
Veritas Storage Foundation
Tuning Guide

AIX, Linux, and Solaris

5.1 Service Pack 1

Veritas Storage Foundation Tuning Guide
The software described in this book is furnished under a license agreement andmay be used
only in accordance with the terms of the agreement.

Product version: 5.1 SP1

Document version: 5.1SP1.0

Legal Notice
Copyright © 2012 Symantec Corporation. All rights reserved.

Symantec, the Symantec logo, Veritas, Veritas Storage Foundation, CommandCentral,
NetBackup, Enterprise Vault, and LiveUpdate are trademarks or registered trademarks of
Symantec corporation or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THEDOCUMENTATIONISPROVIDED"ASIS"ANDALLEXPRESSORIMPLIEDCONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO
BELEGALLYINVALID.SYMANTECCORPORATIONSHALLNOTBELIABLEFORINCIDENTAL
OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED
IN THIS DOCUMENTATION IS SUBJECT TO CHANGE WITHOUT NOTICE.

The Licensed Software andDocumentation are deemed to be commercial computer software
as defined in FAR12.212 and subject to restricted rights as defined in FARSection 52.227-19
"Commercial Computer Software - Restricted Rights" and DFARS 227.7202, "Rights in
Commercial Computer Software or Commercial Computer Software Documentation", as
applicable, and any successor regulations. Any use, modification, reproduction release,
performance, display or disclosure of the Licensed Software andDocumentation by theU.S.
Government shall be solely in accordance with the terms of this Agreement.

Symantec Corporation
350 Ellis Street
Mountain View, CA 94043

http://www.symantec.com

http://www.symantec.com

Technical Support
Symantec Technical Support maintains support centers globally. Technical
Support’s primary role is to respond to specific queries about product features
and functionality. TheTechnical Support group also creates content for our online
Knowledge Base. The Technical Support group works collaboratively with the
other functional areas within Symantec to answer your questions in a timely
fashion. For example, theTechnical Support groupworkswithProductEngineering
and Symantec Security Response to provide alerting services and virus definition
updates.

Symantec’s support offerings include the following:

■ A range of support options that give you the flexibility to select the right
amount of service for any size organization

■ Telephone and/or Web-based support that provides rapid response and
up-to-the-minute information

■ Upgrade assurance that delivers software upgrades

■ Global support purchased on a regional business hours or 24 hours a day, 7
days a week basis

■ Premium service offerings that include Account Management Services

For information about Symantec’s support offerings, you can visit our Web site
at the following URL:

www.symantec.com/business/support/index.jsp

All support services will be delivered in accordance with your support agreement
and the then-current enterprise technical support policy.

Contacting Technical Support
Customers with a current support agreement may access Technical Support
information at the following URL:

www.symantec.com/business/support/contact_techsupp_static.jsp

Before contacting Technical Support, make sure you have satisfied the system
requirements that are listed in your product documentation. Also, you should be
at the computer onwhich theproblemoccurred, in case it is necessary to replicate
the problem.

When you contact Technical Support, please have the following information
available:

■ Product release level

http://www.symantec.com/business/support/index.jsp
http://www.symantec.com/business/support/contact_techsupp_static.jsp

■ Hardware information

■ Available memory, disk space, and NIC information

■ Operating system

■ Version and patch level

■ Network topology

■ Router, gateway, and IP address information

■ Problem description:

■ Error messages and log files

■ Troubleshooting that was performed before contacting Symantec

■ Recent software configuration changes and network changes

Licensing and registration
If yourSymantecproduct requires registrationor a licensekey, access our technical
support Web page at the following URL:

www.symantec.com/business/support/

Customer service
Customer service information is available at the following URL:

www.symantec.com/business/support/

Customer Service is available to assist with non-technical questions, such as the
following types of issues:

■ Questions regarding product licensing or serialization

■ Product registration updates, such as address or name changes

■ General product information (features, language availability, local dealers)

■ Latest information about product updates and upgrades

■ Information about upgrade assurance and support contracts

■ Information about the Symantec Buying Programs

■ Advice about Symantec's technical support options

■ Nontechnical presales questions

■ Issues that are related to CD-ROMs or manuals

http://www.symantec.com/business/support/
http://www.symantec.com/business/support/

Support agreement resources
If youwant to contact Symantec regarding an existing support agreement, please
contact the support agreement administration team for your region as follows:

customercare_apac@symantec.comAsia-Pacific and Japan

semea@symantec.comEurope, Middle-East, and Africa

supportsolutions@symantec.comNorth America and Latin America

Documentation
Your feedback on product documentation is important to us. Send suggestions
for improvements and reports on errors or omissions. Include the title and
document version (located on the second page), and chapter and section titles of
the text on which you are reporting. Send feedback to:

docs@symantec.com

About Symantec Connect
Symantec Connect is the peer-to-peer technical community site for Symantec’s
enterprise customers. Participants can connect and share informationwith other
product users, including creating forum posts, articles, videos, downloads, blogs
and suggesting ideas, as well as interact with Symantec product teams and
Technical Support. Content is rated by the community, and members receive
reward points for their contributions.

http://www.symantec.com/connect/storage-management

mailto:customercare_apac@symantec.com
mailto:semea@symantec.com
mailto:supportsolutions@symantec.com
mailto:docs@symantec.com
http://www.symantec.com/connect/storage-management

Technical Support . 4

Chapter 1 Introduction . 13

About tuning Veritas Storage Foundation 13

Chapter 2 Tuning for transaction-processing workloads 15

About tuning transaction-processing workloads 15
Online transaction-processing workload description 16

Online transaction-processingworkload implications forVeritas
Storage Foundation tuning 17

Best practices for tuning Veritas Storage Foundation in online
transaction-processing environments ... 18
Separate volume and file system for redo logs ... 18
Data volumes striped across multiple spindles ... 19
Mirroring data and redo log volumes 19
Balanced load on the I/O paths 20
Mount options for file systems 21
Monitoring performance 21

General tuning recommendations foranonline transaction-processing
workload 22
TuningVeritas File System for anonline transaction-processing

workload 22
Tuning Veritas Volume Manager for an online

transaction-processing workload 24
Dynamic multi-pathing tuning 24

Tuning recommendations for transaction-processing workloads in
Oracle databases ... 25
Oracle initialization parameters ... 25
Configuring the Veritas Oracle Disk Manager extension 26
Cached Oracle Disk Manager ... 26

Summary of tuning recommendations for online
transaction-processing workload 27

Contents

Chapter 3 Tuning for NFS file-serving workloads . 29

About tuning NFS file-serving workloads 29
Tuning recommendations for NFS file-serving workloads 30

Tuning NFS server daemon threads 30
Tuning the maximum number of NFS server threads on

Solaris ... 30
Tuning the number of NFS server threads on Linux 31
Tuning the maximum number of NFS server threads on

AIX 31
Tuning the main memory caches ... 31
Tuning for mirrored Veritas Volume Manager volumes and

snapshots ... 39

Chapter 4 Tuning reference for Veritas File System . 41

About tuning Veritas File System 42
Monitoring Veritas File System operation 43

Creating file systems 43
Mounting file systems 44
Tuning the intent log 45

Deciding which mode of intent log operation to use 45
Intent log size ... 46
About the datainlog and nodatainlog mount options 48
Placing the intent log on a separate device ... 48

About the Veritas File System caches 49
About the Veritas File System metadata caches ... 49
Tuning the Veritas File System buffer cache 51

Setting the maximum buffer cache size on Solaris ... 51
Setting the maximum buffer cache size on Linux 51
Setting the maximum buffer cache size on AIX 52
When to tune the buffer cache 52
Additional considerations for tuning the buffer cache 53

Tuning the Veritas File System inode cache 54
Setting the maximum inode cache size on Solaris ... 55
Setting the maximum inode cache size on Linux 55
Setting the maximum inode cache size on AIX 55
When to tune the inode cache size ... 56
Additional considerations for tuning the inode cache 57

Tuning the Directory Name Lookup Cache 57
Tuning the Directory Name Lookup Cache on Solaris and

AIX 58
Tuning the Linux dentry cache 58

Page cache monitoring and tuning 59

Contents8

Page cache monitoring and tuning on Solaris ... 60
Page cache monitoring and tuning on Linux 61
Page cache monitoring and tuning on AIX 63

About I/O modes 64
Tuning read-ahead 66

Setting the type of read-ahead 67
Observing read-ahead behavior ... 68
Normal read-ahead on Veritas File System 68
Important tunable parameters for read-ahead size ... 70
Enhanced read-ahead in Veritas File System 71
How to tune read-ahead 71
Summary of read-ahead tuning 72

Read flush-behind in Veritas File System 72
Read flush-behind example ... 73
Tuning read flush-behind 74

Tuning Veritas File System buffered writes ... 74
Synchronous buffered writes ... 75
Delayed buffered writes ... 76
Write throttling 78
Flush-behind for sequential writes ... 78
Throttling I/O flushes ... 80

Tuning Veritas File System buffered I/O on AIX 80
Direct I/O 81

Discovered direct I/O 83
Concurrent I/O 84

About Veritas File System space allocation 85
Choosing the file system block size ... 86

Online resizing and defragmentation 87

Chapter 5 Tuning reference for Veritas Volume Manager 89

About tuning Veritas Volume Manager ... 89
Commonly used VxVM layouts ... 90

Striped layouts ... 91
Mirrored layouts ... 92
Online re-layout ... 93

Dirty Region Logging for mirrored volumes 94
Tuning traditional Dirty Region Logging 95
Tuning Dirty Region Logging in a version 20 DCO volume 96
Sequential Dirty Region Logging 97

Instant snapshots ... 98
Full instant snapshots ... 99

Region size for a full instant snapshot ... 99

9Contents

Configuring a version 20 DCO volume for a full instant
snapshot ... 99

Creation time for full instant snapshot ... 100
Background syncing for full-sized instant snapshots 100
Performance impact of a full instant snapshot on the original

volume 100
Space optimized instant snapshots ... 101
Performance comparison of full-sized and spaced optimized instant

snapshots ... 101
Using a version 20 DCO volume for both Dirty Region Logging and

instant snapshots ... 102

Chapter 6 Tuning reference for Dynamic Multi-Pathing 103

About Dynamic Multi-Pathing in the data center ... 103
About tuning Dynamic Multi-Pathing 104
Dynamic Multi-Pathing device discovery 107
Dynamic Multi-Pathing I/O load balancing 107

Dynamic Multi-Pathing default I/O policy ... 108
Optimizing disk array cache usage with the balanced policy 109
Dynamic Multi-Pathing I/O policies ... 111
Dynamic Multi-Pathing I/O throttling 112

Tuning Dynamic Multi-Pathing error handling 113
Dynamic Multi-Pathing SCSI bypass ... 114
Dynamic Multi-Pathing I/O failure handling 114
Avoiding suspect paths in Dynamic Multi-Pathing 115
Dynamic Multi-Pathing tunable parameters for error

handling 116
Dynamic Multi-Pathing path analysis ... 117

Subpath Failover Group 118
Path analysis on path errors and fabric events ... 118
Overview of path restoration 119
Default path restoration in Dynamic Multi-Pathing 119
Enabling or disabling path restoration 121
Path restoration policy ... 121
Tunable parameters for path restoration 123

Summary of Dynamic Multi-Pathing tuning 126

Appendix A Tuning Virtual Memory for Veritas File System on
AIX . 129

About tuning Virtual Memory for Veritas File System on AIX 129
Advice for tuning Veritas File System on AIX 130

Contents10

Index . 135

11Contents

Contents12

Introduction

This chapter includes the following topics:

■ About tuning Veritas Storage Foundation

About tuning Veritas Storage Foundation
Veritas Storage Foundation (SF) is widely used in a range of environments where
performance plays a critical role. SF has a number of tunable parameters and
configuration options that aremeant to enable customization of the stack for the
particular environment and workload in which SF is used. This guide helps
administrators understand how some of these options affect performance, and
provides guidelines for tuning the options.

1Chapter

Introduction
About tuning Veritas Storage Foundation

14

Tuning for
transaction-processing
workloads

This chapter includes the following topics:

■ About tuning transaction-processing workloads

■ Online transaction-processing workload description

■ Best practices for tuning Veritas Storage Foundation in online
transaction-processing environments

■ General tuning recommendations for an online transaction-processing
workload

■ Tuning recommendations for transaction-processing workloads in Oracle
databases

■ Summary of tuning recommendations for online transaction-processing
workload

About tuning transaction-processing workloads
The Veritas Storage Foundation (SF) stack is frequently used in online
transaction-processing (OLTP) environments as the storage stack on top ofwhich
mission-critical databases run. This chapter discusses some of the features of the
SF stack that are geared toward an OLTP workload, best-practice guidelines for
setting up the SF stack for OLTP, and tuning the stack for this workload.

2Chapter

Online transaction-processing workload description
Anonline transaction-processing (OLTP)workload is aworkload inwhichanumber
of users connected to a database server concurrently generate queries andupdates
to the database. You can find examples of this kind of workload in many places,
such as online travel reservation systems and online banking. AnOLTPworkload
is characterizedbya largenumber of concurrent transactions, eachoftenaccessing
only a small amount of data. Performance in OLTP environments is measured
primarily by throughput, which is the number of transactions completed per
second, with higher throughput being better, and response time, which is the
average time taken to complete transactions, with a lower response time being
better.

The main component of the OLTP stack is the database, which might have a file
systemandvolumemanager below it tomanage the storage. The file system,when
present, provides space in the form of files for the database to store its tables and
other structures. The file system layer is not strictly necessary; databases can
usually run directly on raw volumes or disks. Some of the functionality provided
by file systems, such as space management, cache management, and recovery
management, are also implemented by databases, optimized for database usage.
Hence, when running on top of a file system, the database server might use the
underlying file system functionality in a very limited manner. Most of the
complexity and most of the tuning required in an OLTP stack is typically at the
database layer. Some functionality provided by file systems might be redundant
or might even degrade performance in an OLTP environment. The following are
notable examples of redundant file system functionality:

■ File caching
This is normally an important function provided by file systems that improves
performance for many applications, but it is often redundant in an OLTP
environment because thedatabasemaintains its owncache. Therefore, caching
in the file systemmight addoverheadwithout providing aperformance benefit.

■ File-level locking
This is normally required in a file system to ensure data consistency when
there are concurrent accesses to a file. However, databasesmaintain their own
fine-grained locks to ensure consistency, and the concurrent accesses that
they issue do not need to be serialized. In an OLTP workload, the database
typically generatesmany non-overlapping concurrent reads andwrites to the
same underlying file; the normal file system locking typically serializes these
requests and degrades performance.

The main reason for having a file system in the OLTP stack is that the file system
greatly simplifies the administrator’s task of space and overall management of
the database compared to running the database on top of raw disks or volumes.

Tuning for transaction-processing workloads
Online transaction-processing workload description

16

Ideally, this convenience should not come at the cost of performance and the file
systemshould provide performance close to that of rawdisks andvolumes. Veritas
File System (VxFS) has features specially designed to meet this goal, including
direct I/O to avoid redundant caching in the file system, concurrent I/O to avoid
performance degradation due to locking in the file system, and contiguous
allocation of large files.

I/O requests generated by the database server can generally be divided into the
following categories:

■ Write requests to the recovery log. Any changes to the database data or
metadata are first recorded by the database server in the recovery log, which
is also called the redo log. The recovery log is read during recovery to restore
the database to a consistent state, but is not read during normal operation.
The write requests to the recovery log are sequential and are typically
synchronous. That is, the database server waits for each request to complete
before issuing a new one.

■ Reads to the database tables. Database blocks are read from database tables
into the database memory cache when they are needed by executing
transactions. Since an OLTP environment typically has many concurrent
transactions, each usually accessing a small amount of data, the read access
pattern seen by the file systemand volumemanager is characterized by a high
degreeof concurrency, randomaccesses, andmostly small requests. The service
times for read requests usually have a direct impact on the response time of
transactions as seen by users.

■ Writes to the database tables. Once changes to the databasehave been recorded
in the recovery log, the database server typically holds the modified data in
its cache until the server needs to reuse the cache block for other data, atwhich
point the database flushes the modified blocks from its cache to the database
tables. These writes are mostly asynchronous; the database server initiates
thewrites when the server detects pressure on itsmemory cache, but does not
have to wait for the write to complete. The database usually flushes many
blocks concurrently, and the write access pattern seen by the file system and
volumemanager layer is characterizedbyahighdegreeof concurrency, random
accesses, andmostly small requests. Each of the files used to store the database
tables can receive concurrent, non-overlapping writes.

Online transaction-processing workload implications for Veritas
Storage Foundation tuning

The database layer takes responsibility formuch of the functionality in an online
transaction-processing (OLTP) environment, delegating only a few responsibilities
to the lower layers of the storage stack. Hence, it is likely that much of the tuning

17Tuning for transaction-processing workloads
Online transaction-processing workload description

effort in anOLTP environment centers on the database layer. Anumber of factors
play a role in database performance, including the database schema, query design,
and database server configuration, such as the amount of memory given to the
database for its cache. A detailed discussion of database performance tuning is
beyond the scope of this guide; instead, you should consult the appropriate tuning
guide for the database. This document focuses on a relatively small number of
guidelines for configuring and tuning the Veritas Storage Foundation (SF) stack
to provide good I/O performance for anOLTPworkload. The focus here is the case
where the file system (VxFS, in this case) is part of the OLTP stack.

The following list includes some of the important implications of the OLTP
environment characteristics for SF tuning:

■ When VxFS is part of the OLTP stack, meaning that the database not running
on raw volumes, the preferred mode of access is usually some form of direct
I/O, where caching in the file system is avoided. Many of the VxFS tunable
parameters are relevantwith buffered I/O, but notwith direct I/O. For example,
the tunable parameters related to read-ahead and write-behind do not play a
role with direct I/O.

■ An OLTP environment tends to have a relatively small number of large files;
space allocation happens infrequently and in large chunks. Hence, the OLTP
workloaddoesnot stress theVxFSmetadata caches and the intent log; typically,
these do not require tuning with an OLTP workload.

■ The I/O request stream from the database layer contains a mix of sequential,
synchronous writes for the recovery log and small, random reads and writes
for the database tables. The volume layout, multi-pathing configuration, and
tuning of other features should be based on this access pattern.

Best practices for tuning Veritas Storage Foundation
in online transaction-processing environments

This section outlines some best practice guidelines for using the Veritas Storage
Foundation (SF) stack in online transaction-processing (OLTP) environments.

Separate volume and file system for redo logs
When provisioning the storage for an online transaction-processing (OLTP)
database, you should dedicate a small volume and file system for placing the redo
logs, separate from the volumes and file systems used for storing the rest of the
database structures. This separation allows accesses to the redo log to be tuned
separately from other database accesses and makes it easier to monitor the redo

Tuning for transaction-processing workloads
Best practices for tuning Veritas Storage Foundation in online transaction-processing environments

18

log performance at the file system, volume, and disk level.The ability to tune the
redo log accesses separately is advantageous for the following reasons:

■ The redo log is written to with sequential, synchronous writes; this is very
different from the access pattern for the rest of the database.

■ Having low response times for redo log writes is usuallymore crucial for good
OLTP performance than having low response times for other writes.

The terms redo log volume and data volume are used when the storage layout
conforms to the above recommendation. The termredo log volume is used to refer
to the volume on which the redo logs are placed. The term data volumes is used
for the volumes on which the rest of the database tables are placed.

Data volumes striped across multiple spindles
A data volume should be striped across multiple spindles (physical disks) to
improve performance. Striping canbe done either in the disk arraywhen the LUNs
are created, or in Veritas Volume Manager (VxVM) when the volume is created.
In general, striping can improve performance in two ways:

■ A large read and write request can be serviced by multiple disks in parallel,
making the combined bandwidth of the disks available for a single request.

■ Multiple small read and write requests received concurrently can be serviced
concurrently and independently by different disks, allowingmore requests to
be completed per second.

An online transaction-processing (OLTP) data volume typically has the latter
access pattern: small, concurrent requests to the database tables. A striped layout
for thedatavolumecan reduce response timesand increase throughputbyallowing
I/O requests to be serviced concurrently.

For striped volumes, the stripe unit size parameter determines how much data is
stored contiguously on a disk or column in the stripe beforemoving on to the next
disk or column. For an OLTP workload, a moderate stripe unit size works better
than a very large stripe unit size since the individual request sizes are typically
small. The default stripe unit size for striped VxVM volumes is 64k and is a good
choice for striped data volumes of an OLTP database. At the minimum, the stripe
unit size should be at least twice the database page size to avoidmultiple phsyical
disk I/Os per database I/O request.

Mirroring data and redo log volumes
For critical databases, Symantec recommends that you protect the data by using
a mirrored layout for data and redo log volumes. Mirroring allows continuous
operation and prevents data loss even if there is failure of a single disk.Mirroring

19Tuning for transaction-processing workloads
Best practices for tuning Veritas Storage Foundation in online transaction-processing environments

can be done in the disk array when the LUNs are created or in Veritas Volume
Manager (VxVM) when the volumes are created. For data volumes, the striping
recommendation above canbe combinedwithmirroringbyusing the stripe-mirror
and mirrored stripe layouts of VxVM. This creates volumes that can sustain high
throughput and while also providing protection against failures. For redo log
volumes, simple mirroring is sufficient.

Mirroring in VxVM is usually used with the Dirty Region Logging (DRL) feature,
which reduces the time required to synchronizemirrored volumes after a system
crash. The DRL feature usually adds a small performance overhead due to the
need for tracking dirty regions of the volume that would need synchronization
after a system crash. The sequential DRL feature of VxVM greatly reduces the
overhead of dirty region tracking and its use is appropriate when the volume is
known to have sequential write access pattern. For redo log volumes, sequential
DRL should be used.

In the case of Oracle databases, using the Veritas Oracle Disk Manager (ODM)
extension optimizes accesses to mirrored volumes. The Veritas ODM extension
works with the Oracle Resilvering feature, where the database identifies the
regions of a mirrored volume that need to be resynchronized; the DRL overhead
is eliminated in this case.

Parity-based redundancy schemes such as RAID-5 are sometimes used to provide
protection against disk failures, similar to protection offered by mirroring.
However, the small, random write pattern that is a characteristic of an online
transaction-processing (OLTP) workload is generally not well-suited for
parity-based schemes from a performance standpoint. Hence, Symantec does not
recommend these redundancy schemes for OLTP workloads.

Balanced load on the I/O paths
In a typical online transaction-processing (OLTP) setup, the database server uses
storage exported by a disk array over a storage area network (SAN). The I/O path
in such a setup involvesmany elements, such as anHBA, FC switch andport, array
controller and port, and physical disks.Whenplanning the storage layout, ensure
that the layout allows the I/O load to be spread evenly among the elements on the
I/O path. For example, if the disk array has two controllers, each controller should
have roughly the same I/O load. In the planning phase, you cannot determine the
exact load distribution that will result from a layout; however, simple reasoning
about the layout can help avoid bottlenecks that can require disruptive
reconfigurations later. The load balancing considerations vary depending on the
type of array, such as active-active or active-passive, wheremirroring and striping
are done, such as in a disk array or the host volume manager, and other factors.

Tuning for transaction-processing workloads
Best practices for tuning Veritas Storage Foundation in online transaction-processing environments

20

As a simple example, consider a data volume created as a large Veritas Volume
Manager (VxVM) volume on a single, large LUN on an active-passive disk array.
In this case, since this is an active-passive disk array, the active loadwill completely
be on one controller while the other controller is unused. Instead, if two smaller
LUNs were provisioned on the array, and a striped VxVM volume were created
over these LUNs, the I/O load could be better distributed across the array
controllers by assigning ownership of each LUN to a different controller.

When the database is up and running, a monitoring utility such as iostat can be
used as a simple check to determine whether the load is more or less evenly
distributed among the elements on the I/O path. While a host-based utility such
as iostat does not give information on each element in the I/O path, load
imbalances on the I/O path usually show up as an imbalance in throughput and
response times on active devices seen by iostat. You can get more detailed
information about bottlenecks by using SAN monitoring tools.

Mount options for file systems
When you configure databases other than Oracle to run on Veritas File System
(VxFS), Symantec recommends that you mount the VxFS file systems using the
-o ciomount option,which enables concurrent I/O. The ciomount option causes
direct I/O to beused, thereby avoiding redundant caching of data in the file system,
and avoids lock contention for most concurrent accesses issued by the database
server.

In the case of Oracle databases, Symantec recommends that you use the Veritas
Oracle Disk Manager (ODM) extension. The steps for setting up Oracle databases
with the Veritas ODM extension are outlined in the section on tuning for Oracle
databases. The Veritas ODM extension provides the benefits of concurrent I/O
and more.

Monitoring performance
Performance data collected from monitoring utilities forms the basis of
performance tuning. The statistics gathering framework for tuning the Veritas
Storage Foundation (SF) stack in an online transaction-processing (OLTP)
environment should, at a minimum, include the output of the following utilities:

■ vxfsstat: For VxFS information counters.

■ vxstat: For I/O statistics at the volume layer.

■ vxdmpadm: For I/O statistics at the multi-pathing layer using the vxdmpadm
iostat command.

■ iostat: For I/O statistics at the disk device layer.

21Tuning for transaction-processing workloads
Best practices for tuning Veritas Storage Foundation in online transaction-processing environments

■ vmstat: For memory and CPU utilization and paging statistics.

For routinemonitoring, amonitoring interval of about 30 seconds is recommended
for these utilities. An interval that is too small can result in performance overhead
due to monitoring; an interval that is too large may not give sufficiently detailed
information.While it is critically important to have statistics fromperiods of peak
load, having the same statistics also from periods of low load is often useful in
identifying bottlenecks. For example, when the average I/O service time is seen
to be much higher at peak load compared to low load, this indicates a storage
bottleneck; the I/O service time at peak load by itself is usually insufficient to
draw this conclusion.

Databases also provide performance tuning features and tools that can help
optimize the performance of the storage stack. In some cases, these features can
help in identifying ways to reduce the load on the storage subsystem by tuning
at the database layer, such as by increasing the database cache size. These tuning
features might also help in identifying the specific kind of I/Os, for example redo
log writes, which should be the focus of tuning to improve overall performance.
The recommended interval for statistics collection for these features or tools
might be different from that for the SF or operating system utilities listed above;
consult the documentation of the database for guidance.

An OLTP request stream consists of 3 major groups of requests: redo log writes,
reads on database tables, and writes on database tables. Low service times for
redo log writes is usually themost crucial for good overall performance. Between
reads andwrites on database tables, overall performance is usuallymore sensitive
to read service times. In some cases, database tuning features can help identify
the specific kind of requests that should be targeted for tuning.

General tuning recommendations for an online
transaction-processing workload

Some tuning recommendations for an online transaction-processing (OLTP)
workload are listed in this section. These generally apply to all databases;
exceptions are noted where appropriate.

Tuning Veritas File System for an online transaction-processing
workload

Veritas File System (VxFS) tuning differs greatly based on which I/O mode is in
effect. For an online transaction-processing (OLTP) workload, administrators
typically enable Concurrent I/O or direct I/O explicitly using VxFS mount-time
options; in the case ofOracle databases, administrators typically enable theVeritas

Tuning for transaction-processing workloads
General tuning recommendations for an online transaction-processing workload

22

ODMextension.However, databases can, based ondatabase-specific configuration
options, enable Concurrent I/O or direct I/O for their accesses using
platform-specific mechanisms. Hence, it is incorrect to assume that the default
buffered I/O mode is in effect in VxFS when the administrator has not explicitly
enabled Concurrent I/O, direct I/O, or the Veritas ODM extension.

See “About I/O modes” on page 64.

As a first step to tuning VxFS, you should determine which I/O mode is in effect.
The vxfsstat -v command displays counters that help in identifying the I/O
mode being used:

■ When buffered I/O is being used, each read request causes one of the counters
vxi_read_seqorvxi_read_rand to be incremented.Thevxi_read_seq counter
is incremented when VxFS detects the read as a sequential read, and the
vxi_read_rand counter is incremented for reads classified as random reads.
Similarly, each write request causes one of the counters vxi_write_seq or
vxi_write_rand to be incremented. If the output of the vxfsstat command
shows non-zero values for these counters, the value indicates that buffered
I/O is being used.
One example of when buffered I/O better than direct I/O and concurrent I/O
is with read-only database operations, which benefit from file system
read-aheads and buffering from multiple clients that issue localized read
requests.

■ When direct I/O is being used, each read request increments the counter
vxi_read_dio. Similarly, each write request increments the counter
vxi_write_dio. If these counters are seen to have non-zero values, this
indicates that direct I/O is being used. Concurrent I/O is a form of direct I/O
and these same counters are also incremented in the case Concurrent I/O.

■ The path for read and write requests when the Veritas ODM extension, for
Oracle databases, is being used is slightly different from the default direct I/O
path. Even though reads and writes through the Veritas ODM library do not
cause the caching of data in the page cache, the reads and writes do not cause
the vxi_read_dio and vxi_write_dio counters to get incremented.

See “Tuning recommendations for transaction-processingworkloads inOracle
databases” on page 25.

Note: The counters reported by the vxfsstat command are for the VxFS kernel
module, not for each file system. If you havemultiple VxFS file systemsmounted,
these counters will show aggregate activity for all file systems. This should be
kept in mind when interpreting the data.

23Tuning for transaction-processing workloads
General tuning recommendations for an online transaction-processing workload

Tuning Veritas Volume Manager for an online transaction-processing
workload

For an online transaction-processing (OLTP) workload, the performance impact
of dirty region logging (DRL) and instant snapshots on transaction throughput
and response times is generally low. These features incur performance overhead
mainly for writes. In the case of redo log writes in an OLTPworkload, configuring
sequential DRL, as recommended in the best practice guidelines, keeps DRL
overhead very low. In the case of data volume writes, overhead incurred by these
writes for DRL and instant snapshots have a low impact on overall performance
because of the asynchronous nature of data volume writes. Still, tuning these
features can further reduce their overhead and prove beneficial in some cases.

