
Veritas™ Cluster Server
Bundled Agents Reference
Guide

HP-UX

5.0

N18453G

Veritas Cluster Server
Bundled Agents Reference Guide

Copyright © 1998 - 2006 Symantec Corporation. All rights reserved.

Veritas Cluster Server 5.0

Symantec, the Symantec logo, are trademarks or registered trademarks of Symantec
Corporation or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Symantec Corporation

20330 Stevens Creek Blvd.

Cupertino, CA 95014

www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Symantec product. Such third-party software is licensed separately by
its copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.
HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.

Technical support
For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Contents
Chapter 1 Introduction
Resources and their attributes ..13

Modifying agents and their resources ..14

Attributes ..14

Chapter 2 Storage agents
About the storage agents ..17

DiskGroup agent ..18

Virtual fire drill ..18

Agent functions ..18

State definitions ...19

Attributes ..20

Resource type definition ...21

Sample configurations ..21

DiskGroup resource configuration ..21

DiskGroup, Volume, and Mount dependencies configuration22

Volume agent ..23

Dependency ...23

Agent functions ..23

State definitions ...23

Attributes ..24

Resource type definition ...24

Sample configurations ..24

Configuration ..24

LVMLogicalVolume agent ..25

Dependency ...25

Agent functions ..25

State definitions ...25

Attributes ..26

Resource type definition ...26

Physical volumes associated with volume groups26

Sample configurations ..27

Configuration ..27

6 Contents
LVMVolumeGroup agent .. 28

Dependency .. 28

Agent functions .. 28

State definitions ... 28

Attributes .. 29

Resource type definition ... 29

Sample configurations .. 29

Configuration 1 .. 29

Configuration 2: LVMVolumeGroup,

LVMLogicalVolume, and Mount Dependencies 29

LVMCombo agent .. 31

Agent functions .. 31

State definitions ... 32

Attributes .. 32

Resource type definition ... 33

Physical volumes associated with volume groups 33

Sample configurations .. 33

Sample 1 .. 33

Sample 2: LVMCombo and Mount Dependencies 33

Mount agent ... 35

Virtual fire drill .. 35

Agent functions .. 35

State definitions ... 36

Attributes .. 37

Resource type definition ... 39

Sample configurations .. 39

Configuration ... 39

Chapter 3 Network agents
About the network agents .. 41

Agent comparisons .. 41

IP and NIC agents ... 41

IPMultiNIC and MultiNICA agents .. 41

IPMultiNICB and MultiNICB agents .. 42

802.1Q trunking ... 43

IP agent ... 44

Virtual fire drill .. 44

Dependency .. 44

Agent functions .. 44

State definitions ... 45

Attributes .. 45

Resource type definition ... 47

Sample configurations .. 47

7 Contents
Configuration 1 ..47

NetMask in decimal (base 10) ...47

NetMask in hexadecimal (base 16) ..47

NIC agent ...48

Virtual fire drill ..48

Agent functions ..48

State definitions ...48

Attributes ..49

Resource type definition ...50

Sample configurations ..50

Network Hosts ..50

IPMultiNIC agent ...51

Dependency ...51

Agent functions ..51

State definitions ...51

Attributes ..52

Resource type definition ...53

Sample configuration: IPMultiNIC and MultiNICA53

MultiNICA agent ..54

Agent function ..54

State definitions ...54

Attributes ..55

Resource type definition ...57

MultiNICA notes ..57

Using RouteOptions ...58

Sample configurations ..59

MultiNICA and IPMultiNIC ...59

About the IPMultiNICB and MultiNICB agents ...61

Checklist to ensure the proper operation of MultiNICB61

IPMultiNICB agent ...62

Dependencies ..62

Requirements for IPMultiNICB ..62

Agent functions ..62

State definitions ...63

Attributes ..64

Resource type definition ...65

Manually migrating a logical IP address ..65

Sample configurations ..65

Other sample configurations for IPMultiNICB and MultiNICB65

MultiNICB agent ..66

Agent functions ..67

State definitions ...67

Attributes ..68

8 Contents
Resource type definition ... 70

Trigger script .. 71

IPMultiNICB and MultiNICB configuration 71

DNS agent ... 73

Agent functions .. 73

State definitions ... 73

Attributes .. 74

Resource type definition ... 75

Online query ... 75

Monitor scenarios .. 76

Sample web server configuration ... 76

Sample DNS configuration ... 76

Secure DNS update .. 77

Setting up secure updates using TSIG keys 77

Chapter 4 File share agents
About the file service agents .. 79

NFS agent .. 80

Agent functions .. 80

State definitions ... 80

Attributes .. 80

Resource type definition ... 81

Sample configurations .. 81

Configuration ... 81

NFSRestart agent ... 82

Dependencies ... 82

Agent functions .. 82

State definitions ... 83

Attributes .. 83

NFSRestart notes ... 83

Resource type definition ... 84

Sample configurations .. 84

Share agent ... 87

Dependencies ... 87

Agent functions .. 87

State definitions ... 87

Attributes .. 88

Resource type definition ... 88

Sample configurations .. 88

Configuration ... 88

9 Contents
Chapter 5 Service and application agents
About the service and application agents ..89

Apache Web server agent ...90

Dependency ...90

Agent functions ..91

State definitions ...91

Attributes ..92

Resource type definition ...95

Detecting Application Failure ..95

About the ACC Library ..96

Sample configurations ..96

Application agent ...98

Virtual fire drill ..98

Dependencies ..98

Agent functions ..98

State definitions ...99

Attributes ..100

Resource type definition ...102

Sample configurations ..102

Sample Configuration 1 ..102

Sample Configuration 2 ..103

Process agent ..104

Virtual fire drill ..104

Dependencies ..104

Agent functions ..104

State definitions ...104

Attributes ..105

Resource type definition ...106

Sample configurations ..106

Configuration 1 ..106

Sample configuration 2 ...107

ProcessOnOnly agent ..108

Agent functions ..108

State definitions ...108

Attributes ..109

Resource type definition ...110

Sample configurations ..110

Configuration 1 ..110

Chapter 6 Infrastructure and support agents
About the infrastructure and support agents ...111

NotifierMngr agent ..112

10 Contents
Dependency ..112

Agent functions ..112

State definitions ...112

Attributes ..113

Resource type definition ...116

Sample configuration ..117

Configuration ...117

VRTSWebApp agent ..119

Agent functions ..119

State definitions ...119

Attributes ..120

Resource type definition ...120

Sample configuration ..120

Proxy agent ...122

Agent functions ..122

Attributes ..122

Resource type definition ...123

Sample configurations ..123

Configuration 1 ..123

Configuration 2 ..123

Configuration ...123

Phantom agent ...125

Agent functions ..125

Attribute ..125

Resource type definition ...125

Sample configurations ..125

Configuration 1 ..125

Configuration 2 ..125

RemoteGroup agent ..127

Dependency ..127

Agent functions ..128

State definitions ...128

Attributes ..129

Resource type definition ...133

Chapter 7 Testing agents
About the program support agents ...135

ElifNone agent ..136

Agent function ...136

Attributes ..136

Resource type definition ...136

Sample configuration ..136

FileNone agent ...137

11 Contents
Agent functions ..137

Attribute ..137

Resource type definition ...137

Sample configuration ..137

FileOnOff agent ..138

Agent functions ..138

Attribute ..138

Resource type definition ...138

Sample configuration ..139

FileOnOnly agent ...140

Agent functions ..140

Attribute ..140

Resource type definition ...140

Sample configuration ..140

Glossary 141

Index 143

12
 Contents

Chapter
1
Introduction

Bundled agents are Veritas Cluster Server (VCS) processes that manage

resources of predefined resource types according to commands received from

the VCS engine, HAD. You install these agents when you install VCS.

A node has one agent per resource type that monitors all resources of that type.

For example, a single IP agent manages all IP resources.

When the agent starts, it obtains the necessary configuration information from

VCS. The agent then periodically monitors the resources, and updates VCS with

the resource status.

Agents can:

■ Bring resources online.

■ Take resources offline.

■ Monitor resources and report state changes.

For a more detailed overview of agents, see the VCS User’s Guide.

Resources and their attributes
Resources are parts of a system and are known by their type, such as: a volume,

a disk group, or an IP address. VCS includes a set of resource types. Different

attributes define these resource types in the types.cf file. Each type has a

corresponding agent that controls the resource.

The VCS configuration file, main.cf, contains the values for the resource

attributes and has an include directive to the types.cf file.

An attribute’s given value configures the resource to function in a specific way.

By modifying the value of a resource attribute, you can change the way the VCS

agent manages the resource. For example, the IP agent uses the Address

attribute to determine the IP address to monitor.

http:main.cf

14 Introduction
Modifying agents and their resources
Modifying agents and their resources

Use the Cluster Manager (Java Console), Cluster Manager (Web Console), or the

command line to dynamically modify the configuration of the resources

managed by an agent.

See the Veritas Cluster Server User’s Guide for instructions on how to complete

these tasks.

VCS enables you to edit the main.cf file directly. To implement these changes,

make sure to restart VCS.

Attributes
Attributes contain data about the cluster, systems, service groups, resources,
resource types, and the agent. An attribute has a definition and a value. You
change attribute values to configure VCS resources. Attributes are either
optional or required, although sometimes attributes that are optional in one
configuration might be required in other configurations. Many optional
attributes have predefined or default values, which you should change as
required.

A variety of internal use only attributes also exist. Do not modify these
attributes—modifying them can lead to significant problems for your clusters.

Attributes have type and dimension. Some attribute values can accept numbers,
others can accept alphanumeric values or groups of alphanumeric values, while
others are simple boolean on/off values.

Table 1-1 Attribute data types

Data Type Description

string Enclose strings, which are a sequence of characters, in double quotes (").
Optionally enclose strings in quotes when they begin with a letter, and
contains only letters, numbers, dashes (-), and underscores (_).

A string can contain double quotes, but the quotes must be immediately
preceded by a backslash. In a string, represent a backslash with two
slashes (//).

integer Signed integer constants are a sequence of digits from 0 to 9. You can
precede them with a dash. They are base 10. Integers cannot exceed the
value of a 32-bit signed integer: 21471183247.

15 Introduction
Attributes
Table 1-1 Attribute data types

boolean A boolean is an integer with the possible values of 0 (false) and 1 (true).

Data Type Description

Table 1-2 Attribute dimensions

Dimension Description

scalar A scalar has only one value. This is the default dimension.

vector A vector is an ordered list of values. Each value is indexed using a positive
integer beginning with zero. A set of brackets ([]) denotes that the
dimension is a vector. Find the specified brackets after the attribute name
on the attribute definition in the types.cf file.

keylist A keylist is an unordered list of unique strings.

association An association is an unordered list of name-value pairs. An equal sign
separates each pair. A set of braces ({}) denotes that an attribute is an
association. Braces are specified after the attribute name on the attribute
definition in the types.cf file, for example: str SnmpConsoles{}.

16 Introduction
Attributes

Chapter
2
Storage agents

This chapter contains:

■ “DiskGroup agent” on page 18

■ “Volume agent” on page 23

■ “LVMLogicalVolume agent” on page 25

■ “LVMVolumeGroup agent” on page 28

■ “LVMCombo agent” on page 31

■ “Mount agent” on page 35

About the storage agents
Use storage agents to Monitor shared storage.

18 Storage agents
DiskGroup agent
DiskGroup agent

Brings online, takes offline, and monitors a Veritas Volume Manager (VxVM)

disk group. This agent uses VxVM commands.

When the value of the StartVolumes and StopVolumes attribute is 1, the

DiskGroup agent brings the volumes online and takes them offline during the

import and deport operations of the disk group.

When using volume sets, set StartVolumes and StopVolumes attributes of the

DiskGroup resource that contains volume set to 1. If a file system is created on

the volume set, use a Mount resource to mount the volume set.

The agent protects data integrity by disabling failover when data is being

written to a volume in the disk group.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For DiskGroup resources, the
virtual fire drill checks for:

■	 The Veritas Volume Manager license

■ Visibility from host for all disks in the diskgroup

For more information about using the virtual fire drill see the VCS User’s Guide.

Agent functions
■	 Online

Imports the disk group using the vxdg command.

■	 Offline

Deports the disk group using the vxdg command.

■	 Monitor

Determines if the disk group is online or offline using the vxdg command.

The Monitor function changes the value of the VxVM noautoimport flag
from off to on. This action allows VCS to maintain control of importing the
disk group. The following command changes the autoimport flag back to
off:

#vxdg -g disk_group set autoimport=no

■	 Clean

Terminates all ongoing resource actions and takes the resource offline—
forcibly when necessary.

19 Storage agents
DiskGroup agent
■	 Info

The DiskGroup info agent function gets information from the Volume

Manager and displays the type and free size for the DiskGroup resource.

Initiate the info agent function by setting the InfoInterval timing to a value

greater than 0.

In this example, the info agent function executes every 60 seconds:

haconf -makerw

hatype -modify DiskGroup InfoInterval 60

The command to retrieve information about the DiskType and FreeSize of
the DiskGroup resource is:

hares -value diskgroupres ResourceInfo

:

Output includes:

DiskType auto:cdsdisk

FreeSize 12765712

State definitions
■	 ONLINE

Indicates that the disk group is imported.

■	 OFFLINE

Indicates that the disk group is not imported.

■	 FAULTED

Indicates that the disk group has unexpectedly deported.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

20 Storage agents
DiskGroup agent
Attributes

Table 2-1 Required attributes

Required
attribute Description

DiskGroup Name of the disk group configured with Veritas Volume Manager.

Type and dimension: string-scalar

Example: "diskgroup1"

Table 2-2 Optional attributes

Optional
attributes Description

MonitorReservation If the value is 1, and SCSI-3 fencing is utilized, the agent
monitors the SCSI reservation on the disk group. If the
reservation is missing, the Monitor agent function takes the
resource offline.

Type and dimension: boolean-scalar

Default: 0

PanicSystemOnDGLoss If the DiskGroup resource is in a DISABLED state, uses I/O
fencing, and has PanicSystemOnDGLoss set to 1, the system
panics in the first monitor cycle.

If the DiskGroup resource is in an ENABLED state, uses I/O
fencing, has PanicSystemOnDGLoss set to 1, and fulfills the
FaultOnMonitorTimeout attribute’s time out number, the
system panics.

Note: System administrators may want to set a high value for
FaultOnMonitorTimeout to increase system tolerance.

Type and dimension: boolean-scalar

Default: 1

21 Storage agents
DiskGroup agent
Table 2-2 Optional attributes

Optional
attributes Description

StartVolumes If value is 1, the DiskGroup online script starts all volumes
belonging to that disk group after importing the group.

Type and dimension: string-scalar

Default: 1

StopVolumes If value is 1, the DiskGroup offline script stops all volumes
belonging to that disk group before deporting the group.

Type and dimension: string-scalar

Default: 1

TempUseFence Do not use. For internal use only.

Resource type definition
type DiskGroup (

static keylist SupportedActions = { "license.vfd", "disk.vfd",

numdisks }

static int NumThreads = 1

static int OnlineRetryLimit = 1

static str ArgList[] = { DiskGroup, StartVolumes, StopVolumes,

MonitorOnly, MonitorReservation, tempUseFence,

PanicSystemOnDGLoss }

str DiskGroup

str StartVolumes = 1

str StopVolumes = 1

boolean MonitorReservation = 0

temp str tempUseFence = INVALID

boolean PanicSystemOnDGLoss = 1

)

Sample configurations

DiskGroup resource configuration
Example of a disk group resource in the Share Out mode.
DiskGroup dg1 (

DiskGroup = testdg_1

)

22 Storage agents
DiskGroup agent
Example of a disk group resource in the Volume Serving mode.
SANVolume vNFS_SANVolume (

Domain = testdom1
SANDiskGroup = vsdg
SANVolume = vsvol
VolumeServer = "sysA.veritas.com"

)

DiskGroup, Volume, and Mount dependencies configuration

This sample configuration shows the DiskGroup, Volume, and Mount
dependencies.

group sample_vxvm_group (
SystemList = { System1, System2 }
AutoStartList = { System1 }
)

Volume vres (
Volume = vol1
DiskGroup = dg2
)

Mount mres (
MountPoint = "/dir1"
BlockDevice = "/dev/vx/dsk/dg2/vol1"
FSType = vxfs
FsckOpt = "-y"
)

DiskGroup dres (
DiskGroup = dg2
StartVolumes = 0
StopVolumes = 0
)

mres requires vres
vres requires dres

23 Storage agents
Volume agent
Volume agent
Brings online, takes offline, and monitors a Veritas Volume Manager (VxVM)
volume.

Note: Do not use the Volume agent for volumes created for replication.

Dependency
Volume resources depend on DiskGroup resources.

Agent functions
■	 Online

Starts the volume using the vxrecover command.

■	 Offline

Stops the volume using the vxvol command.

■	 Monitor

Determines if the volume is online or offline by reading a block from the
raw device interface to the volume.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline—
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the specified volume is started and that I/O is permitted.

■	 OFFLINE

Indicates that the specified volume is not started and that I/O is not
permitted.

