
Veritas™ Cluster Server
Bundled Agents Reference
Guide

Solaris

5.0

N18453F

Veritas Cluster Server
Bundled Agents Reference Guide

Copyright © 1998 - 2006 Symantec Corporation. All rights reserved.

Veritas Cluster Server 5.0

Symantec, the Symantec logo, and Veritas are trademarks or registered trademarks of
Symantec Corporation or its affiliates in the U.S. and other countries. Other names may be
trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Symantec Corporation

20330 Stevens Creek Blvd.

Cupertino, CA 95014

www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Symantec product. Such third-party software is licensed separately by
its copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.
Solaris is a trademark of Sun Microsystems, Inc.

Technical support
For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Contents
Chapter 1 Introduction
Resources and their attributes ..13

Modifying agents and their resources ..14

Attributes ..14

Chapter 2 Storage agents
About the storage agents ..17

DiskGroup agent ..18

Virtual fire drill ..18

Agent functions ..18

State definitions ...19

Attributes ..20

Resource type definition ...21

Using volume sets in Solaris ..22

Setting the noautoimport flag for a disk group22

VxVM versions 4.1 and 5.0 for Solaris ..22

For VxVM version 4.0 ..22

Configuring the Fiber Channel adapter ..23

Sample configurations ..23

DiskGroup resource configuration ..23

Volume agent ..24

Dependency ...24

Agent functions ..24

State definitions ...24

Attributes ..25

Resource type definition ...25

Sample configurations ..25

Configuration ..25

Mount agent ..26

Virtual fire drill ..26

Agent functions ..26

State definitions ...27

Attributes ..28

Resource type definition ...30

6 Contents
Sample configurations .. 30

Configuration ... 30

SANVolume agent ... 31

Agent functions .. 31

State definitions ... 31

Attributes .. 32

Resource type definition ... 33

Sample configuration .. 34

Chapter 3 Network agents
About the network agents .. 35

Agent comparisons .. 35

IP and NIC agents ... 35

IPMultiNIC and MultiNICA agents .. 35

IPMultiNICB and MultiNICB agents .. 36

802.1Q trunking ... 37

IP agent ... 38

Virtual fire drill .. 38

Dependency .. 38

Agent functions .. 38

State definitions ... 38

Attributes .. 39

Resource type definition ... 40

Sample configurations .. 41

Configuration 1 .. 41

NetMask in decimal (base 10) .. 41

Configuration of NetMask in hexadecimal (base 16) 41

NIC agent ... 42

Virtual fire drill .. 42

Agent functions .. 42

State definitions ... 42

Attributes .. 43

Resource type definition ... 44

Sample configurations .. 44

Configuration without network hosts (using default

ping mechanism) .. 44

Configuration with network hosts .. 44

IPMultiNICB and MultiNICB configuration 45

IPMultiNIC agent ... 46

Dependency .. 46

Agent functions .. 46

State definitions ... 46

Attributes .. 47

7 Contents
Resource type definition ...48

Sample configuration: IPMultiNIC and MultiNICA49

MultiNICA agent ..50

Agent function ..50

State definitions ...50

Attributes ..51

Resource type definition ...53

MultiNICA notes ..53

Using RouteOptions ...54

Sample configurations ..55

MultiNICA and IPMultiNIC ...55

About the IPMultiNICB and MultiNICB agents ...57

Checklist to ensure the proper operation of MultiNICB57

IPMultiNICB agent ...58

Dependencies ..58

Requirements for IPMultiNICB ..58

Agent functions ..58

State definitions ...59

Attributes ..60

Resource type definition ...61

Manually migrating a logical IP address ..62

Sample configurations ..62

Other sample configurations for IPMultiNICB and MultiNICB62

MultiNICB agent ..63

Base and Multipathing modes ..63

Agent functions ..63

State definitions ...63

Attributes ..64

Optional attributes for Base and Mpathd modes64

Optional attributes for Base mode ..65

Optional attributes for Multipathing mode68

Resource type definition ...69

Solaris operating modes: Base and Multipathing69

Base mode ..70

Multipathing mode ..70

Trigger script ..71

Sample configurations ..71

Interface configuration for AIX and Solaris71

Setting up test IP addresses for Base Mode71

IPMultiNICB and MultiNICB configuration72

DNS agent ..74

Agent functions ..74

State definitions ...74

8 Contents
Attributes .. 75

Resource type definition ... 76

Online query ... 76

Monitor scenarios .. 77

Sample web server configuration ... 77

Sample DNS configuration ... 78

Secure DNS update .. 78

Setting up secure updates using TSIG keys on Solaris 78

Chapter 4 File share agents
About the file service agents .. 81

NFS agent .. 82

Service Management Facility for Solaris 10 .. 82

Agent functions .. 82

State definitions ... 83

Attributes .. 83

Resource type definition ... 84

Sample configurations .. 84

Configuration ... 84

NFSRestart agent ... 85

Dependencies ... 85

Agent functions .. 85

State definitions ... 86

Attributes .. 86

Service Management Facility—Solaris 10 .. 87

NFSRestart notes ... 88

Resource type definition ... 89

Sample configurations .. 89

Share agent ... 91

Dependencies ... 91

Agent functions .. 91

State definitions ... 91

Attributes .. 92

Resource type definition ... 92

Sample configurations .. 92

Configuration ... 92

Chapter 5 Service and application agents
About the service and application agents .. 93

Apache Web server agent ... 94

Dependency .. 94

Agent functions .. 95

9 Contents
State definitions ...95

Attributes ..96

Resource type definition ...99

Detecting Application Failure ..99

About the ACC Library ..100

Sample configurations ..100

Application agent ...102

Virtual fire drill ..102

Dependencies ..102

Agent functions ..102

State definitions ...103

Attributes ..104

Resource type definition ...107

Sample configurations ..107

Configuration 1 ..107

Configuration 2 ..108

Configuration 3 for Solaris 10 ..108

Process agent ..109

Virtual fire drill ..109

Dependencies ..109

Agent functions ..109

State definitions ...110

Attributes ..110

Resource type definition ...111

Sample configurations ..112

Configuration 1 ..112

Configuration 2 ..112

ProcessOnOnly agent ..113

Agent functions ..113

State definitions ...113

Attributes ..114

Resource type definition ...115

Sample configurations ..115

Configuration 1 ..115

Configuration 2 ..115

Zone agent ...117

Agent functions ..117

Attributes ..117

Resource type definition ...118

Sample configuration ..118

Configuration for Solaris 10 ...118

10 Contents
Chapter 6 Infrastructure and support agents
About the infrastructure and support agents ...119

NotifierMngr agent ...120

Dependency ..120

Agent functions ..120

State definitions ...120

Attributes ..121

Resource type definition ...124

Sample configuration ..125

Configuration ...125

VRTSWebApp agent ..127

Agent functions ..127

State definitions ...127

Attributes ..128

Resource type definition ...128

Sample configuration ..129

Proxy agent ...130

Agent functions ..130

Attributes ..130

Resource type definition ...131

Sample configurations ..131

Configuration 1 ..131

Configuration 2 ..131

Configuration 3 ..131

Phantom agent ...133

Agent functions ..133

Attribute ..133

Resource type definition ...133

Sample configurations ..133

Configuration 1 ..133

Configuration 2 ..133

RemoteGroup agent ..135

Dependency ..135

Agent functions ..136

State definitions ...136

Attributes ..137

Resource type definition ...141

11 Contents
Chapter 7 Testing agents
About the program support agents ...143

ElifNone agent ..144

Agent function ..144

Attributes ..144

Resource type definition ...144

Sample configuration ..144

FileNone agent ..145

Agent functions ..145

Attribute ..145

Resource type definition ...145

Sample configuration ..145

FileOnOff agent ..146

Agent functions ..146

Attribute ..146

Resource type definition ...146

Sample configuration ..147

FileOnOnly agent ...148

Agent functions ..148

Attribute ..148

Resource type definition ...148

Sample configuration ..148

Glossary 149

Index 151

12
 Contents

Chapter
1
Introduction

Bundled agents are Veritas Cluster Server (VCS) processes that manage

resources of predefined resource types according to commands received from

the VCS engine, HAD. You install these agents when you install VCS.

A node has one agent per resource type that monitors all resources of that type.

For example, a single IP agent manages all IP resources.

When the agent starts, it obtains the necessary configuration information from

VCS. The agent then periodically monitors the resources, and updates VCS with

the resource status.

Agents can:

■ Bring resources online.

■ Take resources offline.

■ Monitor resources and report state changes.

For a more detailed overview of agents, see the VCS User’s Guide.

Resources and their attributes
Resources are parts of a system and are known by their type, such as: a volume,

a disk group, or an IP address. VCS includes a set of resource types. Different

attributes define these resource types in the types.cf file. Each type has a

corresponding agent that controls the resource.

The VCS configuration file, main.cf, contains the values for the resource

attributes and has an include directive to the types.cf file.

An attribute’s given value configures the resource to function in a specific way.

By modifying the value of a resource attribute, you can change the way the VCS

agent manages the resource. For example, the IP agent uses the Address

attribute to determine the IP address to monitor.

http:main.cf

14 Introduction
Modifying agents and their resources
Modifying agents and their resources

Use the Cluster Manager (Java Console), Cluster Manager (Web Console), or the

command line to dynamically modify the configuration of the resources

managed by an agent.

See the Veritas Cluster Server User’s Guide for instructions on how to complete

these tasks.

VCS enables you to edit the main.cf file directly. To implement these changes,

make sure to restart VCS.

Attributes
Attributes contain data about the cluster, systems, service groups, resources,
resource types, and the agent. An attribute has a definition and a value. You
change attribute values to configure VCS resources. Attributes are either
optional or required, although sometimes attributes that are optional in one
configuration might be required in other configurations. Many optional
attributes have predefined or default values, which you should change as
required.

A variety of internal use only attributes also exist. Do not modify these
attributes—modifying them can lead to significant problems for your clusters.

Attributes have type and dimension. Some attribute values can accept numbers,
others can accept alphanumeric values or groups of alphanumeric values, while
others are simple boolean on/off values.

Table 1-1 Attribute data types

Data Type Description

string Enclose strings, which are a sequence of characters, in double quotes (").
Optionally enclose strings in quotes when they begin with a letter, and
contains only letters, numbers, dashes (-), and underscores (_).

A string can contain double quotes, but the quotes must be immediately
preceded by a backslash. In a string, represent a backslash with two
slashes (//).

integer Signed integer constants are a sequence of digits from 0 to 9. You can
precede them with a dash. They are base 10. Integers cannot exceed the
value of a 32-bit signed integer: 21471183247.

15 Introduction
Attributes
Table 1-1 Attribute data types

boolean A boolean is an integer with the possible values of 0 (false) and 1 (true).

Data Type Description

Table 1-2 Attribute dimensions

Dimension Description

scalar A scalar has only one value. This is the default dimension.

vector A vector is an ordered list of values. Each value is indexed using a positive
integer beginning with zero. A set of brackets ([]) denotes that the
dimension is a vector. Find the specified brackets after the attribute name
on the attribute definition in the types.cf file.

keylist A keylist is an unordered list of unique strings.

association An association is an unordered list of name-value pairs. An equal sign
separates each pair. A set of braces ({}) denotes that an attribute is an
association. Braces are specified after the attribute name on the attribute
definition in the types.cf file, for example: str SnmpConsoles{}.

16 Introduction
Attributes

Chapter
2
Storage agents

This chapter contains:

■ “DiskGroup agent” on page 18

■ “Volume agent” on page 24

■ “Mount agent” on page 26

■ “SANVolume agent” on page 31

About the storage agents
Use storage agents to Monitor shared storage.

18 Storage agents
DiskGroup agent
DiskGroup agent

Brings online, takes offline, and monitors a Veritas Volume Manager (VxVM)

disk group. This agent uses VxVM commands.

When the value of the StartVolumes and StopVolumes attribute is 1, the

DiskGroup agent brings the volumes online and takes them offline during the

import and deport operations of the disk group.

When using volume sets, set StartVolumes and StopVolumes attributes of the

DiskGroup resource that contains volume set to 1. If a file system is created on

the volume set, use a Mount resource to mount the volume set.

The agent protects data integrity by disabling failover when data is being

written to a volume in the disk group.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For DiskGroup resources, the
virtual fire drill checks for:

■	 The Veritas Volume Manager license

■ Visibility from host for all disks in the diskgroup

For more information about using the virtual fire drill see the VCS User’s Guide.

Agent functions
■	 Online

Imports the disk group using the vxdg command.

■	 Offline

Deports the disk group using the vxdg command.

■	 Monitor

Determines if the disk group is online or offline using the vxdg command.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline—
forcibly when necessary.

■	 Info

The DiskGroup info agent function gets information from the Volume
Manager and displays the type and free size for the DiskGroup resource.

Initiate the info agent function by setting the InfoInterval timing to a value
greater than 0.

19 Storage agents
DiskGroup agent
In this example, the info agent function executes every 60 seconds:
haconf -makerw

hatype -modify DiskGroup InfoInterval 60

The command to retrieve information about the DiskType and FreeSize of
the DiskGroup resource is:

hares -value diskgroupres ResourceInfo

Output includes:
DiskType sliced

FreeSize 35354136

State definitions
■	 ONLINE

Indicates that the disk group is imported.

■	 OFFLINE

Indicates that the disk group is not imported.

■	 FAULTED

Indicates that the disk group has unexpectedly deported.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

20 Storage agents
DiskGroup agent
Attributes

Table 2-1 Required attributes

Required attribute
Description

DiskGroup Name of the disk group configured with Veritas Volume
Manager.

Type and dimension: string-scalar

Example: "diskgroup1"

DiskGroupType Different types of disk groups supported. SAN DG is only
supported in the SFVS environment. See the VCS Installation
Guide for more information. Values are either: private or SAN.

Type and dimension: string-scalar

Example: "private"

Table 2-2 Optional attributes

Optional
attributes Description

MonitorReservation If the value is 1, and SCSI-3 fencing is utilized, the agent
monitors the SCSI reservation on the disk group. If the
reservation is missing, the monitor agent function takes the
resource offline.

Type and dimension: boolean-scalar

Default: 0

21 Storage agents
DiskGroup agent
Table 2-2 Optional attributes

Optional
attributes Description

PanicSystemOnDGLoss If the disk group is in a disabled state, uses I/O fencing, and
has PanicSystemOnDGLoss set to 1, the system panics in the
first monitor cycle.

If the disk group is in an enabled state, uses I/O fencing, has
PanicSystemOnDGLoss set to 1, and fulfills the
FaultOnMonitorTimeout attribute’s time out number, the
system panics.

Note: System administrators may want to set a high value for
FaultOnMonitorTimeout to increase system tolerance.

Type and dimension: boolean-scalar

Default: 1

StartVolumes If value is 1, the DiskGroup online script starts all volumes
belonging to that disk group after importing the group.

Type and dimension: string-scalar

Default: 1

StopVolumes If value is 1, the DiskGroup offline script stops all volumes
belonging to that disk group before deporting the group.

Type and dimension: string-scalar

Default: 1

TempUseFence Do not use. For internal use only.

Resource type definition
type DiskGroup (

static keylist SupportedActions = { "license.vfd", "disk.vfd",

numdisks }

static int OnlineRetryLimit = 1

static str ArgList[] = { DiskGroup, StartVolumes, StopVolumes,

MonitorOnly, MonitorReservation, tempUseFence,

PanicSystemOnDGLoss, DiskGroupType }

str DiskGroup

str StartVolumes = 1

str StopVolumes = 1

static int NumThreads = 1

22 Storage agents

DiskGroup agent

boolean MonitorReservation = 0

temp str tempUseFence = INVALID

boolean PanicSystemOnDGLoss = 1

str DiskGroupType = private

)

Using volume sets in Solaris
When using volume sets, set StartVolumes and StopVolumes attributes of the
DiskGroup resource that contains volume set to 1. If a file system is created on
the volume set, use a Mount resource to mount the volume set.

See “Mount agent” on page 26.

Setting the noautoimport flag for a disk group
VCS requires that the noautoimport flag of an imported disk group be explicitly
set to "true." This enables VCS to control the importation and deportation of
disk groups as needed when bringing disk groups online and taking them offline.

To check the status of the noautoimport flag for an imported disk group

◆ # vxprint -l disk_group | grep noautoimport

If the output from this command is blank, the noautoimport flag is set to
false and VCS lacks the necessary control.

VxVM versions 4.1 and 5.0 for Solaris
The Monitor function changes the value of the VxVM noautoimport flag from
off to on. It does this instead of taking the service group offline. This action
allows VCS to maintain control of importing the disk group.

The following command changes the autoimport flag to false:
vxdg -g disk_group set autoimport=no

For VxVM version 4.0
Be aware that when you enable a disk group configured as a DiskGroup resource

that does not have the noautoimport flag set to true, VCS forcibly deports the

disk group. This may disrupt applications running on the disk group.

To explicitly set the noautoimport flag to true, deport the disk group and import

it with the -t option as follows:

To deport the disk group, enter:

vxdg deport disk_group

To import the disk group, specifying the noautoimport flag be set to true to
ensure the disk group is not automatically imported, enter:

vxdg -t import disk_group

23 Storage agents
DiskGroup agent
Configuring the Fiber Channel adapter
Most Fiber Channel (FC) drivers have a configurable parameter called “failover.”
This configurable parameter is in the FC driver’s configuration file. This
parameter is the number of seconds that the driver waits before transitioning a
disk target from OFFLINE to FAILED. After the state becomes FAILED, the driver
flushes all pending fiber channel commands back to the application with an
error code. Symantec recommends that you use a non-zero value that is smaller
than any of the MonitorTimeout values of the Disk Group resources, which
avoids excessive waits for monitor timeouts.

Refer to the Fiber Channel adapter's configuration guide for further
information.

Sample configurations

DiskGroup resource configuration
Example of a disk group resource in the Share Out mode.
DiskGroup dg1 (

DiskGroup = testdg_1

)

Example of a disk group resource in the Volume Serving mode.
SANVolume vNFS_SANVolume (

Domain = testdom1

SANDiskGroup = vsdg

SANVolume = vsvol

VolumeServer = "sysA.veritas.com"

)

24 Storage agents
Volume agent
Volume agent
Brings online, takes offline, and monitors a Veritas Volume Manager (VxVM)
volume.

Note: Do not use the Volume agent for volumes created for replication.

Dependency
Volume resources depend on DiskGroup resources.

Agent functions
■	 Online

Starts the volume using the vxrecover command.

■	 Offline

Stops the volume using the vxvol command.

■	 Monitor

Determines if the volume is online or offline by reading a block from the
raw device interface to the volume.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline—
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the specified volume is started and that I/O is permitted.

■	 OFFLINE

Indicates that the specified volume is not started and that I/O is not
permitted.

■	 FAULTED

Indicates the volume stops unexpectedly.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

25 Storage agents
Volume agent
Attributes

Table 2-3 Required attributes

Required
attribute Description

DiskGroup Name of the disk group that contains the volume.

Type and dimension: string-scalar

Example: "sharedg"

Volume Name of the volume.

