
Veritas™ Cluster Server
Agent Developer’s Guide

AIX, HP-UX, Linux, and Solaris

5.0

Veritas Cluster Server
Agent Developer’s Guide

Copyright © 1998- 2006 Symantec Corporation. All rights reserved.

Veritas Cluster Server 5.0

Symantec, the Symantec logo, Storage Foundation, are trademarks or registered
trademarks of Symantec Corporation or its affiliates in the U.S. and other countries. Other
names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Symantec Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014
www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Symantec product. Such third-party software is licensed separately by
its copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.

AIX is a registered trademark of IBM Corporation.
HP-UX is a registered trademark of Hewlett-Packard Development Company, L.P.
Linux is a registered trademark of Linus Torvalds.
Solaris is a trademark of Sun Microsystems, Inc.
Windows is a registered trademark of Microsoft Corporation.
Oracle is a registered trademark of Oracle Corporation.

Licensing and registration
Veritas Cluster Server is a licensed product. See the Veritas Cluster Server
Installation Guide for license installation instructions.

Technical support
For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Contents
Chapter 1 Introduction
VCS agents: an overview ...13
How agents work ..14

The agent framework ..14
Resource type definitions ...14
Entry points ..15

Developing an agent: overview ..15
Applications considerations ...15
Creating an agent: highlights ...16

Creating the resource type definition ...16
Choosing to use C++ or scripts to implement the agent16
Creating the entry points ..17
Testing the agent ...17

Resource type definitions ...17
Example resource type definition: FileOnOff18
The FileOnOff Resource: an example in the main.cf file20
How the FileOnOff agent uses configuration information20

Example script entry points for the FileOnOff resource21
Online entry point for FileOnOff ...21
Monitor entry point for FileOnOff ..22
Offline entry point for FileOnOff ..23

About on-off, on-only, and persistent resources ..24
About attributes of resources and resource types ..24

Categories of attributes ...25
Attribute data types and dimensions ..27

Attribute data types ...27
Attribute dimensions ...27

Chapter 2 Agent entry point overview
Agents process entry point requests one at a time ..30
Using C++ or script entry points ...30

C++ agents ...31
Script agents ...31
About the VCSAgStartup routine ..31

Implementing entry points using scripts ...31

6 Contents
Implementing all or some of the entry points in C++ 32
Example: VCSAgStartup with C++ and script entry points 33

Agent entry points ... 34
monitor .. 34

Asynchronous monitoring ... 35
info ... 35

Return values for info entry point .. 36
Invoking the info entry point ... 36
ResourceInfo resource attribute used by info entry point 37

online ... 37
offline .. 38
clean ... 38
action ... 40

Action tokens .. 40
Return values for action entry point .. 41

attr_changed ... 41
open ... 41
close ... 42
shutdown ... 42

Summary of return values for entry points .. 43
Agent information file .. 44

Example agent information file ... 44
Agent information ... 45
Attribute argument details ... 46

Implementing the agent XML information file 47

Chapter 3 Entry points in C++
Entry point examples in this chapter ... 50

Data Structures .. 51
ArgList Attribute ... 53

ArgList attribute for agents registered as V50 53
ArgList Attribute for agents registered as V40 and earlier 53

C++ Entry Point Syntax .. 56
VCSAgStartup .. 56
monitor .. 57
info ... 58

resinfo_op ... 58
info_output ... 58
opt_update_args ... 59
opt_add_args .. 59
Example, info entry point implementation in C++ 60

online ... 64
offline .. 65

7Contents
clean ...66
action ...67
attr_changed ...69
open ..71
close ..72
shutdown ...73

Primitives ..74
VCSAgRegisterEPStruct ...74
VCSAgSetCookie ..75
VCSAgRegister ...76
VCSAgUnregister ...77
VCSAgGetCookie ..78
VCSAgStrlcpy ...79
VCSAgStrlcat ..79
VCSAgSnprintf ...79
VCSAgCloseFile ..79
VCSAgDelString ...79
VCSAgExec ..80
VCSAgExecWithTimeout ..81
VCSAgGenSnmpTrap ..83
VCSAgSendTrap ..83
VCSAgLockFile ...83
VCSAgSetStackSize ...84
VCSAgUnlockFile ...84
VCSAgDisableCancellation ...84
VCSAgRestoreCancellation ..84
VCSAgSetLogCategory ..84
VCSAfGetProductName ..84

APIs for Solaris Zones support ..85
VCSAgGetContainerName ..85
VCSAgGetContainerID ..85
VCSAgExecInContainer ..85
VCSAgISZoneCapable() ...86

Chapter 4 Entry points in scripts
Rules for using script entry points ..87
Parameters and values for script entry points ..88
ArgList attributes ...88

ArgList attribute for agents registered as V50 ..88
ArgList Attribute for agents registered as V40 and earlier88
Examples ...89

Script entry point syntax ..90
monitor ..90

8 Contents
online ... 90
offline .. 90
clean ... 91
action ... 91
attr_changed ... 92
info ... 92
open ... 93
close ... 93
shutdown ... 93

Chapter 5 Logging agent messages
Logging in C++ and script-based entry points .. 95

Agent messages: format ... 96
Timestamp .. 96
Mnemonic ... 96
Severity .. 96
UMI .. 96
Message text ... 97

C++ agent logging APIs ... 97
Agent application logging macros for C++ entry points 98
Agent debug logging macros for C++ entry points 99
Severity arguments for C++ macros ...100
Initializing function_name using VCSAG_LOG_INIT101
Log category ...102
Examples of logging APIs used in a C++ agent103

Script entry point logging functions ..106
VCSAG_SET_ENVS ..107

VCSAG_SET_ENVS examples, Shell script entry points108
VCSAG_SET_ENVS examples, Perl script entry points108

VCSAG_LOG_MSG ...109
VCSAG_LOG_MSG examples, Shell script entry points109
VCSAG_LOG_MSG examples, Perl script entry points110

VCSAG_LOGDBG_MSG ...110
VCSAG_LOGDBG_MSG examples, Shell script entry points110
VCSAG_LOGDBG_MSG examples, Perl script entry points111

Using the functions in scripts ...111
Example of logging functions used in a script agent112

Chapter 6 Building a custom agent
Creating an agentTypes.cf file ...115

Example: FileOnOffTypes.cf file ..115
Requirements for creating the agentTypes.cf file115

9Contents
The resource defined in the main.cf file ..115
Building an agent for FileOnOff resources ..116

Using script entry points ..116
Using VCSAgStartup() and script entry points118
Using C++ and script entry points ..119
 Using C++ entry points ..121

Chapter 7 Testing agents
Using debug messages ..126
Using the engine process to test agents ...126

Test commands ..127
Using the AgentServer utility to test agents ...128

Chapter 8 Static type attributes
Overriding static type attributes ...133
Static type attribute definitions ..134

ActionTimeout ..134
AgentClass ...134
AgentFailedOn ..134
AgentPriority ..134
AgentReplyTimeout ..135
AgentStartTimeout ..135
ArgList ...135

ArgList reference attributes ...135
AsyncMon ..136

Enabling and disabling asynchronous monitoring136
AttrChangedTimeout ..137
CleanTimeout ...137
CloseTimeout ..137
ContainerType ..137

ContainerName resource attribute ...137
About entry point implementation for non-global zones137
About installing agents that use zones ...138

ConfInterval ..139
FaultOnMonitorTimeouts ...140
FireDrill ...140
InfoInterval ...140
InfoTimeout ..141
LogDbg ...141
LogFileSize ..142
ManageFaults ...143
MonitorInterval ..143

10 Contents
MonitorStatsParam ...144
MonitorTimeout ...144
NumThreads ...145
OfflineMonitorInterval ...145
OfflineTimeout ...145
OnlineRetryLimit ...146
OnlineTimeout ...146
OnlineWaitLimit ..147
OpenTimeout ..147
Operations ..147
RegList ...148
RestartLimit ..149
ScriptClass ..149
ScriptPriority ..149
SupportedActions ..150
ToleranceLimit ...150

Scheduling class and priority configuration support151
Priority ranges ...151
Default scheduling classes and priorities ..152
Initializing attributes in the configuration file153
Setting attributes dynamically from the command line154

Chapter 9 State transition diagrams
State transitions ..155
State transitions with respect to ManageFaults attribute164

Chapter 10 Internationalized messages
Creating SMC files ...172

SMC format ...172
Example SMC file ...172
Formatting SMC files ..173
Naming SMC files, BMC files ..173
Message examples ...174
Using format specifiers ..174

Converting SMC files to BMC files ..175
Storing BMC files ...175

VCS languages ..175
Displaying the contents of BMC files ..175

Using BMC Map Files ..176
Location of BMC Map Files ...176

11Contents
Creating BMC Map Files ..176
Example BMC Map File ..176

Updating BMC Files ...177

Appendix A Using pre-5.0 VCS agents
Using pre-5.0 VCS agents and registering

them as V50 ..179
Outline of steps to change V40 agents V50 ...179
Overview of V50 name-value tuple format ..180

Scalar attribute format ...180
Vector attribute format ...180
Keylist attribute format ..180
Association attribute format ..180
Example script in V40 and V50 ..181

Sourcing ag_i18n_inc modules in script entry points181
Guidelines for Using Pre-VCS 4.0 Agents ..182
Log Messages in Pre-VCS 4.0 Agents ..183

Mapping of Log Tags (Pre-VCS 4.0) to Log Severities (VCS 4.0)183
How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later184
Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros184

Pre-VCS 4.0 Message APIs ..185
VCSAgLogConsoleMsg ..185
VCSAgLogI18NMsg ..186
VCSAgLogI18NMsgEx ...187
VCSAgLogI18NConsoleMsg ..188
VCSAgLogI18NConsoleMsgEx ...189

Index 191

12 Contents

Chapter
 1
Introduction

This guide describes the interface provided by the Symantec Veritas Cluster
Server™ (VCS) agent framework and explains how to build and test an agent.

Note: Custom agents, that is, agents developed outside of Symantec, are not
supported by Symantec Technical Support.

VCS agents: an overview
Agents are programs that manage computer resources, such as a disk group or
an IP address, within a cluster environment. Each type of resource requires an
agent. The agent acts as an intermediary between VCS and the resources it
manages, typically by bringing it online, monitoring its state, or taking it offline.

Agents packaged with VCS are referred to as bundled agents. Examples of
bundled agents include the IP (Internet Protocol) and NIC (network interface
card) agents. For more information on VCS bundled agents, including their
attributes and modes of operation, see the Bundled Agents Reference Guide.

Agents packaged separately from the product for use with VCS are referred to as
high availability agents. They include agents for Oracle, for example. Contact
your Symantec Veritas sales representative for information on how to purchase
these agents for your configuration.

14 Introduction
How agents work
How agents work
A single agent can manage multiple resources of the same type on one system.
For example, the NIC agent manages all NIC resources. The resources to be
managed are those defined within the VCS configuration files.

When the VCS engine process, had, comes up on a system, it automatically
starts the agents required for the types of resources that are to be managed on
the system and provides the agents the specific configuration information for
those resources. An agent carries out the commands from VCS to bring
resources online, monitor their status, and take them offline, as needed. When
an agent crashes or hangs, VCS detects the fault and had restarts the agent.

Note: The VCS engine process is known as “had.” The acronym stands for
“high-availability daemon.”.

The agent framework
The agent framework is a set of predefined functions compiled into the agent for
each resource type. These functions include the ability to connect to the VCS
engine and to understand the common configuration attributes, such as
RestartLimit and MonitorInterval. When an agent’s code is built in C++, the
agent framework is compiled in the agent with an include statement. When an
agent is built using script languages, such as shell or Perl, the ScriptAgent
provides the agent framework functions. The agent framework handles much of
the complexity that need not concern the agent developer.

Resource type definitions
The agent for each type of resource requires a resource type definition that
describes the information an agent needs to control resources of that type. The
type definition can be considered similar to a header file in a C program. The
type definition defines the data types of variables (attributes) to provide error
checking, and to provide default values for certain attributes for the entire type.
An example of a resource type that needs definition is the IP resource type. This
type definition includes attributes, such as the IPAddress attribute which stores
the actual IP address of a specific IP resource. This attribute’s data type must
also be defined, which is “string-scalar” in this example.

15Introduction
Developing an agent: overview
Entry points
An entry point is either a C++ function or a script (shell or Perl, for example)
used by the agent to carry out a specific task on a resource. The agent
framework supports a specific set of entry points, each of which is expected to
do a different task and return. Descriptions of each of the supported entry
points begin with “Agent entry points” on page 34.

An agent developer implements the entry points for a resource type that the
agent uses to carry out the required tasks on the resources of that type. For
example, in the online entry point for the Mount type, the agent developer
includes the logic to mount a file system based on the parameters provided to
the entry point. These parameters will be attributes for a particular resource, for
example, mount point, device name, and mount options. In the monitor entry
point, the agent developer would check the state of the mount resource and
return a code to indicate whether the mount resource is online or offline.

Developing an agent: overview
Before creating the agent, some considerations and planning are required,
especially regarding the type of the resource for which the agent is being
created.

Applications considerations
The application for which a VCS agent is developed must lend itself to being
controlled by the agent and be able to operate in a cluster environment. The
following criteria describe an application that can successfully operate in a
cluster:

✔ The application must be capable of being started by a specific command or
set of commands. Specific commands must be available to start the
application’s external resources such as file systems that store databases, or
IP addresses used for listener processes, and so on.

✔ Each instance of an application must be capable of being stopped by a
defined procedure. Other instances of the application must not be affected.

✔ The application must be capable of being stopped cleanly, by forcible means
if necessary.

✔ Each instance of an application must be capable of being monitored.
Monitoring can be simple or in-depth. Monitoring an application becomes
more effective when the monitoring test resembles the actual activity of the
application’s user.

16 Introduction
Developing an agent: overview
✔ The application must be capable of storing data on shared disks rather than
locally or in memory, and each cluster system must be capable of accessing
the data and all information required to run the application.

✔ The application must be crash-tolerant, that is, it must be capable of being
run on a system that crashes and of being started on a failover node in a
known state. This typically means that data is regularly written to shared
storage rather than stored in memory.

✔ The application must be host-independent within a cluster; that is, there are
no licensing requirements or host name dependencies that prevent
successful failover.

✔ The application must run properly with other applications in the cluster.

Creating an agent: highlights
The steps to create and implement an agent are described by example in a later
chapter.

See Chapter 6, “Building a custom agent” on page 113.

Highlights of those steps are described here.

Creating the resource type definition
Create a file containing the resource type definition. Name the file
ResourceTypeTypes.cf. This file is referenced as an “include” statement in
the VCS configuration file, main.cf.

See “Resource type definitions” on page 17.

Choosing to use C++ or scripts to implement the agent
Decide whether to implement the agent entry points using C++ code, scripts, or
a combination of the two. There are advantages and disadvantages
implementing entry points in either method.

See “Agent entry points” on page 34.

See “Using C++ or script entry points” on page 30.

17Introduction
Developing an agent: overview
Creating the entry points
Creating the entry points is described in detail later.

See Chapter 3, “Entry points in C++”.

See Chapter 4, “Entry points in scripts”.

Highlights include:

■ For building an agent using all C++ entry points or a mix of C++ entry points
and script entry points, sample files are provided. Create the agent using
sample files in $VCS_HOME/src/agent/Sample. Build the agent binary and
place it in $VCS_HOME/bin/resource_type.

■ For building an all-scripts entry point agent, use the ScriptAgent binary or
the Script50Agent binary. Create a symbolic link called resource_typeAgent
to the ScriptAgent or the Script50Agent in the appropriate directory:

$VCS_HOME/bin/resource_type

■ Install script entry point files in the directory
$VCS_HOME/bin/resource_type.

Testing the agent
Test the agent by defining the resource type in a configuration.

See Chapter 7, “Testing agents” on page 125.

Resource type definitions
The types.cf file contains definitions of VCS resource types that come
bundled with VCS. The example shown in the following paragraph is for a
standard VCS resource type, FileOnOff. A custom resource type definition
should be placed in a file called ResourcetypeTypes.cf, for example,
MyResourceTypes.cf or OracleTypes.cf.

18 Introduction
Developing an agent: overview
Example resource type definition: FileOnOff
The FileOnOff agent is designed to manage simple files. Each FileOnOff resource
manages one file. For example, when VCS wants to online a FileOnOff resource,
the FileOnOff agent calls the online entry point to create a file of a specific
name in a specific location as configured for that resource. To monitor the
FileOnOff resource, the agent calls the monitor entry point to verify the
existence of the file. When VCS wants the FileOnOff resource taken offline, the
agent calls the offline entry point to remove the file.

The following shows the definition for the FileOnOff resource type. It applies to
all resources of the FileOnOff type for the specific platform:

type FileOnOff (
static str ArgList[] = { PathName }
str PathName
)

19Introduction
Developing an agent: overview
This definition is included in the VCS types.platform.cf file. Note the
following information is included in the FileOnOff type definition:

■ The name of the resource type, in this case, FileOnOff.

■ The ArgList attribute includes the names of the all of the resource
attributes, listing them in the order they are sent to the entry points. The
ArgList attribute is a string vector. In the case of the preceding example, the
FileOnOff resource type contains only one resource level attribute,
PathName, which specifies the absolute pathname for the file to be
managed by the agent.

■ The PathName attribute is defined as “str,” or string variable data type.
The data type for each attribute must be defined.

For more information about the resource type definition, see
Chapter 6, “Building a custom agent” on page 115.

20 Introduction
Developing an agent: overview
The FileOnOff Resource: an example in the main.cf file
In the VCS configuration file, main.cf, a specific resource of the FileOnOff
resource type may resemble:

<resources>
include types.cf
.
.
.

FileOnOff temp_file01 (
PathName = "/tmp/test"
)

The include statement at the beginning of the main.cf file names the types.cf
file, which includes the FileOnOff resource type definition. The resource defined
in the main.cf file specifies:

■ The resource type: FileOnOff

■ The name of the resource, temp_file01

■ The name of the attribute, Pathname

■ The value for the PathName attribute: “/tmp/test”

When the resource temp_file01 is brought online on a system by VCS, the
FileOnOff agent creates a file “test” in the directory “/tmp” on that system.

How the FileOnOff agent uses configuration information
The information in the VCS configuration is passed by the engine to the
FileOnOff agent when the agent starts up on a system. The information passed
to the agent includes: the names of the resources of the type FileOnOff
configured on the system, the corresponding resource attributes, and the values
of the attributes for all of the resources of that type.

Thereafter, to bring the resource online, for example, VCS can provide the agent
with the name of the entry point (online) and the name of the resource
(temp_file01). The agent then calls the entry point and provides the resource
name and values for the attributes in the ArgList to the entry point. The entry
point performs its tasks.

21Introduction
Developing an agent: overview
Example script entry points for the FileOnOff resource
The following example shows entry points written in a shell script.

Note: The actual VCS FileOnOff entry points are written in C++, but for this
example, shell script is used.

Online entry point for FileOnOff
The FileOnOff example entry point is simple. When the agent’s online entry
point is called by the agent, the entry point expects the name of the resource as
the first argument, followed by the values of the remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the
attribute’s value, and the value.

In this example of an agent earlier than V50, the value of PathName attribute is
the second argument. The agent creates the file /tmp/test in the specified
path.

#!/bin/sh
FileOnOff Online script
Expects ResourceName and PathName
#
. $VCSHOME/bin/ag_i18n_inc.sh
RESNAME=$1
VCSAG_SET_ENVS $RESNAME
#check if second attribute provided
if [-z "$2"]
then
 VCSAG_LOG_MSG "W" "The value for PathName is not specified”
 1020
else
 #Create the file
 touch $2
fi
exit 0;

No need for exit code. Shell returns 0 if successful
and 1 if not. Monitor will be called in either case.
exit code indicates the number of seconds the agent should
wait after online entry point completes, before calling
the monitor entry point to check the resource state.

22 Introduction
Developing an agent: overview
Monitor entry point for FileOnOff
When the agent’s monitor entry point is called by the agent, the entry point
expects the name of the resource as the first argument, followed by the values of
the remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the
attribute’s value, and the value.

If the file exists it returns exit code 110, indicating the resource is online. If the
file does not exist the monitor returns 100, indicating the resource is offline. If
the state of the file cannot be determined, the monitor returns 99.

#!/bin/sh
FileOnOff Monitor script
Expects Resource Name and Pathname
#
VCSHOMEVCS_HOME. $VCSHOME/bin/ag_i18n_inc.sh
RESNAME=$1
VCSAG_SET_ENVS $RESNAME
#check if second attribute provided
#Exit with unknown and log error if not provided.
if [-z "$2"]
then
 VCSAG_LOG_MSG "W" "The value for PathName is not specified”
 1020
 exit 99
else
 if [-f $2]; then exit 110;
 # Exit online (110) if file exists
 # Exit offline (100) if file does not exist
 else exit 100;
 fi
fi

23Introduction
Developing an agent: overview
Offline entry point for FileOnOff
When the agent’s offline entry point is called by the agent, the entry point
expects the name of the resource as the first argument, followed by the values of
the remaining ArgList attributes.

■ For agents that are registered as less than V50, the entry point expects the
values of the attributes in the order the attributes have been specified in the
ArgList attribute.

■ For agents registered as V50 and greater, the entry point expects the ArgList
in tuple format: the name of the attribute, the number of elements in the
attribute’s value, and the value.

When the values are accepted by the entry point, the file is deleted.
#!/bin/sh
FileOnOff Offline script
Expects ResourceName and Pathname
#
. $VCSHOME/bin/ag_i18n_inc.sh
RESNAME=$1
VCSAG_SET_ENVS $RESNAME
#check if second attribute provided
if [-z "$2"]
then
 VCSAG_LOG_MSG "W" "The value for PathName is not specified”
 1020
else
#remove the file
 /bin/rm –f $2
fi
exit 0;

No need for exit code, as shell returns 0 if successful
and 1 if not. Monitor will be called in either case.
Similar to online - exit code indicates how long the agent
should wait after offline completes before calling
monitor for the resource.

24 Introduction
About on-off, on-only, and persistent resources
About on-off, on-only, and persistent resources
Different types of resources require different types of control, requiring
implementation of different entry points. Resources can be classified as on-off,
on-only, or persistent, depending on the entry points required to control them.

■ On-off resources

Most resources are on-off, meaning agents start and stop them as required.
For example, the engine assigns an IP address to a specified NIC when
bringing a resource online and removes the assigned IP address when
taking the service group offline. Another example is the DiskGroup
resource. The engine imports a disk group when needed and deports it when
it is no longer needed. For agents of on-off resources, all entry points can be
implemented.

■ On-only resources

An on-only resource is brought online when required by the engine, but it is
not taken offline when the associated service group is taken offline. For
example, in the case of the FileOnOnly resource, the engine creates the
specified file when required, but does not delete the file if the associated
service group is taken offline. For agents of on-only resources, the offline
entry point is not needed or invoked.

■ Persistent resources

A persistent resource cannot be brought online or taken offline, yet the
resource must be present in the configuration. For example, a NIC resource
cannot be started or stopped, but it is required to configure an IP address.
The agent monitors persistent resources to ensure their status and
operation. An agent for a persistent resource does not require or invoke the
online or offline entry points. It uses only the monitor entry points.

For all these types of resources, info and action entry points can be
implemented.

About attributes of resources and resource types
Resources are configured and controlled by defining their attributes and
assigning values to these attributes. The attributes assigned to resources can be
categorized by the scope of their control. Some attributes only apply to a specific
resource, some affect the behavior of all resources of a resource type, and some
are applicable to all resource types.

25Introduction
About attributes of resources and resource types
Categories of attributes
■ Resource-specific attributes.

An attribute that can be defined only for a resource is resource-specific.
Examples include the PathName attribute for the FileOnOff resource and
the MountPoint attribute for the Mount resource. Values for
resource-specific attributes are set in the main.cf file.

■ Type-dependent attributes:

When attributes can be defined for all resources of a specific type, they are
type-dependent. An example would be the StartVolumes and Stop Volumes
attributes of the DiskGroup resource type. All resources of the type
DiskGroup have the default values for these attributes.

■ Type-independent attributes:

An attribute that applies to all types is a type-independent attribute. The
value for such an attribute for a particular type would affect all resources of
that type. An example of such an attribute is the MonitorInterval attribute.
These attributes are not defined in the types.platform.xml. Their values,
though, can be set in the types.cf file.

The value of a type-independent attribute can be set for a given type. For
example, the default value of MonitorInterval is 60 seconds, but it can be set
for a specific resource type in the types.cf file.

type FileOnOff (
 static str ArgList[] = { PathName }
 str PathName
 static int MonitorInterval=30
)

Attributes in general can be static and non-static. Static attributes are
typically defined in the types.cf file, identified as static. For example, the
ArgList attribute is defined as a static attribute:
.

. type FileOnOff (
static str ArgList[] = { PathName }
.
.
)

The values of type-independent static attributes are predefined, set at the
resource type level, where the values apply to all resources of that type. The
values of most static resource type attributes can be overridden at the
resource level so that they can take a value for a specific resource.

See “Overriding static type attributes” on page 133.

■ Global and local attributes:

26 Introduction
About attributes of resources and resource types
An attribute whose value applies for the resource on all systems is global.
The values of a resource’s attribute can be set to have a local scope, or
context, that is, apply to specific systems.

In the following example of the MultiNICA resource type, attributes
applying locally are indicated by “@system” following the attribute name:

MultiNICA mnic (
Device@sysa = { le0 = "166.98.16.103", qfe3 =

"166.98.16.105" }
Device@sysb = { le0 = "166.98.16.104", qfe3 =

"166.98.16.106" }
NetMask = "255.255.255.0"
ArpDelay = 5
Options = "trailers"
RouteOptions@sysa = "default 166.98.16.103 0"
RouteOptions@sysb = "default 166.98.16.104 0"
)

In the preceding example, the value of the NetMask attribute is
“255.255.255.0” on all systems, whereas the values of the Device attribute
and the RouteOptions attribute are different on sysa and sysb.

■ Temp attributes

“Temp” attributes are maintained by VCS only at run time. Their values are
not stored persistently, but are maintained in memory by the VCS engine,
and are lost when VCS is stopped and restarted. Refer to the User’s Guide
for information about temp attributes.

27Introduction
About attributes of resources and resource types
Attribute data types and dimensions
Attributes contain data regarding the cluster, systems, service groups,
resources, resource types, agents, and heartbeats if the Global Cluster option is
used (refer to the Veritas Cluster Server User’s Guide for information about the
Global Cluster option).

Attribute data types
■ String

A string is a sequence of characters enclosed by double quotes. A string may
also contain double quotes, but the quotes must be immediately preceded by
a backslash character. A backslash character itself is represented in a string
as \\.

Quotes are not required if a string begins with a letter, and contains only
letters, numbers, dashes (-), and underscores (_). For example, a string
defining a network interface such as hme0 does not require quotes as it
contains only letters and numbers.

However a string containing delimiters, such as an IP address, requires
quotes. For example “192.168.100.1” because the IP address contains
periods. For example:

str Address = "192.168.100.1"

■ Integer

Signed integer constants are a sequence of digits from 0 to 9. They may be
preceded by a dash, and are interpreted in base 10. Integers cannot exceed
the value of a 32-bit signed integer, 21471183247. For example:

int StartVolumes = 1

■ Boolean

A Boolean is an integer whose possible values are true (1) or false (0).