The following table lists some aspects that can be tuned:

For DRL, the choice of region size is a tradeoff between the
performance of normal writes during normal operation and the time
taken to recover. A larger region size reduces the overhead of DRL,
but can also increase the time it takes to synchronize volumemirrors
after a crash.

Region size for
DRL

Increasing the voldrl_max_drtregs,
voldrl_volumemax_drtregs, and
voldrl_volumemax_drtreg_20parameters increases themaximum
number of dirty regions that may exist at any time. This can increase
performanceduringnormal operation, but can increase recovery time.

Number of dirty
regions allowed in
the DRL

For redo log volumes that aremirrored and configuredwith sequential
DRL, increasing thevoldrl_max_seq_dirtyparameter can further
reduce the overhead of DRL.

Number of dirty
regions in
sequential DRL

Symantec recommends the default region size of 64 KB for an OLTP
workload, since writes are mostly small.

See “Instant snapshots” on page 98.

Region size for
instant snapshots

Increasing the volpagemod_max_memsz parameter increases the
amount of memory used to cache region maps in memory and can
improve performance.

See “Dirty Region Logging for mirrored volumes” on page 94.

Memory for
caching region
maps

Dynamic multi-pathing tuning
The default settings of the dynamic multi-pathing (DMP) tunable parameters
usually work quite well for an online transaction-processing (OLTP) workload.
Symantec recommends the minimumq I/O load balancing policy, which is the

Tuning for transaction-processing workloads
General tuning recommendations for an online transaction-processing workload

24

default, for an OLTP workload for all array types. Other aspects of DMP tuning
are often dependent more on the nature of the storage environment, such as the
total number of paths and the frequency of errors, than on the workload
characteristics.

See “Summary of Dynamic Multi-Pathing tuning” on page 126.

Tuning recommendations for transaction-processing
workloads in Oracle databases

Detailed guidance for tuning Oracle is beyond the scope of this tuning guide. See
the appropriate performance tuning guide for Oracle for detailed information.
This document highlights a few initialization parameters for Oracle that have the
most impact on the SF stack; the rest of the section covers setting up and using
the Veritas Oracle Disk Manager (ODM) extension.

Oracle initialization parameters
The amount ofmemory devoted to anOracle database instance is among themost
important tuning decisions for good online transaction-processing (OLTP)
performance. The memory allocated to the database is used for a number of
internalmemory pools. Oracle supports various options formemorymanagement
through its initialization parameters. In one of the simplest options, an
administrator can choose automated memory management and only specify the
total amount of memory to be used by the database instance, and then Oracle
assigns the memory appropriately to its different pools.

Note:When Veritas File System (VxFS) is accessed using the Veritas Oracle Disk
Manager (ODM) extension, or in the direct I/O or Concurrent I/O mode, caching
of data in the file system is disabled. This allows more aggressive use of memory
for the database cache and generally leads to better performance. However, if too
little memory is configured for the database cache, performance might degrade
compared to using the buffered I/O mode to access the file system. While the
above forms of non-buffered I/O have the potential for better performance than
buffered I/O, properly sizing the database cache is crucial for this to happen.

The nature of I/O to the underlying layers--file system and volumemanager--can
be configured using the initialization parameters disk_asynch_io and
filesystemio_options, according to the guidance provided by Oracle. Common
values for these parameters are disk_asynch_io=true and
filesystemio_options=setall.

25Tuning for transaction-processing workloads
Tuning recommendations for transaction-processing workloads in Oracle databases

Configuring the Veritas Oracle Disk Manager extension
Symantec recommends using the Veritas Oracle Disk Manager (ODM) extension
when using Veritas Storage Foundation (SF) with Oracle databases. The Veritas
ODM extension improves performance for Oracle databases on the SF stack in a
number of ways:

■ it supports asynchronous I/O

■ it supports direct I/O

■ it reduces locking overhead

■ it reduces number of system calls

■ it optimizes file opening and identification

■ it supports contiguous allocation

■ it eliminatesDirtyRegionLogging (DRL) overheadofVeritasVolumeManager
(VxVM) mirroring

These benefits and the steps for configuring the Veritas ODM extension are
explained in the Veritas Storage Foundation guide for Oracle Databases.
ConfiguringVeritasODMrequires replacing the default ODM library in theOracle
distribution with the Veritas ODM library. The Veritas Storage Foundation guide
for Oracle Databases also lists the steps to verify that the Veritas ODM extension
is correctly configured.

Cached Oracle Disk Manager
While Veritas Oracle Disk Manager (ODM) by default does not cache file data in
the file system layer, the Cached ODM feature allows some caching of file data.
With Veritas ODM, the Oracle SGA must be sized large enough, otherwise
performance can suffer. Cached ODM can improve performance in cases where
the Oracle SGA size is limited by other considerations, such as if there is more
than one instance on the same server. To enable Cached ODM, set the tunable
parameter odm_cache_enable=1byusing the vxtunefs commandaftermounting
the Veritas File System (VxFS) file system. The Cached ODM feature can be
configured in two ways:

■ to turn caching on or off on a per-file basis

■ to set caching advisories based on file type and I/O type

See the Veritas Storage Foundation: Storage and Availability Management for
Oracle Databases document.

Tuning for transaction-processing workloads
Tuning recommendations for transaction-processing workloads in Oracle databases

26

Summary of tuning recommendations for online
transaction-processing workload

The following list summarizes the recommendations for databases other than
Oracle:

■ Create a dedicated volume and file system for the database recovery log.

■ Stripe data volumes so that the bandwidthofmultiple physical disks is available
to I/O on the data volumes.

■ Configure sequential dirty region logging (DRL) for the recovery log volume,
if the volume is mirrored in Veritas Volume Manager (VxVM).

■ Plan the storage configuration so as to balance load on the elements on the
I/O path.

■ MountVxFSusing the mount -o cio command to enable Concurrent I/O. This
avoids caching in the file system and reduces locking overhead.

■ Usedatabase configurationparameters to allocate a sufficiently large database
buffer cache. Using Concurrent I/O or direct I/O for VxFS allows memory to
be allocated more aggressively to the database cache. Good performance with
these I/O modes depends on the database cache being tuned appropriately.

■ If the DRL or instant snapshot features of VxVM are being used, tune these
features to reduce performance overhead.

■ Collect performance statistics at peak and low loads. Maintaining low service
times for the recovery logwrites is thehighest priority, followedbymaintaining
low service times for data volume reads.

27Tuning for transaction-processing workloads
Summary of tuning recommendations for online transaction-processing workload

Tuning for transaction-processing workloads
Summary of tuning recommendations for online transaction-processing workload

28

Tuning for NFS file-serving
workloads

This chapter includes the following topics:

■ About tuning NFS file-serving workloads

■ Tuning recommendations for NFS file-serving workloads

About tuning NFS file-serving workloads
One important workload class where the Veritas Storage Foundation (SF) stack
is deployed is NFS file serving. An NFS file server receives NFS client requests
over the network and issues operations on the underlying exported file system.
The NFS client caches files in the client kernel. Read and write requests coming
in to the NFS server are the result of client cache misses in the case of reads and
cache flushes in the case of write. The NFS server process is typically a
multi-threaded kernel daemon with each thread serving one client request at a
time. Each client request that is received over the network is handled by a server
thread that maps the request to operations on the server file system and then
performs the operations. The following list describes some additional
characteristics of an NFS server workload:

■ A large fraction of the requests may not require access to file data; rather,
these requests require access to file metadata. Examples of such metadata
requests are GETATTR, SETATTR, LOOKUP and ACCESS.

■ Read and write requests transfer data to and from clients. Request sizes and
the ratio of reads to writes varies depending on the kind of files being served.

■ Transfer sizes for individual data requests (reads and writes) are limited by
the NFS protocol. The limit is 8k for NFSv2. For NFSv3, the size limit varies,
but is often 32k.

3Chapter

■ Writes are synchronous at the server in NFSv2. That is, the server is required
to flush the written data from file system caches to persistent storage. In
NFSv3, individual writes need not be synchronous, but the client typically
requests the server to flush writes out to disk very soon after the write. NFS
servers do not typically hold a large amount of dirty data in their cache.

Tuning recommendations for NFS file-serving
workloads

The NFS workload characteristics have the following implications for tuning the
Veritas Storage Foundation (SF) stack:

■ Since metadata requests are an important part of the request mix, tuning
Veritas File System (VxFS) metadata caches is beneficial in many cases.
Prominent among these are the VxFS inode cache and the buffer cache.

■ Since read and write requests sizes are limited by the NFS protocol, VxFS
tunable parameters such as discovered_direct_iosz that take effect with
large requests typically are not a factor.

■ Since NFS servers typically do not hold a lot of dirty data in their cache, VxFS
tunable parameters that control write flushing are not expected to play a
significant role.

Tuning NFS server daemon threads
On Solaris, AIX and Linux, the NFS server is a multi-threaded kernel daemon.
When a request is received from an NFS client, a thread in the NFS server is
assigned the request and issues appropriate operations on the underlying file
system. The number of threads that are started in the NFS server can be tuned;
the default values are usually too low for demanding environments. For dedicated
NFS file servers, Symantec recommends that the number of NFS server threads
be set to a high value, such as 128, in environments where a large number of
clients are being served.

Tuning the maximum number of NFS server threads on Solaris
On the Solaris 10 operating system, specify the maximum number of threads in
the NFS server by setting the value of NFSD_SERVERS in the /etc/default/nfs
file. Restart the NFS service for a change to the NFSD_SERVERS parameter to take
effect:

svcadm restart svc:/network/nfs/server

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

30

The actual number of NFS servers started varies based on the demand and can be
observed in the output of commands such as prstat.

Tuning the number of NFS server threads on Linux
On Linux, specify the number of NFS threads by editing the /etc/sysconfig/nfs
file.

To specify the number of NFS threads

1 Edit the /etc/sysconfig/nfs:

vi /etc/sysconfig/nfs

2 Change the RPCNFSDCOUNT= value to thenumber ofNFS threads that youwant.

3 Save the /etc/sysconfig/nfs.

4 Restart the NFS server:

/etc/rc.d/init.d/nfs restart

Tuning the maximum number of NFS server threads on AIX
On AIX 6.1, the number of NFS threads that are started varies dynamically based
on load, but is subject to a maximum. The default value of this limit is usually
high enough that you do not need to tune explicitly.

The nfso command manages NFS tuning parameters. The nfso -h

nfs_max_threads commandgets informationon themaximumnumber of threads
and how AIX handles thread creation. The nfso command can also change the
maximum number of threads if the default limit is not suitable.

Tuning the main memory caches
NFS file-serving can benefit from the tuning of metadata caches, which is where
file and file system metadata are cached, as well as the tuning of the page cache,
which is where file data is cached. NFS file-serving typically results in the heavy
use of the metadata caches. The operating system page cache is also heavily used
during file serving; if the server is dedicated to NFS file-serving, most of the
memory that is not used by kernel structures, including VxFS metadata caches,
typically fill up with file data cached in the page cache.

There are dependencies between the memory caches that must be kept in mind
while tuning them. Since these considerations are somewhat different for each

31Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

operating system, steps for tuningmainmemory caches for a file-servingworkload
are listed separately for Solaris, Linux and AIX.

Tuning memory caches on Solaris
Use the following utilities to monitor the main memory caches for an NFS file
server workload on Solaris:

■ vxfsstat

This utility gives information on the Veritas File System (VxFS) buffer cache,
inode cache, and DNLC (with the -bi option).

■ vmstat

This utility gives information on memory usage and page scanning activity.

The following list provides suggestions for tuning the main memory caches for
an NFS file server workload on Solaris:

■ Increasing the size of the VxFS buffer cache or the VxFS inode cache should
be performed only when vmstat output indicates that there is enough free
memory to accommodate the size increase.

■ Tune the VxFS buffer cache based on the vxfsstat command's output.

See “Tuning the Veritas File System buffer cache” on page 51.
If the current size has not reached the maximum, the buffer cache need not
be tuned. If the current size has reached the maximum and if the hit rate or
recycle age is low, increase the buffer cache size limit. Changing themaximum
size of the buffer cache requires a reboot for the new size to take effect.

■ Tune the VxFS inode cache based on vxfsstat output.

See “Tuning the Veritas File System inode cache” on page 54.
Changing themaximum size of the VxFS inode cache requires a reboot for the
new size to take effect.

■ Tuning the inode cache so that the recycle age is high should also ensure that
the page cache is utilized well. On Solaris 10, for a dedicated NFS file-serving
workload, the vmstat command often shows large values for free memory.
This happens even when most of the memory is being used by the page cache
to cache file data, meaning that the memory is not actually free. This occurs
because of the way that Solaris 10 manages and reports on page cache usage.
See “Page cache monitoring and tuning on Solaris” on page 60.
The free memory reported by the vmstat command includes pages that are
actually free (the freelist) as well as pages that are on the cachelist, which are
pages that contain valid cached file pages. As a result, the actual page cache
usage is somewhat difficult to determine. The breakup of memory usage into

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

32

freelist pages and cachelist pages can be seen using a debugger, such as by
using the following command:

echo "::memstat" | mdb -k

Ideally, most of the memory should be in the cachelist, because this ensures
that memory is being used to cache file pages rather than not being utilized.
Tuning the inode cache appropriately is typically good enough to ensure that
the page cache is also well utilized.

■ Since much of the memory is likely to be in cachelist pages, and since Solaris
easily reclaims thismemorywhen the freelist is depleted, you typically do not
see expensive page scanning for a dedicated NFS file server workload. The sr
field of the vmstat command's output should be close to 0.

Tuning main memory caches on Linux
Use the following information when tuning the main memory caches for an NFS
file server workload on Linux:

■ You need the output from the following monitoring utilities to properly tune
the main memory caches:

■ The vxfsstat command with the -bi option gives information on VxFS
buffer cache and inode cache.

■ The /proc/meminfo command shows overall memory usage.

■ The /proc/zoneinfo command gives memory usage information at the
memory zone level.

■ The vmstat command gives memory and CPU utilization information.

■ The sar commandwith the -B option gives page scanning and reclamation
information.

■ The /proc/slabinfo gives information on kernel slab caches

■ The top command gives CPU utilization of user processes, kernel threads
and daemons.

■ Tune the VxFS buffer cache based on the vxfsstat command's output.

See “Tuning the Veritas File System buffer cache” on page 51.
If the current size has not reached the maximum, the buffer cache need not
be tuned. If the current size has reached the maximum and if the hit rate or
recycle age is low, increase the buffer cache size limit. Changing themaximum
size of the buffer cache requires a reboot or module reload for the new size to
take effect.

33Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

■ Check the vxfsstat command's output to see if the VxFS inode cache needs
to be tuned.
See “Tuning the Veritas File System inode cache” on page 54.
Changing the maximum size of the inode cache requires a reboot or module
reload for the new size to take effect.

■ Check the /proc/slabinfo command's output to see if the operating system's
dentry cache sizematches theVxFS inode cache size. Ideally, the caches should
be about the same size. Under memory pressure, Linux can shrink the dentry
cache in an attempt to reclaim memory, but Linux provides a tunable
parameter, vfs_cache_pressure, to control this behavior

See “Tuning the Linux dentry cache” on page 58.
For an NFS file server workload, this tunable parameter can be set to a value
lower than 100 to favor the reclamation of page cache pages rather than
shrinking the dentry cache.

■ Check memory usage reported by the /proc/meminfo command to see if the
page cache is sized well. If the inode cache is too small, most of the memory
might remain free andhence beunderutilized. Tuning the inode cacheproperly
usually results in a drop in free memory and an increase in memory used for
the page cache.
See “Tuning the Linux dentry cache” on page 58.
On awell-tuned system, you commonly see freememory levels drop low,which
results in page scanning and reclamation activity. You should check that the
page reclamation is happening efficiently. This can be seen directly from the
output of the sar -B command, which gives information on the number of
pages scanned, the number of pages freed, and the efficiency of page scanning.
You should also monitor the CPU utilization of kswapd, the kernel daemon
responsible for page scanning, to see that the utilization is within reasonable
bounds.

The following example output is of tuning a RHEL5 server under an NFS
file-serving workload. The server has 4 dual-core processors and 32GB memory.
The number of NFS server threads was set to 256 prior to this exercise, but other
tunable parameters are at their default setting. The statistics were collected by
starting all the monitoring utilities from a shell script; so the actual command
lines are not shown. With the server under heavy load, the output of cat
/proc/meminfo is show below:

MemTotal: 32958952 kB

MemFree: 16827880 kB

Buffers: 2012 kB

Cached: 9786216 kB

SwapCached: 0 kB

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

34

Active: 5799208 kB

Inactive: 4040608 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 32958952 kB

LowFree: 16827880 kB

SwapTotal: 34996216 kB

SwapFree: 34994740 kB

Dirty: 614656 kB

Writeback: 0 kB

AnonPages: 51448 kB

Mapped: 11732 kB

Slab: 1036272 kB

PageTables: 4420 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 51475692 kB

Committed_AS: 329276 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 392620 kB

VmallocChunk: 34359345639 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

The following output is of the vxfsstat -bi command in the same interval:

13:22:59.336 Sat 25 Sep 2010 01:22:59 PM IST -- delta (30.030 sec sample)

Lookup, DNLC & Directory Cache Statistics

0 maximum entries in dnlc

130048 total lookups 0.00% fast lookup

0 total dnlc lookup 0.00% dnlc hit rate

0 total enter 0.00 hit per enter

0 total dircache setup 0.00 calls per setup

145053 total directory scan 0.00% fast directory scan

inode cache statistics

818978 inodes current 818980 peak 818977 maximum

950026 lookups 70.99% hit rate

0 inodes alloced 0 freed

0 sec recycle age

600 sec free age

35Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

buffer cache statistics

3382872 Kbyte current 6860608 maximum

1779834 lookups 99.99% hit rate

3571 sec recycle age [not limited by maximum]

The VxFS buffer cache size is well below its maximum size. The buffer cache hit
rate and recycle age are seen to be very high. There is no need to tune the buffer
cache in this example. The inode cache, on the other hand, is seen to be under
heavy pressure: the size of the inode cache has reached the maximum possible,
the hit rate is low, and the recycle age is extremely low (0, in fact). The counters
for DNLC are 0 because on Linux, VxFS does not maintain its own DNLC.

From the /proc/meminfo command's output, you see that almost 16 GB memory
is free. This indicates that the inode cache that is too small; the inode cache is
itself under heavy pressure and it is not large enough to allow the page cache to
grow to utilize all of the freememory. The following /proc/meminfo output shows
how the situation changeswhen theVxFS inode cachemaximumsize is increased
drastically to about 2 million:

MemTotal: 32958952 kB

MemFree: 155612 kB

Buffers: 1080 kB

Cached: 23022680 kB

SwapCached: 0 kB

Active: 9177028 kB

Inactive: 13899596 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 32958952 kB

LowFree: 155612 kB

SwapTotal: 34996216 kB

SwapFree: 34994724 kB

Dirty: 622628 kB

Writeback: 0 kB

AnonPages: 51664 kB

Mapped: 11588 kB

Slab: 1994912 kB

PageTables: 4540 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 51475692 kB

Committed_AS: 327848 kB

VmallocTotal: 34359738367 kB

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

36

VmallocUsed: 429556 kB

VmallocChunk: 34359305131 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

The following output is from the vxfsstat -bi command after increasing the
inode cache size:

01:37:16.156 Sat 04 Sep 2010 01:37:16 AM IST -- delta (30.007 sec sample)

Lookup, DNLC & Directory Cache Statistics

0 maximum entries in dnlc

77769 total lookups 0.00% fast lookup

0 total dnlc lookup 0.00% dnlc hit rate

0 total enter 0.00 hit per enter

0 total dircache setup 0.00 calls per setup

93616 total directory scan 0.00% fast directory scan

inode cache statistics

2047144 inodes current 2047444 peak 2047442 maximum

942090 lookups 97.40% hit rate

0 inodes alloced 50 freed

487 sec recycle age [not limited by maximum]

600 sec free age

buffer cache statistics

3363560 Kbyte current 6860608 maximum

1133917 lookups 99.99% hit rate

3586 sec recycle age [not limited by maximum]

As canbe seen, this single changehas altered thememoryutilization dramatically.
As can be seen from the vxfsstat command's output, the inode cache is still at
itsmaximum size, but the recycle age is very high now. The hit rate has improved
to about 97%. The side effect of the inode cache tuning change can be seen in the
output of/proc/meminfo:MemFreehasdropped to150MBand there is an increase
in the amount of cached data. The larger inode cache has allowed the page cache
to grow. With free memory so low, you must check for page reclamation activity.

The following sar -B command's output shows page scanning and reclamation:

pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff

50845.20 96110.23 253.30 0.40 61814.40 22174.93 0.00 22137.43 99.83

37Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

47935.87 96316.37 208.97 0.03 59121.33 20937.60 0.00 20911.40 99.87

48298.27 94385.97 217.40 0.00 58679.20 20908.80 0.00 20882.10 99.87

Theaboveoutput shows thatpages arenowbeing scannedand reclaimed.However,
the efficiency of the scanning is veryhigh (%vmeff, 99%+), so the operating system
is not having difficulty reclaiming pages.

Finally, check that the Linux dentry cache and the VxFS inode cache are at about
the same size. The number of entries in the Linux dentry cache can be seen in the
output of the /proc/slabinfo command:

slabinfo - version: 2.1

name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> :

dentry_cache 1574508 1576206 216 18 1 :

tunables <limit> <batchcount> <sharedfactor> :

tunables 120 60 8 :

slabdata <active_slabs> <num_slabs> <sharedavail>

slabdata 87567 87567 0

The output shows that the number of objects in the Linux dentry cache is much
smaller than the number of inodes in the VxFS inode cache that were seen in the
vxfsstat command's output. This usually is due to the kernel shrinking the dentry
cache under memory pressure. To ensure that the two caches are sized to work
well with each other, the vfs_cache_pressure tunable parameter was set to a
value of 30 to reduce the shrinking of the dentry cache. The following output is
of the /proc/slabinfo command after this change:

slabinfo - version: 2.1

name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> :

dentry_cache 1933662 1971396 216 18 1 :

tunables <limit> <batchcount> <sharedfactor> :

tunables 120 60 8 :

slabdata <active_slabs> <num_slabs> <sharedavail>

slabdata 109522 109522 360

Thenumber of objects in the dentry cache (1.97million) is nowclose to thenumber
of inodes in the inode cache (2.04 million).

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

38

Tuning main memory caches on AIX
Use the following utilities to monitor the main memory caches for an NFS file
server workload on AIX:

■ vxfsstat

This utility gives information on the Veritas File System (VxFS) buffer cache,
inode cache, and DNLC (with the -bi option).

■ vmstat

This utility gives information on memory usage and page scanning activity.

The following list provides suggestions for tuning the main memory caches for
an NFS file server workload on AIX:

■ Tune the VxFS buffer cache based on the vxfsstat command's output.

See “Tuning the Veritas File System buffer cache” on page 51.
If the current size has not reached the maximum, the buffer cache need not
be tuned. If the current size has reached the maximum and if the hit rate or
recycle age is low, increase the buffer cache size limit. Changing themaximum
size of the buffer cache requires a reboot for the new size to take effect.

■ Tune the VxFS inode cache based on vxfsstat output.

See “Tuning the Veritas File System inode cache” on page 54.
If the amount of free memory reported by the vmstat command is very low,
increasing the VxFS inode cache size limit is not recommended since it can
trigger page scanning and reclamation, which can degrade performance. If
the VxFS inode cache is under pressure, but vmstat output shows a large
amount of free memory, you can increase the size limit of the VxFS inode
cache. If the inode cache size limit is increased, monitor the system to ensure
that the tuning change does not cause heavy page scanning and reclamation
activity, as seen in the pages scanned and pages reclaimed fields of vmstat
output.

■ The numperm and numclient fields, which are displayed by the vmstat -v

command, show the memory used to cache file data pages. On a well-tuned
NFS file server, a significant amount of memory should be devoted to caching
file data pages; however, free memory should not be so low that the system is
pushed into a state where page scanning and reclamation overhead becomes
significant.

Tuning for mirrored Veritas Volume Manager volumes and snapshots
An NFS server that has been tuned well, meaning that the number of NFS server
threads has been tuned to a high value, and is under high load can generate
numerous concurrent requests for the Veritas Volume Manager (VxVM) layer

39Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

because of the large number of NFS server threads concurrently issuing I/O
requests. Since these I/Os are for requests from different NFS clients, there may
not be a lot of locality among these concurrent requests. As a result, the NFS
server workload may see higher overhead compared to other workloads in some
of the features provided by VxVM, such as dirty region logging (DRL) and instant
snapshots. The reference section onVxVMtuninghasmore information on tuning
these features to improve performance. This section gives a brief summary of the
tuning considerations as they apply to an NFS workload.

See “About tuning Veritas Volume Manager” on page 89.

When both DRL and instant snapshot functionality are needed for a volume in
VxVM, the same version 20 DCO volume is used to keep track of the DRL dirty
regions and region maps for instant snapshots. However, from a performance
standpoint, the region size considerations for these two features are different.
For anNFSworkload, a largeDRL region size is essential for reducing the negative
performance impact of DRL on NFS server performance. However, very large
region sizes are not optimal for instant snapshots. For anNFSworkload, Symantec
recommends that you do not use these two features of VxVM together. One
alternative is to use mirroring capabilities of disk arrays and use the instant
snapshot feature of VxVM. Another option is to use VxVM mirroring and DRL,
but use other Storage Foundation snapshot features, such as Storage Checkpoints,
that can be used to achieve the same goals as VxVM instant snapshots.

When the DRL feature is used without instant snapshots for an NFS workload,
you should have a large region size for good performance of the NFS server.With
DRL in a version 20 DCO, the region size should be chosen larger than the default
of 64 KB. For traditional DRL, the default regions size is typically large enough
that explicit tuning might not be required.

When you need VxVM instant snapshots, you should use full-sized instant
snapshots over space-optimized instant snapshots (SO snapshots) for an NFS
workload where performance is important. The default region size is generally
appropriate for an NFS workload.

You should tune other parameters, such as voldrl_max_drtregs,
voldrl_volumemax_drtregs, voldrl_volumemax_drtregs_20, and
volpagemod_max_memsz, according to the guidelines in the reference section on
VxVM tuning.

See “About tuning Veritas Volume Manager” on page 89.

Tuning for NFS file-serving workloads
Tuning recommendations for NFS file-serving workloads

40

Tuning reference for Veritas
File System

This chapter includes the following topics:

■ About tuning Veritas File System

■ Creating file systems

■ Mounting file systems

■ Tuning the intent log

■ About the Veritas File System caches

■ About the Veritas File System metadata caches

■ Tuning the Veritas File System buffer cache

■ Tuning the Veritas File System inode cache

■ Tuning the Directory Name Lookup Cache

■ Page cache monitoring and tuning

■ About I/O modes

■ Tuning read-ahead

■ Read flush-behind in Veritas File System

■ Tuning Veritas File System buffered writes

■ Tuning Veritas File System buffered I/O on AIX

■ Direct I/O

4Chapter

■ About Veritas File System space allocation

■ Online resizing and defragmentation

About tuning Veritas File System
Veritas File System (VxFS) is an enterprise-class file system that has provided
robust, reliable, high-performance storage to demanding applications for over 2
decades. A number of characteristics combine to provide robustness and good
performance in VxFS. The following list provides a brief overview of VxFS:

■ When a VxFS file system is created on disk storage using the mkfs command,
VxFS creates a number of structures on the device to keep track of free space,
files created, and blocks allocated to files. The structures created vary with
the layout version; VxFS releases 5.0 through 5.1SP1 use disk layout Version
7 by default, but also support some of the older versions. The intent log, one
of the key structures enabling reliable operation in VxFS, is created on disk at
the time of file system creation.
See “Tuning the intent log” on page 45.

■ The VxFS kernel module implements the file system functionality and must
be loaded before a VxFS file system residing on disk can be mounted and
accessed. When the VxFS module is loaded, the module creates a number of
structures in kernelmemory. Themost important among these structures are
memory caches used by VxFS. In most cases, VxFS maintains its own caches
rather than relying on the file systemcaches provided by the operating system.
VxFS caches are designed to scalewell and provide good performance on large
multiprocessor systems.
See “About the Veritas File System caches” on page 49.

■ When a file system is mounted and accessed, changes to file data and file
system metadata are usually made in the memory caches first and flushed to
disk later. As a result, the on-disk state can be slightly out-of-date with the
latest state of the file system. When a file system is cleanly unmounted, all
changes are written to disk before the file system shuts down, bringing the
on-disk state up-to-date. However, during a crash, not all changes make it to
disk. VxFS uses intent logging to ensure that the key file system structures
can be recovered quickly in the event of a crash.

■ VxFS supports traditional UNIX applications that use the buffered read/write
behavior, and also provides interfaces meant for efficient I/O for databases.
See “Tuning read-ahead” on page 66.
See “Read flush-behind in Veritas File System” on page 72.
See “Tuning Veritas File System buffered writes” on page 74.
See “About I/O modes” on page 64.

Tuning reference for Veritas File System
About tuning Veritas File System

42

■ VxFS uses extent-based allocation to be enable efficient space allocation to
files. It supports online resizing and defragmentation, which allow space
allocation to remain efficient over time.
See “About Veritas File System space allocation” on page 85.

Monitoring Veritas File System operation
Veritas File System (VxFS) maintains a number of counters internally as it
encounters events of interest. These are called VxFS info counters. Examples are
counters that maintain the number of lookups and hits in the VxFS metadata
caches. The vxfsstat utility reports the values of these counters. Examining the
output of vxfsstat can give valuable insight into what tuning needs to be
performed. Use these counters, alongwith operating systemmonitoring utilities,
such as vmstat and iostat, to guide the process of tuning VxFS.

Creating file systems
You create a VxFS file system by using the mkfs command.

For information about the options that are available at the time that you create
the file system, see the mkfs_vxfs(1M) manual page.