■	 FAULTED

Indicates the volume stops unexpectedly.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

24 Storage agents
Volume agent
Attributes

Table 2-3 Required attributes

Required
attribute Description

DiskGroup Name of the disk group that contains the volume.

Type and dimension: string-scalar

Example: "sharedg"

Volume Name of the volume.

Type and dimension: string-scalar

Example: "vol3"

Resource type definition
type Volume (

static int NumThreads = 1

static str ArgList[] = { Volume, DiskGroup }

str Volume

str DiskGroup

)

Sample configurations

Configuration
Volume sharedg_vol3 (

Volume = vol3

DiskGroup = sharedg

)

25 Storage agents
LVMLogicalVolume agent
LVMLogicalVolume agent

Brings online, takes offline, and monitors Logical Volume Manager (LVM)
logical volumes.

Dependency
LVMLogicalVolume resources depend on LVMVolumeGroup resources.

Agent functions
■	 Online

Activates the logical volume.

■	 Offline

Deactivates the logical volume.

■	 Monitor

Determines if the logical volume is accessible by performing read
I/O on the raw logical volume.

State definitions
■	 ONLINE

Indicates that the Logical Volume is active.

■	 OFFLINE

Indicates that the Logical Volume is not active.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

26 Storage agents
LVMLogicalVolume agent
Attributes

Table 2-4 Required attributes

Required
attribute Description

LogicalVolume Name of the logical volume.

Type and dimension: string-scalar

Example: "1vol1"

VolumeGroup Name of the volume group containing the logical volume.

Type and dimension: string-scalar

Example: "vg1"

Table 2-5 Optional attributes

Optional
Attribute Description

VolumeIOTimeout The time for which the agent should wait before returning an OFFLINE

state when IO to the volume hangs.

Default: "15"

Minimum value: 3 seconds

Maximum value: No maximum value, but the higher the value the
higher the failover time required.

Resource type definition
type LVMLogicalVolume (

static str ArgList[] = { LogicalVolume, VolumeGroup }

str LogicalVolume

str VolumeGroup

)

Physical volumes associated with volume groups
For all the Physical Volumes (PV) associated with a Volume Group, set the
timeout to a smaller value than specified in the VolumeIOTimeout attribute of

27 Storage agents
LVMLogicalVolume agent
the resource. For example, if you specify an IOTimeout to equal 15 seconds,
update the PV Timeout to a value that is less than 15 seconds.

Use the following command to change the timeout:
pvchange -t time /dev/dsk/PV Used

pvchange -t time Physical Volume

For example:
pvchange -t 10 /dev/dsk/c2t4d4

Sample configurations

Configuration
LVMLogicalVolume sharedg_lvol1 (

LogicalVolume = lvol1

VolumeGroup = sharevg

)

28 Storage agents
LVMVolumeGroup agent
LVMVolumeGroup agent

Activates, deactivates, and monitors LVM volume groups.

Dependency
LVMVolumeGroup resources depends on DiskReservation resources. Without
DiskReservation resources the LVMVolumeGroup can not function.

Agent functions
■	 Online

Activates a volume group. While each system in the cluster must import the
volume group, each system does not need to activate it.

This agent does not import volume groups because of the way LVM stores
configuration information. Use the HP-UX SAM tool to import a volume
group.

■	 Offline

Deactivates a volume group with the vgchange command.

■	 Monitor

Determines whether the volume group is available.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the Volume Group is active.

■	 OFFLINE

Indicates that the Volume Group is not active.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

29 Storage agents
LVMVolumeGroup agent
Attributes

Table 2-6 Required attributes

Required
attribute Description

VolumeGroup Name of the volume group configured with Logical Volume Manager.

Type and dimension: string-scalar

Example: "sharevg"

Resource type definition
type LVMVolumeGroup (

static str ArgList[] = { VolumeGroup }

str VolumeGroup

)

Sample configurations

Configuration 1
LVMVolumeGroup sharevg (

VolumeGroup = sharevg

)

Configuration 2: LVMVolumeGroup,
LVMLogicalVolume, and Mount Dependencies
This sample configuration shows the LVMVolumeGroup, LVMLogicalVolume,
and Mount dependencies:
group sample_lvm (

SystemList = { System1, System2 }

AutoStartList = { System1 }

)

LVMLogicalVolume lvolres (

LogicalVolume = lvol2

VolumeGroup = vg01

)

LVMVolumeGroup lvgres (

VolumeGroup = vg01

)

30 Storage agents
LVMVolumeGroup agent
Mount mres (
MountPoint = "/dir2"
BlockDevice = "/dev/vg01/lvol2"
FSType = vxfs
MountOpt = ro
FsckOpt = "-y"
)

mres requires lvolres
lvolres requires lvgres

31 Storage agents
LVMCombo agent
LVMCombo agent

Controls the activation and deactivation of the logical volumes and the Logical
Volume group.

Agent functions
■	 Online

Activates the volume group and any of the logical volumes that are not
available. While each system in the cluster must import the volume group,
each system should not activate it.

This agent does not import volume groups because of the way LVM stores
configuration information. Use the HP-UX SAM tool to import a volume
group.

■	 Offline

Deactivates the volume group, but does not deactivate the logical volumes.
The logical volumes are automatically deactivated when the volume group
is deactivated.

■	 Monitor

If the volume group and all of the logical volumes are activated, the
resource is online. Otherwise, the resource is reported offline.

Note: The monitor agent function does not perform any I/O on disk. If a disk that
makes up a logical volume is powered off, the agent is not aware of this situation
until LVM marks the logical volume unavailable. This may occur if the file
system or the application using the logical volume attempts an I/O operation
and fails. LVM can then set the logical volume as unavailable.

32 Storage agents

LVMCombo agent

State definitions
■	 ONLINE

Indicates that the Volume Group and Logical Volumes are active.

■	 OFFLINE

Indicates that the Volume Group and Logical Volumes are not active.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

Attributes

Table 2-7 Required attributes

Required
Attribute Description

LogicalVolumes List of logical volumes in a volume group.

Type and dimension: string-vector

Example: "lvol1" , "lvol2"

VolumeGroup Name of a volume group.

Type and dimension: string-scalar

Example: "vg01"

Table 2-8 Optional attributes

Optional
Attribute Description

VolumeIOTimeout The time for which the agent waits before returning an OFFLINE state
when I/Os to the volume hangs.

Default: "15"

Minimum value: 3 seconds

Maximum value: No maximum value, but the higher the value the
higher the failover time required.

33 Storage agents
LVMCombo agent
Resource type definition
type LVMCombo (

static str ArgList[] = { VolumeGroup, LogicalVolumes,

VolumeIOTimeout }

str VolumeGroup

str LogicalVolumes[]

int VolumeIOTimeout = 15

)

Physical volumes associated with volume groups
For all the Physical Volumes (PV) associated with a Volume Group, set the
timeout to a smaller value than specified in the VolumeIOTimeout attribute of
the resource. For example, if you specify an IOTimeout to equal 15 seconds,
update the PV Timeout to a value that is less than 15 seconds.

Use the following command to change the timeout:
pvchange -t time /dev/dsk/PV Used

pvchange -t time Physical Volume

For example:
pvchange -t 10 /dev/dsk/c2t4d4

Sample configurations

Sample 1
LVMCombo vg01 (

VolumeGroup = vg01

LogicalVolumes = { lvol1, lvol2 }

)

Sample 2: LVMCombo and Mount Dependencies
This sample configuration shows the LVMCombo and Mount dependencies:
group sample_lvmcombo (

SystemList = { System1, System2 }

AutoStartList = { System1 }

)

LVMCombo lvmcmbres (

VolumeGroup = vg02

LogicalVolumes = { lvol1 }

)

Mount mres (

MountPoint = "/dir2"

BlockDevice = "/dev/vg02/lvol1"

FSType = vxfs

34 Storage agents
LVMCombo agent
MountOpt = ro
FsckOpt = "-y"
)

mres requires lvmcmbres

35 Storage agents
Mount agent
Mount agent

Use this agent to bring online, take offline, and monitor a file system or NFS
client mount point.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Mount resources, the
virtual fire drill checks for:

■	 The existence of the mount directory

■ The correct filesystem mounted at the specified mount directory

For more information about using the virtual fire drill see the VCS User’s Guide.

Agent functions
■	 Online

Mounts a block device on the directory. If the mount process fails for non-
NFS mounts, the agent attempts to run the fsck command on the device to
remount the block device.

If file system type is NFS, agent mounts the remote NFS file system to a
specified directory. The remote NFS file system is specified in the
BlockDevice attribute.

■	 Offline

Unmounts the mounted file system gracefully.

■	 Monitor

Determines if the file system is mounted.

■	 Clean

Unmounts the mounted file system forcefully.

■	 Info

The Mount info agent function executes the command:
bdf 	mount_point

The output displays Mount resource information:
Size Used Avail Use%

To initiate the info agent function, set the InfoInterval timing to a value
greater than 0. In this example, the info agent function executes every 60
seconds:

haconf -makerw

hatype -modify Mount InfoInterval 60

36 Storage agents
Mount agent
State definitions
■

■

■

■

The command to retrieve information about the Mount resource is:
hares -value mountres ResourceInfo

Output includes:
Size 2097152

Used 139484

Available 1835332

Used% 8%

ONLINE

For the file system, indicates that the block device is mounted on the
specified mount point.

For the NFS client, indicates that the NFS remote client is mounted in the
specified mount directory.

OFFLINE

For the file system, indicates that the block device is not mounted on the
specified mount point.

For the NFS client, indicates that the NFS remote client is not mounted in
the specified mount directory.

FAULTED

For the file system, indicates that the block device has unexpectedly
unmounted.

For the NFS client, indicates that the NFS remote client has unexpectedly
unmounted.

UNKNOWN

Indicates that a problem exists either with the configuration or the inability
to determine the status of the resource.

37 Storage agents
Mount agent
Attributes

Table 2-9 Required attributes

Required
attribute Description

BlockDevice Block device for mount point.

Type and dimension: string-scalar

Examples:

"/dev/vx/dsk/campus-dg1/campus-vol1"

"/dev/vg02/lvol1"

FsckOpt Required when the value of the FSType attribute is not nfs. For NFS
file system, this attribute is optional. Options for fsck command.
You must include -y or -n must as arguments to fsck for the
resource to come online. The -y argument enables the VxFS file
systems to perform a log replay before a full fsck operation. Refer to
the manual page on the fsck command for more information.

Type and dimension: string-scalar

FSType Type of file system.

Supports vxfs, hfs, or nfs.

Type and dimension: string-scalar

Example: "nfs"

MountPoint Directory for mount point.

Type and dimension: string-scalar

Example: "/campus1"

38 Storage agents
Mount agent
Table 2-10 Optional attributes

Optional
attribute Description

CkptUmount If set to 1, this attribute automatically unmounts VxFS
checkpoints when the file system is unmounted.

If set to 0, and checkpoints are mounted, then failover does
not occur.

Type and dimension: integer-scalar

Default: 1

MountOpt Options for the mount command. Refer to the mount manual
page for more information.

Type and dimension: string-scalar

Example: "rw"

SecondLevelMonitor This attribute is only applicable to NFS client mounts.

If set to 1, this attribute enables detailed monitoring of a NFS
mounted file system.

Type and dimension: boolean-scalar

Default: 0

SecondLevelTimeout This attribute is only applicable to NFS client mounts.

This is the timeout (in seconds) for the SecondLevelMonitor
attribute.

Type and dimension: integer-scalar

Default: 30

SnapUmount If set to 1, this attribute automatically unmounts VxFS
snapshots when the file system is unmounted.

If set to 0 and snapshots are mounted, then failover does not
occur.

Type and dimension: integer-scalar

Default: 0

39 Storage agents
Mount agent
Resource type definition
type Mount (

static keylist SupportedActions = { "mountpoint.vfd",

"mounted.vfd", "vxfslic.vfd" }

static str ArgList[] = { MountPoint, BlockDevice, FSType,

MountOpt, FsckOpt, SnapUmount, CkptUmount, SecondLevelMonitor,

SecondLevelTimeout }

str MountPoint

str BlockDevice

str FSType

str MountOpt

str FsckOpt

int SnapUmount

int CkptUmount = 1

boolean SecondLevelMonitor = 0

int SecondLevelTimeout = 30

)

Sample configurations

Configuration
Mount campus-fs1 (

MountPoint= "/campus1"

BlockDevice = "/dev/vx/dsk/campus-dg1/campus-vol1"

FSType = "vxfs"

FsckOpt = "-n"

MountOpt = "rw"

)

40 Storage agents
Mount agent

ChapterX
3
Network agents

This chapter contains the following:

■ “About the network agents” on page 41

■ “IP agent” on page 44

■ “NIC agent” on page 48

■ “IPMultiNIC agent” on page 51

■ “MultiNICA agent” on page 54

■ “About the IPMultiNICB and MultiNICB agents” on page 61

■ “IPMultiNICB agent” on page 62

■ “MultiNICB agent” on page 66

■ “DNS agent” on page 73

About the network agents
Use network agents to provide high availability for networking resources.

Agent comparisons

IP and NIC agents
The IP and NIC agents:

■ Monitor a single NIC

IPMultiNIC and MultiNICA agents
The IPMultiNIC and MultiNICA agents:

■ Monitor single or multiple NICs

42 Network agents

About the network agents

■	 Check the backup NICs at fail over

■	 Use the original base IP address when failing over

■	 Provide slower failover compared to MultiNICB but can function with fewer
IP addresses

■	 Have only one active NIC at a time

IPMultiNICB and MultiNICB agents
The IPMultiNICB and MultiNICB agents:

■	 Monitor single or multiple NICs

■	 Check the backup NICs as soon as it comes up

■	 Require a pre-assigned base IP address for each NIC

■	 Do not fail over the original base IP address

■	 Provide faster fail over compared to MultiNICA but require more IP
addresses

■	 Have more than one active NIC at a time

43 Network agents
About the network agents
802.1Q trunking
The IP/NIC, IPMultiNIC/MultiNICA, and IPMultiNICB/MultiNICB agents support

802.1Q trunking.

To use 802.1Q trunking, create 802.1Q trunked interfaces over a physical

interface using the System Administration Manager (SAM). The physical

interface is connected to a 802.1Q trunked port on the switch.

The NIC, and MultiNICA agents can monitor these trunked interfaces. The IP

and IPMultiNIC agents monitor the virtual IP addresses that are configured on

these interfaces.

For example, create a 802.1Q interface called lan9000 over a physical interface

called lan0. Do not configure an IP address on lan0. You connect lan0 to a

trunked port on the switch. The NIC and IP agents can then monitor lan9000

and the virtual IP address configured on lan9000. You must make sure that the

IP addresses that are assigned to the interfaces of a particular VLAN are in the

same subnet.

44 Network agents
IP agent
IP agent

Manages the process of configuring a virtual IP address and its subnet mask on
an interface. The interface must be enabled with a physical (or administrative)
base IP address before you can assign it a virtual IP address. The virtual IP
address must not be in use.

VCS supports Auto-port Aggregation (APA) with the NIC and IP agents.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For IP resources, the virtual
fire drill checks for the existence of a route to the IP from the specified NIC.

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependency
IP resources depend on NIC resources.

Agent functions
■	 Online

Configures the IP address to the NIC. Checks if another system is using the
IP address. Uses the ifconfig command to set the IP address on a unique
alias on the interface.

■	 Offline

Brings down the IP address specified in the Address attribute.

45 Network agents
IP agent
■	 Monitor

Monitors the interface to test if the IP address that is associated with the
interface is alive.

■	 Clean

Brings down the IP address associated with the specified interface.

State definitions
■	 ONLINE

Indicates that the device is up and the specified IP address is assigned to the
device.

■	 OFFLINE

Indicates that the device is down or the specified IP address is not assigned
to the device.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

Attributes

Table 3-1 Required attributes

Required
attributes Description

Address A virtual IP address, which is different from the base IP address, and
which is associated with the interface.

Type and dimension: string-scalar

Example: "192.203.47.61"

Device The name of the NIC device associated with the IP address. Contains
the device name without an alias.

Type and dimension: string-scalar

Example: "lan0"

46 Network agents
IP agent
Table 3-2 Optional attributes

Required
attributes Description

ArpDelay The number of seconds to sleep between configuring an interface
and sending out a broadcast to inform routers about this IP address.

Type and dimension: integer-scalar

Default: 1

IfconfigTwice Causes an IP address to be configured twice using an ifconfig up
down-up command sequence. Increases the probability of gratuitous
ARP requests (generated by ifconfig up) to reach clients.

Type and dimension: integer-scalar

NetMask The netmask associated with the IP address of the resource. Specify
the value of the netmask in decimal (base 10) or hexadecimal (base
16).

Note: Symantec recommends that you specify a netmask for each
virtual interface.

Type and dimension: string-scalar

Example: "255.255.210.0"

Options Options for the ifconfig command.