Attribute dimensions
■ Scalar

A scalar has only one value. This is the default attribute dimension. To
define an attribute with a scalar dimension, add a line in the resource type
definition. It should resemble:

str scalar_attribute

For example:
str MountPoint

When values are assigned to a scalar attribute in the main.cf configuration
file, it might resemble:

MountPoint = "/Backup"

28 Introduction
About attributes of resources and resource types
■ Vector

A vector is an ordered list of values. A set of brackets ([]) denotes that the
dimension is a vector. Brackets are specified following the attribute name in
the resource type attribute definition. To define an attribute with a vector
dimension, add a line in the resource type definition. It should resemble:

str vector_attribute[]

For example:
str BackupSys[]

When values are assigned to a vector attribute in the main.cf
configuration file, the attribute definition might resemble:

BackupSys[] = { sysA, sysB, sysC }

■ Keylist

A keylist is an unordered list of strings, with each string being unique
within the list. To define an attribute with a keylist dimension, add a line in
the resource type definition. It should resemble:

keylist keylist_attribute = { value1, value2 }

For example:
keylist BackupVols = {}

When values are assigned to a keylist attribute in the main.cf file, it might
resemble:

BackupVols = { vol1, vol2 }

■ Association

An association is an unordered list of name-value pairs. Each pair is joined
by an equal sign. A set of braces ({}) denotes that an attribute is an
association. Braces are specified after the attribute name in the attribute
definition. To define an attribute with a association dimension, add a line in
the resource type definition. It should resemble:

int assoc_attr{} = { attr1 = val1, attr2 = val2 }

For example:
int BackupSysList {}

When values are assigned to an association attribute in the main.cf file, it
might resemble:

BackupSysList{} = { sysa=1, sysb=2, sysc=3 }

Chapter
 2
Agent entry point overview

Developing an agent means developing the entry points that the agent can call to
perform operations on a resource, such as to bring a resource online, to take a
resource offline, or to monitor the resource.

The agent framework supports the following commonly used entry points:

■ monitor - determines the status of a resource

■ info - provides information about an online resource

■ online - brings a resource online

■ offline - takes a resource offline

■ clean - terminates ongoing tasks for a resource being taken offline

■ action - starts a defined action for a resource

The agent framework also supports the following rarely needed entry points:

■ attr_changed - responds to a resource’s attribute’s value change

■ open - initializes a resource before the agent starts to manage it

■ close - deinitializes a resource before the agent stops managing it

■ shutdown - called when the agent shuts down

This chapter contains descriptions of each of the supported entry points.

See “Agent entry points” on page 34.

30 Agent entry point overview
Agents process entry point requests one at a time
Agents process entry point requests one at a time
The agent framework ensures that only one entry point is running for a given
resource at one time. If multiple requests are received or multiple events are
scheduled for the same resource, the agent queues them and processes them one
at a time. An exception to this behavior is an optimization such that the agent
framework discards internally generated periodic monitoring requests for a
resource that is already being monitored or that has a monitor request pending.

The agent framework is multithreaded. This means a single agent process can
run entry points for multiple resources simultaneously. However, if an agent
receives a request to take a given resource offline and simultaneously receives a
request to close it, it calls the offline entry point first. The close entry point
is called only after the offline request returns or times out. If the offline
request is received for one resource, and the close request is received for
another, the agent can call both simultaneously.

Using C++ or script entry points
You may implement an entry point as a C++ function or a script.

■ The advantage to using C++ is that entry points are compiled and linked
with the agent framework library. They run as part of the agent process, so
no system overhead for creating a new process is required when they are
called. Also, since the entry point invocation is just a function call, the
execution of the entry point is relatively faster. However, if the functionality
of an entry point needs to be changed, the agent would need to be
recompiled to make the changes take effect.

■ The advantage to using scripts is that you can modify the entry points
dynamically. However, to run the script, a new process is created for each
entry point invocation, so the execution of an entry point is relatively slower
and uses more system resource compared to the C++ implementation.

Note that you may use C++, Perl, and shell in any combination to implement
multiple entry points for a single agent. This allows you to implement each
entry point in the most advantageous manner. For example, you may use scripts
to implement most entry points while using C++ to implement the monitor
entry point, which is called often. If the monitor entry point were written in
script, the agent must create a new process to run the monitor entry point each
time it is called.

31Agent entry point overview
Using C++ or script entry points
C++ agents
If you develop an agent with at least one entry point implemented in C++, you
must implement the function VCSAgStartup() and use the required C++
primitives to register the C++ entry point with the agent framework. A sample
file containing templates for creating an agent using C++ entry points is located
in:

$VCS_HOME/src/agent/Sample

Refer to Chapter 6, “Building a custom agent” on page 113 for information
about how to build an agent using C++ entry points or a combination of C++ and
script entry points.

See also Chapter 3, “Entry points in C++” on page 49 or Chapter 4, “Entry
points in scripts” on page 87.

Script agents
Script agents use the ScriptAgent binary or Script50Agent binary that are
shipped with the product. The ScriptAgent and Script50Agent binaries are
located at:

$VCS_HOME/bin/ScriptAgent

See Chapter 4, “Entry points in scripts” on page 87.

See also Chapter 6, “Building a custom agent” on page 113.

About the VCSAgStartup routine
When an agent starts, it uses the routine named VCSAgStartup to initialize the
agent’s data structures.

Implementing entry points using scripts
If you implement all of the agent's entry points as scripts, you can use the
ScriptAgent or Script50Agent binary. The built-in implementation of
VCSAgStartup() in these binaries initializes the agent's data structures such that
it causes the agent to look for and execute the scripts for the entry points.

32 Agent entry point overview
Using C++ or script entry points
Implementing all or some of the entry points in C++
If you implement at least one entry point in C++, you can use VCSAgStartup
routine within the agent implementation to tell the agent framework which
function to invoke for the entry point(s). You can do this by defining a variable
of type VCSAgV40EntryPointStruct and setting its fields appropriately for
each entry point. You can then use the agent framework API,
VCSAgRegisterEPStruct(), to register your C++ entry point implementations
with the agent framework.

See also “VCSAgRegisterEPStruct” on page 74.

Each field in the structure represents a particular entry point. When you
implement an entry point in C++, set the fields to the function address for the
appropriate entry point function. Otherwise, set the field to NULL which
indicates that the given entry point has been implemented as a script (or
alternately, the entry point has not been implemented).

Sample VCSAgV40EntryPointStruct primitive
The VCSAgV40EntryPointStruct primitive has the following definition:

.

.
// Structure used to register the entry points.

typedef struct {
void (*open)(const char *res_name,void **attr_val);
void (*close)(const char *res_name,void **attr_val);
VCSAgResState (*monitor)(const char *res_name, void

**attr_val, int *conf_level);
unsigned int (*online)(const char *res_name,

void **attr_val);
unsigned int (*offline) (const char *res_name,

void **attr_val);
unsigned int (*action) (const char *res_name, const char

*action_token, void **attr_val, char
**action_args, char *action_output);

unsigned int (*info) (const char *res_name,
 VCSAgResInfoOp resinfo_op, void **attr_val,

char **info_output, char ***opt_update_args,
char ***opt_add_args);

void (*attr_changed) (const char *res_name,
const char *changed_res_name, const char
*changed_attr_name, void **new_val);

unsigned int (*clean) (const char *res_name,
VCSAgWhyClean reason, void **attr_val);

void (*shutdown) ();
} VCSAgV40EntryPointStruct;

33Agent entry point overview
Using C++ or script entry points
Example: VCSAgStartup with C++ and script entry points
When using C++ to implement an entry point, assign the entry point’s function
address to the corresponding field of VCSAgV40EntryPointStruct. In the
following example, the function my_shutdown is assigned to the field
shutdown.

#include "VCSAgApi.h"
void my_shutdown() {

...
}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
ep.open = NULL;
ep.online = NULL;
ep.offline = NULL;
ep.monitor = NULL;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.close = NULL;
ep.info = NULL;
ep.action = NULL;
ep.shutdown = my_shutdown;
}

VCSAgRegisterEPStruct(V50, &ep);

Note that the monitor entry point, which is mandatory, is assigned a NULL
value, indicating it is implemented using scripts. If you are using a script entry
point, or if you are not implementing an optional entry point, set the
corresponding field to NULL.

For an entry point whose field is set to NULL, the agent automatically looks for
the correct script to execute:

$VCS_HOME/bin/resource_type/<entry_point>

34 Agent entry point overview
Agent entry points
Agent entry points
The entry points supported by agent framework are described in the following
sections. With the exception of monitor, all entry points are optional. Each may
be implemented in C++ or scripts.

monitor
The monitor entry point typically contains the logic to determine the status of
a resource. For example, the monitor entry point of the IP agent checks
whether or not an IP address is configured, and returns the state online, offline,
or unknown.

Note: This entry point is mandatory.

The agent framework calls the monitor entry point after completing the
online and offline entry points to determine if bringing the resource online
or taking it offline was effective. The agent framework also calls this entry point
periodically to detect if the resource was brought online or taken offline
unexpectedly.

Unless certain attribute values have been modified from their default values, the
monitor entry point runs every sixty seconds (the default value of the
MonitorInterval attribute) when a resource is online. When a resource is
expected to be offline, the entry point runs every 300 seconds (the default value
for the OfflineMonitorInterval attribute).

The monitor entry point receives a resource name and ArgList attribute
values as input (see “ArgList” on page 135).

It returns the resource status (online, offline, or unknown), and the confidence
level 0–100. The entry point returns confidence level only when the resource
status is online. The confidence level is informative only and is not used by the
engine.

A C++ entry point can return a confidence level of 0–100. A script entry point
combines the status and the confidence level in a single number. For example:

■ 100 indicates offline.

■ 101 indicates online and confidence level 10.

■ 102 indicates online and confidence level 20.

■ 103–109 indicates online and confidence levels 30–90.

■ 110 indicates online and confidence level 100.

If the exit value of the monitor script entry point falls outside the range
100–110, the status is considered unknown.

35Agent entry point overview
Agent entry points
Asynchronous monitoring
You may choose to enable asynchronous monitoring for some resources. With
asynchronous monitoring, the agent framework does not call the monitor
entry point at a regular interval. Instead, the framework waits for notification of
a change in the state of the resource. In response to such an event, monitoring of
the resource begins immediately. Asynchronous monitoring requires less load
on systems by eliminating the periodic polling associated with default method of
monitoring. Also, with asynchronous monitoring, there is immediate response
to the resource state change, and the delay inherent in periodic polling is
avoided.

See “Enabling and disabling asynchronous monitoring” on page 136.

info
The info entry point enables agents to obtain information about an online
resource. For example, the Mount agent’s info entry point could be used to
report on space available in the file system. All information the info entry
point collects is stored in the “temp” attribute ResourceInfo.

See the User’s Guide for information about “temp” attributes.

The ResourceInfo attribute is a string association that stores name-value
pairs. By default, there are three such name-value pairs: State, Msg, and TS.
State indicates the status, valid or invalid, of the information contained in the
ResourceInfo attribute; Msg indicates the output of the info entry point, if
any; TS indicates the timestamp of when the ResourceInfo attribute was last
updated.

The (script) entry point can optionally modify a resource’s ResourceInfo
attribute by adding or updating other name-value pairs using the following
commands:

hares -modify res ResourceInfo -add key value

or
hares -modify res ResourceInfo -update key value

Refer to the hares manual page for more information on modifying values of
string-association attributes.

For a description of the ResourceInfo attribute, see “ResourceInfo resource
attribute used by info entry point” on page 37.

For input, the info entry point receives as arguments the resource name, the
value of resinfo_op, and the ArgList attribute values.

In the case of C++ implementation, the output of the entry point is returned in
info_output. The output buffer has a 2048-byte limit.

36 Agent entry point overview
Agent entry points
For any optional name-value pairs, which are returned in either opt_add_args
or opt_update_args two-dimensional character arrays, the name and the
value each have a limit of 4096 bytes.

See the C++ example, “Example, info entry point implementation in C++” on
page 60. For the script example, see “info” on page 92.

Return values for info entry point
■ If the info entry point exits with 0 (success), the output captured on stdout

for the script entry point, or the contents of the info_output argument
for C++ entry point, is dumped to the Msg key of the ResourceInfo
attribute. The Msg key is updated only when the info entry point is
successful. The State key is set to the value: Valid.

■ If the entry point exits with a non-zero value, ResourceInfo is updated to
indicate the error; the script’s stdout or the C++ entry point’s info_output
is ignored. The State key is set to the value: Invalid. The error message is
written to the agent’s log file.

■ If the info entry point times out, output from the entry point is ignored.
The State key is set to the value: Invalid. The error message is written to
the agent’s log file.

■ If a user kills the info entry point (for example, kill -15 pid), the State
key is set to the value: Invalid. The error message is written to the agent’s
log file.

■ If the resource for which the entry point is invoked goes offline or faults, the
State key is set to the value: Stale.

■ If the info entry point is not implemented, the State key is set to the
value: Stale. The error message is written to the agent’s log file.

Invoking the info entry point
You can invoke the info entry point from the command line for a given online
resource using the hares -refreshinfo command.

See the hares manual page.

By setting the InfoInterval attribute to some value other than 0, you can
configure the agent to invoke the info entry point periodically for an online
resource.

See “InfoInterval” on page 140.

37Agent entry point overview
Agent entry points
ResourceInfo resource attribute used by info entry point
The ResourceInfo (string-association) is a temporary attribute, the scope of
which is set by the engine to be global for failover groups or local for parallel
groups. Because ResourceInfo is a temporary attribute, its values are never
dumped to the configuration file.

The values of the ResourceInfo attribute are expressed in three mandatory
keys: State, Msg, and TS.For State, the possible values are “Valid,” (the
default), “Invalid,” and “Stale”). Msg (default is ““, a null string) contains the
output from the entry point. TS contains the time at which the attribute was last
updated. These mandatory keys are updated only by the agent framework, not
the entry point. The entry point can define and add other keys (name-value
pairs) and update them.

The value of the ResourceInfo attribute can be displayed using the hares
command. The output of hares -display shows the first 20 characters of the
current value; the output of hares -value resource ResourceInfo shows
all name-value pairs in the keylist.

The resource for which the info entry point is invoked must be online. When a
resource goes offline or faults, the State key is marked “Stale” because the
information is not current. If the info entry point exits abnormally, the State
key is marked “Invalid” because not all of the information is known to be valid.
Other key data, including Msg and TS keys, are not touched. You can manually
clear values of the ResourceInfo attribute by using the hares -flushinfo
command. This command deletes any optional keys for the ResourceInfo
attribute and sets the three mandatory keys to their default values.

See the hares manual page.

online
The online entry point typically contains the code to bring a resource online.
For example, the online entry point for an IP agent configures an IP address.
When the online procedure completes, the monitor entry point is
automatically called by the framework to verify that the resource is online.

The online entry point receives a resource name and ArgList attribute values
as input. It returns an integer indicating the number of seconds to wait for the
online to take effect. The typical return value is 0. If the return value is not zero,
the agent framework waits the number of seconds indicated by the return value
before calling the monitor entry point for the resource.

38 Agent entry point overview
Agent entry points
offline
The offline entry point takes a resource offline. For example, the offline
entry point for an IP agent removes an IP address from the system. When the
offline procedure completes, the monitor entry point is automatically called by
the framework to verify that the resource is offline.

The offline entry point receives a resource name and ArgList attribute
values as input. It returns an integer indicating the number of seconds to wait
for the offline to take effect. The typical return value is 0. If the return value is
not zero, the agent framework waits the number of seconds indicated by the
return value to call the monitor entry point for the resource.

clean
The clean entry point is called automatically by the agent framework when all
ongoing tasks associated with a resource must be terminated and the resource
must be taken offline, perhaps forcibly. The entry point receives as input the
resource name, an encoded reason describing why the entry point is being
called, and the ArgList attribute values. It must return 0 if the operation is
successful and 1 if unsuccessful.

The reason for calling the entry point is encoded according to the following
enum type:

enum VCSAgWhyClean {
VCSAgCleanOfflineHung,
VCSAgCleanOfflineIneffective,
VCSAgCleanOnlineHung,
VCSAgCleanOnlineIneffective,
VCSAgCleanUnexpectedOffline,
VCSAgCleanMonitorHung

};

■ VCSAgCleanOfflineHung

The offline entry point did not complete within the expected time.

See “OfflineTimeout” on page 145.)

■ VCSAgCleanOfflineIneffective

The offline entry point was ineffective. The monitor entry point
returned a status other than OFFLINE after the scheduled invocation of the
offline entry point for the resource.

39Agent entry point overview
Agent entry points
■ VCSAgCleanOnlineHung

The online entry point did not complete within the expected time.

(See “OnlineTimeout” on page 146.)

■ VCSAgCleanOnlineIneffective

The online entry point was ineffective. The monitor entry point
scheduled for the resource after the online entry point invocation
returned a status other than ONLINE.

■ VCSAgCleanUnexpectedOffline

The online resource faulted because it was taken offline unexpectedly.

■ VCSAgCleanMonitorHung

The online resource faulted because the monitor entry point consistently
failed to complete within the expected time.

(See “FaultOnMonitorTimeouts” on page 140.)

The agent supports the following tasks when the clean entry point is
implemented:

■ Automatically restarts a resource on the local system when the resource
faults. (See the RestartLimit attribute for the resource type.)

■ Automatically retries the online entry point when the attempt to bring a
resource online fails. (See the OnlineRetryLimit attribute for the resource
type.)

■ Enables the engine to bring a resource online on another system when the
online entry point for the resource fails on the local system.

For the above actions to occur, the clean entry point must run successfully,
that is, return an exit code of 0.

40 Agent entry point overview
Agent entry points
action
The command hares with the -action option invokes the action entry point.
Administrators can issue the command to bring about a specific action for a
specified resource on a given system. Actions are designated by the action_token
argument. Typically, such actions can be completed in a short time and do not
involve bringing resources online or taking them offline. The following shows
the syntax for the -action option used with the hares command:

hares -action res_name action_token [-actionargs arg1 arg2 ...]
[-sys sys_name] [-clus cluster]

The actions specified by the action_token correspond to actions defined in
the static attribute SupportedActions in the resource type definition file (see
“SupportedActions” on page 150). Such actions may include getting the name of
a database instance (in the case of a database-related agent, for example),
putting a database in the restricted mode, taking a database out of restricted
mode, backing up a database, and so on.

The following example commands show the invocation of the action entry
point using the example action tokens, DBSuspend and DBResume:

hares -action DBResource DBSuspend -actionargs dbsuspend -sys
Sys1

Also,
hares -action DBResource DBResume -actionsargs dbstart -sys Sys1

Action tokens
■ For a script-based implementation of the action entry point, a directory

named actions within /opt/VRTSvcs/bin/agent must contain scripts
named for each action indicated by the action token. For example, the RVG
agent could have the scripts named: demote, split_dg, and promote in
directory /opt/VRTSvcs/bin/RVG/actions (assuming this is the agent’s
working directory). The agent framework invokes the script directly. (See
“action” on page 91.)

■ For C++-based implementation of the action entry point, a switch
statement includes all possible valid actions, one for each action_token.
See “action” on page 67.

An agent will use one of the following directories as its working directory,
depending on whether it is present or supplied, in the following order:

■ The directory specified by the AgentDirectory attribute

■ /opt/VRTSvcs/bin/type/

■ /opt/VRTSagents/ha/bin/type/

If none of the above directories exist, the agent will not startup.

41Agent entry point overview
Agent entry points
Return values for action entry point
The action entry point exits with a 0 if it is successful, or 1 if not successful.
The command hares -action exits with 0 if the action entry point exits with
a 0 and 1 if the action entry point is not successful.

The agent framework limits the action entry point output to 2048 bytes.

attr_changed
This entry point provides a way to respond to resource attribute value changes.
The attr_changed entry point is called when a resource attribute is modified,
and only if that resource is registered with the agent framework for notification.
See the primitives “VCSAgRegister” on page 76 and “VCSAgUnregister” on
page 77 for details. For information about registering resources automatically,
see “RegList” on page 148. The attr_changed entry point receives as input the
resource name registered with the agent framework for notification, the name
of the changed resource, the name of the changed attribute, and the new
attribute value. It does not return a value. Most agents do not require this
functionality and will not implement this entry point.

open
The open entry point is called whenever the Enabled attribute for the resource
changes from 0 to 1. The entry point receives the resource name and ArgList
attribute values as input and returns no value. This entry point typically
initializes the resource.

Note: A resource can be brought online, taken offline, and monitored only if it is
managed by an agent. For an agent to manage a resource, the value of the
resource’s Enabled attribute must be set to 1.

When an agent starts, the open entry point of each resource defined in the
configuration file is called before its online, offline, or monitor entry
points are called. This allows you to include initialization for specific resources.
Most agents do not require this functionality and will not implement this entry
point.

42 Agent entry point overview
Agent entry points
close
The close entry point is called whenever the Enabled attribute changes from
1 to 0, or when a resource is deleted from the configuration on a running cluster
and the state of the resource permits running the close entry point. Please see
the table below to find out which states of the resource allow running of the
close entry point when the resource is deleted on a running cluster. It receives a
resource name and ArgList attribute values as input and returns no value. This
entry point typically deinitializes the resource if implemented. Most agents do
not require this functionality and will not implement this entry point.

Note: A resource is monitored only if it is managed by an agent. For an agent to
manage a resource, the resource’s Enabled attribute value must be set to 1.

shutdown
The shutdown entry point is called before the agent shuts down. It performs
any agent cleanup required before the agent exits. It receives no input and
returns no value. Most agents do not require this functionality and do not
implement this entry point.

Table 2-1 States in which CLOSE entry point runs - based on operations type
of resource

Resource Type Online
State

Offline
State

Probing Going
Offline
Waiting

Going
Online
Waiting

None (persistent) Yes N/A Yes Yes N/A

OnOnly Yes Yes Yes Yes Yes

OnOff No Yes Yes No No

43Agent entry point overview
Summary of return values for entry points
Summary of return values for entry points
The following table summarizes the return values for each entry point.

.

Table 2-2 Return values for entry points

Entry Point Return Values

Monitor C++ Based Returns ResStateValues:

■ VCSAgResOnline

■ VCSAgResOffline

■ VCSAgResUnknown

Script-Based Exit values:

■ 100 - Offline

■ 101-110 - Online

■ 99 - Unknown

Info 0 if successful; non-zero value if not successful

Online Integer specifying number of seconds to wait before monitor can check
the state of the resource; typically 0, that is, check resource state
immediately.

Offline Integer specifying number of seconds to wait before monitor can check
the state of the resource; typically 0, that is, check resource state
immediately.

Clean 0 if successful; non-zero value if not successful

If clean fails, the resource remains in a transition state awaiting the
next periodic monitor. After the periodic monitor, clean is attempted
again. The sequence of clean attempt followed by monitoring
continues until clean succeeds. Refer to Chapter 9, “State transition
diagrams” on page 155 for descriptions of internal transition states.

Action 0 if successful; non-zero value if not successful

Attr_changed None

Open None

Close None

Shutdown None

44 Agent entry point overview
Agent information file
Agent information file
The graphical user interface (GUI), Cluster Manager, can display information
about the attributes of a given resource type. For each custom agent, developers
can create an XML file that contains the attribute information for use by the
GUI. The XML file also contains information to be used by the GUI to allow or
disallow certain operations on resources managed by the agent.

Example agent information file
The agent’s information file is an XML file, named agent_name.xml, located in
the agent directory. The file contains information about the agent, such as its
name and version, and the description of the arguments for the resource type
attributes. For example, the following file contains information for the
FileOnOff agent:

<?xml version="1.0">
<agent name="FileOnOff" version="5.0">
 <agent_description>Creates, removes, and monitors files.
 </agent_description>
 <!--Platform the agent runs on-->
 <platform>Solaris</platform>
 <!--Type of agent : script-Binary-Mixed-->
 <agenttype>Binary</agenttype>
 <!--info entry point implemented or not-->
 <info_implemented>No</info_implemented>
 <!--The minimum VCS version needed

 for this agent-->
 <minvcsversion>4.01.0</minvcsversion>
 <!--The agent vendor name-->
 <vendor>Symantec</vendor>
 <!--Attributes list for this agent-->
 <attributes>
 <PathName type="str" dimension="Scalar" editable="True"
 important="True" mustconfigure="True" unique="True"
 persistent="True" range="" default=""
 displayname="PathName">
 <attr_description>Specifies the absolute pathname.
 </attr_description>
 </PathName>
 </attributes>
 <!--List of files installed by this agent-->
 <agentfiles>
 <file name="$VCS_HOME/bin/FileOnOff/FileOnOffAgent" />
 </agentfiles>
</agent>

45Agent entry point overview
Agent information file
Agent information
The information describing the agent is contained in the first section of the XML
file. The following table describes this information, which is also contained in
the previous file example:

Table 2-3 Agent information in the agent information XML file

Agent Information Example

Agent name name="FileOnOff"

Version version="5.0"

Agent description <agent_description>Creates, removes,

and monitors

files.</agent_description>

Platform. For example, Windows
2000 i386, or Solaris Sparc, or
HP-UX 11.11.

<platform>Solaris</platform>

Agent vendor <vendor>Symantec<\vendor>

info entry point implemented or
not; Yes, or No; if not indicated,
info entry point is assumed not
implemented

<info_implemented>No</info_implemented

>

Agent type, for example, Binary,
Script or Mixed

<agenttype>Binary</agenttype>

VCS compatibility; the minimum
version required to support the
agent

<minvcsversion>4.0</minvcsversion>

46 Agent entry point overview
Agent information file
Attribute argument details
The agent’s attribute information is described by several arguments. The
following table describes them. Refer also to the previous XML file example for
the FileOnOff agent and see how the PathName attribute information is
included in the file.

Table 2-4 Description of attribute argument details in XML file

Argument Description

type Possible values for attribute type, such as “str” for strings; see
“Attribute data types” on page 27

dimension Values for the attribute dimension, such as “Scalar;” see “Attribute
dimensions” on page 27 for more information on dimensions

editable Possible Values = “True” or “False”

Indicates if the attribute is editable or not. In most cases, the resource
attributes are editable.

important Possible Values = “True” or “False”

Indicates whether or not the attribute is important enough to display.
In most cases, the value is True.

mustconfigure Possible Values = “True” or “False”

Indicates whether the attribute must be configured to bring the
resource online. The GUI displays such attributes with a special
indication.

If no value is specified for an attribute where the mustconfigure
argument is true, the resource state becomes “UNKNOWN” in the first
monitor cycle. Example of such attributes are Address for the IP agent,
Device for the NIC agent, and FsckOpt for the Mount agent).

unique Possible Values = “True” or “False”

Indicates if the attribute value must be unique in the configuration; that
is, whether or not two resources of same resource type may have the
same value for this attribute. Example of such an attribute is Address
for the IP agent. Not used in the GUI.

persistent Possible Values = “True”. This argument should always be set to “True”;
it is reserved for future use.

47Agent entry point overview
Agent information file
Implementing the agent XML information file
When the agent XML information file is created, you can implement it as
follows:

To implement the agent XML information file in the GUI

1 Make sure the XML file, agent.xml, is in the directory
$VCS_HOME/bin/resource_type.

2 Make sure that the command server is running on each cluster node.

3 Restart the GUI to have the agent’s information shown in the GUI.

range Defines the acceptable range of the attribute value. GUI or any other
client can use this value for attribute value validation.

Value Format: The range is specified in the form {a,b} or [a,b]. Square
brackets indicate that the adjacent value is included in the range. The
curly brackets indicate that the adjacent value is not included in the
range. For example, {a,b] indicates that the range is from a to b, contains
b, and excludes a. In cases where the range is greater than “a” and does
not have an upper limit, it can be represented as {a,] and, similarly, as
{,b] when there is no minimum value.

default It indicates the default value of attribute

displayname It is used by GUI or clients to show the attribute in user friendly
manner. For example, for FsckOpt its value could be “fsck option”.

Table 2-4 Description of attribute argument details in XML file

Argument Description

48 Agent entry point overview
Agent information file

Chapter
 3
Entry points in C++

This chapter describes using C++ to implement agent entry points. It also
describes agent primitives, the C++ functions provided by the agent framework.

Because the agent framework is multithreaded, all C++ code written by the agent
developer must be MT-safe. For best results, avoid using global variables. If you
do use them, access must be serialized (for example, by using mutex locks).

The following guidelines also apply:

■ Do not use C library functions that are unsafe in multithreaded applications.
Instead, use the equivalent reentrant versions, such as readdir_r() instead
of readdir(). Access manual pages for either of these commands by
entering: man command.

■ When acquiring resources (dynamically allocating memory or opening a
file, for example), use thread-cancellation handlers to ensure that resources
are freed properly. See the manual pages for pthread_cleanup_push and
pthread_cleanup_pop for details. Access manual pages for either of
these commands by entering: man command.

