft limit is lower than a hard limit. The soft limit can be exceeded for a limited time.
There are separate time limits for files and blocks.

See hard limit and quotas.

Storage Checkpoint€

A facility that provides a consistent and stable view of a file system or database image and
keeps track of modified data blocks since the last Storage Checkpoint.

structural fileset€

The files that define the structure of the file system. These files are not visible or accessible
to the user.

super-block€

A block containing critical information about the file system such as the file system type,
layout, and size. The VxFS super-block is always located 8192 bytes from the beginning of
the file system and is 8192 bytes long.

synchronous writes€

A form of synchronous I/O that writes the file data to disk, updates the inode times, and
writes the updated inode to disk. When the write returns to the caller, both the data and
the inode have been written to disk.

TB€

Terabyte (240 bytes or 1024 gigabytes).

transaction€

Updates to the file system structure that are grouped together to ensure they are all
completed.

93
throughput€

For file systems, this typically refers to the number of I/O operations in a given unit of
time.

ufs€

The UNIX file system type. Used as parameter in some commands.

UFS€

The UNIX file system; derived from the 4.2 Berkeley Fast File System.

unbuffered I/O€

I/O that bypasses the kernel cache to increase I/O performance. This is similar to direct
I/O, except when a file is extended; for direct I/O, the inode is written to disk
synchronously, for unbuffered I/O, the inode update is delayed.

See buffered I/O and direct I/O.

VCS€

The Veritas Cluster Server.

volume€

A virtual disk which represents an addressable range of disk blocks used by applications
such as file systems or databases.

volume set€

A container for multiple different volumes. Each volume can have its own geometry.

vxfs€

The Veritas File System type. Used as a parameter in some commands.

VxFS€

The Veritas File System.

VxVM€

The Veritas Volume Manager.