Type and dimension: string-scalar

Example: "broadcast 192.203.15.255"

47 Network agents
IP agent
Resource type definition
type IP (

static keylist SupportedActions = { "device.vfd", "route.vfd" }

static str ArgList[] = { Device, Address, NetMask, Options,

ArpDelay, IfconfigTwice }

str Device

str Address

str NetMask

str Options

int ArpDelay = 1

int IfconfigTwice

)

Sample configurations

Configuration 1
IP IP_192_203_47_61 (

Device = lan0

Address = "192.203.47.61"

)

NetMask in decimal (base 10)
IP IP_192_203_47_61 (

Device = lan0

Address = "192.203.47.61"

NetMask = "255.255.248.0"

)

NetMask in hexadecimal (base 16)
IP IP_192_203_47_61 (

Device = lan0

Address = "192.203.47.61"

NetMask = "0xfffff800"

)

48 Network agents
NIC agent
NIC agent

Monitors the configured NIC. If a network link fails, or if a problem arises with
the NIC, the resource is marked FAULTED.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and

the underlying infrastructure on a node; discrepancies that might prevent a

service group from going online on a specific node. For NIC resources, the

virtual fire drill checks for the existence of the NIC on the host.

For more information about using the virtual fire drill see the VCS User’s Guide.

The NIC listed in the Device attribute must have an administrative IP address,

which is the default IP address assigned to the physical interface of a host on a

network. This agent does not configure network routes or administrative IP

addresses.

Before using this agent:

■	 Verify that the NIC has the correct administrative IP address and subnet
mask.

■	 Verify that the NIC does not have built-in failover support. If it does, disable
it.

Agent functions
■	 Monitor

Tests the network card and network link. Pings the network hosts or
broadcast address of the interface to generate traffic on the network.
Counts the number of packets passing through the device before and after
the address is pinged. If the count decreases or remains the same, the
resource is marked FAULTED.

State definitions
■	 ONLINE

Indicates that the NIC resource is working.

■	 FAULTED

Indicates that the NIC has failed.

■	 UNKNOWN

Indicates the agent cannot determine the interface state. It may be due to an
incorrect configuration.

49 Network agents
NIC agent
Attributes

Table 3-3 Required attributes

Required
attribute Description

Device Name of the NIC that you want to monitor.

Type and dimension: string-scalar

Example: "lan0"

Table 3-4 Optional attributes

Optional
attribute Description

NetworkHosts List of hosts on the network that are pinged to determine if the
network connection is alive. Enter the IP address of the host, instead
of the host name, to prevent the monitor from timing out. DNS
causes the ping to hang. If more than one network host is listed, the
monitor returns ONLINE if at least one of the hosts is alive.

Type and dimension: string-vector

Example: "166.96.15.22" , "166.97.1.2"

NetworkType Type of network. VCS currently only supports Ethernet.

Type and dimension: string-scalar

Default: "ether"

PingOptimize Number of monitor cycles to detect if configured interface is
inactive.

Use PingOptimize when you have not specified network hosts.

A value of 1 optimizes broadcast pings and requires two monitor
cycles.

A value of 0 performs a broadcast ping during each monitor cycle
and detects the inactive interface within the cycle.

Type and dimension: integer-scalar

Default: 1

50 Network agents
NIC agent
Resource type definition
type NIC (

static keylist SupportedActions = { "device.vfd" }

static str ArgList[] = { Device, NetworkType, PingOptimize,

NetworkHosts }

static int OfflineMonitorInterval = 60

static str Operations = None

str Device

str NetworkType = ether

int PingOptimize = 1

str NetworkHosts[]

)

Sample configurations

Network Hosts
NIC groupx_lan0 (

Device = lan0

NetworkHosts = { "166.93.2.1", "166.99.1.2" }

)

51 Network agents
IPMultiNIC agent
IPMultiNIC agent

Manages the virtual IP address configured as an alias on one interface of a
MultiNICA resource. If the interface faults, the agent works with the MultiNICA
resource to fail over to a backup NIC. If multiple service groups have
IPMultiNICs associated with the same MultiNICA resource, only one group has
the MultiNICA resource. The other groups have Proxy resources pointing to it.

Dependency
IPMultiNIC resources depend on MultiNICA resources.

Agent functions
■	 Online

Configures a virtual IP address on one interface of the MultiNICA resource.

■	 Offline

Removes the virtual IP address from one interface of the MultiNICA
resource.

■	 Monitor

Checks if the virtual IP address is configured on one interface of the
MultiNICA resource.

■	 Clean

Removes a virtual IP address from the interface where the virtual IP
address is configured.

■	 Open

Initializes the setup that the agent uses to start in a clean state.

■	 Close

Cleans up the setup that the agent uses.

State definitions
■	 ONLINE

Indicates that the specified IP address is assigned to the device.

■	 OFFLINE

Indicates that the specified IP address is not assigned to the device.

■	 UNKNOWN

Indicates that the agent can not determine the state of the resource. This
may be due to an incorrect configuration.

52 Network agents
IPMultiNIC agent
Attributes

Table 3-5 Required attributes

Required
attribute Description

Address Virtual IP address assigned to the active NIC.

Type and dimension: string-scalar

Example: "10.128.10.14"

MultiNICResName Name of associated MultiNICA resource that determines the
active NIC.

Type and dimension: string-scalar

Example: "mnic"

Table 3-6 Optional attributes

Optional
attribute Description

IfconfigTwice Causes an IP address to be configured twice using an ifconfig up
down-up sequence. Increases the probability of gratuitous ARP
requests (generated by ifconfig up) to reach clients.

Type and dimension: integer-scalar

NetMask The netmask associated with the IP address of the resource. Specify
the value of the netmask in decimal (base 10) or hexadecimal (base
16).

Note: Symantec recommends that you specify a netmask for each
virtual interface.

Type and dimension: string-scalar

Options Options for the ifconfig command.

Type and dimension: string-scalar

Example: "broadcast 192.203.15.255"

53 Network agents
IPMultiNIC agent
Resource type definition
type IPMultiNIC (

static str ArgList[] = { "MultiNICResName:Device", Address,

NetMask, "MultiNICResName:ArpDelay", Options,

"MultiNICResName:Probed", MultiNICResName, IfconfigTwice }

str Address

str NetMask

str Options

str MultiNICResName

int IfconfigTwice

static int MonitorTimeout = 120

)

Sample configuration: IPMultiNIC and MultiNICA
See “Sample configurations” on page 59.

54 Network agents
MultiNICA agent
MultiNICA agent

Represents a set of network interfaces and provides failover capabilities
between them. Each interface in a MultiNICA resource has a base IP address.
You can use one base IP address for all NICs, or you can specify a different IP
address for use with each NIC. The MultiNICA agent configures one interface at
a time. If it does not detect activity on the configured interface, it configures a
new interface and migrates IP aliases to it.

If an interface is associated with a MultiNICA resource, do not associate it with
any other MultiNICA, MultiNICB, or NIC resource. If the same set of interfaces
must be a part of multiple service groups, configure a MultiNICA resource in one
of the service groups, and the Proxy resources that point to the MultiNICA
resource in the other service groups.

Agent function

■	 Monitor

Checks the status of the active interface. If it detects a failure, it tries to
migrate the IP addresses configured on that interface to the next available
interface configured in the Device attribute.

State definitions
■	 ONLINE

Indicates that one or more of the network interfaces listed in the Device
attribute of the resource is in working condition.

■	 OFFLINE

Indicates that all of the network interfaces listed in the Device attribute
failed.

■	 UNKNOWN

Indicates that the agent cannot determine the state of the network
interfaces that are specified in the Device attribute. This may be due to
incorrect configuration.

55 Network agents
MultiNICA agent
Attributes

Table 3-7 Required attributes

Required
attribute Description

Device List of interfaces and their base IP addresses.

Type and dimension: string-association

Example: lan0 = { "192.205.8.42", lan3 = "192.205.8.42" }

Table 3-8 Optional attributes

Optional
attribute Description

ArpDelay Number of seconds to sleep between configuring an interface and
sending out a broadcast to inform routers about the base IP
address.

Type and dimension: integer-scalar

Default: 1

HandshakeInterval Computes the maximum number of attempts the agent makes
either to ping a host (listed in the NetworkHosts attribute) when it
fails over to a new NIC, or to ping the default broadcast address
(depending on the attribute configured) when it fails over to a new
NIC.

To prevent spurious failovers, the agent must try to contact a host
on the network several times before marking a NIC as FAULTED.
Increased values result in longer failover times, whether between
the NICs or from system to system in the case of FAULTED NICs.

Type and dimension: integer-scalar

Default: 20

This is the equivalent to two attempts.

56 Network agents

MultiNICA agent

Table 3-8 Optional attributes

Optional
attribute Description

IfconfigTwice Causes an IP address to be configured twice, using an ifconfig
up-down-up sequence. Increases the probability of gratuitous
ARP requests (caused by ifconfig up) to reach clients.

Type and dimension: integer-scalar

NetworkHosts List of hosts on the network that are pinged to determine if the
network connection is alive. Enter the IP address of the host,
instead of the host name, to prevent the monitor from timing out.
DNS can cause the ping to hang. If more than one network host is
listed, the monitor returns online if at least one of the hosts is
alive.

Type and dimension: string-vector

Example: "166.93.2.1", "166.97.1.2"

NetMask Netmask for the base IP address. You can specify the value of
NetMask in decimal (base 10) or hexadecimal (base 16).

Note: Symantec recommends that you specify a netmask for each
virtual interface.

Type and dimension: string-scalar

Options The ifconfig options for the base IP address.

Type and dimension: string-scalar

Example: "broadcast 192.203.15.255"

PingOptimize Number of monitor cycles to detect if the configured interface is
inactive. A value of 1 optimizes broadcast pings and requires two
monitor cycles. A value of 0 performs a broadcast ping each
monitor cycle and detects the inactive interface within the cycle.

Type and dimension: integer-scalar

Default: 1

57 Network agents
MultiNICA agent
Table 3-8 Optional attributes

Optional
attribute Description

RetestInterval Number of seconds to sleep between re-tests of a newly
configured interface.

A lower value results in faster local (interface-to-interface)
failover.

Type and dimension: integer-scalar

Default: 5

RouteOptions String to add a route when configuring an interface. Use only
when configuring the local host as the default gateway.

The string contains destination gateway metric. No routes are
added if this string is set to NULL.

Type and dimension: string-scalar

Example: "default 192.98.16.103 0"

Resource type definition
type MultiNICA (

static str ArgList[] = { Device, NetMask, ArpDelay,

RetestInterval, Options, RouteOptions, PingOptimize,

MonitorOnly, IfconfigTwice, HandshakeInterval, NetworkHosts }

static int MonitorTimeout = 300

static int OfflineMonitorInterval = 60

static str Operations = None

str Device{}

str NetMask

int ArpDelay = 1

int RetestInterval = 5

str Options

str RouteOptions

int PingOptimize = 1

int IfconfigTwice

int HandshakeInterval = 20

str NetworkHosts[]

)

MultiNICA notes
■ If all NICs configured in the Device attribute are down, the MultiNICA agent

faults the resource after a two to three minute interval. This delay occurs

58 Network agents

MultiNICA agent

because the MultiNICA agent tests the failed NIC several times before
marking the resource OFFLINE. Messages recorded in the log during failover
provide a detailed description of the events that take place.

■	 The MultiNICA agent supports only one active NIC on one IP subnet; the
agent does not work with multiple active NICs on the same subnet.

On HP-UX for example, you have one active NIC, lan0(10.128.2.5), and you
configure a second NIC, lan1, as the backup NIC to lan0. The agent does not
fail over from lan0 to lan1 because all ping tests are redirected through lan0
on the same subnet, making the MultiNICA monitor return an online status.
Note that using ping -i does not enable the use of multiple active NICs.

■	 Before you start VCS, configure the primary NIC with the correct broadcast
address and netmask.

Using RouteOptions
The RouteOptions attribute is useful only when the default gateway is your own
host.

For example, if the default gateway and lan0 are both set to 11.236.99.248,

the output of the netstat -rn command from the routing table resembles:

Destination Gateway Flags Refs Interface Pmtu
127.0.0.1 127.0.0.1 UH 0 lo0 4136
11.236.99.248 11.236.99.248 UH 0 lan0 4136
11.236.98.0 11.236.99.248 U 2 lan0 1500
127.0.0.0 127.0.0.1 U 0 lo0 0
default 11.236.99.248 UG 0 lan0 0

If the RouteOptions attribute is not set and lan0 fails, the MultiNICA agent
migrates the base IP address to another NIC (such as lan1). The default route is
no longer configured because it was associated with lan0. The display from the
routing table resembles:

Destination Gateway Flags Refs Interface Pmtu
127.0.0.1 127.0.0.1 UH 0 lo0 4136
11.236.99.161 11.236.99.161 UH 0 lan2 4136
11.236.98.0 11.236.99.161 U 2 lan2 1500

If the RouteOptions attribute defines the default route, the default route is
reconfigured on the system. For example:

RouteOptions@sysa = "default 11.236.99.248 0"

RouteOptions@sysb = "default 11.236.99.249 0"

59 Network agents
MultiNICA agent
Sample configurations

MultiNICA and IPMultiNIC
In the following example, two systems, sysa and sysb, each have a pair of
network interfaces, lan0 and lan3. In this example, the two interfaces, lan0
and lan3, have the same base, or physical, IP address. Note the lines beginning
Device@sysa and Device@sysb; the use of different physical addresses shows
how to localize an attribute for a particular host.

The MultiNICA resource fails over only the physical IP address to the backup
NIC during a failure. The logical IP addresses are configured by the IPMultiNIC
agent. The resources ip1 and ip2, shown in the following example, have the
Address attribute which contains the logical IP address. If a NIC fails on sysa,
the physical IP address and the two logical IP addresses fails over from lan0 to
lan3. If lan3 fails, the address fails back to lan0 if lan0 is reconnected.

However, if both the NICs on sysa are disconnected, the MultiNICA and
IPMultiNIC resources work in tandem to fault the group on sysa. The entire
group now fails over to sysb.

If you have more than one group using the MultiNICA resource, the second
group can use a Proxy resource to point to the MultiNICA resource in the first
group. This prevents redundant monitoring of the NICs on the same system. The
IPMultiNIC resource is always made dependent on the MultiNICA resource. See
the IPMultiNIC agent for more information.
group grp1 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

MultiNICA mnic (

Device@sysa = { lan0 = "192.205.8.42", lan3 = "192.205.8.42" }

Device@sysb = { lan0 = "192.205.8.43", lan3 = "192.205.8.43" }

NetMask = "255.255.255.0"

ArpDelay = 5

Options = "broadcast 192.203.15.255"

)

IPMultiNIC ip1 (

Address = "192.205.10.14"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "broadcast 192.203.15.255"

)

ip1 requires mnic

group grp2 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

60 Network agents
MultiNICA agent
)

IPMultiNIC ip2 (
Address = "192.205.9.4"
NetMask = "255.255.255.0"
MultiNICResName = mnic
Options = "broadcast 192.203.15.255"
)

Proxy proxy (
TargetResName = mnic
)

ip2 requires proxy

61 Network agents
About the IPMultiNICB and MultiNICB agents
About the IPMultiNICB and MultiNICB agents

The IPMultiNICB and the MultiNICB agents can handle multiple NIC
connections. Due to differences in the way that each platform handles its
networking connections, these agents vary in design between platforms.

Checklist to ensure the proper operation of MultiNICB
For the MultiNICB agent to function properly, you must satisfy each item in the
following list:

■	 Each interface must have a unique MAC address.

■	 A MultiNICB resource controls all the interfaces on one IP subnet.

■	 At boot time, you must configure and connect all the interfaces that are
under the MultiNICB resource and give them test IP addresses.

■	 All test IP addresses for the MultiNICB resource must belong to the same
subnet as the virtual IP address.

■	 Reserve the base IP addresses, which the agent uses to test the link status,
for use by the agent. These IP addresses do not get failed over.

■	 If you specify the NetworkHosts attribute, then that host must be on the
same subnet as the other IP addresses for the MultiNICB resource.

62 Network agents
IPMultiNICB agent
IPMultiNICB agent

Works with the MultiNICB agent, Configures and manages virtual IP addresses
(IP aliases) on an active network device specified by the MultiNICB resource.
When the MultiNICB agent reports a particular interface as failed, the
IPMultiNICB agent moves the IP address to the next active interface.

If multiple service groups have IPMultiNICB resources associated with the same
MultiNICB resource, only one group should have a MultiNICB resource. The
other groups should have a proxy resource pointing to the MultiNICB resource.

Dependencies
IPMultiNICB resources depend on MultiNICB resources.

Requirements for IPMultiNICB
The following conditions must exist for the IPMultiNICB agent to function
correctly:

■	 The MultiNICB agent must be running to inform the IPMultiNICB agent of
the available interfaces.

■	 Only one IPMultiNICB agent can control each logical IP address.

Agent functions
■	 Online

Finds a working interface with the appropriate interface alias or interface
name, and configures the logical IP address on it.

■	 Offline

Removes the logical IP address.

■	 Clean

Removes the logical IP address.

■	 Monitor

If the logical IP address is not configured as an alias on one of the working
interfaces under a corresponding MultiNICB resource, monitor returns
OFFLINE. If the current interface fails, the agent fails over the logical IP
address to the next available working interface within the MultiNICB
resource on the same node. If no working interfaces are available then
monitor returns OFFLINE.