50 Entry points in C++
Entry point examples in this chapter
In this chapter, the example entry points are shown for an agent named “Foo.”
The example agent has the following resource type definition:

In the type.cf format:
type Foo (

str PathName
static str ArgList[]= {PathName}

)

For this resource type, the entry points defined are as follows:

Entry Point What it does in this agent

online Creates a file as specified by the Pathname attribute

monitor Checks for the existence of a file specified by the PathName
attribute

offline Deletes the file specified by the PathName attribute

clean Forcibly deletes the file specified by the PathName attribute

action (optional)

info Populates the ResourceInfo attribute with the values of the
attributes specified by the PathName attribute

51Entry points in C++
Data Structures
Data Structures
// Values for the state of a resource - returned by the
// monitor entry point.

enum VCSAgResState {
VCSAgResOffline, // Resource is offline.
VCSAgResOnline, // Resource is online.
VCSAgResUnknown // Resource is neither online nor
 // offline.
};

// Values for the reason why the clean entry point
// is called.

enum VCSAgWhyClean {
VCSAgCleanOfflineHung, // offline entry point did
 // not complete within the
 // expected time.
VCSAgCleanOfflineIneffective, // offline entry point
 // was ineffective.
VCSAgCleanOnlineHung, // online entry point did
 // not complete within the
 // expected time.
VCSAgCleanOnlineIneffective, // online entry point
 // was ineffective.
VCSAgCleanUnexpectedOffline, // the resource became
 // offline unexpectedly.
VCSAgCleanMonitorHung // monitor entry point did
 // not complete within the
 // expected time.
};

52 Entry points in C++
Data Structures
// Structure used to register the entry points.

typedef struct {
void (*open)(const char *res_name, void **attr_val);
void (*close)(const char *res_name, void **attr_val);
VCSAgResState (*monitor)(const char *res_name,
 void **attr_val, int, *conf_level);
unsigned int (*online)(const char *res_name,
 void **attr_val);
unsigned int (*offline)(const char *res_name,
 void **attr_val);
unsigned int (*action) (const char *res_name, const char
 *action_token, void **attr_val, char

 **action_args, char *action_output);
unsigned int (*info) (const char *res_name, VCSAgResInfoOp

 resinfo_op, void **attr_val, char **info_output,
 char ***opt_update_args, char ***opt_add_args);

void (*attr_changed)(const char *res_name,
 const char *changed_res_name, const char
 *changed_attr_name, void **new_val);

unsigned int (*clean)(const char *res_name,
 VCSAgWhyClean reason, void **attr_val);

void (*shutdown) ();
} VCSAgV40EntryPointStruct;

The structure VCSAgV40EntryPointStruct consists of function pointers, one
for each entry point except VCSAgStartup. The VCSAgStartup entry point is
called by name, and therefore must be implemented using C++ and named
VCSAgStartup.

53Entry points in C++
ArgList Attribute
ArgList Attribute
The ArgList attribute is used to pass resource type attributes and their values
to the open, close, online, offline, action, info, and monitor entry
points.agent entry points.

The values of the ArgList attribute are passed through a parameter of type
void **. For example, the signature of the online entry point is:

unsigned int
res_online(const char *res_name, void **attr_val);

The ArgList attribute behavior varies depending on whether the agent is
registered as a V50 or V40 and earlier in the VCSAgRegisterEPStruct() primitive
in the VCSAgStartup entrypoint.

See“ArgList” on page 135.

ArgList attribute for agents registered as V50
For agents registered as V50, the ArgList attribute passes attributes and values
to the entry points in tuple format through the parameter attr_val.

■ For scalar attributes, there are three components that define the attr_val
parameter. First is the name of the attribute, second is the number of
elements in the value, which for scalar attributes is always “1,” and third,
the value itself.

■ For non-scalar attributes (vector, keylist, and association), there are N+2
components in the attr_val parameter, where N equals the number of
elements in the attribute’s value. The first component is the name of the
attribute, the second is the number of elements in the attribute’s value, and
the remaining N elements correspond to the attribute’s value.

ArgList Attribute for agents registered as V40 and earlier
For agents registered as V40 and earlier, the ArgList attribute is a predefined
static attribute that specifies the list of attributes whose values are passed to the
entry points.

The parameter attr_val is an array of character pointers that contains the
ArgList attribute values. The last element of the array is a NULL pointer.
Attribute values in attr_val are listed in the same order as attributes in
ArgList.

The values of scalar attributes (integer and string) are each contained in a single
element of attr_val. The values of non-scalar attributes (vector, keylist, and
association) are contained in one or more elements of attr_val. If a non-scalar
attribute contains N components, it will have N+1 elements in attr_val. The

54 Entry points in C++
ArgList Attribute
first element is N, and the remaining N elements correspond to the N
components.

See the chapter describing the configuration language in the User’s Guide for
attribute definitions.

For example, if Type “Foo” is defined in the file types.cf as:
Type Foo (

str Name
 int IntAttr

str StringAttr
str VectorAttr[]
str AssocAttr{}
static str ArgList[] = { IntAttr, StringAttr,

VectorAttr, AssocAttr }
)

And if a resource “Bar” is defined in the file main.cf as:
Foo Bar (

IntAttr = 100
StringAttr = "Oracle"
VectorAttr = { "vol1", "vol2", "vol3" }
AssocAttr = { "disk1" = "1024", "disk2" = "512" }

)

Then, for V50, the parameter attr_val is:
attr_val[0] = "IntAttr"
attr_val[1] = "1" // Number of components in

 // IntAttr attr value
attr_val[2] = "100" // Value of IntAttr
attr_val[3] = "StringAttr"
attr_val[4] = "1" // Number of components in

 // StringAttr attr value
attr_val[5] = "Oracle" // Value of StringAttr
attr_val[6] = "VectorAttr"
attr_val[7] = "3" // Number of components in

 // VectorAttr attr value
attr_val[8] = "vol1"
attr_val[9] = "vol2"
attr_val[10] = "vol3"
attr_val[11] = "AssocAttr"
attr_val[12] = "4" // Number of components in

 // AssocAttr attr value
attr_val[13] = "disk1"
attr_val[14] = "1024"
attr_val[15] = "disk2"
attr_val[16] = "512"
attr_val[17] = NULL // Last element

55Entry points in C++
ArgList Attribute
Or, for V40 and earlier, the parameter attr_val is:
attr_val[0] ===> "100" // Value of IntAttr, the first
 // ArgList attribute.
attr_val[1] ===> "Oracle" // Value of StringAttr.
attr_val[2] ===> "3" // Number of components in

 // VectorAttr.
attr_val[3] ===> "vol1"
attr_val[4] ===> "vol2"
attr_val[5] ===> "vol3"
attr_val[6] ===> "4" // Number of components in

 // AssocAttr.
attr_val[7] ===> "disk1"
attr_val[8] ===> "1024"
attr_val[9] ===> "disk2"
attr_val[10]===> "512"
attr_val[11]===> NULL // Last element.

56 Entry points in C++
C++ Entry Point Syntax
C++ Entry Point Syntax
The following paragraphs describes the syntax for C++ entry points.

VCSAgStartup
void VCSAgStartup();

The entry point VCSAgStartup() must use the primitive
VCSAgRegisterEPStruct() to register the other entry points with the agent
framework. (See “Primitives” on page 74.)

Note that the name of the C++ function must be VCSAgStartup().

For example:
// This example shows the VCSAgStartup() entry point
// implementation,assuming that the monitor, online, and
// offline entry points are implemented in C++ and the

 // respective function names are res_monitor, res_online,
 // and res_offline.

#include "VCSAgApi.h"
void VCSAgStartup() {

VCSAgV40EntryPointStruct ep;
ep.open = NULL;
ep.close = NULL;
ep.monitor = res_monitor;
ep.online = res_online;
ep.offline = res_offline;
ep.action = NULL;
ep.info = NULL;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.shutdown = NULL;
VCSAgRegisterEPStruct(V50, &ep);

}

VCSAgResState res_monitor(const char *res_name, void
**attr_val, int

*conf_level) {
...
}

unsigned int res_online(const char *res_name,
 void **attr_val) {

...
}
unsigned int res_offline(const char *res_name,

 void **attr_val) {
...
}

57Entry points in C++
C++ Entry Point Syntax
monitor
VCSAgResState
res_monitor(const char *res_name, void **attr_val,int
*conf_level);

You may select any name for the function.

The parameter conf_level is an output parameter. The return value, which
indicates the resource status, must be a defined VCSAgResState value. See
“Summary of return values for entry points” on page 43.

Set the monitor field (ep.monitor) of VCSAgV40EntryPointStruct()
primitive to the address of the entry point’s function (res_monitor).

For example:
#include "VCSAgApi.h"

VCSAgResState
 res_monitor(const char *res_name, void **attr_val, int
*conf_level)
{

// Code to determine the state of a resource.
VCSAgResState res_state = ...
if (res_state == VCSAgResOnline) {
// Determine the confidence level (0 to 100).

*conf_level = ...
}
else {

*conf_level = 0;
}
return res_state;

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.monitor = res_monitor;
...
VCSAgRegisterEPStruct(V50, &ep);

}

58 Entry points in C++
C++ Entry Point Syntax
info
unsigned int (*info) (const char *res_name,
 VCSAgResInfoOp resinfo_op, void **attr_val, char
 info_output, char *opt_update_args, char
 ***opt_add_args);

You may select any name for the function.

resinfo_op
The resinfo_op parameter indicates whether to initialize or update the data in
the ResourceInfo attribute. The values of this field and their significance are
described in the following table:

info_output
The parameter info_output is a character string that stores the output of the
info entry point. The output value could be any summarized data for the
resource. The Msg key in the ResourceInfo attribute is updated with
info_output. If the info entry point exits with success (0), the output stored
in info_output is dumped into the Msg key of the ResourceInfo attribute.

The info entry point is responsible for allocating memory for info_output.
The agent framework handles the deletion of any memory allocated to this
argument. Since memory is allocated in the entry point and deleted in the agent
framework, the entry point needs to pass the address of the allocated memory to
the agent framework.

Value of
resinfo_op

Significance

1 Add non-default keys to the three default three keys
State, Msg, and TS to the attribute and initialize the
name-value data pairs in the ResourceInfo attribute.

This invocation indicates to the entry point that the
current value of the ResourceInfo attribute contains
only the basic three keys State, Msg, and TS.

2 Update only the non-default key-value data pairs in
the ResourceInfo attribute, not the default keys
State, Msg, and TS.

This invocation indicates that ResourceInfo
attribute contains non-default keys in addition to
the default keys and only the non-default keys are to
be updated. Attempt to add keys with this invocation
will result in errors.

59Entry points in C++
C++ Entry Point Syntax
opt_update_args
The opt_update_args parameter is an array of character strings that
represents the various name-value pairs in the ResourceInfo attribute. This
argument is allocated memory in the info entry point, but the memory
allocated for it will be freed in the agent framework. The ResourceInfo
attribute is updated with these name-value pairs. The names in this array must
already be present in the ResourceInfo attribute.

For example:
ResourceInfo = { State = Valid, Msg = "Info entry point output",
 TS = "Wed May 28 10:34:11 2003", FileOwner = root,
 FileGroup = root, FileSize = 100 }

A valid opt_update_args array for this ResourceInfo attribute would be:
opt_update_args = { "FileSize", "102" }

This array of name-value pairs updates the dynamic data stored in the
ResourceInfo attribute.

An invalid opt_update_args array would be one that specifies a key not
already present in the ResourceInfo attribute or one that specifies any of the
keys: State, Msg, or TS. These three keys can only be updated by the agent
framework and not by the entry point.

opt_add_args
opt_add_args is an array of character strings that represent the various
name-value pairs to be added to the ResourceInfo attribute. The names in this
array represent keys that are not already present in the ResourceInfo
association list and have to be added to the attribute. This argument is allocated
memory in the info entry point, but this memory is freed in the agent
framework. The ResourceInfo attribute is populated with these name-value
pairs.

For example:
ResourceInfo = { State = Valid, Msg = "Info entry point output",
 TS = "Wed May 28 10:34:11 2003" }

A valid opt_add_args array for this would be:
 opt_add_args = { "FileOwner", "root", "FileGroup",
"root",
 "FileSize", "100" }

This array of name-value pairs adds to and initializes the static and dynamic
data stored in the ResourceInfo attribute.

An invalid opt_add_args array would be one that specifies a key that is
already present in the ResourceInfo attribute, or one that specifies any of the
keys State, Msg, or TS; these are keys that can be updated only by the agent
framework, not by the entry point.

60 Entry points in C++
C++ Entry Point Syntax
Example, info entry point implementation in C++
Set the info field (ep.info) of VCSAgV40EntryPointStruct() primitive to
the address of the entry point’s function (file_info).

Allocate the info output buffer in the entry point as shown in the example
below. The buffer can be any size (the example uses 80), but the agent
framework truncates it to 2048 bytes. For the optional name-value pairs, name
and value each have a limit of 4096 bytes (the example uses 15).

Example V50 entry point:
extern "C" unsigned int file_info(const char *res_name,
VCSAgResInfoOp resinfo_op, void **attr_val, char **info_output,
char ***opt_update_args, char ***opt_add_args)
{
 struct stat stat_buf;
 int i;
 char **args = NULL;
 char *out = new char [80];

 *info_output = out;

 VCSAgSnprintf(out, 80,"Output of info entry point - updates
 the \"Msg\" key in ResourceInfo attribute");

 // Use the stat system call on the file to get its
 // information The attr_val array will look like "PathName"
 // "1" "<pathname value>" ... Assuming that PathName is the
 // first attribute in the attr_val array, the value

 // of this attribute will be in index 2 of this attr_val
 // array

 if (attr_val[2]) {

 if ((strlen((CHAR *)(attr_val[2])) != 0) &&
 (stat((CHAR *)(attr_val[2]), &stat_buf) == 0)) {

 if (resinfo_op == VCSAgResInfoAdd) {
 // Add and initialize all the static and
 // dynamic keys in the ResourceInfo attribute
 args = new char * [7];
 for (i = 0; i < 6; i++) {
 args[i] = new char [15];
 }

 // All the static information - file owner
 // and group

 VCSAgSnprintf(args[0], 15, "%s", "Owner");
 VCSAgSnprintf(args[1], 15, "%d",

 stat_buf.st_uid);
 VCSAgSnprintf(args[2], 15, "%s", "Group");

61Entry points in C++
C++ Entry Point Syntax
 VCSAgSnprintf(args[3], 15, "%d",
stat_buf.st_gid);

 // Initialize the dynamic information for the file
 VCSAgSnprintf(args[4], 15, "%s", "FileSize");
 VCSAgSnprintf(args[5], 15, "%d",

 stat_buf.st_size);
 args[6] = NULL;
 *opt_add_args = args;
 }
 else {

 // Simply update the dynamic keys in the
 // ResourceInfo attribute. In this case, the
 // dynamic info on the file

 args = new char * [3];
 for (i = 0; i < 2; i++) {
 args[i] = new char [15];
 }
 VCSAgSnprintf(args[0], 15, "%s", "FileSize");
 VCSAgSnprintf(args[1], 15, "%d",

 stat_buf.st_size);
 args[2] = NULL;
 *opt_update_args = args;
 }
 }
 else {
 // Set the output to indicate the error
 VCSAgSnprintf(out, 80, "Stat on the file %s failed",

 attr_val[2]);
 return 1;
 }
 }
 else {
 // Set the output to indicate the error
 VCSAgSnprintf(out, 80, "Error in arglist values passed to

 the info entry point");
 return 1;
 }

 // Successful completion of the info entry point
 return 0;

} // End of entry point definition

62 Entry points in C++
C++ Entry Point Syntax
The following example is for a V40 entry point:

extern "C" unsigned int
file_info(const char *res_name, VCSAgResInfoOp resinfo_op,
 void **attr_val, char **info_output, char
 ***opt_update_args, char ***opt_add_args) {

 struct stat stat_buf;
 int i;
 char **args = NULL;
 char *out = new char [80];

 *info_output = out;

 VCSAgSnprintf(out, 80,
"Output of info entry point...updates the "Msg" key in
ResourceInfo attribute");

// Use the stat system call on the file to get its information

 if ((attr_val) && (*attr_val)) {
 if ((stat((CHAR *)(*attr_val), &stat_buf) == 0) &&
 (strlen((CHAR *)(*attr_val)) != 0)) {

 if (resinfo_op == VCSAgResInfoAdd) {
// Add and initialize all the static and
// dynamic keys in the ResourceInfo attribute

 args = new char * [7];
 for (i = 0; i < 6; i++) {
 args[i] = new char [15];
 }
// All the static information - file owner and group
 VCSAgSnprintf(args[0], 15, "%s", "Owner");
 VCSAgSnprintf(args[1], 15, "%d", stat_buf.st_uid);
 VCSAgSnprintf(args[2], 15, "%s", "Group");
 VCSAgSnprintf(args[3], 15, "%d", stat_buf.st_gid);

63Entry points in C++
C++ Entry Point Syntax
// Initialize the dynamic information for the file
 VCSAgSnprintf(args[4], 15, "%s", "FileSize");
 VCSAgSnprintf(args[5], 15, "%d", stat_buf.st_size);
 args[6] = NULL;
 *opt_add_args = args;
 }
 else {
// Simply update the dynamic keys in the ResourceInfo
// attribute. In this case, the dynamic info on the file

 args = new char * [3];
 for (i = 0; i < 2; i++) {
 args[i] = new char [15];
 }
 VCSAgSnprintf(args[0], 15, "%s", "FileSize");
 VCSAgSnprintf(args[1], 15, "%d", stat_buf.st_size);
 args[2] = NULL;
 *opt_update_args = args;
 }
 }
 else {
// Set the output to indicate the error
 VCSAgSnprintf(out, 80, "Stat on the file %s failed",
 *attr_val);
 return 1;
 }
 }
 else {
// Set the output to indicate the error
 VCSAgSnprintf(out, 80,
 "Error in arglist values passed to the info entry
 point");
 return 1;
 }

// Successful completion of the info entry point
 return 0;
}

64 Entry points in C++
C++ Entry Point Syntax
online
unsigned int
res_online(const char *res_name, void **attr_val);

You may select any name for the function.

Set the online field (ep.online) of VCSAgV40EntryPointStruct()
primitive to the address of the entry point’s function (res_online).

For example:
#include "VCSAgApi.h"

unsigned int
 res_online(const char *res_name, void **attr_val) {

// Implement the code to online a resource here.
...
// If monitor can check the state of the resource
// immediately, return 0. Otherwise, return the
// appropriate number of seconds to wait before
// calling monitor.
return 0;

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.online = res_online;
...
VCSAgRegisterEPStruct(V50, &ep);

}

65Entry points in C++
C++ Entry Point Syntax
offline
unsigned int
res_offline(const char *res_name, void **attr_val);

You may select any name for the function.

Set the offline field (ep.offline) of VCSAgV40EntryPointStruct()
primitive to the address of the entry point’s function (res_offline).

For example:
#include "VCSAgApi.h"

unsigned int
 res_offline(const char *res_name, void **attr_val) {

// Implement the code to offline a resource here.
...
// If monitor can check the state of the resource
// immediately, return 0. Otherwise, return the
// appropriate number of seconds to wait before
// calling monitor.
return 0;

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.offline = res_offline;
...
VCSAgRegisterEPStruct(V50, &ep);

}

66 Entry points in C++
C++ Entry Point Syntax
clean
unsigned int
res_clean(const char *res_name, VCSAgWhyClean reason, void
**attr_val);

You may select any name for the function.

Set the clean field (ep.clean) of VCSAgV40EntryPointStruct() primitive
to the address of the entry point’s function (res_clean).

For example:
#include "VCSAgApi.h"

unsigned int
res_clean(const char *res_name, VCSAgWhyClean reason,

void **attr_val) {
// Code to forcibly offline a resource.
...
// If the procedure is successful, return 0; else
// return 1.
return 0;

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...

ep.clean = res_clean;
...
VCSAgRegisterEPStruct(V50, &ep);

}

67Entry points in C++
C++ Entry Point Syntax
action
unsigned int
action(const char *res_name, const char *action_token,

void **attr_val, char **args, char *action_output);

You may select any name for the function. The agent framework truncates the
output for the action entry point to a maximum of 2048 bytes.

Set the action field (ep.action) of VCSAgV40EntryPointStruct()
primitive to the address of the entry point’s function (file_action).

For example:
extern "C"
unsigned int file_action (const char *res_name, const char

*token,void **attr_val, char **args, char
*action_output)

{
 const int output_buffer_size = 2048;

 //
 // checks on the attr_val entry point arg list
 //

 //
 // perform an action based on the action token passed in
 //

 if (!strcmp(token, "token1")) {
 //
 // Perform action corresponding to token1
 //
 } else if (!strcmp(token, "token2") {
 //
 // Perform action corresponding to token2
 //
 }
 :
 :
 :
 } else {
 //
 // a token for which no action is implemented yet
 //
 VCSAgSnprintf(action_output, output_buffer_size,
 "No implementation provided for
token(%s)",
 token);
 }

 //

68 Entry points in C++
C++ Entry Point Syntax
 // Any other checks to be done
 //

 //
 // return value should indicate whether the ep succeeded
or
 // not:
 // return 0 on success
 // any other value on failure
 //
 if (success)
 return 0;
 else
 return 1;
}

69Entry points in C++
C++ Entry Point Syntax
attr_changed
void
res_attr_changed(const char *res_name, const char

 *changed_res_name,
 const char *changed_attr_name,
 void **new_val);

The parameter new_val contains the attribute’s new value. The encoding of
new_val is similar to the encoding of the “ArgList Attribute” on page 53.

You may select any name for the function.

Set the attr_changed field (ep.attr_changed) of
VCSAgV40EntryPointStruct() primitive to the address of the entry point’s
function (res_attr_changed).

Note: This entry point is called only if you register for change notification using
the primitive “VCSAgRegister” on page 76, or the agent parameter RegList (see
“RegList” on page 148).

For example:
#include "VCSAgApi.h"

void
 res_attr_changed(const char *res_name,

 const char *changed_res_name,
 const char *changed_attr_name,
 void **new_val) {

// When the value of attribute Foo changes, take some action.
if ((strcmp(res_name, changed_res_name) == 0) &&

(strcmp(changed_attr_name, "Foo") == 0)) {
// Extract the new value of Foo. Here, it is assumed
// to be a string.
const char *foo_val = (char *)new_val[0];
// Implement the action.

...
}

70 Entry points in C++
C++ Entry Point Syntax
// Resource Ora1 managed by this agent needs to
// take some action when the Size attribute of
// the resource Disk1 is changed.
if ((strcmp(res_name, "Ora1") == 0) &&

(strcmp(changed_attr_name, "Size") == 0) &&
(strcmp(changed_res_name, "Disk1") == 0)) {

// Extract the new value of Size. Here, it is
// assumed to be an integer.
int sizeval = atoi((char *)new_val[0]);
// Implement the action.

...
}

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.attr_changed = res_attr_changed;
...
VCSAgRegisterEPStruct(V50, &ep);

}

71Entry points in C++
C++ Entry Point Syntax
open
void res_open(const char *res_name, void **attr_val);

You may select any name for the function.

Set the open field (ep.open) of VCSAgV40EntryPointStruct() primitive to
the address of the entry point’s function (res_open).

For example:
#include "VCSAgApi.h"

void res_open(const char *res_name, void **attr_val) {
// Perform resource initialization, if any.
// Register for attribute change notification, if needed.

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.open = res_open;
...
VCSAgRegisterEPStruct(V50, &ep);

}

72 Entry points in C++
C++ Entry Point Syntax
close
void res_close(const char *res_name, void **attr_val);

You may select any name for the function.

Set the close field (ep.close) of VCSAgV40EntryPointStruct primitive to
the address of the entry point’s function (res_close).

For example:
#include "VCSAgApi.h"

void res_close(const char *res_name,void **attr_val) {
// Resource-specific de-initialization, if needed.
// Unregister for attribute change notification, if any.

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.close = res_close;
...
VCSAgRegisterEPStruct(V50, &ep);

}

73Entry points in C++
C++ Entry Point Syntax
shutdown
void res_shutdown();

You may select any name for the function.

Set the shutdown field (ep.shutdown) of VCSAgV40EntryPointStruct()
primitive to the address of the entry point’s function (res_shutdown).

For example:
#include "VCSAgApi.h"

void res_shutdown(const char *res_name) {
// Agent-specific de-initialization, if any.

}

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;
...
ep.shutdown = res_shutdown;
...
VCSAgRegisterEPStruct(V50, &ep);

}

74 Entry points in C++
Primitives
Primitives
Primitives are C++ methods implemented by the agent framework. The
following sections define the primitives, beginning with the primitive
VCSAgRegisterEPStruct() below.

VCSAgRegisterEPStruct
void VCSAgRegisterEPStruct (VCSAgAgentVersion version, void *
entry_points);

This primitive requests that the agent framework use the entry point
implementations designated in entry_points. It must be called only from the
VCSAgStartup entry point.

For example:
// This example shows how to use VCSAgRegisterEPStruct()
// Primitive within the VCSAgStartup() entry point. It
// is assumed here that the monitor, online, and offline
// entry points are implemented in C++, and that the
// respective function names are res_monitor,
// res_online, and res_offline.

#include "VCSAgApi.h"

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;

ep.open = NULL;
ep.close = NULL;
ep.monitor = res_monitor;
ep.online = res_online;
ep.offline = res_offline;
ep.action = NULL;
ep.info = NULL;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.shutdown = NULL;
VCSAgRegisterEPStruct(V50, &ep);

}

75Entry points in C++
Primitives
VCSAgSetCookie
void VCSAgSetCookie(const char *name, void *cookie);

This primitive requests the agent framework to store a cookie. This value, which
is transparent to the agent framework, can be obtained by calling the primitive
VCSAgGetCookie(). A cookie is not stored permanently. It is lost when the
agent process exits. This primitive can be called from any entry point. For
example:

#include "VCSAgApi.h"
...
// Assume that the online, offline, and monitor
// operations on resource require a certain key. Also
// assume that obtaining this key is time consuming, but
// that it can be reused until this process is
// terminated.
//
// In this example, the open entry point obtains the key
// and stores it as a cookie. Subsequent online,
// offline, and monitor entry points get the cookie and
// use the key.
//
// Note that the cookie name can be any unique string.
// This example uses the resource name as the cookie
// name.
//
void *get_key() {

...
}
void res_open(const char *res_name, void **attr_val) {

if (VCSAgGetCookie(res_name) == NULL) {
void *key = get_key();
VCSAgSetCookie(res_name, key);

}
}
VCSAgResState res_monitor(const char *res_name, void

**attr_val, int *conf_level_ptr) {
VCSAgResState state = VCSAgResUnknown;
*conf_level_ptr = 0;
void *key = VCSAgGetCookie(res_name);
if (key == NULL) {

// Take care of the rare cases when
// the open entry point failed to
// obtain the key and set the the cookie.

key = get_key();
VCSAgSetCookie(res_name, key);

}
// Use the key for testing if the resource is
// online, and set the state accordingly.
...
return state;

}

76 Entry points in C++
Primitives
VCSAgRegister
void
VCSAgRegister(const char *notify_res_name,

 const char *res_name,
 const char *attr_name);

This primitive requests that the agent framework notify the resource
notify_res_name when the value of the attribute attr_name of the resource
res_name is modified. The notification is made by calling the attr_changed
entry point for notify_res_name. Note that notify_res_name can be the
same as res_name. This primitive can be called from any entry point, but it is
useful only when the attr_changed entry point is implemented. For example:

#include "VCSAgApi.h"
...
void res_open(const char *res_name, void **attr_val) {

// Register to get notified when the
// "CriticalAttr" of this resource is modified.
VCSAgRegister(res_name, res_name, "CriticalAttr");

// Register to get notified when the
// "CriticalAttr" of "CentralRes" is modified.
VCSAgRegister(res_name, "CentralRes",

 "CriticalAttr");

// Register to get notified when the
// "CriticalAttr" of another resource is modified.
// It is assumed that the name of the other resource
// is given as the first ArgList attribute.
VCSAgRegister(res_name, (const char *)attr_val[0],

"CriticalAttr");
}

77Entry points in C++
Primitives
VCSAgUnregister
void
VCSAgUnregister(const char *notify_res_name, const char

*res_name,
const char *attr_name);

This primitive requests that the agent framework stop notifying the resource
notify_res_name when the value of the attribute attr_name of the resource
res_name is modified. This primitive can be called from any entry point. For
example:

#include "VCSAgApi.h"
...
void res_close(const char *res_name, void **attr_val) {

// Unregister for the "CriticalAttr" of this resource.
VCSAgUnregister(res_name, res_name, "CriticalAttr");

// Unregister for the "CriticalAttr" of another
// resource. It is assumed that the name of the
// other resource is given as the first ArgList
// attribute.
VCSAgUnregister(res_name, (const char *)

attr_val[0], "CriticalAttr");
}

78 Entry points in C++
Primitives
VCSAgGetCookie
void *VCSAgGetCookie(const char *name);

This primitive requests that the agent framework get the cookie set by an earlier
call to VCSAgSetCookie(). It returns NULL if cookie was not previously set.
This primitive can be called from any entry point. For example:

#include "VCSAgApi.h"
...
// Assume that the online, offline, and monitor
// operations on resource require a certain key. Also
// assume that obtaining this key is time consuming, but
// that it can be reused until this process is terminated.
//
// In this example, the open entry point obtains the key
// and stores it as a cookie. Subsequent online,
// offline, and monitor entry points get the cookie and
// use the key.
//
// Note that the cookie name can be any unique string.
// This example uses the resource name as the cookie name.
//

void *get_key() {
...