94

Index
Symbols€
/etc/default/vxdg defaults file 64

/etc/default/vxdg file 29

A€
activating resources for CFS 73

activation modes for shared disk groups 28, 63

agents

CFS 36, 69

CFSfsckd 83

CFSMount 79, 83

CVM 69

CVMCluster 84

CVMQlogckd 84

CVMVolDg 86

modifying 71

VCS 69

VCS bundled 69

asymmetric mounts 18, 35

attributes defined 70

CFS

activating resources 73

agents 36, 69

applications 13

cluster mounts 34

load distribution 21, 38

memory mapping 10

modifying resources 73

overview 34

snapshots 20, 39

supported features 10

synchronization 21, 37

using commands 36

cfscluster command 36, 73

cfsdgadm command 36, 73

CFSfsckd agent 83

cfsmntadm command 36, 73

CFSMount agent 79, 83

CFSTypes.cf file 79

CFSTypes.cf file example 79

cluster mounted file systems 34

clusters

activating disk groups 29, 64

activation modes for shared disk groups 28, 63

benefits 59

cluster-shareable disk groups 27, 62

designating shareable disk groups 27, 62

global connectivity policy 30, 65

limitations of shared disk groups 30, 67

local connectivity policy 30, 66

maximum number of nodes in 60

nodes 25, 60

private disk groups 27, 62

private networks 25, 61

protection against simultaneous writes 28, 63

resolving disk status in 30, 65

shared disk groups 27, 62

shared objects 63

cluster-shareable disk groups in clusters 27, 62

commands

cfscluster 36, 73

cfsdgadm 36, 73

cfsmntadm 36, 73

configuration files

CFSTypes.cf 79

CVMTypes.cf 78

main.cf 76

modifying 71

types.cf 70

connectivity policies

global 30, 65

local 30, 66

coordinator disks
definition of 44

creating resource and service groups 74

CVM

agents 69

cluster functionality of VxVM 59

CVM overview 34

CVMCluster agent 84

C

96
CVMQlogckd agent 84

CVMTypes.cf file 78

CVMTypes.cf file example 78

CVMVolDg agent 86

D€
dependencies of resource and service groups 72

disable failure policy 66

disk groups

activation in clusters 29, 64

cluster-shareable 27, 62

defaults file for shared 29, 64

designating as shareable 27, 62

failure policy 66

global connectivity policy for shared 30, 65

local connectivity policy for shared 30, 66

private in clusters 27, 62

shared in clusters 27, 62

disks, resolving status in clusters 30, 65

E€
established 10

exclusive-write mode 28, 63

exclusivewrite mode 28

F€
failover 59, 60

failure policies 66

file systems

CFSMount agent monitoring 79

fsclustadm

how to determine a cluster file system

primary 35, 38

how to set a cluster file system primary 35

fstab file, using with CFS 38

fstyp, using to determine the disk layout version 10

G€
GAB description 15, 33

gabtab file description 15, 33

GLM description 17

GUI

Cluster Manager 39

VEA 39

H€
how to determine a cluster file system primary 38

how to determine a CVM master node 38

how to determine the disk layout version 10

I€
I/O fencing

definition of 43

disabling 51

scenarios for 51

K€
keys

registration keys, formatting of 50

L€
leave failure policy 66

LLT description 16, 33

llttab file description 16, 33

load balancing 60

LUNs, using for coordinator disks 45

M€
main.cf file

example 76

managing resource and service groups 71

master node 26, 62

modifying agents 71

N€
network partition 25, 61

nodes

in clusters 25, 60

maximum number in a cluster 60

NTP, network time protocol daemon 21, 37

O€
off-host processing 59

P€
primaryship, setting with fsclustadm 38

private disk groups in clusters 27, 62

private networks in clusters 25, 61

97
R€
read-only mode 28, 63

readonly mode 28

registration key

displaying with vxfenadm 50

formatting of 50

registrations

key formatting 50

resource and service groups

creating 74

defined 70

dependencies 72

managing 71

S€
service groups 70

shared disk groups

activation modes 28, 63

in clusters 27, 62

limitations of 30, 67

shared-read mode 28, 63

sharedread mode 28

shared-write mode 28, 63

sharedwrite mode 28

slave nodes 26, 62

T€
types.cf file 70

VCS

attributes 70

bundled agents 69

configuration files

CFSTypes.cf 79

main.cf 76

VCS overview 15, 33

vxdctl

how to determine a CVM master node 38

vxfenadm command

options for administrators 50

vxfentab file

created by rc script 47

vxfentsthdw

testing disks 46

VxVM

cluster functionality (CVM) 59

limitations of shared disk groups 30, 67

shared objects in cluster 63

V

98

	Administrator’s Guide
	Contents
	Technical overview
	Storage Foundation Cluster File System architecture
	Storage Foundation Cluster File System design
	Storage Foundation Cluster File System failover
	Group lock manager

	VxFS functionality on Cluster File Systems
	Supported features
	Unsupported features

	Storage Foundation Cluster File System benefits and applications
	Advantages to using Storage Foundation Cluster File System
	When to use Storage Foundation Cluster File System

	Storage Foundation Cluster File System architecture
	The role of component products
	Veritas Cluster Server
	Veritas Volume Manager cluster functionality

	About Storage Foundation Cluster File System
	Storage Foundation Cluster File System and the group lock manager
	Asymmetric mounts
	Parallel I/O
	Storage Foundation Cluster File System namespace
	Storage Foundation Cluster File System backup strategies
	Synchronizing time on Cluster File Systems
	Distributing load on a cluster
	File system tuneables
	Split-brain and jeopardy handling
	Jeopardy state
	Jeopardy handling
	Recovering from jeopardy
	Fencing
	Single network link and reliability
	I/O error handling policy

	About Veritas Volume Manager cluster functionality
	Private and shared disk groups
	Activation modes of shared disk groups
	Connectivity policy of shared disk groups
	Limitations of shared disk groups

	Storage Foundation Cluster File System administration
	Veritas Cluster Server overview
	Veritas Cluster Server messaging-GAB
	Veritas Cluster Server communication-LLT

	Veritas Volume Manger cluster functionality overview
	Storage Foundation Cluster File System overview
	Cluster and shared mounts
	Storage Foundation Cluster File System primary and Storage Foundation Cluster File System secondary
	Asymmetric mounts
	Storage Foundation Cluster File System and Veritas Volume Manager cluster functionality agents

	Storage Foundation Cluster File System administration
	Storage Foundation Cluster File System commands
	Storage Foundation Cluster File System commands
	Time synchronization for Cluster File Systems
	Growing a Storage Foundation Cluster File System
	The fstab file
	Distributing the load on a Cluster
	Using GUIs

	Snapshots on Storage Foundation Cluster File System
	Cluster snapshot characteristics
	Performance considerations
	Creating a snapshot on a Storage Foundation Cluster File System

	Fencing administration
	I/O fencing
	Data disks
	Coordinator Disks
	Before you configure coordinator disks
	Adding or removing coordinator disks
	Verifying fenced configurations
	Disabling I/O fencing
	How I/O fencing works during different events

	Troubleshooting fenced configurations
	Example of a preexisting network partition (Split-Brain)
	Recovering from a Preexisting Network Partition (Split-Brain)

	Veritas Volume Manager cluster functionality administration
	Overview of Cluster Volume Management
	Private and shared disk Groups
	Activation modes of shared disk groups
	Connectivity policy of shared disk groups
	Limitations of shared disk groups

	Agents for Storage Foundation Cluster File System
	List of Storage Foundation Cluster File System Agents
	VCS Cluster Components
	Resources
	Attributes
	Service Groups

	Modifying the Agents and Their Resources
	Resources and Service Groups for File System Cluster Functionality
	Resource and Service Group Dependencies

	Storage Foundation Cluster File System Administrative Interface
	Storage Foundation Cluster File System Resource Management Commands
	Example main.cf File
	Example CVMTypes.cf File
	Example CFSTypes.cf File

	CFSMount Agent
	Type Definition
	Sample Configuration

	CFSfsckd Agent
	Type Definition
	Sample Configuration

	CVMCluster Agent
	Type Definition
	Sample Configuration

	CVMVolDg Agent
	Type Definition
	Sample Configuration

	Glossary
	Index