63 Network agents
IPMultiNICB agent
State definitions
■	 ONLINE

Indicates that the IP address specified in the Address attribute is up on one
of the working network interfaces of the resource specified in the
BaseResName attribute.

■	 OFFLINE

Indicates that the IP address specified in the Address attribute is not up on
any of the working network interfaces of the resource specified in the
BaseResName attribute.

■	 UNKNOWN

Indicates that the agent cannot determine the status of the virtual IP
address that is specified in the Address attribute.

64 Network agents
IPMultiNICB agent
Attributes

Table 3-9 Required attributes

Required
attribute Description

Address The logical IP address that the IPMultiNICB resource must handle.

Type and dimension: string-scalar

Example: "192.205.10.15"

BaseResName Name of MultiNICB resource from which the IPMultiNICB resource
gets a list of working interfaces. The logical IP address is placed on
the physical interfaces according to the device number information.

Type and dimension: string-scalar

Example: "gnic_n"

Table 3-10 Optional attributes

Optional
attribute Description

DeviceChoice Indicates the preferred NIC where you want to bring the logical IP
address online. Specify the device name or NIC alias as determined
in the Device attribute of the MultiNICB resource.

Type and dimension: string-scalar

Default: 0

Examples:

DeviceChoice = "lan0"

DeviceChoice = "1"

NetMask Netmask for the base IP address. You can specify the value of
NetMask in decimal (base 10) or hexadecimal (base 16).

Note: Symantec recommends that you specify a netmask for each
virtual interface.

Type and dimension: string-scalar

65 Network agents
IPMultiNICB agent
Resource type definition
type IPMultiNICB (

static str ArgList[] = { BaseResName, Address, NetMask,

DeviceChoice }

str BaseResName

str Address

str NetMask

str DeviceChoice = 0

)

Manually migrating a logical IP address
Use the haipswitch command to migrate the logical IP address from one
interface to another.

In the following form, the command shows the status of the interfaces for the

specified MultiNICB resource.

haipswitch -s MultiNICB_resname

In the following form, the command checks that both from and to interfaces
are associated with the specified MultiNICB resource and the to interface is
working. If not, the command aborts the operation. It then removes the IP
address on the from logical interface and configures the IP address on the to
logical interface. Finally it erases previous failover information created by
MultiNICB for this logical IP address.

haipswitch MultiNICB_resname IPMultiNICB_resname ip addr \

netmask from to

Sample configurations

Other sample configurations for IPMultiNICB and MultiNICB
See “IPMultiNICB and MultiNICB configuration” on page 71.

66 Network agents
MultiNICB agent
MultiNICB agent

Works with the IPMultiNICB agent. Allows IP addresses to fail over to multiple

NICs on the same system before VCS attempts to fail over to another system.

When you use the MultiNICB agent, you must plumb the NICs before putting

them under the agent’s control. You must configure all the NICs in a single

MultiNICB resource with IP addresses that are in the same subnet.

The agent monitors the interfaces it controls by sending packets to other hosts

on the network and checking the link status of the interfaces.

If a NIC goes down, the MultiNICB agent notifies the IPMultiNICB agent, which

then fails over the virtual IP addresses to a different NIC on the same system.

When the original NIC comes up, the agents fail back the virtual IP address.

Each NIC must have its own unique and exclusive base IP address, which the

agent uses as the test IP address.

If multiple service groups have IPMultiNICB resources associated with the same

MultiNICB resource, only one group should have the MultiNICB resource. The

other groups can have a proxy resource pointing to it.

MultiNICB uses the following criteria to determine if an interface is working:

■	 Interface status: The interface status as reported by driver of the interface
(assuming the driver supports this feature). This test is skipped if the
attribute IgnoreLinkStatus = 1.

■	 ICMP echo: ICMP echo request packets are sent to one of the network hosts
(if specified). Otherwise, the agent uses ICMP broadcast and caches the
sender of the first reply as a network host. While sending and receiving
ICMP packets, the IP layer is completely bypassed.

The MultiNICB agent writes the status of each interface to an export
information file, which other agents (like IPMultiNICB) or commands (like
haipswitch) can read.

Failover and failback
During an interface failure, the MultiNICB agent fails over all logical IP
addresses to a working interface under the same resource. The agent remembers
the first physical interface from which an IP address was failed over. This
physical interface becomes the “original” interface for the particular logical IP
address. When the original interface is repaired, the logical IP address fails back
to it.

67 Network agents
MultiNICB agent
Agent functions
■	 Open

Allocates an internal structure to store information about the resource.

■	 Close

Frees the internal structure used to store information about the resource.

■	 Monitor

Checks the status of each physical interface. Writes the status information
to the export information file for IPMultiNICB resources to read it.

Performs failover. Performs failback if the value of the Failback attribute
is 1.

State definitions
■	 ONLINE

Indicates that one or more of the network interfaces listed in the Device
attribute of the resource is in working condition.

■	 UNKNOWN

Indicates that the MultiNICB resource is not configured correctly.

■	 FAULTED

Indicates that all of the network interfaces listed in the Device attribute
failed.

68 Network agents
MultiNICB agent
Attributes

Table 3-11 Required attribute

Required
attribute Description

Device List of NICs that you want under MultiNICB control, and the aliases
of those NICs. The IPMultiNICB agent uses the NIC aliases to
configure IP addresses. The IPMultiNICB agent uses these interface
aliases to determine the order of the interface on which to bring the
IP addresses online.

Type and dimension: string-association

Example:

Device = { "lan0", "lan4" }

Example:

Device = { "lan0" = 0, "lan1" = 2, "lan2" = 3 }

In this example, the MultiNICB agent uses interfaces lan0, lan1, and
lan2. The MultiNICB agent passes on the associated interface aliases
0, 2, and 3 to the IPMultiNICB agent.

Table 3-12 Optional attributes

Optional
attribute Description

DefaultRouter This is the IP address of the default router on the subnet. If
specified, the agent removes the default route when the resource
goes offline. The agent adds the route back when the group returns
online. You must specify this attribute if multiple IP subnets exist
on one host; otherwise, the packets cannot be routed properly when
the subnet corresponding to the first default route goes down.

Type and dimension: string-scalar

Default: 0.0.0.0

Example: "192.1.0.1"

Failback If set to 1, the virtual IP addresses are failed back to the original
physical interface whenever possible. A value of 0 disables this
behavior.

Type and dimension: integer-scalar

Default: 0

69 Network agents
MultiNICB agent
Table 3-12 Optional attributes

Optional
attribute Description

IgnoreLinkStatus If set to 1, the agent ignores the driver-reported interface status
while testing the interfaces. If set to 0, the agent reports the
interface status as down if the driver-reported interface status
indicates the down state. Using interface status for link testing may
considerably speed up failovers.

Type and dimension: integer-scalar

Default: 1

LinkTestRatio This is the ratio of total monitor cycles to monitor cycles in which
the agent tests the interfaces by sending packets. At all other times,
the agent tests the link by checking the "link-status" as reported by
the device driver. Checking the "link-status" is a faster way to check
the interfaces, but only detects cable disconnection failures.

If set to 1, packets are sent during every monitor cycle.

If set to 0, packets are never sent during a monitor cycle.

Type and dimension: integer-scalar

Default: 1

Example: 3

In this example, if the monitor agent function invokes in a
numbered pattern such as 1, 2, 3, 4, 5, 6, ..., the actual packet send
test is done at 3, 6, ... monitor agent functions. For LinkTestRatio=4,
the packet send test is done at 4, 8, ... monitor agent functions.

NetworkHosts List of host IP addresses on the IP subnet that are pinged to
determine if the interfaces are working. NetworkHosts only accepts
IP addresses to avoid DNS lookup delays. The IP addresses must be
directly present on the IP subnet of interfaces (the hosts must
respond to ARP requests).

If IP addresses are not provided, the hosts are automatically
determined by sending a broadcast ping (unless the NoBroadcast
attribute is set to 1). The first host to reply serves as the ping
destination.

Type and dimension: string-vector

Example: "192.1.0.1"

70 Network agents

MultiNICB agent

Table 3-12 Optional attributes

Optional
attribute Description

NetworkTimeout Timeout for ARP and ICMP packets in milliseconds. MultiNICB
waits for response to ICMP and ARP packets only during this time
period.

Assign NetworkTimeout a value in the order of tens of milliseconds
(given the ICMP and ARP destinations are required to be on the
local network). Increasing this value increases the time for failover.

Type and dimension: integer-scalar

Default: 100

NoBroadcast If set to 1, NoBroadcast prevents MultiNICB from sending broadcast
ICMP packets. (Note: MultiNICB can still send ARP requests.)

If NetworkHosts are not specified and NoBroadcast is set to 1, the
MultiNICB agent cannot function properly.

Note: Symantec does not recommend setting the value of
NoBroadcast to 1.

Type and dimension: integer-scalar

Default: 0

OfflineTestRepeat
Count

Number of times the test is repeated if the interface status changes
from UP to DOWN. For every repetition of the test, the next
NetworkHost is selected in round-robin manner. At the end of this
process, broadcast is performed if NoBroadcast is set to 0. A greater
value prevents spurious changes, but also increases the response
time.

Type and dimension: integer-scalar

Default: 3

OnlineTestRepeatC
ount

Number of times the test is repeated if the interface status changes
from DOWN to UP. This helps to avoid oscillations in the status of the
interface.

Type and dimension: integer-scalar

Default: 3

Resource type definition
type MultiNICB (

static int MonitorInterval = 10

static int OfflineMonitorInterval = 60

static int MonitorTimeout = 60

static int Operations = None

71 Network agents
MultiNICB agent
static str ArgList[] = { Device, NetworkHosts, LinkTestRatio,

IgnoreLinkStatus, NetworkTimeout, OnlineTestRepeatCount,

OfflineTestRepeatCount, NoBroadcast, DefaultRouter, Failback }

str Device{}

str NetworkHosts[]

int LinkTestRatio = 1

int IgnoreLinkStatus = 1

int NetworkTimeout = 100

int OnlineTestRepeatCount = 3

int OfflineTestRepeatCount = 3

int NoBroadcast = 0

str DefaultRouter = "0.0.0.0"

int Failback = 0

)

Trigger script
MultiNICB monitor agent function calls a VCS trigger in case of an interface
going up or down. The agent passes the following arguments to the script:

■	 MultiNICB resource name

■	 The device whose status changed, for example:

■	 lan0

■	 The device's previous status (0 for down, 1 for up)

■ The device's current status and monitor heartbeat

The agent also sends a notification (which may be received via SNMP or SMTP)

to indicate that status of an interface changed. The notification is sent using

"health of a cluster resource declined" and "health of a cluster resource

improved" traps. These traps are mentioned in the VCS User's Guide. A sample

mnicb_postchange trigger is provided with the agent. You can customize this

sample script as needed or write one from scratch.

The sample script does the following:

■	 If interface changes status, it prints a message to the console, for example:
MultiNICB: Device lan0 status changed from down to up.

■	 The script saves last IP address-to-interface name association. If any of the
IP addresses has been moved, added, or removed, it prints out a message to
the console, for example: MultiNICB: IP address 192.4.3.3 moved from
interface lan1:1 to interface lan0:1

IPMultiNICB and MultiNICB configuration
The following is an example VCS configuration.
include "types.cf"

72 Network agents
MultiNICB agent
cluster clus_north (

UserNames = { admin = "cDRpdxPmHpzS." }

Administrators = { admin }

CounterInterval = 5

)

system north

system south

group g11 (

SystemList = { north = 0, south = 1 }

AutoStartList = { north, south }

)

IPMultiNICB ipmnicb (

BaseResName = mnicb

Address = "192.1.0.201"

NetMask = "255.255.0.0"

DeviceChoice = 1

)

MultiNICB mnicb (

Device @north = { lan0 = 0, lan4 = 1 }

Device @south = { lan0 = 0, lan4 = 1 }

NetworkHosts = { "192.1.0.1" }

DefaultRouter = "0.0.0.0"

)

ipmnicb requires mnicb

73 Network agents
DNS agent
DNS agent

The DNS agent updates and monitors the canonical name (CNAME) mapping in
the domain name server when failing over applications across subnets
(performing a wide-area failover.)

Use the DNS agent when the failover source and target nodes are on different
subnets. The agent updates the name server and allows clients to connect to the
failed over instance of the application service.

Agent functions
■	 Online

Queries the authoritative name server of the domain for CNAME records
and updates the CNAME record on the name server with the specified alias
to canonical name mapping. Adds a new CNAME record if a related record is
not found. Creates an Online lock file if the Online function was successful.

■	 Offline

Removes the Online lock file, which the Online agent function created.

■	 Monitor

If the Online lock file exists, the Monitor function queries the name servers
for the CNAME record for the alias. It reports back ONLINE if the response
from at least one of the name servers contains the same canonical name
associated with the alias in the Hostname attribute. If no servers return the
appropriate name, the monitor reports the resource as OFFLINE.

■	 Clean

Removes the Online lock file, if it exists.

■	 Open

Removes the Online lock file if the Online lock file exists, and the CNAME
record on the name server does not contain the expected alias or canonical
name mapping.

State definitions
■	 ONLINE

An Online lock exists and the CNAME RR is as expected.

■	 OFFLINE

Either the Online lock does not exist, or the expected record is not found.

■	 UNKNOWN

Problem exists with the configuration.

74 Network agents
DNS agent
Attributes

Table 3-13 Required attributes

Required
attribute Description

Alias A string representing the alias to the canonical name.

Type and dimension: string-scalar

Example: "www"

Where www is the alias to the canonical name mtv.veritas.com.

Domain A string representing the domain name.

Type and dimension: string-scalar

Example: "veritas.com"

 Hostname A string representing canonical name of a system.

Type and dimension: string-scalar

Example: "mtv.veritas.com"

TTL A non-zero integer representing the “Time To Live” value, in
seconds, for the DNS entries in the zone you are updating. A lower
value means more hits on your DNS server, while a higher value
means more time for your clients to learn about changes.

Type and dimension: integer-scalar

Default: 86400

Example: 3600

75 Network agents
DNS agent
Table 3-14 Optional attributes

Optional
attribute Description

StealthMasters The list of primary master name servers in the domain. Optional if
the zone’s name server record lists the primary master name server.
If the primary master name server is a stealth server, define this
attribute. A stealth server is a name server that is authoritative for a
zone, but is not listed in that zone’s name server records.

Type and dimension: string-keylist

Example: { "10.190.112.23" }

TSIGKeyFile Required when you configure DNS for secure updates.

Specifies the absolute path to the file containing the private TSIG
(Transaction Signature) key.

Type and dimension: string-scalar

Example: "/var/tsig/Kveritas.com.+157+00000.private"

Resource type definition
type DNS (

static str ArgList[] = { Domain, Alias, Hostname, TTL,

TSIGKeyFile, StealthMasters }

str Domain

str Alias

str Hostname

int TTL = 86400

str TSIGKeyFile

str StealthMasters[]

)

Online query
If the canonical name in the response CNAME record does not match the one
specified for the resource, the Online function tries to update the CNAME record
on all authoritative master name servers in its domain (those master name
servers that it can reach and where it has update permission). If the DNS update
was successful, or was not necessary on at least one of the name servers, the
Online function creates an online lock file. The monitor agent function checks
for the existence of this file. The Online agent function does not create the
online lock file if it is unable to update at least one domain name server.

76 Network agents
DNS agent
A stealth server is a name server that is authoritative for a zone, but is not listed
in that zone’s NS records. If you specify the StealthMasters attribute, the Online
agent function tries to update the name servers specified in the StealthMasters
attribute.

In BIND 8 and above, the primary master name server on receiving an update
sends notification (NOTIFY) to all its slave servers asking them to pick up the
update.

Monitor scenarios
Depending on the existence of the Online lock file and the CNAME Resource
Records (RR), you get different status from the Monitor function.

Table 3-15 Monitor scenarios for the Online lock file

Online lock file exists Expected CNAME RR Monitor returns

NO N/A OFFLINE

YES NO OFFLINE

YES YES ONLINE

Note: The DNS agent supports BIND version 8 and above.

Sample web server configuration
Take the former Veritas corporate web server as an example. A person using a
web browser specifies the URL www.veritas.com to view the Veritas web page,
where www.veritas.com maps to the canonical name mtv.veritas.com, which is a
host in Mountain View running the web server. The browser, in turn, retrieves
the IP address for the web server by querying the domain name servers. If the
web server for www.veritas.com is failed over from Mountain View to Heathrow,
the domain name servers need to be updated with the new canonical name
mapping so that the web browsers are directed to Heathrow instead of Mountain
View. In this case, the DNS agent should update the name server to change the
mapping of www.veritas.com, from mtv.veritas.com to the canonical name of
the standby system in Heathrow, hro.veritas.com, in case of a failover.

Sample DNS configuration
DNS www (

Domain = "example.com"

Alias = www

http:mtv.veritas.com
http:www.veritas.com
http:hro.veritas.com

77 Network agents
DNS agent
Hostname = virtual1

)

Bringing the www resource online updates the authoritative nameservers for
domain example.com with the following CNAME record:

■	 HP-UX
www.example.com. 86400 IN CNAME virtual1.example.com

All DNS lookups for www.example.com resolve to www.virtual1.example.com.