Type and dimension: string-scalar

Example: "DG1Vol1"

Resource type definition
type Volume (

static str ArgList[] = { Volume, DiskGroup }

str Volume

str DiskGroup

static int NumThreads = 1

)

Sample configurations

Configuration
Volume sharedg_vol3 (

Volume = vol3

DiskGroup = sharedg

)

26 Storage agents
Mount agent
Mount agent

Use this agent to bring online, take offline, and monitor a file system or NFS
client mount point.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Mount resources, the
virtual fire drill checks for:

■	 The existence of the mount directory

■ The correct filesystem mounted at the specified mount directory

For more information about using the virtual fire drill see the VCS User’s Guide.

Agent functions
■	 Online

Mounts a block device on the directory. If the mount process fails for non-
NFS mounts, the agent attempts to run the fsck command on the device to
remount the block device.

If file system type is NFS, agent mounts the remote NFS file system to a
specified directory. The remote NFS file system is specified in the
BlockDevice attribute.

■	 Offline

Unmounts the mounted file system gracefully.

■	 Monitor

Determines if the file system is mounted.

■	 Clean

Unmounts the mounted file system forcefully.

■	 Info

The Mount info agent function executes the command:
df -k mount_point

The output displays Mount resource information:
Size Used Avail Use%

To initiate the info agent function, set the InfoInterval timing to a value
greater than 0. In this example, the info agent function executes every 60
seconds:

haconf -makerw

hatype -modify Mount InfoInterval 60

27 Storage agents
Mount agent
The command to retrieve information about the Mount resource is:
hares -value mountres ResourceInfo

Output includes:
Size 2097152

Used 139484

Available 1835332

Used% 8%

State definitions
■	 ONLINE

For the file system, indicates that the block device is mounted on the
specified mount point.

For the NFS client, indicates that the NFS remote client is mounted in the
specified mount directory.

■	 OFFLINE

For the file system, indicates that the block device is not mounted on the
specified mount point.

For the NFS client, indicates that the NFS remote client is not mounted in
the specified mount directory.

■	 FAULTED

For the file system, indicates that the block device has unexpectedly
unmounted.

For the NFS client, indicates that the NFS remote client has unexpectedly
unmounted.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the inability
to determine the status of the resource.

28 Storage agents
Mount agent
Attributes

Table 2-4 Required attributes

Required
attribute Description

BlockDevice For the file system, the block device for the mount point.

For the NFS client, the NFS remote file system in
host:exported_directory format.

Type and dimension: string-scalar

File system example: "/dev/vx/dsk/mnt-dg1/mnt-vol1"

NFS client example: "foo:/home"

FsckOpt Options for fsck command.

For the file system, you must include -y or -n must as arguments to
fsck, otherwise the resource cannot come online. VxFS file systems
perform a log replay before a full fsck operation (enabled by -y)
takes place. Refer to the fsck manual page for more information.

For the NFS client, do not use this attribute.

Type and dimension: string-scalar

FSType Type of file system.

Supports vxfs, ufs, or nfs.

Type and dimension: string-scalar

Example: "vxfs"

MountPoint Directory for mount point.

Type and dimension: string-scalar

Example: "/mnt1"

29 Storage agents
Mount agent
Table 2-5 Optional attributes

Optional
attribute Description

CkptUmount If set to 1, this attribute automatically unmounts VxFS
checkpoints when the file system is unmounted.

If set to 0, and checkpoints are mounted, then failover does
not occur.

Type and dimension: integer-scalar

Default: 1

ContainerName Do not change. For internal use only.

ContainerType Do not change. For internal use only.

MountOpt Options for the mount command. Refer to the mount manual
page for more information.

Type and dimension: string-scalar

Example: "rw"

SecondLevelMonitor This attribute is only applicable to NFS client mounts. It
executes the df -k command for the NFS mounted file
system and detects network outage.

If set to 1, this attribute enables detailed monitoring of a NFS
mounted file system.

Type and dimension: boolean-scalar

Default: 0

SecondLevelTimeout This attribute is only applicable for a NFS client mount.

This is the time (in seconds) for the SecondLevelMonitor to
complete. The actual timeout value can be much smaller. This
setting depends on how much time remains before exceeding
the MonitorTimeout interval.

Type and dimension: integer-scalar

Default: 30

30 Storage agents

Mount agent

Table 2-5 Optional attributes

SnapUmount If set to 1, this attribute automatically unmounts VxFS
snapshots when the file system is unmounted.

Type and dimension: integer-scalar

Default: 0

Optional
attribute Description

Resource type definition
type Mount (

static keylist SupportedActions = { "mountpoint.vfd",

"mounted.vfd", "vxfslic.vfd" }

static str ArgList[] = { MountPoint, BlockDevice, FSType,

MountOpt, FsckOpt, SnapUmount, CkptUmount, SecondLevelMonitor,

SecondLevelTimeout, ContainerName }

static str ContainerType = Zone

str MountPoint

str BlockDevice

str FSType

str MountOpt

str FsckOpt

int SnapUmount

int CkptUmount = 1

boolean SecondLevelMonitor = 0

int SecondLevelTimeout = 30

str ContainerName

)

Sample configurations

Configuration
Mount mnt-fs1 (

MountPoint= "/mnt1"

BlockDevice = "/dev/vx/dsk/mnt-dg1/mnt-vol1"

FSType = "vxfs"

FsckOpt = "-n"

MountOpt = "rw"

)

31 Storage agents
SANVolume agent
SANVolume agent
Use this agent as a resource to control access to a SAN volume, and to monitor
the health of a SAN volume. You can configure the agent as part of a VCS service
group.

The SAN volumes must reside on storage arrays that support SCSI-3 persistent
reservations.

Note: Storage Foundation Volume Server (SF Volume Server) is a separately
licensed feature of Veritas Storage Foundation™ by Symantec. An SF Volume
Server license is currently available only through the Symantec customer access
program. For information about participating in the access program and
obtaining an SF Volume Server license, visit the following Symantec website:
http://cap.symantec.com

Agent functions
■	 Online

Attaches the SAN volume to the volume client host, and creates a device
node for the SAN volume on the volume client host.

■	 Offline

Unattaches a SAN volume. It deletes the device node for the already
attached SAN volume to the volume client host.

■	 Clean

Forcibly detaches the SAN volume from a volume client.

■	 Monitor

Checks the state of the SAN volume on a volume client. It checks the health
of the SAN volume and determines whether it is online or offline.

State definitions
■	 ONLINE

Indicates that state of the SAN volume is attached.

■	 OFFLINE

Indicates that the SAN volume is unattached.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
to determine the status of the resource.

http://cap.symantec.com

32 Storage agents
SANVolume agent
Attributes

Table 2-6 Required attributes

Required
attribute

Description

DiskGroup The name of the SAN disk group that contains the volume.

Type and dimension: string-scalar

Example: "dg1"

Domain The name of the storage domain that the SAN volume belongs to.

Type and dimension: string-scalar

Example: "domain1"

SANVolume The name of the SAN volume

Type and dimension: string-scalar

Example: "sanvol_1"

VolumeServer The name of the SAN volume server.

■ If the volume server is not centrally managed, then this is
required. If the volume server is made highly available using
VCS, then the name of the volume server should be a virtual IP
address or the host name associated with the virtual IP address.

■ For a centrally managed volume server, then this attribute is
not required.

Type and dimension: string-scalar

Example: "myserver.veritas.com"

33 Storage agents
SANVolume agent
Table 2-7 Optional attributes

Optional
attribute

Description

ExclusiveUse ExclusiveUse enforces volume to be opened by only one node in the
cluster at a time.

Type and dimension: boolean-scalar

Default: 1

Preempt Preempt enforces an exclusive attach of the volume by a node in the
cluster.

Type and dimension: integer-scalar

Default: 1

AccessPolicy The access policy for the volume: {RDONLY | RDWR}

Type and dimension: string-scalar

Default: RDWR

Resource type definition

type SANVolume (

static int OnlineRetryLimit = 4

static str ArgList[] = { SANVolume, SANDiskGroup, VolumeServer,

Domain, ExclusiveUse, Preempt, AccessPolicy }

str Domain

str SANDiskGroup

str SANVolume

str VolumeServer

boolean ExclusiveUse = 1

boolean Preempt = 1

str AccessPolicy = RDWR

)

34 Storage agents

SANVolume agent

Sample configuration
This example shows all the required attributes.
SANVolume svol (

SANDiskGroup = vsdg

SANVolume = vsvol

VolumeServer = "sysA.veritas.com"

)

ChapterX
3
Network agents

This chapter contains the following:

■ “About the network agents” on page 35

■ “IP agent” on page 38

■ “NIC agent” on page 42

■ “IPMultiNIC agent” on page 46

■ “MultiNICA agent” on page 50

■ “About the IPMultiNICB and MultiNICB agents” on page 57

■ “IPMultiNICB agent” on page 58

■ “MultiNICB agent” on page 63

■ “DNS agent” on page 74

About the network agents
Use network agents to provide high availability for networking resources.

Agent comparisons

IP and NIC agents
The IP and NIC agents:

■ Monitor a single NIC

IPMultiNIC and MultiNICA agents
The IPMultiNIC and MultiNICA agents:

■ Monitor single or multiple NICs

36 Network agents

About the network agents

■	 Check the backup NICs at fail over

■	 Use the original base IP address when failing over

■	 Provide slower failover compared to MultiNICB but can function with fewer
IP addresses

■	 Have only one active NIC at a time

IPMultiNICB and MultiNICB agents
The IPMultiNICB and MultiNICB agents:

■	 Monitor single or multiple NICs

■	 Check the backup NICs as soon as it comes up

■	 Require a pre-assigned base IP address for each NIC

■	 Do not fail over the original base IP address

■	 Provide faster fail over compared to MultiNICA but require more IP
addresses

■	 Have more than one active NIC at a time

37 Network agents
About the network agents
802.1Q trunking
The IP/NIC, IPMultiNIC/MultiNICA, and IPMultiNICB/MultiNICB agents support

802.1Q trunking.

The IP/NIC, IPMultiNIC/MultiNICA, and IPMultiNICB/MultiNICB agents support

802.1Q trunking on Solaris 8, 9 and 10. However, on Solaris 8, only "ce"

interfaces can be configured as VLAN interfaces. This is a Sun restriction.

On Solaris 9, the IPMultiNICB and MultiNICB agents works only if Sun patch

116670-04 is installed on the system. No patch is required for the IP and NIC

agents and the IPMultiNIC and MultiNICA agents

On Solaris 9 and 10, VLAN is not supported on the Fast Ethernet interfaces. (eg:

hme/qfe interfaces).

You need to specify the VLAN interfaces, for example: bge20001 , bge30001, as

the base interfaces in the device list in the main.cf file. You also must make sure

that the IP addresses that are assigned to the interfaces of a particular VLAN are

in the same subnet.

38 Network agents
IP agent
IP agent

Manages the process of configuring a virtual IP address and its subnet mask on
an interface. The interface must be enabled with a physical (or administrative)
base IP address before you can assign it a virtual IP address. The virtual IP
address must not be in use.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For IP resources, the virtual
fire drill checks for the existence of a route to the IP from the specified NIC.

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependency
IP resources depend on NIC resources.

Agent functions
■	 Online

Configures the IP address to the NIC. Checks if another system is using the
IP address. Uses the ifconfig command to set the IP address on a unique
alias on the interface.

■	 Offline

Brings down the IP address specified in the Address attribute.

■	 Monitor

Monitors the interface to test if the IP address that is associated with the
interface is alive.

■	 Clean

Brings down the IP address associated with the specified interface.

State definitions
■	 ONLINE

Indicates that the device is up and the specified IP address is assigned to the
device.

■	 OFFLINE

Indicates that the device is down or the specified IP address is not assigned
to the device.

39 Network agents
IP agent
■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

Attributes

Table 3-1 Required attributes

Required
attribute Description

Address A virtual IP address, different from the base IP address, which is
associated with the interface.

Type and dimension: string-scalar

Example: "192.203.47.61"

Device The name of the NIC device associated with the IP address. Requires
the device name without an alias.

Type and dimension: string-scalar

Example: "le0"

Table 3-2 Optional attributes

Optional
attribute Description

ArpDelay The number of seconds to sleep between configuring an interface
and sending out a broadcast to inform routers about this IP address.

Type and dimension: integer-scalar

Default: 1

ContainerName Non-global zone support for Solaris 10 and above. Defines the name
of the non-global zone.

See the VCS User’s Guide for more information.

Type and dimension: string-scalar

Example: zone1

40 Network agents

IP agent

Table 3-2 Optional attributes

Optional
attribute Description

IfconfigTwice Causes an IP address to be configured twice using an ifconfig up-
down-up sequence. Increases the probability of gratuitous ARP
requests (generated by ifconfig up) to reach clients.

Type and dimension: integer-scalar

NetMask The subnet mask associated with the IP address of the resource.
Specify the value of the netmask in decimal (base 10) or hexadecimal
(base 16).

Symantec recommends that you specify a netmask for each virtual
interface.

Type and dimension: string-scalar

Default: +

If you do not specify the netmask in the ifconfig command, the
agent uses a default netmask based on the contents of the
/etc/netmasks path for a given address range.

The default is 255.0.0.0 if the ifconfig command is executed without
a netmask argument.

Example: "255.255.248.0"

Options Options for the ifconfig command.

Type and dimension: string-scalar

Example: "trailers"

Resource type definition
type IP (

static keylist SupportedActions = { "device.vfd", "route.vfd" }

static str ArgList[] = { Device, Address, NetMask, Options,

ArpDelay, IfconfigTwice, ContainerName }

str Device

str Address

str NetMask

str Options

int ArpDelay = 1

int IfconfigTwice

str ContainerName

)

41 Network agents
IP agent
Sample configurations

Configuration 1
IP IP_192_203_47_61 (

Device = le0

Address = "192.203.47.61"

)

NetMask in decimal (base 10)
IP IP_192_203_47_61 (

Device = le0

Address = "192.203.47.61"

NetMask = "255.255.248.0"

)

Configuration of NetMask in hexadecimal (base 16)
IP IP_192_203_47_61 (

Device = le0

Address = "192.203.47.61"

NetMask = "0xfffff800"

)

42 Network agents
NIC agent
NIC agent

Monitors the configured NIC. If a network link fails, or if a problem arises with
the NIC, the resource is marked FAULTED.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and

the underlying infrastructure on a node; discrepancies that might prevent a

service group from going online on a specific node. For NIC resources, the

virtual fire drill checks for the existence of the NIC on the host.

For more information about using the virtual fire drill see the VCS User’s Guide.

The NIC listed in the Device attribute must have an administrative IP address,

which is the default IP address assigned to the physical interface of a host on a

network. This agent does not configure network routes or administrative IP

addresses.

Before using this agent:

■	 Verify that the NIC has the correct administrative IP address and subnet
mask.

■	 Verify that the NIC does not have built-in failover support. If it does, disable
it.

Agent functions
■	 Monitor

Tests the network card and network link. Pings the network hosts or
broadcast address of the interface to generate traffic on the network.
Counts the number of packets passing through the device before and after
the address is pinged. If the count decreases or remains the same, the
resource is marked FAULTED.

State definitions
■	 ONLINE

Indicates that the NIC resource is working.

■	 FAULTED

Indicates that the NIC has failed.

■	 UNKNOWN

Indicates the agent cannot determine the interface state. It may be due to an
incorrect configuration.

43 Network agents
NIC agent
Attributes

Table 3-3 Required attributes

Required
attribute Description

Device Name of the NIC that you want to monitor.

Type and dimension: string-scalar

Example: "le0"

Table 3-4 Optional attributes

Optional
attribute Description

NetworkHosts List of hosts on the network that are pinged to determine if the
network connection is alive. Enter the IP address of the host, instead
of the host name, to prevent the monitor from timing out. DNS
causes the ping to hang. If more than one network host is listed, the
monitor returns ONLINE if at least one of the hosts is alive.

If you do not specify network hosts, the monitor tests the NIC by
sending pings to the broadcast address on the NIC.

Type and dimension: string-vector

Example: "166.96.15.22", "166.97.1.2"

NetworkType Type of network. VCS supports only Ethernet.

Type and dimension: string-scalar

Default: "ether"

44 Network agents

NIC agent

Table 3-4 Optional attributes

PingOptimize Number of monitor cycles to detect if configured interface is
inactive. Use PingOptimize when you have not specified network
hosts.

A value of 1 optimizes broadcast pings and requires two monitor
cycles.

A value of 0 performs a broadcast ping during each monitor cycle
and detects the inactive interface within the cycle.

Type and dimension: integer-scalar

Default: 1

Optional
attribute Description

Resource type definition
type NIC (

static keylist SupportedActions = { "device.vfd" }

static str ArgList[] = { Device, NetworkType, PingOptimize,

NetworkHosts}

static int OfflineMonitorInterval = 60

static str Operations = None

str Device

str NetworkType

int PingOptimize = 1

str NetworkHosts[]

)

Sample configurations

Configuration without network hosts (using default
ping mechanism)
NIC groupx_le0 (

Device = le0

PingOptimize = 1

)

Configuration with network hosts
NIC groupx_le0 (

Device = le0

NetworkHosts = { "166.93.2.1", "166.99.1.2" }

)

45 Network agents
NIC agent
IPMultiNICB and MultiNICB configuration
The following code is an example VCS configuration.
cluster clus_north (

UserNames = { admin = "cDRpdxPmHpzS." }

Administrators = { admin }

CounterInterval = 5

)

system north (

)

system south (

)

group g11 (

SystemList = { north = 0, south = 1 }

AutoStartList = { north, south }

)

IPMultiNICB g11_i1 (

BaseResName = gnic_n

Address = "192.1.0.201"

NetMask = "255.255.0.0"

DeviceChoice = "1"

)

Proxy g11_p1 (

TargetResName = gnic_n

)

g11_i1 requires g11_p1

// A parallel group for the MultiNICB resource

group gnic (

SystemList = { north = 0, south = 1 }

AutoStartList = { north, south }

Parallel = 1

)

MultiNICB gnic_n (

Device @north = { qfe0, qfe4 }

Device @south = { qfe0, qfe4 }

NetworkHosts = { "192.1.0.1" }

)

Phantom gnic_p (

)

46 Network agents
IPMultiNIC agent
IPMultiNIC agent

Manages the virtual IP address configured as an alias on one interface of a
MultiNICA resource. If the interface faults, the agent works with the MultiNICA
resource to fail over to a backup NIC. If multiple service groups have
IPMultiNICs associated with the same MultiNICA resource, only one group has
the MultiNICA resource. The other groups have Proxy resources pointing to it.

Dependency
IPMultiNIC resources depend on MultiNICA resources. Can depend on Zone
resources.

Agent functions
■	 Online

Configures a virtual IP address on one interface of the MultiNICA resource.

■	 Offline

Removes the virtual IP address from one interface of the MultiNICA
resource.

■	 Monitor

Checks if the virtual IP address is configured on one interface of the
MultiNICA resource.

■	 Clean

 Removes the virtual IP address from one interface of the MultiNICA
resource.