}
void res_open(const char *res_name, void **attr_val) {

if (VCSAgGetCookie(res_name) == NULL) {
void *key = get_key();
VCSAgSetCookie(res_name, key);

}
}
VCSAgResState res_monitor(const char *res_name, void

**attr_val, int *conf_level_ptr) {
VCSAgResState state = VCSAgResUnknown;
*conf_level_ptr = 0;
void *key = VCSAgGetCookie(res_name);
if (key == NULL) {
// Take care of the rare cases when the open
// entry point failed to obtain the key and
// set the the cookie.

key = get_key();
VCSAgSetCookie(res_name, key);

}
// Use the key for testing if the resource is
// online, and set the state accordingly.
...
return state;

}

79Entry points in C++
Primitives
VCSAgStrlcpy
void VCSAgStrlcpy(CHAR *dst, const CHAR *src, int size)

This primitive copies the contents from the input buffer “src” to the output
buffer “dst” up to a maximum of “size” number of characters. Here, “size” refers
to the size of the output buffer “dst.” This helps prevent any buffer overflow
errors. The output contained in the buffer “dst” may be truncated if the buffer is
not big enough.

VCSAgStrlcat
void VCSAgStrlcat(CHAR *dst, const CHAR *src, int size)

This primitive concatenates the contents of the input buffer “src” to the
contents of the output buffer “dst” up to a maximum such that the total number
of characters in the buffer “dst” do not exceed the value of “size.” Here, “size”
refers to the size of the output buffer “dst.”

This helps prevent any buffer overflow errors. The output contained in the
buffer “dst” may be truncated if the buffer is not big enough.

VCSAgSnprintf
int VCSAgSnprintf(CHAR *dst, int size, const char *format, ...)

This primitive accepts a variable number of arguments and works like the C
library function “sprintf.” The difference is that this primitive takes in, as an
argument, the size of the output buffer “dst.” The primitive stores only a
maximum of “size” number of characters in the output buffer “dst.” This helps
prevent buffer overflow errors. The output contained in the buffer “dst” may be
truncated if the buffer is not big enough.

VCSAgCloseFile
void VCSAgCloseFile(void *vp)

Thread cleanup handler to close a file. The input (that is, vp) must be a file
descriptor.

VCSAgDelString
void VCSAgDelString(void *vp)

Thread cleanup handler to delete a (char *). The input (vp) must be a pointer to
memory allocated using “new char[xx]”.

80 Entry points in C++
Primitives
VCSAgExec
int VCSAgExec(const char *path, char *const argv[], char *buf, long
buf_size, unsigned long *exit_codep)

Fork a new process, exec a program, wait for it to complete, and return the
status. Also, capture the messages from stdout and stderr to buf. Caller must
ensure that buf is of size >= buf_size.

VCSAgExec is a forced cancellation point. Even if the C++ entry point that calls
VCSAgExec disables cancellation before invoking this API, the thread can get
cancelled inside VCSAgExec. Therefore, the entry point must make sure that it
pushes appropriate cancellation cleanup handlers before calling VCSAgExec.
The forced cancellation ensures that a service thread running a timed-out entry
point does not keep running or waiting for the child process created by this API
to exit, but instead honors a cancellation request when it receives one.

Explanation of arguments to the function:

Return value: VCSAgSuccess if the execution was successful.

Example:
//
// ...
//
char **args = new char* [3];
char buf[100];
unsigned int status;

args[0] = "/usr/bin/ls";
args[1] = "/tmp";
args[2] = NULL;

path Name of the program to be executed.

argv Arguments to the program. argv[0] must be same as path. The last
entry of argv must be NULL. (Same as execv syntax)

buf Buffer to hold the messages from stdout or stderr. Caller must
supply it. This function will not allocate. When this function
returns, buf will be NULL-terminated.

bufsize Size of buf. If the total size of the messages to stdout/stderr
is more than bufsize, only the first (buf_size - 1) characters will
be returned.

exit_codep Pointer to a location where the exit code of the executed program
will be stored. This value should interpreted as described by wait()
on Unix & by Get Exit Code Process() on Windows NT.

81Entry points in C++
Primitives
int result = VCSAgExec(args[0], args, buf, 100, &status);

if (result == VCSAgSuccess) {

// Windows NT:
printf("Exit code of %s is %d\n", args[0], status);

// Unix:
if (WIFEXITED(status)) {
printf("Child process returned %d\n", WEXITSTATUS(status));
}
else {
printf("Child process terminated abnormally(%x)\n", status);
}

}
else {
printf("Error executing %s\n", args[0]);
}
//
// ...
//

VCSAgExecWithTimeout
int VCSAgExecWithTimeout(const char *path, char *const argv[],
unsigned int timeout, char *buf, long buf_size, unsigned long
*exit_codep)

Fork a new process, exec a program, wait for it to complete, return the status. If
the process does not complete within the timeout value, kill it. Also, capture the
messages from stdout or stderr to buf. The caller must ensure that buf is of size
>= buf_size. VCSAgExecWithTimeout is a forced cancellation point. Even if the
C++ entry point that calls VCSAgExecWithTimeout disables cancellation before
invoking this API, the thread can get cancelled inside VCSAgExecWithTimeout.
So the entry point needs to make sure that is pushes appropriate cancellation
cleanup handlers before calling VCSAgExecWithTimeout. The forced
cancellation ensures that a service thread running a timed out entry point does
not keep running or waiting for the child process created by this API to exit but
instead honors a cancellation request when it receives one.

Note: This API is not available on Windows.

82 Entry points in C++
Primitives
Explanation of arguments to the function:

Return value: VCSAgSuccess if the execution is successful.

path Name of the program to be executed.

argv Arguments to the program. argv[0] must be same as path. The last entry
of argv must be NULL. (Same as execv syntax).

timeout Number of seconds within which the process should complete its
execution. If zero is specified, this API defaults to VCSAgExec(), meaning
the timeout is to be ignored. If the timeout value specified exceeds the
time left for the entry point itself to timeout, the maximum possible
timeout value is automatically used by this API. For example, if the
timeout value specified in the API is 40 seconds, but the entry point
itself times out after the next 20 seconds, the agent internally sets the
timeout value for this API to 20-3=17 seconds. The 3 seconds are a grace
period between the timeout for the process created using this API and
the entry point process timeout.

buf Buffer to hold the messages from stdout/stderr. The caller must supply
it. This function does not allocate. When this function returns, buf is
NULL-terminated.

bufsize Size of buf. If the total size of the messages to stdout/stderr is more than
bufsize, only the first (buf_size - 1) characters is returned.

exit_codep Pointer to a location where the exit code of the executed program is
stored. This value should interpreted as described by wait() on Unix

83Entry points in C++
Primitives
VCSAgGenSnmpTrap
void VCSAgGenSnmpTrap(int trap_num, const char *msg, VCSAgBool
is_global)

This API is used to send a notification via SNMP and/or SMTP. The
ClusterOutOfBand trap is used to send notification messages from the agent
entry points.

Explanation of arguments to the function:

VCSAgSendTrap
void VCSAgSendTrap(const CHAR *msg)

This API is used to send a notification through the notifier process. The input
(that is, msg) is the notification message to be sent.

VCSAgLockFile
int VCSAgLockFile(const char *fname, VCSAgLockType ltype,
VCSAgBlockingType btype, VCSAgErrnoType *errp)

Get a read or write (that is, shared or exclusive) lock on the given file. Both
blocking and non-blocking modes are supported. Returns 0 if the lock could be
obtained, or returns VCSAgErrWouldBlock if non-blocking is requested and the
lock is busy. Otherwise returns -1. Each thread is considered a distinct owner of
locks.

Warning: Do not do any operations on the file (ex, open, or close) within this
process, except through the VCSAgReadLockFile(), VCSAgWriteLockFile(), and
VCSAgUnlockFile() interfaces.

Mt-safe; deferred cancel safe.

trap_num The trap identifier. This number is appended to the agents trap oid to
generate a unique trap oid for this event.

msg The notification message to be sent.

is_global A boolean value indicating whether or not the event for which the
notification is being generated is local to the system where the agent is
running.

84 Entry points in C++
Primitives
VCSAgSetStackSize
void VCSAgSetStackSize(int i)
Set the calling thread's stack size to the value specified (that is, 1).

VCSAgUnlockFile
int VCSAgUnlockFile(const char *fname, VCSAgErrnoType *errp)

Release read or write (i.e shared or exclusive) lock on the given file. Returns 0, if
the lock could be released, or else returns -1.

Warning: Do not do any operations on the file (ex, open, or close) within this
process, except through the VCSAgReadLockFile(), VCSAgWriteLockFile(), and
VCSAgUnlockFile() interfaces.

Mt-safe; deferred cancel safe.

VCSAgDisableCancellation
int VCSAgDisableCancellation(int *old_statep)

If successful, return 0 and set old_statep to the previous cancellation state.

VCSAgRestoreCancellation
int VCSAgRestoreCancellation(int desired_state)

If successful, return 0 and the desired_state is set as the current cancellation
state.

VCSAgSetLogCategory
void VCSAgSetLogCategory(int cat_id)

Sets the log category of the agent to the value specified in cat_id.

VCSAfGetProductName
const CHAR *VCSAgGetProductName()

An API for C++ entry points to be able to get the name of the product for logging
purposes.

85Entry points in C++
APIs for Solaris Zones support
APIs for Solaris Zones support
The following agents are for use in agents that run in Solaris zone. Note that
zones are supported by Solaris version 10 and above.

VCSAgGetContainerName
char *VCSAgGetContainerName(const char *resource_name)

This API gets the name of the container, if it has been set for the specified
resource. This is mainly so that agents can use the VCSAgExecInContainer API
whenever required. Unless the agent can pass in the container name (that is, the
zone name) to the VCSAgExecInContainer API, the agent framework has no way
of knowing what container to exec the given script in. The API returns a pointer
to the zone name. Its the responsibility of the caller to free the memory
associated with the returned pointer.

VCSAgGetContainerID
int VCSAgGetContainerID(const char *resource_name)

Given the resource name, get the container id.

Return Values:

-1, if the resource or container name is NULL or the container is DOWN or the
container is not applicable to the OS version the agent is running on
non-negative container-id, if the container name is valid and the container is
UP.

VCSAgExecInContainer
int VCSAgExecInContainer(char*container_name, const char *path,
char *const argv[], char *buf, long buf_size, unsigned long
*exit_codep)

VCSAgExecInContainer is the same as VCSAgExec except this API should be
used by an agent only to exec a particular command/script in a specific
container on the system. If there are no containers configured on the system, or
if the agent has no need to exec a script in a specific container, use the
VCSAgExec API.

86 Entry points in C++
APIs for Solaris Zones support
VCSAgISZoneCapable()
VCSAgBool VCSAgISZoneCapable()

This API returns either True or False. If the agent is running on a system
running Solaris 10 or higher, the API returns True; otherwise it returns False.

Agents use this API to decide whether or not to do something zone specific, such
as, compare the zone_id field in the psinfo structure with the ID of the zone
name specified in the resource configuration to confirm whether the found
process is indeed the process the agent is looking for.

Chapter
 4
Entry points in scripts

As mentioned in the chapter, “Agent entry point overview,” you must
implement the VCSAgStartup entry point using C++. You may implement
other entry points using C++ or scripts. If you implement no other entry points
in C++, the VCSAgStartup entry point is not required. Instead, you may use the
ScriptAgent or the Script50Agent binary, wherein all fields in
VCSAgV40EntryPointStuct are set to NULL (that is, all entry points are
implemented as scripts). See “Using script entry points” on page 116 for an
example the ScriptAgent.

Rules for using script entry points
Script entry points can be executables or scripts, such as shell or Perl (the
product includes a Perl distribution).

Adhere to the following rules when implementing a script entry point:

✔ In the VCSAgStartup entry point, set the corresponding field of
VCSAgV40EntryPointStruct to NULL prior to calling
VCSAgRegisterEPStruct(). (If necessary, review “About the
VCSAgStartup routine” on page 31.)

✔ Verify the name of the script file is the same as the entry point.

✔ Place the file in the directory $VCS_HOME/bin/resource_type. If, for
example, the online script for Oracle were implemented using Perl, the
online script must be:

$VCS_HOME/bin/Oracle/online

✔ Also, verify the PATH environment variable includes the directory where sh
is installed.

88 Entry points in scripts
Parameters and values for script entry points
Parameters and values for script entry points
The input parameters of script entry points are passed as command-line
arguments. The first command-line argument for all the entry points is the
name of the resource (except shutdown, which has no arguments).

Some entry points have an output parameter that is returned through the
program exit value.

ArgList attributes
The open, close, online, offline, monitor, action, info, and clean
scripts receive the resource name and values of the ArgList attributes. The
ArgList attribute behavior varies depending on whether the agent uses the
Script50Agent, for V50, or ScriptAgent for V40.

ArgList attribute for agents registered as V50
For agents registered as V50, the agent framework passes the ArgList attribues
and values to the entry points in tuple format when the script entry point is
invoked.

■ For scalar attributes, there are threee components that are passed to the
script. First is the name of the attribute, second is the number of elements in
the value, which for scalar attributes is always “1,” and third, the value
itself.

■ For non-scalar attributes (vector, keylist, and association), for each attribute
there are N+2 components passed to the entry point, where N equals the
number of elements in the attribute’s value. The first component is the
name of the attribute, the second is the number of elements in the
attribute’s value, and the remaining N elements correspond to the attribute’s
value. Note that N could be zero.

ArgList Attribute for agents registered as V40 and earlier
For agents registered as V40 and earlier:

■ The values of scalar ArgList attributes (integer and string) are each
contained in a single command-line argument.

■ The values of complex ArgList attributes (vector, keylist, and association)
are contained in one or more command-line arguments.

If a vector or association attribute contains N components, it is represented by
N+1 command-line arguments. The first command-line argument is N, and the

89Entry points in scripts
ArgList attributes
remaining N arguments correspond to the N components. (See “ArgList” on
page 135.)

Examples
If Type “Foo” is defined in types.cf as:

Type Foo (
str Name

 int IntAttr
str StringAttr
str VectorAttr[]
str AssocAttr{}
static str ArgList[] = { IntAttr, StringAttr,

VectorAttr, AssocAttr }
)

And if a resource “Bar” is defined in the VCS configuration file main.cf as:
Foo Bar (

IntAttr = 100
StringAttr = "Oracle"
VectorAttr = { "vol1", "vol2", "vol3" }
AssocAttr = { "disk1" = "1024", "disk2" = "512" }

)

The online script for a V50 agent, when invoked for Bar, resemlbes:
online Bar IntAttr 1 100 StringAttr 1 Oracle VectorAttr 3 vol1
vol2 vol3 AssocAttr 4 disk1 1024 disk2 512

The online script for a V40 agent, when invoked for Bar, resemlbes:
online Bar 100 Oracle 3 vol1 vol2 vol3 4 disk1 1024 disk2 512

90 Entry points in scripts
Script entry point syntax
Script entry point syntax
The following paragraphs describe the syntax for script entry points.

monitor
monitor resource_name ArgList_attribute_values

A script entry point combines the status and the confidence level in the exit
value. For example:

■ 100 indicates offline.

■ 101 indicates online and confidence level 10.

■ 102–109 indicates online and confidence levels 20–90.

■ 110 indicates online and confidence level 100.

If the exit value falls outside the range 100–110, the status is considered
unknown. For example, if the exit value equals 99, the status of the resource is
considered UNKNOWN.

online
online resource_name ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the online
procedure to be effective. The exit value is typically 0.

offline
offline resource_name ArgList_attribute_values

The exit value is interpreted as the expected time (in seconds) for the offline
procedure to be effective. The exit value is typically 0.

91Entry points in scripts
Script entry point syntax
clean
clean resource_name ArgList_attribute_values

The variable clean_reason equals one of the following values:

0 - The offline entry point did not complete within the expected time.
(See “OfflineTimeout” on page 145.)

1 - The offline entry point was ineffective.

2 - The online entry point did not complete within the expected time. (See
“OnlineTimeout” on page 146.)

3 - The online entry point was ineffective.

4 - The resource was taken offline unexpectedly.

5 - The monitor entry point consistently failed to complete within the
expected time. (See “FaultOnMonitorTimeouts” on page 140.)

The exit value is 0 (successful) or 1.

action
action resource_name
ArgList_attribute_values_AND_action_arguments

The exit value is 0 (successful) or 1 (if unsuccessful).

The agent framework limits the action entry point output to 2048 bytes.

92 Entry points in scripts
Script entry point syntax
attr_changed
attr_changed resource_name changed_resource_name

changed_attribute_name new_attribute_value

The exit value is ignored.

Note: This entry point is called only if you register for change notification using
the primitive VCSAgRegister() (see “VCSAgRegister” on page 76), or the
agent parameter RegList (see “RegList” on page 148).

info
info resource_name resinfo_op ArgList_attribute_values

The attribute resinfo_op can have the values 1 or 2.

This entry point can add and update static and dynamic name-value pairs to the
ResourceInfo attribute. The info entry point has no specific output, but
rather, it updates the ResourceInfo attribute.

Values of
resinfo_op

Significance

1 Add and initialize static and dynamic name-value data pairs
in the ResourceInfo attribute.

2 Update just the dynamic data in the ResourceInfo
attribute.

93Entry points in scripts
Script entry point syntax
open
open resource_name ArgList_attribute_values

The exit value is ignored.

close
close resource_name ArgList_attribute_values

The exit value is ignored.

shutdown
shutdown

The exit value is ignored.

94 Entry points in scripts
Script entry point syntax

Chapter
 5
Logging agent messages

This chapter describes APIs and functions that developers can use within their
custom agents to generate log file messages conforming to a standard message
logging format.

■ For information on creating and managing of messages for
internationalization, see Chapter 10, “Internationalized messages” on
page 171.

■ For information on APIs used by VCS 3.5 and earlier, see “Log Messages in
Pre-VCS 4.0 Agents” on page 183.

Logging in C++ and script-based entry points
Developers creating C++ agent entry points can use a set of macros for logging
application messages or debug messages. Developers of script-based entry
points can use a set of functions, or “wrappers,” that call the halog utility to
generate application or debug messages.

96 Logging agent messages
Logging in C++ and script-based entry points
Agent messages: format
An agent log message consists of five fields. The format of the message is:

<Timestamp> <Mnemonic> <Severity> <UMI> <MessageText>

The following is an example message, of severity ERROR, generated by the
FileOnOff agent’s online entry point when attempting to bring online a
resource, a file named “MyFile”:

Jun 26 2003 11:32:56 VCS ERROR V-16-2001-14001
FileOnOff:MyFile:online:Resource could not be brought up
because,the attempt to create the file (/tmp/MyFile) failed
with error (Is a Directory)

The first four fields of the message above consists of the timestamp, an
uppercase mnemonic that represents the product (VCS, in this case), the severity,
and the UMI (unique message ID). The subsequent lines contain the message
text.

Timestamp
The timestamp indicates when the message was generated. It is formatted
according to the locale.

Mnemonic
The mnemonic field is used to indicate the product. The mnemonic, such as
“VCS,” must use all capital letters. All VCS bundled agents, enterprise agents,
and custom agents use the mnemonic: “VCS.”

Severity
The severity of each message displays in the third field of the message (Critical,
Error, Warning, Notice, or Information for normal messages; 1-21 for debug
messages). All C++ logging macros and script-based logging functions provide a
means to define the severity of messages, both normal and debugging.

UMI
The UMI (unique message identifier) includes an originator ID, a category ID,
and a message ID.

■ The originator ID is a decimal number preceded by a “V-” assigned by
VERITAS.

■ The category ID is a number in the range of 0 to 65536 assigned by
VERITAS. For each custom agent, VERITAS must be contacted so that a
unique category ID can be registered for the agent.

97Logging agent messages
C++ agent logging APIs
■ For C++ messages, the category ID is defined in the VCSAgStartup
entry point (see “Log category” on page 102).

■ For script-based entry points, the category is set within the
VCSAG_SET_ENVS function (see “VCSAG_SET_ENVS” on page 107).

■ For debug messages, the category ID, which is 50 by default, need not
be defined within logging functions.

■ Message IDs can range from 0 to 65536 for a category. Each normal message
(that is, non-debug message) generated by an agent must be assigned a
message ID. For C++ entry points, the msgid is set as part of the
VCSAG_LOG_MSG and VCSAG_CONSOLE_LOG_MSG macros. For
script-based entry points, the msgid is set using the VCSAG_LOG_MSG
function. The msgid field is not used by debug functions or required in
debug messages.

Message text
The message text is a formatted message string preceded by a dynamically
generated header consisting of three colon-separated fields. namely, <name of
the agent>:<resource>:<name of the entry point>:<message>. For example:

FileOnOff:MyFile:online:Resource could not be brought up
because,the attempt to create the file (/tmp/MyFile) failed
with error (Is a Directory)

■ In the case of C++ entry points, the header information is generated.

■ In the case of script-based entry points, the header information is set within
the VCSAG_SET_ENVS function (see “VCSAG_SET_ENVS” on page 107).

C++ agent logging APIs
The agent framework provides four logging APIs (macros) for use in agent entry
points written in C++.

These APIs include two application logging macros:
VCSAG_CONSOLE_LOG_MSG(sev, msgid, flags, fmt, variable_args...)
VCSAG_LOG_MSG(sev, msgid, flags, fmt, variable_args...)

and the macros for debugging:
VCSAG_LOGDBG_MSG(dbgsev, flags, fmt, variable_args...)
VCSAG_RES_LOG_MSG(dbgsev, flags, fmt, variable args...)

98 Logging agent messages
C++ agent logging APIs
Agent application logging macros for C++ entry points
You can use the macro VCSAG_LOG_MSG within C++ agent entry points to log
all messages ranging in severity from CRITICAL to INFORMATION to the agent
log file. Use the VCSAG_CONSOLE_LOG_MSG macro to send messages to the
engine log, and, in the case of messages of CRITICAL and ERROR severity, to the
console.

The following table describes the argument fields for the application logging
macros:

In the following example, the macros are used to log an error message to the
agent log and to the console:

.

.
VCSAG_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,
 "Resource could not be brought down because the
 attempt to remove the file(%s) failed with error(%d)",
 (CHAR *)(*attr_val), errno);

VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,
 "Resource could not be brought down because, the
 attempt to remove the file(%s) failed with error(%d)",
 (CHAR *)(*attr_val), errno);

sev Severity of the message from the application. The values of sev are
macros VCS_CRITICAL, VCS_ERROR, VCS_WARNING, VCS_NOTICE,
and VCS INFORMATION; see “Severity arguments for C++ macros” on
page 100.

msgid The 16-bit integer message ID.

flags Default flags (0) prints UMI, NEWLINE. A macro,
VCS_DEFAULT_FLAGS, represents the default value for the flags.

fmt A formatted string containing formatting specifiers symbols. For
example: “Resource could not be brought down because the attempt to
remove the file (%s) failed with error (%d)”

variable_args Variable number (as many as 6) of type char, char *, or integer

99Logging agent messages
C++ agent logging APIs
Agent debug logging macros for C++ entry points
Use the macros VCSAG_RES_LOG_MSG and VCSAG_LOGDBG_MSG within
agent entry points to log debug messages of a specific severity level to the agent
log.

Use the LogDbg attribute to specify a debug message severity level. See the
description of the LogDbg attribute (“LogDbg” on page 141). Set the LogDbg
attribute at the resource type level. The attribute can be overridden to be set at
the level for a specific resource.

The VCSAG_LOGDBG_MSG macro controls logging at the level of the resource
type level, whereas VCSAG_RES_LOG_MSG macro can enable logging debug
messages at the level of a specific resource.

The following table describes the argument fields for the application logging
macros:

For example:
VCSAG_RES_LOG_MSG(VCS_DBG4, VCS_DEFAULT_FLAGS, "PathName is
(%s)",
 (CHAR *)(*attr_val));

For the example shown, the specified message is logged to the agent log if the
specific resource has been enabled (that is, the LogDbg attribute is set) for
logging of debug messages at the severity level DBG4.

dbgsev Debug severity of the message. The values of dbgsev are macros
ranging from VCS_DBG1 to VCS_DBG21; see “Severity arguments
for C++ macros” on page 100.

flags Describes the logging options.

Default flags (0) prints UMI, NEWLINE. A macro,
VCS_DEFAULT_FLAGS, represents the default value for the flags

fmt A formatted string containing symbols. For example: “PathName
is (%s)”

variable_args Variable number (as many as 6) of type char, char * or integer

100 Logging agent messages
C++ agent logging APIs
Severity arguments for C++ macros
A severity argument for a logging macro, for example, VCS_ERROR or
VCS_DBG1, is in fact a macro itself that expands to include the following
information:

■ actual message severity

■ function name

■ name of the file that includes the function

■ line number where the logging macro is expanded

For example, the application severity argument VCS_ERROR within the
monitor entry point for the FileOnOff agent would expand to include the
following information:

ERROR, file_monitor, FileOnOff.C, 28

Application severity macros map to application severities defined by the enum
VCSAgAppSev and the debug severity macros map to severities defined by the
enum VCSAgDbgSev. For example, in the VCSAgApiDefs.h header file, these
enumerated types are defined as:

enum VCSAgAppSev {
 AG_CRITICAL,

AG_ERROR,
AG_WARNING,
AG_NOTICE,
AG_INFORMATION

};

enum VCSAgDbgSev {
DBG1,
DBG2,
DBG3,
.
.
DBG21,
AG_DBG_SEV_End

};

With the severity macros, agent developers need not specify the name of the
function, the file name, and the line number in each log call. The name of the
function, however, must be initialized by using the macro VCSAG_LOG_INIT.
See “Initializing function_name using VCSAG_LOG_INIT” on page 101.

101Logging agent messages
C++ agent logging APIs
Initializing function_name using VCSAG_LOG_INIT
One requirement for logging of messages included in C++ functions is to
initialize the function_name variable within each function. The macro,
VCSAG_LOG_INIT, defines a local constant character string to store the
function name:

VCSAG_LOG_INIT(func_name) const char *_function_name_ =
func_name

For example, the function named “file_offline” would contain:
void file_offline (int a, char *b)
{

VCSAG_LOG_INIT(“file_offline”);
.
.

}

Note: If the function name is not initialized with the VCSAG_LOG_INIT macro,
when the agent is compiled, errors indicate that the name of the function is not
defined.

See the “Examples of logging APIs used in a C++ agent” on page 103 for more
examples of the VCSAG_LOG_INIT macro.

102 Logging agent messages
C++ agent logging APIs
Log category
The log category for the agent is defined using the primitive
VCSAgSetLogCategory (cat_ID) within the VCSAgStartup entry point. In
the following example, the log category is set to 2001:

VCSEXPORT void VCSDECL VCSAgStartup()
{
 VCSAG_LOG_INIT("VCSAgStartup");
 VCSAgV40EntryPointStruct ep;

 ep.open = NULL;
 ep.close = NULL;
 ep.monitor = file_monitor;
 ep.online = file_online;
 ep.offline = file_offline;
 ep.clean = file_clean;
 ep.attr_changed = NULL;
 ep.shutdown = NULL;
 ep.action = NULL;
 ep.info = NULL;

 VCSAgSetLogCategory(2001);

 char *s = setlocale(LC_ALL, NULL);
 VCSAG_LOGDBG_MSG(VCS_DBG1, VCS_DEFAULT_FLAGS, "Locale is

 %s", s);

 VCSAgRegisterEPStruct(V50, &ep);
}

You do not need to set the log category for debug messages, which is 50 by
default.