These options specify layout parameters for the file system being created. The
following options are particularly relevant from a performance standpoint:

■ File system block size
The block size of a file system is the smallest unit inwhichVeritas File System
(VxFS) allocates space for files in that file system. By default, VxFS chooses
the block size based on the size of the file system being created, but the block
size can be specified explicitly at the time that you create the file system. The
block size cannot be changed after the file systemhas been created. The impact
of block size on performance is typically small in VxFS, since VxFS is an
extent-based file system that allocates space in contiguous regions called
extents, which consist of multiple blocks. The default block size picked by
VxFS based on the size of the file system being created is appropriate formost
systems.

■ Intent log size
The intent log of a file system is an on-disk structure where VxFS records
structural changes to the file systembefore applying the changes to the actual
file system structures. By default, VxFS chooses the intent log size based on
the size of the file system that is being created. The intent log size can be
explicitly specified when creating the file system; it can also be changed after

43Tuning reference for Veritas File System
Creating file systems

the file system has been created. Some workloads result in heavier use of the
intent log and can get better performance with a larger intent log size.
See “Tuning the intent log” on page 45.

Mounting file systems
Veritas File System (VxFS) allows you to specify a number of options with the
mount command that can be used to control some aspects of operation for the file
system being mounted.

For information about the mount options, see the mount_vxfs(1M) manual page
and the Veritas File System Administrator's Guide.

The following options are commonly used to manage performance:

■ Enabling direct I/O
The default mode for handling I/O in VxFS is called buffered I/O, where file
data is cached in the file system data cache. However, for some applications,
performance improves with direct I/O, which is a mode in which caching in
the file system is avoided and data is moved directly between storage devices
and application buffers. VxFSmount options can be used to specify that direct
I/O, rather than the default buffered I/O, should be used for the file system
being mounted. You can use the mincache and convosync mount options to
achieve this; in the most common case, the mount option
mincache=direct,convosync=direct is used to enable direct I/O for a file
system.
See “Direct I/O” on page 81.

■ Enabling Concurrent I/O
The Concurrent I/O mode is similar to direct I/O except that it uses a relaxed
form of locking that improves performance for some databaseworkloads. The
default locking in VxFS provides concurrency control for read and write
requests that complies with the POSIX standard, but limits performance for
some database workloads where the database frequently issues concurrent,
non-overlapping writes to the file system; these writes would be serialized by
the default locking mechanism, although they can be allowed to proceed in
parallel without violating consistency. The Concurrent I/O mode, where the
locking performed by VxFS allows concurrent writes to the same file, can be
enabled with the -o cio mount option.

■ Intent log mode
The log, delaylog and tmplog mount options control how VxFS writes
metadata changes to the intent log. The default mode is delaylog and is
appropriate in most cases.

Tuning reference for Veritas File System
Mounting file systems

44

See “Tuning the intent log” on page 45.

■ Data in intent log
Thedatainlog andnodatainlogmount options affect howsmall, synchronous
writes are handled. With the datainlog mount option, which is the default,
VxFS performs an optimization where it writes data from small, synchronous
writes to the intent log; this optimization is disabled with the nodatainlog
mount option.
See “Synchronous buffered writes” on page 75.

Tuning the intent log
Veritas File System (VxFS) uses intent logging or journaling to enable fast recovery
and better file system integrity. Ahigh-level file systemoperation such as creating
a file can require updates tomultipleVxFS on-diskmetadata structures. A system
crash can result in an inconsistent state for the file system, where some of the
file system metadata structures have been updated to reflect the changes made
by high level operations and other structures have not. On file systems that do
not use intent logging, recovering from a crash involves a complete scan and
verification of themetadata structures, known as a file system consistency check
or fsck, which is a time consuming process. In an intent logging file system, any
changes that are required to on-disk metadata structures as a result of system
calls are first recorded in an intent log, which is an on-disk region written
sequentially. The actual metadata structures are updated only after the changes
have been safely recorded in the intent log. While recovering from a crash, the
file system can examine the intent log to determine which metadata structures
were being updated, complete any partial updates, and recover to a consistent
state. This is much faster than scanning and verifying the entire file system.

In VxFS, a full file system consistency check (full fsck) is needed in some cases,
most commonly when sectors on underlying disk devices might have been
damaged. In most cases, recovering from the intent log is sufficient to ensure
integrity of the file system.

Deciding which mode of intent log operation to use
Veritas File System (VxFS) provides a mount time option to select the mode for
intent log operation. You choose the mode by using the mount -o logmode

command, where logmode is either log, delaylog, or tmplog. The default mode
is delaylog.

With intent logging, the writes to the intent log simply record changes that will
be applied to other on-disk structures; VxFS issues separate writes to update the
actual on-disk structures. For the intent logging mechanism to work, writes to

45Tuning reference for Veritas File System
Tuning the intent log

the intent log should happen before the corresponding writes to the other file
system structures. However, it is not strictly necessary for the intent log writes
to be written out synchronously at the end of the system call that is causing the
changes. The different modes for intent log updates differ in when entries are
written out to the intent log, and hence provide different guarantees regarding
the persistence of effects of system calls.

In VxFS, when the file system is mounted in log mode, the intent log is updated
synchronously at the end of the system calls, ensuring that the effects of system
calls are persistent upon their completion. When the file system is mounted in
delaylog mode, the intent log is written mostly asynchronously and the
persistence of the effects of the system call is not guaranteed upon completion
of the call. In both modes, VxFS is able to recover to a consistent state after a
crash by replaying the intent log.

Thedelaylogmode is generally able to provide better performance sincedelaylog
usually does not require a synchronous write to the intent log as part of system
call. This behavior reduces the completion time of system calls as seen by
applications. VxFS worker threads flush the changes to the intent log
asynchronously within a few seconds, typically within 3 seconds. This behavior
still provides better persistence guarantees than traditional UNIX file systems
where persistence of the effects of system calls can be delayed by as much as 30
seconds. For most applications, the default delaylog mode is the appropriate
mode.

The tmplog mode is only recommended for temporary file systems. The tmplog
mode delays log flushing, as with the delaylog mode. In addition, some other
changes allow this mode to give better performance, but with weaker persistence
guarantees.

Intent log size
Veritas File System (VxFS) uses the on-disk intent log as a circular buffer. VxFS
writes the intent log sequentially until it reaches the end of the disk regionmarked
for the log. At this point, VxFSwraps around and startswriting from the beginning
of the disk regionmarked for the log, overwriting the old intent log entries. Before
old entries in the intent log can be overwritten, the changes to file system
structures corresponding to those entries must have been flushed out to disk.
New writes to the intent log must pause if this flushing is not complete. In most
cases, by the time the log wraps around, VxFS will have flushed out changes
corresponding to the older log entries. However, if the intent log is small and the
workload is metadata-intensive, the log can wrap around frequently and in some
cases force operations to pause.

Tuning reference for Veritas File System
Tuning the intent log

46

The intent log size can be specified during file system creation using the -o
logsize=n option with the mkfs command, where n is the number of file system
blocks to be used for the intent log. The default log size depends on the size of the
file system being created. For small file systems, VxFS allocates less space for the
intent log; for file systems greater than 512 GB, VxFS allocates 256 MB for the
intent log. 256 MB is the maximum size that VxFS allocates for the intent log. If
necessary, intent log size can be changed after the file system has been created.

For information on the minimum, maximum and default intent log size, see the
mkfs_vxfs(1M).

Fromaperformance standpoint, a larger intent log is better because the logwraps
around less frequently. The space required for the intent log might be a concern
when the file system is small; however, the maximum size of the intent log is 256
MB,which is a small amount of storage space by current standards. A larger intent
log might result in a slightly longer recovery time because a larger number of log
entries could need to be replayed during recovery. A larger log size also increases
the memory requirement during recovery, which is roughly twice the intent log
size; again, given the large amount of memory on current systems, the memory
requirement is usually not a concern, even with the maximum intent log size.

For a system in use, the output of the vxfsstat -v command can help in
determining if the intent log space is affecting performance. The following
counters can indicate if performance is affected:

■ vxi_tranleft_asyncflush

■ vxi_tranleft_syncflush

■ vxi_tranleft_delay

■ vxi_tran_retry

■ vxi_bdwrite_loglow

■ vxi_brelse_loglow

VxFS increments these counters whenever low intent log space causes VxFS to
take some action. If these counters are all zero, then intent log space is never an
issue inVxFS operation for yourworkload. This is the ideal case. If these counters
have a high value and if the intent log space is not at its maximum, then increase
the intent log space.

TheVxFS info counters canhelp identifywhen the intent log size allocated during
file system creation is not sufficiently large for your workload. In this case, you
can resize the intent log using the fsadm -o logsize=size command, where size
is the new desired size of the intent log.

See the fsadm_vxfs(1M) manual page.

47Tuning reference for Veritas File System
Tuning the intent log

About the datainlog and nodatainlog mount options
The primary purpose of the Veritas File System (VxFS) intent log is to record
changes to file system metadata; file data is not normally written to the intent
log. However, VxFS does use an optimization where for some small, synchronous
writes, file data iswritten to the intent log synchronously and the actual file blocks
on disk are updated asynchronously.

See “Synchronous buffered writes” on page 75.

The mount -o datainlog option enables this optimization and the mount -o

nodatainlog option disables it. The default is to use the datainlog optimization,
meaning that unless the nodatainlog mount option is explicitly used, VxFS will
write data from some small, synchronous writes to the intent log. For most
workloads, the default datainlog mode performs better than or as well as
nodatainlog. However, as is the case with most optimizations, this is not always
true; for some workloads nodatainlog can perform better.

The default datainlog option can increase the amount of data written to the
intent log; this should be another consideration in deciding intent log size and
placement.

Placing the intent log on a separate device
In Veritas File System (VxFS), you can place the intent log on a separate device
using themulti-volume file system feature. Themulti-volume file system feature
is available when VxFS is used with Veritas Volume Manager (VxVM).

For information about multi-volume file systems, see the Veritas File System
Administrator’s Guide.

You gain the following benefits for placing the intent log on a separate device:

■ The intent log has a sequential access pattern, and placing it on a dedicated
disk avoids the unnecessary disk headmovement thatwould result if it shared
the device with other file system data and metadata.

■ When using VxVM mirroring, sequential dirty region logging (DRL) can be
used to reduce the overhead of DRL.

When the storage for the file system comes from a disk array, placing the intent
log on a separate device might not yield much performance benefit, because the
array write cache would normally hide disk write latencies from the file system.
However, in caseswhere the disk array cache is under heavy pressure, theremight
be some performance gain.

Intent log placement can be specified using the fsadm -o logvol=vol command,
where vol is the volume in the volume set where the intent log is to be placed.

Tuning reference for Veritas File System
Tuning the intent log

48

See the fsadm_vxfs(1M) manual page.

About the Veritas File System caches
Veritas File System (VxFS), as with most file systems, uses main memory caches
to improve performance by reducing accesses to storage devices. Some of the
important caches used by VxFS are as follows:

On Solaris, Linux, and AIX, VxFS file data pages are cached in the
operating systempage cache that is integratedwith the virtualmemory
management systemof the operating system.Thepage cache is typically
shared by the different file systems running on the machine. For
example, on a Solaris server, the page cache is used to store file data
pages for all VxFS file systems as well as all UFS file systems mounted
on the server.

page cache

These are metadata caches that VxFS maintains on its own; they are
distinct from similar metadata caches maintained by the operating
system or other file system types on the same system. These VxFS
metadata caches are shared by all VxFS file systems that are mounted
on the system. For example, all VxFS file systemsmounted on a Solaris
server share the same VxFS buffer cache; however, this buffer cache is
not shared with any UFS file systems that are mounted on the server.

buffer cache and
inode cache

On Solaris andAIX, VxFSmaintains a separate Directory Name Lookup
Cache (DNLC) of its own to speed up filename lookups in directories;
theVxFSDNLC is sharedby all VxFS file systemsmountedon the system
and is not shared with other file system types.

On Linux, VxFS shares the operating system's directory cache--the
dentry cache--with other file systems.

Directory Name
Lookup Cache

Since all of these caches must divide up a finite amount of main memory among
themselves, tuning one cache can have implications for the others.

About the Veritas File System metadata caches
Veritas File System (VxFS) maintains the following private metadata caches: the
buffer cache, the inode cache, and, on Solaris andAIX, theDirectoryNameLookup
Cache (DNLC). These caches share the following characteristics:

■ An important parameter governing the operation of the cache is itsmaximum
size. Themaximumsize of the cache canbe specifiedusing a tunable parameter.
If the size is not specified using the tunable parameter, VxFS decides the
maximum size of the cache based on the total amount of main memory on the

49Tuning reference for Veritas File System
About the Veritas File System caches

system. The maximum size is decided at VxFS module initialization, typically
at boot time.

■ Actual entries in the cache are created and freed based on demand. Under
heavy usage, VxFS grows the cache until the cache reaches themaximum size
that was decided at initialization. Once that limit is reached, more memory is
not allocated for the cache; instead, old buffers are reused after evicting existing
entities. This dynamic allocation of memory for cache entries means that the
actual memory used by the cache might be much less than the maximum. The
actual andmaximumsizes for the cache can be seenusing the vxfsstatutility.
Observing vxfsstat output at regular intervals over a period of time while
the system is in use gives a clear picture of howmuch theworkload is stressing
the cache.

■ In many cases, no explicit tuning of the cache may be required. Since VxFS,
by default, chooses the size limit for its metadata caches based on the amount
of memory on the system, high-end systems automatically get larger caches.
However, since the appropriate size for the cache also depends on the nature
of the workload, in some cases tuning is required.

■ Most commonly, the tuning that is required involves increasing themaximum
size of the cachewhen the cache is consistently at itsmaximumsize andunder
pressure. Under these conditions, after the maximum size is increased, the
actual size of the cache also usually increases. The tradeoff here is that the
cache will be more effective, but there will be a reduction in the free memory
available on the system that may affect other aspects of system operation.

■ In some cases, usually on systemswith amemory bottleneck, an administrator
might want to reduce the memory allocated to a VxFS metadata cache. In this
case, the administrator can set the maximum size of the cache to a value less
than the actual size of the cache as seen from vxfsstat output. This reduces
the effectiveness of the cache and should only be done if you expect that the
memory freedwill benefit overall operation of the systemby allowing another
cache to grow or by making the memory available to applications.

The vxfsstat utility with the -bi option prints relevant statistics for all VxFS
metadata caches. Typically, this is combined with the -t option of vxfsstat to
get statistics at regular intervals while the system is in peak use. For example:

vxfsstat -bi -t 30 /mount1

The first set of values in this case is the absolute sample representing stats since
the last reboot; the remaining samples give relevant information that can be used
to analyze the cache usage during the period of observation. Usually, it is more
convenient to use the -v option of vxfsstat instead of the -bi option; this gives

Tuning reference for Veritas File System
About the Veritas File System metadata caches

50

all of the event counters that VxFS maintains, not just stats for the metadata
caches.

See the vxfsstat(1M) manual page.

Tuning the Veritas File System buffer cache
The buffer cache is the lowest-levelmetadata cache inVeritas File System (VxFS).
Disk blocks containing file system metadata are read and written through the
buffer cache; other higher-level VxFS metadata caches, such as the inode cache,
also read from and write to the buffer cache rather than issuing disk I/O directly.
Tuning the buffer cache can be very effective in improving performance for some
workloads by reducing metadata-related disk I/O.

For tuning the buffer cache, it is important to know the maximum size and the
current size of the buffer cache. The following fields in the vxfsstat -v output
give this information:

Gives the maximum size of the buffer cache. If you have
explicitly specified the value for themaximumsize of the buffer
cache, then this counter should be the close to that value in
most cases. There are some sanity checks performed by VxFS
based onwhich itmight adjust or ignore the value you specified.

vxi_bcache_maxkbyte

Gives the current size of the buffer cache. This can be less than
or equal to vxi_bcache_maxkbyte.

vxi_bcache_curkbyte

Setting the maximum buffer cache size on Solaris
The tunable parameter vx_bc_bufhwm is used to specify the maximum size of the
buffer cache on Solaris. The value of this parameter is interpreted as the desired
maximum size of the buffer cache in kilobytes. For example, to set the maximum
size of the buffer cache to 2 GB (2*1024*1024 kilobytes), add the following line in
the /etc/system file:

set vxfs:vx_bc_bufhwm= 2097152

This value takes effect after the next system reboot.

Setting the maximum buffer cache size on Linux
The VxFS module parameter vxfs_mbuf is used to specify the maximum size of
the buffer cache onLinux. The value of this parameter is interpreted as the desired

51Tuning reference for Veritas File System
Tuning the Veritas File System buffer cache

maximum size of the buffer cache in bytes. For example, to set themaximum size
of the buffer cache to 2GB, add the following line in the /etc/modprobe.conf file:

options vxfs vxfs_mbuf= 2147483648

This value takes effect after the next system reboot or after theVeritas File System
(VxFS) module is unloaded and reloaded using the modprobe command.

Setting the maximum buffer cache size on AIX
The tunable parameter vx_bc_bufhwm is used to specify the maximum size of the
buffer cache on AIX. The value of this parameter is interpreted as the desired
maximum size of the buffer cache in kilobytes. For example, to set the maximum
size of the buffer cache to 2 GB (2*1024*1024 kilobytes), add the following line in
the /etc/vx/vxfssystem file:

vx_bc_bufhwm 2097152

This value takes effect after the next system reboot or when the VxFS kernel
extension is reloaded.

When to tune the buffer cache
The output of the vxfsstat command can give insight into whether the buffer
cache tuning for your setup and workload is likely to be beneficial. Look for the
following counters, which are output when you use the vxfsstat command with
the -v option:

The current size of the buffer cache in kilobytes.vxi_bcache_curkbyte

Themaximumsize in kilobytes towhich the buffer cache can
grow.

vxi_bcache_maxkbyte

The average number of seconds that a buffer in the buffer
cache remains free before it is reused to store a different disk
block.

vxi_bcache_recycleage

The number of lookups to the buffer cache.vxi_bc_lookups

The number of lookups to the buffer cache that found the
block in the cache. vxi_bc_hits*100/vxi_bc_lookups gives the
buffer cache hit rate as a percentage.

vxi_bc_hits

The current and maximum buffer cache size, hit rate, and recycle age are also
printed in more readable form with the -b option of vxfsstat.

Tuning reference for Veritas File System
Tuning the Veritas File System buffer cache

52

Ideally, the buffer cache hit rate should be in the high 90s and the recycle age
should be high. You will commonly see a 99% hit rate or more in the case of the
buffer cache, and a recycle age ofmore than500. The recycle age is a good indicator
of the pressure on the buffer cache. If the value is less than 100, it indicates that
buffers in the buffer cache are being reclaimed too frequently.

Themost frequent tuning that is required for the buffer cache involves increasing
its maximum size. If the current size of the buffer cache is equal to themaximum
size, meaning that the buffer cache has grown to its maximum size, and recycle
age is very small, then you should consider increasing the maximum size of the
buffer cache. In this scenario, when you increase the maximum size of the buffer
cache, you are likely to see the size of the buffer cache (vxi_bcache_curkbyte),
the buffer cachehit rate, and recycle age goup. This reduces the disk I/Opertaining
tometadata. The performance benefit from this varies; on systemswhere storage
is the bottleneck, there can be a good gain in performance. However, increasing
the buffer cache size reduces the freememory available in the system. Depending
on the nature of the workload and pressure on the memory, this can cause
problems in the form of additional paging or swapping to disk.

The need to tune down the maximum size of the buffer cache arises less often. In
cases where the size of the buffer cache is consistently less than the maximum,
there is no real incentive to reduce themaximumsize of the buffer cache tomatch
actual usage. However, there might be scenarios--usually on systems with a
memory bottleneck--wherememory needs to be carefully apportioned among the
variousmainmemory caches, and shrinking the buffer cache to favor some other
cache may be beneficial. For example, consider a scenario where the inode cache
and the buffer cache are both at their maximum size and the observed statistics
suggest that increasing inode cache size is more crucial. An administrator can
decide to tune the VxFS system by reducing the maximum buffer cache size and
increasing the maximum inode cache size.

Additional considerations for tuning the buffer cache
When the buffer cache size is increased, the primary effect is reducing the disk
I/Opertaining tometadata.On systemswhere storage bandwidth is the bottleneck,
this can result in improved performance. Increasing the buffer cache size also
reduces the free memory available in the system. In particular, increasing the
buffer cache size reduces the effective memory available to the operating system
page cache. In systems with a memory bottleneck, this can cause problems in the
form of additional paging or swapping to disk.

53Tuning reference for Veritas File System
Tuning the Veritas File System buffer cache

Tuning the Veritas File System inode cache
The Veritas File System (VxFS) inode cache is a metadata cache dedicated to
storing file inodes. The inode for a file in VxFS, and in most UNIX file systems,
stores a collection ofmetadata for the file, including access rights, location of the
file blocks on disk, and access and modification times. In VxFS, before any
operation can be performed on a file, the inode for the file must be brought into
the inode cache if it is not already present there. Inodes are stored persistently
on disk, with each inode commonly occupying 256 bytes on disk. The inode size
can be chosen to be 512 bytes at the time that you created the file system. The
main fields of an inode on disk are access rights, access and modification
timestamps, and an index of the block layout for the file. When an inode is read
into the inode cache, a number of fields are added to the ones that are present in
the disk inode. These include pointers to cached pages for the file and various
locks to synchronize accesses. An in-core inode--an inode residing in the inode
cache--is significantly larger than an on-disk inode; the actual size varies with
the operating system, but is typically around a kilobyte.

The inode cache conceptually sits on top of the buffer cache. When an inode for
a file is needed and is not present in the inode cache, a block containing that inode
is first read from disk into the buffer cache, if the inode is not already present in
the buffer cache. This brings all disk inodes in that disk block into the buffer
cache. Inode metadata is typically read in 8 KB chunks. The inode that is needed
is copied into the inode cache with the in-core fields added. Thus, an inode can
simultaneously exist in in-core form in the inode cache and in on-disk form in the
buffer cache. The other combinations are also possible: an inode can exist only
in the inode cache, only in the buffer cache as a disk inode, or in neither. As a
result, properly tuning the buffer cache can also benefit inode cache operation
by eliminating disk reads for inodes.

Tuning the inode cache is important evenwhen the buffer cachehas beenproperly
tuned. When an inode needs to be brought into the inode cache, another inode
that is currently not in use might need to be evicted. The eviction can require
some processing to be performed, such as invalidating any file data pages for the
inode that are cached in the page cache. Also, some information that VxFS has
about the file, such as sequential read/write patterns on the file, are lost in the
eviction and are not available when the file is accessed again. Tuning the inode
cache properly can help reduce inefficiencies resulting from these factors.

As in the case of the buffer cache, the size of the inode cache varies because VxFS
grows and shrinks the cache based on demand. For tuning the inode cache, it is
important to know the actual size and maximum size of the inode cache. There
are 3 counters in the vxfsstat -v output related to inode cache size that are
relevant when tuning the inode cache:

Tuning reference for Veritas File System
Tuning the Veritas File System inode cache

54

The maximum size of the inode cache. If you have explicitly
specified the inode cache size, this counter should be close
to that value inmost cases.VxFSperforms somesanity checks
that it uses to determinewhether to adjust or ignore the value
that you specified.

vxi_icache_maxino

The current size of the inode cache.vxi_icache_curino

The maximum size seen for the inode cache since the last
reboot.

vxi_icache_peakino

On Solaris, Linux and AIX, the tunable parameter vxfs_ninode is used to specify
the maximum size of the VxFS inode cache. The value of this parameter is
interpreted as the maximum number of inodes allowed in the inode cache. The
procedure for setting this tunable parameter is different on eachoperating system.

Setting the maximum inode cache size on Solaris
To set the maximum number of inodes in the inode cache to 1 million on Solaris,
add the following line in the file /etc/system:

set vxfs:vxfs_ninode=1000000

This value takes effect after the next system reboot. Each inode occupies more
than one kilobyte in memory, so the actual memory required by an inode cache
of the above size is more than one gigabyte.

Setting the maximum inode cache size on Linux
To set the maximum number of inodes in the inode cache to 1 million on Linux,
add the following line in the file /etc/modprobe.conf:

options vxfs vxfs_ninode=1000000

This value takes effect after the next system reboot or after the VxFS module is
reloaded. Each inode occupies more than one kilobyte in memory, so the actual
memory required by an inode cache of the above size is more than one gigabyte.

Setting the maximum inode cache size on AIX
To set the maximum number of inodes in the inode cache to 1 million on Linux,
add the following line in the file /etc/vx/vxfssystem:

vxfs_ninode 1000000

55Tuning reference for Veritas File System
Tuning the Veritas File System inode cache

This value takes effect after the next system reboot or after the VxFS kernel
extension is reloaded. Each inode occupies more than one kilobyte in memory, so
the actual memory required by an inode cache of the above size is more than one
gigabyte.

When to tune the inode cache size
The output of vxfsstat can give insight into whether inode cache tuning is likely
to be beneficial for your setup and workload. Look for the following counters in
the vxfsstat -v command's output:

The current size of the inode cache (the number of inodes
in the cache).

vxi_icache_curino

The maximum size of the inode cache.vxi_icache_maxino

The average number of seconds that an inode remains
unused before it is reused to store a different inode.

vxi_icache_recycleage

The number of lookups in the inode cache.vxi_iget

Thenumber of times a lookup found the inode in the inode
cache. vxi_iget_found*100/vxi_iget gives the inode cache
hit rate as a percentage.

vxi_iget_found

The current inode cache size,maximum inode cache size, hit rate, and recycle age
are also printed in more readable form with the -i option of the vxfsstat
command.

Ideally, the inode cache hit rate should be in the high 90s and the recycle age value
should be high. If the recycle age is low (less than 100), it indicates that there is
pressure on the inode cache, meaning that inodes are getting evicted very
frequently.

Themost frequent tuning that is required for the inode cache involves increasing
its maximum size. If the size of the inode cache is equal to the maximum size and
the recycle age is small, you should consider increasing the maximum size of the
inode cache. When the maximum inode cache size is increased in this scenario,
the actual size of the inode cache is also likely to increase (possibly to the new
maximum); the hit rate and recycle age are also likely to go up. In effect, inodes
will be evicted less often from the inode cache and disk inodeswill need to be read
in less often from the buffer cache. The processing overhead that this eliminates
can result in significant gains in performance, especially in cases where the CPU
usage is high. Improved hit rate in the inode cache will also reduce pressure on
the buffer cache. The downside to increasing the inode cache size is that there

Tuning reference for Veritas File System
Tuning the Veritas File System inode cache

56

will be a reduction in the freememoryon the system,which can causeperformance
problems in some cases.

The need to tune down themaximumsize of the inode cache arises less often. The
inode cache is an importantmetadata cache for VxFS operation and inmost cases
itmakes sense to tune itwell. But in some cases, usually on systemswith amemory
bottleneck, the size of the inode cache may need to be reduced to make memory
available to another cache or to applications. Reducing the inode cache size will
involve setting the value of the tunable parameter vxfs_ninode to a value less
than the observed size of the inode cache.

Additional considerations for tuning the inode cache
When a file has its inode cached in the inode cache, it can have data cached in the
page cache. Hence, when the number of inodes in the inode cache increases, there
might be an increase in the total amount of file data that is cached. As a result,
an increase in the inode cache sizemay result in a big drop in freememory on the
system--this is partly because the inode cache is using more memory, and partly
because more file data is being cached. In many cases, the drop in free memory
due to an expanding page cache is not a problem, because memory that was free
is being put to use and the OS is usually able to efficiently reclaim memory when
it needs to. However, depending on how the file system, other kernelmodules and
applications are usingmemory, theremight be situationswhere theOS is not able
to efficiently reclaim memory for new requests, thus leading to performance
problems. The overall memory usage on the system, as given by a utility such as
vmstat, and page reclamation activity should be taken into account before and
after tuning the inode cache.

Tuning the Directory Name Lookup Cache
The Directory Name Lookup Cache (DNLC) is a metadata cache used to speed up
filename lookups. A lookup operation takes a directory inode and a filename and
tries to get the inode for the file, if the filename exists. The lookup operation is
one of the most frequent operations in a file system, and a dedicated cache can
give significant performance overall benefits. The DNLC caches both filenames
that have been found in a directory (positive entries) and filenames that have
been confirmed not to exist in the directory (negative entries). DNLC operation
is generally closely tied to inode cache operation because the positive entries in
the DNLC link to the inode cache.

57Tuning reference for Veritas File System
Tuning the Directory Name Lookup Cache

Tuning the Directory Name Lookup Cache on Solaris and AIX
OnSolaris andAIX, Veritas File System (VxFS)maintains its ownDirectoryName
Lookup Cache (DNLC) to improve the performance of lookup operations. All VxFS
file systems mounted on a system share the same DNLC, which is distinct from
the DNLCmaintained by other file system types on the system, such as the native
file systems. Since the DNLC and inode cache operation are closely linked, VxFS
uses a single tunable parameter to control the maximum size of both the DNLC
and inode cache. The vxfs_ninode tunable parameter that determines the
maximum number of entries in the inode cache also determines the maximum
size of theDNLC.Typically, sizing theVxFS inode cache according to the guidelines
in the previous section is sufficient to ensure that the DNLC is also sized
appropriately.

Tuning the Linux dentry cache
On Linux, VxFS does not maintain its private DNLC; instead, VxFS shares the
Linux dentry cache with other file systems. The dentry cache is registered as a
slab cache in Linux and is resized dynamically by the Linux kernel based on
demand. When there is demand for more entries, the dentry cache grows. When
there is memory pressure, Linux automatically shrinks the dentry cache. Since
the dentry cache is controlled by the Linux kernel and the VxFS inode cache size
is tuned separately, care needs to be taken to ensure that the two areworkingwell
together. In many cases, the relative sizes of the two caches can reveal the need
for tuning one or the other. The size of the VxFS inode cache can be seen from
the output of vxfsstat. The size of the Linux dentry cache can be seen in the proc
pseudo file system by using the following command:

cat /proc/slabinfo

One potential problem is that the dentry cache is trying to grow, but the VxFS
inode cache has already reached its size limit. In this case, the VxFS inode cache
could be limiting the dentry cache. If the active file systems are VxFS, the size of
the dentry cache in this case is likely to be about the same as theVxFS inode cache.
In this situation, the output of vxfsstatusually reveals that theVxFS inode cache
is under pressure. Tuning the VxFS inode cache should mitigate the problem.

