Symantec logo

Cluster Volume Manager

CVM is an extension of Veritas Volume Manager, the industry standard storage virtualization platform. CVM extends the concepts of VxVM across multiple nodes. Each node recognizes the same logical volume layout, and more importantly, the same state of all volume resources.

CVM supports performance-enhancing capabilities, such as striping, mirroring, and mirror break-off (snapshot) for off-host backup. You can use standard VxVM commands from one node in the cluster to manage all storage. All other nodes immediately recognize any changes in disk group and volume configuration with no interaction.

CVM architecture

CVM is designed with a "master and slave" architecture. One node in the cluster acts as the configuration master for logical volume management, and all other nodes are slaves. Any node can take over as master if the existing master fails. The CVM master exists on a per-cluster basis and uses GAB and LLT to transport its configuration data.

Just as with VxVM, the Volume Manager configuration daemon, vxconfigd, maintains the configuration of logical volumes. This daemon handles changes to the volumes by updating the operating system at the kernel level. For example, if a mirror of a volume fails, the mirror detaches from the volume and vxconfigd determines the proper course of action, updates the new volume layout, and informs the kernel of a new volume layout. CVM extends this behavior across multiple nodes and propagates volume changes to the master vxconfigd. (You must perform operator-initiated changes on the master node.) The vxconfigd process on the master pushes these changes out to slave vxconfigd processes, each of which updates the local kernel.

CVM does not impose any write locking between nodes. Each node is free to update any area of the storage. All data integrity is the responsibility of the upper application. From an application perspective, standalone systems access logical volumes in the same way as CVM systems.

CVM imposes a "Uniform Shared Storage" model. All nodes must connect to the same disk sets for a given disk group. Any node unable to detect the entire set of physical disks for a given disk group cannot import the group. If a node loses contact with a specific disk, CVM excludes the node from participating in the use of that disk.

CVM communication

CVM communication involves various GAB ports for different types of communication.


Port w

Most CVM communication uses port w for vxconfigd communications. During any change in volume configuration, such as volume creation, plex attachment or detachment, and volume resizing, vxconfigd on the master node uses port w to share this information with slave nodes.

When all slaves use port w to acknowledge the new configuration is the next active configuration, the master updates this record to the disk headers in the VxVM private region for the disk group as the next configuration.


Port v

CVM uses port v for kernel-to-kernel communication. During specific configuration events, certain actions require coordination across all nodes. An example of synchronizing events is a resize operation. CVM must ensure all nodes see the new or old size, but never a mix of size among members.

CVM also uses this port to obtain cluster membership from GAB and determine the status of other CVM members in the cluster.