103Logging agent messages
C++ agent logging APIs
Examples of logging APIs used in a C++ agent
#include <stdio.h>
#include <locale.h>
#include "VCSAgApi.h"

void file_attr_changed(const char *res_name, const char
 *changed_res_name,const char *changed_attr_name, void
 **new_val)
{
 /*
 * NOT REQUIRED if the function is empty or is not logging
 * any messages to the agent log file
 */
 VCSAG_LOG_INIT("file_attr_changed");
}
extern "C" unsigned int
file_clean(const char *res_name, VCSAgWhyClean wc, void

**attr_val)
{
 VCSAG_LOG_INIT("file_clean");
 if ((attr_val) && (*attr_val)) {
 if ((remove((CHAR *)(*attr_val)) == 0) || (errno

== ENOENT)) { return 0; // Success
 }
 }
 return 1; // Failure
}

void file_close(const char *res_name, void **attr_val)
{
 VCSAG_LOG_INIT("file_close");
}
//
// Determine if the given file is online (file exists) or
// offline (file does not exist).
//
extern "C" VCSAgResState
file_monitor(const char *res_name, void **attr_val, int
*conf_level)
{
 VCSAG_LOG_INIT("file_monitor");

 VCSAgResState state = VCSAgResUnknown;
 *conf_level = 0;

 /*
 * This msg will be printed for all resources if VCS_DBG4
 * is enabled for the resource type. Else it will be
 * logged only for that resource that has the dbg level
 * VCS_DBG4 enabled
 */

104 Logging agent messages
C++ agent logging APIs
 VCSAG_RES_LOG_MSG(VCS_DBG4, VCS_DEFAULT_FLAGS, "PathName
 is(%s)", (CHAR *)(*attr_val));

 if ((attr_val) && (*attr_val)) {
 struct stat stat_buf;
 if ((stat((CHAR *)(* attr_val), &stat_buf) == 0)
 && (strlen((CHAR *)(* attr_val)) != 0)) {
 state = VCSAgResOnline; *conf_level = 100;

 }
 else {

 state = VCSAgResOffline;
 *conf_level = 0;
 }

 }
 VCSAG_RES_LOG_MSG(VCS_DBG7, VCS_DEFAULT_FLAGS, "State is
 (%d)", (int)state);
 return state;
}
extern "C" unsigned int
file_online(const char *res_name, void **attr_val) {
 int fd = -1;
 VCSAG_LOG_INIT("file_online");
 if ((attr_val) && (*attr_val)) {
 if (strlen((CHAR *)(* attr_val)) == 0) {
 VCSAG_LOG_MSG(VCS_WARNING, 3001, VCS_DEFAULT_FLAGS,
 "The value for PathName attribute is not

specified");

 VCSAG_CONSOLE_LOG_MSG(VCS_WARNING, 3001,
 VCS_DEFAULT_FLAGS,
 "The value for PathName attribute is not

specified");

 return 0;
 }
 if (fd = creat((CHAR *)(*attr_val), S_IRUSR|S_IWUSR) < 0) {

 VCSAG_LOG_MSG(VCS_ERROR, 3002, VCS_DEFAULT_FLAGS,
 "Resource could not be brought up because, "
 "the attempt to create the file(%s) failed "
 "with error(%d)", (CHAR *)(*attr_val), errno);

105Logging agent messages
C++ agent logging APIs
 VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 3002,
 VCS_DEFAULT_FLAGS,
 "Resource could not be brought up because, "
 "the attempt to create the file(%s) failed "
 "with error(%d)", (CHAR *)(*attr_val), errno);
 return 0;
 }

 close(fd);
 }
 return 0;
}

extern "C" unsigned int
file_offline(const char *res_name, void **attr_val)
{
 VCSAG_LOG_INIT("file_offline");
 if ((attr_val) && (*attr_val) && (remove((CHAR*)
 (*attr_val)) != 0) && (errno != ENOENT)) {

 VCSAG_LOG_MSG(VCS_ERROR, 14002, VCS_DEFAULT_FLAGS,
 "Resource could not be brought down because, the
 attempt to remove the file(%s) failed with
 error(%d)", (CHAR *)(*attr_val), errno);

 VCSAG_CONSOLE_LOG_MSG(VCS_ERROR, 14002,
 VCS_DEFAULT_FLAGS, "Resource could not be brought
 down because, the attempt to remove the file(%s)
 failed with error(%d)", (CHAR *)(*attr_val), errno);
 }
 return 0;
}

106 Logging agent messages
Script entry point logging functions
void file_open(const char *res_name, void **attr_val)
{
 VCSAG_LOG_INIT("file_open");

}
VCSEXPORT void VCSDECL VCSAgStartup()
{
 VCSAG_LOG_INIT("VCSAgStartup");
 VCSAgV40EntryPointStruct ep;

 ep.open = NULL;
 ep.close = NULL;
 ep.monitor = file_monitor;
 ep.online = file_online;
 ep.offline = file_offline;
 ep.clean = file_clean;
 ep.attr_changed = NULL;
 ep.shutdown = NULL;
 ep.action = NULL;
 ep.info = NULL;

 VCSAgSetLogCategory(2001);

 char *s = setlocale(LC_ALL, NULL);
 VCSAG_LOGDBG_MSG(VCS_DBG1, VCS_DEFAULT_FLAGS, "Locale is
 %s", s);

 VCSAgRegisterEPStruct(V50, &ep);
}

Script entry point logging functions
For script based entry points, functions, or wrappers, can call the halog
command for message logging purposes. While the halog command can be
called directly within the script to log messages, the following entry point
logging functions are easier to use and less error-prone:

VCSAG_SET_ENVS - sets and exports entry point environment variables

VCSAG_LOG_MSG - passes normal agent message strings and parameters
to the halog utility

VCSAG_LOGDBG_MSG - passes debug message strings and parameters to
the halog utility

107Logging agent messages
Script entry point logging functions
VCSAG_SET_ENVS
The VCSAG_SET_ENVS function is used in each script-based entry point file. Its
purpose is to set and export environment variables that identify the agent’s
category ID, the agent’s name, the resource’s name, and the entry point’s name.
With this information set up in the form of environment variables, the logging
functions can handle messages and their arguments in the unified logging
format without repetition within the scripts.

The VCSAG_SET_ENVS function sets the following environment variables for a
resource:

VCSAG_LOG_CATEGORY Sets the category ID. For custom agents, VERITAS
assigns the category ID. See the category ID description
in “UMI” on page 96. NOTE: For VCS bundled agents,
the category ID is pre-assigned, based on the platform
(Solaris, Linux, AIX, HP-UX, or Windows) for which the
agent is written.

VCSAG_LOG_AGENT_NAME The absolute path to the agent. For example:

 /opt/VRTSvcs/bin/Application

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation. If
the agent developer wishes, this agent name can also be
hard coded and passed as an argument to the
VCSAG_SET_ENVS function

VCSAG_LOG_SCRIPT_NAME The absolute path to the entry point script. For
example:

 /opt/VRTSvcs/bin/Application/online

Since the entry points are invoked using their absolute
paths, this environment variable is set at invocation.
The script name variable is can be overridden.

VCSAG_LOG_RESOURCE_NAME The resource is specified in the call within the entry
point:

VCSAG_SET_ENVS $resource_name

108 Logging agent messages
Script entry point logging functions
VCSAG_SET_ENVS examples, Shell script entry points
The VCSAG_SET_ENVS function must be called before any of the other logging
functions.

■ A minimal call:
VCSAG_SET_ENVS ${resource_name}

■ Setting the category ID:
VCSAG_SET_ENVS ${resource_name} ${category_ID}
VCSAG_SET_ENVS ${resource_name} 1062

■ Overriding the default script name:
VCSAG_SET_ENVS ${resource_name} ${script_name}
VCSAG_SET_ENVS ${resource_name} "monitor"

■ Setting the category ID and overriding the script name:
VCSAG_SET_ENVS ${resource_name} ${script_name}

${category_id}
VCSAG_SET_ENVS ${resource_name} "monitor" 1062

Or,
VCSAG_SET_ENVS ${resource_name} ${category_id}

${script_name}
VCSAG_SET_ENVS ${resource_name} 1062 "monitor"

VCSAG_SET_ENVS examples, Perl script entry points
■ A minimal call:

VCSAG_SET_ENVS ($resource_name);

■ Setting the category ID:
VCSAG_SET_ENVS ($resource_name, $category_ID);
VCSAG_SET_ENVS ($resource_name, 1062);

■ Overriding the script name:
VCSAG_SET_ENVS ($resource_name, $script_name);
VCSAG_SET_ENVS ($resource_name, "monitor");

■ Setting the category ID and overriding the script name:
VCSAG_SET_ENVS ($resource_name, $script_name, $category_id);
VCSAG_SET_ENVS ($resource_name, "monitor", 1062);

Or,
VCSAG_SET_ENVS ($resource_name, $category_id, $script_name);
VCSAG_SET_ENVS ($resource_name, 1062, "monitor");

109Logging agent messages
Script entry point logging functions
VCSAG_LOG_MSG
The VCSAG_LOG_MSG function can be used to pass normal agent messages to
the halog utility. At a minimum, the function must include the severity, the
message within quotes, and a message ID. Optionally, the function can also
include parameters and specify an encoding format.

VCSAG_LOG_MSG examples, Shell script entry points
■ Calling a function without parameters or encoding format:

VCSAG_LOG_MSG "<sev>" "<msg>" <msgid>
VCSAG_LOG_MSG "C" "Two files found" 140

■ Calling a function with one parameter, but without encoding format:
VCSAG_LOG_MSG "<sev>" "<msg>" <msgid> "<param1>"
VCSAG_LOG_MSG "C" "$count files found" 140 "$count"

■ Calling a function with a parameter and encoding format:
VCSAG_LOG_MSG "<sev>" "<msg>" <msgid> "-encoding <format>"

"<param1>"
VCSAG_LOG_MSG "C" "$count files found" 140 "-encoding utf8"

"$count"

Note that if encoding format and parameters are passed to the functions,
the encoding format must be passed before any parameters.

Severity Levels (sev) “C” - critical, “E” - error, “W” - warning, “N” - notice, “I” -
information; place error code in quotes

Message (msg) A text message within quotes; for example: “One file
copied”

Message ID (msgid) An integer between 0 and 65535

Encoding Format UTF-8, ASCII, or UCS-2 in the form: “-encoding format”

Parameters Parameters (up to six), each within quotes

110 Logging agent messages
Script entry point logging functions
VCSAG_LOG_MSG examples, Perl script entry points
■ Calling a function without parameters or encoding format:

VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>);
VCSAG_LOG_MSG ("C", "Two files found", 140);

■ Calling a function with one parameter, but without encoding format:
VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "<param1>";
VCSAG_LOG_MSG ("C", "$count files found", 140, "$count");

■ Calling a a function with one parameter and encoding format:
VCSAG_LOG_MSG ("<sev>", "<msg>", <msgid>, "-encoding

<format>", "<param1>");
VCSAG_LOG_MSG ("C", "$count files found", 140, "-encoding

utf8", "$count");

Note that if encoding format and parameters are passed to the functions, the
encoding format must be passed before any parameters.

VCSAG_LOGDBG_MSG
This function can be used to pass debug messages to the halog utility. At a
minimum, the severity must be indicated along with a message. Optionally, the
encoding format and parameters may be specified.

VCSAG_LOGDBG_MSG examples, Shell script entry points
■ Calling a function without encoding or parameters:

VCSAG_LOGDBG_MSG <dbg> "<msg>"
VCSAG_LOGDBG_MSG 1 "This is string number 1"

■ Calling a function with a parameter, but without encoding format:
VCSAG_LOGDBG_MSG <dbg> "<msg>" "<param1>"
VCSAG_LOGDBG_MSG 2 "This is string number $count" "$count"

■ Calling a function with a parameter and encoding format:
VCSAG_LOGDBG_MSG <dbg> "<msg>" "-encoding <format>" "$count"
VCSAG_LOGDBG_MSG 2 "This is string number $count" "$count"

Severity (dbg) An integer indicating a severity level, 1 to 21.

Message (msg) A text message in quotes; for example: “One file copied”

Encoding Format UTF-8, ASCII, or UCS-2 in the form: “-encoding format”

Parameters Parameters (up to six), each within quotes

111Logging agent messages
Script entry point logging functions
VCSAG_LOGDBG_MSG examples, Perl script entry points
■ Calling a function:

VCSAG_LOGDBG_MSG (<dbg>, "<msg>");
VCSAG_LOGDBG_MSG (1 "This is string number 1");

■ Calling a function with a parameter, but without encoding format:
VCSAG_LOGDBG_MSG (<dbg>, "<msg>", "<param1>");
VCSAG_LOGDBG_MSG (2, "This is string number $count",

"$count");

■ Calling a function with a parameter and encoding format:
VCSAG_LOGDBG_MSG <dbg> "<msg>" "-encoding <format>"

"<param1>"
VCSAG_LOGDBG_MSG (2, "This is string number $count",

"-encoding
 utf8", "$count");

Using the functions in scripts
The script-based entry points require a line that specifies the file defining the
logging functions. Include the following line exactly once in each script. The line
should precede the use of any of the log functions.

■ Shell Script include file
. ${VCS_HOME:-/opt/VRTSvcs}/bin/ag_i18n_inc.sh

■ Perl Script include file
use ag_i18n_inc;

112 Logging agent messages
Script entry point logging functions
Example of logging functions used in a script agent
The following example shows the use of VCSAG_SET_ENVS and
VCSAG_LOG_MSG functions in a shell script for the online entry point.

!#/bin/ksh

ResName=$1

Parse other input arguments
 :
 :
VCSHOME="${VCS_HOME:-/opt/VRTSvcs}"

. $VCSHOME/bin/ag_i18n_inc.sh

Assume the category id assigned by VERITAS for this custom
agent #is 10061
VCSAG_SET_ENVS $ResName 10061

Online entry point processing
 :
 :

Successful completion of the online entry point
VCSAG_LOG_MSG "N" "online succeeded for resource $ResName" 1
"$ResName"

exit 0

Chapter
 6
Building a custom agent

The packages installed by the installation program include the following files to
facilitate agent development. Note that custom agents are not supported by
Symantec Technical Support.

Table 6-1 Script Agents

Description Pathname

Ready-to-use VCS agent that
includes a built-in
implementation of the
VCSAgStartup entry point.

$VCS_HOME/bin/ScriptAgent

ScriptAgent cannot be used with C++ entry points.

Table 6-2 C++ Agents

Description Pathname

Directory containing a sample
C++ agent and Makefile.

$VCS_HOME/src/agent/Sample%

Sample Makefile for building a
C++ agent.

$VCS_HOME/src/agent/Sample/Makefile

Entry point templates for C++
agents.

$VCS_HOME/src/agent/Sample/agent.C

114 Building a custom agent
Compiling is not required if all entry points are implemented using scripts. A
copy of ScriptAgent or Script50Agent is sufficient.

Compiling is required to build the agent if any entry points are implemented
using C++. We recommend the following procedures for developers
implementing entry points using C++:

Implementing entry points using C++

1 Edit agent.C to customize the implementation; agent.C is located in the
directory $VCS_HOME/src/agent/Sample.

2 After completing the changes to agent.C, invoke the make command to
build the agent. The command is invoked from
$VCS_HOME/src/agent/Sample, where the Makefile is located.

3 Name the agent binary: resource_typeAgent.

4 Place the agent in the directory $VCS_HOME/bin/resource_type.

For example, the agent binary for Oracle would be
$VCS_HOME/bin/Oracle/OracleAgent.

Implementing entry points using scripts

If entry points are implemented using scripts, the script file must be placed in
the directory $VCS_HOME/bin/resource_type. It must be named correctly (if
necessary, review “Script agents” on page 31).

If all entry points are scripts, all scripts should be in the directory
$VCS_HOME/bin/resource_type. Copy the ScriptAgent into the agent
directory as $VCS_HOME/bin/resource_type/resource_typeAgent.

For example, if the online entry point for Oracle is implemented using Perl, the
online script must be: $VCS_HOME/bin/Oracle/online.

Additional recommendations
We also recommend naming the agent binary resource_typeAgent. Place the
agent in the directory $VCS_HOME/bin/resource_type.

The agent binary for Oracle would be
$VCS_HOME/bin/Oracle/OracleAgent, for example.

If the agent file is different, for example /foo/ora_agent, the types.cf file
must contain the following entry:

...
Type Oracle (

...
static str AgentFile = "/foo/ora_agent"
...

)

115Building a custom agent
Creating an agentTypes.cf file
Creating an agentTypes.cf file
The agent you create requires a resource type definition file. This file performs
the function of providing a general type definition of the resource and its unique
attributes. Name the resource type definition file following the convention
resource_typeTypes.cf. For example, for the resource type XYZ, the file
would be XYZTypes.cf. Once you create the file, place it in the directory:

$ VCS_HOME/conf/config

Example: FileOnOffTypes.cf file
An example types configuration file for the FileOnOff resource:

// Define the resource type called FileOnOff (in
FileOnOffTypes.cf).
type FileOnOff (
str PathName;
static str ArgList[] = { PathName };
)

Requirements for creating the agentTypes.cf file
As you examine the previous example, note the following aspects:

■ The name of the agent

■ The ArgList attribute, its name, type, dimension, and its values, which
consist of the other attributes of the resource

■ The remaining attributes (in this example case there is only the PathName
attribute), their names, types, dimensions, and descriptions

The resource defined in the main.cf file
When you have created a type definition for the resource and created an agent
for it, you can begin to use the agent to control specific resources by defining the
resource’s attributes in the main.cf file.

The resource name and ArgList attribute values are passed to the script entry
points as command-line arguments. For example, in the following configuration,
the script entry points receive the resource name as the first argument, and
PathName as the second.

// Define a FileOnOff resource (in main.cf).
include FileOnOffTypes.cf
FileOnOff FileOnOffRes (

PathName = "/tmp/VRTSvcs_file1"
Enabled = 1

)

116 Building a custom agent
Building an agent for FileOnOff resources
Building an agent for FileOnOff resources
The following sections describe different ways to build a VCS agent for
“FileOnOff” resources. For test purposes, instructions for installing the agent on
a single VCS system are also provided. For multi-system configurations, you
must install the agent on each system in the cluster.

The examples assume that VCS is installed under /opt/VRTSvcs. If your VCS
installation directory is different, change the commands accordingly.

A FileOnOff resource represents a regular file. The FileOnOff online entry
point creates the file if it does not already exist. The FileOnOff offline entry
point deletes the file. The FileOnOff monitor entry point returns online and
confidence level 100 if the file exists; otherwise, it returns offline.

Using script entry points
The following example shows how to build the FileOnOff agent without writing
and compiling any C++ code. This example implements the online, offline,
and monitor entry points only.

Example: implementing entry points without C++

1 Create the directory /opt/VRTSvcs/bin/FileOnOff:
mkdir /opt/VRTSvcs/bin/FileOnOff

2 Use the VCS agent /opt/VRTSvcs/bin/ScriptAgent as the FileOnOff
agent. Copy this file to
/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent, or create a link.

To copy the agent binary:
cp /opt/VRTSvcs/bin/ScriptAgent

/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

To create a link to the agent binary:
ln -s /opt/VRTSvcs/bin/ScriptAgent

/opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

3 Implement the online, offline, and monitor entry points using scripts.

a Using any editor, create the file
/opt/VRTSvcs/bin/FileOnOff/online with the contents:

!/bin/sh
Create the file specified by the PathName

 # attribute.
touch $2

b Create the file /opt/VRTSvcs/bin/FileOnOff/offline with the
contents:

!/bin/sh
Remove the file specified by the PathName

117Building a custom agent
Building an agent for FileOnOff resources
attribute.
rm $2

c Create the file /opt/VRTSvcs/bin/FileOnOff/monitor with the
contents:

!/bin/sh
Verify file specified by the PathName attribute
exists.
if test -f $2
then exit 110;
else exit 100;
fi

4 Additionally, you can implement the info and action entry points. For the
action entry point, create a subdirectory named “actions” under the agent
directory, and create scripts with the same names as the action_tokens
within the subdirectory.

118 Building a custom agent
Building an agent for FileOnOff resources
Using VCSAgStartup() and script entry points
The following example shows how to build the FileOnOff agent using your own
VCSAgStartup entry point. This example implements the VCSAgStartup,
online, offline, and monitor entry points only.

Example: implementing agent using VCSAgStartup and script entry points

1 Create the directory /opt/VRTSvcs/src/agent/FileOnOff:
mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the directory /opt/VRTSvcs/src/agent/Sample
to the directory you created in the previous step:

cp /opt/VRTSvcs/src/agent/Sample/*
/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:
cd /opt/VRTSvcs/src/agent/FileOnOff

4 Edit the file agent.C and modify the VCSAgStartup() function (the last
several lines) to match the following example:

void VCSAgStartup() {
VCSAgV40EntryPointStruct ep;

// Set all the entry point fields to NULL because
// this example does not implement any of them
// using C++.

ep.open = NULL;
ep.close = NULL;
ep.monitor = NULL;
ep.online = NULL;
ep.offline = NULL;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.shutdown = NULL;
ep.action = NULL;
ep.info = NULL;
VCSAgSetLogCategory(10041);
VCSAgRegisterEPStruct(V40, &ep);

}

5 Compile agent.C and build the agent by invoking make. (Makefile is
provided.)

make

6 Create the directory /opt/VRTSvcs/bin/FileOnOff:
mkdir /opt/VRTSvcs/bin/FileOnOff

7 Install the FileOnOff agent built in step 5.
make install AGENT=FileOnOff

119Building a custom agent
Building an agent for FileOnOff resources
8 Implement the online, offline, and monitor entry points, as instructed
in step 3 on page 116.

Using C++ and script entry points
The following example shows how to build the FileOnOff agent using your own
VCSAgStartup entry point, the C++ version of the monitor entry point, and
the script version of online and offline entry points. This example
implements the VCSAgStartup, online, offline, and monitor entry points
only.

Example: implementing agent using VCSAgStartup, C++ and script entry
points

1 Create the directory /opt/VRTSvcs/src/agent/FileOnOff:
mkdir /opt/VRTSvcs/src/agent/FileOnOff

2 Copy the contents from the directory /opt/VRTSvcs/src/agent/Sample
to the directory you created in the previous step:

cp /opt/VRTSvcs/src/agent/Sample/*
/opt/VRTSvcs/src/agent/FileOnOff

3 Change to the new directory:
cd /opt/VRTSvcs/src/agent/FileOnOff

4 Edit the file agent.C and modify the VCSAgStartup()function (the last
several lines) to match the following example:

void VCSAgStartup()
 {

VCSAgV40EntryPointStruct ep;

// This example implements only the monitor entry
// point using C++. Set all the entry point
// fields, except monitor, to NULL.
ep.open = NULL;
ep.close = NULL;
ep.monitor = file_monitor;
ep.online = NULL;
ep.offline = NULL;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.shutdown = NULL;
ep.action = NULL;
ep.info = NULL;
VCSAgSetLogCategory(10041);
VCSAgRegisterEPStruct(V40, &ep);
}

120 Building a custom agent
Building an agent for FileOnOff resources
5 Modify the file_monitor() function:
// This is a C++ implementation of the monitor entry
// point for the FileOnOff resource type. This function
// determines the status of a FileOnOff resource by
// checking if the corresponding file exists. It is
// assumed that the complete pathname of the file will
// be passed as the first ArgList attribute.

VCSAgResState file_monitor(const char *res_name, void
**attr_val,int *conf_level) {

// Initialize the OUT parameters.
VCSAgResState state = VCSAgResUnknown;
*conf_level = 0;

if (attr_val) {
// Get the pathname of the file.
const char *path_name = (const char *) attr_val[0];
// Determine if the file exists.
struc stat stat_buf;
if (stat(path_name, &stat_buf) == 0) {

state = VCSAgResOnline;
*conf_level = 100;

}
else {

state = VCSAgResOffline;
*conf_level = 0;

}
}

// Return the status of the resource.

return state;
}

6 Compile agent.C and build the agent by invoking make. (Makefile is
provided.)

make

7 Create the directory /opt/VRTSvcs/bin/FileOnOff:
mkdir /opt/VRTSvcs/bin/FileOnOff

8 Install the FileOnOff agent built in step 6.
make install AGENT=FileOnOff

Note: Implement the online and offline entry points as instructed in step 3
on page 116.

121Building a custom agent
Building an agent for FileOnOff resources
 Using C++ entry points
The example in this section shows how to build the FileOnOff agent using your
own VCSAgStartup entry point and the C++ version of online, offline, and
monitor entry points. This example implements the VCSAgStartup, online,
offline, and monitor entry points only.

Example: VCSAgStartup and C++ entry points

1 Edit the file agent.C and modify the VCSAgStartup() function
(the last several lines) to match the following example:

void VCSAgStartup() {
 VCSAgV40EntryPointStruct ep;

 // This example implements online, offline, and
 // monitor entry points using C++. Set the
 // corresponding fields of
 // VCSAgV40EntryPointStruct passed to
 // VCSAgRegisterEPStruct.
 // Set all other fields to NULL.

ep.open = NULL;
ep.close = NULL;
ep.monitor = file_monitor;
ep.online = file_online;
ep.offline = file_offline;
ep.attr_changed = NULL;
ep.clean = NULL;
ep.shutdown = NULL;
ep.action = NULL;
ep.info = NULL;

VCSAgSetLogCategory(2001);

VCSAgRegisterEPStruct(V40, &ep);
}

2 Modify file_online() and file_offline():
// This is a C++ implementation of the online entry
// point for the FileOnOff resource type. This function
// brings online a FileOnOff resource by creating the
// corresponding file. It is assumed that the complete
// pathname of the file will be passed as the first
// ArgList attribute.

unsigned int
file_online(const char *res_name, void **attr_val) {

VCSAG_LOG_INIT(file_online);
if (attr_val) {

// Get the pathname of the file.
const char *path_name = (const char *) attr_val[0];

122 Building a custom agent
Building an agent for FileOnOff resources
// Create the file
int fd = creat (path_name,S_IRUSR | S_IWUSR);
if (fd < 0) {

// if creat() failed, send a log message to
// the console.
char msg [1024];

VCSAG_LOG_MSG(VCS_ERROR, 1001,
VCS_DEFAULT_FLAGS, "creat ()
"failed for for file(%s)", path_name);

}
else {

close(fd);
}

}

// Completed onlining resource. Return 0 so monitor
// can start immediately. Note that return value
// indicates how long agent framework must wait before
// calling the monitor entry point to check if online
// was successful.

return 0;
}

// This is a C++ implementation of the offline entry
// point for the FileOnOff resource type. This function
// takes offline a FileOnOff resource by deleting the
// corresponding file. It is assumed that the complete
// pathname of the file will be passed as the first
// ArgList attribute.

unsigned int
file_offline(const char *res_name, void **attr_val) {

 VCSAG_LOG_INIT("file_offline");
if (attr_val) {

// Get the pathname of the file.
const char *path_name = (const char *)

attr_val[0];

// Delete the file
remove (path_name);

}
// Completed offlining resource. Return 0 so monitor
// can start immediately. Note that return value
// indicates how long agent framework must wait before
// calling the monitor entry point to check if offline
// was successful.

return 0;
}

123Building a custom agent
Building an agent for FileOnOff resources
3 Modify file_monitor(), as shown on step 5 on page 120.

4 Compile agent.C and build the agent by invoking make. (Makefile is
provided.)

make

5 Create the directory /opt/VRTSvcs/bin/FileOnOff:
mkdir /opt/VRTSvcs/bin/FileOnOff

6 Install the FileOnOff agent built in step 4.
make install AGENT=FileOnOff

124 Building a custom agent
Building an agent for FileOnOff resources

Chapter
 7
Testing agents

Agents can be tested using:

■ The VCS engine

(See “Using the engine process to test agents” on page 126)

■ The AgentServer utility

(See “Using the AgentServer utility to test agents” on page 128)

Before testing an agent, make sure you complete the following tasks:

✔ Built the agent binary and put it in the directory
$VCS_HOME/bin/resource_type.