See “Tuning the Veritas File System inode cache” on page 54.

Another potential problem is that the Linux kernel has shrunk the dentry cache
under memory pressure and as a result the VxFS inode cache is not being used
optimally. If the active file systems are VxFS, the size of the dentry cache in this
case is likely to be less than the VxFS inode cache size. The Linux kernel tunable
parameter vfs_cache_pressure can potentially be used in this case to instruct
the kernel to target the page cache rather than the dentry cache to reclaim

Tuning reference for Veritas File System
Tuning the Directory Name Lookup Cache

58

memory; this will ease the shrinking of the dentry cache. See the Linux kernel
documentation for information on when it is appropriate to change the
vfs_cache_pressure parameter.

Page cache monitoring and tuning
OnSolaris, Linux, andAIX, physicalmemory is divided into fixed size units called
pages and allocated to application processes or the kernel as needed. Allocated
pages fall into one of the following categories:

Allocated to the various kernelmodules for storing their data. This
includesmemory allocated toVxFSmetadata caches like inode and
buffer cache.

kernel memory

Allocated to executing processes to store their runtime stack and
heap.

anonymous pages

Allocated to store data pages of files in the different file systems
that are mounted.

page cache

Pages that are unallocated and readily available to the kernel or
user processes as needed.

free memory

Thepages in thepage cache are brought in and flushedout by interactions between
the kernel Virtual Memory Management subsystem and the file system modules,
such as Veritas File System (VxFS). The page cache can expand to use available
memory when file data is being heavily accessed, and can shrink under memory
pressurewhen the operating system is low on freememory. This approach allows
flexible and dynamic caching of file data.

When the memory that is readily available for new allocations drops below some
threshold, these operating systems initiate page scanning and reclamation. The
reclamation typically targets anonymous pages and page cache for pages that
have not been recently used and frees them. Page scanning and reclamation can
sometimes result in performance degradation, and operating systems typically
provide a number of tunable parameters to control which pages are targeted and
when.

Effective tuning ofVxFS also requires someawareness of the interactions between
the memory management of the operating system and the VxFS tuning changes.

See the tuning guidelines of the operating system for more detailed information
about operating system page cache management. The tuning recommendations
might vary depending on the release of the operating system.

59Tuning reference for Veritas File System
Page cache monitoring and tuning

Page cache monitoring and tuning on Solaris
On Solaris 10, there are two structures that are important in understanding page
cache operation: the segmap cache and the cachelist. The segmap cache contains
file data pages that have been recently accessed using read/write system calls.
The segmap cache has a size limit that is decided at startup; when it is full, older
file pages get moved out of the segmap cache into the cachelist to make room for
newly accessed pages. The size of the cachelist is not pre-determined; it can
potentially use up all of the free memory on the system. The segmap cache
functions as the part of the page cache that is bounded in size, but is somewhat
protected in the sense that the pages there are not readily reclaimed. The cachelist
is the part of the page cache that can grow to occupy available memory, but the
kernel can easily reclaim these pages if the need arises, without resorting to page
scanning. This division usually works well: formanyworkloads, Solaris 10 is able
to take advantage of available memory for the page cache without incurring the
overhead of page scanning and reclamation.

Thememory reportedbyutilities suchasvmstatas freememory is the combination
of thememory in free pages (called the freelist) and thememory in cachelist pages.
This memory can also be seen in the output of the kstat -m unix -n

system_pages command as the freemem field. Solaris initiates page scanning and
reclamation when freemem drops below a threshold.

The Solaris 10 tunable parameter segmap_percent is used to specify the size limit
of the segmap cache. The tunable parameter lotsfree is used to specify the initial
threshold for page scanning; when freemem (free + cachelist pages) drops below
lotsfree, the operating system starts page scanning to reclaim pages. There are
a few other parameters that specify thresholds related to intensity of page
scanning; these can be found in the documentation on Solaris 10 tuning.

In most cases, the default values of the Solaris 10 tunable parameters for page
cache operation work well. Rather than change the values of these parameters,
administrators aremore likely to have to interpret thememory state of the system
properly for making tuning decisions, such as whether it is appropriate to tune a
VxFS metadata cache given the memory usage on the system. In many cases, the
output of vmstat has sufficient information for making such tuning decisions;
the amount of free memory and the paging statistics reported by vmstat are
particularly useful in understanding the state of the system. In some cases though,
amoredetailedpicture ofmemoryusageon the systemmaybe required formaking
tuning decisions. For example, it might help to knowhowmuch of freemem is free
and how much is in cachelist pages. One way to get this information is with the
::memstat command in the mdb debugger.

Tuning reference for Veritas File System
Page cache monitoring and tuning

60

Page cache monitoring and tuning on Linux
A good picture of memory allocation on a Linux server can be obtained from the
proc pseudo file system. The following output is from an idle RHEL 5 server with
32GB of main memory:

cat /proc/meminfo

MemTotal: 32958952 kB

MemFree: 31535244 kB

Buffers: 207860 kB

Cached: 784748 kB

SwapCached: 0 kB

Active: 636976 kB

Inactive: 427380 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 32958952 kB

LowFree: 31535244 kB

SwapTotal: 34996216 kB

SwapFree: 34996216 kB

Dirty: 116 kB

Writeback: 0 kB

AnonPages: 71660 kB

Mapped: 22680 kB

Slab: 131728 kB

PageTables: 5660 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 51475692 kB

Committed_AS: 363692 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 392620 kB

VmallocChunk: 34359345639 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

The MemFree, Cached, Active and Inactive entries are especially useful in
understanding page cache operation. MemFree shows the amount of memory in
free pages; on this idle server,most of thememory is free.Under a file I/O intensive
load, the page cache sizewill increase asmemorypages are used to cache file data.
This will be seen as an increase in the Cached field of meminfo output and a drop
in MemFree. Pages in the page cache are placed on two LRU lists: the active list

61Tuning reference for Veritas File System
Page cache monitoring and tuning

and the inactive list, which are represented by the Active and Inactive entries
in meminfo output. When the number of free pages drops below a threshold, the
inactive list is scanned by the operating system to generate free pages. The
operating system also refills the inactive list bymoving the least used pages from
the active list to the inactive list.

Thememory picture on the same server on a file I/O intensive workload is shown
below:

MemTotal: 32958952 kB

MemFree: 156076 kB

Buffers: 1092 kB

Cached: 24010608 kB

SwapCached: 0 kB

Active: 9541864 kB

Inactive: 14538184 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 32958952 kB

LowFree: 156076 kB

SwapTotal: 34996216 kB

SwapFree: 34994724 kB

Dirty: 632728 kB

Writeback: 0 kB

AnonPages: 66792 kB

Mapped: 13880 kB

Slab: 1805652 kB

PageTables: 5416 kB

NFS_Unstable: 0 kB

Bounce: 0 kB

CommitLimit: 51475692 kB

Committed_AS: 398112 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 429556 kB

VmallocChunk: 34359308711 kB

HugePages_Total: 0

HugePages_Free: 0

HugePages_Rsvd: 0

Hugepagesize: 2048 kB

In this example output, the MemFree value has dropped drastically and there is a
corresponding increase in Cached memory. The Active and Inactive lists have
also grown in size to accommodate the Cached pages. These fields show that the
page cache has grown in response to file I/O, which is desirable. However, you

Tuning reference for Veritas File System
Page cache monitoring and tuning

62

must also to ensure that the low levels of free memory is not resulting in
degradation due to page scanning and reclamation. When free memory drops to
low levels, such as in the output above, page scanning activity is to be expected.
A good way to check whether the operating system is able to reclaim pages
efficiently is to look at the output of the sar command from the sysstat package.
The output of sar -B at 30 second intervals is shown below for the server under
load:

pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff

48828.27 96497.33 228.33 0.37 61528.53 21715.20 0.00 21686.87 99.87

45856.85 96162.35 218.09 0.00 58152.85 20275.91 0.00 20255.75 99.90

46303.73 93568.30 208.47 0.00 58147.97 20398.93 0.00 20365.60 99.84

The output of sar shows sustained scanning (pgscank/s field) as expected.
However, in this case, the scanning is seen to be very efficient (the %vmeff field),
meaning that the operating system is able to reclaim (pgsteal/s field) almost every
page that it scans.

Another check is to look at theCPUutilization of the kernel daemon kswapd, which
is responsible for scanning pages and reclaiming unused pages.

In those cases where the overhead of page scanning is seen to be high, some of
the Linux virtual memory tunable parameters can be used to improve efficiency.
Manipulating the tunable parameters requires a good understanding of the
workload. A few of the relevant parameters are as follows:

The default value of this parameter is 60. Lower values cause page
cache pages to be reclaimed more eagerly. Higher values cause
anonymous pages to be reclaimed more eagerly.

swappiness

The default value of this parameter is 100. Lower values cause page
cache pages to be targeted for reclamation during memory pressure.
Higher values cause slab caches to be targeted.

vfs_cache_pressure

Page cache monitoring and tuning on AIX
File pages in AIX are cached in memory by the Virtual Memory Manager (VMM)
as permanent storage pages. File pages from VxFS file systems are classified as
client pages; client pages are a subset of permanent storage pages. AIX has a
number of tunable parameters that govern caching of file pages and page
reclamation behavior. The following list contains someof the tunable parameters
that are relevant for VxFS operation:

■ minperm

■ maxperm

63Tuning reference for Veritas File System
Page cache monitoring and tuning

■ maxclient

■ strict_maxclient

■ lru_file_repage

■ page_steal_method

See the AIX documentation for more information on these parameters.

In AIX 6.1 and later, most of these parameters are classified as restricted tunable
parameters that you should change only on the recommendation of IBM support;
restricted parameters are expected not to require tuning in most cases.

The vmstat command can be used to monitor the memory state of the system.
Page reclamation activity can be seen from the pages scanned field and pages

freed field of vmstat output. If these fields these havehigh values, it could indicate
that page reclamation is having a negative impact on performance; in such cases,
generally you should avoid tuning actions that add to memory pressure, such as
increasingVxFS inode cache size limit.With the -v option, vmstat gives the actual
usage of cache for file pages in the form of numperm and numclient values, for
permanent storage pages and client pages, respectively.

Virtual Memory buffer tuning for VxFS on AIX
On AIX, moving data between the page cache and an underlying file system
(paging-in and paging-out of data) is done using paging device tables (PDTs) and
virtual memory buffer structures. When using Veritas File System (VxFS) on
versions of AIX older than AIX 6.1 TL2, the number of PDTs and buffers might
need to be tuned. With AIX 6.1 TL2 and later, buffers are allocated dynamically
as needed and tuning is usually not required.

See “About tuning Virtual Memory for Veritas File System on AIX” on page 129.

About I/O modes
The default I/O mode in Veritas File System (VxFS) and most other file systems
is buffered I/O with delayed writes. For writes in this mode, data is copied to the
file data cache as part of thewrite call, but flushing of the data to disk is generally
delayed to a later time. VxFS uses the operating systempage cache as the file data
cache. For reads, data is read into the file data cache before copying it to the
buffers of the application that issued the read request. By default, file systems
also perform concurrency control, typically in the form of locking, to ensure that
file data is in a consistent state when there are concurrent reads andwrites to the
file. The default I/O mode generally provides good performance for many
applications because of the benefits of caching and because application writes do

Tuning reference for Veritas File System
About I/O modes

64

not incur the latency of disk access. Since data is only written to volatile memory
as part of the write call and not to stable storage, such as disks, the default I/O
mode provides only weak persistence guarantees, but for many applications that
is adequate. Applications that use the default I/O mode can still use fsync and
fdatasync calls to ensure that data has been made persistent at specific points.

Applications that need stronger persistence guarantees can be written to use
synchronous rather than delayed writes. File systems like VxFS that are POSIX
standard compliant allow applications to specify flags (O_SYNC and O_DSYNC)
when a file is opened, to indicate that writes should be synchronous. For
synchronous writes, the file system is required to flush data from the write out
to disk before signaling the write call as complete. I/Os to files opened with the
O_SYNCandO_DSYNC flags are still buffered inVxFS,meaning that data is copied
to the page cache, unless applications or administrators prevent this explicitly.

In addition to the default mode and the synchronous I/O options available in
compliance with the POSIX standard, VxFS allows control over the file system’s
handling of I/Os in the following ways:

■ An application can set cache advisories by issuing ioctls on a file descriptor
using the vxfsio interface. VxFS decides how to handle I/Os issued on a file
descriptor based on the cache advisories that are set on it.

■ An administrator can use the convosync, mincache, and ciomount options to
set I/O handling behavior for a file system at mount-time.

For information about these features of VxFS and options for controlling the
handling of I/Os in VxFS, see the Veritas File System Administrator's Guide.

In practice, these features are most commonly used to enable direct I/O and
Concurrent I/O, which are important alternatives to buffered I/O in VxFS. The
information here is limited to the performance and tuning considerations for
direct I/O and Concurrent I/O, and how these modes can be enabled.

Direct I/O is a mode supported by VxFS and many other file systems where file
data is not cached in the file system, but is moved directly between application
buffers and disk devices. Direct I/O has advantages and disadvantages compared
to buffered I/O: direct I/O avoids the overheads of data copying and cache
management that are incurred with buffered I/O, but it also forgoes the
performance benefits of caching that are available with buffered I/O. Direct I/O
can provide better performance than buffered I/O for some workloads, usually in
cases where there is not much benefit from caching in the file system. Database
workloads often fall in this category, because databasesmaintain their own cache
and caching in the file system is often redundant. Direct I/O can be enabled for
I/Os on a file descriptor by setting the VX_DIRECT cache advisory on that file
descriptor using the vxfsio interface. It can be enabled for a whole file system
using the convosync=direct and mincache=direct mount options. When direct

65Tuning reference for Veritas File System
About I/O modes

I/O has been enabled, and I/Os meet certain alignment constraints, VxFS avoids
copying file data from the I/O into the page cache.

See “Direct I/O” on page 81.

VxFS also has a feature called discovered direct I/O, which applies to large read
and write requests. In discovered direct I/O, requests above a certain size are
handled similarly to direct I/O, that is, data is transferred directly between
application buffers and storage devices without copying to the page cache, even
though direct I/O has not been explicitly enabled.

See “Discovered direct I/O” on page 83.

VxFSalso supports a specialmodeespecially suited for databases calledConcurrent
I/O. This mode is similar to direct I/O in that data is moved directly between
application buffers and disk devices without caching in the file system.
Additionally, Concurrent I/O relaxes the locking that the file system normally
performs: normally, a write locks out other reads and writes to the same file, but
with Concurrent I/O, writes and reads can proceed concurrently. The Concurrent
I/O mode is useful for databases since they often issue non-overlapping writes
concurrently to regions of the same large file; Concurrent I/O improves
performance by allowing these accesses to proceed concurrently, rather than
serializing them at the file system level. Concurrent I/O can be enabled on a file
descriptor by setting the VX_CONCURRENT cache advisory using the vxfsio interface.
Concurrent I/O canbe enabled for awhole file systemusing the ciomount option.

Tuning read-ahead
Read-ahead is a technique that Veritas File System (VxFS) uses to improve
performance when it detects a regular pattern in the way reads are being issued
to a file. In the simplest form of read-ahead, VxFS detects that a file is being read
sequentially and in the background starts issuing read-ahead requests. That is,
VxFS issues reads for portions of the file that have not yet been requested by the
application. These read-ahead requests move data asynchronously from storage
devices to the page cache. Ideally, the application would continue to issue
sequential reads and subsequent reads would find the data in the page cache,
resulting in large performance gains for the application. In themore sophisticated
form of read-ahead, VxFS can detect some complex read patterns, such as strided
reads, and issue appropriate read-ahead requests in the background. Since
read-ahead involves moving data in the background from the storage devices to
the page cache, it applies to the buffered I/O modes and not to direct I/O and
Concurrent I/O.

Read-ahead can result in large gains in performance because accessing data from
memory caches can be orders of magnitude faster than accessing from storage

Tuning reference for Veritas File System
Tuning read-ahead

66

devices. However, read-ahead can also lead to performance problems in some
cases. Some of the potential problems are as follows:

■ Read-ahead cangenerate a flood of read requests to the underlying disk device
queues that slows down I/Os for other applications.

■ Read-ahead can cause the page cache to be filled up with read-ahead data,
causing useful data from other applications to be evicted.

■ If the application does not continue the access pattern that triggered
read-ahead, work done in the read-ahead is wasted.

■ If the application is slow to process the data it is reading, and if there is pressure
on the page cache, some of the file data pages that have been brought in by
read-ahead can get invalidated before they are requested by the application.
Work done in the read-ahead is hence wasted.

VxFS tries to minimize these problems in the way it does read-ahead by adapting
intelligently to conditions. As one example, to prevent a lot of wasted work, VxFS
starts read-ahead in small size units and then increases the size of read-ahead
when the read pattern continues. But, in some cases, you might need to tune
read-ahead behavior manually. VxFS provides a number of tunable parameters
for tuning read-ahead.

The tunable parameters controlling read-ahead in VxFS can be changed on the
fly using the vxtunefs utility. Thismakes it easier to try out different read-ahead
settings to find one that is appropriate for your workload. Also, read-ahead
parameters can be set at a permount point granularity. You can have read-ahead
tuned differently for each VxFS file system that is mounted.

Setting the type of read-ahead
The value of the tunable parameter read_ahead, which is one of the Veritas File
System (VxFS) tunable parameters displayed and set using the vxtunefs utility,
controls the overall nature of read-ahead. The read_ahead parameter can have
the following values:

Disables read-ahead altogether.0

Enables normal read-ahead. In this setting, VxFS issues read-ahead when it detects
simple sequential access pattern. This is the default value.

1

Enables enhanced read-ahead. In this setting, in addition to sequential access patterns,
VxFS looks formore complex access patterns, such as strided reads, backward strided
read, and accesses frommultiple processes or threadswhere each access is sequential.

2

67Tuning reference for Veritas File System
Tuning read-ahead

Observing read-ahead behavior
When a buffered I/O read request is received, Veritas File System (VxFS)
determines whether or not it should trigger read-ahead. VxFS maintains the
following counters, which can be observed in the output of the vxfsstat -v

command, and can be useful in tuning read-ahead:

This gives the number of read requests that were classified as random
reads. These are reads that would not trigger read-ahead activity.

vxi_read_rand

This gives the number of read requests that were not classified as
random reads; these could trigger read-ahead activity. In the case of
normal read-ahead, this counter gives the number of sequential read
requests. In the case of enhanced read-ahead, this counter gives the
number of read requests that VxFS detected as following one of the
many patterns that it looks for in the enhanced mode.

vxi_read_seq

These counters are the cumulative values for all VxFS file systems that are in use
on the given system. When a single VxFS file system is in use, interpreting these
values is straightforward, but in other casesmore analysismight be required. The
values of these counters depend on the workload and also on what type of
read-ahead is in effect. When read-ahead is disabled (tunable parameter
read_ahead=0), the vxi_read_seq counter should also be 0. The values of these
counters can be recorded before and after changing the read_ahead tunable
parameter to see what is the right setting for your workload. Amuch higher ratio
of vxi_read_seq/vxi_read_randwith read_ahead=2 compared to read_ahead=1
indicates that your workload could benefit from enhanced read-ahead.

If the proportion of read requests classified as random requests is high, the other
read-ahead tunable parameters might not have much impact on performance.
The proportion is high if the following formula has a high value:

vxi_read_rand / (vxi_read_seq + vxi_read_rand)

Normal read-ahead on Veritas File System
When the tunable read_ahead parameter is set to 1, Veritas File System (VxFS)
initiates read-ahead when it detects a simple sequential access pattern. Simply
stated, a sequential pattern is one where each read continues where the previous
one finished. VxFS initiates a small amount of read-ahead when it first detects
sequential access, and increases the amount of read-ahead as the sequential
pattern continues. The following list describes the characteristics of VxFS
operation when normal read-ahead is in effect:

Tuning reference for Veritas File System
Tuning read-ahead

68

■ On every read request, VxFS computes a next expected read offset for the file
as the sum of the offset of the current read and the size of the current read
(next_expected_offset = offset_of_current_request + size_of_current_request).
This value is stored as a field in the in-core inode for the file.

■ On every read request, VxFS compares the value of the read offset to the value
of next expected offset stored in the inode. If they are the same, VxFS flags
this read as a sequential read and increments the vxi_read_seq counter.
Otherwise, VxFS increments the vxi_read_rand counter.

■ VxFS is able to tell whether a sequential read is part of a continuing sequential
run.
For example, consider a large file that is being read sequentially by the
application in 32k read requests. The second read request will be flagged by
VxFS as a sequential read. In the case of the third read, VxFS flags it as a
sequential read and is also able to detect that it is part of a continuing
sequential run.

■ VxFS schedules read-ahead differently for the first sequential read (initial
read-ahead) and for read requests that are part of a continuing sequential run
(continuing read-ahead). In initial read-ahead, VxFS tries to schedule amodest
amount of read-ahead since there is notmuch evidence at this point to indicate
that the sequential access patternwill continue. If the sequential access pattern
continues, there is reason to believe that the access pattern is strongly
sequential, and therefore VxFS increases the amount of read-ahead.

■ For the first sequential read, VxFS initiates read-ahead of 4 regions of the file
startingwith the current offset.VxFSuses the tunableparameterread_pref_io
to decide the size of each region. The size of each read-ahead region is
read_pref_io or twice the read request size, whichever is smaller
(read_ahead_region_size = MIN (read_pref_io, 2 * size_of_request)). If the
read-ahead size is not aligned to the page size, the size is rounded up to align
it to the page size.

■ The 4 regions that are scheduled to be read in the initial read-ahead constitute
a read-aheadpipeline. VxFS schedules new read-ahead–if the sequential access
pattern continues–when the read offset crosses a region boundary. Thus,
continuing read-ahead adds to the pipeline setup in the initial read-ahead.

■ For continuing read-ahead, the read-ahead size is doubled each time compared
to theprevious read-ahead size, until the read-ahead size reaches themaximum
read-ahead size thatVxFSallows. Themaximumread-ahead size is determined
by the tunable parameters read_pref_io and read_nstream. The maximum
read-ahead size is calculated as follows:

read_pref_io * read_nstream

69Tuning reference for Veritas File System
Tuning read-ahead

■ Once the maximum read-ahead size is reached, VxFS continues to issue
read-ahead of the maximum size if the sequential access pattern continues.
read-ahead is issued not on every read, but whenever the read offset advances
past some internal region markers that VxFS maintains.

■ There is an exception to the above description when the file has a sequential
or random advisory set on it. When the file has a sequential advisory (VX_SEQ)
set, VxFS starts issuing read-ahead at the maximum read-ahead size, that is,
read_pref_io * read_nstream, from the first sequential read. When the file
has a random advisory (VX_RANDOM) set, VxFS does not issue read-ahead.

For more information on cache advisories, see the vxfsio(7) manual page.

There are some common cases where read-ahead is beneficial, but the normal
read-ahead setting in VxFS might not initiate read-ahead. Consider, for example,
a file that is being read concurrently by two application processes, each of which
is reading the file sequentially. It would be beneficial to schedule read-ahead in
this case, just as in the case of a sequential read by a single application. However,
the concurrent read requests from the two processes can interfere with the
sequential access tracking mechanism, changing the values of the next expected
offset in such a way that VxFS does not trigger read-ahead at all or triggers
read-ahead only for some of the reads. The enhanced read-ahead setting
(read_ahead=2) is designed to enable read-ahead for this and some other cases
where the normal read-ahead behavior is inadequate.

Important tunable parameters for read-ahead size
The size of read-ahead is controlled by two tunable parameters: read_pref_io
and read_nstream. These parameters can be displayed and set using the vxtunefs
utility. This implies that they can be set differently for each Veritas File System
(VxFS) mount point and can be changed on the fly without requiring a reboot or
module reload. These parameters have an important characteristic: when VxFS
is created over a Veritas Volume Manager (VxVM) volume, VxFS queries the
underlying volume atmount time and sets these tunable parameters based on the
geometry of the underlying volume. When VxFS is not created over a VxVM
volume, the default value for each of these parameters is static; the default value
is pre-determined and not dependent on the disk device characteristics.

These tunable parameters have the following function:

This tunable parameter plays a role in determining the size of
read-ahead both for initial read-ahead and continuing read-ahead as
described in the previous section. The default value of this parameter
is 64 KB. When mounted over a striped VxVM volume, the initial value
of this parameter is set to the stripe unit size of the underlying volume.

read_pref_io

Tuning reference for Veritas File System
Tuning read-ahead

70

This parameter is used together with read_pref_io to determine the
maximum size of read-ahead that VxFS will perform. The maximum
read-ahead size isread_pref_io *read_nstream. The default value
of read_nstream is 1. When mounted over a striped VxVM volume,
the initial value of this parameter is set to the stripe width of the
underlying volume (the number of columns in the stripe).

read_nstream

Essentially, read_pref_io limits the size of initial read-ahead and read_pref_io
* read_nstream gives the maximum read-ahead size.

Enhanced read-ahead in Veritas File System
The enhanced read-ahead mode in Veritas File System (VxFS) is conceptually
similar to the normalmode, but enhanced read-aheadmode results in read-ahead
getting triggered in some cases where the normal mode would not trigger
read-ahead. The enhancedmode is useful in the case ofworkloadswheremultiple
threads or multiple processes read the same files, with each thread or process
reading sequentially. The normal read-ahead mode may not recognize these
accesses as sequential and may not trigger read-ahead. The sequential access
detection mechanism, described earlier for the normal read-ahead mode, is
expanded in the enhancedmode to keep track of per-thread accesses, for a limited
number of threads. This allowsVxFS to detect that an individual thread is issuing
sequential reads; VxFS can then respond by issuing read-ahead. The enhanced
read-aheadmode can also detect strided access patterns, although these patterns
tend to be less common in enterprise workloads.

How to tune read-ahead
The default setting of normal read-ahead (tunable parameter read_ahead=1)
usually works well because most application accesses are either random or
sequential; more complex access patterns are relatively rare. One common case
where read_ahead=1mightnot be sufficient iswhen there aremultiple application
processes reading the same files concurrently and each process is issuing
sequential requests. In this case, Symantec recommends that you manually set
read_ahead=2 using the vxtunefs command. Of course, read_ahead=2 is also
beneficial when there are more complex access patterns.

Symantec recommends that the values of the vxfsstat counters vxi_read_rand
and vxi_read_seq be observed at different settings for the read_ahead tunable
parameter. If setting read_ahead=2 is seen to increase the ratio of vxi_read_seq
/ vxi_read_rand, your workload most likely has characteristics that can benefit
from enhanced read-ahead in Veritas File System (VxFS).

71Tuning reference for Veritas File System
Tuning read-ahead

Symantec recommends that read_pref_io be set at a value close to its default
value of 64 KB. An important role of this parameter is to limit the size of initial
read-ahead. If this parameter is tuned to a very large value, a single accidental
sequential access can trigger a large amount of read-ahead, which can result in a
lot of wasted work.

For workloads with predominantly sequential accesses on large files, you might
need to tune the value of read_nstream to get the appropriate maximum
read-ahead size. There are twomain factors in choosing the value ofread_nstream:

■ The throughput of the underlying storage device:When theunderlying volume
or LUN is striped, it can sustain higher I/O throughput; in such cases, a high
value of read_nstream is appropriate. When VxFS is mounted over a VxVM
volume, the initial value of read_nstream is based on the volume geometry;
in such cases, further tuning might not be required. When striping has been
done at the disk-array level, read_nstream is likely to require tuning.

■ Impact on other applications: A larger value of read_nstreammight slowdown
I/O for other processes by enabling large amounts of read-ahead.

Summary of read-ahead tuning
Read-ahead can result in largegains inperformance for applicationsusingbuffered
I/O by moving data in the background from disk devices to the page cache before
they are requested by the applications. In the default read-ahead setting, VxFS
initiates read-ahead on sequential accesses. VxFS counters displayed by the
vxfsstat command, namely vxi_read_seq and vxi_read_rand, can be observed to
determine if the workload has heavily sequential accesses. The parameters
read_pref_io and read_nstream control read-ahead size. Symantec recommends
that read_pref_io be kept close to its default value of 64 KB to keep initial
read-aheadat amodest size. Forworkloadswithpredominantly sequential accesses
on large files, you might need to tune read_nstream manually, especially when
striping has been done at the disk-array level rather than in VxVM.

Read flush-behind in Veritas File System
Read flush-behind is a technique thatVeritas File System (VxFS) uses tominimize
the degradation in systemperformance that can sometimes result fromsequential
reads of large files. The degradation can result in the following issues:

■ Sequential scans of large files cause a steady influx of file data into the page
cache. This can cause the number of free pages on the system to drop, causing
the operating system to initiate page scanning and reclamation. The page
reclamation activity consumes CPU cycles and can affect performance.

Tuning reference for Veritas File System
Read flush-behind in Veritas File System

72

■ Since the pages that are part of the problematic scan are recent and since page
reclamation algorithms retain recent pages and reclaim older pages, useful
data pages of other files and processes get evicted from the page cache.

■ Applications that reference the evictedpages see adrop inperformancebecause
they must be read from secondary storage.

VxFS addresses the above problems in the following manner:

■ VxFS detects sequential runs and tracks how large they are.

■ At the completion of a read, VxFS checks if the system is under page cache
pressure. If it is, VxFS attempts to free a chunk of pages that are part of the
current sequential run forwhich readshave completed. This creates free pages,
easing the pressure on the page cache and reducing the number of other useful
pages that might get targeted by the operating system page reclamation.