■	 Clean

 Removes the internal files.

State definitions
■	 ONLINE

Indicates that the specified IP address is assigned to the device.

■	 OFFLINE

Indicates that the specified IP address is not assigned to the device.

■	 UNKNOWN

Indicates that the agent can not determine the state of the resource. This
may be due to an incorrect configuration.

47 Network agents
IPMultiNIC agent
Attributes

Table 3-5 Required attributes

Required
attribute Description

Address Virtual IP address assigned to the active NIC.

Type and dimension: string-scalar

Example: "10.128.10.14"

MultiNICResName Name of associated MultiNICA resource that determines the
active NIC.

Type and dimension: string-scalar

Example: "mnic"

Table 3-6 Optional attributes

Optional
attribute Description

ContainerName Non-global zone support for Solaris 10 and above. Defines the name
of the non-global zone.

Type and dimension: string-scalar

Example: "zone1"

IfconfigTwice Causes an IP address to be configured twice using an ifconfig up­
down-up sequence. Increases the probability of gratuitous ARP
requests (generated by ifconfig up) to reach clients.

Type and dimension: integer-scalar

48 Network agents

IPMultiNIC agent

Table 3-6 Optional attributes

Optional
attribute Description

NetMask The netmask associated with the IP address of the resource. Specify
the value of the netmask in decimal (base 10) or hexadecimal (base
16). Symantec recommends that you specify a netmask for each
virtual interface.

Type and dimension: string-scalar

Default: +

If you do not specify the netmask in the ifconfig command, the
agent uses a default netmask based on the contents of the /etc/
netmasks for a given address range.

Example: "255.255.248.0"

Options The ifconfig command options for the virtual IP address.

Type and dimension: string-scalar

Example: "trailers"

Note: On Solaris systems, Symantec recommends that you set the RestartLimit
for IPMultiNIC resources to a greater-than-zero value. This helps to prevent the
spurious faulting of IPMultiNIC resources during local failovers of MultiNICA. A
local failover is an interface-to- interface failover of MultiNICA. See the VCS
User’s Guide for more information.

Resource type definition
type IPMultiNIC (

static str ArgList[] = { "MultiNICResName:Device", Address,

NetMask, "MultiNICResName:ArpDelay", Options,

"MultiNICResName:Probed", MultiNICResName, IfconfigTwice,

ContainerName }

static int MonitorTimeout = 120

str Address

str NetMask

str Options

str MultiNICResName

int IfconfigTwice

str ContainerName

)

49 Network agents
IPMultiNIC agent
Sample configuration: IPMultiNIC and MultiNICA
group grp1 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

MultiNICA mnic (

Device@sysa = { le0 = "10.128.8.42", qfe3 = "10.128.8.42" }

Device@sysb = { le0 = "10.128.8.43", qfe3 = "10.128.8.43" }

NetMask = "255.255.255.0"

ArpDelay = 5

Options = "trailers"

)

IPMultiNIC ip1 (

Address = "10.128.10.14"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "trailers"

)

ip1 requires mnic

group grp2 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

IPMultiNIC ip2 (

Address = "10.128.9.4"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "trailers"

)

Proxy proxy (

TargetResName = mnic

)

ip2 requires proxy

50 Network agents
MultiNICA agent
MultiNICA agent

Represents a set of network interfaces and provides failover capabilities
between them. Each interface in a MultiNICA resource has a base IP address.
You can use one base IP address for all NICs, or you can specify a different IP
address for use with each NIC. The MultiNICA agent configures one interface at
a time. If it does not detect activity on the configured interface, it configures a
new interface and migrates IP aliases to it.

If an interface is associated with a MultiNICA resource, do not associate it with
any other MultiNICA, MultiNICB, or NIC resource. If the same set of interfaces
must be a part of multiple service groups, configure a MultiNICA resource in one
of the service groups, and the Proxy resources that point to the MultiNICA
resource in the other service groups.

Agent function

■	 Monitor

Checks the status of the active interface. If it detects a failure, it tries to
migrate the IP addresses configured on that interface to the next available
interface configured in the Device attribute.

State definitions
■	 ONLINE

Indicates that one or more of the network interfaces listed in the Device
attribute of the resource is in working condition.

■	 OFFLINE

Indicates that all of the network interfaces listed in the Device attribute
failed.

■	 UNKNOWN

Indicates that the agent cannot determine the state of the network
interfaces that are specified in the Device attribute. This may be due to
incorrect configuration.

51 Network agents
MultiNICA agent
Attributes

Table 3-7 Required attributes

Required
attribute Description

Device List of interfaces and their base IP addresses.

Type and dimension: string-association

Example: le0 = { "10.128.8.42", qfe3 = "10.128.8.42" }

Table 3-8 Optional attributes

Optional
attribute Description

ArpDelay Number of seconds to sleep between configuring an interface
and sending out a broadcast to inform routers about the base IP
address.

Type and dimension: integer-scalar

Default: 1

HandshakeInterval Computes the maximum number of attempts the agent makes
either to ping a host (listed in the NetworkHosts attribute) when
it fails over to a new NIC, or to ping the default broadcast
address (depending on the attribute configured) when it fails
over to a new NIC.

If the value of the RetestInterval attribute is five (default), each
attempt takes about 10 seconds.

To prevent spurious failovers, the agent must try to contact a
host on the network several times before marking a NIC as
FAULTED. Increased values result in longer failover times,
whether between the NICs or from system to system in the case
of FAULTED NICs.

Type and dimension: integer-scalar

Default: 20

This is the equivalent to two attempts (20/10).

52 Network agents

MultiNICA agent

Table 3-8 Optional attributes

Optional
attribute Description

IfconfigTwice Causes an IP address to be configured twice, using an ifconfig
up-down-up sequence. Increases the probability of gratuitous
ARP requests (caused by ifconfig up) to reach clients.

Type and dimension: integer-scalar

NetMask Netmask for the base IP address. Specify the value of NetMask
in decimal (base 10) or hexadecimal (base 16).

Note: Symantec recommends that you specify a netmask for
each virtual interface.

Type and dimension: string-scalar

Default: +

Example: "255.255.255.0"

NetworkHosts The list of hosts on the network that are pinged to determine if
the network connection is alive. Enter the IP address of the host,
instead of the host name, to prevent the monitor from timing
out—DNS causes the ping to hang. If this attribute is
unspecified, the monitor tests the NIC by pinging the broadcast
address on the NIC. If more than one network host is listed, the
monitor returns online if at least one of the hosts is alive.

Type and dimension: string-vector

Example: "128.93.2.1", "128.97.1.2"

Options The ifconfig options for the base IP address.

Type and dimension: string-scalar

Example: "trailers"

PingOptimize Number of monitor cycles to detect if the configured interface is
inactive. A value of 1 optimizes broadcast pings and requires
two monitor cycles. A value of 0 performs a broadcast ping each
monitor cycle and detects the inactive interface within the cycle.

Type and dimension: integer-scalar

Default: 1

53 Network agents
MultiNICA agent
Table 3-8 Optional attributes

Optional
attribute Description

RetestInterval Number of seconds to sleep between re-tests of a newly
configured interface. A lower value results in faster local
(interface-to-interface) failover.

Type and dimension: integer-scalar

Default: 5

RouteOptions String to add a route when configuring an interface. Use only
when configuring the local host as the default gateway.

The string contains destination gateway metric. No routes are
added if this string is set to NULL.

Type and dimension: string-scalar

Example: "default 166.98.16.103 0"

Resource type definition
type MultiNICA (

static str ArgList[] = { Device, NetMask, ArpDelay,

RetestInterval, Options, RouteOptions, PingOptimize,

MonitorOnly, IfconfigTwice, HandshakeInterval, NetworkHosts }

static int OfflineMonitorInterval = 60

static int MonitorTimeout = 300

static str Operations = None

str Device{}

str NetMask

int ArpDelay = 1

int RetestInterval = 5

str Options

str RouteOptions

int PingOptimize = 1

int IfconfigTwice

int HandshakeInterval = 20

str NetworkHosts[]

)

MultiNICA notes
■	 If all NICs configured in the Device attribute are down, the MultiNICA agent

faults the resource after a two to three minute interval. This delay occurs
because the MultiNICA agent tests the failed NIC several times before

54 Network agents

MultiNICA agent

---------------- ----------------- ----- ----- ------ ---------

---------------- ----------------- ----- ----- ------ ---------

marking the resource OFFLINE. Messages recorded in the log during failover
provide a detailed description of the events that take place.

■	 The engine log is in /var/VRTSvcs/log/engine_A.log.

■	 The MultiNICA agent supports only one active NIC on one IP subnet; the
agent does not work with multiple active NICs on the same subnet.

On Solaris for example, you have two active NICs, hme0 (10.128.2.5) and
qfe0 (10.128.2.8), and you configure a third NIC, qfe1, as the backup NIC to
hme0. The agent does not fail over from hme0 to qfe1 because all ping tests
are redirected through qfe0 on the same subnet, making the MultiNICA
monitor return an online status. Note that using ping -i does not enable the
use of multiple active NICs.

■	 Before you start VCS, configure the primary NIC with the correct broadcast
address and netmask.

■ Set the NIC here: /etc/hostname.nic

■ Set the netmask here: /etc/netmask

Using RouteOptions
The RouteOptions attribute is useful only when the default gateway is your own
host.

For example, if the default gateway and hme0 are both set to 10.128.8.42, the

output of the netstat -rn command resembles:

Destination Gateway Flags Ref Use Interface

10.0.0.0 10.128.8.42 U 1 2408 hme0

224.0.0.0 10.128.8.42 U 1 0 hme0

default 10.128.8.42 UG 1 2402 hme0

127.0.0.1 127.0.0.1 UH 54 44249 lo0

If the RouteOptions attribute is not set and hme0 fails, the MultiNICA agent
migrates the base IP address to another NIC (such as qfe0). The default route is
no longer configured because it was associated with hme0. The display
resembles:

Destination Gateway Flags Ref Use Interface

10.0.0.0 10.128.8.42 U 1 2408 qfe0

224.0.0.0 10.128.8.42 U 1 0 qfe0

127.0.0.1 127.0.0.1 UH 54 44249 lo0

If the RouteOptions attribute defines the default route, the default route is
reconfigured on the system. For example:

RouteOptions@sysa = "default 10.128.8.42 0"

RouteOptions@sysb = "default 10.128.8.43 0"

http:10.128.8.42

55 Network agents
MultiNICA agent
Sample configurations

MultiNICA and IPMultiNIC
In the following example, two nodes, sysa and sysb, each have a pair of network
interfaces, le0 and qfe3. In this example, the two interfaces, le0 and qfe3, have
the same base, or physical, IP address. Note the lines beginning Device@sysa
and Device@sysb; the use of different physical addresses shows how to localize
an attribute for a particular host.

The MultiNICA resource fails over only the physical IP address to the backup
NIC during a failure. The logical IP addresses are configured by the IPMultiNIC
agent. The resources ip1 and ip2, shown in the following example, have the
Address attribute that contains the logical IP address. If a NIC fails on sysa, the
physical IP address and the two logical IP addresses fails over from le0 to qfe3. If
qfe3 fails, the address fails back to le0 if le0 is reconnected.

However, if both the NICs on sysa are disconnected, the MultiNICA and
IPMultiNIC resources work in tandem to fault the group on sysa. The entire
group now fails over to sysb.

If you have more than one group using the MultiNICA resource, the second
group can use a Proxy resource to point to the MultiNICA resource in the first
group. This prevents redundant monitoring of the NICs on the same system. The
IPMultiNIC resource is always made dependent on the MultiNICA resource. See
the IPMultiNIC agent for more information.
group grp1 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

MultiNICA mnic (

Device@sysa = { le0 = "10.128.8.42", qfe3 = "10.128.8.42" }

Device@sysb = { le0 = "10.128.8.43", qfe3 = "10.128.8.43" }

NetMask = "255.255.255.0"

ArpDelay = 5

Options = "trailers"

)

IPMultiNIC ip1 (

Address = "10.128.10.14"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "trailers"

)

ip1 requires mnic

group grp2 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

56 Network agents
MultiNICA agent
)

IPMultiNIC ip2 (

Address = "10.128.9.4"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "trailers"

)

Proxy proxy (

TargetResName = mnic

)

ip2 requires proxy

57 Network agents
About the IPMultiNICB and MultiNICB agents
About the IPMultiNICB and MultiNICB agents

The IPMultiNICB and the MultiNICB agents can handle multiple NIC
connections. Due to differences in the way that each platform handles its
networking connections, these agents vary in design between platforms.

Checklist to ensure the proper operation of MultiNICB
For the MultiNICB agent to function properly, you must satisfy each item in the
following list:

■	 Each interface must have a unique MAC address.

■	 A MultiNICB resource controls all the interfaces on one IP subnet.

■	 At boot time, you must configure and connect all the interfaces that are
under the MultiNICB resource and give them test IP addresses.

■	 All test IP addresses for the MultiNICB resource must belong to the same
subnet as the virtual IP address.

■	 Reserve the base IP addresses, which the agent uses to test the link status,
for use by the agent. These IP addresses do not get failed over.

■	 The IgnoreLinkStatus attribute is set to 1 (default) when using trunked
interfaces.

■	 If you specify the NetworkHosts attribute, then that host must be on the
same subnet as the other IP addresses for the MultiNICB resource.

■	 Test IP addresses have "nofailover" and "deprecated" flags set at boot time.

■	 /etc/default/mpathd/ has
TRACK_INTERFACES_ONLY_WITH_GROUPS=yes.

■	 If you are not using Solaris in.mpathd, all MultiNICB resources on the
system have the UseMpathd attribute set to 0 (default). You cannot run
in.mpathd on this system.

■	 If you are using Solaris in.mpathd, all MultiNICB resources on the system
have the UseMpathd attribute set to 1.

58 Network agents
IPMultiNICB agent
IPMultiNICB agent

Works with the MultiNICB agent, Configures and manages virtual IP addresses
(IP aliases) on an active network device specified by the MultiNICB resource.
When the MultiNICB agent reports a particular interface as failed, the
IPMultiNICB agent moves the IP address to the next active interface.

If multiple service groups have IPMultiNICB resources associated with the same
MultiNICB resource, only one group should have a MultiNICB resource. The
other groups should have a proxy resource pointing to the MultiNICB resource.

Dependencies
IPMultiNICB resources depend on MultiNICB resources.

Requirements for IPMultiNICB
The following conditions must exist for the IPMultiNICB agent to function
correctly:

■	 The MultiNICB agent must be running to inform the IPMultiNICB agent of
the available interfaces.

■	 Only one IPMultiNICB agent can control each logical IP address.

Agent functions
■	 Online

Finds a working interface with the appropriate interface alias or interface
name, and configures the logical IP address on it.

■	 Offline

Removes the logical IP address.

■	 Clean

Removes the logical IP address.

■	 Monitor

If the logical IP address is not configured as an alias on one of the working
interfaces under a corresponding MultiNICB resource, monitor returns
OFFLINE. If the current interface fails, the agent fails over the logical IP
address to the next available working interface within the MultiNICB
resource on the same node. If no working interfaces are available then
monitor returns OFFLINE.

59 Network agents
IPMultiNICB agent
State definitions
■	 ONLINE

Indicates that the IP address specified in the Address attribute is up on one
of the working network interfaces of the resource specified in the
BaseResName attribute.

■	 OFFLINE

Indicates that the IP address specified in the Address attribute is not up on
any of the working network interfaces of the resource specified in the
BaseResName attribute.

■	 UNKNOWN

Indicates that the agent cannot determine the status of the virtual IP
address that is specified in the Address attribute.

60 Network agents
IPMultiNICB agent
Attributes

Table 3-9 Required attributes

Required
attribute Description

Address The logical IP address that the IPMultiNICB resource must
handle.

This IP address must be different than the base or test IP
addresses in the MultiNICB resource.

Type and dimension: string-scalar

Example: "10.112.10.15"

BaseResName Name of MultiNICB resource from which the IPMultiNICB
resource gets a list of working interfaces. The logical IP address
is placed on the physical interfaces according to the device
number information.

Type and dimension: string-scalar

Example: "gnic_n"

NetMask Netmask associated with the logical IP address.

Type and dimension: string-scalar

Example: "255.255.255.0"

Table 3-10 Optional attributes

Optional
attribute Description

ContainerName Non-global zone support for Solaris 10 and above. Defines the name
of the non-global zone.

Type and dimension: string-scalar

Example: "zone1"

61 Network agents
IPMultiNICB agent
Table 3-10 Optional attributes

Optional
attribute Description

DeviceChoice Indicates the preferred NIC where you want to bring the logical IP
address online. Specify the device name or NIC alias as determined
in the Device attribute of the MultiNICB resource.

Type and dimension: string-scalar

Default: 0

Examples: "qfe0" and "1"

NetMask Netmask for the base IP address. Specify the value of NetMask in
decimal (base 10) or hexadecimal (base 16).

Note: Symantec strongly recommends that you specify a netmask for
each virtual interface.

Type and dimension: string-scalar

Default: +

Example: "255.255.255.0"

Note: The value of the ToleranceLimit static attribute is 1. This is to avoid
spurious agent faults in the Multipathing mode while Sun’s mpathd daemon
migrates the IP address from one interface to the other.
Due to the change in the ToleranceLimit attribute, the value of the
MonitorInterval static attribute is now 30 seconds. This 30 seconds value means
that the agent tries to online the resource twice a minute. This ensures that the
overall fault detection time is still 60 seconds.

Resource type definition
type IPMultiNICB (

static int ToleranceLimit = 1

static int MonitorInterval = 30

static str ArgList[] = { BaseResName, Address, NetMask,

DeviceChoice, ContainerName }

str BaseResName

str Address

str NetMask

str DeviceChoice = 0

str ContainerName

)

62 Network agents

IPMultiNICB agent

Manually migrating a logical IP address
Use the haipswitch command to migrate the logical IP address from one
interface to another.

In the following form, the command shows the status of the interfaces for the

specified MultiNICB resource.

haipswitch -s MultiNICB_resname

In the following form, the command checks that both from and to interfaces
are associated with the specified MultiNICB resource and the to interface is
working. If not, the command aborts the operation. It then removes the IP
address on the from logical interface and configures the IP address on the to
logical interface. Finally it erases previous failover information created by
MultiNICB for this logical IP address.

haipswitch MultiNICB_resname IPMultiNICB_resname ip addr \

netmask from to

Sample configurations

Other sample configurations for IPMultiNICB and MultiNICB
See “IPMultiNICB and MultiNICB configuration” on page 72.

63 Network agents
MultiNICB agent
MultiNICB agent

Works with the IPMultiNICB agent. Allows IP addresses to fail over to multiple
NICs on the same system before VCS attempts to fail over to another system.

When you use the MultiNICB agent, you must plumb the NICs before putting
them under the agent’s control. You must configure all the NICs in a single
MultiNICB resource with IP addresses that are in the same subnet.

Base and Multipathing modes
You can use the MultiNICB agent in either of two modes. They are:

■	 Base mode

■ Multipathing mode

See “Solaris operating modes: Base and Multipathing” on page 69.