Secure DNS update
The DNS agent by default—when the attribute TSIGKeyFile is unspecified—
expects the IP address of the hosts that can update the DNS records dynamically
to be specified in the allow-updates field of the zone. However, since IP
addresses can be easily spoofed, a secure alternative is to use TSIG (Transaction
Signature) as specified in RFC 2845. TSIG is a shared key message
authentication mechanism available in DNS. A TSIG key provides a means to
authenticate and verify the validity of DNS data exchanged, using a shared
secret key between a resolver and either one or two servers.

Setting up secure updates using TSIG keys
In the following example, the domain is veritas.com.

To use secure updates using TSIG keys

1	 Run the dnskeygen command with the HMAC-MD5 (-H) option to generate
a pair of files that contain the TSIG key:
dnssec-keygen -a HMAC-MD5 -b 128 -n HOST veritas.com.

Kveritas.com.+157+00000.key

Kveritas.com.+157+00000.private

2 Open either file. The contents of the file should look similar to:
veritas.com. IN KEY 513 3 157 +Cdjlkef9ZTSeixERZ433Q==

3	 Copy the shared secret (the TSIG key), which should look similar to:
+Cdjlkef9ZTSeixERZ433Q==

4	 Configure the DNS server to only allow TSIG updates using the generated
key.

Open the named.conf file and add these lines.
key veritas.com. {

algorithm hmac-md5;

secret “+Cdjlkef9ZTSeixERZ433Q==”;

};

Where +Cdjlkef9ZTSeixERZ433Q== is the key.

http:www.example.com
http:www.virtual1.example.com
http:veritas.com
http:veritas.com
http:veritas.com
http:veritas.com

78 Network agents
DNS agent
5	 In the named.conf file, edit the appropriate zone section and add the allow-
updates substatement to reference the key:
allow-updates { key veritas.com. ; } ;

6	 Save and restart the named process.

7	 Place the files containing the keys on each of the nodes that is listed in your
group’s SystemList. The DNS agent uses this key to update the name server.

Copy both the private and public key files on to the node. A good location is
in the /var/tsig/ directory.

8	 Set the TSIGKeyFile attribute for the DNS resource to specify the file
containing the private key.
DNS www (

Domain = "veritas.com"

Alias = www

Hostname = north

TSIGKeyFile = "/var/tsig/Kveritas.com.+157+00000.private"

)

http:veritas.com

Chapter
4
File share agents

This chapter contains the following:

■ “About the file service agents” on page 79

■ “NFS agent” on page 80

■ “NFSRestart agent” on page 82

■ “Share agent” on page 87

About the file service agents
Use the file service agents to provide high availability for file share resources.

80 File share agents
NFS agent
NFS agent

Starts and monitors the nfsd and rpc.mountd daemons required by all exported
NFS file systems.

Agent functions
■	 Online

Checks if nfsd and rpc.mountd daemons are running. If they are not
running, the agent starts the daemons.

■	 Monitor

Monitors versions 2 and 3 of the nfsd daemons, and versions 1 and 3 of the
rpc.mountd daemon. Monitors TCP and UDP versions of the daemons by
sending RPC (Remote Procedure Call) calls clnt_create and clnt_call to
the RPC server. If the calls succeed, the resource is reported ONLINE.

■	 Clean

Terminates and restarts the nfsd and rpc.mountd daemons.

State definitions
■	 ONLINE

Indicates that the NFS daemons are running in accordance with the
supported protocols and versions.

■	 OFFLINE

Indicates that the NFS daemons are not running in accordance with the
supported protocols and versions.

■	 UNKNOWN

Unable to determine the status of the NFS daemons.

Attributes

Table 4-1 Optional attributes

Optional
attribute Description

LockFileTimeout If the group goes offline, the agents waits for the specified time
before restarting nfsd and rpc.mountd daemons.

Type and dimension: integer-scalar

Default: 180 (lower limit: 90 seconds, upper limit: 300 seconds)

81 File share agents
NFS agent
Table 4-1 Optional attributes

Optional
attribute Description

Nservers Specifies the number of concurrent NFS requests the server can
handle.

Type and dimension: integer-scalar

Default: 4

Example: 24

Protocol Selects the transport protocol that the NFS server supports. Allowed
values are: tcp, udp or all. If you define Protocol to equal all, the NFS
server supports both protocols.

Type and dimension: string-scalar

Default: all

Example: "tcp”

Resource type definition
type NFS (

static int RestartLimit = 1

static str ArgList[] = { Nservers, Protocol, LockFileTimeout }

static str Operations = OnOnly

int Nservers = 4

str Protocol = all

int LockFileTimeout = 180

)

Sample configurations

Configuration
NFS NFS_groupx_24 (

Nservers = 24

)

82 File share agents
NFSRestart agent
NFSRestart agent

The agent starts rpc.lockd and rpc.statd, which are responsible to send
notification after reading the nfs lock directory. The agent copies some records
in nfs lock directory, which is used by the re-started lockd or statd daemons for
notification.

The smsyncd daemon copies lock information from /var/statmon/sm to shared
storage. The agent’s Online function copies the locks from shared storage to
/var/statmon/sm.

Dependencies
This resource must be at the top of the resource dependency tree of a service
group. Only one NFSRestart resource should be configured in a service group.
The NFSRestart, NFS, and Share agents must be in same service group.

Agent functions
■	 Online

■	 Terminates statd and lockd.

■	 For all NFSLock resources, copies the locks from the shared storage to
the /var/statmon/sm directory if NFSLockFailover is set to 1.

■	 Starts the statd and lockd daemons.

■	 Starts the smsyncd daemon to copy the contents of /var/statmon/sm
directory to the shared storage (LocksPathName) at regular, two second
intervals.

■	 Monitor

■	 Monitors smsyncd if LockFailOver is set to 1. Otherwise it monitors
rpc.statd and rpc.lockd and restarts them if they are not running.

■	 Offline

■	 Terminates the statd and lockd daemons to clear the lock state.

■	 Terminates the nfsd and mountd daemons to close the TCP/IP
connections.

■	 Terminates the smsyncd daemon.

■	 Clean

■	 Terminates the statd and lockd daemons to clear the lock state.

■	 Terminates the nfsd and mountd daemons to close TCP/IP connections.

■	 Terminates the smsyncd daemon.

83 File share agents
NFSRestart agent
State definitions
■	 ONLINE

Indicates that the daemons are running properly.

■	 OFFLINE

Indicates that one or more daemons are not running.

■	 UNKNOWN

Indicates the inability to determine the agent’s status.

Attributes

Table 4-2 Required attributes

Required attribute
Description

LocksPathName The path name of the directory to store the NFS lock information
for all the shared filesystems.

This attribute is mandatory when 'NFSLockFailOver = 1'.

Type and dimension: string-scalar

NFSLockFailOver A flag that specifies whether the user wants NFS Locks to be
recovered after a failover

Type and dimension: boolean-scalar

Default: 0

NFSRes Name of the NFS resource.

Type and dimension: string-scalar

NFSRestart notes
You must provide a fully qualified host name (nfsserver.princeton.edu) for the
NFS server while mounting the file system on the NFS client. If you do not use a
fully qualified host name, or if you use a virtual IP address (10.122.12.25) or
partial host name (nfsserver), NFS lock recovery fails.

If you want to use the virtual IP address or a partial host name, make the
following changes to the service database (hosts) and the nsswitch.conf files:

/etc/hosts

84 File share agents
NFSRestart agent
To use the virtual IP address and partial host name for the NFS server, you need
to add an entry to the /etc/hosts file. The virtual IP address and the partial host
name should resolve to the fully qualified host name.

/etc/nsswitch.conf

You should also modify the hosts entry in this file so that upon resolving a name
locally, the host does not first contact NIS/DNS, but instead immediately
returns a successful status. Changing the nsswitch.conf file might affect other
services running on the system.

For example:
hosts: files [SUCCESS=return] dns nis

You have to make sure that the NFS client stores the same information for the
NFS server as the client uses while mounting the file system. For example, if the
NFS client mounts the file system using fully qualified domain names for the
NFS server, then the NFS client directory: /var/statmon/sm directory should
also have a fully qualified domain name after the acquisition of locks.
Otherwise, you need to start and stop the NFS client twice using the
/etc/init.d/nfs.client script to clear the lock cache of the NFS client.

A time period exists where the virtual IP address is online but locking services
are not registered on the server. Any NFS client trying to acquire a lock in this
interval would fail and get ENOLCK error.

Every two seconds, the smsyncd daemon copies the list of clients that hold the
locks on the shared filesystem in the service group. If the service group fails
before smsyncd has a chance to copy the client list, the clients may not get a
notification once the service group is brought up. This causes NFS lock recovery
failure.

Resource type definition
type NFSRestart (

static str ArgList[] = { "NFSRes:LockFileTimeout",

LocksPathName, NFSLockFailOver }

str NFSRes

str LocksPathName

boolean NFSLockFailOver = 0

)

Sample configurations
include "types.cf"

cluster vcs_test (

)

system sysA (

)

85 File share agents
NFSRestart agent
system sysB (

)

group NFSgrp1 (

 SystemList = { sysA = 0, sysB = 1 }

 AutoStartList = { sysA, sysB }

)

 DiskGroup dg01 (

 DiskGroup = dg01

 StartVolumes = 0

 StopVolumes = 0

)

 IP ip1 (

 Device = lan0

 Address = "11.123.175.11"

 NetMask = "255.255.248.0"

)

 Mount Mount_dir1 (

 MountPoint = "/dir1"

 BlockDevice = "/dev/vx/dsk/dg01/vol01"

 FSType = vxfs

 MountOpt =

"ioerror=mwdisable,largefiles,qio,delaylog"

 FsckOpt = "-n"

)

 NFS nfs1 (

 Nservers = 8

 LockFileTimeout= 360

)

 NFSRestart nfsres1 (

 LocksPathName = "/dir2"

 NFSLockFailOver = 1

 NFSRes = nfs1

)

 NIC nic1 (

 Device = lan0

 NetworkHosts = {"11.123.170.107"}

)

 Share Share_dir1 (

 PathName = "/dir1"

)

 Volume dg01_vol01 (

 Volume = vol01

86 File share agents
NFSRestart agent
 DiskGroup = dg01

)

ip1 requires nic1

 ip1 requires Share_dir1

 Mount_dir1 requires dg01_vol01

 nfsres1 requires ip1

 Share_dir1 requires Mount_dir1

 Share_dir1 requires nfs1

 dg01_vol01 requires dg01

87 File share agents
Share agent
Share agent

Shares, unshares, and monitors a single local resource for exporting an NFS file

system to be mounted by remote systems.

Before you use this agent, verify that the files and directories to be shared are on

shared disks.

Dependencies
Share resources depend on NFS. In NFS service group, IP, IPMultiNIC, and
IPMultiNICB resources depend on Share resources.

Agent functions
■	 Online

Shares an NFS file system.

■	 Offline

Unshares an NFS file system.

■	 Monitor

Reads the /etc/xtab file and looks for an entry for the file system specified
by PathName. If the entry exists, monitor returns ONLINE.

State definitions
■	 ONLINE

Indicates that specified directory is exported to the client.

■	 OFFLINE

Indicates that the specified directory is not exported to the client.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

88 File share agents
Share agent
Attributes

Table 4-3 Required attributes

Required
attribute Description

PathName Pathname of the file system to be shared.

Type and dimension: string-scalar

Example: "/share1x"

Table 4-4 Optional attributes

Optional
attribute Description

Options Options for the share command.

Type and dimension: string-scalar

Examples: "-o ro" or "-o rw=hostname"

Resource type definition
type Share (

static str ArgList[] = { PathName, Options }

static int NumThreads = 1

str PathName

str Options

)

Sample configurations

Configuration
Share nfsshare1x (

PathName = "/share1x"

)

Chapter
5
Service and application
agents

This chapter contains the following agents:

■ “Apache Web server agent” on page 90

■ “Application agent” on page 98

■ “Process agent” on page 104

■ “ProcessOnOnly agent” on page 108

About the service and application agents
Use service and application agents to provide high availability for application
and process-related resources.

90 Service and application agents
Apache Web server agent
Apache Web server agent
Brings an Apache Server online and offline, and monitors the processes. The
Apache Web server agent consists of resource type declarations and agent
scripts.

This agent supports the Apache HTTP server 1.3, 2.0, and 2.2. It also supports
the IBM HTTP Server 1.3 and 2.0.

Note: The Apache agent requires an IP resource for operation.

Before you use this agent:

■	 Install the Apache server on shared disk.

■	 Verify that the floating IP has the same subnet as that of the cluster
systems.

■	 If you use a port other than the default 80, assign an exclusive port for the
Apache server.

■	 Verify that the Apache server configuration files are identical on all cluster
systems.

■	 Verify that the Apache server does not autostart on system startup.

■	 Verify that Inetd does not invoke the Apache server.

■	 Install the ACC Library 4.1.04.0 (VRTSacclib) if it is not already installed.

If the ACC Library needs to be installed or updated, the library and its
documentation can be obtained from the agent software media.

■	 Remove prior versions of this agent.

■	 The service group has disk and network resources to support the Apache
server resource.

■	 Assign virtual host name and port to Apache Server.

Dependency
This type of resource depends on IP and Mount resources.

91 Service and application agents
Apache Web server agent
Agent functions
■	 Online

Starts an Apache server by executing the httpdDir/httpd program with the
appropriate arguments. When you specify a file with the EnvFile attribute,
the file is sourced before the agent executes the httpd command.

■	 Offline

To stop the Apache HTTP server, the agent:

■	 Executes the httpdDir/httpd program with the appropriate arguments
(Apache v2.0), or

■	 Sends a TERM signal to the HTTP Server parent process (Apache v1.3).

When you specify a file with the EnvFile attribute, the file is sourced before
the agent executes the httpd command.

■	 Monitor

Monitors the state of the Apache server. First it checks for the processes,
next it can perform an optional state check.

■	 Clean

Removes Apache HTTP server system resources that might remain after a
server fault or after an unsuccessful attempt to online or offline. These
resources include the parent httpd daemon and its child daemons.

State definitions
■	 ONLINE

Indicates that the Apache server is running.

■	 OFFLINE

Indicates that the Apache server is not running.

■	 UNKNOWN

Indicates that a problem exists with the configuration.

92 Service and application agents
Apache Web server agent
Attributes

Table 5-1 Required attributes

Required
attribute Description

ConfigFile Full path and file name of the main configuration file for the Apache
server.

Type and dimension: string-scalar

Example: "/apache/server1/conf/httpd.conf"

httpdDir Full path of the directory to the httpd binary file

Type and dimension: string-scalar

Example: "/apache/server1/bin"

HostName Virtual host name that is assigned to the Apache server instance.
The host name is used in second-level monitoring to establish a
socket connection with the Apache HTTP server. Specify this
attribute only if the SecondLevelMonitor is set to 1 (true).

Type and dimension: string-scalar

Example: "web1.veritas.com"

Port Port number where the Apache HTTP server instance listens. The
port number is used in second-level monitoring to establish a socket
connection with the server. Specify this attribute only if
SecondLevelMonitor is set to 1 (true).

Type and dimension: integer-scalar

Default: 80

Example: "80"

93 Service and application agents
Apache Web server agent
Table 5-1 Required attributes

Required
attribute Description

ResLogLevel Controls the agent’s logging detail for a specific instance of a
resource. Values are:

■ ERROR: Logs error messages.

■ WARN: Logs error and warning messages.

■ INFO: Logs error, warning, and informational messages.

■ TRACE: Logs error, warning, informational, and trace messages.
Trace logging is verbose. Use for initial configuration or
troubleshooting.

Type and dimension: string-scalar

Default: INFO

Example: "TRACE"

User Account name the agent uses to execute the httpd program. If you do
not specify this value, the agent executes httpd as the root user.

Type and dimension: string-scalar

Example: "apache1"

Table 5-2 Optional attributes

Optional
attribute Description

DirectiveAfter A list of directives that httpd processes after reading the
configuration file.

Type and dimension: string-association

Example: DirectiveAfter{} = { KeepAlive=On }

DirectiveBefore A list of directives that httpd processes before it reads the
configuration file.

Type and dimension: string-association

Example: DirectiveBefore{} = { User=nobody, Group=nobody }

94 Service and application agents

Apache Web server agent

Table 5-2 Optional attributes

Optional
attribute Description

EnableSSL Set to 1 (true) to have the online agent function add support for SSL
by including the option -DSSL in the start command. For example:
/usr/sbin/httpd -k start -DSSL

Set to 0 (false) it excludes the -DSSL option from the command.

Type and dimension: boolean-scalar

Default: 0

Example: "1"

EnvFile Full path and file name of the file that is sourced prior to executing
httpdDir/httpd. With Apache 2.0, the file ServerRoot/bin/envvars,
which is supplied in most Apache 2.0 distributions, is commonly
used to set the environment prior to executing httpd. Specifying this
attribute is optional. If EnvFile is specified, the login shell for user
root must be Bourne, Korn, or C shell.