✔ Installed script entry points in the directory
$VCS_HOME/bin/resource_type.

If you are using the VCS engine process to test the agent, make sure you have:

✔ Defined the resource type in agentTypes.cf, defined the resources in
main.cf, and restarted the engine. You may define the new type and
resources using commands from the command line.

126 Testing agents
Using debug messages
Using debug messages
You can activate C++ agent debug messages by setting the value of the LogDbg
attribute of the resource type to DBG_AGINFO. This directs the framework to
print messages logged with agent debug severity of DBG_AGINFO. Debug
messages are logged to a specific file:

$VCS_LOG/log/resource_type_A.log

Use the halog command with the -addtags option to set up debug tags for use
by script agents. Messages from halog are logged to the VCS engine log.

Using the engine process to test agents
When the engine process “had” becomes active on a system, it automatically
starts the appropriate agent processes based on the contents of the
configuration files. A single agent process monitors all resources of the same
type on a system.

After the engine process is active, type the following command at the system
prompt to verify that the agent has been started and is running:

haagent -display <resource_type>

For example, to test the Oracle agent, type:
haagent -display Oracle

If the Oracle agent is running, the output resembles:
#Agent Attribute Value
Oracle AgentFile
Oracle Faults 0
Oracle Running Yes
Oracle Started Yes

127Testing agents
Using the engine process to test agents
Test commands
The following examples show how to use commands to test the agent:

■ To activate agent debug messages for C++ agents, type:
hatype -modify <resource_type> LogDbg -add DBG_AGINFO

■ To check the status of a resource, type:
hares -display <resource_name>

■ To bring a resource online, type:
hares -online <resource_name> -sys system

This causes the online entry point of the corresponding agent to be called.

■ To take a resource offline, type:
hares -offline <resource_name> -sys system

This causes the offline entry point of the corresponding agent to be
called.

■ To deactivate agent debug messages for C++ agents, type:
haatype -modify <resource_type> LogDbg -delete DBG_AGINFO

128 Testing agents
Using the AgentServer utility to test agents
Using the AgentServer utility to test agents
The AgentServer utility enables you to test agents without running the VCS
engine process. The utility is part of the product package and is installed in the
directory $VCS_HOME/bin. Run the AgentServer utility when the VCS engine
process is not running.

To start the AgentServer and access help

1 Type the following command to start AgentServer:
$VCS_HOME/bin/AgentServer

The AgentServer utility monitors a TCP port for messages from the
agents. This port number can be configured by setting vcstest to the
selected port number in the file /etc/services. If vcstest is not
specified, AgentServer uses the default value 14142.

2 When AgentServer is started, a message prompts you to enter a command
or to type help for a complete list of the AgentServer commands. We
recommend you type help to review the commands before getting started.
> help

Output resembles:
The following commands are supported.(Use help for more
information on using any command.)

addattr
addres
addstaticattr
addtype
debughash
debugmemory
debugtime
delete
deleteres
modifyres
modifytype
offlineres
onlineres
print
proberes
quit
startagent
stopagent

129Testing agents
Using the AgentServer utility to test agents
3 For help on a specific command, type help command_name at the
AgentServer prompt (>). For example, for information on how to bring a
resource online, type:
> help onlineres

The output resembles:
Sends a message to an agent to online a resource.
Usage: onlineres <agentid> <resname>
where <agentid> is id for the agent - usually same as
the resource type name.
where <resname> is the name of the resource.

To test the FileOnOff agent

1 Start the agent for the resource type:
>startagent FileOnOff /opt/VRTSvcs/bin/FileOnOff/FileOnOffAgent

You receive the following messages:
Agent (FileOnOff) has connected.
Agent (FileOnOff) is ready to accept commands.

2 The following are examples of types.cf and main.cf configuration files that
can be referred to when testing the FileOnOff agent:

■ Example types.cf definition for the FileOnOff agent:

type FileOnOff (
str PathName
static str ArgList[] = { PathName }

)

■ Example main.cf definition for a FileOnOff resource:
...
group ga (
...
) FileOnOff file1 (

Enabled = 1
PathName = "/tmp/VRTSvcsfile001"

)

In step 3, the sample configuration is set up using AgentServer commands.

130 Testing agents
Using the AgentServer utility to test agents
3 Complete step a through step f to pass this sample configuration to the
agent.

a Add a type:
>addtype FileOnOff FileOnOff

b Add attributes of the type:
>addattr FileOnOff FileOnOff PathName str ""
>addattr FileOnOff FileOnOff Enabled int 0

c Add the static attributes to the FileOnOff resource type:
>addstaticattr FileOnOff FileOnOff ArgList vector PathName

d Add the LogLevel attribute to see the debug messages from the agent:
>addstaticattr FileOnOff FileOnOff LogLevel str info

e Add a resource:
>addres FileOnOff file1 FileOnOff

f Set the resource attributes:
>modifyres FileOnOff file1 PathName str /tmp/VRTSvcsfile001
>modifyres FileOnOff file1 Enabled int 1

4 After adding and modifying resources, type the following command to
obtain the status of a resource:
>proberes FileOnOff file1

This calls the monitor entry point of the FileOnOff agent.

You will receive the following messages indicating the resource status:
Resource(file1) is OFFLINE
Resource(file1) confidence level is 0

a To bring a resource online:
>onlineres FileOnOff file1

This calls the online entry point of the FileOnOff agent. The following
message is displayed when file1 is brought online:
Resource(file1) is ONLINE
Resource(file1) confidence level is 100

b To take a resource offline:
>offlineres FileOnOff file1

This calls the offline entry point of the FileOnOff agent. A status
message similar to the example in step a is displayed when file1 is
taken offline.

5 View the list of agents started by the AgentServer process:
>print

Output resembles:
Following Agents are started:
FileOnOff

131Testing agents
Using the AgentServer utility to test agents
6 Stop the agent:
>stopagent FileOnOff

7 Exit from the AgentServer:
>quit

132 Testing agents
Using the AgentServer utility to test agents

Chapter
 8
Static type attributes

Predefined static resource type attributes described in this chapter and in the
section “Static type attribute definitions” on page 134 apply to all resource
types. When developers create agents and define the resource type definitions
for them, the static type attributes become part of the type definition.

Overriding static type attributes
Typically, the value of a static attribute of a resource type applies to all
resources of the type. You can override the value of a static attribute for a
specific resource without affecting the value of that attribute for other
resources of that type. In this chapter, the description of each agent attribute
indicates whether the attribute’s values can be overridden.

Users can override the values of static attributes two ways:

■ By explicitly defining the attribute in a resource definition

■ By using the hares command from the command line with the -override
option

The values of the overridden attributes may be displayed using the
hares -display command. You can remove the overridden values of static
attributes by using the hares -undo_override option from the command line.

See hares manual page and the User’s Guide for a additional information about
overriding the values of static attributes.

134 Static type attributes
Static type attribute definitions
Static type attribute definitions
The following sections describe the static attributes for agents.

ActionTimeout
After the hares -action command has instructed the agent to perform a
specified action, the action entry point has the time specified by the
ActionTimeout attribute (scalar-integer) to perform the action. The value of
ActionTimeout may be set for individual resources, if overridden.

Whether overridden or not, no matter what value is specified for
ActionTimeout, the value is internally limited to the value of MonitorInterval /
2. MonitorInterval attribute description is given below.

The default is 30 seconds. The ActionTimeout attribute value can be overridden.

AgentClass
Indicates the scheduling class for agent process. See “Scheduling class and
priority configuration support” on page 151.

Default is “TS”.

AgentFailedOn
A keylist attribute indicating the systems on which the agent has failed. This is
not a user defined attribute.

Default is an empty keylist.

AgentPriority
Indicates the priority in which the agent process runs. See “Scheduling class and
priority configuration support” on page 151.

Default is 0.

135Static type attributes
Static type attribute definitions
AgentReplyTimeout
The engine restarts an agent if it has not received any messages from the agent
for the number of seconds specified by AgentReplyTimeout.

The default value of 130 seconds works well for most configurations. Increase
this value if the engine is restarting the agent too often during steady state of
the cluster. This may occur when the system is heavily loaded or if the number
of resources exceeds four hundred. Refer to the description of the command
haagent -display. Note that the engine will also restart a crashed agent.

The AgentReplyTimeout attribute value cannot be overridden.

AgentStartTimeout
The value of AgentStartTimeout specifies how long the engine waits for the
initial agent “handshake” after starting the agent, before attempting to restart
it.

Default is 60 seconds. The AgentStartTimeout attribute value cannot be
overridden.

ArgList
An ordered list of attributes whose values are passed to the open, close, online,
offline, monitor, info, action, and clean entry points.

The default is an empty list. The ArgList attribute value cannot be overridden.

ArgList reference attributes
Reference attributes refer to attributes of a different resource. If the value of a
resource’s attribute is the name of another resource, the ArgList of the first
resource can refer to an attribute of the second resource using the : operator.

For example, say, there is a type T1 whose ArgList is of the form:

{ Attr1, Attr2, Attr3:Attr_A }

where Attr1, Attr2 and Attr3 are attributes of type T1, and say for a resource
res1T1 of type T1, Attr3 's value is the name of another resource, res1T2. Then
the entry points for res1T1 are passed the values of attributes Attr1 and Attr2 of
res1T1 and the value of attribute Attr_A of resource res1T2.

Note that one has to first add the attribute Attr3 to type T1 before adding
Attr3:Attr_A to T1's ArgList. Only then should one modify Attr3 for a resource
(res1T1) to reference another resource (res1T2). Also, the value of Attr3 can
either be another resource of the same time (res2T1) or a resource of a different
type (res1T2).

136 Static type attributes
Static type attribute definitions
AsyncMon
Available on VCS only.

Use the AsyncMon attribute to enable asynchronous monitoring of Process
resources. When asynchronous monitoring of a resource is enabled (AsyncMon
= 1), no monitoring of an online resource takes place until the state of the
resource has changed. When the resource changes state, the agent framework
immediately begins monitoring the resource. If the resource is found to be
offline, the agent identifies the resource as faulted. If the resource is found to be
online, then the framework resumes monitoring the resource in the
asynchronous manner.

The default for AsyncMon is 0, that is, asynchronous monitoring is not enabled.
The AsyncMon attribute can be overridden.

Enabling and disabling asynchronous monitoring
You can enable and disable asynchronous monitoring for all resources or
selected resources.

To enable or disable asynchronous monitoring for all resources of a type

The default for AsyncMon = 0. To enable disable asynchronous monitoring for
all resources of the Process resource type, use haytpe command to modify the
AsyncMon attribute:

hatype -modify Process AsyncMon 1

To disable asynchronous monitoring for all resources of the Process resource
type, use haytpe command to modify the AsyncMon attribute:

hatype -modify Process AsyncMon 0

To enable or disable asynchronous monitoring for selected resources

Because you can override the value of the AsyncMon attribute, you can
selectively apply the method of monitoring.

For example, to allow the AsyncMon attribute for a given Process resource type
to be overridden:

hares -override MyProcess AsyncMon

To override the current value, use hares -modify command. For example, if
asynchronous monitoring is not currently enabled, but you want to use it for the
MyProcess resource on system A, enter:

hares -modify Myprocess AsyncMon 1 -sys A

137Static type attributes
Static type attribute definitions
AttrChangedTimeout
Maximum time (in seconds) within which the attr_changed entry point must
complete or else be terminated. Default is 60 seconds. The AttrChangedTimeout
attribute value can be overridden.

CleanTimeout
Maximum time (in seconds) within which the clean entry point must complete
or else be terminated.

Default is 60 seconds. The CleanTimeout attribute value can be overridden.

CloseTimeout
Maximum time (in seconds) within which the close entry point must complete
or else be terminated.

Default is 60 seconds.The CloseTimeout attribute value can be overridden.

ContainerType
Defines the type of container inside which an application runs. For applications
running inside the zone, this attribute is to have a value of “Zone”.

Default is “NULL.”

ContainerName resource attribute
An associated resource attribute is ContainerName, whose value you can set as
the name of the non-global zone. When this attribute is set, the agent runs the
entry points for the resource.

About entry point implementation for non-global zones
To write an agent to manage resources inside a local (non-global) zone, include
the ContainerType and ContainerName attributes in the type definition for that
agent. The description for these attribute is given above.

When the ContainerName attribute for a resource is set to a local zone's name,
the resource is brought online, taken offline, and monitored inside the local
zone.

When the agent’s entry points are implemented in C++, the entry points run in
the global zone because the agent runs in the global zone. Hence, the entry
points need to be aware that they run in the global zone even though they might
need to monitor a resource in the local zone. When the agent’s entry points are

138 Static type attributes
Static type attribute definitions
implemented in scripts, the scripts are forked off inside the local zone for each
resource of the type configured to run inside a local zone.

About installing agents that use zones
When setting up the Solaris pkginfo file for the installation of agents that are to
run in zones, set the following variable: SUNW_PKG_ALLZONES=true.

139Static type attributes
Static type attribute definitions
ConfInterval
Specifies an interval in seconds. When a resource has remained online for the
designated interval (all monitor invocations during the interval reported
ONLINE), any earlier faults or restart attempts of that resource are ignored.
This attribute is used with ToleranceLimit to allow the monitor entry point to
report OFFLINE several times before the resource is declared FAULTED. If monitor
reports OFFLINE more often than the number set in ToleranceLimit, the resource
is declared FAULTED. However, if the resource remains online for the interval
designated in ConfInterval, any earlier reports of OFFLINE are not counted
against ToleranceLimit.

The agent framework uses the values of MonitorInterval (MI), MonitorTimeout
(MT), and ToleranceLimit (TL) to determine how low to set the value of
ConfInterval. The agent framework ensures that ConfInterval (CI) cannot be less
than that expressed by the following relationship:

(MI + MT) * TL + MI + 10

Lesser specified values of ConfInterval are ignored. For example, assume that
the values are 60 for MI, 60 for MT, and 0 for TL. If you specify any value lower
than 70 for CI, the agent framework ignores the specified value and sets the
value to 70. However, you can successfully specify and set CI to any value over
70.

ConfInterval is also used with RestartLimit to prevent the engine from
restarting the resource indefinitely. The engine attempts to restart the resource
on the same system according to the number set in RestartLimit within
ConfInterval before giving up and failing over. However, if the resource remains
online for the interval designated in ConfInterval, earlier attempts to restart are
not counted against RestartLimit. Default is 600 seconds.

The ConfInterval attribute value can be overridden.

140 Static type attributes
Static type attribute definitions
FaultOnMonitorTimeouts
Indicates the number of consecutive monitor failures to be treated as a resource
fault. A monitor attempt is considered a failure if it does not complete within the
time specified by the MonitorTimeout attribute.

When a monitor fails as many times as the value specified by this attribute, the
corresponding resource is brought down by calling the clean entry point. The
resource is then marked FAULTED, or it is restarted, depending on the value set in
the Restart Limit attribute.

Note: This attribute applies only to online resources. If a resource is offline, no
special action is taken during monitor failures.

When FaultOnMonitorTimeouts is set to 0, monitor failures are not considered
indicative of a resource fault.

Default is 4. The FaultOnMonitorTimeouts attribute value can be overridden.

FireDrill
A “fire drill” refers to the process of bringing up a database or application on a
secondary or standby system for the purpose of doing some processing on the
secondary data, or to verify that the application is capable of being brought
online on the secondary in case of a primary fault. The FireDrill attribute
specifies whether a resource type has fire drill enabled or not. A value of 1 for
the FireDrill attribute indicates a fire drill is enabled. A value of 0 indicates a fire
drill is not enabled.

The default is 0. The FireDrill attribute cannot be overridden.

Refer to the User’s Guide for details of how to set up and implement a fire drill.

InfoInterval
Specifies the interval, in seconds, between successive invocations of the info
entry point for a given resource. The default value of the InfoInterval attribute
is 0, which specifies that the agent framework is not to schedule the info entry
point periodically; the entry point can be invoked, however, by the user from the
command line.

The InfoInterval attribute value can be overridden.

141Static type attributes
Static type attribute definitions
InfoTimeout
A scalar integer specifying how long the agent framework allows for completion
of the info entry point.

The default is 30 seconds. The value of the InfoTimeout attribute is internally
capped at MonitorInterval / 2. The InfoTimeout attribute value can be
overridden.

LogDbg
LogDbg is a type-level attribute that specifies which debug messages originating
from the agent for that type are to be logged.

By default, LogDbg is an empty list, meaning that no debug messages are logged
for a resource type. Users can modify this attribute for a given resource type, to
specify the debug severities that they want to enable, which would cause those
debug messages to be printed to the log files.

For example, if you want to log debug messages for the FileOnOff resource type
with severity levels DBG_3 and DBG_4, use the hatype commands:

hatype -modify FileOnOff LogDbg -add DBG_3 DBG_4
hatype -display FileOnOff -attribute LogDbg
TYPE ATTRIBUTE VALUE
FileOnOff LogDbg DBG_3 DBG_4

The debug messages from the FileOnOff agent with debug severities DBG_3 and
DBG_4 get printed to the log files. Debug messages from C++ entry points get
printed to the agent log file and from script entry points will get printed to the
engine log file. An example line from the agent log file:

.

.
2003/06/06 11:02:35 VCS DBG_3 V-16-50-0
FileOnOff:f1:monitor:This is a debug message
 FileOnOff.C:file_monitor[28]

You can override the LogDbg attribute. For example, for a specific critical
resource, this attribute's value can be set to obtain more debug messages for the
resource by adding more debug severities than those already set for the
resource's type. From the command line, this can be done using the hares
command. For example:

hares -override f1 LogDbg
hares -modify f1 LogDbg -add DBG_5
hares -display f1 -attribute LogDbg
Resource Attribute System Value
f1 LogDbg global DBG_3 DBG_4 DBG_5

Note that once LogDbg is overridden, you have to use the 'hares' command to
display the value of the LogDbg attribute for resource f1. The 'hatype' command
will display the value for the entire type.

142 Static type attributes
Static type attribute definitions
The FileOnOff agent log would now include debug messages for the f1 resource
at severity level DBG_5 in addition to debug messages at the severity levels
DBG_3 and DBG_4 enabled for the resource type.

The LogDbg attribute value can be overridden.

Note: Values of LogDbg overridden for a resource are effective only if the agent
uses VCSAG_RES_LOG_MSG, the only API that checks if a particular debug
severity is enabled for the resource before writing the message to the log file.
Refer to Chapter 5, “Logging agent messages” on page 95 for more information.

LogFileSize
Sets the size of an agent log file. Value must be specified in bytes. Minimum is
65536 bytes (64KB). Maximum is 134217728 bytes (128MB). Default is 33554432
bytes (32MB). For example,

hatype -modify FileOnOff LogSize 2097152

Values specified less than the minimum acceptable value will be changed 65536
bytes. Values specified greater than the maximum acceptable value will be
changed to 134217728 bytes. Therefore, out-of-range values displayed for the
command:

hatype -display restype -attribute LogSize

will be those entered with the -modify option, not the actual values. The
LogFileSize attribute value cannot be overridden.

143Static type attributes
Static type attribute definitions
ManageFaults
A service group level attribute. ManageFaults specifies if VCS manages
resource failures within the service group by calling clean entry point
for the resources. This attribute value can be set to ALL or NONE. Default
= ALL.

If set to NONE, VCS does not call clean entry point for any resource in
the group. User intervention is required to handle resource
faults/failures. When ManageFaults is set to NONE and one of the
following events occur, the resource enters the ADMIN_WAIT state:

1 - The offline entry point did not complete within the expected
time. Resource state is ONLINE|ADMIN_WAIT

2 - The offline entry point was ineffective. Resource state is
ONLINE|ADMIN_WAIT

3 - The online entry point did not complete within the expected
time. Resource state is OFFLINE|ADMIN_WAIT

4 - The online entry point was ineffective. Resource state is
OFFLINE|ADMIN_WAIT

5 - The resource was taken offline unexpectedly. Resource state is
OFFLINE|ADMIN_WAIT

6 - For the online resource the monitor entry point consistently failed to
complete within the expected time. Resource state is ONLINE| MONITOR_
TIMEDOUT|ADMIN_WAIT

MonitorInterval
Duration (in seconds) between two consecutive monitor calls for an ONLINE
resource or a resource in transition.

Default is 60 seconds. The MonitorInterval attribute value can be overridden.

144 Static type attributes
Static type attribute definitions
MonitorStatsParam
Refer to the User’s Guide for details about the MonitorStatsParam attribute, and
the MonitorTimeStats attribute that is updated by VCS Refer also to information
about the ComputeStats attribute.

MonitorStatsParam is a type-level attribute, which stores the required
parameter values for calculating monitor time statistics. For example:

static str MonitorStatsParam = { Frequency = 10, ExpectedValue =
3000, ValueThreshold = 100, AvgThreshold = 40 }

■ Frequency: Defines the number of monitor cycles after which the average
monitor cycle time should be computed and sent to the engine. The value of
this key can be from 1 to 30. A value of 0 (zero) indicates that the average
monitor time need not be computed. This is the default value for this key.

■ ExpectedValue: The expected monitor time in milliseconds for all resources
of this type. Default=100.

■ ValueThreshold: The acceptable percentage difference between the expected
monitor cycle time (ExpectedValue) and the actual monitor cycle time.
Default=100.

■ AvgThreshold: The acceptable percentage difference between the benchmark
average and the moving average of monitor cycle times. Default=40.

The MonitorStatsParam attribute values can be overridden.

MonitorTimeout
Maximum time (in seconds) within which the monitor entry point must
complete or else be terminated. Default is 60 seconds. The MonitorTimeout
attribute value can be overridden.

The determination of a suitable value for the MonitorTimeout attribute can be
assisted by the use of the MonitorStatsParam attribute.

145Static type attributes
Static type attribute definitions
NumThreads
NumThreads specifies the maximum number of service threads that an agent is
allowed to create. Service threads are the threads in the agent that service
resource commands, the main one being entry point processing. NumThreads
does not control the number of threads used for other internal purposes.

Agents dynamically create service threads depending on the number of
resources that the agent has to manage. Until the number of resources is less
than the NumThreads value, the addition of a new resource will make the agent
create an additional service thread. Also, if the number of resources falls below
the NumThreads value as a result of deletion of resources, the agent will
correspondingly delete service threads. Since an agent for a type will be started
by the engine only if there is at least one resource for that type in the
configuration, an agent will always have at least 1 service thread. Setting
NumThreads to 1 will thus prevent any additional service threads from being
created even if more resources are added.

The maximum value that can be set for NumThreads is 30.

Default is 10. The NumThreads attribute cannot be overridden.

OfflineMonitorInterval
The duration (in seconds) between two consecutive monitor calls for an OFFLINE
resource. If set to 0, OFFLINE resources are not monitored.

Default is 0 seconds. The OfflineMonitorInterval attribute value can be
overridden.

Note: Since the default value of this attribute is 0, concurrency violations are not
detected. If an application that is supposed to be offline on a node is brought
online outside of VCS control, the application continues to run since VCS cannot
detect this state change. Data is protected using I/O fencing. As mentioned, to
avoid this, one can set OfflineMonitorInterval to a non-zero value (apart from
overriding it for a specific resource).

OfflineTimeout
Maximum time (in seconds) within which the offline entry point must
complete or else be terminated.

Default is 300 seconds. The OfflineTimeout attribute value can be overridden.

146 Static type attributes
Static type attribute definitions
OnlineRetryLimit
Number of times to retry online if the attempt to bring a resource online is
unsuccessful. This attribute is meaningful only if clean is implemented.

Default is 0. The OnlineRetryLimit attribute value can be overridden.

OnlineTimeout
Maximum time (in seconds) within which the online entry point must
complete or else be terminated.

Default is 300 seconds. The OnlineTimeout attribute value can be overridden.

147Static type attributes
Static type attribute definitions
OnlineWaitLimit
Number of monitor intervals to wait after completing the online procedure, and
before the resource is brought online. If the resource is not brought online after
the designated monitor intervals, the online attempt is considered ineffective.
This attribute is meaningful only if the clean entry point is implemented.

If clean is not implemented, the agent continues to periodically run monitor
until the resource is brought online.

If clean is implemented, when the agent reaches the maximum number of
monitor intervals it assumes that the online procedure was ineffective and runs
clean. The agent then notifies the engine that the online attempt failed, or
retries the procedure, depending on whether or not the OnlineRetryLimit is
reached.

Default is 2. The OnlineWaitLimit attribute value can be overridden.

OpenTimeout
Maximum time (in seconds) within which the open entry point must complete
or else be terminated.

Default is 60 seconds. The OpenTimeout attribute value can be overridden.

Operations
Indicates the valid operations for the resources of the type. The values are
OnOff (can be brought online and taken offline), OnOnly (can be online only),
and None (cannot be brought online or taken offline).

Default is OnOff. The Operations attribute value cannot be overridden.

148 Static type attributes
Static type attribute definitions
RegList
RegList is a type level keylist attribute that can be used to store, or register, a list
of certain resource level attributes. The agent calls the attr_changed entry
point for a resource when the value of an attribute listed in RegList is modified.
The RegList attribute is useful where a change in the values of important
attributes require specific actions that can be executed from the attr_changed
entry point.

By default, the attribute RegList is not included in a resource’s type definition,
but it can be added using either of the two methods shown below.

Assume the RegList attribute is added to the FileOnOff resource type definition
and its value is defined as PathName. Thereafter, when the value of the
PathName attribute for a FileOnOff resource is modified, the attr_changed
entry point is called.

■ Method one is to modify the types definition file (types.cf, for example) to
include the RegList attribute. Add a line in the definition of a resource type
that resembles:

static keylist RegList = { attribute1_name, attribute2_name,
...}

For example, if the type definition is for the FileOnOff resource and the
name of the attribute to register is PathName, the modified type definition
would resemble:

.

.

.
type FileOnOff (

str PathName
static keylist RegList = { PathName }
static str ArgList[] = { PathName }

)
.
.

■ Method two is to use the haattr command to add the RegList attribute to a
resource type definition and then modify the value of the type’s RegList
attribute using the hatype command; the commands are:

haattr -add -static resource_type RegList -keylist
hatype -modify resource_type RegList attribute_name

For example:
haattr -add -static FileOnOff RegList -keylist
hatype -modify FileOnOff RegList PathName

The RegList attribute cannot be overridden.

149Static type attributes
Static type attribute definitions
RestartLimit
Affects how the agent responds to a resource fault. Refer also to
“FaultOnMonitorTimeouts” on page 140 and “ToleranceLimit” on page 150. A
non-zero value for RestartLimit causes the invocation of the online entry point
instead of the failover of the service group to another system. The engine
attempts to restart the resource according to the number set in RestartLimit
before it gives up and attempts failover. However, if the resource remains online
for the interval designated in ConfInterval, earlier attempts to restart are not
counted against RestartLimit.

Note: The agent will not restart a faulted resource if the clean entry point is not
implemented. Therefore, the value of the RestartLimit attribute applies only if
clean is implemented.

Default is 0. The RestartLimit attribute value can be overridden.

ScriptClass
Indicates the scheduling class of the script processes (for example, online)
created by the agent. See “Scheduling class and priority configuration support”
on page 151.

Default is “TS”.

ScriptPriority
Indicates the priority of the script processes created by the agent. See
“Scheduling class and priority configuration support” on page 151.

Default is 0.

150 Static type attributes
Static type attribute definitions
SupportedActions
The SupportedActions (string-keylist) attribute lists all possible actions defined
for an agent, including those defined by the agent developer. The engine
validates the action_token value specified in the hares -action resource
action_token command against the SupportedActions attribute. For
example, if action_token is not present in SupportedActions, the engine will not
allow the command to go through. It is the responsibility of the agent developer
to initialize the SupportedActions attribute in the resource type definition and
update the definition for each new action added to the action entry point code
or script. See “action” on page 40. This attribute serves as a reference for users
of the command line or the graphical user interface.

An example definition of a resource type in a VCS ResourceTypeTypes.cf file
may resemble:

Type DBResource (
static str ArgList[] = { Sid, Owner, Home, User, Pwork,

StartOpt, ShutOpt }
static keylist SupportedActions = { VRTS_GetRunningServices,

DBRestrict, DBUndoRestrict, DBSuspend, DBResume }
str Sid
str Owner
str Home
str User
str Pword
str StartOpt
str ShutOpt

In the SupportedActions attribute definition, VRTS_GetRunningServices is a
Veritas predefined action, and the actions following it are defined by the
developer. The SupportedActions attribute value cannot be overridden.