Agent functions
■	 Open

Allocates an internal structure to store information about the resource.

■	 Close

Frees the internal structure used to store information about the resource.

■	 Monitor

Checks the status of each physical interface. Writes the status information
to the export information file for IPMultiNICB resources to read it.

Performs failover. Performs failback if the value of the Failback attribute is
1.

State definitions
■	 ONLINE

Indicates that one or more of the network interfaces listed in the Device
attribute of the resource is in working condition.

■	 UNKNOWN

Indicates that the MultiNICB resource is not configured correctly.

■	 FAULTED

Indicates that all of the network interfaces listed in the Device attribute
failed.

64 Network agents
MultiNICB agent
Attributes

Table 3-11 Required attributes

Required
attribute Description

Device List of NICs that you want under MultiNICB control, and the aliases
of those NICs. The IPMultiNICB agent uses the NIC aliases to
configure IP addresses. The IPMultiNICB agent uses these interface
aliases to determine the order of the interface on which to bring the
IP addresses online.

Type and dimension: string-association

Examples:

In this example, the MultiNICB agent uses interfaces qfe0, qfe1, and
qfe2. The MultiNICB agent passes on the associated interface aliases
0, 2, and 3 to the IPMultiNICB agent.

Device = { "qfe0" , "qfe4" }

Device = { "qfe0" = 0, "qfe1" = 2, "qfe2" = 3 }

Optional attributes for Base and Mpathd modes

Table 3-12 Optional attributes for Base and Mpathd modes

Optional
attribute Description

GroupName The name of the IPMP Group. Length should not exceed 31 bytes.

Type and dimension: string-scalar

Example: "IPMPgrp1"

MpathdCommand This is the path to the mpathd executable. Use MpathdCommand to
kill or restart mpathd. See the UseMpathd attribute for details.

Type and dimension: string-scalar

Default: /sbin/in.mpathd

65 Network agents
MultiNICB agent
Table 3-12 Optional attributes for Base and Mpathd modes

UseMpathd The legal values for this attribute are 0 and 1. All the MultiNICB
resources on one system must have the same value for this attribute.

“Base and Multipathing modes” on page 63.

If set to 0, in.mpathd is automatically killed on that system. For more
information about mpathd, refer to the Sun documentation.

If set to 1, MultiNICB assumes that mpathd (in.mpathd) is running.
This value restarts mpathd if it is not running already.

Type and dimension: integer-scalar

Default: 0

Optional
attribute Description

Optional attributes for Base mode

Table 3-13 Optional attributes for Base mode

Optional
attribute Description

DefaultRouter This is the IP address of the default router on the subnet.
If specified, the agent removes the default route when
the resource goes offline. The agent adds the route back
when the group returns online. You must specify this
attribute if multiple IP subnets exist on one host;
otherwise, the packets cannot be routed properly when
the subnet corresponding to the first default route goes
down.

Type and dimension: string-scalar

Default: 0.0.0.0

Example: "192.1.0.1"

Failback If set to 1, the virtual IP addresses are failed back to the
original physical interface whenever possible. A value of
0 disables this behavior.

Type and dimension: integer-scalar

Default: 0

66 Network agents

MultiNICB agent

Table 3-13 Optional attributes for Base mode

Optional
attribute Description

IgnoreLinkStatus If set to 1, the agent ignores the driver-reported
interface status while testing the interfaces. If set to 0,
the agent reports the interface status as DOWN if the
driver-reported interface status indicates the DOWN

state. Using interface status for link testing may
considerably speed up failovers.

When using trunked interfaces (for example, Sun
Trunking), you must set this attribute to 1. Otherwise set
it to 0.

Type and dimension: integer-scalar

Default: 1

LinkTestRatio This is the ratio of total monitor cycles to monitor cycles
in which the agent tests the interfaces by sending
packets. At all other times, the agent tests the link by
checking the "link-status" as reported by the device
driver. Checking the "link-status" is a faster way to check
the interfaces, but only detects cable disconnection
failures.

If set to 1, packets are sent during every monitor cycle.

If set to 0, packets are never sent during a monitor cycle.

Type and dimension: integer-scalar

Default: 1

Example: 3

In this example, if monitor entry-point invoking is
numbered as 1, 2, 3, 4, 5, 6, ..., the actual packet send test
is done at 3, 6, ... monitor entry-points. For
LinkTestRatio=4, the packet send test is done at 4, 8, ...
monitor agent functions.

67 Network agents
MultiNICB agent
Table 3-13 Optional attributes for Base mode

Optional
attribute Description

NetworkHosts List of host IP addresses on the IP subnet that are pinged
to determine if the interfaces are working. NetworkHosts
only accepts IP addresses to avoid DNS lookup delays.
The IP addresses must be directly present on the IP
subnet of interfaces (the hosts must respond to ARP
requests).

If IP addresses are not provided, the hosts are
automatically determined by sending a broadcast ping
(unless the NoBroadcast attribute is set to 1). The first
host to reply serves as the ping destination.

Type and dimension: string-vector

Example: "192.1.0.1"

NetworkTimeout Timeout for ARP and ICMP packets in milliseconds.
MultiNICB waits for response to ICMP and ARP packets
only during this time period.

Assign NetworkTimeout a value in the order of tens of
milliseconds (given the ICMP and ARP destinations are
required to be on the local network). Increasing this
value increases the time for failover.

Type and dimension: integer-scalar

Default: 100

NoBroadcast If set to 1, NoBroadcast prevents MultiNICB from
sending broadcast ICMP packets. (Note: MultiNICB can
still send ARP requests.)

If NetworkHosts are not specified and NoBroadcast is set
to 1, the MultiNICB agent cannot function properly.

Note: Symantec does not recommend setting the value of
NoBroadcast to 1.

Type and dimension: integer-scalar

Default: 0

68 Network agents

MultiNICB agent

Table 3-13 Optional attributes for Base mode

Optional
attribute Description

OfflineTestRepeatCount Number of times the test is repeated if the interface
status changes from UP to DOWN. For every repetition of
the test, the next NetworkHost is selected in round-robin
manner. At the end of this process, broadcast is
performed if NoBroadcast is set to 0. A greater value
prevents spurious changes, but also increases the
response time.

Type and dimension: integer-scalar

Default: 3

OnlineTestRepeatCount Number of times the test is repeated if the interface
status changes from DOWN to UP. This helps to avoid
oscillations in the status of the interface.

Type and dimension: integer-scalar

Default: 3

Optional attributes for Multipathing mode

Table 3-14 Optional attributes for Multipathing mode

Optional
attribute Description

ConfigCheck If set to 1, the MultiNICB agent checks for:

All specified physical interfaces are in the same IP subnet and group,
and have "DEPRECATED" and "NOFAILOVER" flags set on them.

No other physical interface has the same subnet as the specified
interfaces.

Valid values for this attribute are 0 and 1.

Type and dimension: integer-scalar

Default: 1

69 Network agents
MultiNICB agent
Table 3-14 Optional attributes for Multipathing mode

MpathdRestart If set to 1, MultiNICB attempts to restart mpathd.

Valid values for this attribute are 0 and 1.

Type and dimension: integer-scalar

Default: 1

Optional
attribute Description

Resource type definition
type MultiNICB (

static int MonitorInterval = 10

static int OfflineMonitorInterval = 60

static str Operations = None

static str ArgList[] = { UseMpathd, MpathdCommand, ConfigCheck,

MpathdRestart, Device, NetworkHosts, LinkTestRatio,

IgnoreLinkStatus, NetworkTimeout, OnlineTestRepeatCount,

OfflineTestRepeatCount, NoBroadcast, DefaultRouter, Failback,

GroupName }

int UseMpathd

str MpathdCommand = "/sbin/in.mpathd"

int ConfigCheck = 1

int MpathdRestart = 1

str Device{}

str NetworkHosts[]

int LinkTestRatio = 1

int IgnoreLinkStatus = 1

int NetworkTimeout = 100

int OnlineTestRepeatCount = 3

int OfflineTestRepeatCount = 3

int NoBroadcast

str DefaultRouter = "0.0.0.0"

int Failback

str GroupName

)

Solaris operating modes: Base and Multipathing
MultiNICB has two modes of operation depending on the UseMpathd attribute:
“Base mode” and “Multipathing mode.”

70 Network agents

MultiNICB agent

Base mode
Base mode is active by default, where the value of the UseMpathd attribute is 0.

In Base mode, the agent monitors the interfaces it controls by sending packets to

other hosts on the network and checking the link status of the interfaces.

If a NIC goes down, the MultiNICB agent notifies the IPMultiNICB agent, which

then fails over the virtual IP addresses to a different NIC on the same system.

When the original NIC comes up, the agents fail back the virtual IP address.

Each NIC must have its own unique and exclusive base IP address, which the

agent uses as the test IP address.

If multiple service groups have IPMultiNICB resources associated with the same

MultiNICB resource, only one group should have the MultiNICB resource. The

other groups can have a proxy resource pointing to it.

In this mode, MultiNICB uses the following criteria to determine if an interface

is working:

■	 Interface status: The interface status as reported by driver of the interface
(assuming the driver supports this feature). This test is skipped if the
attribute IgnoreLinkStatus = 1.

■	 ICMP echo: ICMP echo request packets are sent to one of the network hosts
(if specified). Otherwise, the agent uses ICMP broadcast and caches the
sender of the first reply as a network host. While sending and receiving
ICMP packets, the IP layer is completely bypassed.

The MultiNICB agent writes the status of each interface to an export
information file, which other agents (like IPMultiNICB) or commands (like
haipswitch) can read.

Failover and failback
During an interface failure, the MultiNICB agent fails over all logical IP
addresses to a working interface under the same resource. The agent remembers
the first physical interface from which an IP address was failed over. This
physical interface becomes the “original” interface for the particular logical IP
address. When the original interface is repaired, the logical IP address fails back
to it.

Multipathing mode
You can configure the MultiNICB agent to work with the IP multipathing
daemon. The MultiNICB agent relies on the IP Multipathing daemon (see the
man page: in.mpathd (1M)) to detect network failures and repairs. In this
situation, MultiNICB limits its functionality to monitoring the FAILED flag on
physical interfaces and monitoring the mpathd process.

This mode only works when you set UseMpathd to 1.

71 Network agents
MultiNICB agent
Trigger script
MultiNICB monitor agent function calls a VCS trigger in case of an interface
going up or down. The agent passes the following arguments to the script:

■	 MultiNICB resource name

■	 The device whose status changed, for example:

■	 Solaris: qfe0

■	 The device's previous status (0 for down, 1 for up)

■ The device's current status and monitor heartbeat

The agent also sends a notification (which may be received via SNMP or SMTP)

to indicate that status of an interface changed. The notification is sent using

"health of a cluster resource declined" and "health of a cluster resource

improved" traps. These traps are mentioned in the VCS User's Guide. A sample

mnicb_postchange trigger is provided with the agent. You can customize this

sample script as needed or write one from scratch.

The sample script does the following:

■	 If interface changes status, it prints a message to the console, for example:
MultiNICB: Interface qfe0 came up.

■	 The script saves last IP address-to-interface name association. If any of the
IP addresses has been moved, added, or removed, it prints out a message to
the console, for example: MultiNICB: IP address 192.4.3.3 moved from
interface qfe1:1 to interface qfe0:1

Sample configurations

Interface configuration for AIX and Solaris
Set the EPROM variable to assign unique MAC addresses to all ethernet
interfaces on the host:

eeprom local-mac-address?=true

Reboot the system after setting the eprom variable to complete the address
setup. The base IP addresses must be configured on the interfaces before the
MultiNICB agent controls the interfaces. This can be completed at system start
up using /etc/hostname.XXX initialization files as in the examples below.

Setting up test IP addresses for Base Mode
These examples demonstrate setting up test IP addresses for your clustered
systems. These IP address allows the agent determine if the NIC is working. The
agent determines that the NIC is working if it receives responses for the ping
packets that it sends to other nodes on the network. You do not need to perform

72 Network agents
MultiNICB agent
the following steps for the floating IP addresses, as the agent takes care of this

automatically.

In the file /etc/hostname.qfe0, add the following two lines:

north-qfe0 netmask + broadcast + deprecated -failover up \

addif north netmask + broadcast + up

Where north-qfe0 is the test IP address that the agent uses to determine the
state of the qfe0 network card.

In the file /etc/hostname.qfe4, add the following line:
north-qfe4 netmask + broadcast + deprecated -failover up

Where north-qfe4 is the test IP address that the agent uses to determine the
state of the qfe4 network card.

In the above example, north-qfe0 and north-qfe4 are host names that
correspond to test IP addresses. north is the host name that corresponds to the
test IP address.

IPMultiNICB and MultiNICB configuration
cluster clus_north (

UserNames = { admin = "cDRpdxPmHpzS." }

Administrators = { admin }

CounterInterval = 5

)

system north (

)

system south (

)

group g11 (

SystemList = { north = 0, south = 1 }

AutoStartList = { north, south }

)

IPMultiNICB g11_i1 (

BaseResName = gnic_n

Address = "192.1.0.201"

NetMask = "255.255.0.0"

DeviceChoice = "1"

)

Proxy g11_p1 (

TargetResName = gnic_n

)

g11_i1 requires g11_p1

// A parallel group for the MultiNICB resource

group gnic (

SystemList = { north = 0, south = 1 }

AutoStartList = { north, south }

Parallel = 1

)

73 Network agents
MultiNICB agent
MultiNICB gnic_n (

Device @north = { qfe0, qfe4 }

Device @south = { qfe0, qfe4 }

NetworkHosts = { "192.1.0.1" }

)

Phantom gnic_p (

)

74 Network agents
DNS agent
DNS agent
The DNS agent updates and monitors the canonical name (CNAME) mapping in
the domain name server when failing over applications across subnets
(performing a wide-area failover.)

Use the DNS agent when the failover source and target nodes are on different
subnets. The agent updates the name server and allows clients to connect to the
failed over instance of the application service.

Agent functions
■ Online

Queries the authoritative name server of the domain for CNAME records
and updates the CNAME record on the name server with the specified alias
to canonical name mapping. Adds a new CNAME record if a related record is
not found. Creates an Online lock file if the Online function was successful.

■ Offline

Removes the Online lock file, which the Online agent function created.

■ Monitor

If the Online lock file exists, the Monitor function queries the name servers
for the CNAME record for the alias. It reports back ONLINE if the response
from at least one of the name servers contains the same canonical name
associated with the alias in the Hostname attribute. If no servers return the
appropriate name, the monitor reports the resource as OFFLINE.

■ Clean

Removes the Online lock file, if it exists.

■ Open

Removes the Online lock file if the Online lock file exists, and the CNAME
record on the name server does not contain the expected alias or canonical
name mapping.

State definitions
■ ONLINE

An Online lock exists and the CNAME RR is as expected.

■ OFFLINE

Either the Online lock does not exist, or the expected record is not found.

■ UNKNOWN

Problem exists with the configuration.

75 Network agents
DNS agent
Attributes

Table 3-15 Required attributes

Required
attribute Description

Alias A string representing the alias to the canonical name.

Type and dimension: string-scalar

Example: "www"

Where www is the alias to the canonical name mtv.veritas.com.

Domain A string representing the domain name.

Type and dimension: string-scalar

Example: "veritas.com"

Hostname A string representing canonical name of a system.

Type and dimension: string-scalar

Example: "mtv.veritas.com"

TTL A non-zero integer representing the “Time To Live” value, in
seconds, for the DNS entries in the zone you are updating.

A lower value means more hits on your DNS server, while a higher
value means more time for your clients to learn about changes.

Type and dimension: integer-scalar

Default: 86400

Example: "3600"

76 Network agents
DNS agent
Table 3-16 Optional attributes

Optional
attribute Description

StealthMasters The list of primary master name servers in the domain.

Optional if the zone’s name server record lists the primary master
name server. If the primary master name server is a stealth server,
define this attribute. A stealth server is a name server that is
authoritative for a zone, but is not listed in that zone’s name server
records.

Type and dimension: string-keylist

TSIGKeyFile Required when you configure DNS for secure updates.

Specifies the absolute path to the file containing the private TSIG
(Transaction Signature) key.

Type and dimension: string-scalar

Example: /var/tsig/Kveritas.com.+157+00000.private

Resource type definition
type DNS (

static str ArgList[] = { Domain, Alias, Hostname, TTL,

TSIGKeyFile, StealthMasters }

str Domain

str Alias

str Hostname

int TTL = 86400

str TSIGKeyFile

str StealthMasters[]

)

Online query
If the canonical name in the response CNAME record does not match the one
specified for the resource, the Online function tries to update the CNAME record
on all authoritative master name servers in its domain (those master name
servers that it can reach and where it has update permission). If the DNS update
was successful, or was not necessary on at least one of the name servers, the
Online function creates an online lock file. The monitor agent function checks
for the existence of this file. The Online agent function does not create the
online lock file if it is unable to update at least one domain name server.

77 Network agents
DNS agent
A stealth server is a name server that is authoritative for a zone, but is not listed
in that zone’s NS records. If you specify the StealthMasters attribute, the Online
agent function tries to update the name servers specified in the StealthMasters
attribute.

In BIND 8 and above, the primary master name server on receiving an update
sends notification (NOTIFY) to all its slave servers asking them to pick up the
update.

Monitor scenarios
Depending on the existence of the Online lock file and the CNAME Resource
Records (RR), you get different status from the Monitor function.

Table 3-17 Monitor scenarios for the Online lock file

Online lock file exists Expected CNAME RR Monitor returns

NO N/A OFFLINE

YES NO OFFLINE

YES YES ONLINE

Note: The DNS agent supports BIND version 8 and above.

Sample web server configuration
Take the former Veritas corporate web server as an example. A person using a
web browser specifies the URL www.veritas.com to view the Veritas web page,
where www.veritas.com maps to the canonical name mtv.veritas.com, which is a
host in Mountain View running the web server. The browser, in turn, retrieves
the IP address for the web server by querying the domain name servers. If the
web server for www.veritas.com is failed over from Mountain View to Heathrow,
the domain name servers need to be updated with the new canonical name
mapping so that the web browsers are directed to Heathrow instead of Mountain
View. In this case, the DNS agent should update the name server to change the
mapping of www.veritas.com, from mtv.veritas.com to the canonical name of
the standby system in Heathrow, hro.veritas.com, in case of a failover.

http:mtv.veritas.com
http:www.veritas.com
http:hro.veritas.com

78 Network agents
DNS agent
Sample DNS configuration
DNS www (

Domain = "example.com"

Alias = www

Hostname = virtual1

)

Bringing the www resource online updates the authoritative nameservers for
domain example.com with the following CNAME record:

■	 Solaris
www.example.com. 86400 IN CNAME virtual1.example.com

All DNS lookups for www.example.com resolve to www.virtual1.example.com.