■ Read flush-behindhappens in chunks of size write_pref_io * write_nstream,
where write_pref_io and write_nstream are tunable parameters that also
control write flushing in VxFS.

■ A downside of this technique is that if the file from which pages are being
freed is read again by the application, the data will not be in the page cache
and must be read back from the disk storage.

Read flush-behind example
This section describes a scenario that illustrates how read flush-behind works.
Read flush-behind happens only when Veritas File System (VxFS) detects page
cache pressure. The determination of whether there is page cache pressure is
operating system-specific. For this example, let us assume a system under page
cache pressure. Let us assume a value of 64 KB for write_pref_io and a value of
4 for write_nstream. Let us assume a large file of 100 MB is being read
sequentially, with each read request being 64 KB in size.

The first read request (offset 0, size 64 KB) is classified by VxFS as a random read.
Subsequent requests are classified as sequential requests, with offset 0 being the
start of the sequential run. VxFS also maintains a read flush offset to keep track
of read flush-behind activity; before any read flushing has happened, this is the
same as the start of the sequential run: offset 0.

At the completion of the fourth read request, the current sequential run is of size
256 KB, which is also the read-flush behind size. At this point, VxFS invalidates
all pages for the file in the offset range 0 KB to 256 KB. That is to say, a chunk of
size equal to the read flush-behind size, and starting at the read flush offset, is
invalidated. After the page invalidation is complete, the read flush offset is set to
256KB,which is the offset in the current sequential runup towhere read flushing

73Tuning reference for Veritas File System
Read flush-behind in Veritas File System

has completed. Similarly, at the completion of the eighth request, VxFS invalidates
all pages for the file in the offset range of 256 KB through 512 KB. The read flush
offset is updated to 512 KB.

As the sequential run continues, VxFS repeats this pattern of invalidating chunks
of the read flush-behind size and adjusting the read flush offset accordingly.When
VxFS gets a read request that is not sequential, meaning a read request that is a
random read, VxFS resets the read flush-behind point to the offset of the random
read and gets ready to track a new sequential run.

Tuning read flush-behind
The tunable parameters controlling read flush-behind are write_pref_io and
write_nstream. These are also the tunable parameters controllingwrite flushing
for sequential writes.

Tuning Veritas File System buffered writes
The default behavior of writes in Veritas File System (VxFS) is to copy thewritten
data to the page cache and return; the data is written to storage devices behind
the scenes. Thesewrites are called delayed bufferedwrites. Formany applications,
the trade-off in this delayed-write model is acceptable: writes give good
performance but there is a small risk of data loss in case the system crashes before
data is flushed out. Applications that use delayedwrites should be able to tolerate
or recover from such data loss. The journaling mechanism in VxFS protects the
integrity of file systemmetadata in the event of a crash; it does not protect against
the kind of data loss that can occur with buffered writes.

However, the delayed write model is not appropriate in all cases. For some
applications, it is enough to follow-up a series of delayed writes with an fsync()
or fdatasync() call to ensure that data is persistent. But, for other applications,
even this might not be good enough. The following writes are commonly used by
applications as alternatives to delayedwriteswhen better persistence guarantees
are needed:

Thesewrites not only copy data to the page cache, but also flush
the data to disk as part of the write() call. Subsequent reads of
the same file blocks can possibly get the data from the page
cache without having to read from storage devices.

synchronous writes

Thesewrites bypass the page cache andwrite data directly from
application buffers to storage devices.

See “Direct I/O” on page 81.

direct writes

Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

74

Synchronous buffered writes
Applications that need strong persistence guarantees for writes usually indicate
this to the file system using the O_SYNC and O_DSYNC flags when opening a file.
These flags and the requirements that they impose on the file systemare described
in the POSIX standard. For an O_SYNC or O_DSYNC write, VxFS copies data from
the write to the page cache, but also flushes the data to disk before signaling the
write as complete; thesewrites are therefore called synchronouswrites. An O_SYNC

write also requires all file metadata modified as a result of the write, like block
layout changes and modification time update, to be written out synchronously.
An O_DSYNC write requires modified metadata to be written synchronously only
if the metadata is required to access the data that was written; in the common
case of existing file blocks getting overwritten, an O_DSYNCwrite does not usually
require metadata to be written synchronously.

In some cases, it might be desirable to change the performance characteristics of
an application without rewriting the application by changing the way I/Os issued
by the application are handled. VxFS supports this through the convosync=option
mount option, which changes the way I/O to a file opened with the O_SYNC or
O_DSYNC flag is handled. You can specify the following values for option:

■ closesync

■ delay

■ direct

■ dsync

■ unbuffered

See the Veritas File System Administrator’s Guide.

These values change the persistence characteristics of writes from what was
expectedwhen the applicationwaswritten and should be usedwith caution.While
a mount option such as convosync=delay can improve performance by causing
synchronous writes to be handled as delayed writes, the option can very easily
lead to correctness issues.

The mount option convosync=direct enables direct I/O for all files in a VxFS file
system that were opened with the O_SYNC or O_DSYNC flags. More commonly, the
convosync and mincache mount options are used together
(convosync=direct,mincache=direct) to enable direct I/O for aVxFS file system;
this option enables direct I/O for files opened with the O_SYNC or O_DSYNC flags,
as well as files opened in default mode.

See “Delayed buffered writes” on page 76.

75Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

The datainlog optimization
Veritas File System (VxFS), by default, performs an optimization in its handling
of some synchronouswrites bywriting data from thesewrites, alongwithmodified
metadata, to the intent log. These synchronous writes that are written to the
intent log are called logged-writes. The VxFS intent log is used primarily for
recording metadata changes; except in the case of logged-writes, file data is not
written to the intent log. The -o datainlogmount option enables the logged-write
optimization and the -o nodatainlogmount option disables it. The logged-write
optimization is enabled by default; that is, unless the nodatainlogmount option
is explicitly used, VxFS performs the logged-write optimization.

The logged-write optimization applies to O_SYNCwrites that are 8KBor less. There
are a few other internal checks that VxFS performs before handling a write as a
logged-write. An O_SYNC write requires that the data from the write as well as
modified metadata should be flushed to disk before the write is signaled as
complete. For a logged-write, VxFSwrites both the data andmetadata to the intent
log as a single synchronous write and then signals the write as complete; this
meets the persistence requirements for O_SYNCwrites. The actual file blocks that
aremodified by the logged-write are updated asynchronously from the page cache
to disk after thewrite call is signaled as complete. In contrast, for an O_SYNCwrite
that is not performed as a logged-write, two synchronous diskwrites are typically
performed before the write call is signaled as complete--one synchronous write
for the file data and another for the file metadata. The logged-write optimization
thus results in lower latency for small O_SYNC writes. The downside of a
logged-write is that the actual file data generally gets written to disk twice--once
to the intent log and once to the actual file blocks on disk--but, the second is
asynchronous and usually has low impact on performance.

The performance difference between the datainlog and nodatainlog options
will depend on the workload. O_SYNC writes larger than 8 KB are not performed
as logged-writes evenwhen the datainlog option is enabled. If theworkload does
not have small O_SYNCwrites, datainlog and nodatainlog should perform about
the same. For most workloads, datainlog should perform better than or as well
as the nodatainlog option. But, as explained above, there are tradeoffs involved
in the logged-write optimization, and for some workloads, nodatainlog might
perform better.

Delayed buffered writes
Delayed buffered writes in Veritas File System (VxFS) copy the written data to
the page cache as part of the write call, and mark these pages as dirty to indicate
that they need to be flushed out. Most commonly, delayed writes get written out
to storage devices when the operating system page flusher periodically requests

Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

76

the file system to flush out dirty pages, although there are other mechanisms by
which delayed writes are written out.

Delayed writes can give good performance for a number of reasons:

■ Applications see low latency onwrites because there is no disk access involved.

■ If the same blocks are written again before they have been flushed out, you
save on the number of writes going to the storage devices. In scenarios where
storage is the bottleneck, this can improve overall performance.

■ Multiple delayedwrites canoftenbe combined andwritten in one large efficient
disk write. A single large write is typically more efficient than multiple small
writes of the same aggregate size. If each write were being written to disk as
it was received, this optimization would not be possible.

In some cases, you might find it useful to change the performance or persistence
characteristics of an application without rewriting it by changing the way I/Os
issued by it are handled. The mincache=option mount option alters handling of
I/O requests for files opened in the default mode and hence changes the way
delayed writes are handled. In contrast, the convosync option, discussed in the
context of synchronouswrites, alters the handling of I/O requests for files opened
with the O_SYNC or O_DSYNC flags. You can specify the following values for option:

■ closesync

■ direct

■ dsync

■ unbuffered

■ tmpcache

See the Veritas File System Administrator’s Guide.

The mincache options are used primarily for stronger persistence characteristics
for writes compared to delayed writes, although performance is also often a
consideration for using mincache=direct. The mount option mincache=direct

is used to enable direct I/O for files opened in the default mode. More commonly,
the mount option convosync=direct,mincache=direct is used to enable direct
I/O for a VxFS file system; this enables direct I/O for files openedwith the O_SYNC
and O_DSYNC flags, as well as those opened in default mode.

See “Synchronous buffered writes” on page 75.

Delayed writes can also sometimes result in performance problems because of
too many dirty pages in the cache that need to be flushed out. Write throttling,
write flush-behind, and I/O flush throttling are mechanisms in VxFS that are
intended to minimize these problems.

77Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

See “Write throttling” on page 78.

See “Flush-behind for sequential writes” on page 78.

See “Throttling I/O flushes” on page 80.

Write throttling
Veritas File System (VxFS) allows administrators to set a limit on the amount of
dirty data that a file can have in the page cache. This per-file limit is specified
using the tunable parameter write_throttle. When a new write to a file pushes
the amount of dirty data in the page cache for that file above the write_throttle
limit, VxFS initiates flushing of all dirty pages of the file.

The write_throttle tunable parameter can be manipulated using the vxtunefs
utility. The write_throttle parameter can be changed on the fly, and can be set
differently for each mounted VxFS file system. The default value of the
write_throttle tunable parameter is 0. This is interpreted to mean that write
throttling is disabled; in this case, there is no limit on the amount of dirty data
that a file can have in the page cache. When a value is explicitly specified for
write_throttle, VxFS uses this value as the number of bytes of dirty data that
a file can have in the page cache. The default is recommended for this parameter.

The VxFS counter vxi_write_throttle, which you can see in the output of the
vxfsstat -v command, is incremented each time VxFS flushes out a file because
the amount of dirty data for the file exceeded the write_throttle parameter.

Flush-behind for sequential writes
Veritas File System (VxFS) has a write flush-behind mechanism for sequential
writes that is designed to efficiently write data in large chunks to the underlying
storage devices. VxFS performs sequential access pattern detection for buffered
writes, just like it does for reads. When there are one or more sequential writes
on a file forming a sequential run that is large enough, VxFSwrites out that region
without waiting for the normal flushing mechanism for delayed writes. This
behavior is called write flush-behind and is controlled by the tunable parameters
write_pref_io and write_nstream. The flush-behind happens in chunks of size
write_pref_io * write_nstream.

One of the advantages of the delayed write mode is that a delayed buffered write
potentially enablesmany small writes to be clustered andwritten out as one large
efficient write. In the case of sequential writes forming a large sequential run,
VxFS already has a large efficient write, so there is less incentive for delaying the
write further. Flushing out the sequential region early also helps prevent too
much dirty data from accumulating in the page cache.

Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

78

The mechanism for sequential access pattern detection classifies every buffered
write as either a sequentialwrite or a randomwrite. VxFSmaintains the following
counters that can be observed in vxfsstat -v output:

This counter provides the number of write requests classified as
sequential writes.

vxi_write_seq

this counter provides the number of write requests classified as
random writes.

vxi_write_rand

These counters can be useful in understanding the nature of write requests in the
workload and can help in tuning write flush-behind.

The tunable parameters write_pref_io and write_nstream together determine
the write flushing size. The values of these parameters can be displayed and set
using the vxtunefs command. This implies that the parameters can be changed
on the fly without requiring a reboot or amodule reload and can be set differently
for each mounted VxFS file system. Similar to the tunable parameters
read_pref_io and read_nstream, when VxFS is mounted over a VxVM volume,
these parameters are set at mount time by querying the underlying volume for
its geometry. The tunable parameters are described as follows:

When mounted over a striped VxVM volume, the value of this
parameter is set to the stripe unit size of the underlying volume .
The default value of this parameter is 64 KB.

write_pref_io

When mounted over a striped VxVM volume, the value of this
parameter is set to the number of columns in each stripe of the
underlying volume. The default value of this parameter is 1.

write_nstream

For workloads that access large files sequentially, the values of write_pref_io
and write_nstream should be chosen such that the flush size (write_pref_io *
write_nstream) results in efficient I/O. When the file system has been created
over a striped VxVMvolume, inwhich the stripingwas done in VxVM rather than
in the disk array, the values of write_pref_io and write_nstream, obtained by
querying the volume at mount time, generally result in efficient I/O. However,
when striping has been done in the disk array, write_nstream may need to be
manually tuned to improve the efficiency ofwrite flushing. Rather than the default
of 1, a higher value such as 16 is a good start for write_nstream in such cases;
with write_pref_io at 64KB, this would result in awrite flush size of 1MB. Since
these parameters can be easily changed on the fly, their values can be refined
based on observing the effect of different settings.

79Tuning reference for Veritas File System
Tuning Veritas File System buffered writes

Throttling I/O flushes
Veritas File System (VxFS) has amechanismaimed at preventing situationswhere
the flushing of data for a file ties up storage bandwidth and causes performance
problems. VxFS has a limit on the amount of data that can be outstanding in disk
writes for a file. This per-file limit is specified by the value of the tunable parameter
max_diskq. VxFS tracks the amount of data being flushed out for each file. If there
is a request to flush a file’s data to disk, and VxFS detects that the amount of data
being flushed out for that file exceeds max_diskq, VxFS pauses the requester for
a while until some of the outstanding disk writes have completed and the amount
of data in outstanding disk writes drops below max_diskq. This mechanism is
called I/O flush throttling.

Each time I/O flush throttling happens, VxFS increments the counter
vxi_flush_throttle. Observing the value of this counter in vxfsstat -v output
can help understand how much flush throttling is happening on a system; this
canhelp in decidingwhether the value of the max_diskq tunable parameter should
be tuned.

The value of the max_diskq tunable parameter can be displayed and set using the
vxtunefs utility. This implies that it can be changed on the fly without a reboot
or module reload and it can be set differently for each mounted VxFS file system.
The value of this parameter is the I/O flush limit specified in bytes. Thus, the
parameter specifies the number of bytes that can be pending in writes for a file.

The default value of max_diskq is 1MB or 16 times thewrite flush size, whichever
is greater. The write flush size is given by write_pref_io * write_nstream.
When the value of max_diskq is explicitly specified, the value is set to the specified
value or 4 times the write flush size, whichever is greater.

Tuning Veritas File System buffered I/O on AIX
Buffered I/O involves interactions between Veritas File System (VxFS) and the
operating system's virtual memory manager using operating system-specific
interfaces. On theAIXplatform,VxFShas certain tunable parameters for buffered
I/O that are not available on other platforms. These parameters are described in
the online manual page for the vxtunefs command on AIX.

See the vxtunefs(1M) manual page.

The following list provides a brief summary of the buffered I/O parameters:

■ Paging-in and paging-out of data: The parameters drefund_enabled and
num_pdt, which are changedusing the vxtunefs -D command, and thenumber

Tuning reference for Veritas File System
Tuning Veritas File System buffered I/O on AIX

80

of buffer structures, which is changed using the vxtunefs -b command, relate
to paging-in and paging-out of data for buffered I/O.
See “About tuningVirtualMemory forVeritas File SystemonAIX”onpage 129.

■ Operating under memory pressure: The parameters lowmem_disable,
read_flush_disable, and write_flush_disable, which are changed using
the vxtunefs -D command, enable or disable actions taken under memory
pressure.

■ Flushing of dirty data: The parameters sync_time, chunk_flush_size,
lm_dirtypage_track_enable, fsync_async_flush_enable, and
bkgrnd_fsync_enable, which are changed using the vxtunefs -D command,
govern tracking and flushing of dirty data in the page cache.

Direct I/O
Direct I/O inVeritas File System (VxFS) transfers data directly betweenapplication
buffers and storage devices without copying file data to the page cache. Direct
I/O is an important alternative to buffered I/O; for someworkloads, direct I/O can
improve performance significantly compared to buffered I/O. Direct I/O also has
disadvantages compared to buffered I/O and the choice between the two should
bemade based on the characteristics of theworkload and the environment. Direct
I/O is not the default mode and needs to be enabled by an administrator or by the
application; however, note that VxFS has a feature called discovered direct I/O,
where it automatically handles some large I/O requests without buffering. When
direct I/O has been enabled, each I/O must meet some alignment constraints in
order for the I/O to be performed as direct I/O; if these constraints are not met,
VxFS performs the I/O as buffered I/O, even though direct I/O was requested.

See “Discovered direct I/O” on page 83.

Keep in mind the following information regarding direct I/O:

■ Direct I/O can be enabled by an administrator at mount time for a file system
using the convosync and mincache mount options. The mount option
convosync=direct enables direct I/O for files opened with the O_SYNC and
O_DSYNC flags. Themount option mincache=direct enables direct I/O for files
opened without these flags. The two mount options are often used together,
such as -o convosync=direct,mincache=direct, to enable direct I/O for both
types of files.

■ Direct I/O can be enabled by an application by setting the VX_DIRECT cache
advisory on a file descriptor using the vxfsio interface. This enables direct
I/O only for I/Os on that file descriptor.

81Tuning reference for Veritas File System
Direct I/O

■ Even if direct I/O has been enabled, an I/O is performed as direct I/O only if
certain constraints are met. Among these are alignment constraints that can
vary with the operating system. In general, the I/O must start on a 512-byte
offset and the I/O sizemust be amultiple of 512 bytes. If these constraints are
not met, VxFS performs the I/O as buffered I/O, even if direct I/O has been
enabled.
For more information about these constraints, see the Veritas File System
Administrator's Guide.

■ When a direct I/O read is performed, the counter vxi_read_dio maintained
by the VxFS module is incremented; for a direct I/O write, the counter
vxi_write_dio is incremented. These counters can be displayed with the
vxfsstat -vutility and canbeused to verify that direct I/O is beingperformed.
These are module-level counters that keep track of direct I/O requests on any
of the mounted VxFS file systems on that system. If there is only one VxFS
file system active, these counters directly show activity for that file system.
But, when there are multiple VxFS file systems that are active on the same
system, these counters should be interpreted carefully. As described in the
sections on buffered I/O, VxFSmaintains a different set of counters that track
buffered I/O reads and writes.

■ Writes in the direct I/O mode are signaled as complete only after the data has
been written to storage devices; any metadata that is required to retrieve the
written data is also flushed out before the write() call is signaled as complete.
Metadata that is not required to retrieve the data written, like the file
modification time, may not be flushed out before the write() call completes.
The persistence guarantees with direct I/O are thus better than with delayed
writes andmatch the guarantees in the O_DSYNCmode. It is usually acceptable
to enable direct I/O for applications that arewritten to use synchronouswrites.

The main benefits of direct I/O compared to buffered I/O are as follows:

■ Direct I/O avoids the overhead of copying data from application buffers to the
page cache.

■ Direct I/O avoids the overhead of cache management, which involves
interactions with the virtual memory management system of the operating
system.

■ By not using the page cache, direct I/O reduces memory usage and avoids
displacing other useful file data from the page cache.

The main disadvantages of direct I/O are as follows:

■ Forworkloads that re-read the sameblocks, dataneeds to be read fromstorage
devices each time. In contrast, with buffered I/O, it is likely that blocks being

Tuning reference for Veritas File System
Direct I/O

82

readmultiple times will be found in the page cache, thus reducing the number
of disk accesses.

■ Read-ahead that is available with buffered I/O is not feasible with direct I/O.

■ Delayed write optimizations such as combining multiple small writes into a
large efficient write are not feasible with direct I/O.

The impact that the advantages and disadvantages are likely to have given the
characteristics of aworkload should guide the choice ofwhether direct I/O should
be enabled for the workload. Direct I/O is often, though not always, beneficial for
databaseworkloads. Sincedatabasesmaintain their owncache, lackof data caching
in the file system is not a disadvantage for many database workloads; rather it is
usually the preferred option since it avoids double buffering of the same data.
Database reads and writes also generally meet the alignment requirements of
direct I/O. For some database workloads, like transaction processing workloads,
the Concurrent I/O mode usually works better than plain direct I/O. When direct
I/O or Concurrent I/O are used for database workloads, sizing the database cache
appropriately becomes particularly important.

See “Concurrent I/O” on page 84.

Discovered direct I/O
The discovered direct I/O feature of Veritas File System (VxFS) causes large I/O
requests in the buffered I/Omode to be handled in amanner similar to direct I/O.
For these requests, VxFS copies data directly between application buffers and
storage deviceswithout copying data to the page cache. This behavior is controlled
by the following tunable parameter:

In the buffered I/O mode, read and write requests above this size
are performed as discovered direct I/O, that is, without copying data
to the page cache. This tunable parameter can be displayed and set
using vxtunefs; its value can be set differently for each mounted
file system and changes take effect immediately without need for
a reboot ormodule reload. The value of this parameter is interpreted
as the size in bytes above which VxFS performs discovered direct
I/O. The default value is 256 KB.

discovered_direct_iosz

Metadata flushing with discovered direct I/O happens according to the rules of
the buffered I/O mode that is in effect rather than according to the rules of the
direct I/O mode. Persistence guarantees for metadata in the default mode, that
is, in the buffered I/Omode with delayed writes, are weaker than in the direct I/O
mode in VxFS. In this sense, discovered direct I/O is not strictly direct I/O, but
this is a detail that doesnot generally impact tuning considerations. Thediscovered
direct I/O feature allows VxFS to switch between buffered I/O for small requests

83Tuning reference for Veritas File System
Direct I/O

and non-buffered I/O for large requests. The rationale for this behavior is that
some of the overheads of buffered I/O, especially the overheads of copying and
cache management, are amplified for large requests. Also, disks handle large
requestsmore efficiently than smaller ones, so large requests are better candidates
for directly issuing to disk.

The parameter discovered_direct_iosz can be tuned up or down to increase or
decrease, respectively, the request size threshold at which discovered direct I/O
takes effect. Forworkloadswhere the benefits of caching outweigh the advantages
of non-buffered transfers even for large requests, discovered direct I/O can be
prevented by increasing discovered_direct_iosz to a high value. In general,
there are a number of factors that can play a role in determining the best value
of discovered_direct_iosz for aworkload; request sizes in theworkload, pattern
of re-use of file blocks and page cache pressure are some of these factors. Since
changes to discovered_direct_iosz can be easily made and reversed, it might
be easiest to try a few different values and observe the effect on performance.

Concurrent I/O
Concurrent I/O in Veritas File System (VxFS) is a special type of direct I/O where
the normal locking that VxFS performs is relaxed to allow concurrent writes to
the same file. In modes other than Concurrent I/O, VxFS acquires a file-level lock
in shared mode for a read request and in exclusive mode for a write request; this
allows multiple read requests to the file to be serviced concurrently, but a write
request prevents other read andwrite requests frombeing serviced concurrently.
This form of locking is sometimes restrictive for databases which often issue
concurrent, non-overlapping writes to the same file; since these writes are
non-overlapping allowing them to proceed concurrently would not violate
consistency. In Concurrent I/O, both reads and writes acquire the file lock in
shared mode, which allows read and write requests to be serviced concurrently.
For databases, this ensures that the concurrent writes that they issue are not
serialized at the file system level. Concurrent I/O is meant to be used in cases
where it is known that the file system will not receive conflicting writes or
conflicting reads and writes concurrently; in practice, this mode is used with
databases which are known to be well-behaved in this respect. Concurrent I/O is
the recommended mode in VxFS for non-Oracle databases running transaction
processing workloads; for Oracle databases, the ODM interface, which provides
the same benefits and more, is recommended.

Concurrent I/O can be enabled for a whole file system using the -o cio mount
option. Concurrent I/O can be enabled for a file descriptor by setting the
VX_CONCURRENT advisory on the file descriptor using the vxfsio interface. Other
than the difference in locking, Concurrent I/O operation is similar to direct I/O.
Concurrent I/O also has the same alignment constraints as direct I/O.

Tuning reference for Veritas File System
Direct I/O

84

About Veritas File System space allocation
The performance seen by an application can, to a large degree, depend on how
well Veritas File System (VxFS) has been able to allocate space for the files used
by the application. This section gives an overview of the relevant concepts and
discusses administrative actions that can improve space allocation and, as a result,
the file system performance.

AVxFS file system is created over a block storage device such as a hard disk. VxFS
treats the underlying device as an array of blocks that it can use for storing file
data written by applications and for storing its own metadata structures. An
example of a metadata structure is the map that VxFS uses to keep track of free
space, that is, blocks that havenot yet beenallocated to a file ormetadata structure.
The following list contains twobasic concepts that are important in understanding
VxFS space allocation:

■ file system block
This is the smallest unit of space allocation in VxFS. The file system block size
is decided at the time of file system creation and cannot be changed later. The
block size for a file system can be specified explicitly at the time of file system
creation; permissible block sizes in VxFS are 1 KB, 2 KB, 4 KB and 8 KB. If the
block size is not explicitly specified, VxFS picks the block size based on the
size of the file system being created. A file system that is 1 terabyte or less is
created with a block size of 1 KB; a filesystem greater than 1 terabyte in size
is created with a block size of 8 KB.

■ extent
An extent is a contiguous region on the storage device consisting of one or
more file system blocks. VxFS is an extent-based file system that allocates
space to files in variable-sized extents, rather than in individual blocks. The
information of which extents make up a file is part of the file's metadata and
is stored in the file's inode and, if necessary, in additional metadata blocks.
With extent-based allocation, when the file system is able to allocate space
optimally, even a large file may have only one or a few extents allocated to it;
inmany cases, all themetadata needed to access the file fits in the inode itself.
In contrast, file systems that use block-based allocation will need many
metadata blocks in addition to the file inode in order to store the block
addresses for a large file, and these metadata blocks must be retrieved when
accessing the file.

Whenpossible, VxFS tries to allocate space in large extents rather than inmultiple
smaller extents. Larger extents have the potential to improve performance for
the following reasons:

■ There are fewer extent addresses to store as part of the metadata for the file;
there is less metadata to retrieve when accessing a file.

85Tuning reference for Veritas File System
About Veritas File System space allocation

■ A large application I/O request that spansmultiple extentsmust be broken up
and issued as smaller requests to the storage device. This will happen less
often with large extents compared to smaller extents.

■ Larger extents storemore data contiguously compared to smaller extents, and
therefore tend to improve performance for sequential accesses.

The allocation of space to a file can happen in different ways, butmost frequently
it happens as part of a write request when an application extends a file. When an
application is sequentially extending a file in small chunks,VxFS typically allocates
larger extents than is requested, in the anticipation that the allocated space will
be used by future requests. If the application does not use the allocated space,
VxFS reclaims unused space in a delayed fashion. VxFS starts with a small extent
size on the first allocation and then doubles the extent size on each subsequent
allocation, till a maximum size is reached. Once the maximum extent size is
reached, further allocations continue to happen at the maximum size. This
approach results in fewer allocations and larger allocated extent sizes. The
following tunable parameters, which can be displayed and set using the vxtunefs
command, govern this allocation mechanism:

This parameter gives the minimum size of the extent allocated on
the first write to a file.

initial_extent_size

This parameter gives the maximum extent size allocated.max_seqio_extent_size

Increasing the values of these parameters can result in larger allocated extents.
However, the default values work well for most environments and are
recommended.

Choosing the file system block size
The file systemblock size can be specified at the time of file system creation. Since
Veritas File System (VxFS) uses extent-based allocation, the file systemblock size
plays a less important role in VxFS compared to file systems that use block-based
allocation, where a large block size helps reduce the number of block addresses
that must be stored as part of the metadata of the file. The main concern in
choosing the file system block size in VxFS is the efficiency of space utilization.
For a file system that is expected to contain many small files, a small block size
results in better utilization of storage space. To see why this is so, consider a
hypothetical case where all files in a file system are less than a kilobyte. Since the
file system block is the smallest unit of allocation, a large block size of 8 KB for
this example would result in more than 7 KB of wasted space in each block. That
ismore than87.5%wasted space. A block size of 1KB results inmuchbetter space
utilization in this example. The default block size picked by VxFS based on the
size of the file system being created usually works quite well.

Tuning reference for Veritas File System
About Veritas File System space allocation

86

Online resizing and defragmentation
When a file system has been newly created, the free space is largely contiguous.
As a file system is used, repeated allocation and freeing of space in extents of
different sizes can result in the free space getting fragmented.When this happens,
it becomes difficult for the file system to allocate space in large extents. In this
state, the performance of the file system may degrade. The problems related to
fragmentation are typicallyworsewhen the amount of free space in the file system
is low.

There are two important tasks that an administrator can perform periodically to
improve file system performance:

■ Growing the file system. This increases the amount of free space available for
new allocations and enables better allocations. As a general rule, when the
amount of free space in a file system drops below 10%, it is a good idea to
increase the size of the file system.

■ Defragmentation. This reorganizes existing allocations to enablemore efficient
access.

VxFS supports resizing and defragmentation while the file system is mounted
and in use. The fsadm command is used for both of these administrative tasks.
Typically, an administrator starts by using the fsadm command to get a report of
the current state of the file system to decide if resizing or defragmentation is
necessary.

For information about the command options, guidelines for when these tasks
should be performed, and examples that show actual use of the command, see the
fsadm_vxfs(1M) manual page.

Defragmenting a file system involves reorganizing the data on the storage device
by copying data from smaller extents into large extents. This activity typically
has a high impact on performance, and should be scheduled at a time when it will
causeminimal disruption. The fsadm command has an option that limits the time
for which reorganization is allowed to run, which is useful in planning this task.