Type and dimension: string-scalar

Example: "/apache/server1/bin/envvars"

SecondLevelMoni
tor

Enables second-level monitoring for the resource. Second-level
monitoring is a deeper, more thorough state check of the Apache
HTTP server performed by issuing an HTTP GET request on the web
server's root directory. Valid attribute values are 1 (true) and 0 (false).
Specifying this attribute is required.

Type and dimension: boolean-scalar

Default: 0

Example: "1"

SharedObjDir Full path of the directory in which the Apache HTTP shared object
files are located. Specifying this attribute is optional. It is used when
the HTTP Server is compiled using the SHARED_CORE rule. If
specified, the directory is passed to the -R option when executing the
httpd program. Refer to the httpd man pages for more information
about the -R option.

Type and dimension: boolean-scalar

Example: "/apache/server1/libexec"

95 Service and application agents
Apache Web server agent
Table 5-2 Optional attributes

SecondLevelTime
out

Number of seconds monitor entry point will wait on the execution of
second-level monitor. If the second-level monitor program does not
return to the calling monitor entry point before the
SecondLevelTimeout window expires, the monitor entry point will
no longer block on the program sub-process but will report that the
resource is offline. The value should be sufficiently high to allow
second level monitor enough time to complete, but the value should
also be less than the value specified by the agent's MonitorTimeout.

Type and dimension: integer-scalar

Default: 30

Optional
attribute Description

Resource type definition
type Apache (

static str ArgList[] = { ResLogLevel, State, IState, httpdDir,

SharedObjDir, EnvFile, HostName, Port, User,

SecondLevelMonitor, SecondLevelTimeout, ConfigFile, EnableSSL,

DirectiveAfter, DirectiveBefore}

str ResLogLevel = "INFO"

str httpdDir

str SharedObjDir

str EnvFile

str HostName

int Port = 80

str User

boolean SecondLevelMonitor

int SecondLevelTimeout = 30

str ConfigFile

boolean EnableSSL

str DirectiveAfter{}

str DirectiveBefore{}

)

Detecting Application Failure
The agent provides two methods to evaluate the state of an Apache HTTP server
instance. The first state check is mandatory and the second is optional.

The first check determines the state of the Apache HTTP server by searching for
the existence of the parent httpd daemon and for at least one child httpd
daemon. If the parent process and at least one child do not exist, VCS reports the
resource as offline. If they do exist, and if the agent attribute

96 Service and application agents
Apache Web server agent
SecondLevelMonitor is set to true, then a socket connection is established with
the Apache HTTP server using the values specified by agent attributes Host and
Port. Once connected, the agent issues an HTTP request to the server to test its
ability to respond. If the HTTP Server responds with a return code between 0
and 408, the agent considers the server online. If the server fails to respond or
returns any other code, the agent considers the server offline.

About the ACC Library
The agent functions for the Apache HTTP server depend on a set of Perl

modules known as the ACC Library. The ACC Library contains common, reusable

functions that perform tasks such as process identification, logging, and system

calls.

When you install the ACC library in a VCS environment, you must install the

ACC library package before you install the agent.

To install or update the ACC library package, locate the library and related

documentation on the agent disc and in the compressed agent tar file.

Sample configurations
group ApacheG1(

 SystemList = { host1 = 0, host2 = 1 }

)

 Apache httpd_server (

 Critical = 0

 httpdDir = "/apache/bin"

 HostName = vcshp1

 Port = 8888

 User = root

 SecondLevelMonitor = 1

 ConfigFile = "/apache/conf/httpd.conf"

)

 DiskGroup Apache_dg (

 Critical = 0

 DiskGroup = apc1

)

 IP Apache_ip (

 Critical = 0

 Device = lan0

 Address = "11.123.99.168"

 NetMask = "255.255.254.0"

)

 Mount Apache_mnt (

 Critical = 0

97 Service and application agents
Apache Web server agent
 MountPoint = "/apache"

 BlockDevice = "/dev/vx/dsk/apc1/apcvol1"

 FSType = vxfs

 FsckOpt = "-y"

)

 Apache_mnt requires Apache_dg

 httpd_server requires Apache_mnt

 httpd_server requires Apache_ip

98 Service and application agents
Application agent
Application agent

Brings applications online, takes them offline, and monitors their status.

Enables you to specify different executables for the online, offline, and monitor

routines, because most applications have executables to start and stop the

application. The executables must exist locally on each node.

An application runs in the default context of root. Specify the user name to run

an application in a user context.

The agent starts and stops the application with user-specified programs.

You can monitor the application in the following ways:

■	 Use the monitor program

■	 Specify a list of processes

■	 Specify a list of process ID files

■	 Any combination of the above

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Application resources,
the virtual fire drill checks for:

■	 The availability of the specified program

■	 Execution permissions for the specified program

■	 The existence of the specified user on the host

■ The existence of the same binary on all nodes

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependencies
Depending on the context, this type of resource can depend on IP, IPMultiNIC,
and Mount resources.

Agent functions
■	 Online

Runs the StartProgram with the specified parameters in the context of the
specified user.

99 Service and application agents
Application agent
■	 Offline

Runs the StopProgram with the specified parameters in the context of the
specified user.

■	 Monitor

If you specify the MonitorProgram, the agent executes the user-defined
MonitorProgram in the user-specified context. If you specify PidFiles, the
routine verifies that the process ID found in each listed file is running. If
you specify MonitorProcesses, the routine verifies that each listed process
is running in the context you specify.

Use any one, two, or three of these attributes to monitor the application.

If any one process specified in either PidFiles or MonitorProcesses is
determined not to be running, the monitor returns OFFLINE. If the process
terminates ungracefully, the monitor returns OFFLINE and failover occurs.

■	 Clean

Terminates processes specified in PidFiles or MonitorProcesses. Ensures
that only those processes (specified in MonitorProcesses) running with the
user ID specified in the User attribute are killed. If the CleanProgram is
defined, the agent executes the CleanProgram.

State definitions
■	 ONLINE

Indicates that all processes specified in PidFiles and MonitorProcesses are
running and that the MonitorProgram returns ONLINE.

■	 OFFLINE

Indicates that at least one process specified in PidFiles or MonitorProcesses
is not running, or that the MonitorProgram returns OFFLINE.

■	 UNKNOWN

Indicates an indeterminable application state or invalid configuration.

100 Service and application agents
Application agent
Attributes

Table 5-3 Required attributes

Required
attribute Description

StartProgram The executable, created locally on each node, which starts the
application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

Type and dimension: string-scalar

Example: "/usr/sbin/sample_app start"

StopProgram The executable, created locally on each node, that stops the
application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

Type and dimension: string-scalar

Example: "/usr/sbin/sample_app stop"

At least one of the
following attributes:

■ MonitorProcesses

■ MonitorProgram

■ PidFiles

See “Optional attributes” on page 100.

Table 5-4 Optional attributes

Optional
attribute

Description

CleanProgram The executable, created locally on each node, which forcibly
stops the application. Specify the complete path of the
executable. Applicable command line arguments follow the
name of the executable and are separated by spaces.

Type and dimension: string-scalar

Example: "/usr/sbin/sample_app force stop"

101 Service and application agents
Application agent
Table 5-4 Optional attributes

Optional
attribute

Description

MonitorProcesses A list of processes that you want monitored and cleaned. Each
process name is the name of an executable. Qualify the
executable name with its complete path if the path starts the
executable.

The process name must be the full command line argument
displayed by the ps -u user -o args | more command
for the process.

Type and dimension: string-vector

Example: "sample_app_process"

MonitorProgram The executable, created locally on each node, which monitors
the application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

MonitorProgram can return the following VCSAgResState
values: OFFLINE value is 100; online values range from 101 to
110 (depending on the confidence level); 110 equals confidence
level of 100%. Any other value = UNKNOWN.

Type and dimension: string-scalar

Example: "/usr/sbin/sample_app_monitor all"

PidFiles A list of PID files that contain the process ID (PID) of the
processes that you want monitored and cleaned. These are
application generated files. Each PID file contains one
monitored PID. Specify the complete path of each PID file in
the list.

The process ID can change when the process restarts. If the
application takes time to update the PID file, the agent’s
monitor script may return an incorrect result. If this occurs,
increase the ToleranceLimit in the resource definition.

Type and dimension: string-vector

Example: "/etc/sample/sample_app.pid"

102 Service and application agents

Application agent

Table 5-4 Optional attributes

User The user ID for running StartProgram, StopProgram,
MonitorProgram, and CleanProgram. The processes specified
in the MonitorProcesses list must run in the context of the
specified user. Monitor checks the processes to make sure they
run in this context.

Type and dimension: string-scalar

Default: root

Optional
attribute

Description

Resource type definition
type Application (

static keylist SupportedActions = { "program.vfd", "user.vfd",

"cksum.vfd", getcksum }

static str ArgList[] = { User, StartProgram, StopProgram,

CleanProgram, MonitorProgram, PidFiles, MonitorProcesses }

str User = root

str StartProgram

str StopProgram

str CleanProgram

str MonitorProgram

str PidFiles[]

str MonitorProcesses[]

)

Sample configurations

Sample Configuration 1
In this example, configure the executable samba as StartProgram and
StopProgram, with start and stop specified as command-line arguments
respectively. Configure the agent to monitor two processes: a process specified
by the pid smbd.pid, and the process nmbd.
Application sendmail (

User = root

StartProgram = "/sbin/init.d/sendmail start"

StopPragram = "/sbin/init.d/sendmail stop"

PidFiles = {"/etc/mail/sendmail.pid"}

)

103 Service and application agents
Application agent
Sample Configuration 2
In this example, since no user is specified, it uses the root user. The executable
samba starts and stops the application using start and stop as the command-line
arguments. The executable sambaMonitor monitors the application and uses all
as its command-line argument. Also, the agent monitors the smbd and nmbd
processes.
Application sample_app2 (

StartProgram = "/usr/sbin/sample_app start"

StopProgram = "/usr/sbin/sample_app stop"

CleanProgram = "/usr/sbin/sample_app force stop"

MonitorProgram = "/usr/local/bin/sampleMonitor all"

MonitorProcesses = { "sample_app_process" }

)

104 Service and application agents
Process agent
Process agent

Starts, stops, and monitors a user-specified process.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Process resources, the
virtual fire drill checks for:

■	 The existence of the specified process

■	 Execution permissions for the specified process

■	 The existence of a binary executable for the specified process

■ The existence of the same binary on all nodes

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependencies
Depending on the context, this type of resource can depend on IP, IPMultiNIC,
and Mount resources.

Agent functions
■	 Online

Starts a process in the background with optional arguments and priority in
the specified user context.

■	 Offline

Terminates the process with a SIGTERM. If the process does not exit, a
SIGKILL is sent.

■	 Monitor

Checks to see if the process is running by scanning the process table for the
name of the executable pathname and argument list.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the specified process is running in the specified user context.

105 Service and application agents
Process agent
■	 OFFLINE

Indicates that the specified process is not running in the specified user
context.

■	 FAULTED

Indicates that the process has terminated unexpectedly.

■	 UNKNOWN

Indicates that the agent can not determine the state of the process.

Attributes

Table 5-5 Required attribute

Required
attribute Description

PathName Complete pathname to access an executable program. This path
includes the program name. If a script controls the process, the
PathName defines the complete path to the shell.

This attribute must not exceed 80 characters.

Type and dimension: string-scalar

Example: "/usr/sbin/sendmail"

Table 5-6 Optional attributes

Optional
attribute Description

Arguments Passes arguments to the process. If a script controls the process,
the script is passed as an argument. Separate multiple arguments
with a single space. A string cannot accommodate more than one
space between arguments, nor allow for leading or trailing
whitespace characters.

This attribute must not exceed 80 characters.

Type and dimension: string-scalar

Example: "bd -q30m"

106 Service and application agents

Process agent

Table 5-6 Optional attributes

Optional
attribute Description

PidFile File containing the process ID.

Type and dimension: string-scalar

Example: "/etc/mail/sendmail.pid"

Priority Priority with which the process runs. Effective only when the user
is root. Range is 0 to 39 where a process with a priority 0 is the
highest.

Type and dimension: string-scalar

Default: 20

Example: "35"

UserName The user whose ID is used to run the process. The process along
with the arguments must run the context of the specified user.

Type and dimension: string-scalar

Default: root

Example: "user1"

Resource type definition
type Process (

static keylist SupportedActions = { "program.vfd", getcksum }

static str ArgList[] = { PathName, Arguments, UserName,

Priority, PidFile }

str PathName

str Arguments

str UserName = root

str Priority = 20

str PidFile

)

Sample configurations

Configuration 1
Process sendmail1 (

PathName = "/usr/sbin/sendmail"

107 Service and application agents
Process agent
Arguments = "-bd -q30m"

User = root

Priority = 10

PidFile = "/etc/mail/sendmail.pid"

)

Sample configuration 2
include "types.cf"

cluster ProcessCluster (

.

.

.

group ProcessGroup (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

Process Process1 (

PathName = "/usr/local/bin/myprog"

Arguments = "arg1 arg2"

)

Process Process2 (

PathName = "/bin/csh"

Arguments = "/tmp/funscript/myscript"

)

// resource dependency tree

//
// group ProcessGroup
// {
// Process Process1
// Process Process2
// }

108 Service and application agents
ProcessOnOnly agent
ProcessOnOnly agent

Starts and monitors a user-specified process.

Agent functions
■	 Online

Starts the process with optional arguments.

■	 Monitor

Checks to see if the process is alive by scanning the process table for the
name of the executable pathname and argument list.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the specified process is running.

■	 FAULTED

Indicates that the process has unexpectedly terminated.

■	 UNKNOWN

Indicates that the agent can not determine the state of the process.

109 Service and application agents
ProcessOnOnly agent
Attributes

Table 5-7 Required attributes

Required
attribute Description

IgnoreArgs A flag that indicates whether monitor ignores the argument list.

■ If the value is 0, it checks the process pathname and argument
list.

■ If the value is 1, it only checks for the executable pathname and
ignores the rest of the argument list.

Type and dimension: boolean-scalar

Default: 0

PathName Defines complete pathname to access an executable program. This
path includes the program name. If a process is controlled by a
script, the PathName defines the complete path to the shell.
Pathname must not exceed 80 characters.

Type and dimension: string-scalar

Example: "/usr/sbin/sendmail"

Table 5-8 Optional attributes

Optional
attribute Description

Arguments Passes arguments to the process. If a process is controlled by a script,
the script is passed as an argument. Multiple arguments must be
separated by a single space. A string cannot accommodate more than
one space between arguments, nor allow for leading or trailing
whitespace characters. Arguments must not exceed a total of 80
characters.

Type and dimension: string-scalar

Example: "-bd -q30m"

110 Service and application agents
ProcessOnOnly agent
Resource type definition
type ProcessOnOnly (

static str ArgList[] = { IgnoreArgs, PathName, Arguments }

static str Operations = OnOnly

boolean IgnoreArgs = 0

str PathName

str Arguments

)

Sample configurations

Configuration 1
ProcessOnOnly sendmail_pr (

PathName = "/usr/sbin/sendmail"

Arguments = "-bd -q30m"

)

Chapter
6
Infrastructure and support
agents

This chapter contains the following agents:

■ “NotifierMngr agent” on page 112

■ “VRTSWebApp agent” on page 119

■ “Proxy agent” on page 122

■ “Phantom agent” on page 125

■ “RemoteGroup agent” on page 127

About the infrastructure and support agents
Use the infrastructure and support agents to monitor Veritas components and
VCS objects.

112 Infrastructure and support agents
NotifierMngr agent
NotifierMngr agent
Starts, stops, and monitors a notifier process, making it highly available. The
notifier process manages the reception of messages from VCS and the delivery
of those messages to SNMP consoles and SMTP servers. See the Veritas Cluster
Server User’s Guide for a description of types of events that generate
notification. See the notifier(1) manual page to configure notification from the
command line.

Note: You cannot dynamically change the attributes of the NotifierMngr agent
using the hares -modify command. Changes made using this command are
effective after restarting the notifier.

Dependency
The NotifierMngr resource depends on the NIC resource.

Agent functions
■	 Online

Starts the notifier process with its required arguments.

■	 Offline

VCS sends a SIGABORT. If the process does not exit within one second, VCS
sends a SIGKILL.

■	 Monitor

Monitors the notifier process.

■	 Clean

Sends SIGKILL.

State definitions
■	 ONLINE

Indicates that the Notifier process is running.

■	 OFFLINE

Indicates that the Notifier process is not running.

■	 UNKNOWN

Indicates that the user did not specify the required attribute for the
resource.

113 Infrastructure and support agents
NotifierMngr agent
Attributes

Table 6-1 Required attributes

Required
attribute Description

SnmpConsoles Specifies the machine name of the SNMP manager and the severity
level of the messages to be delivered to the SNMP manager. The
severity levels of messages are: Information, Warning, Error, and
SevereError. Specifying a given severity level for messages generates
delivery of all messages of equal or higher severity.