Secure DNS update
The DNS agent by default—when the attribute TSIGKeyFile is unspecified—
expects the IP address of the hosts that can update the DNS records dynamically
to be specified in the allow-updates field of the zone. However, since IP
addresses can be easily spoofed, a secure alternative is to use TSIG (Transaction
Signature) as specified in RFC 2845. TSIG is a shared key message
authentication mechanism available in DNS. A TSIG key provides a means to
authenticate and verify the validity of DNS data exchanged, using a shared
secret key between a resolver and either one or two servers.

Setting up secure updates using TSIG keys on Solaris
In the following example, the domain is example.com.

To use secure updates using TSIG keys

1	 Run the dnskeygen command with the HMAC-MD5 (-H) option to generate a
pair of files that contain the TSIG key:
dnskeygen -H 128 -h -n veritas.com.

Kveritas.com.+157+00000.key

Kveritas.com.+157+00000.private

2 Open either file. The contents of the file should look similar to:
veritas.com. IN KEY 513 3 157 +Cdjlkef9ZTSeixERZ433Q==

3 Copy the shared secret (the TSIG key), which looks like:
+Cdjlkef9ZTSeixERZ433Q==

4	 Configure the DNS server to only allow TSIG updates using the generated
key. Open the named.conf file and add these lines.
key veritas.com. {

algorithm hmac-md5;

secret “+Cdjlkef9ZTSeixERZ433Q==”;

};

http:www.example.com
http:www.virtual1.example.com
http:example.com
http:veritas.com
http:veritas.com
http:veritas.com

79 Network agents
DNS agent
Where +Cdjlkef9ZTSeixERZ433Q== is the key.

5	 In the named.conf file, edit the appropriate zone section and add the allow-
updates substatement to reference the key:
allow-updates { key veritas.com. ; } ;

6	 Save and restart the named process.

7	 Place the files containing the keys on each of the nodes that is listed in your
group’s SystemList. The DNS agent uses this key to update the name server.

Copy both the private and public key files on to the node. A good location is
in the /var/tsig/ directory.

8	 Set the TSIGKeyFile attribute for the DNS resource to specify the file
containing the private key.
DNS www (

Domain = "veritas.com"

Alias = www

Hostname = north

TSIGKeyFile = "/var/tsig/Kveritas.com.+157+00000.private"

)

http:veritas.com

80 Network agents
DNS agent

Chapter
4
File share agents

This chapter contains the following:

■ “About the file service agents” on page 81

■ “NFS agent” on page 82

■ “NFSRestart agent” on page 85

■ “Share agent” on page 91

About the file service agents
Use the file service agents to provide high availability for file share resources.

82 File share agents
NFS agent
NFS agent

Starts and monitors the nfsd and mountd daemons required by all exported NFS
file systems.

Service Management Facility for Solaris 10
You must disable the Service Management Facility (SMF) for NFS daemons for
the NFS agent to work on Solaris 10. SMF is the new service framework for
Solaris 10. SMF provides an infrastructure to automatically start and restart
services.

Previously, UNIX start-up scripts and configuration files performed these
functions. SMF maintains the Service Configuration Repository to store
persistent configuration information as well as runtime data for all the services.
Thus, all NFS daemons (nfsd, mountd, etc.) are now controlled by SMF. To keep
these daemons under VCS control, modify the configuration repository to
disable the SMF framework for NFS daemons.

You must invoke the following command before bringing the NFS agent online
or the agents returns an UNKNOWN state.

To keep NFS daemons under VCS control

◆	 Disable SMF for nfsd and mountd.
svccfg delete -f svc:/network/nfs/server:default

◆	 Disable SMF for nfsmapid.
svccfg delete -f svc:/network/nfs/mapid:default

Agent functions
■	 Online

Checks if nfsd, mountd, and nfsmapid (nfsmapid is for Solaris 10) daemons
are running. If they are not running, the agent starts the daemons.

■	 Monitor

Monitors versions 2, 3, and 4 of the nfsd daemons, and versions 1, 2, and 3
of the mountd daemons. Monitors TCP and UDP versions of the daemons by
sending RPC (Remote Procedure Call) calls clnt_create and clnt_call to
the RPC server. If the calls succeed, the resource is reported ONLINE.

■	 Clean

Terminates and restarts the nfsd, mountd, and nfsmapid daemons.

83 File share agents
NFS agent
State definitions
■	 ONLINE

Indicates that the NFS daemons are running in accordance with the
supported protocols and versions.

■	 OFFLINE

Indicates that the NFS daemons are not running in accordance with the
supported protocols and versions.

■	 FAULTED

Indicates that the NFS daemons are not running in accordance with the
supported protocols and versions.

■	 UNKNOWN

Unable to determine the status of the NFS daemons.

Attributes

Optional attributes

Optional
attributes Description

LockFileTimeout Specifies the time period in seconds after which the agent deletes the
lock files. The agent maintains the files internally to synchronize the
starting and stopping of NFS daemons between multiple service
groups.

Set this value to the total time needed for a service group to go
offline or come online on a node. In situations where you have
multiple service groups, set this value for the service group that
takes the longest time.

Type and dimension: integer-scalar

Default: 180

Example: "240"

Nservers Specifies the number of concurrent NFS requests the server can
handle.

Type and dimension: integer-scalar

Default: 16

Example: "24"

84 File share agents
NFS agent
Resource type definition
type NFS (

static int RestartLimit = 1

static str ArgList[] = { Nservers, LockFileTimeout }

static str Operations = OnOnly

int Nservers = 16

int LockFileTimeout = 180

)

Sample configurations

Configuration
NFS NFS_groupx_24 (

Nservers = 24

LockFileTimeout = 240

)

85 File share agents
NFSRestart agent
NFSRestart agent

The NFSRestart agent recovers NFS record locks after sudden reboots or crashes

on clients and servers. This avoids file corruption and provides the high

availability of NFS record locks.

The NFSRestart agent brings online, takes offline, and monitors the three

daemons: smsyncd, statd, and lockd.

If you have configured the NFSRestart agent for lock recovery, the NFSRestart

agent starts the smsyncd daemon. The daemon copies the NFS locks from the

shared-storage to the local directory (/var/statmon/sm) and vice-versa.

The NFSRestart agent brings online, takes offline, and monitors the three

daemons: smsyncd, statd, and lockd.

Dependencies
This resource must be at the top of the resource dependency tree of a service
group. Only one NFSRestart resource should be configured in a service group.
The NFSRestart, NFS, and Share agents must be in same service group.

Agent functions
■	 Online

■	 Terminates statd and lockd.

■	 If the value of the NFSLockFailover attribute is 1, it copies the locks
from the shared storage to the /var/statmon/sm directory for Solaris.

■	 Copies the locks from the shared storage to the /var/statmon/sm
directory if NFSLockFailover is set to 1.

■	 Starts the statd and lockd daemons.

■	 Starts the smsyncd daemon to copy the contents of the /var/statmon/
sm directory to the shared storage (LocksPathName) at regular, two-
second intervals if the value of the NFSLockFailover attribute is 1.

■	 Monitor

Monitors the statd and lockd daemons and restarts them if they are not
running. It also monitors the smsyncd daemon if the value of the
NFSLockFailover attribute is 1.

■	 Offline

■	 Terminates the statd and lockd daemons to clear the lock state.

■	 Terminates the nfsd and mountd daemons to close the TCP/IP
connections.

■	 Terminates the smsyncd daemon if the daemon is running.

86 File share agents

NFSRestart agent

■	 Clean

■	 Terminates the statd and lockd daemons to clear the lock state.

■	 Terminates the nfsd and mountd daemons to close TCP/IP connections.

■	 Terminates the smsyncd daemon if the daemon is running.

■	 nfs_postoffline

■	 Restarts nfsd, mountd, lockd, statd, and nfsmapid after the group goes
offline.

State definitions
■	 ONLINE

Indicates that the daemons are running properly.

■	 OFFLINE

Indicates that one or more daemons are not running.

■	 UNKNOWN

Indicates the inability to determine the agent’s status.

Attributes

Table 4-1 Optional attributes

Required attribute
Description

LocksPathName The path name of the directory to store the NFSLocks for all the
shared filesystems. You can use the pathname of one of the shared
file systems for this value.

Type and dimension: string-scalar

Example: "/share1x"

NFSLockFailover A flag that specifies whether the user wants NFS Locks to be
recovered after a failover

Type and dimension: boolean-scalar

Default: 0

87 File share agents
NFSRestart agent
Table 4-2 Required attributes

Required attribute
Description

NFSRes Name of the NFS resource. Do not set this to the name of the
Proxy resource that points to the NFS resource.

Type and dimension: string-scalar

Example: "nfsres1"

Service Management Facility—Solaris 10
You must disable the Service Management Facility (SMF) for NFS daemons for
the NFSRestart agent to work on Solaris 10. SMF is the new service framework
for Solaris 10 starting from build 64. SMF provides an infrastructure to
automatically start and restart services. Previously, UNIX start-up scripts and
configuration files performed these functions.

SMF maintains the Service Configuration Repository, which stores persistent
configuration information and runtime data for all the services. Thus, SMF now
controls all NFS locking daemons (lockd, statd, etc.) To keep these daemons
under VCS control, you need to modify the configuration repository to disable
the SMF framework for NFS daemons.

You must invoke the following command before bringing the NFSRestart agent
online or the agents returns an UNKNOWN state.

To keep NFS daemons under VCS control

1 Disable SMF for statd.
svccfg delete -f svc:/network/nfs/status:default

2 Disable SMF for lockd.
svccfg delete -f svc:/network/nfs/nlockmgr:default

Execution of above commands stops lockd, statd, and automountd daemons
running on the system. Therefore, you need to restart lockd, statd, and
automountd manually after executing the commands.

To manually restart the lockd, statd, and automountd

■ For lockd:
/usr/lib/nfs/lockd

■ For statd:
/usr/lib/nfs/statd

88 File share agents

NFSRestart agent

■ For automountd:
/usr/lib/fs/autofs/automount

/usr/lib/autofs/automountd

NFSRestart notes
You must provide a fully qualified host name (nfsserver.princeton.edu) for the
NFS server while mounting the file system on the NFS client. If you do not use a
fully qualified host name, or if you use a virtual IP address (10.122.12.25) or
partial host name (nfsserver), NFS lock recovery fails.

If you want to use the virtual IP address or a partial host name, make the
following changes to the service database (hosts) and the nsswitch.conf files:

/etc/hosts

To use the virtual IP address and partial host name for the NFS server, you need
to add an entry to the /etc/hosts file. The virtual IP address and the partial host
name should resolve to the fully qualified host name.

/etc/nsswitch.conf

You should also modify the hosts entry in this file so that upon resolving a name
locally, the host does not first contact NIS/DNS, but instead immediately
returns a successful status. Changing the nsswitch.conf file might affect other
services running on the system.

For example:
hosts: files [SUCCESS=return] dns nis

You have to make sure that the NFS client stores the same information for the
NFS server as the client uses while mounting the file system. For example, if the
NFS client mounts the file system using fully qualified domain names for the
NFS server, then the NFS client directory: /var/statmon/sm directory should
also have a fully qualified domain name after the acquisition of locks.
Otherwise, you need to start and stop the NFS client twice using the
/etc/init.d/nfs.client script to clear the lock cache of the NFS client.

A time period exists where the virtual IP address is online but locking services
are not registered on the server. Any NFS client trying to acquire a lock in this
interval would fail and get ENOLCK error.

Every two seconds, the smsyncd daemon copies the list of clients that hold the
locks on the shared filesystem in the service group. If the service group fails
before smsyncd has a chance to copy the client list, the clients may not get a
notification once the service group is brought up. This causes NFS lock recovery
failure.

89 File share agents
NFSRestart agent
Resource type definition
type NFSRestart (

static str ArgList[] = { LocksPathName, NFSLockFailover,

NFSRes, "NFSRes:LockFileTimeout" }

str NFSRes

str LocksPathName

boolean NFSLockFailover = 0

)

Sample configurations
include "types.cf"

cluster nfsclus (

 UserNames = { admin = joe }

 Administrators = { admin }

)

system sysA (

)

system sysB (

)

group nfsres_grp (

 SystemList = { sysA = 0, sysB = 1 }

)

 DiskGroup dg (

 DiskGroup = nfsr_dg

)

 IP ip (

 Device = bge0

 Address = "11.152.6.155"

 NetMask = "255.255.240.0"

)

 Mount mnt (

 MountPoint = "/nfsr_mnt"

 BlockDevice = "/dev/vx/dsk/nfsr_dg/nfsr_vol"

 FSType = vxfs

 MountOpt = rw

 FsckOpt = "-y"

)

 NFS nfs (

)

 NFSRestart nfsres (

 LocksPathName = "/nfsr_mnt"

90 File share agents
NFSRestart agent
 NFSLockFailover = 1

 NFSRes = "nfs"

)

 Share share (

 PathName = "/nfsr_mnt"

 Options = "-o rw"

)

 Volume vol (

 Volume = nfsr_vol

 DiskGroup = nfsr_dg

)

 ip requires share

 mnt requires vol

 nfsres requires ip

 share requires mnt

 share requires nfs

 vol requires dg

// resource dependency tree

//
// group nfsres_grp
// {
// NFSRestart nfsres
// {
// IP ip
// {
// Share share
// {
// Mount mnt
// {
// Volume vol
// {
// DiskGroup dg
// }
// }
// NFS nfs
// }
// }
// }
// }

91 File share agents
Share agent
Share agent

Shares, unshares, and monitors a single local resource for exporting an NFS file

system to be mounted by remote systems.

Before you use this agent, verify that the files and directories to be shared are on

shared disks.

Dependencies
Share resources depend on NFS. In NFS service group, IP, IPMultiNIC, and
IPMultiNICB resources depend on Share resources.

Agent functions
■	 Online

Shares an NFS file system.

■	 Offline

Unshares an NFS file system.

■	 FAULTED

Indicates that the share has unexported outside of VCS control.

■	 Monitor

Reads /etc/dfs/sharetab file and looks for an entry for the file system
specified by PathName. If the entry exists, monitor returns ONLINE.

State definitions
■	 ONLINE

Indicates that specified directory is exported to the client.

■	 OFFLINE

Indicates that the specified directory is not exported to the client.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

92 File share agents
Share agent
Attributes

Table 4-3 Required attributes

Required
attribute Description

PathName Pathname of the file system to be shared.

Type and dimension: string-scalar

Example: "/share1x"

Table 4-4 Optional attributes

Optional
attribute Description

Options Options for the share command.

Type and dimension: string-scalar

Example: "-o rw"

Resource type definition
type Share (

static str ArgList[] = { PathName, Options }

str PathName

str Options

)

Sample configurations

Configuration
Share nfsshare1x (

PathName = "/share1x"

)

Chapter
5
Service and application
agents

This chapter contains the following agents:

■ “Apache Web server agent” on page 94

■ “Application agent” on page 102

■ “Process agent” on page 109

■ “ProcessOnOnly agent” on page 113

■ “Zone agent” on page 117

About the service and application agents
Use service and application agents to provide high availability for application
and process-related resources.

94 Service and application agents
Apache Web server agent
Apache Web server agent
Brings an Apache Server online and offline, and monitors the processes. The
Apache Web server agent consists of resource type declarations and agent
scripts.

This agent supports the Apache HTTP server 1.3, 2.0, and 2.2. It also supports
the IBM HTTP Server 1.3 and 2.0.

Note: The Apache agent requires an IP resource for operation.

Before you use this agent:

■	 Install the Apache server on shared disk.

■	 Verify that the floating IP has the same subnet as that of the cluster
systems.

■	 If you use a port other than the default 80, assign an exclusive port for the
Apache server.

■	 Verify that the Apache server configuration files are identical on all cluster
systems.

■	 Verify that the Apache server does not autostart on system startup.

■	 Verify that Inetd does not invoke the Apache server.

■	 Install the ACC Library 4.1.04.0 (VRTSacclib) if it is not already installed.

If the ACC Library needs to be installed or updated, the library and its
documentation can be obtained from the agent software media.

■	 Remove prior versions of this agent.

■	 The service group has disk and network resources to support the Apache
server resource.

■	 Assign virtual host name and port to Apache Server.

Dependency
This type of resource depends on IP and Mount resources.

95 Service and application agents
Apache Web server agent
Agent functions
■	 Online

Starts an Apache server by executing the httpdDir/httpd program with the
appropriate arguments. When you specify a file with the EnvFile attribute,
the file is sourced before the agent executes the httpd command.

■	 Offline

To stop the Apache HTTP server, the agent:

■	 Executes the httpdDir/httpd program with the appropriate arguments
(Apache v2.0), or

■	 Sends a TERM signal to the HTTP Server parent process (Apache v1.3).

When you specify a file with the EnvFile attribute, the file is sourced before
the agent executes the httpd command.

■	 Monitor

Monitors the state of the Apache server. First it checks for the processes,
next it can perform an optional state check.

■	 Clean

Removes Apache HTTP server system resources that might remain after a
server fault or after an unsuccessful attempt to online or offline. These
resources include the parent httpd daemon and its child daemons.

State definitions
■	 ONLINE

Indicates that the Apache server is running.

■	 OFFLINE

Indicates that the Apache server is not running.

■	 UNKNOWN

Indicates that a problem exists with the configuration.

96 Service and application agents
Apache Web server agent
Attributes

Table 5-1 Required attributes

Required
attribute Description

ConfigFile Full path and file name of the main configuration file for the Apache
server.

Type and dimension: string-scalar

Example: "/apache/server1/conf/httpd.conf"

httpdDir Full path of the directory to the httpd binary file

Type and dimension: string-scalar

Example: "/apache/server1/bin"

HostName Virtual host name that is assigned to the Apache server instance.
The host name is used in second-level monitoring to establish a
socket connection with the Apache HTTP server. Specify this
attribute only if the SecondLevelMonitor is set to 1 (true).

Type and dimension: string-scalar

Example: "web1.veritas.com"

Port Port number where the Apache HTTP server instance listens. The
port number is used in second-level monitoring to establish a socket
connection with the server. Specify this attribute only if
SecondLevelMonitor is set to 1 (true).

Type and dimension: integer-scalar

Default: 80

Example: "80"

97 Service and application agents
Apache Web server agent
Table 5-1 Required attributes

Required
attribute Description

ResLogLevel Controls the agent’s logging detail for a specific instance of a
resource. Values are:

■ ERROR: Logs error messages.

■ WARN: Logs error and warning messages.

■ INFO: Logs error, warning, and informational messages.

■ TRACE: Logs error, warning, informational, and trace messages.
Trace logging is verbose. Use for initial configuration or
troubleshooting.

Type and dimension: string-scalar

Default: INFO

Example: "TRACE"

User Account name the agent uses to execute the httpd program. If you do
not specify this value, the agent executes httpd as the root user.

Type and dimension: string-scalar

Example: "apache1"

Table 5-2 Optional attributes

Optional
attribute Description

DirectiveAfter A list of directives that httpd processes after reading the
configuration file.

Type and dimension: string-association

Example: DirectiveAfter{} = { KeepAlive=On }

DirectiveBefore A list of directives that httpd processes before it reads the
configuration file.