ToleranceLimit
A non-zero ToleranceLimit allows the monitor entry point to return OFFLINE
several times before the ONLINE resource is declared FAULTED. If the monitor
entry point reports OFFLINE more times than the number set in ToleranceLimit,
the resource is declared FAULTED. However, if the resource remains online for
the interval designated in ConfInterval, any earlier reports of OFFLINE are not
counted against ToleranceLimit. Default is 0. The ToleranceLimit attribute
value can be overridden.

151Static type attributes
Scheduling class and priority configuration support
Scheduling class and priority configuration support
You can specify priorities and scheduling classes for processes by using the
AgentClass, AgentPriority, SchedulingClass, and SchedulingPriority attributes.
The following scheduling classes are supported:

■ RealTime (specified as “RT” in the configuration file).

■ TimeSharing (specified as “TS” in the configuration file).

■ SRM scheduler (Solaris only), specified as “SHR” in the configuration file.

Priority ranges
The following table displays the platform-specific priority range for RealTime,
TimeSharing, and SRM scheduling (SHR) processes.

Table 8-1 Priority ranges by platform

Platform Scheduling
Class

Default Priority
Range

Weak / Strong

Priority Range Using #ps Commands

AIX RT

TS

126 / 52

60

126 / 52

Priority varies with CPU consumption.

Note: On AIX, use #ps -ael

HP-UX RT

TS

127 / 0

N/A

127 / 0

N/A

Note: On HP-UX, use #ps -ael

Linux RT

TS

1/99 L- high priority task

N- high priority task

Note: On Linux, use #ps -el

Solaris RT

TS

SHR

0 / 59

-60 / 60

-60 / 60

100 /159

N/A

N/A

Note: On Solaris, use #ps -ae -o pri,
args

152 Static type attributes
Scheduling class and priority configuration support
Default scheduling classes and priorities
The following table lists the default class and priority values used by VCS
processes. Note that the default priority value is platform-specific. Therefore,
when priority is set to 0, VCS converts the priority to a value specific to the
platform on which the system is running. For TS, the default priority equals the
strongest priority supported by the TimeSharing class. For RT, the default
priority equals two less than the strongest priority supported by the RealTime
class. So, if the strongest priority supported by the RealTime class is 59, the
default priority for the RT class is 57. For SHR (on Solaris only), the default
priority is the strongest priority support by the SHR class.

Table 8-2 Scheduling classes, priorities by platform

Process Default
Scheduling
Class

AIX Default
Priority

HP-UX
Default
Priority

Solaris
Default
Priority

Linux
Default
Priority

Engine RT 52 (Strongest
+ 2)

2 (Strongest +
2)

57 (Strongest
- 2)

Minimum: 0

Maximum: 99

Process
created by
Engine

TS 60 N/A 60
(Strongest)

N/A

Agent TS 60 N/A 0 N/A

Script TS 60 N/A 0 N/A

153Static type attributes
Scheduling class and priority configuration support
Initializing attributes in the configuration file
The following configuration shows how to initialize these attributes through
configuration files. The example shows attributes of a FileOnOff resource.

type FileOnOff (
static str AgentClass = RT
static str AgentPriority = 10
static str ScriptClass = RT
static str ScriptPriority = 40
static str ArgList[] = { PathName }
str PathName

)

154 Static type attributes
Scheduling class and priority configuration support
Setting attributes dynamically from the command line

To update the AgentClass

Type:

hatype -modify resource_type AgentClass value

For example, to set the AgentClass attribute of the FileOnOff resource to
Realtime, type:
hatype -modify FileOnOff AgentClass "RT"

To update the AgentPriority

Type:
hatype -modify resource_type AgentPriority value

For example, to set the AgentPriority attribute of the FileOnOff resource to 10,
type:
hatype -modify FileOnOff AgentPriority "10"

To update the ScriptClass

Type:
hatype -modify resource_type ScriptClass value

For example, to set the ScriptClass of the FileOnOff resource to RealTime, type:
hatype -modify FileOnOff ScriptClass "RT"

To update the ScriptPriority

Type:
hatype -modify resource_type ScriptPriority value

For example, to set the ScriptClass of the FileOnOff resource to RealTime, type:
hatype -modify FileOnOff ScriptPriority "40"

Note: For the attributes AgentClass and AgentPriority, changes are effective
immediately. For ScriptClass and ScriptPriority, changes become effective for
scripts issued after the execution of the hatype command.

Chapter
 9
State transition diagrams

This chapter illustrates the state transitions within the agent framework. State
transition diagrams are shown separately for the specific behaviors.

State transitions
This section describes state transitions for:

■ Opening a resource

■ Resource in a steady state

■ Bringing a resource online

■ Taking a resource offline

■ Resource fault (without automatic restart)

■ Resource fault (with automatic restart)

■ Monitoring of persistent resources

■ Closing a resource

In addition, state transitions are shown for the handling of resources with
respect to the ManageFaults service group attribute.

See “The next set of diagrams illustrate the following state transitions:” on
page 163.

156 State transition diagrams
State transitions
The states shown in these diagrams are associated with each resource by the
agent framework. These states are used only within the agent framework and
are independent of the IState resource attribute values indicated by the engine.

The agent writes resource state transition information into the agent log file
when the LogDbg parameter, a static resource type attribute, is set to the value
DBG_AGINFO. Agent developers can make use of this information when
debugging agents.

When the agent starts up, each resource starts with the initial state of Detached.
In the Detached state (Enabled=0), the agent rejects all commands to bring a
resource online or take it offline.

When the resource is enabled (Enabled=1), the open entry point is invoked.
Periodic Monitoring begins after open times out or succeeds. Depending on the
return value of monitor, the resource transitions to either the Online or the
Offline state. In the unlikely event that monitor times out or returns unknown,
the resource stays in a Probing state.

Opening

Opening a resource

 Detached

 Probing Online

timed out or

status Offline

unknown status Online
monitor

enabled=1

timed out or done /
start Periodic

 Monitoring Offline

Monitoring

157State transition diagrams
State transitions
When resources are in a steady state of Online or Offline, they are monitored at
regular intervals. The intervals are specified by the MonitorInterval
parameter for a resource in the Online state and by the
OfflineMonitorInterval parameter for a resource in the Offline state. An
Online resource that is unexpectedly detected as Offline is considered to be
faulted. Refer to diagrams describing faulted resources.

monitor
Offline

 Online

Monitoring

status Online

Resource in steady state

 (Offline)status Offline

monitor

status Online

Monitoring
 (Online)

158 State transition diagrams
State transitions
When the agent receives a request from the engine to bring the resource online,
the resource enters the Going Online state, where the online entry point is
invoked. If online completes successfully, the resource enters the Going Online
Waiting state where it waits for the next monitor cycle.

If monitor returns a status of online, the resource moves to the Online state.

If, however, the monitor times out, or returns a status of “not Online” (that is,
unknown or offline), the agent returns the resource to the Going Online Waiting
state and waits for the next monitor cycle.

When the OnlineWaitLimit is reached, the clean entry point is invoked.

■ If clean times out or fails, the resource again returns to the Going Online
Waiting state and waits for the next monitor cycle. The agent again invokes
the clean entry point if the monitor reports a status of “not Online.”

■ If clean succeeds with the OnlineRetryLimit reached, and the
subsequent monitor reports offline status, the resource transitions to the
offline state and is marked FAULTED.

■ If clean succeeds and the ORL is not reached, the resource transitions to
the Going Online state where the online entry point is retried.

timed out

timed out

 Cleaning

OWC - OnlineWaitCount

 Going
 Online

 Going
 Online
 Waiting

 Monitoring

 Offline Online

online /
stop PM

success
 And
ORL reached /
start PM
reset ORC
set as FAULTED

Or failed /
start PM

done /
start PM

monitor

timed out And

status Online

OWL - OnlineWaitLimit
ORC - OnlineRetryCount
ORL - OnlineRetryLimit
PM - Periodic Monitoring

status
not Online
And
OWL not
reached /
increment
OWC

Clean
returned
success,
ORL not
reached /
increment
ORC Clean succeeds

ORL reached /
start PM

OWL not reached /
increment OWC

status Offline, Monitor timed out, OWL and ORL reached /
start PM, reset ORC, set to FAULTED.

status not online
and OWL reached /
stop PM, reset OWC
Or
timed out and
OWL reached

Bringing a resource online: ManageFaults = ALL

159State transition diagrams
State transitions
Upon receiving a request from the engine to take a resource offline, the agent
places the resource in a Going Offline state and invokes the offline entry
point.

If offline succeeds, the resource enters the Going Offline Waiting state where
it waits for the next monitor.

If monitor returns a status of offline, the resource is marked Offline.

If the monitor times out or return a status “not offline,” the agent invokes the
clean entry point. Also, if, in the Going Offline state, the offline entry point
times out, the agent invokes clean entry point.

■ If clean fails or times out, the resource is placed in the Going Offline
Waiting state and monitored. If monitor reports “not offline,” the agent
invokes the clean entry point, where the sequence of events repeats.

■ If clean returns success, the resource is placed in the Going Offline Waiting
state and monitored. If monitor times out or reports “not offline,” the
resource returns to the GoingOfflineWaiting state. The UNABLE
_TO_OFFLINE flag is sent to engine.

Taking a resource offline

offline /

Online

Going
Offline

monitorGoing
Offline
Waiting

Monitoring

Offline

Cleaning

status not offline
And cleaned is
false

status Offline

success /
cleaned = true
start PM

done /
start PM

stop PM

timed out Or

PM - Periodic Monitoring

timed out Or
cleaned is false /
start PM

timed out

status not Offline
And cleaned is true /
UNABLE_TO_OFFLINE flag set,
start PM

160 State transition diagrams
State transitions
This diagram describes the activity that occurs when a resource faults and the
RestartLimit is reached. When the monitor entry point times out
successively and FaultOnMonitorTimeout is reached, or monitor returns
offline and the ToleranceLimit is reached, the agent invokes the clean entry
point.

Note: For the Windows platform, the FaultOnMonitorTimeout attribute has
no significance. Instead, the monitor entry point is allowed to continue to
completion.

If clean fails, or if it times out, the agent places the resource in the Online state
as if no fault occurred.

If clean succeeds, the resource is placed in the Going Offline Waiting state,
where the agent waits for the next monitor.

■ If monitor reports Online, the resource is placed back Online as if no fault
occurred. If monitor reports Offline, the resource is placed in an Offline
state and marked as FAULTED.

■ If monitor reports unknown or times out, the agent places the resource
back into the Going Offline Waiting state, and sets the
UNABLE_TO_OFFLINE flag in the engine.

monitor

Online

Going

CleaningMonitoring

status Offline
And TL reached
And RL reached

timed out
And FMT reached
And RL reached

FMT - FaultOnMonitorTimeout
RL - RestartLimit

Resource fault without automatic restart

timed out And FMT

Offline
Waiting

TL - ToleranceLimit

not reached,

Offline

monitor
Clean
succeeds,
monitor times
out or returns
unknown

Clean
succeeds,
monitor returns
 Offline / Start PM

Or, status Offline
 and TL not reached,
Or, Clean succeeds, but
monitor returns Online

Clean timed out or failed

PM - Periodic Monitoring

clean
succeeds /
start PM

161State transition diagrams
State transitions
This diagram describes the activity that occurs when a resource faults and the
RestartLimit is not reached. When the monitor entry point times out
successively and FaultOnMonitorTimeout is reached, or monitor returns
offline and the ToleranceLimit is reached, the agent invokes the clean entry
point.

Note: For the Windows platform, the FaultOnMonitorTimeout attribute has
no significance. Instead, the monitor entry point is allowed to continue to
completion.

■ If clean succeeds, the resource is placed in the Going Online state and the
online entry point is invoked to restart the resource; refer to the diagram,
“Bringing a resource online.”

■ If clean fails or times out, the agent places the resource in the Online state
as if no fault occurred.

Refer to the diagram “Resource fault without automatic restart,” for a
discussion of activity when a resource faults and the RestartLimit is reached.

monitor

success,

Online

Going Cleaning

Monitoring

Online

timed out or

timed out, FMT

FMT - FaultOnMonitorTimeout
RC - RestartCount
RL - RestartLimit
TC - ToleranceCount
PM - Periodic Monitoring
TL - ToleranceLimit

Resource fault with automatic restart

timed out And FMT not reached, Or

start Online

reached and
RL not reached /

status Offline
And TL reached
And RL not reached /
stop PM; reset TC;
increment RC

failed / start PM

stop PM; reset TC;
increment RC

status Offline and TL not reached

162 State transition diagrams
State transitions
For a persistent resource in the Online state, if monitor returns a status of
offline and the ToleranceLimit is not reached, the resource stays in an Online
state. If monitor returns offline and the ToleranceLimit is reached, the
resource is placed in an Offline state and noted as FAULTED. If monitor
returns “not offline,” the resource stays in an Online state.

Likewise, for a persistent resource in an Offline state, if monitor returns
offline, the resource remains in an Offline state. If monitor returns a status of
online, the resource is placed in an Online state.

monitor

status not Offline

Monitoring

Monitoring

Offline

TC - Tolerance Count

Monitoring of persistent resources

status Offline(Offline)

status Offline
And TL reached /
reset TC

 (Online)
Online

status Offline
And TL not reached /
increment TC

status Online

online Or offline /
ignore

monitor

TL - Tolerance Limit

online Or offline /
ignore

163State transition diagrams
State transitions
When the resource is disabled (Enabled=0), the agent stops Periodic Monitoring
and the close entry point is invoked. When the close entry point succeeds or
times out, the resource is placed in the Detached state.

The next set of diagrams illustrate the following state transitions:

Offline

Closing a resource

stop / stop PM

done Or timed out

Going
Offline
Waiting

Going
Online
Waiting

Online

Closing Detached

stop / stop PM

stop / stop PM

stop / stop PM

PM - Periodic Monitoring

164 State transition diagrams
State transitions with respect to ManageFaults attribute
State transitions with respect to ManageFaults
attribute

This section shows state transition diagrams with respect to the ManageFault
attribute.

By default, ManageFaults is set to ALL, in which case the clean entry point is
called by VCS. See “ManageFaults” on page 143.The diagrams cover the
following conditions:

■ Bringing a resource online when the ManageFaults attribute is set to
NONE

■ Taking a resource offline when the ManageFaults attribute is set to NONE

■ Resource fault when ManageFaults attribute is set to ALL

■ Resource fault (unexpected offline) when ManageFaults attribute is set
to NONE

■ Resource fault (monitor is hung) when ManageFaults attribute is set to
ALL

■ Resource fault (monitor is hung) when ManageFaults attribute is set to
NONE

165State transition diagrams
State transitions with respect to ManageFaults attribute
Monitoring

Going
Online

Going Online
 Waiting

Offline

Online

 Is
 OWL
reached
 ?

 Is
 ORL
reached
 ?

 Is
 status=
 Offline
 ?

Offline

online /
stop PM

status =

 done /
 insert
 monitor;
 start PM

monitor

 timed out /
 set ADMIN-WAIT;
 start PM
clean reason = ONH

status = offline

NO /
start PM

YES /
reset OWC

NO / set
ADMIN-WAIT;
clean reason =
ONI

YES

YES /
start PMNO (status

unknown or
monitor timed out) /

MSG_RES_CLRADMINWAIT
or MSG_RES_RESET_MF /
reset ADMIN_WAIT;
ManageFaults = 1

MSG_RES_
CLRADMINWAIT_
FAULT / reset
ADMIN_WAIT;
ORC = ORL

Bringing a resource online: ManageFaults attribute = NONE

online

ONH - Online Hang
ONI - Online Ineffective
ORC - Online Retry Count
ORL - Online Retry Limit
OWC - Online Wait Count

or unknown
or monitor timed out

OWL - Online Wait Limit
PM - Periodic Monitoring

start PM

166 State transition diagrams
State transitions with respect to ManageFaults attribute
Taking a resource offline; ManageFaults = None

Online Going
Offline

Going Offline
 Waiting

Monitoring

Offline

 Is
 Offline
cleaned
 ?

 offline /
 stop PM

 timed out /
 set ADMIN_WAIT;
clean reason = OFH

done /
insert monitor;
start PM

monitor

status =
online or
unknown or
monitor
timed out

status = offline

NO / set
ADMIN_WAIT;
clean reason =
OFI

YES / set
UNABLE_TO_OFFLINE

 MSG_RES_CLRADMINWAIT_FAULT /
 clear ADMIN_WAIT;
 offline_cleaned = 1;
 insert monitor

MSG_RES_CLRADMIN_WAIT

clear ADMIN_WAIT;
insert monitor

or MSG_RES_RESET_MF /

OFH - Offline Hang
OFI - Offline Ineffective
PM - Periodic Monitoring

167State transition diagrams
State transitions with respect to ManageFaults attribute
Resource fault: ManageFaults attribute = ALL

Cleaning

Online Monitoring
monitor

Status = online /

Status = offline

clean timed out or failed /
Start PM

YES / stop PM; faulted = 1
 call clean;

 Going Offline
 Waiting

Offline

Status = offline
start PM

Going Online

 Is RL
reached
 ?

NO / increment

 Clean success /
 offline_cleaned = 1;
 increment restart count;

monitor

status unknown
or monitor timed out

 NO /
 call online;
 set FSTATE_RESTARTING

See Bringing a resource online with
ManageFaults = ALL

YES

clean not
implemented
or persistent
resource /
offline_cleaned = 0
reset clean_count

 Is TL
reached
 ?

start PM

 reset tolerance count

tolerance count

PM - Periodic Monitoring
RL - Restart Limit
TL - Tolerance Limit

 increment clean count

168 State transition diagrams
State transitions with respect to ManageFaults attribute
Resource fault (unexpected offline): ManageFaults attribute = NONE

Online

 Is TL
reached
 ?

 Going Offline
 Waiting

Monitoring

Offline

monitor status = unknown or
monitor timed out

status = offline /
start PM

status = online /
reset faulted; reset clean count;
reset offline-cleaned;
start PM

MSG_RES_CLEARADMINWAIT_FAULT /
/reset ADMIN_WAIT; faulted = 1;
insert monitor

monitor timed out /
MONITOR_TIMEDOUT set

status = online or
status = unknown /
MONITOR_UNKNOWN
set

monitor

NO

YES / clean reason = 00;

MSG_RES_
CLEARADMIN_WAIT or
MSG_RES_RESET_MF;
reset ADMIN_WAIT;
insert monitor

set ADMIN_WAIT

PM - Periodic Monitoring
TL - Tolerance Limit

169State transition diagrams
State transitions with respect to ManageFaults attribute
Resource fault (monitor hung): ManageFaults attribute = ALL

Online Monitoring

 Is
 FOMT
reached
 ?

Cleaning
 Is RL
reached
 ?

Offline

 Going Offline
 Waiting

monitor

status = online /
reset consecutive

status = unknown /
set MONITOR_UNKNOWN

NO /
increment consecutive

monitor timed
out / set
MONITOR_TIMEDOUT

YES /
stop PM;
increment clean count;
call clean (MH);
faulted = 1

clean success /
increment consecutive

FOMT - Fault On Monitor Timeout

YES /
insert monitor /
start PM

status = unknown or
monitor timed out / set
UNABLE_TO_OFFLINE

monitor

clean failed or
timed out /
start PM

status = online
reset faulted;
reset clean count;
reset consecutive monitor

 Going
Offline

 NO / call online;
set FSTATE_RESTARTING

status = offline /
start PM

MH - Monitor Hung
PM - Periodic Monitoring
RL - Restart Limit

monitor timeout count

timeout count

monitor timeout count

monitor timeout count

170 State transition diagrams
State transitions with respect to ManageFaults attribute
Resource fault (monitor hung): ManageFaults attribute = NONE

Online Monitoring

 Is
 FOMT
reached
 ?

Offline

 Going Offline
 Waiting

monitor

status = online /
reset consecutive

status = unknown /
set MONITOR_UNKNOWN

NO /
increment consecutive

monitor timed
out / set
MONITOR_TIMEDOUT

YES /

status = unknown or
monitor timed out / set
UNABLE_TO_OFFLINE

monitor

status = online
reset faulted;
reset clean count;
reset consecutive monitor

set ADMIN_WAIT;
clean reason = MH

MSG_RES_CLRADMIN_WAIT_FAULT /
reset ADMIN_WAIT;
faulted = 1

status = offline /
start PM

MSG_RES_CLEARADMINWAIT or
MSG_RES_RESET_MF /
reset ADMIN_WAIT
ManageFaults = 1

FOMT - Fault On Monitor Timeout
MH - Monitor Hung
PM - Periodic Monitoring

monitor timeout count

timeout count

monitor timeout count

Chapter
 10
Internationalized
messages

VCS handles internationalized messages in binary message catalogs (BMCs)
generated from source message catalogs (SMCs).

■ A source message catalog (SMC) is a plain text catalog file encoded in ASCII
or in UCS-2, a two-byte encoding of Unicode. Developers can create
messages using a prescribed format and store them in an SMC.

■ A binary message catalog (BMC) is a catalog file in a form that VCSVeritas
Cluster Server can use. BMCs are generated from SMCs through the use of
the bmcgen utility.

Each VCS module requires a BMC. For example, the VCS engine (HAD), GAB, and
LLT require distinct BMCs, as do each enterprise agent and each custom agent.
For agents, a BMC is required for each operating system platform.

Once generated, BMCs must be placed in specific directories that correspond to
the module and the language of the message. You can run the bmcmap utility
within the specific directory to create a BMC map file, an ASCII text file that
links BMC files with their corresponding module, language, and range of
message IDs. The map file enables VCS to manage the BMC files.

You can change an existing SMC file to generate an updated BMC file.

172 Internationalized messages
Creating SMC files
Creating SMC files
Since Source Message Catalog files are used to generate the Binary Message
Catalog files, they must be created in a consistent format.

SMC format
#!language = language_ID
#!module = module_name
#!version = version
#!category = category_ID

comment
message_ID1 {%s:msg}
message_ID2 {%s:msg}
message_ID3 {%s:msg}

comment
message_ID4 {%s:msg}
message_ID5 {%s:msg}
...

Example SMC file
Examine an example SMC file, named VRTSvcsSunAgent.smc, based on the
SMC format:

#!language = en
#!module = HAD
#!version = 4.0
#!category = 203

common library

100 {"%s:Invalid message for agent"}
101 {"%s:Process %s restarted"}
102 {"%s:Error opening /proc directory"}
103 {"%s:online:No start program defined"}
104 {"%s:Executed %s""}
105 {"%s:Executed %s"}

173Internationalized messages
Creating SMC files
Formatting SMC files
■ SMC files must be encoded in UCS-2, ASCII, or UTF-8. See “Naming SMC

files, BMC files” on page 173 for a discussion of file naming conventions.

■ All messages should begin with “%s:” that represents the three-part header
“Agent:Resource:EntryPoint” generated by the agent framework.

■ The HAD module must be specified in the header for custom agents. See
“Example SMC file.”

■ The minor number of the version (for example, 2.x) can be modified each
time a BMC is to be updated. The major number is only to be changed by
VCS. The version number indicates to processes handling the messages
which catalog is to be used. See “Updating BMC Files.”

■ In the SMC header, no space is permitted between the “#” and the “!”
characters. Spaces can follow the “#” character and regular comments in the
file. See the example above.

■ SMC filenames must use the extension: .smc.

■ A message should contain no more than six string format specifiers.

■ Message IDs must contain only numeric characters, not alphabetic
characters. For example, 2001003A is invalid. Message IDs can range from 1
to 65535.

■ Message IDs within an SMC file must be in ascending order.

■ A message formatted to span across multiple lines must use the “\n”
characters to break the line, not a hard carriage return. Line wrapping is
permitted. See the examples that follow.

Naming SMC files, BMC files
BMC files, which follow a naming convention, are generated from SMC files. The
name of an SMC file determines the name of the generated BMC file. The naming
convention for BMC files has the following pattern:

VRTSvcs{Sun|AIX|HP|Lnx|W2K}{Agent_name}.bmc

where the platform and agent_name are included.

For example:
VRTSvcsLnxOracle.bmc

The name of the SMC file used to generate the BMC file for the preceding
example is VRTSvcsLnxOracle.smc.

174 Internationalized messages
Creating SMC files
Message examples
■ An illegal message, with hard carriage returns embedded with the message:

201 {“%s:To be or not to be!
That is the question"}

■ A valid message using “\n”:
10010 {“%s:To be or not to be!\n
That is the question"}

■ A valid message with text wrapping to the next line:
10012 {"%s:To be or not to be!\n
That is the question.\n Whether tis nobler in the mind to
suffer\n the slings and arrows of outrageous fortune\n or to
take arms against a sea of troubles"}

Using format specifiers
Using the “%s” specifier is appropriate for all message arguments unless the
arguments must be reordered. Since the word order in messages may vary by
language, a format specifier, %#$s, enables the reordering of arguments in a
message; the “#” character is a number from 1 to 99.

In an English SMC file, the entry might resemble:
301 {“%s:Setting cookie for proc=%s, PID = %s"}

In a language where the position of message arguments need to switch, the same
entry in the SMC file for that language might resemble:

301 {“%s:Setting cookie for process with PID = %3$s, name =
%2$s"}

175Internationalized messages
Converting SMC files to BMC files
Converting SMC files to BMC files
Use the bmcgen utility to convert SMC files to BMC files. For example:

bmcgen VRTSvcsLnxAgent.smc

The file VRTSvcsLnxAgent.bmc is created in the directory where the SMC file
exists. A BMC file must have an extension: .bmc.

By default, the bmcgen utility assumes the SMC file is a Unicode (UCS-2) file. For
ASCII or UTF-8 encoded files, use the -ascii option. For example:

bmcgen -ascii VRTSvcsSunAgent.smc

Storing BMC files
By default, BMC files must be installed in /opt/VRTS/messages/language,
where language is a directory containing the BMCs of a given supported
language. For example, the path to the BMC for a Japanese agent on a Solaris
system resembles:

/opt/VRTS/messages/ja/VRTSvcsSunAgent.bmc.

VCS languages
The languages supported by VCS are listed as subdirectories, such as /ja
(Japanese) and /en (English), in the directory /opt/VRTS/messages.

Displaying the contents of BMC files
The bmcread command enables you to display the contents of the binary
message catalog file. For example, the following command displays the contents
of the specified BMC file:

bmcread VRTSvcsLnxAgent.bmc

176 Internationalized messages
Using BMC Map Files
Using BMC Map Files
VCS uses a BMC map file to manage the various BMC files of a given module for a
given language. HAD is the module for the VCS engine, bundled agents,
enterprise agents, and custom agents. A BMC map file is an ASCII text file that
associates BMC files with their category and unique message ID range.

Location of BMC Map Files
Map files, by default, are created in the same directories as their corresponding
BMC files: /opt/VRTS/messages/language.

Creating BMC Map Files
Developers can add BMCs to the BMC map file. After generating a BMC file:

1 Copy the BMC file to the corresponding directory. For example:
cp VRTSvcsSunLnxOracle.bmc /opt/VRTS/messages/en

2 Change to the directory containing the BMC file and run the bmcmap utility.
For example:
cd /opt/VRTS/messages/en
bmcmap -create en HAD

The bmcmap utility scans the contents of the directory and dynamically
generates the BMC map. In this case, HAD.bmcmap is created.

Example BMC Map File
In the following example, a BMC named VRTSvcsHPNewCustomAgent.bmc is
included in the BMC map file for the HAD module and the English language.