87Tuning reference for Veritas File System
Online resizing and defragmentation

Tuning reference for Veritas File System
Online resizing and defragmentation

88

Tuning reference for Veritas
Volume Manager

This chapter includes the following topics:

■ About tuning Veritas Volume Manager

■ Commonly used VxVM layouts

■ Dirty Region Logging for mirrored volumes

■ Instant snapshots

■ Full instant snapshots

■ Space optimized instant snapshots

■ Performance comparison of full-sized and spaced optimized instant snapshots

■ Using a version 20 DCO volume for both Dirty Region Logging and instant
snapshots

About tuning Veritas Volume Manager
VeritasVolumeManager (VxVM) provides logical storage devices, called volumes,
that appear to applications as physical devices (disks or LUNs), but overcome
many of the space, reliability, and performance limitations of actual physical
disks.

VxVM relies on certain daemons and kernel threads for its operations. Increasing
the number of these threads can in some cases improve performance:

5Chapter

TheVxVMconfigurationdaemon that reads andupdates configuration
information stored on disks. The number of threads that the daemon
uses can be set using the vxconfigd command. A larger number of
threads allows more configuration reads to happen in parallel.

vxconfigd

Kernel threads that perform some of the I/O operations inVxVM. The
number of threads can be set using the vxiod utility. By default, the
number of vxiod threads started is 16 for a system with 8 CPUs or
less, and 2 times the number of CPUs for a system with more than 8
CPUs, up to a maximum of 64 threads. When the number of threads
is set explicitly, it cannot be set to less than 1 or more than 64.

vxiod

The following table contains some of the tunable parameters that affect general
VxVM performance:

This is the maximum size of an I/O request that VxVM handles
without breaking up the request. A request greater than
vol_maxio in size is broken up and performed synchronously.

On AIX, Linux, and Solaris, the default value is 2048 blocks (1
MB).

For workloads with very large request sizes, vol_maxio can be
increased to improve performance.

vol_maxio

VxVM allocates and frees memory in chunks of this size.
Increasing the chunk size can reduce the overhead of allocation.
The benefit of tuning this parameter is usually small for most
workloads.

On AIX, the default value is 64 KB.

On Linux, the default value is 32 KB.

On Solaris, the default value is 64 KB.

voliomem_chunk_size

Commonly used VxVM layouts
A volume can be thought of as a linear array of blocks. The volume layout
determines how these blocks aremapped to storage on underlying disks or LUNs.
This section gives an overview of the most commonly used VxVM layouts and
their performance characteristics.

See the Veritas VolumeManager Administrator's Guide for more information.

The following table contains the most common types of VxVM volumes based on
layout:

Tuning reference for Veritas Volume Manager
Commonly used VxVM layouts

90

In the simplest and most typical case, a concat volume is built from
storage from a single disk or LUN. That is, the underlying storage for
the volume comes from a single contiguous region of a disk or LUN.
In the more general case, the underlying storage for the volume can
come from multiple disks. For example, the first half of the volume
can bemapped to one disk and the secondhalf to another; in this case,
the volume is formed by concatenating the storage from the twodisks.
Except in the casewhere a concat volume is created over a LUNstriped
in the disk array, this layout is not suitable where high throughput is
desired.

concat volume

The volume is divided into chunks called stripe units, which are then
distributed across multiple disks or LUNs.

striped volume

Two copies of the data are maintained on different disks. While
writing, both copies are updated. While reading, either copy can be
read.

mirrored volume

This layout gives a volume the throughput benefits of striping,
combined with the protection given by mirroring. This layout can be
thought of as striped across a set of columns, each of which is
mirrored.

striped-mirror
layout

This layout also combines the benefits of striping and mirroring. It
can be thought of as a mirrored layout, where each plex is striped
across multiple columns.

mirrored-stripe
layout

Disk arrays also offer striping andmirroring features similar to VxVM. There are
many different ways of combining striping andmirroring features in a disk array
with similar features in VxVM to achieve desired throughput and redundancy
characteristics. For example, a striped VxVM volume created over a set of LUNs
that are mirrored in the disk array can be used to get performance and reliability
similar to a striped-mirror VxVM volume.

Striped layouts
The striped, striped-mirror and mirrored-stripe layouts use striping to improve
I/O performance. Striping improves performance in two ways:

■ A single large request can be serviced in parallel by multiple disks resulting
in better read and write bandwidth. To understand how, consider a volume
striped over 4 disks--that is, number of columns is 4--with a 64 KB stripe unit
size and an application that is issuing read requests of size 128 KB to the
volume. Each read request, assuming the request is aligned on a 128 KB
boundary would be serviced by reading 2 stripe units in parallel, each stripe
unit from a different disk. In general, in a striped layout, large requests are

91Tuning reference for Veritas Volume Manager
Commonly used VxVM layouts

able to benefit from the aggregate bandwidth ofmultiple disks. This improves
performance compared to a volume created over a single disk, where
performance of large requests is limited by the bandwidth of a single disk.

■ Concurrent, small requests canbe serviced in parallel by the disks in the striped
volume. For most workloads, VxVM sees a high degree of concurrency in
requests. That is, the application or higher layer of the storage stack, such as
VxFS or a database server, has multiple I/O requests to VxVM outstanding at
any given time. Consider again the case of a volume striped over 4 disks with
a 64 KB stripe unit size. If the application is issuing multiple 8 KB reads
concurrently, 4 such read requests can generally be serviced in parallel. In
comparison, when the volume is created over a single disk, the requests are
serviced serially, limiting throughput and increasing response times.

There are two main parameters that must be chosen for a striped layout: the
number of columns and the stripe unit size. As the number of columns increases,
the maximum throughput of a striped layout also increases. The number of
columns is usually limited by provisioning constraints. There is also the additional
concern of reliability: As the number of columns increases, the probability of disk
failure also increases; due to this concern, striping is usually combined with
mirroring to improve reliability.

You should choose the stripe unit size based on the workload characteristics. For
workloadswith small, concurrent requests, a smaller stripe unit sizeworks better.
Workloads with large, concurrent requests can benefit from a larger stripe unit
size. A stripe unit size that is too small can result in inefficient disk usage, since
disk seek overhead calls for a large I/O size for efficiency. On the other hand, a
stripe unit size that is too large limits the number of disks that can servemedium
and large requests in parallel. The default stripe unit size in VxVM is 64 KB, and
generally works well for a range of workloads. Symantec does not recommend
reducing the default stripe unit size of 64 KB. As mentioned above, for workloads
with very large, concurrent requests, increasing the stripe unit size can improve
performance.

Mirrored layouts
Themirrored, striped-mirror andmirrored-stripe layouts storemirrors or copies
of each block in the volume, improving reliability in the face of disk failures.

With mirrored volumes, Veritas Volume Manager (VxVM) allows the read policy
of the volume to be set to indicate which of the copies should be chosen for read.
In the typical case where each plex of the mirrored volume has the same layout,
VxVM reads each mirror in a round-robin manner.

The striped-mirror and mirrored-stripe layout offer similar performance and
redundancy for normal operation. The stripe-mirror layout is usually preferred

Tuning reference for Veritas Volume Manager
Commonly used VxVM layouts

92

for its ability to limit the impact of a single disk failure to a single column. VxVM
gives the flexibility of creating complex layouts by combining and layering these
layouts in different ways. For simplicity of analysis, a simple layout is generally
preferred.

To understand the performance impact of mirroring, consider two volumes, one
a striped layout and other a stripedmirror layout, created using the samenumber
of disks. Since VxVM by default allows reads to be serviced from either mirror,
read performance is about the same for both layouts. However, the stripe-mirror
has higher overhead on writes because two copies need to be written, compared
to one for the striped layout. In addition, mirroring is usually used with dirty
region logging,which adds a small overhead forwrite. Combined these two factors
reduce the write performance of the striped-mirror volume compared to the
striped volume.

Tunable parameters for mirrored volumes
The tunable parameters for Dirty Region Logging, which is generally enabled on
mirrored volumes, are discussed separately. In addition the following tunable
parameter is relevant for mirrored volumes:

This parameter specifies a limit on the memory requested by
Veritas Volume Manager (VxVM) for internal purposes. For a
mirrored volume, a write request that is greater than this size is
brokenupandperformed in chunks ofvoliomem_maxpool_sz.
The default value is 5% of memory on the system, up to a
maximum of 128 MB.

voliomem_maxpool_sz

Online re-layout
The initial layout for a volume is oftenmadewithout a good understanding of the
workload. Once the volume is in use, it may turn out that the chosen layout does
not provide adequate performance. In such cases, the online re-layout feature of
Veritas Volume Manager (VxVM) can be used to change to a different layout
altogether, such as from concat to striped, or to change the parameters of the
same layout, such as increase the number of columns in a striped volume. Online
re-layout causes someperformance degradationwhile the re-layout is in progress.

Certain transformations might not be permitted when using online re-layout.

See the Veritas VolumeManager Administrator's Guide for more information.

93Tuning reference for Veritas Volume Manager
Commonly used VxVM layouts

Dirty Region Logging for mirrored volumes
TheDirtyRegionLogging (DRL) feature ofVeritasVolumeManager (VxVM) speeds
up recovery of mirrored volumes following a system crash. When the system
crasheswhilewrites are in progress to amirrored volume, themirrors can become
out of sync. One way to recover from such a crash is to resynchronize the entire
volume completely, which can take a long time with large volumes. DRL reduces
the resynchronization time for mirrored volumes by keeping track of portions of
the volume that may be out-of-sync and then syncing only those portions.

The DRL feature works by logically dividing the volume into fixed-size regions
and maintaining a map on disk of the status of these regions. A region can be
marked as dirty, meaning that the region is potentially not in sync on all mirrors,
or clean in the DRL map. When a write is received for a block or blocks within a
region, VxVM ensures that the region is marked dirty in the DRL map on disk
before the write is allowed to proceed. If the system crashes before the write is
complete, the DRL map tells VxVM that the region must be resynchronized as
part of the recovery process. Once a write is complete, the corresponding region
can be marked clean in the DRL map if there are no other writes active on that
region. The recovery time is thus determined by the number of dirty regions in
the DRL map and the region size, rather than by the size of the volume.

VxVM uses various optimizations to ensure that the number of writes required
to maintain correct DRL bitmap status is minimized. The following list includes
some of these optmizations:

■ When a write completes, VxVM typically delays marking the corresponding
region as clean in the DRL map. It is not incorrect to have a region that is
in-sync on allmirrorsmarked as dirty in theDRLmap.However, it is incorrect
tomark a region that is out-of-sync as clean. A regionmarked dirty in the DRL
map is potentially, but not necessarily, out-of-sync; a region marked clean is
in-sync. Inmost cases, DRLwrites tomark regions as clean can be delayed and
combined with other DRL writes.

■ If a newwrite is received for a block and the region corresponding to the block
is already marked dirty in the DRL map, there is no need for a DRL update.
Except in the casewhere theworkloadhas highly randomrequests, it is usually
the case that writes show some locality: when write is received for a block, it
is likely that other blocks in the same region have been written to recently. As
a resultmanywrites to the volumedonot require aDRLupdate. This is another
reason why it makes sense to delay marking regions as clean in the DRL map.
Also, the larger the region size for the DRL, the higher the probability that a
new write will find the region already marked dirty in the DRL. Hence, the
larger the region size, the better this optimization works.

Tuning reference for Veritas Volume Manager
Dirty Region Logging for mirrored volumes

94

■ A single write to the DRL map on disk is sufficient to mark multiple regions
as dirty.Writes received concurrently byVxVMdonot typicallymakemultiple
updates to the DRL, even if the writes are to different regions.

As a result of these and other optimizations, VxVM is able to implement DRL
functionality with low performance overhead. The DRL overhead can be further
reduced by appropriate tuning.

The DRL map is stored persistently on disk and storage must be configured for
storing the map. You can store the map in one of two ways:

■ Use a traditional DRL that uses a log sub-disk to store the DRL map.

■ Use a version 20DCOvolume that can store theDRLmapand also regionmaps
for instant snapshots

Performance tuning for the two cases is similar, but minor differences exist.

Tuning traditional Dirty Region Logging
Traditional Dirty Region Logging (DRL) uses a log sub-disk to store the bitmaps
necessary to implement DRL functionality.Multiple options exist for configuring
the log sub-disk.

See the Veritas VolumeManager Administrator's Guide for more information.

In the simplest and most common case, use the vxassist command, either at
volumecreationor later, to associate a dedicated logplexwith themirrored volume
and turn on DRL functionality; the log plex contains the log sub-disk that stores
the DRL bitmaps.

The region size for the DRL has a large impact on performance and speed of
recovery. For traditional DRL, the region size is not specified explicitly. Instead,
the size is computed as follows:

■ If you specify the log length explicitly at the time that you create the log
sub-disk, thenVeritasVolumeManager (VxVM)uses the log length to calculate
the region size such that the DRL bitmap fits in the log. However, if the region
size calculated based on the log length is less than the minimum region size
allowed for traditional DRL, then the minimum region size is used. The
minimum region size is 1024 sectors (512 KB). Specifying a large log length
reduces DRL region size; this favors speedier recovery, but reduces
performance.

■ If you do not specify the log length at the time of that you create the log
sub-disk, VxVM picks a default log length and then calculates the region size
such that the DRL map fits in the log. The minimum region size also applies
in this case. The default log length picked byVxVM is typically small. For large

95Tuning reference for Veritas Volume Manager
Dirty Region Logging for mirrored volumes

volumes, this results in a very large region sizewhich gives better performance,
but increases recovery times.

The following VxVM tunable parameters are also relevant for tuning traditional
DRL performance:

This parameter controls the maximum number of dirty
regions that VxVM allows at a time. This is a system
parameter; the number of dirty regions in all of the
volumes on a system combined are not allowed to exceed
voldrl_max_drtregs. Increasing the value of this
tunable parameter improves performance, although the
benefit seen will depend on the nature of the workload.
Performance improves because a larger value for this
parameter givesVxVMmore flexibility in optimizingDRL
updates. Cleaning of dirty regions can be delayed, which
can help avoidDRLupdateswhennewwrites to the same
regions are received. The default value of this parameter
is 2048. Increasing the value of this parameters can
increase the recovery time.

voldrl_max_drtregs

This tunable parameter is a per-volume limit on dirty
regions for amirrored volume using traditional DRL. For
heavily-used volumes, the value of this parameter can be
increased to improve performance. The default value of
this parameter is 256. The maximum value is the value
of the parameter voldrl_max_drtregs.

voldrl_volumemax_drtregs

This tunable parameter applies to sequential DRL. The
default value of this parameter is 3.

See “Sequential Dirty Region Logging” on page 97.

voldrl_max_seq_dirty

Tuning Dirty Region Logging in a version 20 DCO volume
A version 20 DCO volume accommodates the region bitmaps for both DRL and
instant snapshots. In the case of version 20 DCO, region size can be specified
explicitly. By default, the region size is 64 KB. When using only the DRL
functionality, the region size should generally be chosen to be a higher value.
When using the same DCO volume for DRL and instant snapshots, there are
additional considerations in choosing region size.

See “Using a version 20 DCO volume for both Dirty Region Logging and instant
snapshots” on page 102.

The following tunable parameters are relevant for tuning DRL performance with
a version 20 DCO volume:

Tuning reference for Veritas Volume Manager
Dirty Region Logging for mirrored volumes

96

The behavior of this tunable parameter is the same
for traditional DRL and DRL in a version 20 DCO
volume. This parameter controls the maximum
number of dirty regions that VxVM allows at a time.
This is a system parameter: the number of dirty
regions in all of the volumes on a system combined
are not allowed to exceed voldrl_max_drtregs.
Increasing the value of this tunable parameter
improves performance, although the benefit seen
depends on the nature of theworkload. Performance
improves because a larger value for this parameter
gives VxVM more flexibility in optimizing DRL
updates. A larger value allows cleaning of dirty
regions to be delayed, which can help avoid DRL
updates when new writes to the same regions are
received. The default value of this parameter is 2048.
Increasing the value of this parameter can increase
the recovery time.

voldrl_max_drtregs

This tunable parameter is a per-volume limit on dirty
regions for a mirrored volume using DRL with a
version 20 DCO volume. For heavily used volumes,
the value of this parameter can be increased to
improve performance. The default value of this
parameter is 1024. The maximum value is the value
of the parameter voldrl_max_drtregs.

voldrl_volumemax_drtregs_20

This tunable parameter applies to sequential DRL.

See “Sequential Dirty Region Logging” on page 97.

voldrl_max_seq_dirty

This ismaximumamount ofmemory thatVxVMuses
for caching bitmaps and other metadata in version
20DCOvolumes. The default is 6MB. The valid range
is 0 to 50% of the physical memory. Symantec
recommends increasing the value of this tunable
parameter when you have large volumes and a small
region size.

volpagemod_max_memsz

Recovery time considerations for DRL in a version 20 DCO volume are the same
as for traditional DRL. Recovery time increases when the region size increases
and when the number of dirty regions increases.

Sequential Dirty Region Logging
Veritas Volume Manager (VxVM) provides an optimized form of Dirty Region
Logging (DRL), called sequentialDRL, for usewith volumeswhere thewrite pattern

97Tuning reference for Veritas Volume Manager
Dirty Region Logging for mirrored volumes

is known to be sequential. Sequential DRL can be enabled with traditional
DRL--that is, DRL using a log sub-disk--or with DRL in a version 20 DCO volume.
In sequential DRL, when a new region is written for the first time, the region and
a fewother regions ahead of the region sequentially aremarkeddirty. At the same
time, all other regions are marked clean.

TheVxVMtunable parameter voldrl_max_seq_dirty specifies howmany regions
aremarked dirty in eachDRLupdate. The default value of voldrl_max_seq_dirty
is 3. Consider a mirrored volume with a sequential DRL and region size of 512 KB
to which an application is writing sequentially in 8 KB requests. In this case, each
DRLwrite dirties 3 regions of 512KB each. The firstwrite to a region in the volume
triggers a DRL update to mark that region and 2 other regions dirty. The next 63
writes to the volume (512 KB region size / 8 KB write size = 64) are to the same
region since the writes are sequential. Thewrite after that (65thwrite) is to a new
region, but one that has already beenmarked dirty by the last DRL update. In this
example, the overhead of DRL writes is 1 DRL write for every 192 (512 KB * 3 / 8
KB) writes to the volume, which shows that the sequential DRL overhead can be
very low. Since the number of dirty regions at any time is very low, recovery is
also fast. The DRL overhead can be further reduced by increasing the region size
and by increasing the value of voldrl_max_seq_dirty. As with other types of
DRL, a larger region size and more dirty regions increase recovery time.

Instant snapshots
An instant snapshot in Veritas Volume Manager (VxVM) is a point-in-time copy
of data in a volume. The command to create an instant snapshot typically
completes in a matter of seconds. Once the command completes, the instant
snapshot is available for use as a point-in-time copy of the original volume. Even
if the original volume is updated, reads to the snapshot return data that existed
in the original volume at the point in time when the snapshot was created. VxVM
implements instant snapshots using a copy-on-write technique. When a block in
the original volume is updated for the first time after snapshot creation, VxVM
makes a copy of the old data in the block before applying the new update to the
block.

There are two types of instant snapshots available in VxVM: full-sized instant
snapshots (or simply, full instant snapshots) and space-optimized instant
snapshots (SO snapshots). A full instant snapshot requires that space equal to
the size of the original volume be dedicated for the snapshot. On the other hand,
SO snapshots are typically allocated only a fraction of the space of the original
volume.

Tuning reference for Veritas Volume Manager
Instant snapshots

98

Full instant snapshots
Since a full-size instant snapshot has space equal to that of the original volume,
it can hold the point-in-time copy of every block in the original volume. Data gets
populated in the snapshot volumeover time due to copy-on-write and background
syncing. As long as the data in the snapshot volume has not been completely
populated, Veritas VolumeManager (VxVM) serves read requests to the snapshot
volume from either the snapshot volume or the original volume, as appropriate.
Once the full instant snapshot is completely populated, all reads to the snapshot
get serviced from the snapshot volume itself without any request load on the
original volume.

VxVM implements instant snapshots on a volume by dividing the volume into
fixed-size regions and tracking writes to these regions. On the first write to a
region after a snapshot has been created, VxVM copies data from the region in
the original volume to the snapshot volume. This copy-on-write mechanism
ensures that the snapshot volume retains the data corresponding to the
point-in-time when the data was created. The write that triggers a copy-on-write
may be much smaller than the region size itself. For example, if the region size
is 64 KB and the write issued by the application is 8 KB, VxVM copies a whole 64
KB region to the snapshot volume before applying the 8 KB write to the original
volume.

Region size for a full instant snapshot
The region size has a significant impact on performance. A larger region size
causes higher latency for the first write to a region after snapshot creation, since
that write triggers copy-on-write. However, any subsequent write to the same
region, whether to the same block or to a different block in the same region, does
not incur the copy-on-write performance penalty. For workloads with mostly
random writes, a small region size close to the default of 64 KB works well,
especially if the system has a storage bottleneck. For workloads with good write
locality,meaning theworkload hasmanywrites to the same regions, a region size
larger than the default size can give better performance. Generally, the default
region size works well for full-size instant snapshots for a range of workloads.

Configuring a version 20 DCO volume for a full instant snapshot
To use the instant snapshot functionality, you must create a version 20 DCO
volume and attach the DCO volume to the volume for which you want to use
snapshots. The DCO volume contains space for the region maps needed to track
write activity. A key parameter when creating a version 20 DCO volume is the
region size. By default, the region size is 64 KB, but the size can be a power of 2,
with 16 KB as the minimum possible value.

99Tuning reference for Veritas Volume Manager
Full instant snapshots

The following tunableparameterhasan impact onperformanceof instant snapshot
functionality:

This is maximum amount of memory that Veritas Volume
Manager (VxVM) uses for caching bitmaps and other
metadata in version 20 DCO volumes. The default is 6 MB.
The valid range is 0 to 50% of the physical memory.
Symantec recommends increasing the value of this tunable
parameter when you have large volumes and a small region
size.

volpagemod_max_memsz

Creation time for full instant snapshot
When you issue the vxsnap make command to create a full instant snapshot on
a volume, applications might be writing to the volume at the same time. To get
consistentmetadata,VeritasVolumeManager (VxVM) typically freezesnewwrites
and drains existing writes for short periods during snapshot creation. If the
snapshot is takenduring aphasewhere there is heavywrite activity on the volume,
the vxsnap make command generally takes longer to complete. The snapshot
creation time increases for a larger region size.

Background syncing for full-sized instant snapshots
In addition to the copy-on-write mechanism that populates data in the snapshot
volume, Veritas Volume Manager (VxVM) has a background syncing mechanism
to copy regions from the original volume to the snapshot volume. The reading of
data from the original volumeas part of background syncing causes a performance
penalty for accesses to the original volume, over and above the performance
penalty of copy-on-write. At the time of snapshot creation, background syncing
can be turned off. Whether or not that is desirable depends on the intended use
of the snapshot: without background syncing, the data in the snapshot volume
might not be fully populated.

Background syncing can be tuned by specifying two parameters:

■ I/O size used during background copying of data.

■ Delay between successive background copying.

Performance impact of a full instant snapshot on the original volume
A full instant snapshot can have a negative impact on the performance of the
original volume, although the impact is usually small. During snapshot creation,
there is a brief period while the writes to the volume are frozen, as mentioned

Tuning reference for Veritas Volume Manager
Full instant snapshots

100

above. After that the performance impact on the original volume is due to the
cumulative effect of the following factors:

■ Copy-on-write overheadwhile the snapshot is not fully populated. This is high
soon after the snapshot has been created, when almost no regions have been
populated in the snapshot; it tapers off as more regions are populated in the
full instant snapshot due to copy-on-write and background syncing.

■ Background syncing.

■ Reads on the snapshot while it is not fully populated. Initially, many of the
reads will be serviced from original volume. As more data gets populated in
the full instant snapshot, fewer readsneed to serviced fromtheoriginal volume.

Space optimized instant snapshots
A space optimized instant snapshot (SO snapshot) does not require that space
equal to the original volume should be reserved for the snapshot. Instead, an SO
snapshot uses a cache object mechanism that works with a fraction of the space
of the original volume and stores only modified regions within this cache object.
There are similarities in the way full-sized instant snapshots and SO snapshots
are implemented: both rely on region maps in a version 20 DCO volume to keep
track of writes to regions and both employ a copy-on-write mechanism.

There are twomain considerations in choosing the region size for an SO snapshot:

■ Performance: The region size considerations for an SO snapshot are similar
to those for a full instant snapshot from a performance standpoint. A larger
region size causes a larger delay for writes that trigger copy-on-write.

■ Space utilization: A larger region size causes more waste of space because the
whole region, including blocks that have not been modified, must be stored in
the cache object; considering that SO snapshots are used with space saving in
mind, a large region size works against that principle.

Symantec recommends that you use the default region size (64 KB) or a region
size close to that for SO snapshots.

Performance comparison of full-sized and spaced
optimized instant snapshots

Copy-on-writes in the case of a space optimized instant snapshot (SO snapshot)
require a write to the cache object, and reads from SO snapshot require a read on
the cache object. A cache object read or write has a higher cost than read or write

101Tuning reference for Veritas Volume Manager
Space optimized instant snapshots

on a normal volume. The main advantage of SO snapshots is the space saving.
Full instant snapshots perform better in all of the following cases:

■ Snapshot creation time, and the performance impact on the original volume
because of writes being frozen during snapshot creation, is lower with full
instant snapshots compared to SO snapshots.

■ Performance of applications that write to the original volume, is better with
full instant snapshot because writing a region to a full snapshot volume
(copy-on-write) is more efficient than writing the region to a cache object.

■ Performance of applications, such as backups that read from the snapshot
volume, tend to be better with full instant snapshots than with SO snapshots,
because reading from a cache object has lower performance.

■ The performance impact on the original volume when the snapshot is read
quickly reduces for full instant snapshots as background syncing populates
data in the snapshot, which reduces the number of reads thatmust be serviced
from the original volume.With SO snapshots, any region that is not populated
in the cache object as a result of copy-on-write must be read from the original
volume.

These benefits are only from a performance standpoint.

Formore information about the differences between full-sized instant snapshots
and spaced optimized instant snapshots, see the Veritas VolumeManager
Administrator's Guide.

Using a version 20 DCO volume for both Dirty Region
Logging and instant snapshots

One of the conveniences of a version 20DCOvolume is that the sameDCOvolume
can be used for Dirty Region Logging (DRL) and for instant snapshots. A large
region size is generally preferable for DRL to reduce the overhead of DRL writes.
When a version 20DCO volume is used just for DRL (no instant snapshots) a large
region size is recommended. For instant snapshots, on the other hand, amoderate
region size (close to the default of 64 KB) generally works better. If the workload
has a large percentage of writes, high degree of concurrency and random nature,
DRL overhead can be significant with a small region size. For such workloads, if
instant snapshot and DRL are both desired on the same volume, it might be
necessary to use a region size that is larger than the default of 64 KB as a
compromise betweenwhat is good forDRL andwhat is good for instant snapshots.

Tuning reference for Veritas Volume Manager
Using a version 20 DCO volume for both Dirty Region Logging and instant snapshots

102

Tuning reference for
Dynamic Multi-Pathing

This chapter includes the following topics:

■ About Dynamic Multi-Pathing in the data center

■ About tuning Dynamic Multi-Pathing

■ Dynamic Multi-Pathing device discovery

■ Dynamic Multi-Pathing I/O load balancing

■ Tuning Dynamic Multi-Pathing error handling

■ Dynamic Multi-Pathing path analysis

■ Summary of Dynamic Multi-Pathing tuning

About Dynamic Multi-Pathing in the data center
Dynamic Multi-Pathing (DMP) is an I/O multi-pathing layer that simplifies the
task ofmanaging storage performance and availability in complex environments.
A typical data center environment has a large number of LUNs configured in disk
arrays andmade visible to servers over a storage area network; multiple HBAs on
each server, a storage area network with redundancy, and multi-controller disk
arrays together provide multiple paths to the LUNs that can be used to improve
availability and performance. All this makes for a complex environment. The
performance implications of configuration decisions are especially difficult to
predict in this environment because of accesses to shareddisk arrays frommultiple
servers, variations in applications' load levels, and failure and recovery of
components that cause changes in request routing patterns.

6Chapter

The basic task of a multi-pathing layer is to exploit the multiple paths provided
by the hardware to improve availability and performance transparently for
applications: if an I/O fails on one path due to a fault in a component on the path,
the multi-pathing layer can issue the I/O on another path, thus improving
availability. Also, different concurrent I/Os can be sent down different paths in
parallel to improve performance. DMP provides advanced capabilities that go
beyond basic multi-pathing functionality; these capabilities are essential for
ensuring good I/O performance and availability in today’s complex data center
environments. For example, DMP has load balancing policies that can adapt the
loaddistribution to changes in theperformance characteristics of the environment,
in addition to distributing the I/O load acrossmultiple paths. As another example,
DMP inmany cases can identify and avoid faulty paths pro-actively, thus avoiding
the performance penalty of recovering from errors it, in addition to recovering
from an I/O error on a path and issuing the I/O on another path.

Administrators canmaintain overall control over operations throughpolicies and
tunable parameters while DMP dynamically adapts to the operating conditions
within these constraints. The features provided by DMP considerably reduce the
complexity with which administrators must deal.

About tuning Dynamic Multi-Pathing
Dynamic Multi-Pathing (DMP) operation, and tuning DMP operation from a
performance standpoint, can be thought of in terms of the following areas:

■ Device discovery
Device discovery does the following things:

■ Uniquely identifies LUNs on multiple paths

■ Uniquely identifies LUNs into an enclosure

■ Identifies the model and type of LUN, such as A/A or ALUA, and applies
load balancing policies as predefined in theArray Support Libraries (ASLs)

■ I/O load balancing
DMP attempts to improve performance of I/Os issued on a DMP meta-device
by balancing the I/Os on the multiple I/O paths for the meta-device. The way
the load is balanced on the set of active paths for a meta-device is determined
primarily by theDMP I/Opolicy in effect. There aremany different I/O policies
in DMP that an administrator can choose depending on the workload and
operating environment; the default I/O policy generallyworkswell for a range
of workloads and operating environments.