Type and dimension: string-association

Example: DirectiveBefore{} = { User=nobody, Group=nobody }

98 Service and application agents

Apache Web server agent

Table 5-2 Optional attributes

Optional
attribute Description

EnableSSL Set to 1 (true) to have the online agent function add support for SSL
by including the option -DSSL in the start command. For example:
/usr/sbin/httpd -k start -DSSL

Set to 0 (false) it excludes the -DSSL option from the command.

Type and dimension: boolean-scalar

Default: 0

Example: "1"

EnvFile Full path and file name of the file that is sourced prior to executing
httpdDir/httpd. With Apache 2.0, the file ServerRoot/bin/envvars,
which is supplied in most Apache 2.0 distributions, is commonly
used to set the environment prior to executing httpd. Specifying this
attribute is optional. If EnvFile is specified, the login shell for user
root must be Bourne, Korn, or C shell.

Type and dimension: string-scalar

Example: "/apache/server1/bin/envvars"

SecondLevelMoni
tor

Enables second-level monitoring for the resource. Second-level
monitoring is a deeper, more thorough state check of the Apache
HTTP server performed by issuing an HTTP GET request on the web
server's root directory. Valid attribute values are 1 (true) and 0 (false).
Specifying this attribute is required.

Type and dimension: boolean-scalar

Default: 0

Example: "1"

SharedObjDir Full path of the directory in which the Apache HTTP shared object
files are located. Specifying this attribute is optional. It is used when
the HTTP Server is compiled using the SHARED_CORE rule. If
specified, the directory is passed to the -R option when executing the
httpd program. Refer to the httpd man pages for more information
about the -R option.

Type and dimension: boolean-scalar

Example: "/apache/server1/libexec"

99 Service and application agents
Apache Web server agent
Table 5-2 Optional attributes

SecondLevelTime
out

Number of seconds monitor entry point will wait on the execution of
second-level monitor. If the second-level monitor program does not
return to the calling monitor entry point before the
SecondLevelTimeout window expires, the monitor entry point will
no longer block on the program sub-process but will report that the
resource is offline. The value should be sufficiently high to allow
second level monitor enough time to complete, but the value should
also be less than the value specified by the agent's MonitorTimeout.

Type and dimension: integer-scalar

Default: 30

Optional
attribute Description

Resource type definition
type Apache (

static str ArgList[] = { ResLogLevel, State, IState, httpdDir,

SharedObjDir, EnvFile, HostName, Port, User,

SecondLevelMonitor, SecondLevelTimeout, ConfigFile, EnableSSL,

DirectiveAfter, DirectiveBefore}

str ResLogLevel = "INFO"

str httpdDir

str SharedObjDir

str EnvFile

str HostName

int Port = 80

str User

boolean SecondLevelMonitor

int SecondLevelTimeout = 30

str ConfigFile

boolean EnableSSL

str DirectiveAfter{}

str DirectiveBefore{}

)

Detecting Application Failure
The agent provides two methods to evaluate the state of an Apache HTTP server
instance. The first state check is mandatory and the second is optional.

The first check determines the state of the Apache HTTP server by searching for
the existence of the parent httpd daemon and for at least one child httpd
daemon. If the parent process and at least one child do not exist, VCS reports the
resource as offline. If they do exist, and if the agent attribute

100 Service and application agents
Apache Web server agent
SecondLevelMonitor is set to true, then a socket connection is established with
the Apache HTTP server using the values specified by agent attributes Host and
Port. Once connected, the agent issues an HTTP request to the server to test its
ability to respond. If the HTTP Server responds with a return code between 0
and 408, the agent considers the server online. If the server fails to respond or
returns any other code, the agent considers the server offline.

About the ACC Library
The agent functions for the Apache HTTP server depend on a set of Perl

modules known as the ACC Library. The ACC Library contains common, reusable

functions that perform tasks such as process identification, logging, and system

calls.

When you install the ACC library in a VCS environment, you must install the

ACC library package before you install the agent.

To install or update the ACC library package, locate the library and related

documentation on the agent disc and in the compressed agent tar file.

Sample configurations
group ApacheG1(

 SystemList = { host1 = 0, host2 = 1 }

)

 Apache httpd_server (

 Critical = 0

 httpdDir = "/apache/bin"

 HostName = vcssol1

 Port = 8888

 User = root

 SecondLevelMonitor = 1

 ConfigFile = "/apache/conf/httpd.conf"

)

 DiskGroup Apache_dg (

 Critical = 0

 DiskGroup = apc1

)

 IP Apache_ip (

 Critical = 0

 Device = bge0

 Address = "11.123.99.168"

 NetMask = "255.255.254.0"

)

 Mount Apache_mnt (

 Critical = 0

101 Service and application agents
Apache Web server agent
 MountPoint = "/apache"

 BlockDevice = "/dev/vx/dsk/apc1/apcvol1"

 FSType = vxfs

 FsckOpt = "-y"

)

 Apache_mnt requires Apache_dg

 httpd_server requires Apache_mnt

 httpd_server requires Apache_ip

102 Service and application agents
Application agent
Application agent

Brings applications online, takes them offline, and monitors their status.

Enables you to specify different executables for the online, offline, and monitor

routines, because most applications have executables to start and stop the

application. The executables must exist locally on each node.

An application runs in the default context of root. Specify the user name to run

an application in a user context.

The agent starts and stops the application with user-specified programs.

You can monitor the application in the following ways:

■	 Use the monitor program

■	 Specify a list of processes

■	 Specify a list of process ID files

■	 Any combination of the above

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Application resources,
the virtual fire drill checks for:

■	 The availability of the specified program

■	 Execution permissions for the specified program

■	 The existence of the specified user on the host

■ The existence of the same binary on all nodes

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependencies
Depending on the context, this type of resource can depend on IP, IPMultiNIC,
and Mount resources.

Agent functions
■	 Online

Runs the StartProgram with the specified parameters in the context of the
specified user.

103 Service and application agents
Application agent
■	 Offline

Runs the StopProgram with the specified parameters in the context of the
specified user.

■	 Monitor

If you specify the MonitorProgram, the agent executes the user-defined
MonitorProgram in the user-specified context. If you specify PidFiles, the
routine verifies that the process ID found in each listed file is running. If
you specify MonitorProcesses, the routine verifies that each listed process
is running in the context you specify.

MonitorProgram must return an online state to employ any online
monitoring methods.

Use any one, two, or three of these attributes to monitor the application.

If any one process specified in either PidFiles or MonitorProcesses is
determined not to be running, the monitor returns OFFLINE. If the process
terminates ungracefully, the monitor returns OFFLINE and failover occurs.

■	 Clean

Terminates processes specified in PidFiles or MonitorProcesses. Ensures
that only those processes (specified in MonitorProcesses) running with the
user ID specified in the User attribute are killed. If the CleanProgram is
defined, the agent executes the CleanProgram.

State definitions
■	 ONLINE

Indicates that all processes specified in PidFiles and MonitorProcesses are
running and that the MonitorProgram returns ONLINE.

■	 OFFLINE

Indicates that at least one process specified in PidFiles or MonitorProcesses
is not running, or that the MonitorProgram returns OFFLINE.

■	 UNKNOWN

Indicates an indeterminable application state or invalid configuration.

104 Service and application agents
Application agent
Attributes

Table 5-3 Required attributes

Required
attribute Description

StartProgram The executable, created locally on each node, which starts the
application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

For applications running in Solaris 10 zones, use the path as seen
from the non-global zone.

Type and dimension: string-scalar

Example: "/usr/sbin/samba start"

StopProgram The executable, created locally on each node, that stops the
application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

For applications running in Solaris 10 zones, use the path as seen
from the non-global zone.

Type and dimension: string-scalar

Example:

"/usr/sbin/samba stop"

At least one of the
following attributes:

■ MonitorProcesses

■ MonitorProgram

■ PidFiles

See “Optional attributes” on page 105.

105 Service and application agents
Application agent
Table 5-4 Optional attributes

Optional
attribute Description

CleanProgram The executable, created locally on each node, which forcibly
stops the application. Specify the complete path of the
executable. Applicable command line arguments follow the
name of the executable and are separated by spaces.

For applications running in Solaris 10 zones, use the path as
seen from the non-global zone.

Type and dimension: string-scalar

Examples:

"/usr/sbin/samba force stop"

ContainerName Non-global zone support for Solaris 10 and above. Defines the
name of the non-global zone.

Type and dimension: string-scalar

Example: "zone1"

ContainerType Do not change. For internal use only.

MonitorProcesses A list of processes that you want monitored and cleaned. Each
process name is the name of an executable.

Provide the full path name of the executable if the agent uses
that path to start the executable.

The process name must be the full command line argument
displayed by the ps -u user -o args command for the
process.

Type and dimension: string-vector

Example:

"nmbd"

106 Service and application agents

Application agent

Table 5-4 Optional attributes

Optional
attribute Description

MonitorProgram The executable, created locally on each node, which monitors
the application. Specify the complete path of the executable.
Applicable command line arguments follow the name of the
executable and are separated by spaces.

For applications running in Solaris 10 zones, use the path as
seen from the non-global zone.

MonitorProgram can return the following VCSAgResState
values: OFFLINE value is 100; ONLINE values range from 101 to
110 (depending on the confidence level); 110 equals confidence
level of 100%. Any other value = UNKNOWN.

Type and dimension: string-scalar

Examples:

"/usr/local/bin/sambaMonitor all"

PidFiles A list of PID files that contain the process ID (PID) of the
processes that you want monitored and cleaned. These are
application generated files. Each PID file contains one
monitored PID. Specify the complete path of each PID file in
the list.

For applications running in Solaris 10 non-global zones,
include the zone root path in the PID file’s path—the global
zone’s absolute path—see the example below.

The process ID can change when the process restarts. If the
application takes time to update the PID file, the agent’s
monitor script may return an incorrect result. If this occurs,
increase the ToleranceLimit in the resource definition.

Type and dimension: string-vector

Example:

"/var/lock/samba/smbd.pid"

Example in a global zone for Solaris 10:
"/var/lock/samba/smbd.pid"

Example in a non-global zone for Solaris 10:
"$zoneroot/var/lock/samba/smbd.pid"

Where the $zoneroot is the root directory of the non-global
zone, as seen from the global zone.

107 Service and application agents
Application agent
Table 5-4 Optional attributes

User The user ID for running StartProgram, StopProgram,
MonitorProgram, and CleanProgram. The processes specified
in the MonitorProcesses list must run in the context of the
specified user. Monitor checks the processes to make sure they
run in this context.

Type and dimension: string-scalar

Default: root

Optional
attribute Description

Resource type definition
type Application (

static keylist SupportedActions = { "program.vfd", "user.vfd",

"cksum.vfd", getcksum }

static str ContainerType = Zone

static str ArgList[] = { User, StartProgram, StopProgram,

CleanProgram, MonitorProgram, PidFiles, MonitorProcesses }

str User

str StartProgram

str StopProgram

str CleanProgram

str MonitorProgram

str PidFiles[]

str MonitorProcesses[]

str ContainerName

)

Sample configurations

Configuration 1
In this example, you configure the executable samba as StartProgram and
StopProgram, with start and stop specified as command line arguments
respectively. Configure the agent to monitor two processes: a process specified
by the pid smbd.pid, and the process nmbd.
Application samba_app (

User = "root"

StartProgram = "/usr/sbin/samba start"

StopProgram = "/usr/sbin/samba stop"

PidFiles = { "/var/lock/samba/smbd.pid" }

MonitorProcesses = { "nmbd" }

)

108 Service and application agents
Application agent
Configuration 2
In this example, since no user is specified, it uses the root user. The executable
samba starts and stops the application using start and stop as the command line
arguments. The executable sambaMonitor monitors the application and uses
all as its command line argument. The agent also monitors the smbd and nmbd
processes.
Application samba_app2 (

StartProgram = "/usr/sbin/samba start"

StopProgram = "/usr/sbin/samba stop"

CleanProgram = "/usr/sbin/samba force stop"

MonitorProgram = "/usr/local/bin/sambaMonitor all"

MonitorProcesses = { "smbd", "nmbd" }

)

Configuration 3 for Solaris 10
In this example, configure a resource in a non-global zone: zone1. The ZonePath
of zone1 is /zone1/root. Configure the executable samba as StartProgram and
StopProgram, with start and stop specified as command line arguments
respectively. Configure the agent to monitor two processes: a process specified
by the pid smbd.pid, and the process nmbd.
Application samba_app (

StartProgram = "/usr/sbin/samba start"

StopProgram = "/usr/sbin/samba stop"

PidFiles = { "/zone1/root/var/lock/samba/smbd.pid" }

MonitorProcesses = { "nmbd" }

ContainerName = "zone1"

)

109 Service and application agents
Process agent
Process agent

Starts, stops, and monitors a user-specified process.

Virtual fire drill
The virtual fire drill detects discrepancies between the VCS configuration and
the underlying infrastructure on a node; discrepancies that might prevent a
service group from going online on a specific node. For Process resources, the
virtual fire drill checks for:

■	 The existence of the specified process

■	 Execution permissions for the specified process

■	 The existence of a binary executable for the specified process

■ The existence of the same binary on all nodes

For more information about using the virtual fire drill see the VCS User’s Guide.

Dependencies
Depending on the context, this type of resource can depend on IP, IPMultiNIC,
and Mount resources.

Agent functions
■	 Online

Starts the process with optional arguments.

■	 Offline

Terminates the process with a SIGTERM. If the process does not exit, a
SIGKILL is sent.

■	 Monitor

Checks to see if the process is running by scanning the process table for the
name of the executable pathname and argument list.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

110 Service and application agents
Process agent
State definitions
■	 ONLINE

Indicates that the specified process is running in the specified user context.
For Solaris 10, the process can run in global and non-global zones when you
specify the ContainerName attribute.

■	 OFFLINE

Indicates that the specified process is not running in the specified user
context. It also specifies the zone in the main.cf file.

■	 FAULTED

Indicates that the process has terminated unexpectedly.

■	 UNKNOWN

Indicates that the agent can not determine the state of the process.

Attributes

Table 5-5 Required attribute

Required
attribute Description

PathName Complete pathname to access an executable program. This path
includes the program name. If a script controls the process, the
PathName defines the complete path to the shell.

This attribute must not exceed 80 characters.

Type and dimension: string-scalar

Example: "/usr/lib/sendmail"

111 Service and application agents
Process agent
Table 5-6 Optional attributes

Optional
attribute Description

Arguments Passes arguments to the process. If a script controls the process,
the script is passed as an argument. Separate multiple arguments
with a single space. A string cannot accommodate more than one
space between arguments, nor allow for leading or trailing
whitespace characters.

This attribute must not exceed 80 characters.

Type and dimension: string-scalar

Example: "bd q1h"

ContainerName Non-global zone support for Solaris 10 and above. Defines the
name of the non-global zone.

Type and dimension: string-scalar

Example: "zone1"

ContainerType Do not change. For internal use only.

Resource type definition
type Process (

static keylist SupportedActions = { "program.vfd", getcksum }

static str ContainerType = Zone

static str ArgList[] = { ContainerName, PathName, Arguments }

str ContainerName

str PathName

str Arguments

)

112 Service and application agents
Process agent
Sample configurations

Configuration 1
Process usr_lib_sendmail (

PathName = "/usr/lib/sendmail"

Arguments = "bd q1h"

)

Configuration 2
include "types.cf"

cluster ProcessCluster (

.

.

.

group ProcessGroup (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

Process Process1 (

PathName = "/usr/local/bin/myprog"

Arguments = "arg1 arg2"

)

Process Process2 (

PathName = "/bin/csh"

Arguments = "/tmp/funscript/myscript"

)

// resource dependency tree

//
// group ProcessGroup
// {
// Process Process1
// Process Process2
// }

113 Service and application agents
ProcessOnOnly agent
ProcessOnOnly agent

Starts and monitors a user-specified process.

Agent functions
■	 Online

Starts the process with optional arguments.

■	 Monitor

Checks to see if the process is alive by scanning the process table for the
name of the executable pathname and argument list.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

State definitions
■	 ONLINE

Indicates that the specified process is running. For Solaris 10, the process
can run in global and non-global zones when you specify the
ContainerName attribute.

■	 FAULTED

Indicates that the process has unexpectedly terminated.

■	 UNKNOWN

Indicates that the agent can not determine the state of the process.

114 Service and application agents
ProcessOnOnly agent
Attributes

Table 5-7 Required attributes

Required
attribute Description

PathName Defines complete pathname to access an executable program. This
path includes the program name. If a process is controlled by a
script, the PathName defines the complete path to the shell.
Pathname must not exceed 80 characters.

Type and dimension: string-scalar

Example:

"/usr/lib/nfs/nfsd"

Table 5-8 Optional attributes

Optional
attribute Description

Arguments Passes arguments to the process. If a process is controlled by a script,
the script is passed as an argument. Multiple arguments must be
separated by a single space. A string cannot accommodate more than
one space between arguments, nor allow for leading or trailing
whitespace characters. Arguments must not exceed 80 characters
(total).

Type and dimension: string-scalar

Example: "- a 8"

ContainerName Non-global zone support for Solaris 10 and above. Defines the name
of the non-global zone.

Type and dimension: string-scalar

Example: "zone1"

ContainerType Do not change. For internal use only.

115 Service and application agents
ProcessOnOnly agent
Table 5-8 Optional attributes

IgnoreArgs A flag that indicates whether monitor ignores the argument list.

■ If the value is 0, it checks the process pathname and argument
list.

■ If the value is 1, it only checks for the executable pathname and
ignores the rest of the argument list.

Type and dimension: boolean-scalar

Default: 0

Optional
attribute Description

Resource type definition
type ProcessOnOnly (

static str ContainerType = Zone

static str ArgList[] = { ContainerName, IgnoreArgs, PathName,

Arguments }

static str Operations = OnOnly

str ContainerName

boolean IgnoreArgs = 0

str PathName

str Arguments

)

Sample configurations

Configuration 1
ProcessOnOnly nfs_daemon(

PathName = "/usr/lib/nfs/nfsd"

Arguments = "-a 8"

)

Configuration 2
include "types.cf"

cluster ProcessCluster (

.

.

.

group ProcessOnOnlyGroup (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

116 Service and application agents
ProcessOnOnly agent
)

ProcessOnOnly Process1 (

PathName = "/usr/local/bin/myprog"

Arguments = "arg1 arg2"

)

ProcessOnOnly Process2 (

PathName = "/bin/csh"

Arguments = "/tmp/funscript/myscript"

)

// resource dependency tree

//
// group ProcessOnOnlyGroup
// {
// ProcessOnOnly Process1
// ProcessOnOnly Process2
// }

117 Service and application agents
Zone agent
Zone agent

Brings online, takes offline, monitors, and cleans Solaris 10 zones.

Agent functions
■	 Online

Brings a Solaris 10 zone up and running.

■	 Offline

Takes a Solaris 10 zone down gracefully.

■	 Monitor

Checks if the specified zone is up and running.

■	 Clean

Another attempt to bring down a Solaris 10 zone forcefully.