#
Copyright(C) 2001 VERITAS Software Corporation.
ALL RIGHTS RESERVED.
#

Language=en

HAD=VRTSvcsHad VRTSvcsHPAgent VRTSvcsHPNewCustomAgent

177Internationalized messages
Updating BMC Files
VCS
VRTSvcsHad.version=1.0
VRTSvcsHad.IDstart=0
VRTSvcsHad.IDend=16501
VRTSvcsHad.Category=__________

HP Bundled Agents
VRTSvcsHPAgent.version=1.0
VRTSvcsHPAgent.IDstart=100001
VRTSvcsHPAgent.IDend=113501
VRTSvcsHPAgent.Category=__________

HP NewCustomAgent
VRTSvcsHPNewCustomAgent.version=1.0
VRTSvcsHPNewCustomAgent.IDstart=2017001
VRTSvcsHPNewCustomAgent.IDend=2017040
VRTSvcsHPNewCustomAgent.Category=_________

Updating BMC Files
You can update an existing BMC file. This may be necessary, for example, to add
new messages or to change a message. This can be done in the following way:

1 If the original SMC file for a given BMC file exists, you can edit it using a text
editor. Otherwise create a new SMC file.

a Make your changes, such as adding, deleting, or changing messages.

b Change the minor number of the version number in the header. For
example, change the version from 2.0 to 2.1.

c Save the file.

2 Generate the new BMC file using the bmcgen command; place the new BMC
file in the corresponding language directory.

3 In the directory containing the BMC file, run the bmcmap command to create
a new BMC map file.

178 Internationalized messages
Updating BMC Files

Appendix
 A
Using pre-5.0 VCS agents

With VCS 5.0, the agent framework has been enhanced. Agents you develop to
use this framework are registered as V50 agent. The framework enables you to
use pre-5.0 agents and register them as V40 agents. The following sections
describe how to use pre-5.0 agents with the VCS 5.0 agent framework.

Using pre-5.0 VCS agents and registering
them as V50

When you use pre-5.0 agents with VCS, you may register them as V50 agents
after making necessary modifications. Making this conversion affords you
advantages, which include:

■ You can use different versions of an agent on different systems in the server
farm

■ You can make changes to the resource type definition used on some systems
without affecting how older versions of the agents function

Outline of steps to change V40 agents V50
■ Modifications to PATH variables and links to the VCS Script50Agent binary

may be necessary.

■ Change the way attributes and their values are passed to the entry points
from the V40 format to V50 name-value tuple format.

■ Include /opt/VRTSvcs/lib in path for Perl and shell to source them.

■ Set necessary environment variables.

180 Using pre-5.0 VCS agents
Using pre-5.0 VCS agents and registering them as V50
Overview of V50 name-value tuple format
VCS pre-5.0 agents required that the arguments passed to the entry point to be
in the order indicated by the ArgList attribute as it was defined in the resource
type. The order of parsing the arguments was determined by their position the
definition.

With the V50 agent framework, agents can use entry points that can be passed
attributes and their values i a format of name-value tuples. Such a format means
that attributes and their values are parsed by the name of the attribute and not
by their position in the ArgList Attribute.

The general tuple format for V50 attributes in the ArgList is:

<name> <number_of_elements_in_value> <value>

Scalar attribute format
For scalar attributes, whether string, integer, or boolean, the formatting is:

<attribute_name> 1 <value>

Example is:

DiskGroupName 1 mydg

Vector attribute format
For vector attributes, whether string or integer, the formatting is:

<attribute_name> <number_of_values_in_vector> <values_in_vector>

Examples are:

MyVector 3 aa cc dd

MyEmptyVector 0

Keylist attribute format
For string keylist attributes, the formatting is:

<attribute_name> <number_of_keys_in_keylist> <keys>

Examples are:

DiskAttr 4 hdisk3 hdisk4 hdisk5 hdisk6

DiskAttr 0

Association attribute format
For association attributes, whether string or integer, the formatting is:

<attribute_name> <number_of_keys_and_values> <values_of_keylist>

Examples are:

MyAssoc 4 key1 val1 key2 val2

MyAssoc 0

181Using pre-5.0 VCS agents
Using pre-5.0 VCS agents and registering them as V50
Example script in V40 and V50
Note the following comparison.

V40

ResName=$1
Attr1=$2
Attr2=$3
VCSHOME=”${VCS_HOME:-/opt/VRTSvcs}”
. $VCSHOME/bin/ag_i18n_inc.sh;
VCSAG_SET_ENVS $ResName;

V50

ResName=$1; shift;
.”../ag_i18n_inc.sh”;
VCSAG_SET_ENVS $ResName;

VCSAG_GET_ATTR_VALUE “Attr1” -1 1 “$@”;
attr1_value=${VCSAG_ATTR_VALUE};
VCSAG_GET_ATTR_VALUE “Attr2” -1 1 “$@”;
attr2_value=${VCSAG_ATTR_VALUE};

Sourcing ag_i18n_inc modules in script entry points
In entry points, you need to source the ag_i18n_inc modules. The following
examples assume that the agent is installed in the directory
/opt/VRTSvcs/bin/type.

For entry points in Perl:
...
$ResName = shitf;
use ag_i18n_inc;
VCSAG_SET_ENVS ($ResName);
...

For entry points in Shell:
...
ResName = $1; shift;
. “../ag_i18n_inc.sh”;

VCSAG_SET_ENVS $ ResName;

182 Using pre-5.0 VCS agents
Guidelines for Using Pre-VCS 4.0 Agents
Guidelines for Using Pre-VCS 4.0 Agents
The agent framework supports all VCS agents by enabling them to communicate
with the engine about the definitions of resource types, the values configured
for the resource attributes, and entry points they use.

Changes made to the agent framework with VCS 4.0 and VCS 5.0 releases affect
how agents developed using the pre-VCS 4.0 agent framework can be used.
While not necessary, all pre-VCS 4.0 agents may be modified to work with the
VCS 4.0 and later agent framework so that the new entry points can be used.

Note the following guidelines:

■ If the pre-VCS 4.0 agent is implemented strictly in scripts, then the VCS 4.0
and later ScriptAgent can be used. If desired, the VCS 4.0 and later action
and info entry points can be used directly.

■ If the pre-VCS 4.0 agent is implemented using any C++ entry points, the
agent can be used if developers do not care to implement the action or
info entry points. The VCS 4.0 and later agent framework assumes all
pre-VCS 4.0 agents are version 3.5.

■ If the pre-VCS 4.0 agent is implemented using any C++ entry points, and you
want to implement the action or the info entry point:

■ Add the action or info entry point, C++ or script-based, to the agent.

■ Define the entry points in the VCS primitive,
VCSAg40EntryPointStruct, and use the primitive
VCSAgRegisterEPStruct to register the agent as a VCS 4.0 agent.

■ Recompile the agent.

Note: Agents developed on the 4.0 and later agent framework are not compatible
with the 2.0 or the 3.5pre-4.0 frameworks.

183Using pre-5.0 VCS agents
Log Messages in Pre-VCS 4.0 Agents
Log Messages in Pre-VCS 4.0 Agents
The log messages in pre-VCS 4.0 agents are automatically converted to the VCS
4.0 and later message format.

See Chapter 5, “Logging agent messages” on page 95.

Mapping of Log Tags (Pre-VCS 4.0) to Log Severities (VCS 4.0)
For agents, the severity levels of entry point messages for VCS 4.0 and later
correspond to the pre-VCS 4.0 entry point message tags as shown in this table:

Table A-1

Log Tag (Pre-VCS 4.0) Log Severity (VCS 4.0 and later)

TAG_A VCS_CRITICAL

TAG_B VCS_ERROR

TAG_C VCS_WARNING

TAG_D VCS_NOTE

TAG_E VCS_INFORMATION

TAG_F through TAG_Z VCS_DBG1 through VCS_DBG21

184 Using pre-5.0 VCS agents
Log Messages in Pre-VCS 4.0 Agents
How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later
In the following examples, a message written in a VCS 3.5 agent is shown as it
would appear in VCS 3.5 and as it appears in VCS 4.0 and later. Note that when
messages from pre-VCS 4.0 agents are displayed by VCS 4.0 or later, a category
ID of 10000 is included in the unique message identifier portion of the message.
The category ID was introduced with VCS 4.0.

■ Pre-VCS 4.0 message output:
TAG_B 2003/12/08 15:42:30
VCS:141549:Mount:nj_batches:monitor:Mount resource will not go
online because FsckOpt is incomplete

■ Pre-VCS 4.0 message displayed by VCS 4.0 and later
2003/12/15 12:39:32 VCS ERROR V-16-10000-141549
Mount:nj_batches:monitor:Mount resource will not go online
because FsckOpt is incomplete

Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros
This guide describes the logging macros for C++ agents and script-based agents.

See Chapter 5, “Logging agent messages” on page 95.

For the purpose of comparison, the examples that follow show a pair of
messages in C++ that are formatted using the pre-VCS 4.0 API and the VCS 4.0
macros.

■ Pre-VCS 4.0 APIs:
sprintf(msg,
"VCS:140003:FileOnOff:%s:online:The value for PathName attribute
is not specified", res_name);

VCSAgLogI18NMsg(TAG_C, msg, 140003,
res_name, NULL, NULL, NULL, LOG_DEFAULT);

VCSAgLogI18NConsoleMsg(TAG_C, msg, 140003, res_name,
NULL,NULL,NULL,LOG_DEFAULT);

■ VCS 4.0 macros:
VCSAG_LOG_MSG(VCS_WARNING, 14003, VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not specified");
VCSAG_CONSOLE_LOG_MSG(VCS_WARNING, 14003, VCS_DEFAULT_FLAGS,

"The value for PathName attribute is not specified");

185Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs
Pre-VCS 4.0 Message APIs
The message APIs described in this section of the document are maintained to
allow VCS 4.0 and later to work with the agents developed on the 2.0 and 3.5
agent framework.

VCSAgLogConsoleMsg
void
VCSAgLogConsoleMsg(int tag, const char *message, int flags);

This primitive requests that the VCS agent framework write message to the
agent log file, $VCS_LOG/log/resource_type_A.log. The message must not
exceed 4096 bytes. A message greater that 4096 bytes is truncated.

tag can be any value from TAG_A to TAG_Z. Tags A–E are enabled by default.
To enable other tags, use the halog command. flags can be zero or more of
LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE (prints a
new line), and LOG_TAG (prints tag). This primitive can be called from any entry
point.

For example:
#include "VCSAgApi.h"
...

VCSAgLogConsoleMsg(TAG_A, "Getting low on disk space",
 LOG_TAG|LOG_TIMESTAMP);

...

186 Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs
VCSAgLogI18NMsg
void
VCSAgLogI18NMsg(int tag, const char *msg,

int msg_id, const char *arg1_string, const char
*arg2_string,

const char *arg3_string, const char *arg4_string, int
flags);

This primitive requests that the VCS agent framework write an
internationalized message with a message ID and four string arguments to the
agent log file, $VCS_LOG/log/resource_type_A.log. The message must not
exceed 4096 bytes. A message greater that 4096 bytes is truncated. The size of
all argument strings combined must not exceed 4096 bytes. If the argument
string total exceeds 4096 bytes, then each argument is allowed an equal portion
of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through H are enabled by
default. To enable other tags, modify the LogTags attribute of the corresponding
resource type. flags can be zero or more of LOG_NONE, LOG_TIMESTAMP
(prints date and time), LOG_NEWLINE (prints a new line), and LOG_TAG (prints
tag). This primitive can be called from any entry point.

For example:
#include "VCSAgApi.h"
...
char buffer[256];
sprintf(buffer, "VCS:2015001:IP:%s:monitor:Device %s address

%s", res_name, device, address);

VCSAgLogI18NConsoleMsg(TAG_B, buffer, 2015001, res_name, device,
address, NULL, LOG_TAG|LOG_TIMESTAMP|LOG_NEWLINE);

187Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs
VCSAgLogI18NMsgEx
void
VCSAgLogI18NMsgEx(int tag, const char *msg,

int msg_id, const char *arg1_string, const char
*arg2_string,

const char *arg3_string, const char *arg4_string,
const char *arg5_string, const char *arg6_string, int

flags);

This primitive requests that the VCS agent framework write an
internationalized message with a message ID and six string arguments to the
agent log file, $VCS_LOG/log/resource_type_A.log. The message must not
exceed 4096 bytes. A message greater that 4096 bytes is truncated. The size of
all argument strings combined must not exceed 4096 bytes. If the argument
string total exceeds 4096 bytes, then each argument is allowed an equal portion
of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through H are enabled by
default. To enable other tags, modify the LogTags attribute of the corresponding
resource type. flags can be zero or more of LOG_NONE, LOG_TIMESTAMP
(prints date and time), LOG_NEWLINE (prints a new line), and LOG_TAG (prints
tag). This primitive can be called from any entry point.

For example:
#include "VCSAgApi.h"
...
char buffer[256];
sprintf(buffer, "VCS:2015004:Oracle:%s:%s:During scan for

process %s ioctl failed with return code %s, errno = %s",
res_name, ep_name, proc_name, ret_buf, err_buf);

VCSAgLogI18NConsoleMsgEx(TAG_A, buffer, 2015004, res_name,
ep_name, proc_name, ret_buf, err_buf, NULL, flags);

188 Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs
VCSAgLogI18NConsoleMsg
void
VCSAgLogI18NConsoleMsg(int tag,

const char *msg, int msg_id, const char *arg1_string,
const char *arg2_string, const char *arg3_string,
const char *arg4_string, int flags);

This primitive requests that the VCS agent framework write an
internationalized message with a message ID and four string arguments to the
agent log file, $VCS_LOG/log/resource_type_A.log. The message must not
exceed 4096 bytes. A message greater that 4096 bytes is truncated. The size of
all argument strings combined must not exceed 4096 bytes. If the argument
string total exceeds 4096 bytes, then each argument is allowed an equal portion
of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through E are enabled by
default. To enable other tags, use the halog command. flags can be zero or
more of LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE
(prints a new line), and LOG_TAG (prints tag). This primitive can be called from
any entry point.

For example:
#include "VCSAgApi.h"
...

char buffer[256];
sprintf(buffer, "VCS:2015002:IP:%s:monitor:Device %s address

%s", res_name, device, address);

VCSAgLogI18NConsoleMsg(TAG_B, buffer, 2015002, res_name, device,
address, NULL, LOG_TAG|LOG_TIMESTAMP|LOG_NEWLINE);

189Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs
VCSAgLogI18NConsoleMsgEx
void
VCSAgLogI18NConsoleMsgEx(int tag,

const char *msg, int msg_id, const char *arg1_string,
const char *arg2_string, const char *arg3_string,
const char *arg4_string, const char *arg5_string,
const char *arg6_string, int flags);

This primitive requests that the VCS agent framework write an
internationalized message with a message ID and six string arguments to the
agent log file, $VCS_LOG/log/resource_type_A.log.The message must not
exceed 4096 bytes. A message greater that 4096 bytes is truncated. The size of
all argument strings combined must not exceed 4096 bytes. If the argument
string total exceeds 4096 bytes, then each argument is allowed an equal portion
of 4096 bytes and truncated if it exceeds the allowed portion.

tag can be any value from TAG_A to TAG_Z. Tags A through E are enabled by
default. To enable other tags, use the halog command. flags can be zero or
more of LOG_NONE, LOG_TIMESTAMP (prints date and time), LOG_NEWLINE
(prints a new line), and LOG_TAG (prints tag). This primitive can be called from
any entry point.

For example:
#include "VCSAgApi.h"
...
...
char buffer[256];
sprintf(buffer, "VCS:2015003:Oracle:%s:%s:During scan for

process %s ioctl failed with return code %s, errno = %s",
res_name, ep_name, proc_name, ret_buf, err_buf);

VCSAgLogI18NConsoleMsgEx(TAG_A, buffer, 2015003, res_name,
ep_name, proc_name, ret_buf, err_buf, NULL, flags);

190 Using pre-5.0 VCS agents
Pre-VCS 4.0 Message APIs

Index
A
action entry point

C++ syntax 67
described 40
resources to implement for 24
script entry point 91
supported actions 150

agent framework 56
described 14
library, C++ 30
logging APIs 97
multithreaded 49
state transitions within 155
working with pre-4.0 agents 182

agent messages
formatting 96
normal in VCSAG_LOG_MSG 109

AgentClass parameter 134
AgentPriority parameter 134
AgentReplyTimeout parameter 135
ArgList parameter 135
ArgList reference attributes 135
attr_changed entry point 41

C++ syntax 69
script syntax 92

AttrChangedTimeout parameter 137

B
binary message catalog (BMC) files

converting from SMC files 175
displaying contents 175
updating 177

bmcgen utility 175
bmcread utility 175

C
category ID for messages 107
classes, scheduling 151
clean entry point 38

C++ syntax 66

script syntax 91
CleanTimeout parameter 137
close entry point 42

C++ syntax 72
script syntax 93

CloseTimeout parameter 137
ConfInterval parameter 139

D
debug message severity level 99
debug messages

C++ entry points 99
Perl script entry points 110
Shell script entry points 110

E
entry points

action 40
attr_changed 41
clean 38
close 42
definition 15
info 35
monitor 34
offline 38
online 37
open 41
sample structure 32
shutdown 42

enum types for clean
VCSAgCleanMonitorHung 39
VCSAgCleanOfflineIneffective 38
VCSAgCleanOnlineHung 39
VCSAgCleanOnlineIneffective 39
VCSAgCleanUnexpectedOffline 39

F
FaultOnMonitorTimeouts parameter 140
FireDrill parameter 140
formatting agent messages 96

192 Index
H
had 14
high-availability daemon (had) 14

I
info entry point 35

C++ syntax 58
script example 92

InfoTimeout parameter 141
initializing functions with VCSAG_LOG_INIT 101

L
log category 102
LogDbg parameter 141
LogFileSize parameter 142
logging APIs

C++ 97
script entry points 107

M
ManageFaults parameter 143
message text format 96, 97
mnemonic message field 96
monitor entry point 34

C++ syntax 57, 58
script syntax 90

MonitorLevel parameter 143
MonitorStatsParam parameter 144
MonitorTimeout parameter 144

O
offline entry point 38

C++ syntax 65
script syntax 90

OfflineMonitorInterval parameter 145
OfflineTimeout parameter 145
online entry point 37

C++ syntax 64
script syntax 90

OnlineRetryLimit parameter 146
OnlineTimeout parameter 146
OnlineWaitLimit parameter 147
OnOff resource type 24
OnOnly resource type 24
open entry point 41

C++ syntax 71

script syntax 93
OpenTimeout parameter 147
Operations parameter 147

P
parameters

AgentClass 134
AgentPriority 134
AgentReplyTimeout 135
ArgList 135
AttrChangedTimeout 137
CleanTimeout 137
CloseTimeout 137
ConfInterval 139
FaultOnMonitorTimeouts 140
FireDrill 140
InfoTimeout 141
LogDbg 141
LogFileSize 142
ManageFaults 143
MonitorLevel 143
MonitorStatsParam 144
MonitorTimeout 144
OfflineMonitorInterval 145
OfflineTimeout 145
OnlineRetryLimit 146
OnlineTimeout 146
OnlineWaitLimit 147
OpenTimeout 147
Operations 147
RegList 148
RestartLimit 149
ScriptClass 149
ScriptPriority 149
ToleranceLimit 150

persistent resource type 24
primitives

definition 74
VCSAgGetCookie 78
VCSAgLogI18NMsg 186, 188, 189
VCSAgLogI18NMsgEx 187
VCSAgLogMsg 185
VCSAgRegister 76
VCSAgRegisterEPStruct 74
VCSAgSetCookie 75
VCSAgSnprintf 79
VCSAgStrlcat 79
VCSAgUnregister 77

priorities, specifying 151

193Index
R
RegList parameter 148
resource

closing (state transition diagram) 163
fault (state transition diagram) 160, 161
monitoring (state transition diagram) 162
offlining (state transition diagram) 159
onlining (state transition diagram) 158
OnOff type 24
OnOnly type 24
opening (state transition diagram) 156
persistent type 24
steady state (state transition diagram) 157

RestartLimit parameter 149

S
scheduling class and priority 151
ScriptAgent 114, 182
script-based logging functions 106
ScriptClass parameter 149
ScriptPriority parameter 149
severity macros 100
severity message field 96
shutdown entry point 42

C++ syntax 73
script syntax 93

source message catalog (SMC) files
converting to BMC files 172
creating 172

state transition diagram
closing a resource 163
monitoring persistent resources 162
offlining a resource 159
onlining a resource 158
opening a resource 156
resource fault with auto restart 161
resource fault, no auto restart 160
resource in steady state 157

T
timestamp message field 96
ToleranceLimit parameter 150

U
UMI (unique message identifier) 96

V
VCSAG_CONSOLE_LOG_MSG logging macro 97
VCSAG_LOG_INIT initializing function 101
VCSAG_LOG_MSG logging macro 97
VCSAG_LOG_MSG script logging function 106
VCSAG_LOGDBG_MSG logging macro 97
VCSAG_LOGDBG_MSG script logging function 106
VCSAG_RES_LOG_MSG logging macro 97
VCSAG_SET_ENVS script logging function 106
VCSAgGetCookie primitive 78
VCSAgLogI18NMsg primitive 186, 188, 189
VCSAgLogI18NMsgEx primitive 187
VCSAgLogMsg primitive 185
VCSAgRegister primitive 76
VCSAgRegisterEPStruct primitive 74
VCSAgSetCookie primitive 75
VCSAgSnprintf primitive 79
VCSAgStartup entry point, C++ syntax 56
VCSAgStrlcat primitive 79
VCSAgUnregister primitive 77

194 Index

	Agent Developer’s Guide
	Contents
	Introduction
	VCS agents: an overview
	How agents work
	The agent framework
	Resource type definitions
	Entry points

	Developing an agent: overview
	Applications considerations
	Creating an agent: highlights
	Creating the resource type definition
	Choosing to use C++ or scripts to implement the agent
	Creating the entry points
	Testing the agent

	Resource type definitions
	Example resource type definition: FileOnOff
	The FileOnOff Resource: an example in the main.cf file
	How the FileOnOff agent uses configuration information

	Example script entry points for the FileOnOff resource
	Online entry point for FileOnOff
	Monitor entry point for FileOnOff
	Offline entry point for FileOnOff

	About on-off, on-only, and persistent resources
	About attributes of resources and resource types
	Categories of attributes
	Attribute data types and dimensions
	Attribute data types
	Attribute dimensions

	Agent entry point overview
	Agents process entry point requests one at a time
	Using C++ or script entry points
	C++ agents
	Script agents
	About the VCSAgStartup routine
	Implementing entry points using scripts
	Implementing all or some of the entry points in C++
	Example: VCSAgStartup with C++ and script entry points

	Agent entry points
	monitor
	Asynchronous monitoring

	info
	Return values for info entry point
	Invoking the info entry point
	ResourceInfo resource attribute used by info entry point

	online
	offline
	clean
	action
	Action tokens
	Return values for action entry point

	attr_changed
	open
	close
	shutdown

	Summary of return values for entry points
	Agent information file
	Example agent information file
	Agent information
	Attribute argument details

	Implementing the agent XML information file

	Entry points in C++
	Entry point examples in this chapter
	Data Structures
	ArgList Attribute
	ArgList attribute for agents registered as V50
	ArgList Attribute for agents registered as V40 and earlier

	C++ Entry Point Syntax
	VCSAgStartup
	monitor
	info
	resinfo_op
	info_output
	opt_update_args
	opt_add_args
	Example, info entry point implementation in C++

	online
	offline
	clean
	action
	attr_changed
	open
	close
	shutdown

	Primitives
	VCSAgRegisterEPStruct
	VCSAgSetCookie
	VCSAgRegister
	VCSAgUnregister
	VCSAgGetCookie
	VCSAgStrlcpy
	VCSAgStrlcat
	VCSAgSnprintf
	VCSAgCloseFile
	VCSAgDelString
	VCSAgExec
	VCSAgExecWithTimeout
	VCSAgGenSnmpTrap
	VCSAgSendTrap
	VCSAgLockFile
	VCSAgSetStackSize
	VCSAgUnlockFile
	VCSAgDisableCancellation
	VCSAgRestoreCancellation
	VCSAgSetLogCategory
	VCSAfGetProductName

	APIs for Solaris Zones support
	VCSAgGetContainerName
	VCSAgGetContainerID
	VCSAgExecInContainer
	VCSAgISZoneCapable()

	Entry points in scripts
	Rules for using script entry points
	Parameters and values for script entry points
	ArgList attributes
	ArgList attribute for agents registered as V50
	ArgList Attribute for agents registered as V40 and earlier
	Examples

	Script entry point syntax
	monitor
	online
	offline
	clean
	action
	attr_changed
	info
	open
	close
	shutdown

	Logging agent messages
	Logging in C++ and script-based entry points
	Agent messages: format
	Timestamp
	Mnemonic
	Severity
	UMI
	Message text

	C++ agent logging APIs
	Agent application logging macros for C++ entry points
	Agent debug logging macros for C++ entry points
	Severity arguments for C++ macros
	Initializing function_name using VCSAG_LOG_INIT
	Log category
	Examples of logging APIs used in a C++ agent

	Script entry point logging functions
	VCSAG_SET_ENVS
	VCSAG_SET_ENVS examples, Shell script entry points
	VCSAG_SET_ENVS examples, Perl script entry points

	VCSAG_LOG_MSG
	VCSAG_LOG_MSG examples, Shell script entry points
	VCSAG_LOG_MSG examples, Perl script entry points

	VCSAG_LOGDBG_MSG
	VCSAG_LOGDBG_MSG examples, Shell script entry points
	VCSAG_LOGDBG_MSG examples, Perl script entry points

	Using the functions in scripts
	Example of logging functions used in a script agent

	Building a custom agent
	Creating an agentTypes.cf file
	Example: FileOnOffTypes.cf file
	Requirements for creating the agentTypes.cf file

	The resource defined in the main.cf file
	Building an agent for FileOnOff resources
	Using script entry points
	Using VCSAgStartup() and script entry points
	Using C++ and script entry points
	Using C++ entry points

	Testing agents
	Using debug messages
	Using the engine process to test agents
	Test commands

	Using the AgentServer utility to test agents

	Static type attributes
	Overriding static type attributes
	Static type attribute definitions
	ActionTimeout
	AgentClass
	AgentFailedOn
	AgentPriority
	AgentReplyTimeout
	AgentStartTimeout
	ArgList
	ArgList reference attributes

	AsyncMon
	Enabling and disabling asynchronous monitoring

	AttrChangedTimeout
	CleanTimeout
	CloseTimeout
	ContainerType
	ContainerName resource attribute
	About entry point implementation for non-global zones
	About installing agents that use zones

	ConfInterval
	FaultOnMonitorTimeouts
	FireDrill
	InfoInterval
	InfoTimeout
	LogDbg
	LogFileSize
	ManageFaults
	MonitorInterval
	MonitorStatsParam
	MonitorTimeout
	NumThreads
	OfflineMonitorInterval
	OfflineTimeout
	OnlineRetryLimit
	OnlineTimeout
	OnlineWaitLimit
	OpenTimeout
	Operations
	RegList
	RestartLimit
	ScriptClass
	ScriptPriority
	SupportedActions
	ToleranceLimit

	Scheduling class and priority configuration support
	Priority ranges
	Default scheduling classes and priorities
	Initializing attributes in the configuration file
	Setting attributes dynamically from the command line

	State transition diagrams
	State transitions
	State transitions with respect to ManageFaults attribute

	Internationalized messages
	Creating SMC files
	SMC format
	Example SMC file
	Formatting SMC files
	Naming SMC files, BMC files
	Message examples
	Using format specifiers

	Converting SMC files to BMC files
	Storing BMC files
	VCS languages

	Displaying the contents of BMC files

	Using BMC Map Files
	Location of BMC Map Files
	Creating BMC Map Files
	Example BMC Map File

	Updating BMC Files

	Using pre-5.0 VCS agents
	Using pre-5.0 VCS agents and registering them as V50
	Outline of steps to change V40 agents V50
	Overview of V50 name-value tuple format
	Scalar attribute format
	Vector attribute format
	Keylist attribute format
	Association attribute format
	Example script in V40 and V50

	Sourcing ag_i18n_inc modules in script entry points

	Guidelines for Using Pre-VCS 4.0 Agents
	Log Messages in Pre-VCS 4.0 Agents
	Mapping of Log Tags (Pre-VCS 4.0) to Log Severities (VCS 4.0)
	How Pre-VCS 4.0 Messages are Displayed by VCS 4.0 and Later
	Comparing Pre-VCS 4.0 APIs and VCS 4.0 Logging Macros

	Pre-VCS 4.0 Message APIs
	VCSAgLogConsoleMsg
	VCSAgLogI18NMsg
	VCSAgLogI18NMsgEx
	VCSAgLogI18NConsoleMsg
	VCSAgLogI18NConsoleMsgEx

	Index