■ Error detection and handling

Tuning reference for Dynamic Multi-Pathing
About tuning Dynamic Multi-Pathing

104

To deliver the higher availability and performance made possible by multiple
I/O paths, DMP must handle a variety of errors appropriately. Much of DMP’s
error handling behavior, such as timeout intervals and the number of retries
in different error scenarios, can be modified using tunable parameters.

Warning: Inmost cases, the default values of these parameters are appropriate
and they should be changed with caution.

■ Path analysis
The state of an I/O path (healthy or failed) can change due to errors in various
components on the path and the components' subsequent recovery. Themore
up-to-date the information that DMP has on the state of the I/O paths, the
better its I/O scheduling decisions can be. Path analysis inDMPkeeps the state
of paths reasonably up-to-date to enable better schedulingdecisions. Thepath
analysis behavior of DMP can be tuned to favor improved state information
at the cost of extra CPU cycles and I/O, or the behavior can be tuned to favor
lower CPU and I/O overhead, but with less up-to-date state information on I/O
paths. DMP has a number of tunable parameters that determine aspects of
path analysis. The default settings of these parameters provides behavior that
is generally appropriate for most environments.

DMP can discover Fibre Channel events and monitor for Fibre Channel events.
When a Fibre Channel event is received, DMP can, based on the discovered
topology, identify the I/O paths that may be impacted by the event. DMP uses
SCSI passthru interfaces for fast error handling capability to get detailed error
information in the case of I/O errors so that DMP can handle the errors
appropriately. DMP can group I/O paths into Subpath Failover Groups (SFGs) and
make collective decisions for a whole group. This feature is particularly useful in
avoidingmultiple I/O errors in cases where a fault affects a whole group of paths.

See the Dynamic Multi-Pathing Administrator's Guide.

You can display and change online the tunable parameters that control DMP
operation using the vxdmpadm command. Use the vxdmpadm gettune command
to list the parameters and their values, and the vxdmpadm settune command to
change the parameter values.

vxdmpadm gettune all

Tunable Current Value Default Value

------------------------------ ------------- -------------

dmp_cache_open on on

dmp_daemon_count 10 10

dmp_delayq_interval 15 15

dmp_enable_restore on on

105Tuning reference for Dynamic Multi-Pathing
About tuning Dynamic Multi-Pathing

dmp_fast_recovery off on

dmp_health_time 60 60

dmp_log_level 1 1

dmp_low_impact_probe on on

dmp_lun_retry_timeout 0 0

dmp_path_age 300 300

dmp_pathswitch_blks_shift 9 9

dmp_probe_idle_lun on on

These tunable parameters are system-wide, such that the parameters control how
theDMPmodule operates in general for all storage devices. DMPalso allows some
aspects of its operation to be customized for an enclosure, array, or array-type
by setting attributes for the enclosure, array, or array-type using the vxdmpadm
setattr command.Where it is possible to do so, these provide fine-grained control
over DMP operation.

DMP has a pool of kernel threads for handling error analysis, path restoration,
and other administrative tasks. The number of these threads can be controlled
using the following tunable parameter:

This tunable parameter specifies the number of kernel
threads. The default value is 10, andSymantec recommends
that you do not reduce the value of this parameter. For
high-end servers with more than 20 CPU cores, Symantec
recommends that you set this tunable parameter to half the
number of CPU cores in the server.

dmp_daemon_count

DMPcanbe configured to gather statistics for the I/Os that it processes. Statistics
gatheringwithinDMPcanbeenabledusing thevxdmpadm iostat start command.
When statistics gathering is enabled, DMPmaintains statistics for I/Os that have
completed and maintains timing information for pending I/Os. The idle LUN
probing feature and timeout-based I/O throttling feature only take effect when
statistics gathering has been enabled. Gathered statistics can be displayed using
the vxdmpadm iostat show command.

Formore information on gathering and displaying I/O statistics, see theDynamic
Multi-Pathing Administrator's Guide.

When enabled, statistics gathering can have a small impact on performance. This
impact can be controlled without turning off the feature by using the following
tunable parameter:

Tuning reference for Dynamic Multi-Pathing
About tuning Dynamic Multi-Pathing

106

This is the interval at which DMP processes statistics.
Increasing the interval reduces the overhead of statistics
gathering. The default andminimumvalue is 1 second. This
value can be increased to reduce the performance impact
of statistics gathering. However, a larger interval can result
in buffer overflows and hence affect the accuracy of
statistics.

dmp_stat_interval

Dynamic Multi-Pathing device discovery
Device discovery in Dynamic Multi-Pathing (DMP) is the process through which
DMP identifies the I/O paths corresponding to each LUN. In device discovery,
DMP examines disks discovered by the operating system and identifies the disks
that represent different paths to the same LUN. For each LUN,DMP creates a new
device in the operating system device tree; this device is the DMPmeta-device for
the LUN and can be used by higher layers of the storage stack to perform I/O on
the LUN. For each I/O on a meta-device, DMP issues the I/O on one of the paths
for the meta-device.

Device discovery inDMP is aided by array-specific Array Support Libraries (ASLs).
ASLs are generally installed as part of Veritas Storage Foundation (SF).

For information on ensuring that the latest ASLs are installed, see the Dynamic
Multi-Pathing Installation Guide.

The following tunable parameter optimizes the discovery process:

The device discovery layer might need to send multiple
requests to each device as part of the discovery process.
When dmp_cache_open is set to on, the first open on a
device by the ASL is cached and subsequent accesses can
use the cachedhandle. Setting this parameter tooffdisables
caching during device discovery and can slow the discovery
process. The default and recommended value of this
parameter is on.

dmp_cache_open

Dynamic Multi-Pathing I/O load balancing
Dynamic Multi-Pathing (DMP) balances I/Os issued on a meta-device across the
multiple I/O paths for themeta-device. ADMPmeta-device typically corresponds
to a LUN. Some paths might be excluded from the load balancing process as
specified below:

107Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing device discovery

■ Paths that have been disabled by an administrator and paths discovered by
DMP to have failed are not used.

■ Based on the array type, some paths may be excluded. For example, on an
active-passive array, only the primary paths are used duringnormal operation;
other paths are used only after a failover.

■ I/O throttling can cause some paths to be excluded from consideration
temporarily.

The way load balancing is performed in DMP is determined by the I/O policy in
effect. DMP provides a number of different I/O policies. By default, the minimumq
I/Opolicy is used for allmeta-devices, but the I/Opolicy canbe set for an enclosure,
array, or array-type using the vxdmpadm setattr command.

Formore information on specifying the I/Opolicy, see theDynamicMulti-Pathing
Administrator's Guide.

Dynamic Multi-Pathing default I/O policy
The default I/O policy in Dynamic Multi-Pathing (DMP) is the minimumq policy.
With this policy, when a new I/O is received for a meta-device, DMP schedules it
on thepath for themeta-device that has theminimumnumber of requests pending
on it. Even though it is a simple criterion, the number of pending requests
succinctly captures significant information about path performance, and the use
of this criterion gives the minimumq policy the following beneficial characteristics:

■ When the multiple paths for a meta-device are all performing comparably,
minimumq distributes I/O load evenly across the paths at high load.

■ When there is a difference in performance among the paths, better performing
paths automatically get a higher proportion of the I/O load. These paths service
requests faster and reduce the number of pending requests faster, and hence
become eligible for more new I/Os.

■ When there is a change in the relative performance of the I/O paths, minimumq
quickly adapts. If a path that had been performing well degrades in
performance, the queue of requests on the path grows and minimumq

automatically diverts most new I/O requests to other paths. This ability to
adapt to changes in path performance is important because, in most
environments, the performance delivered by paths changes over time. Errors
in storage network components, which can cause re-routing of requests and
create hotspots, changes in applications’ access patterns and load levels, and
accesses from multiple servers to the same arrays can all cause slowing down
of some paths compared to others.

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing I/O load balancing

108

While all DMP I/O policies can handle the failure of one ormore paths, not all are
able to adapt well when the performance characteristics of active paths change
significantly; the ability to do this is a distinct advantage that minimumq has over
many other policies. The minimumq policy has been seen to work as well as or
better than other policies for a range of workloads and operating conditions.
Symantec recommends that you use the minimumq I/O policy in DMP.

Optimizing disk array cache usage with the balanced policy
The balanced I/O policy in DMP is designed to balance the I/O load across the
available paths while optimizing controller cache usage in the underlying disk
arrays. DMP is frequently usedwithhigh-end, active-active (A-A) disk arrayswith
large caches in the disk array controllers. With an A-A array, DMP can send an
I/O request on any path, to any of the controllers, unlike with an active-passive
arraywhere I/Os are sent to the secondary controller only after a failover.However,
if an I/O request for a particular block is sent to one controller of an A-A array,
and a later I/O request for the same block is sent a different controller, the block
will likely reside in the caches of both controllers. The balanced I/O policy tries
to avoid this cache duplication in the disk array by a careful mapping of blocks
to paths. Requests for a particular block are always sent on the same path in this
policy, but because different blocks map to different paths, load balancing is still
achieved. In case of path failures, the mapping of blocks to paths is re-adjusted.
Theactual performancebenefit fromthebalancedpolicydependsonmany factors,
including the cache management techniques of the disk array and nature of the
workload. In those cases where the disk array caches are under pressure, the
balanced I/O policy is a possible option for improving performance through
optimized caching.

In the balanced I/O policy, each I/O request is mapped to a path based on the
starting address of the I/O request. Themapping is based on apartition size,which
can be specified when configuring the policy using the vxdmpadm setattr

command. The mapping can be described as follows:

■ The storage space of the LUN (a disk or LUN can be thought of as a linear array
of bytes) can be thought of as being divided into partitions, the size of each
being the partition size.

■ When the starting address of a request is divided by the partition size, you get
the partition to which the starting address belongs.

■ Each partition is mapped to an I/O path in a rotating fashion. For example, if
there are 4 I/O paths, partition 0 is mapped to path 0, partition 1 to path 1,
partition 2 to path 2 and partition 3 to path 3; partition 4 is mapped to path 0
again.

109Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing I/O load balancing

■ More formally, the I/Opath onwhich an I/O request is to be sent is determined
as follows: the starting address of the request is divided by the partition size
to give the partition number; the partition number modulo the number of
paths gives the path number on which the request is to be sent.

When the partition size for the balanced policy is not specified, the default
partition size takes effect. The default partition size is the governed by the
following tunable parameter:

This tunable parameter specifies the default partition size
that applies in those cases where the partition size is not
specified while configuring the balanced I/O policy for an
enclosure, array, or array-type using the vxdmpadm
setattr command.This tunableparameter is only relevant
with the balanced I/O policy, not with other I/O policies.
The value of this parameter is expressed as the integer
exponent of apower of 2. Thedefault value of this parameter
is 9, which means the default partition size is 29; that is,
512 blocks or 256k. Increasing the value of this parameter
by 1, doubles the default partition size. If the value of this
parameter is set too high, it can result in uneven load
distribution on the paths. If the application I/O activity is
localized to an address range of the LUN and the partition
size is too large, some of the paths may not get any I/O
requests. If the value of this parameter is small relative to
the I/O request size, many requests may span partitions,
which is not desirable.

dmp_pathswitch_blks_shift

When the partition size is specified explicitly in the vxdmpadm setattr command,
the value is rounded down to the nearest power of 2 and interpreted as the number
of blocks in the partition. For example, if the partition size is specified as 1200,
the partition size usedwill be 1024 blocks or 512k. If the partition size is specified
as 0, the default partition size, which is based on the value of
dmp_pathswitch_blks_shift, is used.

Since the balanced I/O policy tries to spread the I/O load equally among available
I/O paths, it works well when the paths have roughly the same performance; it
does not adapt well in those cases where some paths are performing poorly
compared to others due to storage network problems or other issues. This is a
drawback of the balanced policy compared to the default minimumq policy. The
performance benefit from changing the default I/O policy to the balanced I/O
policy varies depending on the workload and the cache management techniques
of the disk array for which the change is made. In many cases, the performance
benefit from the caching optimization might be small, giving minimumq an edge

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing I/O load balancing

110

over the balanced policy. For these reasons, the minimumq policy is the default
even for A-A arrays.

Dynamic Multi-Pathing I/O policies
The following I/O policies are available in Dynamic Multi-Pathing (DMP):

■ adaptive

In this policy,DMPdynamically calculates recentpathperformanceandassigns
priorities to paths based on their performance. Specifically, DMP calculates
throughput, or bytes delivered per second. Paths that deliver better
performance are assigned a higher priority. I/Os are then routed so that higher
priority paths get a greater share of the I/O load. As with the minimumq policy,
this policy is able to adapt dynamically to changes in the storage environment
that affect path performance. The bookkeeping overhead for this policy, which
is the overhead involved in calculating path priorities and scheduling I/Os in
proportion to priority, tends to be higher than the overhead for minimumq.

■ balanced

This policy attempts to optimize disk array cache usage while balancing the
I/O load on the available paths. The tunable parameter
dmp_pathswitch_blks_shift is used with this policy.

See “Optimizing disk array cache usagewith the balanced policy” onpage 109.

■ minimumq

This is the default and recommended I/O policy in DMP.
See “Dynamic Multi-Pathing default I/O policy” on page 108.

■ priority

In this policy, administrators canmanually assignpriorities to paths andDMP
will distribute I/Os among the paths proportionally based on their priority.
The priority is an integer value; a higher value indicates that the path should
be given a larger share of the I/O load. As an example, if there are two paths
with priorities 1 and 2, the path with priority 2 will get two-thirds of the I/Os,
while the other one will get a third. This policy may be useful in certain
circumstances where administrators want to carefully control the I/O flow on
paths. Since the policy is based on a static division of I/O load, it is difficult to
employ this policywell in complex environmentswhere unpredictable changes
in path performance is common.

■ round-robin

In this policy, I/Os are sent down different paths in a randomized fashion so
that load is spread evenly across all paths. The overhead of path selection in
this policy is less compared to minimumq.

111Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing I/O load balancing

Theminimumqpolicyneeds to sort available pathsbyqueue length;round-robin
is simpler. This policyworkswell when the performance of the active I/Opaths
are about the same, but it does not adapt as well as minimumq to changes that
may create imbalances in the performance of paths.

■ singleactive

In this policy, only one of the available paths is used for I/Os. If the active path
fails, one of the other paths is made active. That is, this policy uses multiple
paths only for high availability, not for load balancing. Only an outright path
failure causes a new path to be chosen as the active path. In cases where the
performance delivered by the active path drops, such as because of problems
in the storage network, the policy continues to use the same path even though
other paths may be capable of delivering better performance.

Dynamic Multi-Pathing I/O throttling
I/O throttling is amechanismbywhichDynamicMulti-Pathing (DMP) temporarily
stops issuing I/Os topaths that appear to be either overloadedorunderperforming.
There is a default I/O throttling mechanism in DMP based on the number of
requests queued on apath and it is controlled by the following tunable parameter:

When the number of requests queued on a path reaches the
value of this tunable parameter, DMP does not schedule
new I/Os on the path until one or more of the pending
requests complete. Thedefault value ofdmp_queue_depth
is 32 on Solaris, Linux, and AIX. The default value is
appropriate for most environments and tuning this
parameter is not recommended.

dmp_queue_depth

Administrators can also configure throttling based on request response times.
An enclosure, array, or array type can be configured so that I/Os to a path are
throttled when the time for which a request has been outstanding on the path
exceeds a specified I/O timeout. The timeout is specifiedwhen throttling is enabled
by using the vxdmpadm setattr command. When timeout-based throttling is
enabled, DMP stops issuing I/Os on a path if there is at least one request that has
been outstanding on the path for the specified timeout. This kind of throttling
requires I/O statistics gathering to be enabled. Timeout-based throttling can be
useful in cases where one or more paths are responding slowly to I/Os; when
configured properly, the throttling mechanism can limit I/Os sent to the
underperforming paths.

The following example illustrates how timeout-based throttling works with 2 I/O
paths (P1 and P2), with an I/O timeout of 10 seconds and minimumq as the I/O
policy:

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing I/O load balancing

112

■ DMP gets a request, R1, which it issues on path P1. After 8 seconds, DMP
receives a request, R2, which it issues on path P2, a request, R3, which it issues
on path P1, and a request, R4, which it issues on path P2, following the
minimum queue (the minimumq I/O policy) logic.

■ After another 3 seconds,which is 11 seconds after R1was issued, DMP receives
requests R5 and R6. Since the throttling timeout has been exceeded for path
P1, DMP issues both R5 and R6 on path P2, even though P1 would have been
the normal choice for one of the requests based on the minimum queue logic.

■ After another 2 seconds, R1 completes.

■ After another second, DMP receives a request R7. At this point, neither path
P1 nor P2 has a request that has been outstanding for 10 seconds, so neither
will be throttled. Since P1 has the smaller queue, DMP issues R7 on path P1.

The statistics obtained fromDMPor fromoperating systemutilities suchasiostat
can be used to determine whether it is appropriate to enable timeout-based
throttling. If the I/O service times on one or a fewpaths are seen to bemuchhigher
than others on a fairly balanced request distribution, timeout-based throttling
may be appropriate for the concerned enclosures. The timeout value can be based
on the observed service times on healthy paths. A larger value of the I/O timeout
generally allowsmore requests to get queuedbefore throttlinghappens, essentially
delaying the detection of slow paths. A smaller value of the timeout can limit the
number of concurrent requests.

Tuning Dynamic Multi-Pathing error handling
The error handling capabilities of Dynamic Multi-Pathing (DMP) are key to its
goal of providing the high availability and performancemade possible bymultiple
I/O paths. Aspects of error handling in DMP can be tuned to get the behavior
desired in a particular environment. In most cases though, the default settings
for the tunable parameters governing error handling work well and they should
be changed with caution. The following examples illustrate tuning decisions
related to error handling that an administrator canmake, alongwith the relevant
tunable parameters:

■ Should DMP try to get detailed error information from the HBA interface in
order to enable better error analysis (dmp_fast_recovery)?

■ How many times should DMP retry an I/O on a path when the I/O returns an
error but error analysis indicates that thepath is not faulty (dmp_retry_count)?

■ How long should DMP wait after sending a SCSI command before timing out
(dmp_scsi_timeout)?

113Tuning reference for Dynamic Multi-Pathing
Tuning Dynamic Multi-Pathing error handling

■ Should DMP detect and avoid intermittently failing paths (dmp_health_time
and dmp_path_age)?

■ How long should DMP wait after a failover, such as with an active-passive
array, before commencing I/Os (dmp_delayq_interval)?

■ How should DMP behave when all paths to a LUN have failed, which in some
cases indicates an array undergoingmaintenance (dmp_lun_retry_timeout)?

Dynamic Multi-Pathing SCSI bypass
A key to intelligent error analysis in Dynamic Multi-Pathing (DMP) is its SCSI
bypass capability. For normal application I/O, DMP effectively sits on top of the
SCSI layer. DMPperformspath selection and then issues the I/O to the SCSI driver.
But, in case an I/O fails, DMP can bypass the SCSI layer to get more detailed error
informationdirectly from theHBA interface. TheSCSI bypass capability is enabled
and disabled using the tunable parameter dmp_fast_recovery. SCSI bypass gives
DMP access to error information that the SCSI layer would normally not pass on
and allows DMP to make better decisions on how errors should be handled.
Although provided as a tunable parameter, in most cases you should not disable
this capability.

Dynamic Multi-Pathing I/O failure handling
This section describes the following aspects of Dynamic Multi-Pathing’s (DMP)
I/O failure handling:

■ When an I/O issued on a path fails, when does DMP retry the I/O on the same
path before trying another path?

■ If an I/O has failed on repeated retries, when does DMPdecide to stop retrying
and fail the I/O altogether?

When an I/O issued on a path fails, DMP first performs error analysis on the path
on which the I/O failed. If error analysis indicates that the path is faulty, the I/O
will be tried on another path, if one is available.However, if error analysis indicates
that the path is not faulty, DMP will retry the I/O on the same path a certain
number of times as specified by the tunable parameter dmp_retry_count before
trying the I/O on another path. After eachunsuccessful retry, DMPperforms error
analysis to determine whether the path is faulty. The default value of
dmp_retry_count is 5; lowering this value causes DMP to try alternate paths
sooner.

When an I/O fails on repeated retries, DMP at some point decides to fail the I/O
instead of retrying it further. The decision on when to fail an I/O is based on how
I/O failure handling has been configured for the enclosure. By default, when a

Tuning reference for Dynamic Multi-Pathing
Tuning Dynamic Multi-Pathing error handling

114

time limit of 300 seconds is reached, DMP stops retrying an I/O and fails it. This
is the time-boundmethod of error retrywith a time limit of 300 seconds. The time
limit for the time-boundmethod can be changed for an individual enclosure, array
or array-type using the vxdmpadm setattr command. Lowering the value of the
time limit causes DMP to fail I/Os sooner; if the value is set too low DMP will fail
I/Os that could have succeeded.

Instead of the time-bound method, administrators can configure an enclosure,
array, or array-type to use the fixed-retry method for error retry. In this method,
DMP fails an I/O that has not succeeded after a specified number of retries. The
fixed-retrymethod can be configured for an enclosure, array, or array-type using
the vxdmpadm setattr command, and the number of retries to use is specified as
part of the command. The number of retries when the fixed-retry method is used
for error retry should generally be set to a value greater than the value of
dmp_retry_count, which specifies the number of retries per path.

Formore information on configuring the response to I/O failures, see theDynamic
Multi-Pathing Administrator's Guide.

Avoiding suspect paths in Dynamic Multi-Pathing
Dynamic Multi-Pathing’s (DMP) tries pro-actively to identify paths whose health
is suspect and avoids these paths until their health is verified. To understandwhy
this is important for good performance, consider the case where DMP issues an
I/O on a path and the I/O fails because the path is faulty. The I/Omight eventually
succeed on another path, but the application will see a higher completion time
for the I/O because of the time spent on the faulty path; this includes SCSI and
HBA timeouts andDMP error processing time. If DMP could avoid the faulty path
in the first place, performance would be better; of course, this is not always
possible.

One way in which DMP tries pro-actively to identify and avoid I/O paths that
might be faulty is by monitoring for Fibre Channel events that notify of errors in
the Fibre Channel. This behavior is controlled by the tunable parameter
dmp_monitor_fabric. DMP also uses the notion of Subpath Failover Group (SFG)
along with the tunable parameter dmp_sfg_threshold to mark a whole group of
related paths as suspect when it sees errors on some of the paths in the group.

See “Dynamic Multi-Pathing path analysis” on page 117.

DMP, by default, also tries to avoid scheduling I/Os on a path that is failing
intermittently until it sees evidence that the state of the path is stable. When a
path that was previously marked faulty is detected as healthy through one of
DMP's path analysis features, DMP tracks the health of the path to make sure it
is stable. If the state of the path changes to failed once again within a specified
time, as specified by the tunable parameter dmp_health_time, the path is

115Tuning reference for Dynamic Multi-Pathing
Tuning Dynamic Multi-Pathing error handling

considered to be intermittently failing. In this case, DMP does not schedule I/Os
on the path until the path is seen to stay healthy for a specified period, as specified
by the tunable parameter dmp_path_age. The default value of dmp_health_time
is 60 seconds and dmp_path_age is 300 seconds. If one or both of these tunable
parameters is set to 0, DMP does not detect intermittently failing paths. The
overhead of tracking paths that are failing intermittently is low and it is
recommended that this feature be left enabled.

Dynamic Multi-Pathing tunable parameters for error handling
The error handling behavior of Dynamic Multi-Pathing (DMP) can be controlled
using the following tunable parameters:

This tunable parameter controls whether DMP tries to
obtain error information directly from the HBA interface,
bypassing the SCSI layer. For AIX, Linux, and Solaris, the
default is on and is the recommended value.

dmp_fast_recovery

This tunable parameter specifies the limit on the number
of retries on the same path for cases where the I/O fails but
error analysis indicates that the path is not faulty. The
default value of this parameter is 5. While this parameter
controls the retry limit for a path, the retry limit for an I/O
canbe configuredusing thevxdmpadm setattr command
to use either the time-bound error retry method or the
fixed-retry method.

dmp_retry_count

This is the time interval forwhichDMPwaits before retrying
an I/O in the case where an array fails over to a standby
path. Some arrays are not capable of accepting I/O requests
immediately after failover. The default value for this
parameter is 15 seconds. This parameter should be changed
only with proper knowledge of the characteristics of all the
arrays attached to a system.

dmp_delayq_interval

This parameter specifies the time in seconds for which a
path must stay healthy; a path whose state changes from
enabled todisabledwithin this time ismarked intermittently
failing. DMP does not enable I/Os on such paths until
dmp_path_age seconds elapse. A value of 0 prevents DMP
from detecting intermittently failing paths.

dmp_health_time

Thisparameterworkswithdmp_health_timeasdescribed
above. A value of 0 prevents DMP from detecting
intermittently failing paths.

dmp_path_age

Tuning reference for Dynamic Multi-Pathing
Tuning Dynamic Multi-Pathing error handling

116

This parameter determines DMPbehavior in the event that
all paths to a LUN have failed. This can sometimes be a
transient error andcanhappenwith somedisk arraysduring
controller firmware upgrade, for example. This tunable
parameter provides away to handle such situationswithout
failing the I/O outright. dmp_lun_retry_timeout
specifies the time for which an I/O should be retried before
failing it. The default is 0 which means I/Os are not retried
in this situation. Instead of changing the default value of
this parameter, it is recommended that enclosure-specific
settings be changed for arrays that need this kind of
handling.

dmp_lun_retry_timeout

This parameter specifies the timeout value for any SCSI
command issued by DMP. The default value of this
parameter is 30 seconds for Solaris andAIX, and 20 seconds
for Linux. This parameter should generally be left at the
default value unless some other parameter like the Fibre
Channel timeout has been changed.

dmp_scsi_timeout

Dynamic Multi-Pathing path analysis
Path analysis helps improve the status informationDynamicMulti-Pathing (DMP)
has on I/O paths, such as whether an I/O path is healthy or faulty. Good status
information on I/OpathshelpsDMPprovide better performance.With good status
information on I/O paths, DMP can proactively avoid faulty paths during path
selection. If an I/O path is faulty, DMP discovers the fact when it schedules I/O
on the path and the I/O fails. However, there is a performance penalty when I/O
is issued on a path that is faulty: error detection itself involves timeouts and
retries, followingwhich the I/Omust be re-issued on another path. Inmany cases,
the status information on I/O paths gathered by the path analysis features help
DMP avoid faulty paths.

When paths that were previouslymarked as failed are known to be healthy again,
DMP can start using these paths in its load balancing logic. This gives DMP more
options for scheduling I/Os and in general results in better performance. The path
analysis features help DMP identify previously faulty paths that have recovered.

Path status updates happen in two ways in DMP:

■ In response to storage network fabric events and I/O errors.

■ Periodically, as part of a process called path restoration.

The mechanism used for path analysis is path probing, where a SCSI inquiry
command is issued on a path to determine whether it is healthy or faulty. If the

117Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

inquiry command fails, the path can be assumed to be faulty. Issuing path probes
and the associated processing has an overhead. This overhead is usually small,
and can be managed using the tunable parameters for path analysis.

In some cases, DMP might mark the status of a path as suspect; this usually
happens when DMP has encountered an error on a related path. DMP does not
issue new I/Os on a suspect path until its status has been verified, unless the path
is the last path available for the DMP node.

Subpath Failover Group
DynamicMulti-Pathing (DMP) uses the concept of a Subpath FailoverGroup (SFG)
to make path analysis more efficient. An SFG is a group of I/O paths from the
same HBA port to the same array port. Essentially, paths in an SFG are paths to
different LUNs that share the same sub-path from theHBAport to the array port,
meaning that the paths have the same endpoints in the storage network. Even in
storage environments with a large number of LUNs and a large number of I/O
paths, there are likely to be relatively few SFGs. Since paths in the SFG all have
the same route through the storage network, these paths are likely to fail and
recover at the same time as faults and recovery happen in the network fabric.
DMP is able to use this fact to optimize path analysis by sometimes taking
collective action for all paths in an SFG rather than for each path individually.

Path analysis on path errors and fabric events
When Dynamic Multi-Pathing (DMP) encounters a path error on an I/O, it can
initiate path state changes for other paths in the same Subpath Failover Group
(SFG). This feature is governed by the following tunable parameter:

When DMP detects that the number of failed I/O paths in
an SFG has reached this threshold, it marks all the paths in
the SFG as suspect. DMP does not issue new I/Os on a
suspect path until its state has been verified, unless the
path is the last path available. This behavior of DMP helps
proactively avoid faulty paths, since an error in one ormore
paths of an SFG likely points to a problem thatmight affect
all paths in theSFG. If thedmp_sfg_thresholdparameter
is set to 0, path analysis based on SFG is disabled; on a path
error, DMP does not take any action for other paths in the
sameSFG. Thedefault value of this parameter is 1, inwhich
case the failure of any onepath in anSFGcauses other paths
in the SFG to be marked as suspect.

dmp_sfg_threshold

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

118

DMP can also use network fabric monitoring to detect events that might affect
the state of I/Opaths. This feature is controlled by the following tunable parameter:

When this parameter is set to on, DMP monitors for Fibre
Channel events andupdates the path status based on events
received. Typically, fabric events affect all paths in one of
more SFGs rather than just an individual path. Fabric event
monitoring works with Fibre Channel event information
that DMP builds as part of discovery to identify the paths
that might be affected by an event. Fabric monitoring uses
the Storage Networking Industry Association (SNIA) HBA
API. This vendor and platform specific HBA-API library
must be available for this feature towork. The default value
of dmp_monitor_fabric on Solaris and Linux is on, and
on these platformsSymantec recommends that you set this
parameter to on. The default value of
dmp_monitor_fabric on AIX is off, and Symantec
recommends that you set this parameter to off on AIX to
avoid performance issues.

dmp_monitor_fabric

Overview of path restoration
The main component of path analysis in Dynamic Multi-Pathing (DMP) is path
restoration, inwhich a kernel thread called the restore daemonperiodically issues
probes on a collection of I/O paths to determine their state. Path restoration is a
useful mechanism that augments other ways in which DMP collects status
information about I/O paths, namely as part of regular I/Os, some of whichmight
return an error, and by monitoring fabric events.