Attributes

Table 5-9 Required attributes

Required
attribute Description

ZoneName Name of the zone

Type and dimension: string-scalar

Example: "localzone1"

Table 5-10 Optional attributes

Optional
attribute Description

ShutDownGracePeriod Allows the root user to set the number of seconds before the
shut down of non-global zones.

Type and dimension: integer-scalar

Example: "10"

118 Service and application agents
Zone agent
Resource type definition
type Zone (

static str ArgList[] = { ZoneName, ShutdownGracePeriod }

str ZoneName

int ShutdownGracePeriod

)

Sample configuration
Zone myzone (

ZoneName = "localzone1"

)

Configuration for Solaris 10
In this example, configure a resource in a non-global zone: zone1. The ZonePath
of zone1 is /zone1/root. Configure the executable samba as StartProgram and
StopProgram, with start and stop specified as command line arguments
respectively. Configure the agent to monitor two processes: a process specified
by the pid smbd.pid, and the process nmbd.
Application samba_app (

StartProgram = "/usr/sbin/samba start"

StopProgram = "/usr/sbin/samba stop"

PidFiles = { "/localzone1/root/var/lock/samba/smbd.pid" }

MonitorProcesses = { "nmbd" }

ContainerName = "localzone1"

)

Chapter
6
Infrastructure and support
agents

This chapter contains the following agents:

■ “NotifierMngr agent” on page 120

■ “VRTSWebApp agent” on page 127

■ “Proxy agent” on page 130

■ “Phantom agent” on page 133

■ “RemoteGroup agent” on page 135

About the infrastructure and support agents
Use the infrastructure and support agents to monitor Veritas components and
VCS objects.

120 Infrastructure and support agents
NotifierMngr agent
NotifierMngr agent
Starts, stops, and monitors a notifier process, making it highly available. The
notifier process manages the reception of messages from VCS and the delivery
of those messages to SNMP consoles and SMTP servers. See the Veritas Cluster
Server User’s Guide for a description of types of events that generate
notification. See the notifier(1) manual page to configure notification from the
command line.

Note: You cannot dynamically change the attributes of the NotifierMngr agent
using the hares -modify command. Changes made using this command are
effective after restarting the notifier.

Dependency
The NotifierMngr resource depends on the NIC resource.

Agent functions
■	 Online

Starts the notifier process with its required arguments.

■	 Offline

VCS sends a SIGABORT. If the process does not exit within one second, VCS
sends a SIGKILL.

■	 Monitor

Monitors the notifier process.

■	 Clean

Sends SIGKILL.

State definitions
■	 ONLINE

Indicates that the Notifier process is running.

■	 OFFLINE

Indicates that the Notifier process is not running.

■	 UNKNOWN

Indicates that the user did not specify the required attribute for the
resource.

121 Infrastructure and support agents
NotifierMngr agent
Attributes

Table 6-1 Required attributes

Required
attribute Description

SnmpConsoles Specifies the machine name of the SNMP manager and the severity
level of the messages to be delivered to the SNMP manager. The
severity levels of messages are Information, Warning, Error, and
SevereError. Specifying a given severity level for messages generates
delivery of all messages of equal or higher severity.

Note: SnmpConsoles is a required attribute if SmtpServer is not
specified; otherwise, SnmpConsoles is an optional attribute. Specify
both SnmpConsoles and SmtpServer if desired.

Type and dimension: string-association

Example:

"172.29.10.89" = Error, "172.29.10.56" = Information

SmtpServer Specifies the machine name of the SMTP server.

Note: SmtpServer is a required attribute if SnmpConsoles is not
specified; otherwise, SmtpServer is an optional attribute. You can
specify both SmtpServer and SnmpConsoles if desired.

Type and dimension: string-scalar

Example: "smtp.your_company.com"

Table 6-2 Optional attributes

Optional
attribute Description

EngineListeningPort Change this attribute if the VCS engine is listening on a
port other than its default port.

Type and dimension: integer-scalar

Default: 14141

122 Infrastructure and support agents

NotifierMngr agent

Table 6-2 Optional attributes

Optional
attribute Description

MessagesQueue Size of the VCS engine’s message queue. Minimum value is
30.

Type and dimension: integer-scalar

Default: 30

NotifierListeningPort Any valid, unused TCP/IP port numbers.

Type and dimension: integer-scalar

Default: 14144

SmtpFromPath Set to a valid email address, if you want the notifier to use
a custom email address in the FROM: field.

Type and dimension: string-scalar

Example: "usera@example.com"

SmtpRecipients Specifies the email address where SMTP sends
information and the severity level of the messages. The
severity levels of messages are Information, Warning,
Error, and SevereError. Specifying a given severity level for
messages indicates that all messages of equal or higher
severity are received.

Note: SmtpRecipients is a required attribute if you specify
SmtpServer.

Type and dimension: string-association

Example:

"james@veritas.com" = SevereError,
"admin@veritas.com" = Warning

123 Infrastructure and support agents
NotifierMngr agent
Table 6-2 Optional attributes

Optional
attribute Description

SmtpReturnPath Set to a valid email address, if you want the notifier to use
a custom email address in the Return-Path: <> field.

If the mail server specified in SmtpServer does not support
VRFY, then you need to set the SmtpVrfyOff to 1 in order
for the SmtpReturnPath value to take effect.

Type and dimension: string-scalar

Example: "usera@example.com"

SmtpServerTimeout This attribute represents the time in seconds notifier waits
for a response from the mail server for the SMTP
commands it has sent to the mail server. This value can be
increased if you notice that the mail server is taking a
longer duration to reply back to the SMTP commands sent
by notifier.

Type and dimension: integer-scalar

Default: 10

SmtpServerVrfyOff Set this value to 1 if your mail server does not support
SMTP VRFY command. If you set this value to 1, the
notifier does not send a SMTP VRFY request to the mail
server specified in SmtpServer attribute while sending
emails.

Type and dimension: boolean-scalar

Default: 0

SnmpCommunity Specifies the community ID for the SNMP manager.

Type and dimension: string-scalar

Default: public

124 Infrastructure and support agents

NotifierMngr agent

Table 6-2 Optional attributes

SnmpdTrapPort Port on the SNMP console machine where SNMP traps are
sent.

If you specify more than one SNMP console, all consoles
use this value.

Type and dimension: integer-scalar

Default: 162

Optional
attribute Description

Resource type definition
type NotifierMngr (

static int RestartLimit = 3

static str ArgList[] = { EngineListeningPort, MessagesQueue,

NotifierListeningPort, SnmpdTrapPort, SnmpCommunity,

SnmpConsoles, SmtpServer, SmtpServerVrfyOff, SmtpServerTimeout,

SmtpReturnPath, SmtpFromPath, SmtpRecipients }

int EngineListeningPort = 14141

int MessagesQueue = 30

int NotifierListeningPort = 14144

int SnmpdTrapPort = 162

str SnmpCommunity = "public"

str SnmpConsoles{}

str SmtpServer

boolean SmtpServerVrfyOff = 0

int SmtpServerTimeout = 10

str SmtpReturnPath

str SmtpFromPath

str SmtpRecipients{}

)

125 Infrastructure and support agents
NotifierMngr agent
Sample configuration
In the following configuration, the NotifierMngr agent is configured to run with

two resource groups: NicGrp and Grp1. NicGrp contains the NIC resource and a

Phantom resource that enables VCS to determine the online and offline status of

the group. See the Phantom agent for more information on verifying the status

of groups that only contain OnOnly or Persistent resources such as the NIC

resource. You must enable NicGrp to run as a parallel group on both systems.

Grp1 contains the NotifierMngr resource (ntfr) and a Proxy resource (nicproxy),

configured for the NIC resource in the first group.

In this example, NotifierMngr has a dependency on the Proxy resource.

Note: Only one instance of the notifier process can run in a cluster. The process
cannot run in a parallel group.

The NotifierMngr resource sets up notification for all events to the
SnmpConsole: snmpserv. In this example, only messages of SevereError level
are sent to the SmptServer (smtp.example.com), and the recipient
(vcsadmin@example.com).

Configuration
system north

system south

group NicGrp (

SystemList = { north, south}

AutoStartList = { north }

Parallel = 1

)

Phantom my_phantom (

)

NIC NicGrp_en0 (

Enabled = 1

Device = en0

NetworkType = ether

)

group Grp1 (

SystemList = { north, south }

AutoStartList = { north }

)

Proxy nicproxy(

126 Infrastructure and support agents
NotifierMngr agent
TargetResName = "NicGrp_en0"

)

NotifierMngr ntfr (

SnmpConsoles = { snmpserv = Information }

SmtpServer = "smtp.example.com"

SmtpRecipients = { "vcsadmin@example.com" = SevereError }

)

ntfr requires nicproxy

// resource dependency tree

//

// group Grp1

// {

// NotifierMngr ntfr

// {
// Proxy nicproxy
// }
// }

127 Infrastructure and support agents
VRTSWebApp agent
VRTSWebApp agent

Brings Web applications online, takes them offline, and monitors their status.
This agent is used to monitor the Web consoles of various Symantec products,
such as the Cluster Management Console.

The application is a Java Web application conforming to the Servlet
Specification 2.3/JSP Specification 1.2 and runs inside of the Java Web server
installed as a part of the VRTSweb package.

Agent functions
■	 Online

Starts the Web application with the specified parameters. If the Web server
is not already running, it first starts the server.

■	 Offline

Removes the Web application from the Web server. If no other Web
application is running, it shuts down the Web server.

■	 Monitor

Checks if the specified Web application is currently running inside the Web
server. If the application is running, monitor reports ONLINE. If the
application is not running, monitor reports OFFLINE.

■	 Clean

Removes the Web application from the Web server. If no other Web
application is running, it shuts down the Web server.

State definitions
■	 ONLINE

Indicates that the Web application is running.

■	 OFFLINE

Indicates that the Web application is not running.

■	 UNKNOWN

Indicates that the agent could not determine the state of the resource or
that the resource attributes are invalid.

128 Infrastructure and support agents
VRTSWebApp agent
Attributes

Table 6-3 Required attributes

Required
attribute Description

AppName Name of the application as it appears in the Web server.

Type and dimension: string-scalar

Example: "cmc"

InstallDir Path to the Web application installation. You must install the Web
application as a .war file with the same name as the AppName
parameter. Point this attribute to the directory that contains this
.war file.

Type and dimension: string-scalar

Example: If the AppName is cmc and InstallDir is:
/opt/VRTSweb/VERITAS, the agent constructs the path for the Web
application as : /opt/VRTSweb/VERITAS/cmc.war

TimeForOnline The time the Web application takes to start after loading it into the
Web server. This parameter is returned as the exit value of the online
script, which inform VCS of the time it needs to wait before calling
monitor on the Web application resource. This attribute is typically
at least five seconds.

Type and dimension: integer-scalar

Example: "5"

Resource type definition
type VRTSWebApp (

static str ArgList[] = { AppName, InstallDir, TimeForOnline }

str AppName

str InstallDir

int TimeForOnline

static int NumThreads = 1

)

129 Infrastructure and support agents
VRTSWebApp agent
Sample configuration
VRTSWebApp VCSweb (

AppName = "cmc"

InstallDir = "/opt/VRTSweb/VERITAS"

TimeForOnline = 5

)

130 Infrastructure and support agents
Proxy agent
Proxy agent

Mirrors the state of another resource on a local or remote system. Provides a
means to specify and modify one resource and have its state reflected by its
proxies.

A Proxy resource can only point to None or OnOnly type of resources, and can
reside in a failover/parallel group.

Agent functions
■	 Monitor

Determines status based on the target resource status.

Attributes

Table 6-4 Required attribute

Required
attribute Description

TargetResName Name of the target resource that the Proxy resource mirrors.

The target resource must be in a different resource group than the
Proxy resource.

Type and dimension: string-scalar

Example: "tmp_VRTSvcs_file1"

Table 6-5 Optional attribute

Optional
attribute Description

TargetSysName Mirrors the status of the TargetResName attribute on systems that
the TargetSysName variable specifies. If this attribute is not
specified, the Proxy resource assumes the system is local.

Type and dimension: string-scalar

Example: "sysa"

131 Infrastructure and support agents
Proxy agent
Resource type definition
type Proxy (

static str ArgList[] = { TargetResName, TargetSysName,

"TargetResName:Probed", "TargetResName:State" }

static int OfflineMonitorInterval = 60

static str Operations = None

str TargetResName

str TargetSysName

)

Sample configurations

Configuration 1
The proxy resource mirrors the state of the resource tmp_VRTSvcs_file1 on the
local system.
Proxy proxy1 (

TargetResName = "tmp_VRTSvcs_file1"

)

Configuration 2
The proxy resource mirrors the state of the resource tmp_VRTSvcs_file1 on
sysa.
Proxy proxy1(

TargetResName = "tmp_VRTSvcs_file1"

TargetSysName = "sysa"

)

Configuration 3
The proxy resource mirrors the state of the resource mnic on the local system;
note that target resource is in grp1, and the proxy in grp2; a target resource and
its proxy cannot be in the same group.
group grp1 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

MultiNICA mnic (

Device@sysa = { le0 = "166.98.16.103",qfe3 = "166.98.16.103"

}

Device@sysb = { le0 = "166.98.16.104",qfe3 = "166.98.16.104"

}

NetMask = "255.255.255.0"

ArpDelay = 5

Options = "trailers"

RouteOptions@sysa = "default 166.98.16.103 0"

132 Infrastructure and support agents

Proxy agent

RouteOptions@sysb = "default 166.98.16.104 0"

)

IPMultiNIC ip1 (

Address = "166.98.14.78"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "trailers"

)

ip1 requires mnic

group grp2 (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

)

IPMultiNIC ip2 (

Address = "166.98.14.79"

NetMask = "255.255.255.0"

MultiNICResName = mnic

Options = "mtu m"

)

Proxy proxy (

TargetResName = mnic

)

ip2 requires proxy

133 Infrastructure and support agents
Phantom agent
Phantom agent

Enables VCS to determine the status of service groups that do not include OnOff
resources, which are resources that VCS can start and stop. Without the
“dummy” resource provided by this agent, VCS cannot assess the status of
groups that only contain None (Persistent) and OnOnly resources because the
state of these resources is not considered in the process of determining whether
a group is online. Refer to the VCS User’s Guide for information on categories of
service groups and resources.

Agent functions
■	 Monitor

Determines status based on the status of the service group.

Attribute

Table 6-6 Attribute for

Attribute Description

Dummy The Dummy attribute is for internal use only.

Resource type definition
type Phantom (

static str ArgList[] = { Dummy }

str Dummy

)

Sample configurations

Configuration 1
Phantom (

)

Configuration 2
The following example shows a complete main.cf, in which the FileNone
resource and the Phantom resource are in the same group.
include "types.cf"

http:main.cf

134 Infrastructure and support agents
Phantom agent
cluster PhantomCluster

system sysa

system sysb

group phantomgroup (

SystemList = { sysa, sysb }

AutoStartList = { sysa }

Parallel = 1

)

FileNone my_file_none (

PathName = "/tmp/file_none"

)

Phantom my_phantom (

)

// resource dependency tree

//
// group maingroup
// {
// Phantom my_Phantom
// FileNone my_file_none
// }

135 Infrastructure and support agents
RemoteGroup agent
RemoteGroup agent

The RemoteGroup agent establishes dependencies between applications that are
configured on different VCS clusters. For example, you configure an Apache
resource in a local cluster, and a MySQL resource in a remote cluster. In this
example, the Apache resource depends on the MySQL resource. You can use the
RemoteGroup agent to establish this dependency between these two resources.

With the RemoteGroup agent, you can monitor or manage a service group that
exists in a remote cluster. Some points about configuring the RemoteGroup
resource are:

■	 For each remote service group that you want to monitor or manage, you
must configure a corresponding RemoteGroup resource in the local cluster.

■	 Multiple RemoteGroup resources in a local cluster can manage
corresponding multiple remote service groups in different remote clusters.

■	 You can include the RemoteGroup resource in any kind of resource or
service group dependency tree.

■	 A combination of the state of the local service group and the state of the
remote service group determines the state of the RemoteGroup resource.

■	 Global groups are not supported as remote service groups.

For more information on the functionality of this agent see the Veritas Cluster
Server User’s Guide.

Dependency
As a best practice establish a RemoteGroup resource dependency on a NIC
resource. Symantec recommends that the RemoteGroup resource not be by itself
in a service group.

136 Infrastructure and support agents

RemoteGroup agent

Agent functions
■	 Online

Brings the remote service group online.

See the “ControlMode” on page 138 for more information.

■	 Offline

Takes the remote service group offline.

See the “ControlMode” on page 138 for more information.

■	 Monitor

Monitors the state of the remote service group.

The true state of the remote service group is monitored only on the online
node in the local cluster.

See the “VCSSysName” on page 137.

■	 Clean

If the RemoteGroup resource faults, the Clean function takes the remote

service group offline.

See the “ControlMode” on page 138 for more information.

State definitions
■	 ONLINE

Indicates that the remote service group is either in an ONLINE or PARTIAL

state.

■	 OFFLINE

Indicates that the remote service group is in an OFFLINE or FAULTED state.
The true state of the remote service group is monitored only on the online
node in the local cluster.

■	 FAULTED

Indicates that the RemoteGroup resource has unexpectedly gone offline.

■	 UNKNOWN

Indicates that a problem exists either with the configuration or the ability
of the RemoteGroup resource to determine the state of the remote service
group.

137 Infrastructure and support agents
RemoteGroup agent
Attributes

Table 6-7 Required attributes

Required
attribute Description

IpAddress The IP address or DNS name of a node in the remote cluster. The
IP address can be either physical or virtual.

When configuring a virtual IP address of a remote cluster, do not
configure the IP resource as a part of the remote service group.

Type and dimension: string-scalar

Example: "www.example.com" or "11.183.12.214"

Port The port on which the remote engine listens for requests.

This is an optional attribute, unless the remote cluster listens on a
port other than the default value of 14141.

Type and dimension: integer-scalar

Default: 14141

GroupName The name of the service group on the remote cluster that you want
the RemoteGroup agent to monitor or manage.

Type and dimension: string-scalar

Example: "DBGrp"

VCSSysName You must set this attribute to either the VCS system name or the
ANY value.

■ ANY
The RemoteGroup resource goes online if the remote service
group is online on any node in the remote cluster.

■ VCSSysName
Use the name of a VCS system in a remote cluster where you
want the remote service group to be online when the
RemoteGroup resource goes online. Use this to establish a
one-to-one mapping between the nodes of the local and
remote clusters.

Type and dimension: string-scalar

Example: "vcssys1" or "ANY"

138 Infrastructure and support agents

RemoteGroup agent

Table 6-7 Required attributes

ControlMode Select only one of these values to determine the mode of operation
of the RemoteGroup resource: MonitorOnly, OnlineOnly, or OnOff.

■ OnOff
The RemoteGroup resource brings the remote service group
online or takes it offline.
When you set the VCSSysName attribute to ANY, the SysList
attribute of the remote service group determines the node
where the remote service group onlines.

■ MonitorOnly
The RemoteGroup resource only monitors the state of the
remote service group. The RemoteGroup resource cannot
online or offline the remote service group.
Make sure that you bring the remote service group online
before you online the RemoteGroup resource.