Note: SnmpConsoles is a required attribute if SmtpServer is not
specified; otherwise, SnmpConsoles is an optional attribute. Specify
both SnmpConsoles and SmtpServer if desired.

Type and dimension: string-association

Example:

"172.29.10.89" = Error, "172.29.10.56" = Information

SmtpServer Specifies the machine name of the SMTP server.

Note: SmtpServer is a required attribute if SnmpConsoles is not
specified; otherwise, SmtpServer is an optional attribute. You can
specify both SmtpServer and SnmpConsoles.

Type and dimension: string-scalar

Example: "smtp.your_company.com"

Table 6-2 Optional attributes

Optional
attribute Description

EngineListeningPort Change this attribute if the VCS engine is listening on a
port other than its default port.

Type and dimension: integer-scalar

Default: 14141

114 Infrastructure and support agents

NotifierMngr agent

Table 6-2 Optional attributes

Optional
attribute Description

MessagesQueue Size of the VCS engine’s message queue. Minimum value is
30.

Type and dimension: integer-scalar

Default: 30

NotifierListeningPort Any valid, unused TCP/IP port number.

Type and dimension: integer-scalar

Default: 14144

SmtpFromPath Set to a valid email address, if you want the notifier to use
a custom email address in the FROM: field.

Type and dimension: string-scalar

Example: "usera@example.com"

SmtpRecipients Specifies the email address where SMTP sends
information and the severity level of the messages. The
severity levels of messages are: Information, Warning,
Error, and SevereError. Specifying a given severity level for
messages indicates that all messages of equal or higher
severity are received.

Note: SmtpRecipients is a required attribute if you specify
SmtpServer.

Type and dimension: string-association

Example:

"james@veritas.com" = SevereError, "admin@veritas.com"
= Warning

115 Infrastructure and support agents
NotifierMngr agent
Table 6-2 Optional attributes

Optional
attribute Description

SmtpReturnPath Set to a valid email address, if you want the notifier to use
a custom email address in the Return-Path: <> field.

If the mail server specified in SmtpServer does not support
VRFY, then set the SmtpVrfyOff to 1 in order for the
SmtpReturnPath value to take effect.

Type and dimension: string-scalar

Example: "usera@example.com"

SmtpServerTimeout This attribute represents the time in seconds notifier waits
for a response from the mail server for the SMTP
commands it has sent to the mail server. If you notice that
the mail server is taking a longer duration to reply back to
the SMTP commands sent by notifier, you can increase this
value.

Type and dimension: integer-scalar

Default: 10

SmtpServerVrfyOff Set this value to 1 if your mail server does not support
SMTP VRFY command. If you set this value to 1, the
notifier does not send a SMTP VRFY request to the mail
server specified in the SmtpServer attribute while sending
emails.

Type and dimension: boolean-scalar

Default: 0

SnmpCommunity Specifies the community ID for the SNMP manager.

Type and dimension: string-scalar

Default: public

116 Infrastructure and support agents

NotifierMngr agent

Table 6-2 Optional attributes

SnmpdTrapPort Port on the SNMP console machine where SNMP traps are
sent.

If you specify more than one SNMP console, all consoles
use this value.

Type and dimension: integer-scalar

Default: 162

Optional
attribute Description

Resource type definition
type NotifierMngr (

static int RestartLimit = 3

static str ArgList[] = { EngineListeningPort, MessagesQueue,

NotifierListeningPort, SnmpdTrapPort, SnmpCommunity,

SnmpConsoles, SmtpServer, SmtpServerVrfyOff, SmtpServerTimeout,

SmtpReturnPath, SmtpFromPath, SmtpRecipients }

int EngineListeningPort = 14141

int MessagesQueue = 30

int NotifierListeningPort = 14144

int SnmpdTrapPort = 162

str SnmpCommunity = "public"

str SnmpConsoles{}

str SmtpServer

boolean SmtpServerVrfyOff = 0

int SmtpServerTimeout = 10

str SmtpReturnPath

str SmtpFromPath

str SmtpRecipients{}

)

117 Infrastructure and support agents
NotifierMngr agent
Sample configuration
In the following configuration, the NotifierMngr agent is configured to run with

two resource groups: NicGrp and Grp1. NicGrp contains the NIC resource and a

Phantom resource that enables VCS to determine the online and offline status of

the group. See the Phantom agent for more information on verifying the status

of groups that only contain OnOnly or Persistent resources such as the NIC

resource. You must enable NicGrp to run as a parallel group on both systems.

Grp1 contains the NotifierMngr resource (ntfr) and a Proxy resource (nicproxy),

configured for the NIC resource in the first group.

In this example, NotifierMngr has a dependency on the Proxy resource.

Note: Only one instance of the notifier process can run in a cluster. The process
cannot run in a parallel group.

The NotifierMngr resource sets up notification for all events to the
SnmpConsole: snmpserv. In this example, only messages of SevereError level
are sent to the SmptServer (smtp.example.com), and the recipient
(vcsadmin@example.com).

Configuration
system north

system south

group NicGrp (

SystemList = { north, south}

AutoStartList = { north }

Parallel = 1

)

Phantom my_phantom (

)

NIC NicGrp_en0 (

Device = lan0

NetworkHosts = { "166.93.2.1", "166.97.1.2" }

)

group Grp1 (

SystemList = { north, south }

AutoStartList = { north }

)

Proxy nicproxy(

TargetResName = "NicGrp_en0"

118 Infrastructure and support agents
NotifierMngr agent
)

NotifierMngr ntfr (

SnmpConsoles = { snmpserv = Information }

SmtpServer = "smtp.your_company.com"

SmtpRecipients = { "vcsadmin@your_company.com" =

SevereError }

)

ntfr requires nicproxy

// resource dependency tree

//

// group Grp1

// {

// NotifierMngr ntfr

// {
// Proxy nicproxy
// }
// }

119 Infrastructure and support agents
VRTSWebApp agent
VRTSWebApp agent

Brings Web applications online, takes them offline, and monitors their status.
This agent is used to monitor the Web consoles of various Symantec products,
such as the Cluster Management Console.

The application is a Java Web application conforming to the Servlet
Specification 2.3/JSP Specification 1.2 and runs inside of the Java Web server
installed as a part of the VRTSweb package.

Agent functions
■	 Online

Starts the Web application with the specified parameters. If the Web server
is not already running, it first starts the server.

■	 Offline

Removes the Web application from the Web server. If no other Web
application is running, it shuts down the Web server.

■	 Monitor

Checks if the specified Web application is currently running inside the Web
server. If the application is running, monitor reports ONLINE. If the
application is not running, monitor reports OFFLINE.

■	 Clean

Removes the Web application from the Web server. If no other Web
application is running, it shuts down the Web server.

State definitions
■	 ONLINE

Indicates that the Web application is running.

■	 OFFLINE

Indicates that the Web application is not running.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

120 Infrastructure and support agents
VRTSWebApp agent
Attributes

Table 6-3 Required attributes

Required
attribute Description

AppName Name of the application as it appears in the Web server.

Type and dimension: string-scalar

Example: "cmc"

InstallDir Path to the Web application installation. You must install the Web
application as a .war file with the same name as the AppName
parameter. Point this attribute to the directory that contains this
.war file.

Type and dimension: string-scalar

Example: If AppName is cmc and InstallDir is /opt/VRTSweb/
VERITAS, the agent constructs the path for the Web application as:
/opt/VRTSweb/VERITAS/cmc.war

TimeForOnline The time the Web application takes to start after loading it into the
Web server. This parameter is returned as the exit value of the online
script, which inform VCS of the time it needs to wait before calling
monitor on the Web application resource. This attribute is typically
at least five seconds.

Type and dimension: integer-scalar

Example: 5

Resource type definition
type VRTSWebApp (

static str ArgList[] = { AppName, InstallDir, TimeForOnline }

str AppName

str InstallDir

int TimeForOnline

static int NumThreads = 1

)

Sample configuration
VRTSWebApp VCSweb (

121 Infrastructure and support agents
VRTSWebApp agent
AppName = "cmc"

InstallDir = "/opt/VRTSweb/VERITAS"

TimeForOnline = 5

)

122 Infrastructure and support agents
Proxy agent
Proxy agent

Mirrors the state of another resource on a local or remote system. Provides a
means to specify and modify one resource and have its state reflected by its
proxies.

A Proxy resource can only point to None or OnOnly type of resources, and can
reside in a failover/parallel group.

Agent functions
■	 Monitor

Determines status based on the target resource status.

Attributes

Table 6-4 Required attribute

Required
attribute Description

TargetResName Name of the target resource that the Proxy resource mirrors.

The target resource must be in a different resource group than the
Proxy resource.

Type and dimension: string-scalar

Example: "tmp_VRTSvcs_file1"

Table 6-5 Optional attribute

Optional
attribute Description

TargetSysName Mirrors the status of the TargetResName attribute on systems that
the TargetSysName variable specifies. If this attribute is not
specified, the Proxy resource assumes the system is local.

Type and dimension: string-scalar

Example: "sysa"

123 Infrastructure and support agents
Proxy agent
Resource type definition
type Proxy (

static str ArgList[] = { TargetResName, TargetSysName,

"TargetResName:Probed", "TargetResName:State" }

static int OfflineMonitorInterval = 60

static str Operations = None

str TargetResName

str TargetSysName

)

Sample configurations

Configuration 1
The proxy resource mirrors the state of the resource tmp_VRTSvcs_file1 on the
local system.
Proxy proxy1 (

TargetResName = "tmp_VRTSvcs_file1"

)

Configuration 2
The proxy resource mirrors the state of the resource tmp_VRTSvcs_file1 on
sysa.
Proxy proxy1(

TargetResName = "tmp_VRTSvcs_file1"

TargetSysName = "sysa"

)

Configuration
The proxy resource mirrors the state of the resource mnic on the local system;
note that target resource is in grp1, and the proxy is in grp2; a target resource
and its proxy cannot be in the same group.
group grp1 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

MultiNICA mnic (

Device@sysa = { lan0 = "192.98.16.103",lan3 =

"192.98.16.103" }

Device@sysb = { lan0 = "192.98.16.104",lan3 =

"192.98.16.104" }

NetMask = "255.255.255.0"

ArpDelay = 5

Options = "broadcast 192.203.15.255"

RouteOptions@sysa = "default 192.98.16.103 0"

124 Infrastructure and support agents
Proxy agent
RouteOptions@sysb = "default 192.98.16.104 0"

)

IPMultiNIC ip1 (

Address = "192.98.14.78"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "broadcast 192.203.15.255"

)

ip1 requires mnic

group grp2 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

IPMultiNIC ip2 (

Address = "192.98.14.79"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "mtu m"

)

Proxy proxy (

TargetResName = mnic

)

ip2 requires proxy

125 Infrastructure and support agents
Phantom agent
Phantom agent

Enables VCS to determine the status of service groups that do not include OnOff
resources, which are resources that VCS can start and stop. Without the
“dummy” resource provided by this agent, VCS cannot assess the status of
groups that only contain None (Persistent) and OnOnly resources because the
state of these resources is not considered in the process of determining whether
a group is online. Refer to the VCS User’s Guide for information on categories of
service groups and resources.

Agent functions
■	 Monitor

Determines status based on the status of the service group.

Attribute

Table 6-6 Attribute for

Attribute Description

Dummy The Dummy attribute is for internal use only.

Resource type definition
type Phantom (

static str ArgList[] = { Dummy }

str Dummy

)

Sample configurations

Configuration 1
Phantom (

)

Configuration 2
The following example shows a complete main.cf, in which the FileNone
resource and the Phantom resource are in the same group.
include "types.cf"

http:main.cf

126 Infrastructure and support agents
Phantom agent
cluster PhantomCluster

system sysa

system sysb

group phantomgroup (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

Parallel = 1

)

FileNone my_file_none (

PathName = "/tmp/file_none"

)

Phantom my_phantom (

)

// resource dependency tree

//
// group maingroup
// {
// Phantom my_Phantom
// FileNone my_file_none
// }

127 Infrastructure and support agents
RemoteGroup agent
RemoteGroup agent

The RemoteGroup agent establishes dependencies between applications that are
configured on different VCS clusters. For example, you configure an Apache
resource in a local cluster, and a MySQL resource in a remote cluster. In this
example, the Apache resource depends on the MySQL resource. You can use the
RemoteGroup agent to establish this dependency between these two resources.

With the RemoteGroup agent, you can monitor or manage a service group that
exists in a remote cluster. Some points about configuring the RemoteGroup
resource are:

■	 For each remote service group that you want to monitor or manage, you
must configure a corresponding RemoteGroup resource in the local cluster.

■	 Multiple RemoteGroup resources in a local cluster can manage
corresponding multiple remote service groups in different remote clusters.

■	 You can include the RemoteGroup resource in any kind of resource or
service group dependency tree.

■	 A combination of the state of the local service group and the state of the
remote service group determines the state of the RemoteGroup resource.

■	 Global groups are not supported as remote service groups.

For more information on the functionality of this agent see the Veritas Cluster
Server User’s Guide.

Dependency
As a best practice establish a RemoteGroup resource dependency on a NIC
resource. Symantec recommends that the RemoteGroup resource not be by itself
in a service group.

128 Infrastructure and support agents

RemoteGroup agent

Agent functions
■	 Online

Brings the remote service group online.

See the “ControlMode” on page 130 for more information.

■	 Offline

Takes the remote service group offline.

See the “ControlMode” on page 130 for more information.

■	 Monitor

Monitors the state of the remote service group.

The true state of the remote service group is monitored only on the online
node in the local cluster.

See the “VCSSysName” on page 129.

■	 Clean

If the RemoteGroup resource faults, the Clean function takes the remote

service group offline.

See the “ControlMode” on page 130 for more information.

State definitions
■	 ONLINE

Indicates that the remote service group is either in an ONLINE or PARTIAL

state.

■	 OFFLINE

Indicates that the remote service group is in an OFFLINE or FAULTED state.
The true state of the remote service group is monitored only on the online
node in the local cluster.

■	 FAULTED

Indicates that the RemoteGroup resource has unexpectedly gone offline.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
of the RemoteGroup resource to determine the state of the remote service
group.

129 Infrastructure and support agents
RemoteGroup agent
Attributes

Table 6-7 Required attributes

Required
attribute Description

IpAddress The IP address or DNS name of a node in the remote cluster. The
IP address can be either physical or virtual.

When configuring a virtual IP address of a remote cluster, do not
configure the IP resource as a part of the remote service group.

Type and dimension: string-scalar

Example: "www.example.com" or "11.183.12.214"

Port The port on which the remote engine listens for requests.

This is an optional attribute, unless the remote cluster listens on a
port other than the default value of 14141.

Type and dimension: integer-scalar

Default: 14141

GroupName The name of the service group on the remote cluster that you want
the RemoteGroup agent to monitor or manage.

Type and dimension: string-scalar

Example: "DBGrp"

VCSSysName You must set this attribute to either the VCS system name or the
ANY value.

■ ANY
The RemoteGroup resource goes online if the remote service
group is online on any node in the remote cluster.

■ VCSSysName
Use the name of a VCS system in a remote cluster where you
want the remote service group to be online when the
RemoteGroup resource goes online. Use this to establish a
one-to-one mapping between the nodes of the local and
remote clusters.

Type and dimension: string-scalar

Example: "vcssys1" or "ANY"

130 Infrastructure and support agents

RemoteGroup agent

Table 6-7 Required attributes

ControlMode Select only one of these values to determine the mode of operation
of the RemoteGroup resource: MonitorOnly, OnlineOnly, or OnOff.

■ OnOff
The RemoteGroup resource brings the remote service group
online or takes it offline.
When you set the VCSSysName attribute to ANY, the SysList
attribute of the remote service group determines the node
where the remote service group onlines.

■ MonitorOnly
The RemoteGroup resource only monitors the state of the
remote service group. The RemoteGroup resource cannot
online or offline the remote service group.
Make sure that you bring the remote service group online
before you online the RemoteGroup resource.

■ OnlineOnly
The RemoteGroup resource only brings the remote service
group online. The RemoteGroup resource cannot take the
remote service group offline.
When you set the VCSSysName attribute to ANY, the SysList
attribute of the remote service group determines the node
where the remote service group onlines.

Type and dimension: string-scalar

Required
attribute Description

131 Infrastructure and support agents
RemoteGroup agent
Table 6-7 Required attributes

Required
attribute Description

Username This is the login user name for the remote cluster.

When you set the ControlMode attribute to OnOff or OnlineOnly,
the Username must have administrative privileges for the remote
service group that you specify in the GroupName attribute.

When you use the RemoteGroup Wizard to enter your username
data, you need to enter your username and the domain name in
separate fields. For a cluster that has the Symantec Product
Authentication Service, you do not need to enter the domain
name.

For a secure remote cluster:

■ Local Unix user
user@nodename—where the nodename is the name of the
node that is specified in the IpAddress attribute. Do not set
the DomainType attribute.

■ NIS or NIS+ user
user@domainName—where domainName is the name of the
NIS or NIS+ domain for the user. You must set the value of
the DomainType attribute to either to nis or nisplus.