Tuning path restoration is mainly about achieving the desired balance between
better status information on paths and lower overhead due to path restoration:
more frequent and comprehensive path probing results in better status
information, but adds more overhead.

Default path restoration in Dynamic Multi-Pathing
Path restoration is enabledbydefault inDynamicMulti-Pathing (DMP); the tunable
parameter dmp_enable_restore, which can be used to turn on or turn off path
restoration, has the value of on by default. The default behavior for path
restoration is aimed at probing only a subset of the I/O paths rather than probing
all paths; the paths probed are those that are likely to benefit DMP operation the
most. In most cases, the default behavior of path restoration has low overhead,
but yields the following benefits:

119Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

■ Path probing happens at a relatively large interval of 300 seconds, which is
the default value of the tunable parameter dmp_restore_interval. The restore
daemonwakes uponce in this interval and initiates probing of I/Opaths. Since
the default value of the interval is large, it helps keeppath restoration overhead
low.

■ Rather than probe all I/O paths, the default setting results in probing of the
following paths in each interval:

■ Paths that have been marked as failed due to previous errors

■ Paths that have been marked suspect

■ Paths for LUNs that have been idle for awhile,meaning the LUNshave had
no I/Os in a while

As a result, the number of paths probed in each interval by the restore daemon
is usually much less than the total number of paths; this keeps the overhead
of path probing low. This default behavior of probing failed, suspect, and idle
paths results from the default values of two tunable parameters:
dmp_restore_policy, which specifies the path restoration policy and has
default value of check_disabled, anddmp_probe_idle_lun, whichhas adefault
value of on. In addition, I/O statistics gathering has to be enabled for
dmp_probe_idle_lun to have effect.With I/O statistics gathering enabled and
dmp_probe_idle_lun=on, the check_disabledpolicy probes failed and suspect
paths, as well as paths for idle LUNs.

■ The rationale for focusing on failed paths, suspect paths, and idle LUN paths
is that these are the paths for which DMP’s status information is most likely
to be outdated and hence probing these paths is likely to give themost benefit.
The status information that DMP has on active paths on which I/Os are being
issued is generally likely to be good; there is notmuch to be gained by additional
periodic probing of these paths as part of path restoration.

■ By default, DMP uses an optimization called low impact path probing that
relies on the concept of the SFG to further reduce overhead of path probing.
This optimization allows DMP to probe only a few paths per SFG and infer the
state of other paths in the SFGbased on these fewprobes. The low impact path
probing optimization is controlled by two tunable parameters:
dmp_low_impact_probe, which enables or disables this feature and has the
default value of true, meaning that the feature is enabled, and
dmp_probe_threshold, whichdecides thenumber of pathsprobed in eachSFG
and has the default value of 5.

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

120

Enabling or disabling path restoration
Path restoration can be enabled or disabled using the tunable parameter
dmp_enable_restore. Path restoration is enabled by default, and is an important
mechanismbywhichDynamicMulti-Pathing (DMP)updates the status information
on I/O paths. If path restoration is disabled, the status information that DMP has
on the paths is not as accurate aswhen path restoration is enabled. In some cases,
this may result in DMP sending I/Os down faulty paths. The bigger problem with
disabling path restoration is that most paths that had failed but have now
recovered are not recognized as healthy by DMP; over time this can create a
scenario in which DMP has very few scheduling options and therefore operates
sub-optimally.

Symantec recommends that youdonotdisablepath restoration. If theperformance
overheadof path restoration is a concern, you shouldkeeppath restoration enabled
and tune other parameters to reduce overhead. The default settings for path
restoration result in low overhead and are appropriate for most environments,
but you can further reduce the overhead of path restoration through tuning.

Path restoration policy
When path restoration is enabled, the restore policy determines which paths are
probed. The value of the tunable parameter dmp_restore_policy determines
which path restoration policy is in effect. You can specify the following parameter
values:

121Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

This is the default path restoration policy. It is a low
overhead policy that mainly probes paths that have been
marked as failed or as suspect due to previous errors to see
if these paths are now healthy. The overhead of the policy
can be further reduced by enabling the low impact path
probing optimization via the dmp_low_impact_probe
parameter, which uses the notion of an SFG to probe a
subset of suspect paths rather than all of them. If idle LUN
probing, which is set by the dmp_probe_idle_lun
parameter, and statistics gathering are enabled, paths for
idle LUNs are probed in addition to failed and suspect paths.

See “Tunable parameters for path restoration” onpage 123.

The status information on I/Opaths gathered by this policy
complements the status information that DMP gets as a
result of regular application I/O. Regular I/O on active paths
gives DMP knowledge of the health of those paths, and the
check_disabled policy in path restoration gives DMP
current status information onpreviously failed and suspect
paths, and optionally, on paths to idle LUNs. If the DMP I/O
policy in effect does not distribute I/O load on available
paths, such as due to the single-active I/O policy, the
check_disabledpath restorationpolicy results in limited
status information on important I/O paths. However, the
default I/Opolicy (minimumq) does a good job of distributing
I/Os onall available paths, so thecheck_disabledpolicy’s
focus on probing only failed and suspect paths and idle
LUNs works well with the default I/O policy. With
active/passive arrays, status information on secondary
paths is not very good when the check_disabled policy
is in effect; this is usually acceptable since secondary paths
come into play only after a controller failover.

check_disabled

In this policy, all I/O paths are probed in each interval. This
policy gives the best status information of all the path
restoration policies, but its overhead can be concern
especially in environmentswith a largenumber of I/Opaths.

check_all

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

122

This policy tries to get the benefits of both
check_disabled and check_all. It uses check_all
only once every N intervals, where N is the value of the
tunable parameterdmp_restore_cycles; other intervals
use the check_disabled policy. The default value of
dmp_restore_cycles is 10. Thus, by default,
check_periodic incurs the higher overhead of the
check_all policy only in 1 of 10 intervals; in the other 9
intervals, it uses the lowoverheadcheck_disabledpolicy.
For the intervals in which the check_disabled policy is
in effect, low impact probing and idle LUN probing will be
used depending on whether these are enabled as based on
the values of the relevant tunable parameters. The
check_periodic policy offers a way to benefit from the
low overhead of check_disabledmost of the time, while
infrequently collecting the more complete status
information that check_all provides. For environments
with a large number of paths, the overhead in the interval
with the check_all policy can still be a concern.

check_periodic

This policy checks that there are at least two healthy paths
for each DMP node. Typically, a DMP node corresponds to
a LUN. In effect, the policy tries to ensure that in the event
of a single path failure, there will be another healthy
alternate path to provide availability. The policy probes I/O
paths for each DMP node until it finds two paths that are
healthy. If the policy is not able to find two healthy paths,
it generates a notification. If the policy finds two healthy
paths, it does not probe more paths for the DMP node. In
the ideal case where there are no faulty paths, this policy
probes exactly twopathsperDMPnode; in real life scenarios
where someof the pathsmaybe faulty, thenumber of paths
probed by this policy will be somewhat more. In
environments with a large number of LUNs and very few
I/O path failures, the check_disabled policy can have a
lower overhead than the check_alternate policy.

check_alternate

Tunable parameters for path restoration
The following table contains the complete list of tunable parameters related to
path restoration:

123Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

This tunable parameter enables or disables path restoration.
When path restoration is enabled, a restore daemon is
started that periodically probes I/Opaths andupdates their
status based on the results of the probes. Path restoration
can be disabled by setting dmp_enable_restore to off.
Other path mechanisms in DMP for updating path status,
such as updating path status based on fabric events,
continue to function independently even when path
restoration is disabled. To disable path restoration when
the restore daemon is already running, use the vxdmpadm
stop restore command. Sincepath restoration is auseful
mechanismbywhichDMPkeeps its path status information
updated, Symantec does not recommend disabling path
restoration. If the overhead of path restoration is a concern,
otherparameters for path restoration canbe tuned to reduce
this overhead. Thedefault value ofdmp_enable_restore
is on, meaning that path restoration is enabled by default.

dmp_enable_restore

This tunable parameter specifies the interval at which the
restore daemon wakes up and initiates path probing.
Increasing the value of this parameter decreases path
restoration overhead since path probing is initiated less
frequently. Decreasing the value of this parameter below
the default value is generally not recommended as it can
increase path restoration overhead and affect performance
adversely. The default value is 300 seconds.

dmp_restore_interval

This tunable parameter specifies thepath restorationpolicy,
which largely determines which paths are probed as part
of path restoration. Path restoration policies are described
inmore detail in a separate section above. The default policy
is check_disabled, which probes paths that have been
marked as failed or as suspect, and based on other settings
can probe the I/O paths of idle LUNs.

dmp_restore_policy

Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

124

This tunable parameter takes effect with the
check_periodic policy.

See “Path restoration policy” on page 121.

Since thedefault policy ischeck_disabled, this parameter
does not affect path restoration unless the policy is changed
via the dmp_restore_policy tunable parameter . If
dmp_restore_cycles=N and the policy in effect is the
check_periodic policy, then DMP uses the
check_disabled policy for N-1 intervals, and then uses
the check_all policy in the Nth interval; this pattern of
switching between check_disabled and check_all is
repeated. In other words, the check_all policy is used
once everydmp_restore_cyclesnumber of intervals and
check_disabled policy is used in other intervals. The
default value of dmp_restore_cycles is 10.

dmp_restore_cycles

This parameter is used to enable or disable the low impact
path probing feature of DMP which uses the concept of an
Subpath Failover Group (SFG) to optimize path probing.
Low impact probing is relevant onlywith the check_disabled
policy, and in the check_disabled phases of the
check_periodicpolicy. This feature reducespathprobing
overhead in the case of suspect paths. When low impact
pathprobing is enabled, instead of probing all suspect paths,
DMP probes only a certain number of suspect paths as
specifiedby the tunableparameterdmp_probe_threshold
per SFG. If all probed paths turn out to be in failed state,
the status of all suspect paths in the SFG is set to failed; if
at least one suspect path turns out to be healthy, the
remaining suspectpathsareprobed individually. Thedefault
value of dmp_low_impact_probe is on, meaning that the
feature is enabled by default.

dmp_low_impact_probe

This parameter determines the number of paths to probe
per SFG when low impact probing is enabled. The default
value of this parameter is 5.

dmp_probe_threshold

125Tuning reference for Dynamic Multi-Pathing
Dynamic Multi-Pathing path analysis

This parameter is used to turn on or turn off probing of
paths to idle LUNs by the restore daemon.Without idle LUN
probing, the status information that DMP has for paths to
an idle LUNmaynot be recent because of the fact that there
have been no recent I/Os to the LUN. Hence, if a LUN that
was previously idle becomes active, meaning that the LUN
receives I/Os,DMP’s scheduling of I/Osmaybe sub-optimal
initially until it builds a clearer picture of path statuses for
theLUN.Anadministrator can choose tomaintain improved
status information for idle LUNs by keeping idle LUN
probing on. Alternately, an administrator can choose to
reduce path restoration overhead by turning off idle LUN
probing. In environmentswhere you know thatmanyLUNs
will continue to be idle, turning off idle LUNmight improve
performance; however, for the LUNs that become active
later, the initial I/Os after the LUNs have become active
might incur penalties because the status information on
the paths to the LUNs was outdated. For this parameter to
take effect, DMP statistics gathering must be enabled. If
statistics gathering is not enabled, DMP is not able to
identify idle LUNs and this parameter is considered to be
off. This parameter is relevant mainly when the path
restoration policy is check_disabled. When the policy is
check_all, all paths--including paths for idle LUNs--are
probed anyway. The default value is on.

dmp_probe_idle_lun

Summary of Dynamic Multi-Pathing tuning
Dynamic Multi-Pathing (DMP) has a large number of tunable parameters and
configuration options that have an impact on performance. However, in most
cases, the default settings are appropriate.Manyof the tunable parameters rarely
need to be changed. The following list briefly summarizes some of the more
common performance tuning changes that an administrator might perform:

■ The I/O policy in DMP determines how load is balanced across multiple paths
for better performance. The default I/O policy, minimumq, is the recommended
I/O policy. Among the strengths of this policy is its ability to adapt well when
there are fluctuations in the performance delivered by paths by automatically
redirecting more I/Os to better performing paths. The balanced and
round-robin I/O policies have strengths that make them reasonable
alternatives to minimumq under certain conditions. However, these policies
should be considered only when the different paths for a LUN are delivering
roughly the same performance and path performance is seen to be steady
rather than fluctuating.

Tuning reference for Dynamic Multi-Pathing
Summary of Dynamic Multi-Pathing tuning

126

■ When one or more paths to a LUN are performing poorly compared to the
others, a load-balancing policy such as minimumq automatically redirectsmuch
of the I/O load away from the poorly performing paths. The negative
performance impact of slow paths can be further reduced by configuring
timeout-based I/O throttling for the relevant enclosures.

■ In environments with a large number of I/O paths per LUN, dmp_retry_count
can be reduced from its default of 5. This causes DMP to try alternate paths
sooner when there are I/O errors and can improve performance.

■ Path restoration in DMP can be tuned for better status information on I/O
paths or for lower operating overhead; the default setting provides a good
balance that is suited formost complex environments. In some environments,
the overhead of path restoration can be reduced by turning off idle LUN
probing, especially if the LUNs are expected to continue to be idle.

■ The tunable parameter dmp_daemon_count determines the number of kernel
threads used forDMPadministrative activities. Onhigh end servers, increasing
the value of this parameter can improve performance.

127Tuning reference for Dynamic Multi-Pathing
Summary of Dynamic Multi-Pathing tuning

Tuning reference for Dynamic Multi-Pathing
Summary of Dynamic Multi-Pathing tuning

128

Tuning Virtual Memory for
Veritas File System on AIX

This appendix includes the following topics:

■ About tuning Virtual Memory for Veritas File System on AIX

■ Advice for tuning Veritas File System on AIX

About tuning Virtual Memory for Veritas File System
on AIX

The following list describes keyAIX-specific characteristics of Veritas File System
(VxFS) that are relevant in tuning for improved buffered I/O performance:

■ The first mount of a VxFS file system on the AIX platform allocates Virtual
MemoryManagement (VMM) structures, specifically Page Device Table (PDT)
structures and VMM buffers.

■ The last unmount of a VxFS file system de-allocates these VMM structures.

■ Between 1 and 64 VxFS PDT structures and many thousands of VxFS VMM
buffers are created and the default values are autotuned based on the system
configuration.

■ When an inode is brought in-core, a PDT is associatedwith the inode. The PDT
is selected on a round-robin basis.

■ All buffered I/Os to and froma given file are performedusing theVMMbuffers
attached to the PDT that is associated to the file's in-core inode.

■ The VMM buffers are only used to perform buffered I/O: either the paging-in
or paging-out of client pages.

AAppendix

■ VxFS 5.1 and later can function in D_REFUND mode (drefund_enable=1).
However, D_REFUND is supported (drefund_supported=1) only on AIX 6.1
TL2 and later.

■ The vxtunefs command can be used to determine the current values for
drefund_supported and drefund_enable.

■ In the absence of D_REFUND mode, the number of PDTs are automatically
tuned to 4 times the number of CPUs, up to 64. The total number of VMM
buffers are autotuned similarly based on the amount of physical memory of
the system. The VMM buffers are then evenly distributed across the PDTs.
Hence, if there are either fewer PDTs or a greater number of VMM buffers,
then the number of VMM buffers per PDT is larger. The following vxtunefs

commands can be used to view the number PDTs and VMM buffers on the
system:

/opt/VRTS/bin/vxtunefs -D print | grep num_pdt

/opt/VRTS/bin/vxtunefs -b

■ InD_REFUNDmode, thenumber ofVMMbuffers on aPDTcanbe dynamically
grown and shrunk based on the demand, unlike the static distribution in
absence of D_REFUND mode.

■ D_REFUND mode faces the limitation of having only 50,000 VMM buffer to
allocate dynamically across the PDTs. This can be a limitation in some cases
whereD_REFUNDshouldbe turnedoff deliberately followedby the appropriate
tuning for number of PDTs and VMM buffers.

■ Number of PDTs and VMM buffers should only be tuned in absence of
D_REFUND.

■ In the absence of D_REFUND, VxFS performs accounting by allowing the
reservation andun-reservation ofVMMbuffers that are associatedwith aPDT,
before performing an I/O. No such accounting is performed in D_REFUND
mode.

■ Such accounting can sometimes lead to frequent memory allocation, which
causes high CPU usage by vx_sched. In such scenarios, you can disable the
accounting by setting the vmmbufs_resv_disable tunable using the vxtunefs
command.

See “Advice for tuning Veritas File System on AIX ” on page 130.

Advice for tuning Veritas File System on AIX
The following list provides advice for tuning Veritas File System (VxFS) on AIX:

Tuning Virtual Memory for Veritas File System on AIX
Advice for tuning Veritas File System on AIX

130

■ Tuning the number of Page Device Tables (PDTs)
Symantec recommends that you reduce the number of PDTs by either 50% or
75%. For example, if the autotuned value is 64 PDTs, then reduce the value to
16PDTs. To tune thenumber of PDT, all VxFS file systemsmust be unmounted.
The number of PDTs should never be tuned to a drastically lower number as
this can lead to a contention over the PDT lock.
Set the num_pdt tunable to tune the number of PDTs:

vxtunefs -D num_pdt=PDTs

See the vxtunefs(1M) manual page.

Warning: Do not tune the number of PDTs to 1.

■ Tuning the number of VMM buffers
Symantec recommends that you increase the number of VxFS VMM buffers
by a large amount. You can assume that each VMM buffer structure and its
related objects use a little less than 768 bytes. Symantec recommends that you
tune the value to be lower of the two upper limits of either 2-GBworth of VMM
buffers at 768 bytes each, or up to ~1% of the system memory size.
The maximum number of VMM buffers that can be tuned is now up to 1000%
of the autotuned value, whereas previously the value could only be increased
by 100% of the maximum. 2-GB worth of VMM buffers at 768 bytes each is
approximately 2.75 million VMM buffers. However, if 1% of the physical
memory is less than 2GB, then you should tune the value to 1%of the physical
memory. You might want to tune the value to higher than 1% of the physical
memory, but do not tune the value to higher than 2.75 million VMM buffers.
For example, a system with 64 GB of physical memory will have the number
of VMM buffers auto-tuned to around 162,000. The auto-tuned number is far
less than the 1% of physical memory recommended. If we want to increase
the number of VMMbuffers to utilize 1% of the 64GB (which is 6.4GB), we can
use the following calculation:
1% of 64GB / 768 bytes per VMM buffer = 64 * 1024 * 1024 * 1024 bytes * 1%
/ 768 bytes per VMM buffer
= 894784 VMM buffers.
To increase the number ofVMMbuffers to the above value,weneed to increase
it to 894784 / 162000 = 5.52 times of the current value.
Using the vxtunefs -b commaned, the percentage increase should be (5.52
-1) * 100% = 452%:

vxtunefs -b 452

131Tuning Virtual Memory for Veritas File System on AIX
Advice for tuning Veritas File System on AIX

If we specify vxtunefs -b 100, that will double the current value. So if we
specify 452, it will increase the value to 5.52 times of the current value.

■ Counters that show a lack of VMM buffers per PDT
Rapidly increasing or high values of the following counters obtained through
the vxfsstat command show a lack of VMM buffers per PDT:

■ vxi_putpage_dirty_partial

This counter is incremented when a write I/O VMM buffer reservation
request gets satisfied only in part.

■ vxi_pgalloc2_async_partial

This counter is incremented when the number of VMM buffers that we
want to reserve is less than the number that are currently available for
reservation. In this case, we trim the size of the asynchronous read I/O to
match the number of VMM buffers that were reserved.

■ vxi_putpagedirty_eagain

This counter is incrementedwhenaVMMbuffer reservation request cannot
be satisfied in full or in part

■ vxi_pagealloc2_eagain

This counter is incremented when the are no VMM buffers available for
reservation, except the last 32. The current asynchronous read I/O is not
performed when this counter is incremented.

■ vxi_pdt_sleep_cnt

This counter indicates the number of threads that havehad to sleepwaiting
forVMMbuffers to beunreservedon thePDT. If thenumber ofVMMbuffers
we wanted to reserve is not currently available, we increment this counter
according to the PDT we are utilizing, and then sleep in a queue waiting
for the VMM buffers to be unreserved.

■ vxi_pdt_wake_cnt

This counter indicates the number of threads that have been woken up
after sleeping. Usually, the vxi_pdt_sleep_cnt and vxi_pdt_wake_cnt

have the same value. But in a situation when the threads are currently
sleeping, the vxi_pdt_sleep_cnt might be a higher value than the
vxi_pdt_wake_cnt.

■ On AIX TLS and VxFS releases that support D_REFUND, you do not need to
tune the number of PDTs and VMM buffers.
If drefund_enable is set to 1, then D_REFUND mode is enabled and you do
not need to tune the number of PDTs nor the number of VMM buffers. The
VMMbuffers are dynamically grown and shrunk as required. The D_REFUND
mode is supported only on 6.1 TL2 and later releases. The default

Tuning Virtual Memory for Veritas File System on AIX
Advice for tuning Veritas File System on AIX

132

drefund_enable value on 5.3 TL2 is 0 and the default drefund_enable value
on 6.1 TL2 is 1.
The correctD_REFUNDmodeoperation requires certainAPARs to be installed.
For more information on the necessary APARs, see the Veritas Storage
Foundation Release Notes.
VxFS keeps track of this D_REFUND support internally. VxFS operates in
D_REFUND mode only if the drefund_enable value is 1 and the operating
system supports the D_REFUND mode. The operating system supports the
D_REFUND mode if the D_REFUND supported value is 1. You can check the
value of D_REFUND supported by running the vxtunefs -D print command.

Set the drefund_enable tunable to enable or disable D_REFUND mode:

vxtunefs -D drefund_enable={0|1}

See the vxtunefs(1M) manual page.

Note: If the D_REFUND mode is disabled, then you must tune the number of
PDTs and the number of VMM buffers.

■ During poor performance, collect the following output so that Symantec can
recommend tuning:
AIX VMM statistics:

vmstat -Ilt 1

topas

vmo -a

vmstat -v

Capture the vmstat -v output every second.

VxFS statistics:

/opt/VRTS/bin/vxtunefs -p /mnt1

/opt/VRTS/bin/vxtunefs -D print

/opt/VRTS/bin/vxfsstat -w /tmp/vxfsstat.out -t 1 /mnt1

/opt/VRTS/bin/vxtrace -d /tmp/vxtrace.out -g dg1 vol1

VxVM statistics:

vxstat -g dgname -r

vxstat -g dgname -vps -i 1

133Tuning Virtual Memory for Veritas File System on AIX
Advice for tuning Veritas File System on AIX

Tuning Virtual Memory for Veritas File System on AIX
Advice for tuning Veritas File System on AIX

134

B
buffered write behavior

tuning
flush-behind for sequential writes 78
throttling I/O flushes 80
write throttling 78

D
dentry cache

tuning 58
Directory Name Lookup Cache

tuning 57
on Linux 58
on Solaris and AIX 58

E
enhanced read-ahead 71

N
NFS file serving workloads 29

tuning recommendations 30
NFS server daemon threads 30

P
page cache

monitoring and tuning 59
on AIX 63
on Linux 61
on Solaris 60

R
read flush-behind 72

example 73
tuning 74

read-ahead
enhanced 71
important tunable parameters 70
normal on Veritas File System 68
observing behavior 68

read-ahead (continued)
tuning 66

how to 71
summary 72
type 67

T
transaction-processing workloads 15

V
Veritas File System buffer cache

tuning 51
additional considerations 53
maximum size on AIX 52
maximum size on Linux 51
maximum size on Solaris 51
when to tune 52

Veritas File System caches 49
Veritas File System inode cache

tuning 54
additional considerations 57
maximum size on AIX 55
maximum size on Linux 55
maximum size on Solaris 55
when to tune 56

Veritas File System metadata caches 49

Index

	Veritas Storage Foundation Tuning Guide
	Technical Support
	Contents
	1. Introduction
	About tuning Veritas Storage Foundation

	2. Tuning for transaction-processing workloads
	About tuning transaction-processing workloads
	Online transaction-processing workload description
	Online transaction-processing workload implications for Veritas Storage Foundation tuning

	Best practices for tuning Veritas Storage Foundation in online transaction-processing environments
	Separate volume and file system for redo logs
	Data volumes striped across multiple spindles
	Mirroring data and redo log volumes
	Balanced load on the I/O paths
	Mount options for file systems
	Monitoring performance

	General tuning recommendations for an online transaction-processing workload
	Tuning Veritas File System for an online transaction-processing workload
	Tuning Veritas Volume Manager for an online transaction-processing workload
	Dynamic multi-pathing tuning

	Tuning recommendations for transaction-processing workloads in Oracle databases
	Oracle initialization parameters
	Configuring the Veritas Oracle Disk Manager extension
	Cached Oracle Disk Manager

	Summary of tuning recommendations for online transaction-processing workload

	3. Tuning for NFS file-serving workloads
	About tuning NFS file-serving workloads
	Tuning recommendations for NFS file-serving workloads
	Tuning NFS server daemon threads
	Tuning the maximum number of NFS server threads on Solaris
	Tuning the number of NFS server threads on Linux
	Tuning the maximum number of NFS server threads on AIX
	Tuning the main memory caches
	Tuning for mirrored Veritas Volume Manager volumes and snapshots

	4. Tuning reference for Veritas File System
	About tuning Veritas File System
	Monitoring Veritas File System operation

	Creating file systems
	Mounting file systems
	Tuning the intent log
	Deciding which mode of intent log operation to use
	Intent log size
	About the datainlog and nodatainlog mount options
	Placing the intent log on a separate device

	About the Veritas File System caches
	About the Veritas File System metadata caches
	Tuning the Veritas File System buffer cache
	Setting the maximum buffer cache size on Solaris
	Setting the maximum buffer cache size on Linux
	Setting the maximum buffer cache size on AIX
	When to tune the buffer cache
	Additional considerations for tuning the buffer cache

	Tuning the Veritas File System inode cache
	Setting the maximum inode cache size on Solaris
	Setting the maximum inode cache size on Linux
	Setting the maximum inode cache size on AIX
	When to tune the inode cache size
	Additional considerations for tuning the inode cache

	Tuning the Directory Name Lookup Cache
	Tuning the Directory Name Lookup Cache on Solaris and AIX
	Tuning the Linux dentry cache

	Page cache monitoring and tuning
	Page cache monitoring and tuning on Solaris
	Page cache monitoring and tuning on Linux
	Page cache monitoring and tuning on AIX

	About I/O modes
	Tuning read-ahead
	Setting the type of read-ahead
	Observing read-ahead behavior
	Normal read-ahead on Veritas File System
	Important tunable parameters for read-ahead size
	Enhanced read-ahead in Veritas File System
	How to tune read-ahead
	Summary of read-ahead tuning

	Read flush-behind in Veritas File System
	Read flush-behind example
	Tuning read flush-behind

	Tuning Veritas File System buffered writes
	Synchronous buffered writes
	Delayed buffered writes
	Write throttling
	Flush-behind for sequential writes
	Throttling I/O flushes

	Tuning Veritas File System buffered I/O on AIX
	Direct I/O
	Discovered direct I/O
	Concurrent I/O

	About Veritas File System space allocation
	Choosing the file system block size

	Online resizing and defragmentation

	5. Tuning reference for Veritas Volume Manager
	About tuning Veritas Volume Manager
	Commonly used VxVM layouts
	Striped layouts
	Mirrored layouts
	Online re-layout

	Dirty Region Logging for mirrored volumes
	Tuning traditional Dirty Region Logging
	Tuning Dirty Region Logging in a version 20 DCO volume
	Sequential Dirty Region Logging

	Instant snapshots
	Full instant snapshots
	Region size for a full instant snapshot
	Configuring a version 20 DCO volume for a full instant snapshot
	Creation time for full instant snapshot
	Background syncing for full-sized instant snapshots
	Performance impact of a full instant snapshot on the original volume

	Space optimized instant snapshots
	Performance comparison of full-sized and spaced optimized instant snapshots
	Using a version 20 DCO volume for both Dirty Region Logging and instant snapshots

	6. Tuning reference for Dynamic Multi-Pathing
	About Dynamic Multi-Pathing in the data center
	About tuning Dynamic Multi-Pathing
	Dynamic Multi-Pathing device discovery
	Dynamic Multi-Pathing I/O load balancing
	Dynamic Multi-Pathing default I/O policy
	Optimizing disk array cache usage with the balanced policy
	Dynamic Multi-Pathing I/O policies
	Dynamic Multi-Pathing I/O throttling

	Tuning Dynamic Multi-Pathing error handling
	Dynamic Multi-Pathing SCSI bypass
	Dynamic Multi-Pathing I/O failure handling
	Avoiding suspect paths in Dynamic Multi-Pathing
	Dynamic Multi-Pathing tunable parameters for error handling

	Dynamic Multi-Pathing path analysis
	Subpath Failover Group
	Path analysis on path errors and fabric events
	Overview of path restoration
	Default path restoration in Dynamic Multi-Pathing
	Enabling or disabling path restoration
	Path restoration policy
	Tunable parameters for path restoration

	Summary of Dynamic Multi-Pathing tuning

	A. Tuning Virtual Memory for Veritas File System on AIX
	About tuning Virtual Memory for Veritas File System on AIX
	Advice for tuning Veritas File System on AIX

	Index