■ OnlineOnly
The RemoteGroup resource only brings the remote service
group online. The RemoteGroup resource cannot take the
remote service group offline.
When you set the VCSSysName attribute to ANY, the SysList
attribute of the remote service group determines the node
where the remote service group onlines.

Type and dimension: string-scalar

Required
attribute Description

139 Infrastructure and support agents
RemoteGroup agent
Table 6-7 Required attributes

Required
attribute Description

Username This is the login user name for the remote cluster.

When you set the ControlMode attribute to OnOff or OnlineOnly,
the Username must have administrative privileges for the remote
service group that you specify in the GroupName attribute.

When you use the RemoteGroup Wizard to enter your username
data, you need to enter your username and the domain name in
separate fields. For a cluster that has the Symantec Product
Authentication Service, you do not need to enter the domain
name.

For a secure remote cluster:

■ Local Unix user
user@nodename—where the nodename is the name of the
node that is specified in the IpAddress attribute. Do not set
the DomainType attribute.

■ NIS or NIS+ user
user@domainName—where domainName is the name of the
NIS or NIS+ domain for the user. You must set the value of
the DomainType attribute to either to nis or nisplus.

Type and dimension: string-scalar

Example:

■ For a cluster without the Symantec Product Authentication
Service: "johnsmith"

■ For a secure remote cluster: "foobar@example.com"

Password This is the password that corresponds to the user that you specify
in the Username attribute. You must encrypt the password with
the vcsencrypt -agent command.

Note: Do not use the vcsencrypt utility when entering passwords
from a configuration wizard or from the Cluster Management
Console or the Cluster Manager (Java Console).

Type and dimension: string-scalar

140 Infrastructure and support agents
RemoteGroup agent
Table 6-8 Optional attributes

Optional
attribute Description

DomainType For a secure remote cluster only, enter the domain type
information for the specified user.

For users who have the domain type unixpwd, you do not have to
set this attribute.

Type: string-scalar

Example: "nis", "nisplus"

BrokerIp For a secure remote cluster only, if the user needs the
RemoteGroup agent to communicate to a specific authentication
broker, then set this attribute.

Enter the information for the specific authentication broker in the
format "IP:Port".

Type: string-scalar

Example: "128.11.295.51:1400"

OfflineWaitTime The maximum expected time in seconds that the remote service
group may take to offline. VCS calls the Clean function for the
RemoteGroup resource if the remote service group takes a longer
time to offline than the time that you have specified for this
attribute.

Type and dimension: integer-scalar

Default: 0

141 Infrastructure and support agents
RemoteGroup agent
Table 6-9 Type-level attributes

Type level
attributes Description

OnlineRetryLimit

OnlineWaitLimit

ToleranceLimit

MonitorInterval

AutoFailover

In case of remote service groups that take a longer time to Online,
Symantec recommends that you modify the default
OnlineWaitLimit and OnlineRetryLimit attributes.

If you expect the RemoteGroup agent to tolerate sudden offlines of
the remote service group, then modify the ToleranceLimit
attribute.

See the VCS User’s Guide for more information about these
attributes.

Resource type definition
type RemoteGroup (

static int OnlineRetryLimit = 2

static int ToleranceLimit = 1

static str ArgList[] = { IpAddress, Port, Username, Password,

GroupName, VCSSysName, ControlMode, OfflineWaitTime,

DomainType, BrokerIp }

str IpAddress

int Port = 14141

str Username

str Password

str GroupName

str VCSSysName

str ControlMode

int OfflineWaitTime

str DomainType

str BrokerIp

)

142 Infrastructure and support agents
RemoteGroup agent

Chapter
7
Testing agents

This chapter contains the following agents:

■ “ElifNone agent” on page 144

■ “FileNone agent” on page 145

■ “FileOnOff agent” on page 146

■ “FileOnOnly agent” on page 148

About the program support agents
Use the program support agents to provide high availability for program
support resources.

144 Testing agents
ElifNone agent
ElifNone agent

Monitors a file—checks for the file’s absence.

Agent function
■	 Monitor

Checks for the specified file. If it exists, the resource faults. If it does not
exist, the agent reports as ONLINE.

Attributes

Table 7-1 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type ElifNone (

static str ArgList[] = { PathName }

static int OfflineMonitorInterval = 60

static str Operations = None

str PathName

)

Sample configuration
ElifNone tmp_file01 (

PathName = "/tmp/file01"

)

145 Testing agents
FileNone agent
FileNone agent

Monitors a file—check’s for the file’s existence.

Agent functions
■ Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the resource faults.

Attribute

Table 7-2 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type FileNone (

static str ArgList[] = { PathName }

static int OfflineMonitorInterval = 60

static str Operations = None

str PathName

)

Sample configuration
FileNone tmp_file01 (

PathName = "/tmp/file01"

)

146 Testing agents
FileOnOff agent
FileOnOff agent

Creates, removes, and monitors files.

Agent functions
■	 Online

Creates an empty file with the specified name if the file does not already
exist.

■	 Offline

Removes the specified file.

■	 Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the agent reports as OFFLINE.

■	 Clean

Terminates all ongoing resource actions and takes the resource offline,
forcibly when necessary.

Attribute

Table 7-3 Required attribute

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file01"

Resource type definition
type FileOnOff (

static str ArgList[] = { PathName }

str PathName

)

147 Testing agents
FileOnOff agent
Sample configuration
FileOnOff tmp_file01 (

PathName = "/tmp/file01"

)

148 Testing agents
FileOnOnly agent
FileOnOnly agent

Creates and monitors files.

Agent functions
■	 Online

Creates an empty file with the specified name, unless one already exists.

■	 Monitor

Checks for the specified file. If it exists, the agent reports as ONLINE. If it
does not exist, the resource faults.

Attribute

Table 7-4 Required attributes

Required
attribute Description

PathName Specifies the complete pathname. Starts with a slash (/) preceding
the file name.

Type and dimension: string-scalar

Example: "/tmp/file02"

Resource type definition
type FileOnOnly (

static str ArgList[] = { PathName }

static str Operations = OnOnly

str PathName

)

Sample configuration
FileOnOnly tmp_file02 (

PathName = "/tmp/file02"

)

Glossary
administrative IP address

The operating system controls these IP addresses and brings them up even before VCS
brings applications online. Use them to access a specific system over the network for doing
administrative tasks, for example: examining logs to troubleshoot issues, cleaning up temp
files to free space, etc. Typically, you have one administrative IP address per node.

agent function

Agent functions start, stop, fault, forcibly stop, and monitor resources using scripts.
Sometimes called an entry point.

base IP address

The first logical IP address, can be used as an administrative IP address.

entry point

See agent function.

floating IP address

See virtual IP address.

logical IP address

Any IP address assigned to a NIC.

NIC bonding

Combining two or more NICs to form a single logical NIC, which creates a fatter pipe.

operation

All agents have scripts that turn the resource on and off. Operations determine the action
that the agent passes to the resource. See None operation, OnOff operation, and OnOnly
operation.

None operation

For example the NIC resource. Also called persistent resource, this resource is always on.
This kind of resource has no online and offline scripts, and only monitors a resource.

OnOff operation

For example the IP and Share agents--in fact most agents are OnOff. This resource has
online and offline scripts. Often this type of resource does not appear in the types file
because by default when a resource does not have this resource type defined, it is OnOff.

OnOnly operation

For example the NFS, FileOnOnly resources. This kind of resource has an online script, but
not an offline one.

plumb

Term for enabling an IP address—used across all platforms in this guide.

150 Glossary
test IP address

IP addresses to help determine the state of a link by sending out a ping probe to another
NIC (on another system.) Requires a return ping to complete the test. Test IP addresses can
be the same as base IP addresses.

virtual IP address

IP addresses that can move from one NIC to another or from one node to another. VCS fails
over these IP address with your application. Sometimes called a floating IP address.

Index
Numerics
802.1Q trunking 37

A
about

Network agents 35

ACC library 100

agent

modifying 14

agent functions

Apache Web server agent 95

Application agent 102

DiskGroup agent 18

DNS agent 74

ElifNone agent 144

FileNone agent 145

FileOnOff agent 146

FileOnOnly agent 148

IP agent 38

IPMultiNIC agent 46

IPMultiNICB agent 58

Mount agent 26

MultiNICA agent 50

MultiNICB agent 63

NFS agent 82

NFSRestart agent 85

NIC agent 42

NotifierMngr agent 120

Phantom agent 133

Process agent 109

ProcessOnOnly agent 113

Proxy agent 130

RemoteGroup agent 136

SANVolume agent 31

Share agent 91

Volume agent 24

VRTSWebApp agent 127

Zone agent 117

agents
Apache Web server 94

Application 102

DiskGroup 18

DNS 74

ElifNone 144

FileNone 145

FileOnOff 146

FileOnOnly 148

IP 38

IPMultiNIC agent 46

IPMultiNICB agent 58

Mount 26

MultiNICA 50

MultiNICB agent 63

NFS 82

NFSRestart agent 85

NIC 42

NotifierMngr agent 120

Phantom 133

Process 109

ProcessOnOnly 113

Proxy 130

RemoteGroup 135

SANVolume 31

Share 91

Volume 24

VRTSWebApp 127

Zone 117

agents, typical functions 13

Apache Web server agent

ACC library 100

agent functions 95

attributes 96

description 94

detecting application failure 99

sample configuration 100

state definitions 95

152 Index
Application agent

agent functions 102

attributes 104

description 102

resource type definition 107

sample configurations 107

state definitions 103

virtual fire drill 102

association dimension 15

attribute data types 14

attributes

Application agent 104

Base and Mpathd modes 64

Base mode 65

DiskGroup agent 20

DNS agent 75

ElifNone agent 144

FileNone agent 145

FileOnOff agent 146

FileOnOnly agent 148

IP agent 39

IPMultiNIC agent 47

IPMultiNICB agent 60

Mount agent 28

MultiNICA agent 51

MultiNICB agent 64

Multipathing mode 68

NFS agent 83

NFSRestart agent 86

NIC agent 43

NotifierMngr agent 121

Phantom agent 133

ProcessOnOnly agent 114

Proxy agent 130

RemoteGroup agent 137

SANVolume agent 32

Share agent 92

Volume agent 25

VRTSWebApp agent 128

attributes, modifying 13, 14

B
Base mode 70

boolean data types 14

bundled agents 13

C
Checklist to ensure the proper operation of

MultiNICB 57

Cluster Manager (Java Console), modifying

attributes 14

Cluster Manager (Web Console)

modifying attributes 14

CNAME record 76

configuration files

main.cf 133

modifying 14

types.cf 13

D
data type

boolean 14

string 14

data types
integer 14

description, resources 13

dimensions

keylist 15

scalar 15

vector 15

DiskGroup agent

agent functions 18

attributes 20

description 18

resource type definition 21

sample configurations 23

state definitions 19

virtual fire drill 18

DNS agent 74

agent functions 74

attributes 75

description 74

resource type definition 76

sample web server configuration 77

Solaris attributes 75

E
ElifNone agent

agent functions 144

attributes 144

description 144

resource type definition 144

sample configuration 144

153 Index
F
Fiber Channel adapter 23

FileNone agent

agent functions 145

attribute 145

description 145

resource type definition 145

sample configurations 145

FileOnOff agent

agent functions 146

attribute 146

description 146

FileOnOnly agent

agent functions 148

attribute 148

description 148

resource type definition 148

sample configuration 148

I

integer data types 14

Interface configuration 71

IP agent

agent functions 38

attributes 39

description 38

resource type definitions 40

sample configurations 41

state definitions 38

virtual fire drill 38

IPMultiNIC agent

agent functions 46

attributes 47

description 46

resource type definitions 48

sample configuration 49

state definitions 46

IPMultiNICB agent 62

agent functions 58

description 58

manually migrating IP address 62

requirements 58

resource type definition 61

Solaris attributes 60

state definitions 59

K
keylist dimension 15

M
main.cf 13, 133

modifying

Cluster Manager (Web Console) 14

configuration files 14

modifying agents 14

monitor scenarios, DNS agent 77

Mount agent

agent functions 26, 27

attributes 28

description 26

resource type definition 30

sample configurations 30

virtual fire drill 26

MultiNICA agent

agent functions 50

attributes 51

description 50

resource type attributes 53

sample configurations 55

state definitions 50

MultiNICB agent

administrative IP addresses 71

agent functions 63

attributes 64

base and multipath, Solaris 69

description 63

resource type definition 69

sample configurations 71

state definitions 63

test IP addresses 71

Multipathing mode 70

N
NFS agent

agent functions 82

attributes 83

description 82

resource type definition 84

sample configurations 84

state definitions 83

NFSRestart agent

agent functions 85

attributes 86

description 85

resource type definition 89

sample configuration 89

state definitions 86

154 Index
NIC agent

agent functions 42

attributes 43

description 42

resource type definitions 44

sample configurations 44

state definitions 42

virtual fire drill 42

noautoimport flag, AIX 22

NotifierMngr agent

agent functions 120

attributes 121

description 120

resource type definition 124

sample configurations 125

state definitions 120

O
online query 76

P
Phantom agent

agent functions 133

attributes 133

description 133

resource type definition 133

sample configurations 133

Process agent 110

agent functions 109

attributes 110

description 109

resource type definition 111

sample configurations 112

state definitions 110

virtual fire drill 109

ProcessOnOnly agent

agent functions 113

attributes 114

description 113

resource type definition 115

sample configurations 115

state definitions 113

Proxy agent

agent functions 130

attributes 130

description 130

resource type definition 131

sample configurations 131

R
RemoteGroup agent

agent functions 136

attributes 137

description 135

resource type definition 141

state definitions 136

resource type definition 25

FileNone agent 145

resource type definitions

Application agent 107

DiskGroup agent 21

DNS agent 76

ElifNone agent 144

FileOnOnly agent 148

IP agent 40

IPMultiNIC agent 48

IPMultiNICB agent 61

Mount agent 30

MultiNICA agent 53

MultiNICB agent 69

NFS agent 84

NFSRestart agent 89

NIC agent 44

NotifierMngr agent 124

Phantom agent 133

Process agent 111

ProcessOnOnly agent 115

Proxy agent 131

RemoteGroup agent 141

SANVolume agent 33

Share agent 92

Volume agent 25

VRTSWebApp agent 128

Zone agent 118

resource types 13

resources

description of 13

S
sample configurations 62

Apache Web server agent 100

Application agent 107

DiskGroup agent 23

ElifNone agent 144

FileNone agent 145

FileOnOff agent 147

FileOnOnly agent 148

155 Index
IP agent 41

IPMultiNIC 49

IPMultiNICB agent 62

Mount agent 30

MultiNICA agent 55

MultiNICB agent 71

NFS agent 84

NFSRestart agent 89

NIC agent 44

NotifierMngr agent 125

Phantom agent 133

Process agent 112

ProcessOnOnly agent 115

Proxy agent 131

SANVolume agent 34

Share agent 92

Volume agent 25

VRTSWebApp agent 129

Zone agent 118

sample DNS configuration 78

SANVolume agent

agent functions 31

attributes 32

description 31

resource type definition 33

sample configuration 34

state definitions 31

scalar dimension 15

Share agent

agent functions 91

attributes 92

description 91

resource type definitions 92

sample configurations 92

state definitions 91

Solaris 1

state definitions 74

Apache Web server agent 95

Application agent 103

DiskGroup agent 19

DNS agent 74

IP agent 38

IPMultiNIC agent 46

IPMultiNICB agent 59

Mount agent 27

MultiNICA agent 50

MultiNICB agent 63

NFS agent 83

NFSRestart agent 86

NIC agent 42

NotifierMngr agent 120

Process agent 110

ProcessOnOnly agent 113

RemoteGroup agent 136

SANVolume agent 31

Share agent 91

Volume agent 24

VRTSWebApp agent 127

string data type 14

T
trigger script 71

trunking 37

types.cf 13

V

VCS, resource types 13

vector dimension 15

virtual fire drill 18, 26, 38, 42, 102, 109

Volume agent

agent functions 24

attributes 25

description 24

sample configurations 25

state definitions 24

volume sets, Solaris 22

VRTSWebApp agent

agent functions 127

attributes 128

description 127

resource type definition 128

sample configuration 129

state definitions 127

Z
Zone agent

agent functions 117

description 117

resource type definition 118

sample configuration 118

156
 Index

	Bundled Agents Reference Guide
	Contents
	Introduction
	Resources and their attributes
	Modifying agents and their resources
	Attributes

	Storage agents
	About the storage agents
	DiskGroup agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Using volume sets in Solaris
	Setting the noautoimport flag for a disk group
	Configuring the Fiber Channel adapter
	Sample configurations

	Volume agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Mount agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	SANVolume agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration

	Network agents
	About the network agents
	Agent comparisons
	802.1Q trunking

	IP agent
	Virtual fire drill
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	NIC agent
	Virtual fire drill
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	IPMultiNIC agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration: IPMultiNIC and MultiNICA

	MultiNICA agent
	Agent function
	State definitions
	Attributes
	Resource type definition
	MultiNICA notes
	Using RouteOptions
	Sample configurations

	About the IPMultiNICB and MultiNICB agents
	Checklist to ensure the proper operation of MultiNICB

	IPMultiNICB agent
	Dependencies
	Requirements for IPMultiNICB
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Manually migrating a logical IP address
	Sample configurations

	MultiNICB agent
	Base and Multipathing modes
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Solaris operating modes: Base and Multipathing
	Sample configurations

	DNS agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Online query
	Monitor scenarios
	Sample web server configuration
	Sample DNS configuration
	Secure DNS update

	File share agents
	About the file service agents
	NFS agent
	Service Management Facility for Solaris 10
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	NFSRestart agent
	Dependencies
	Agent functions
	State definitions
	Attributes
	Service Management Facility-Solaris 10
	NFSRestart notes
	Resource type definition
	Sample configurations

	Share agent
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Service and application agents
	About the service and application agents
	Apache Web server agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Detecting Application Failure
	About the ACC Library
	Sample configurations

	Application agent
	Virtual fire drill
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Process agent
	Virtual fire drill
	Dependencies
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	ProcessOnOnly agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configurations

	Zone agent
	Agent functions
	Attributes
	Resource type definition
	Sample configuration

	Infrastructure and support agents
	About the infrastructure and support agents
	NotifierMngr agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration

	VRTSWebApp agent
	Agent functions
	State definitions
	Attributes
	Resource type definition
	Sample configuration

	Proxy agent
	Agent functions
	Attributes
	Resource type definition
	Sample configurations

	Phantom agent
	Agent functions
	Attribute
	Resource type definition
	Sample configurations

	RemoteGroup agent
	Dependency
	Agent functions
	State definitions
	Attributes
	Resource type definition

	Testing agents
	About the program support agents
	ElifNone agent
	Agent function
	Attributes
	Resource type definition
	Sample configuration

	FileNone agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	FileOnOff agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	FileOnOnly agent
	Agent functions
	Attribute
	Resource type definition
	Sample configuration

	Index