Type and dimension: string-scalar

Example:

■ For a cluster without the Symantec Product Authentication
Service: "johnsmith"

■ For a secure remote cluster: "foobar@example.com"

Password This is the password that corresponds to the user that you specify
in the Username attribute. You must encrypt the password with
the vcsencrypt -agent command.

Note: Do not use the vcsencrypt utility when entering passwords
from a configuration wizard or from the Cluster Management
Console or the Cluster Manager (Java Console).

Type and dimension: string-scalar

132 Infrastructure and support agents
RemoteGroup agent
Table 6-8 Optional attributes

Optional
attribute Description

DomainType For a secure remote cluster only, enter the domain type
information for the specified user.

For users who have the domain type unixpwd, you do not have to
set this attribute.

Type: string-scalar

Example: "nis", "nisplus"

BrokerIp For a secure remote cluster only, if the user needs the
RemoteGroup agent to communicate to a specific authentication
broker, then set this attribute.

Enter the information for the specific authentication broker in the
format "IP:Port".

Type: string-scalar

Example: "128.11.295.51:1400"

OfflineWaitTime The maximum expected time in seconds that the remote service
group may take to offline. VCS calls the Clean function for the
RemoteGroup resource if the remote service group takes a longer
time to offline than the time that you have specified for this
attribute.

Type and dimension: integer-scalar

Default: 0

133 Infrastructure and support agents
RemoteGroup agent
Table 6-9 Type-level attributes

Type level
attributes Description

OnlineRetryLimit

OnlineWaitLimit

ToleranceLimit

MonitorInterval

AutoFailover

In case of remote service groups that take a longer time to Online,
Symantec recommends that you modify the default
OnlineWaitLimit and OnlineRetryLimit attributes.

If you expect the RemoteGroup agent to tolerate sudden offlines of
the remote service group, then modify the ToleranceLimit
attribute.

See the VCS User’s Guide for more information about these
attributes.

Resource type definition
type RemoteGroup (

static int OnlineRetryLimit = 2

static int ToleranceLimit = 1

static str ArgList[] = { IpAddress, Port, Username, Password,

GroupName, VCSSysName, ControlMode, OfflineWaitTime,

DomainType, BrokerIp }

str IpAddress

int Port = 14141

str Username

str Password

str GroupName

str VCSSysName

str ControlMode

int OfflineWaitTime

str DomainType

str BrokerIp

)

134 Infrastructure and support agents
RemoteGroup agent

Chapter
7
Testing agents

This chapter contains the following agents:

■ “ElifNone agent” on page 136

■ “FileNone agent” on page 137

■ “FileOnOff agent” on page 138

■ “FileOnOnly agent” on page 140

About the program support agents
Use the program support agents to provide high availability for program
support resources.

136 Testing agents
ElifNone agent
ElifNone agent

Monitors a file—checks for the file’s absence.

Agent function
■	 Monitor

Checks for the specified file. If it exists, the resource faults. If it does not
exist, the agent reports as ONLINE.

Attributes

Table 7-1 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type ElifNone (

static str ArgList[] = { PathName }

static int OfflineMonitorInterval = 60

static str Operations = None

str PathName

)

Sample configuration
ElifNone tmp_file01 (

PathName = "/tmp/file01"

)

137 Testing agents
FileNone agent
FileNone agent

Monitors a file—check’s for the file’s existence.

Agent functions
■ Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the resource faults.

Attribute

Table 7-2 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type FileNone (

static str ArgList[] = { PathName }

static int OfflineMonitorInterval = 60

static str Operations = None

str PathName

)

Sample configuration
FileNone tmp_file01 (

PathName = "/tmp/file01"

)

138 Testing agents
FileOnOff agent
FileOnOff agent

Creates, removes, and monitors files.

Agent functions
■	 Online

Creates an empty file with the specified name if the file does not already
exist.

■	 Offline

Removes the specified file.

■	 Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the agent reports as OFFLINE.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

Attribute

Table 7-3 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type FileOnOff (

static str ArgList[] = { PathName }

str PathName

)

139 Testing agents
FileOnOff agent
Sample configuration
FileOnOff tmp_file01 (

PathName = "/tmp/file01"

)

140 Testing agents
FileOnOnly agent
FileOnOnly agent

Creates and monitors files.

Agent functions
■	 Online

Creates an empty file with the specified name, unless one already exists.

■	 Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the resource faults.

Attribute

Table 7-4 Required attributes

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file02"

Resource type definition
type FileOnOnly (

static str ArgList[] = { PathName }

static str Operations = OnOnly

str PathName

)

Sample configuration
FileOnOnly tmp_file02 (

PathName = "/tmp/file02"

)

Glossary
administrative IP address

The operating system controls these IP addresses and brings them up even before VCS
brings applications online. Use them to access a specific system over the network for doing
administrative tasks, for example: examining logs to troubleshoot issues, cleaning up temp
files to free space, etc. Typically, you have one administrative IP address per node.

agent function

Agent functions start, stop, fault, forcibly stop, and monitor resources using scripts.
Sometimes called an entry point.

base IP address

The first logical IP address, can be used as an administrative IP address.

entry point

See agent function.

floating IP address

See virtual IP address.

logical IP address

Any IP address assigned to a NIC.

NIC bonding

Combining two or more NICs to form a single logical NIC, which creates a fatter pipe.

operation

All agents have scripts that turn the resource on and off. Operations determine the action
that the agent passes to the resource. See None operation, OnOff operation, and OnOnly
operation.

None operation

For example the NIC resource. Also called persistent resource, this resource is always on.
This kind of resource has no online and offline scripts, and only monitors a resource.

OnOff operation

For example the IP and Share agents--in fact most agents are OnOff. This resource has
online and offline scripts. Often this type of resource does not appear in the types file
because by default when a resource does not have this resource type defined, it is OnOff.

OnOnly operation

For example the NFS, FileOnOnly resources. This kind of resource has an online script, but
not an offline one.

plumb

Term for enabling an IP address—used across all platforms in this guide.

142 Glossary
test IP address

IP addresses to help determine the state of a link by sending out a ping probe to another
NIC (on another system.) Requires a return ping to complete the test. Test IP addresses can
be the same as base IP addresses.

virtual IP address

IP addresses that can move from one NIC to another or from one node to another. VCS fails
over these IP address with your application. Sometimes called a floating IP address.

Index
Numerics
802.1Q trunking 43

A
about

Network agents 41

ACC library 96

agent

modifying 14

agent functions 87

Apache Web server agent 91

Application agent 98

DiskGroup agent 18

DNS agent 73

ElifNone agent 136

FileNone agent 137

FileOnOff agent 138

FileOnOnly agent 140

IP agent 44

IPMultiNIC agent 51

IPMultiNICB agent 62

LVMCombo agent 31

LVMLogicalVolume agent 25

LVMVolumeGroup agent 28

Mount agent 35

MultiNICA agent 54

MultiNICB agent 67

NFS agent 80

NFSRestart agent 82

NIC agent 48

NotifierMngr agent 112

Phantom agent 125

Process agent 104

ProcessOnOnly agent 108

Proxy agent 122

RemoteGroup agent 128

Volume agent 23

VRTSWebApp agent 119

agents
Apache Web server 90

Application 98

DiskGroup 18

DNS 73

ElifNone 136

FileNone 137

FileOnOff 138

FileOnOnly 140

IP 44

IPMultiNIC agent 51

IPMultiNICB agent 62

LVMCombo agent 31

LVMLogicalVolume 25

LVMVolumeGroup agent 28

Mount 35

MultiNICA 54

MultiNICB agent 66

NFS 80

NFSRestart agent 82

NIC 48

NotifierMngr agent 112

Phantom 125

Process 104

ProcessOnOnly 108

Proxy 122

RemoteGroup 127

Share 87

Volume 23

VRTSWebApp 119

agents, typical functions 13

Apache Web server agent

ACC library 96

agent functions 91

attributes 92

description 90

detecting application failure 95

sample configuration 96

state definitions 91

144 Index
Application agent

agent functions 98

description 98

resource type definition 102

sample configurations 102

state definitions 99

virtual fire drill 98

association dimension 15

attribute data types 14

attributes

DiskGroup agent 20

DNS agent 74

ElifNone agent 136

FileNone agent 137

FileOnOff agent 138

FileOnOnly agent 140

IP agent 45

IPMultiNIC agent 52

IPMultiNICB agent 64

LVMCombo agent 32

LVMLogicalVolume agent 26

LVMVolumeGroup agent 29

Mount agent 37

MultiNICA agent 55

MultiNICB agent 68

NFS agent 80

NFSRestart agent 83

NIC agent 49

NotifierMngr agent 113

Phantom agent 125

Process agent 105

Proxy agent 122

RemoteGroup agent 129

Share agent 88

Volume agent 24

VRTSWebApp agent 120

attributes, modifying 13, 14

B
boolean data types 14

bundled agents 13

C
Checklist to ensure the proper operation of

MultiNICB 61

Cluster Manager (Java Console), modifying

attributes 14

Cluster Manager (Web Console)
modifying attributes 14

CNAME record 75

configuration files

main.cf 125

modifying 14

types.cf 13

D
data type

boolean 14

string 14

data types
integer 14

description, resources 13

dimensions

keylist 15

scalar 15

vector 15

DiskGroup agent

agent functions 18

attributes 20

description 18

resource type definition 21

sample configurations 21

state definitions 19

virtual fire drill 18

DNS agent 73

agent functions 73

attributes 74

description 73

resource type definition 75

sample web server configuration 76

E
ElifNone agent

agent functions 136

attributes 136

description 136

resource type definition 136

sample configuration 136

F
FileNone agent

agent functions 137

attribute 137

description 137

145 Index
resource type definition 137

sample configurations 137

FileOnOff agent

agent functions 138

attribute 138

description 138

FileOnOnly agent

agent functions 140

attribute 140

description 140

resource type definition 140

sample configuration 140

I

integer data types 14

Interface configuration 71

IP agent

agent functions 44

attributes 45

description 44

resource type definitions 47

sample configurations 47

state definitions 45

virtual fire drill 44

IPMultiNIC agent

agent functions 51

attributes 52

description 51

resource type definitions 53

sample configuration 53

state definitions 51

IPMultiNICB agent 65

agent functions 62

attributes 64

description 62

manually migrating IP address 65

requirements 62

resource type definition 65

state definitions 63

K
keylist dimension 15

L
LVMCombo agent

agent functions 31

attributes 32

description 31

resource type definition 33

sample configurations 33

state definitions 32

LVMLogicalVolume agent

agent functions 25

attributes 26

description 25

resource type definition 26

sample configurations 27

state definitions 25

LVMVolumeGroup agent

agent functions 28

attributes 29

description 28

resource type definition 29

sample configurations 29

state definitions 28

M
main.cf 13, 125

modifying

Cluster Manager (Web Console) 14

configuration files 14

modifying agents 14

monitor scenarios, DNS agent 76

Mount agent

agent functions 35, 36

attributes 37

description 35

resource type definition 39

sample configurations 39

virtual fire drill 35

MultiNICA agent

agent functions 54

attributes 55

description 54

resource type attributes 57

sample configurations 59

state definitions 54

MultiNICB agent

agent functions 67

attributes 68

description 66

resource type definition 70

state definitions 67

146 Index
N
NFS agent

agent functions 80

attributes 80

description 80

resource type definition 81

sample configurations 81

state definitions 80

NFSRestart agent

agent functions 82

attributes 83

description 82

resource type definition 84

sample configuration 84

state definitions 83

NIC agent

agent functions 48

attributes 49

description 48

resource type definitions 50

sample configurations 50

state definitions 48

virtual fire drill 48

NotifierMngr agent

agent functions 112

attributes 113

description 112

resource type definition 116

sample configurations 117

state definitions 112

O
online query 75

P
Phantom agent

agent functions 125

attributes 125

description 125

resource type definition 125

sample configurations 125

Process agent

agent functions 104

attributes 105

description 104

resource type definition 106

sample configurations 106

state definitions 104

virtual fire drill 104

ProcessOnOnly agent

agent functions 108

description 108

resource type definition 110

sample configurations 110

state definitions 108

Proxy agent

agent functions 122

attributes 122

description 122

resource type definition 123

sample configurations 123

R
RemoteGroup agent

agent functions 128

attributes 129

description 127

resource type definition 133

state definitions 128

resource type definition 24

FileNone agent 137

resource type definitions

Application agent 102

DiskGroup agent 21

DNS agent 75

ElifNone agent 136

FileOnOnly agent 140

IP agent 47

IPMultiNIC agent 53

IPMultiNICB agent 65

LVMCombo agent 33

LVMLogicalVolume agent 26

LVMVolumeGroup agent 29

Mount agent 39

MultiNICA agent 57

MultiNICB agent 70

NFS agent 81

NFSRestart agent 84

NIC agent 50

NotifierMngr agent 116

Phantom agent 125

Process agent 106

ProcessOnOnly agent 110

Proxy agent 123

RemoteGroup agent 133

Share agent 88

147 Index
Volume agent 24

VRTSWebApp agent 120

resource types 13

resources

description of 13

S
sample configurations 65

Apache Web server agent 96

Application agent 102

DiskGroup agent 21

ElifNone agent 136

FileNone agent 137

FileOnOff agent 139

FileOnOnly agent 140

IP agent 47

IPMultiNIC 53

IPMultiNICB agent 65

LVMCombo agent 33

LVMLogicalVolume agent 27

LVMVolumeGroup agent 29

Mount agent 39

MultiNICA agent 59

NFS agent 81

NFSRestart agent 84

NIC agent 50

NotifierMngr agent 117

Phantom agent 125

Process agent 106

ProcessOnOnly agent 110

Proxy agent 123

Share agent 88

Volume agent 24

VRTSWebApp agent 120

sample DNS configuration 76

scalar dimension 15

secure DNS update 77

setting up secure updates using TSIG keys 77

Share agent 87

agent functions 87

attributes 88

description 87

resource type definitions 88

sample configurations 88

state definitions 87

state definitions 73

Apache Web server agent 91

Application agent 99

DiskGroup agent 19

DNS agent 73

IP agent 45

IPMultiNIC agent 51

IPMultiNICB agent 63

LVMCombo agent 32

LVMLogicalVolume agent 25

LVMVolumeGroup agent 28

Mount agent 36

MultiNICA agent 54

MultiNICB agent 67

NFS agent 80

NFSRestart agent 83

NIC agent 48

NotifierMngr agent 112

Process agent 104

ProcessOnOnly agent 108

RemoteGroup agent 128

Share agent 87

Volume agent 23

VRTSWebApp agent 119

string data type 14

T
trigger script 71

trunking 43

types.cf 13

V

VCS, resource types 13

vector dimension 15

virtual fire drill 18, 35, 44, 48, 98, 104

Volume agent

agent functions 23

attributes 24

description 23

sample configurations 24

state definitions 23

VRTSWebApp agent

agent functions 119

attributes 120

description 119

resource type definition 120

sample configuration 120

state definitions 119

148
 Index

	Bundled Agents Reference Guide
	Contents
	Introduction
	Resources and their attributes
	Modifying agents and their resources
	Attributes

	Storage agents
	About the storage agents
	DiskGroup agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Volume agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	LVMLogicalVolume agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Physical volumes associated with volume groups
	Sample configurations

	LVMVolumeGroup agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	LVMCombo agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Physical volumes associated with volume groups
	Sample configurations

	Mount agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Network agents
	About the network agents
	Agent comparisons
	802.1Q trunking

	IP agent
	Virtual fire drill
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	NIC agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	IPMultiNIC agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration: IPMultiNIC and MultiNICA

	MultiNICA agent
	Agent function
	State definitions
	Attributes
	Resource type definition
	MultiNICA notes
	Using RouteOptions
	Sample configurations

	About the IPMultiNICB and MultiNICB agents
	Checklist to ensure the proper operation of MultiNICB

	IPMultiNICB agent
	Dependencies
	Requirements for IPMultiNICB
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Manually migrating a logical IP address
	Sample configurations

	MultiNICB agent
	Agent functions
	State definitions
	Attributes
	Resource type definition

	DNS agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Online query
	Monitor scenarios
	Sample web server configuration
	Sample DNS configuration
	Secure DNS update

	File share agents
	About the file service agents
	NFS agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	NFSRestart agent
	Dependencies
	Agent functions
	State definitions
	Attributes
	NFSRestart notes
	Resource type definition
	Sample configurations

	Share agent
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Service and application agents
	About the service and application agents
	Apache Web server agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Detecting Application Failure
	About the ACC Library
	Sample configurations

	Application agent
	Virtual fire drill
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Process agent
	Virtual fire drill
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	ProcessOnOnly agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Infrastructure and support agents
	About the infrastructure and support agents
	NotifierMngr agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration

	VRTSWebApp agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration

	Proxy agent
	Agent functions
	Attributes
	Resource type definition
	Sample configurations

	Phantom agent
	Agent functions
	Attribute
	Resource type definition
	Sample configurations

	RemoteGroup agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition

	Testing agents
	About the program support agents
	ElifNone agent
	Agent function
	Attributes
	Resource type definition
	Sample configuration

	FileNone agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	FileOnOff agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	FileOnOnly agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	Index

